

158
9-1-78
BNL 50768

Am 303

ESTIMATION OF SECTORAL PRICES IN THE BNL ENERGY INPUT-OUTPUT MODEL

RAYMOND G. TESSMER, JR., PAUL GRONCKI, AND GLENN W. BOYCE, JR.

bnl
aui

MASTER

December 1977

ECONOMIC ANALYSIS DIVISION
NATIONAL CENTER FOR ANALYSIS OF ENERGY SYSTEMS

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.

UNDER CONTRACT NO. EY-76-C-02-0016 WITH THE
UNITED STATES DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BNL 50768
UC-13
(General, Miscellaneous, and Progress Reports
Nonnuclear - TID-4500)

ESTIMATION OF SECTORAL PRICES IN THE BNL ENERGY INPUT-OUTPUT MODEL

RAYMOND G. TESSMER, JR., PAUL GRONCKI, AND GLENN W. BOYCE, JR.

December 1977

MASTER

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ECONOMIC ANALYSIS DIVISION
NATIONAL CENTER FOR ANALYSIS OF ENERGY SYSTEMS

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy (DOE), nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Price: Printed Copy \$4.50; Microfiche \$3.00

March 1978

290 copies

ABSTRACT

Value added coefficients have been incorporated into Brookhaven's Energy Input-Output Model so that one can calculate the implicit price at which each sector sells its output to interindustry and final demand purchasers. Certain adjustments to historical 1967 data are required because of the unique structure of the model. Procedures are also described for projecting energy sector coefficients in future years that are consistent with exogenously specified energy prices.

Table of Contents

	<u>Page</u>
I. Introduction	1
II. Historical 1967 Prices	1
A. Description of BNL Model	1
B. Sectoral Classification	4
C. Structural Difference Between BEA and BNL Models	4
D. Normalization of Coefficients	5
E. Transactions Between Energy Supply Sectors	6
III. Projected 1985 Prices	11
A. Non-Energy Sector Coefficients	13
B. Determination of Energy Sector Prices	17
1. Coal	18
2. Crude Oil and Gas	18
3. Refined Oil Products	19
4. Pipeline Gas	19
5. Coal Combined Cycle Electric, Fossil Electric, Light Water Reactor, High Temperature Gas Cooled Reactor, and Hydroelectric	19
6. Shale Oil, Coal Gasification and Coal Liquefaction	20
C. Alignment of Coefficients to Desired Prices	20
References	25

Tables

	<u>Page</u>
1. 1967 Energy Sector Outputs and Prices	8
2. Comparison of Major 1967 Fuel Transactions	8
3. Final Adjustment Coefficients for Energy Sectors	8
4. 1967 Value Added Coefficients	12
5. 1967 I-O Prices	12
6. Annual Percent Change in Output Per Man Year for 1967-1976, 1976-1985, 1985-2000	14
7. Calculation of Desired I-O Energy Prices	21
8. 1985 Adjustment Factors for Major Fuel Transactions	21
9. Comparison of 1967 and 1985 Property Type Income Coefficients	23
10. 1985 Value Added Coefficients	24
11. 1985 I-O Prices	25

Figures

	<u>Page</u>
1. I-O Units of Measure	2
2. Sectoral Classification of BNL Energy Input-Output Model and Alignment with Other Classification Systems	9
3. Annual Percentage Changes in Output Per Man Year, 1967-1985	16

I. Introduction

Value added coefficients have been incorporated in Brookhaven's Energy Input-Output Model (I-O). These describe sectoral payments for capital services, labor services, and indirect business taxes per unit of output. With these coefficients and the coefficient of production matrix, one can calculate the implicit price at which each sector sells its output to interindustry and final demand purchasers. This would be a trivial exercise for the Bureau of Economic Analysis (BEA) historical I-O tables in which all transactions are measured in dollars and all implicit prices are indexed at \$1. It becomes useful, however, with projected I-O tables for future years where one is interested in examining changes in productivity and relative prices over time.

Because the BNL model differs in structure from BEA I-O tables, some alterations are necessary in the normal procedure for estimating sectoral prices. These techniques are described first, and they are followed by techniques used in projections for future years.

II. Historical 1967 Prices

A. Description of BNL Model

The general structure and units of measure in the BNL I-O Model are depicted in Figure 1. A general description of the model is presented in reference 1. BEA data used in specifying the model is contained in reference 2 and energy data in reference 3. A listing of the BNL sectors and the correspondence with BEA sectors is given in Figure 2.

Each column, j , of coefficients in the A matrix describes the interindustry purchases necessary to produce a unit

Coefficients of Production, A			Final Demand, Y (Gross National Product)	Total Output, X (domestic production)
Energy Supply Sectors (12)	Btu/Btu	Btu/Btu	0	
Energy Product Sectors (8)	Btu/Btu	C	10^6 Btu/\$	10^{15} Btu
Non-Energy Sectors (90)	$\$/10^6$ Btu	C	$\$/\$$	10^{15} Btu
Value Added Coefficients, B			$\$/10^6$ Btu	10^9 \$
			0	10^9 \$
			$\$/\$$	

Figure 1. I-O units of measure.

of output of sector j . The corresponding value added coefficients in column j of the B matrix represent primary factor purchases per unit of output of sector j . Three factors of production are employed - labor services, capital services (or property type income), and indirect business taxes. It is assumed that each sector sells its output to every interindustry sector and to each final demand purchaser at a single price, and that each primary factor is also purchased at a single price by every interindustry sector. Under this assumption, one can write a column equation for each sector which says that the value of interindustry purchases per unit output of sector j plus the value of primary factor purchases per unit output of sector j equals the selling price of sector j 's output. The set of equations for all sectors can be expressed in matrix notation as,

$$A^T P + B^T W = P \quad (1)$$

where A = coefficient of production matrix,
 $j \times j$

P = vector of interindustry prices,
 $j \times 1$

B = value added coefficient matrix,
 $m \times j$

W = vector of primary factor prices,
 $m \times 1$.

Given A , B and W , this can be solved for interindustry prices, P ,

$$P = (I - A^T)^{-1} B^T W. \quad (2)$$

Since all primary factor purchases in the BNL model are expressed in terms of actual 1967 dollar transactions, each of the three factor prices, W , are \$1. The only task prior to solving equation (2) is to express the B matrix in terms that are consistent with definitions and conventions used in the BNL model, as described below.

B. Sectoral Classification

Value added purchases in terms of the BEA 85-industry categories are presented in Table 1 of reference 2. They are disaggregated into three components: employee compensation (EC), indirect business taxes (IBT), and property-type income (PTI). Certain BNL model sectors are disaggregates of these sectors, however.* One must therefore use value added data for BEA 367-industry categories for these sectors which is published in reference 4. Because this detailed data is not disaggregated into the three value added components, it has been assumed that the proportional split is the same as that in its aggregate sectoral classification on an 85-industry basis.

C. Structural Difference Between BEA and BNL Models

Sectoral purchases of transferred (competitive) imports are presented as an interindustry row by BEA in their transactions table (sector 80B). The BNL model handles them as negative entries in one column of final demand (GNP). The BNL entries are larger in absolute value than the BEA row entries by the amount of their transportation and trade margins. BNL row transactions** for water transportation (BNL sector 92) and for wholesale and retail trade (BNL sector 99) are therefore less than the corresponding BEA row transactions. The proportion by which trade and transportation margins on imported goods have reduced total output of these two sectors is thus used to scale down the BNL value added purchases for

* These are the new construction, maintenance and repair construction, refined oil products, utilities, transportation, federal government enterprises, and state/local government enterprise sectors, as noted in Figure 2.

** These are obtained by the multiplication $A_{ij} \cdot X_j$.

sectors 92 and 99 from those documented by BEA.

Commodity Credit Corporation column purchases (BEA sector 78.03) have been included in the Federal Government-Other column of final demand in the BNL model. The negative value added number for BEA sector 78.03 is thus not included in the value added purchases of BNL sector 107.

The BNL I-O model does not include two of the BEA sectors - 80A (directly allocated imports) and 83 (scrap, used and second-hand goods). These purchases must be accounted for in the BNL model, however, because equation 2 says that the total value of input purchases per unit output of each sector must add up to the selling price of that sector's output. This problem is corrected in the BNL model by adding an additional value added component (called "other value added") that represents sectoral purchases from BEA sectors 80A and 83.

Column 80A has no entries in the BEA table, so this does not introduce a discrepancy between the two models. Column 83 (scrap) does have entries, however, and the BNL model has added them to the diagonal transactions for each row in which they appear. Although this does not bias total sales or production for each sector (the sum of interindustry and final demand purchases), it does bias upward the value of each sector's purchases. This bias is removed in the BNL model by adding another value added component (called "diagonal scrap") to the B matrix. The value of this component for any sector is equal to the negative of that sector's sales to sector 83 in the BEA I-O table.

D. Normalization of Coefficients

The five components of value added purchases must be normalized, or divided, by 1967 total output for each of the

102 purchasing sectors.* Total outputs (domestic production) in the BNL model differ from the totals presented by BEA. BNL outputs are lower than those in BEA by the amount of competitive imports specified in the BNL import column of final demand. Additionally, outputs of the BNL energy sectors are expressed in physical units (Btu); so the value added coefficients for the energy sectors have units of 1967 \$/ 10^6 Btu. The 1967 BNL model energy sector outputs which are used for normalization are listed in Table 1.

Energy sector I-O prices for 1967 are also listed in Table 1. The coal price, \$.18/ 10^6 Btu, is an average for lignite, bituminous and anthracite coals from Minerals Yearbook (10, pp. 20, 301, 380). Wellhead prices for the crude oil and gas sector (from the same source) are \$.16/ 10^6 Btu for natural gas (10, p. 723) and \$.52/ 10^6 Btu for crude petroleum (10, pp. 20, 810). The average, weighted price for the crude sector is \$.35/ 10^6 Btu. The price for the refined oil products sector, \$.97/ 10^6 Btu, is averaged over Minerals Yearbook prices for gasoline, kerosene, jet fuel, distillate, and residual oils at various U.S. ports (10, pp. 868-71). For the pipeline gas sector, an average price of \$.61/ 10^6 Btu for gas utilities over customers is used from Gas Facts (11, p. 111). Electric sector prices are also based on utility sales and revenues for all customer types, as listed in Historical Statistics of the U.S. This price of \$4.57/ 10^6 Btu is based upon delivered Btu of energy, after transmission and distribution losses.

E. Transactions Between Energy Supply Sectors

Physical energy transactions between the energy sectors in the BNL model will not correspond to dollar transactions in the BEA table for several reasons. First, these

* The eight, dummy, energy product sectors, 13-20, have no value added purchases.

sales will not in general be made at the same price as sales to other sectors in the economy. Secondly, the diagonal entries differ by definition. In the BEA model they represent sales between companies which are all classified within a single I-O sector. In the BNL model they are only an accounting method for Btu conversion losses (say crude gas to pipeline quality gas), distribution losses, and transmission losses. In order to calculate correct sectoral prices in the BNL model it is therefore necessary to convert physical energy purchases by each of the first 12 sectors to the correct dollar purchases specified in the BEA I-O table.

With the implicit I-O energy prices listed in Table 1 one can express the BNL physical energy transactions in terms of dollars and compare them with BEA dollar transactions. The most important intersectoral fuel transactions are compared in Table 2.

The disparity in the crude oil sales to the refined oil and pipeline gas sectors is a result of gas being very cheap relative to oil in 1967. The lower BEA dollar fuel sales to the electric sector primarily reflect the fact that fuel sales to utilities were at lower prices than fuel sales to other sectors.

The BNL model corrects the problem with these five transactions in the following manner. The five A matrix coefficients for these transactions are simply multiplied by the ratios listed in Table 2 prior to calculating I-O prices in equation 2. A subprogram is incorporated to do this, as well as store the original A matrix coefficients so that the "true" physical values can be printed out at the end of the program. This subprogram also zeros the twelve diagonal "loss" coefficients before I-O prices are calculated.

TABLE 1.
1967 Energy Sector Outputs and Prices

<u>Sector</u>	<u>Total Output, 10¹⁵ Btu</u>	<u>I-O Price, \$/10⁶ Btu</u>
1. Coal	14.804	.18
2. Crude Oil and Gas	40.068	.35
6. Refined Oil Products	23.244	.97
7. Pipeline Gas	18.355	.61
9. Fossil Electric	3.362	4.57
10. LWR Electric	0.026	4.57
12. Hydroelectric	0.756	4.57

TABLE 2
Comparison of Major 1967 Fuel Transactions, 10⁹ \$

	<u>(1) BNL \$ Transaction</u>	<u>(2) BEA \$ Transaction</u>	<u>Ratio (2) ÷ (1)</u>
T _{2,6} (crude to refined oil)	8.21	11.56	1.408
T _{2,7} (crude to pipeline gas)	6.37	2.52	0.396
T _{1,9} (coal to electric)	1.53	1.03	0.672
T _{6,9} (refined to electric)	.92	.29	0.309
T _{7,9} (gas to electric)	2.11	.70	0.330

TABLE 3
Final Adjustment Coefficients for Energy Sectors

<u>Purchasing Sector</u>	<u>"Other Value Added" Coefficient</u>
1. Coal	0.0
2. Crude Oil and Gas	.00537
6. Refined Oil Products	-.09146
7. Pipeline Gas	.11668
9. Fossil Electric	.34963
10. LWR Electric	-.62454
12. Hydroelectric	1.04075

BNL 110	Sector	BNL 101	BEA	Battelle	A. Carter	BLS	DRI 18
1 Coal		1	7	7	7	8	5
2 Crude Oil		2	8	8	8	9	6
Crude Gas							10
3 Shale Oil		-	-	-	-	-	15
4 Methane from coal		3	-	-	-	-	17
5 Coal liquefaction		-	-	-	-	-	16
6 Refined oil products		4	31.01	part 31	part 41	part 42	7
7 Pipeline gas		5	68.02	68.2	93	102	9
8 Coal combined cycle electric		-	-	-	-	-	
9 Other fossil electric		6	68.01 78.02 79.02				8
10 LWR electric		7	68.01 78.02 79.02				
11 HTGR electric		-	68.1	part 104	92	101	11
Hydroelectric		8	68.01 78.02 79.02	part 105	123	part 125	12
12 Geothermal		-	-	-	-	-	13
Solar electric		-	-	-	-	-	14
Solar direct		-	-	-	-	-	18
13 Ore reduction feedstocks		9	-	-	-	-	-
14 Chemical feedstocks		10	-	-	-	-	-
15 Motive power		11	-	-	-	-	-
16 Process heat		12	-	-	-	-	-
17 Water heat		13	-	-	-	-	-
18 Space heat		14	-	-	-	-	-
19 Air conditioning		15	-	-	-	-	-
20 Electric power		16	-	-	-	-	-
21 Livestock and livestock products		17	1	1	1	1	
22 Other agricultural products		18	2	2	2	2	
23 Forestry and fishery products		19	3	3	3	3	
24 Agricultural, forestry and fishery services		20	4	4	4	4	
25 Iron and ferroalloya ores mining		21	5	5	5	5	
26 Nonferrous metal ores mining		22	6	6	6	6-7	
27 Stone and clay mining, quarrying		23	9	9	9	10	1
28 Chemicals and fertilizer mineral mining		24	10	10	10	11	
29 New construction, residential buildings			11.01	11.1	11	12	
30 New construction, nonresidential buildings			11.02	11.2	12	13	
31 New construction, public utilities		25	11.03	11.3	13	14	
32 New construction, highways			11.04	11.4	14	15	
33 New construction, all other			11.05	11.5	15	16	
34 Maintenance and repair construction, residential		26	12.01	12.1	16		17
35 Maintenance and repair construction, all other			12.02	12.2	17		
36 Ordnance and accessories		27	13	13	18	18-19	
37 Food and kindred products		28	14	14	19	20	
38 Tobacco manufacturers		29	15	15	20	21	
39 Broad and narrow fabrics, yarn and thread mills		30	16	16	21	22	
40 Misc. textile goods and floor coverings		31	17	17	22	23	
41 Apparel		32	18	18	23	24-25	
42 Misc. fabricated textile products		33	19	19	24	26	
43 Lumber and wood products, except containers		34	20	20	25	27, p. 28	
44 Wooden containers		35	21	21	26	part 28	
45 Household furniture		36	22	22	27	29	
46 Other furniture and fixtures		37	23	23	28	30	
47 Paper and allied products except containers and boxes		38	24	24.1 24.2 24.3	29 30 31	31	
48 Paperboard containers and boxes		39	25	25	32	32	
49 Printing and publishing		40	26	26	33	33-34	2
50 Chemicals and selected chemical products		41	27	27.1 27.2 27.3	34 35 36	35-36	
51 Plastics and synthetic materials		42	28	28.1 28.2	37	37	
52 Drugs, cleaning and toilet preparations		43	29	29	39	39-40	
53 Paints and allied products		44	30	30	40	41	
54 PAVING MIXTURES AND BLOCKS		45	31.01	part 31	part 41	part 42	
55 Asphalt felts and coatings		46	31.03	part 31	part 41	part 42	
56 Rubber and miscellaneous plastics products		47	32	32.1 32.2 32.3	42 43 44	43-44	
57 Leather tanning and industrial leather products		48	33	33	45	45	
58 Footwear and other leather products		49	34	34	46	46	
59 Glass and glass products		50	35	35	47	46	
60 Stone and clay products		51	36	36	48	47-48	

Figure 2. Sectoral classification of BNL energy input-output model and alignment with other classification systems.

BNL 110	Sector	BNL 101	BEA	Battelle	A. Carter	BLS	DRI 18
61	Primary iron and steel manufacturing	52	37	37	49	49-50	
62	Primary nonferrous metals manufacturing	53	38	{38.1 38.2 38.3	{50 51 52}	51-57	
63	Metal containers	54	39	39	53	58	
64	Heating, plumbing and fabricated structural metal products	55	40	40	54	59-60	
65	Screw machine prod., bolts, nuts, etc. & metal stampings	56	41	41	55	61	
66	Other fabricated metal products	57	42	42	56	62	
67	Engines and turbines	58	43	43	57	63	
68	Farm machinery	59	44	44	58	64	
69	Construction, mining, oil field machinery, equipment	60	45	45	59	65	
70	Materials handling machinery and equipment	61	46	46	60	66	
71	Metalworking machinery and equipment	62	47	47	61	67	
72	Special industry machinery and equipment	63	48	48	62	68	
73	General industrial machinery and equipment	64	49	49	63	69	
74	Machine shop products	65	50	50	64	70	2
75	Office, computing and accounting machines	66	51	51	65	71-72	
76	Service industry machines	67	52	52	66	73	
77	Elec. trans. & dist. eq. & elec. industry apparatus	68	53	{53.1 53.2	{67 68	74 75	
78	Household appliances	69	54	54	69	76	
79	Electric lighting and wiring equipment	70	55	55	70	77	
80	Radio, television and communications equipment	71	56	56	71	78-80	
81	Electronic components and accessories	72	57	{57.1 57.2 57.3	{73 74	81	
82	Miscellaneous elec. machinery, equipment & supplies	73	58	58	75	82	
83	Motor vehicles and equipment	74	59	59	76	83	
84	Aircraft and parts	75	60	60	77	84	
85	Other transportation equipment	76	61	61	78	85-87	
86	Professional, scientific & controlling inst. & supp.	77	62	62	79	88-89	
87	Optical, ophthalmic, & photographic equip. & supp.	78	63	63	81	90-91	
88	Miscellaneous manufacturing	79	64	64	82	92	
89	Railroads and related services	80	65.01	65.1	83	93	
90	Local, urban and interurban highway pass. trans.	81	{ 65.02 79.01	{ 65.2 part 105	{ 84 part 105	{ 94 part 125	
91	Motor freight transportation and warehousing	82	65.03	65.3	85	95	3
92	Water transportation	83	65.04	65.4	86	96	
93	Air transportation	84	65.05	65.5	87	97	
94	Pipe line transportation	85	65.06	65.6	88	98	
95	Transportation services	86	65.07	65.7	89		
96	Communications except radio & television broadcasting	87	66	66	90	99	
97	Radio and TV broadcasting	88	67	67	91	100	
98	Water and sanitary services	89	68.03	68.3	94	103	
99	Wholesale and retail trade	90	69	69	95	104-105	
100	Finance and insurance	91	70	70	96	106-107	
101	Real estate & rental	92	71	71	97	108-109	
102	Hotels & lodging; pers. & repair serv., except auto repair	93	72	72	98	110-111	
103	Business services	94	73	73	99	112-114	4
104	Automobile repair & services	95	75	75	101	115	
105	Amusements	96	76	76	102	116-117	
106	Medical, educ. services & nonprofit inst.	97	77	77	103	118-121	
107	Federal government enterprises	98	{ 78.01 78.04	-	part 104	122-124	
108	State and local government enterprises	99	79.03	-	part 105	part 125	
109	Business travel, entertainment & gifts	100	81	-	107	128	
110	Office supplies	101	82	-	108	129	
-	Research & development	-	74*	-	100	-	
-	Gross imports	-	80	-	106	126-127	
-	Scrap, used and second hand goods	-	83	-	109	130	
-	Government industry	-	84	-	-	131	
-	Rest of world industry	-	85	-	-	132	
-	Overseas	-	86	-	-	133	
-	Inventory valuation adjustment	-	87	-	-	134	

*Eliminated as a separate sector by BEA in the 1963 and 1967 studies.

Code: BNL 110 - Brookhaven National Laboratory 110 sector version
 BNL 101 - Brookhaven National Laboratory 101 sector version
 BEA - Bureau of Economic Analysis, U.S. Dept. of Commerce
 Battelle - Battelle Memorial Institute; used in An "Ex ante" Capital Matrix for the United States, 1970-1975
 A.Carter - Professor Ann Carter, Brandeis University
 BLS - Bureau of Labor Statistics, U.S. Dept. of Labor
 DRI 18 - Data Resources, Inc. 18 sector Interindustry model

Figure 2 (Cont'd.). Sectoral classification of BNL energy input-output model and alignment with other classification systems.

With the above adjustments one does still not obtain the desired energy sector prices because energy sector transactions on the diagonal are now zero in the price calculation program of the BNL model. By trial and error, coefficients have been added to the "other value added" row to obtain the desired energy prices. These coefficients are listed in Table 3.

If one now calculates BNL I-O prices after the above modifications one still does not come out with a price of \$1.0 for all non-energy sectors. This is primarily a result of fuel sales to non-energy sectors being in some cases at different prices from the "average" I-O prices. Adjustments to "other value added" purchases have therefore been made in certain non-energy sectors to bring their calculated I-O price to within 5% of the desired price of \$1.0. Sectors so adjusted are identified in Table 4 which tabulates the value added coefficients by component for all 110 sectors in the BNL model. Table 5 lists the final set of sectoral prices as calculated from equation 2, total value added purchases, and aggregated value added coefficients.

III. Projected 1985 Prices

Brookhaven's Energy Input-Output Model, when specified for a future planning year, can be used to estimate relative prices for the output of all 110 sectors in the economy. To do this one must first project the level and structure of Gross National Product (a 110 x 8 matrix), the A matrix coefficients of production (a 110 x 110 matrix) and the value added coefficients (a 5 x 110 matrix). Procedures for doing this and for controlling to a set of exogenously specified energy prices are described below.

Table 4

1967 Value Added Coefficients
(\$/10⁶ Btu, \$/\$)

Sector	Labor Services	Business Taxes	Capital Services	Other Value Added	Scrap Adjustment
1	.08355	.00466	.03633	0.00000	0.00000
2	.02201	.01834	.17455	.00537	0.00000
3	0.00000	0.00000	0.00000	0.00000	0.00000
4	0.00000	0.00000	0.00000	0.00000	0.00000
5	0.00000	0.00000	0.00000	0.00000	0.00000
6	.08187	.11051	.06419	-.09146	-.00050
7	.10010	.04338	.15454	-.11668	0.00000
8	0.00000	0.00000	0.00000	0.00000	0.00000
9	.73205	.26328	2.03867	.34963	0.00000
10	.73179	.26436	2.03829	-.62454	0.00000
11	0.00000	0.00000	0.00000	0.00000	0.00000
12	.73209	.26317	2.03869	1.04075	0.00000
13	0.00000	0.00000	0.00000	0.00000	0.00000
14	0.00000	0.00000	0.00000	0.00000	0.00000
15	0.00000	0.00000	0.00000	0.00000	0.00000
16	0.00000	0.00000	0.00000	0.00000	0.00000
17	0.00000	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.00000	0.00000	0.00000	0.00000
19	0.00000	0.00000	0.00000	0.00000	0.00000
20	0.00000	0.00000	0.00000	0.00000	0.00000
21	.03981	.02525	.20078	0.00000	0.00000
22	.07710	.03331	.38559	0.00000	0.00000
23	.08026	.00788	.49812	0.00000	0.00000
24	.20943	.02326	.67920	.01366	0.00000
25	.22649	.04404	.18425	.06647	0.00000
26	.33554	.04439	.10547	.05556*	0.00000
27	.38217	.02059	.24266	.0103	0.00000
28	.20019	.02370	.41977	-.04999*	0.00000
29	.28592	.00605	.09380	.00992	0.00000
30	.31390	.00605	.05761	.0151	0.00000
31	.32795	.00604	.06194	.0119	0.00000
32	.34295	.00604	.10462	.00128	0.00000
33	.39221	.00605	.09397	.00111	0.00000
34	.38683	.00615	.12020	.00109	0.00000
35	.55391	.00414	.05525	.00072	0.00000
36	.38444	.00685	.06465	0.00000	-.0262
37	.14997	.05009	.07290	.01491	0.00000
38	.07617	.27209	.13932	-.0111	-.0126
39	.21924	.00557	.08679	.00189	-.00368
40	.18768	.00569	.09787	.01477	0.00000
41	.30249	.00427	.06431	.00042	-.00041
42	.21067	.00397	.07707	0.00000	-.0072
43	.25796	.00937	.13667	0.00000	0.00000
44	.28312	.00741	.11470	0.00000	0.00000
45	.32678	.00722	.10756	.00041	0.00000
46	.33154	.00717	.11790	.00007	0.00000
47	.25024	.01110	.14318	-.02439*	-.00109
48	.27820	.00796	.08178	.00002	-.00635
49	.37323	.00733	.11798	.00013	-.00336
50	.18984	.00940	.18133	.00330*	0.00000
51	.24004	.00858	.10552	-.03999*	0.00000
52	.19778	.00663	.18372	.00168	0.00000
53	.22048	.00892	.09430	.02104	0.00000
54	.28192	.00892	.10233	-.14980*	0.00000
55	.30988	.00894	.07205	-.17024*	0.00000
56	.29501	.04198	.11790	.01523	-.00071
57	.23144	.00595	.08207	.00753	-.00446
58	.34995	.00450	.07880	0.00000	-.00005
59	.38464	.00898	.18007	.00204	0.00000
60	.31241	.01155	.14035	.00037*	0.00000
61	.30484	.01189	.09462	.02794	-.00663
62	.18459	.00829	.11258	.02000*	-.00032
63	.22471	.00926	.11548	0.00000	.00851
64	.27609	.00891	.08670	.00000	.00031
65	.33607	.00819	.12094	0.00000	-.0295
66	.27971	.00698	.14882	.00135	-.00329
67	.20307	.00424	.09867	.00007	.00033
68	.27470	.00725	.08684	.00213	-.00149
69	.24885	.00957	.10957	.00075	-.00368
70	.31446	.00716	.07687	.00000	-.00143
71	.30445	.00862	.12036	.00144	-.00096
72	.35137	.00687	.04868	.00042	-.00108
73	.33940	.00806	.11001	.00123	-.00040
74	.41553	.00686	.13182	.00183	.00150
75	.30837	.00509	.11040	0.00000	-.00037
76	.21855	.00532	.09399	0.00000	-.00173
77	.34415	.00754	.11756	.00301	-.00216
78	.24727	.00625	.10370	0.00000	-.00221
79	.29669	.00668	.17256	.00057	-.00245
80	.38160	.00580	.08467	.00001	-.00135
81	.39137	.00577	.05985	.00718	-.00222
82	.32127	.00793	.10204	0.00000	-.00423
83	.19607	.04630	.06080	.00586	-.00228
84	.39296	.01059	.03052	.00167	-.00105
85	.32682	.00696	.04541	.00053	-.00240
86	.32609	.00766	.10320	.00017	-.00205
87	.31168	.00595	.27242	.00004	-.00088
88	.31272	.00724	.11363	.02083	-.00220
89	.43276	.03716	.17075	.00374	-.00255
90	.40855	.04611	.16574	.00007	0.00000
91	.41354	.03551	.16317	.00031	0.00000
92	.30451	.02616	.12015	-.12022*	-.00469
93	.39266	.03372	.15493	-.00892*	-.00034
94	.45206	.03886	.17834	0.00000	0.00000
95	.56321	.04833	.22228	0.00000	0.00000
96	.33636	.12755	.36581	.00686	0.00000
97	.33295	.01037	.15298	.00016	0.00000
98	.09699	.05658	.08205	0.00000	0.00000
99	.42734	.11619	.15630	.00154	-.00001
100	.40511	.04619	.11588	.00172	-.00011
101	.01660	.16119	.56363	0.00000	0.00000
102	.30407	.01246	.34301	.00001	.00033
103	.28450	.00733	.22404	.00011	0.00000
104	.25669	.01390	.28784	.00258	0.00000
105	.29813	.07632	.14611	.00704	0.00000
106	.48524	.00505	.20856	.00006	0.00000
107	.78853	.00869	-.07564	.04779	0.00000
108	.17514	.006000	.36927	.00002	0.00000
109	0.00000	0.00000	0.00000	0.00000	0.00000
110	0.00000	0.00000	0.00000	0.00000	0.00000

*Adjusted to reflect difference in actual energy prices paid versus I-O energy prices.

Table 5

I-O Prices

Sector	I-O Price (\$/10 ⁶ Btu, \$/\$)	Total VA Purchases (\$/1967 \$)	VA Coefficient (\$/10 ⁶ Btu, \$/\$)
1	1.80287	1.842801	.124544
2	.350076	8.825753	.220249
3	0.000000	0.000000	0.000000
4	0.000000	0.000000	0.000000
5	0.000000	0.000000	0.000000
6	.962923	4.291093	.184609
7	.609326	7.611699	.114697
8	0.000000	0.000000	0.000000
9	4.561563	11.376446	3.383633
10	5.81806	1.062899	2.409903
11	0.000000	0.000000	0.000000
12	4.572238	3.079579	4.074703
13	.776133	0.000000	0.000000
14	.892776	0.000000	0.000000
15	4.816407	0.000000	0.000000
16	1.009560	0.000000	0.000000
17	1.731263	0.000000	0.000000
18	1.589840	0.000000	0.000000
19	1.660862	0.000000	0.000000
20	4.563629	0.000000	0.000000
21	1.004844	8.085800	.265829
22	.993274	13.953003	.496006
23	1.003950	.818800	.586263
24	1.000037	1.560600	.585571
25	1.029363	.513200	.481249
26	1.042975	.618201	.490965
27	.994719	1.123230	.592446
28	1.024297	.551000	.593670
29	1.012498	10.197398	.386485
30	1.011425	10.192208	.379062
31	1.006853	4.141097	.379256
32	.980253	3.807900	.454892
33	.994994	3.614101	.462225
34	1.008184	3.219000	.513968
35	1.001377	10.518053	.614020
36	1.007350	4.803033	.533200
37	1.003941	25.026664	.287877
38	1.000659	3.856062	.487437
39	1.016627	4.780100	.309640
40	1.000704	1.291001	.304008
41	1.006884	8.325200	.322529
42	1.010124	1.240001	.290980
43	1.001659	4.830408	.403990
44	1.001980	.218700	.405230
45	1.003040	2.263699	.441973
46	1.004304	5.802889	.379036
47	1.002235	5.802889	.361600
48	1.000941	2.179894	.361600
49	1.000997	10.919008	.494399
50	1.028023	8.614096	.383873
51	1.005916	2.598501	.314154
52	1.005178	4.852496	.390013
53	1.003420	1.004599	.344735
54	.991425	.144600	.243375
55	.991424	.128300	.220629
56	1.010881	6.375105	.469417
57	.990905	3.325400	.322529
58	1.000545	1.830602	.433197
59	1.026570	2.116299	.575724
60	1.030878	5.026501	.464605
61	1.031702	13.022487	.432662
62	1.019632	5.934504	.317211
63	1.014990	1.141400	.340930
64	1.010853	4.593900	.369126
65	1.011017	6.141093	.457249
66	1.007424	5.493308	.451332
67	1.007369	1.370099	.366302
68	1.006076	10.000099	.371229
69	1.008297	2.513602	.427502
70	1.000121	.934503	.427502
71	1.001474	4.374299	.523812
72	1.002137	2.030001	.444664
73	1.004829	3.443403	.454757
74	.995504	2.183	

A. Non-Energy Sector Coefficients

A 1985 A-matrix has been projected by the U.S. Bureau of Labor Statistics.⁽⁵⁾ This is specified in 1958 dollars, and they furnish sectoral deflators for the years 1958-1971 so that coefficients can be converted to other year dollars. For non-energy purchases by non-energy sectors, BLS A-matrix coefficients are inflated to 1967 dollars and used directly. For energy product purchases by non-energy sectors, Brookhaven has made its own coefficient projections based on the 1967 estimates made by the Center for Advanced Computation and on trends in energy consumption projected by the Data Resources, Inc., Long Term Interindustry Model.⁽⁶⁾

For the value added coefficients it is assumed that those describing indirect business taxes, property type income, scrap adjustment, and other value added remain constant over time. All productivity changes are captured in the projections of employee compensation coefficients.

The productivity rates used to project the employee compensation coefficients from 1967 to 1985 were derived from estimates made by Almon⁽⁷⁾ and Bezdek⁽⁸⁾ for this period. They were judgementally adjusted based on information available for 1976. Annual percentage changes in output per constant hour man year for the periods 1967-1976, 1976-1985, and 1985-2000 appear in Table 6. Figure 3 shows annual changes by sector for the 1967 to 1985 period. These productivity rates ($R_{1967-1985}$) were applied to the 1967 employee compensation coefficients (EC/X) in the following manner:

$$(EC/X)_{1985} = (1 + R_{1967-1985})^{-18} \cdot (EC/X)_{1967}. \quad (3)$$

If the model is now run for 1985 using equation 2 and the 1985 data, the prices obtained for the energy sectors 1-12

TABLE 6
 Annual Percent Change in Output Per Manyear
 for 1967-1976, 1976-1985
 and 1985-2000
 (Percent/year)

<u>Sector Number</u>	<u>1967-1976</u>	<u>1976-1985</u>	<u>1985-2000</u>
1	-2.93	0.95	1.49
2	1.39	1.49	1.59
3	0.00	0.00	2.79
4	0.00	0.00	3.59
5	0.00	0.00	0.00
6	4.08	3.10	2.89
7	3.12	2.26	1.99
8	0.00	0.00	0.00
9	3.99	3.79	3.59
10	5.55	4.35	4.19
11	0.00	0.00	0.00
12	4.33	4.05	3.89
13	0.00	0.00	0.00
14	0.00	0.00	0.00
15	0.00	0.00	0.00
16	0.00	0.00	0.00
17	0.00	0.00	0.00
18	0.00	0.00	0.00
19	0.00	0.00	0.00
20	0.00	0.00	0.00
21	4.80	5.28	5.30
22	4.97	5.40	5.30
23	2.54	1.24	1.24
24	-0.78	2.59	1.39
25	4.53	2.16	2.09
26	-1.16	3.90	2.09
27	2.68	2.00	1.89
28	2.69	1.97	1.89
29	1.53	1.87	1.04
30	1.53	1.86	1.04
31	1.53	1.87	1.04
32	1.53	1.87	1.04
33	1.53	1.87	1.04
34	1.53	1.87	1.04
35	1.53	1.87	1.04
36	3.39	1.59	1.59
37	3.85	1.74	1.69
38	3.59	2.81	2.69
39	3.37	1.97	1.79
40	2.75	3.03	3.14
41	2.70	1.88	1.79
42	2.54	2.20	2.09
43	3.39	2.39	1.89
44	8.45	0.10	1.99
45	2.09	1.89	1.64
46	3.52	1.96	1.74
47	2.81	1.95	1.84
48	3.17	2.12	2.04
49	1.98	1.90	1.86
50	5.14	3.84	4.59
51	5.75	3.44	3.49
52	3.86	2.63	2.54
53	3.57	2.01	2.19

TABLE 6 (cont'd.)

<u>Sector Number</u>	<u>1967-1976</u>	<u>1976-1985</u>	<u>1985-2000</u>
54	-1.68	5.38	1.09
55	-1.68	5.39	1.09
56	4.42	3.24	2.19
57	-0.98	1.98	1.99
58	0.14	1.84	3.89
59	2.68	3.80	2.79
60	4.01	1.88	1.49
61	1.75	1.58	1.41
62	1.42	1.80	1.75
63	4.63	1.57	1.59
64	1.56	2.02	1.97
65	2.76	2.22	1.79
66	1.38	2.22	1.71
67	1.68	2.70	2.79
68	2.96	2.12	1.99
69	0.33	2.53	2.19
70	2.84	1.50	1.24
71	4.99	0.05	0.99
72	4.78	2.41	2.29
73	3.29	2.49	1.90
74	2.77	1.42	1.79
75	0.88	2.70	3.19
76	0.38	2.61	3.44
77	3.08	2.70	2.44
78	3.27	3.71	3.89
79	3.29	2.29	2.36
80	4.85	3.34	3.09
81	3.28	3.90	4.40
82	0.44	1.94	1.99
83	3.11	3.26	2.99
84	2.16	2.72	3.00
85	-0.81	2.82	2.09
86	3.41	3.57	3.69
87	1.59	2.19	3.39
88	3.33	5.16	5.29
89	5.23	4.25	4.09
90	2.61	1.38	1.30
91	3.34	3.96	4.09
92	4.27	3.31	2.79
93	5.59	3.40	3.34
94	2.06	1.52	1.21
95	1.95	1.22	1.19
96	4.13	3.85	3.69
97	0.94	1.44	1.84
98	0.23	1.92	2.60
99	0.76	1.42	2.14
100	0.81	1.07	1.34
101	1.32	1.65	1.89
102	0.66	0.96	1.09
103	0.26	0.72	1.19
104	2.60	3.58	4.71
105	0.00	0.00	0.00
106	0.72	0.86	1.14
107	-1.00	0.24	-0.26
108	-1.81	2.03	0.29
109	0.00	0.00	0.00
110	0.00	0.00	0.00

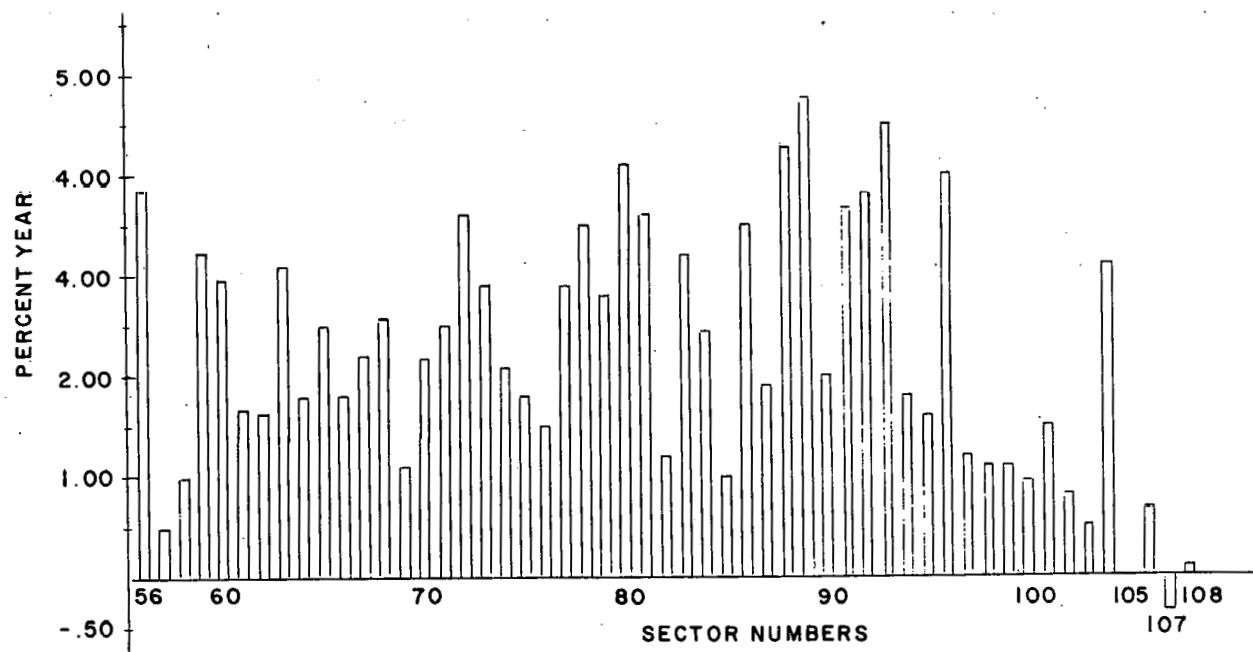
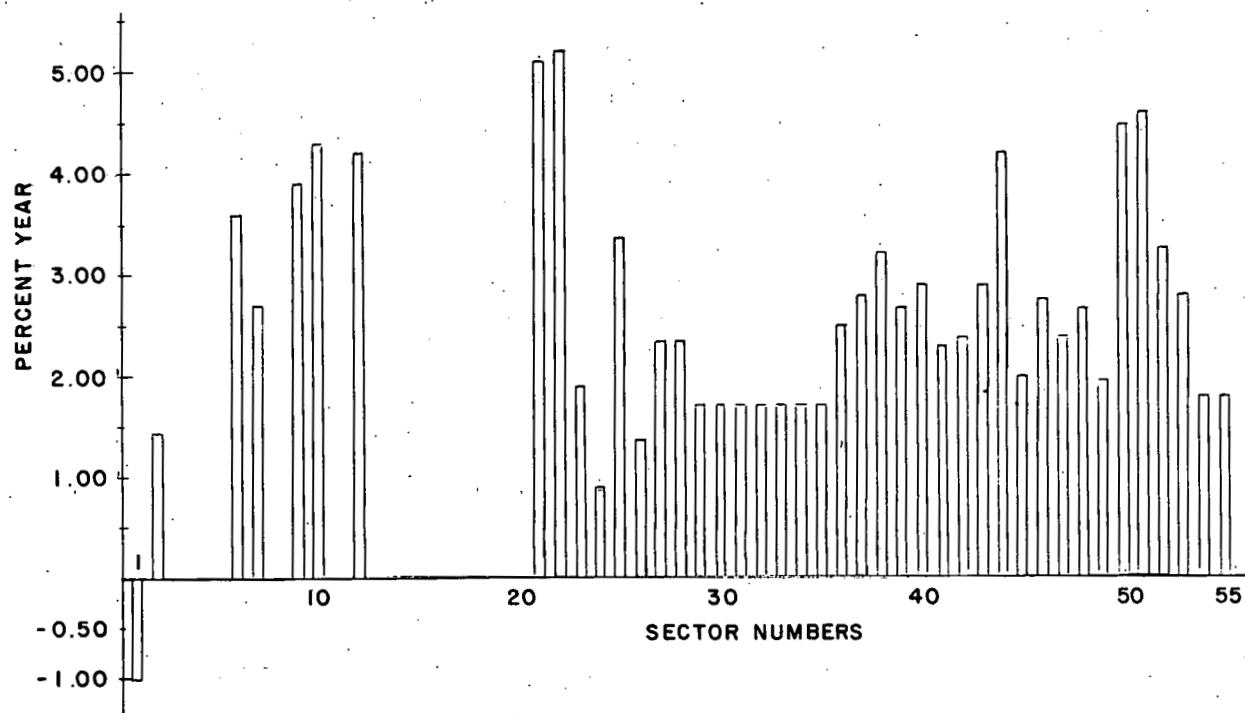



Figure 3. Annual percentage changes in output per manyear, 1967-1985.

may not conform to exogenously specified prices. Several adjustments must be made to obtain the desired 1985 prices for sectors 1-12. These desired prices are discussed next, followed by the parameter changes which were necessary to obtain these prices.

B. Determination of Energy Sector Prices

In order to set up the model in terms of exogenously specified energy prices, one must first determine the desired I-O prices that you want equation 2 to calculate. This involved the following steps: (1) deflating specified energy prices to 1967 dollars* to obtain the "real" 1985 energy price (in 67 \$) with respect to the "real" 1985 price of all other goods and services (\$1.0 in 1967 \$), and (2) adjusting for productivity gains in the production of other goods and services. Because of aggregate productivity gains expected between 1967 and 1985, calculated I-O prices in (67 \$) of most non-energy goods and services will be lower in 1985 than in 1967. To maintain correct relative 1985 prices, energy prices must be reduced in proportion to the average reduction in the cost of non-energy goods and services.

For the second step, an aggregate price index** of non-energy goods and services is constructed for 1967 and the planning year, in this case 1985. This is computed with the solution prices to equation 2 and the vector of total sectoral outputs:

$$PI^t = \frac{\sum_{j=1}^t p_j^t \cdot x_j^t}{\sum_j x_j^t}, \text{ for } j = 21 - 100, \text{ in year } t. \quad (4)$$

* The following deflator is used: 1967-1975 = 1.586 (Survey of Current Business GNP deflator).

** C.E. Furguson's index of income change is employed.

For 1967 this price index is 1.0, and for 1985 it is .878 in this example. The 1985 X vector was estimated with a projected GNP (Y vector) according to the standard input-output equation,

$$X = (I-A)^{-1} Y. \quad (5)$$

(Since non-energy prices for 1985 changed slightly as energy sector prices were adjusted, a 1985 price index was actually recalculated several times as energy prices were brought into alignment.) Now, given deflated energy prices for the corresponding I-O definitions, they are multiplied by PI^{85}/PI^{67} to obtain the relative price that one wants the model to calculate.

Calculation of desired I-O prices are discussed below using BNL estimates for a recent planning exercise as an example, first for conventional technologies and secondly for new technologies.

1. Coal

The 1985 BNL coal price is $\$.64/10^6$ Btu (1967 \$) at the minemouth. This price must be multiplied by .878 to find the relative coal price in 1967 dollars, $\$.56/10^6$ Btu, that should be calculated by the I-O price program. Since the price of coal was $\$.18/10^6$ Btu in 1967, a significant decrease in this sector's productivity is presumed.

2. Crude Oil and Gas

Deflated 1985 prices assumed for crude oil and crude gas at the wellhead are, respectively, $\$1.34/10^6$ Btu and $\$1.48/10^6$ Btu in 1967 dollars. The single sectoral price, weighted by their respective 1985 production levels, is $\$1.40/10^6$ Btu. Correcting for productivity change, the desired 1985 I-O price for crude oil and gas is $\$1.23/10^6$ Btu. (Individual prices that correspond to this aggregate I-O

price are $\$1.18/10^6$ Btu of crude oil and $\$1.30/10^6$ Btu of crude gas.)

3. Refined Oil Products

The 1985 refined petroleum products price which is assumed is $\$1.79$ in 1967 dollars. This $\$.45$ markup from crude oil is the same as the 1967 markup, and it is assumed that there is no aggregate change in productivity for the refined oil sector over this period. Correcting for productivity change (by multiplying by $.878$), the desired 1985 price for refined oil products is $\$1.57/10^6$ Btu.

4. Pipeline Gas

The 1985 assumed price for delivered pipeline gas is $\$1.93/10^6$ Btu. As with oil, it is assumed that there is no aggregate change in productivity for this sector between 1967 and 1985, and the 1967 markup of $\$.45/10^6$ Btu over crude gas is assumed. Adjusting for productivity change in non-energy goods and services, the desired I-O price for pipeline gas is $\$1.70/10^6$ Btu.

5. Coal Combined Cycle Electric, Fossil Electric, Light Water Reactor, High Temperature Gas Cooled Reactor, and Hydroelectric

The 1985 price of delivered electricity for these sectors is obtained from solution of the Brookhaven Energy System Optimization Model, $\$6.17/10^6$ Btu in 1967 dollars. This model (BESOM) which is linked to the I-O model brings in the detailed cost structure of the utility industry, the fuel mix, and the mix between base, intermediate and peak load demands for electric power.⁽¹⁾ Multiplying by the productivity factor of $.878$ then gives the desired 1985 I-O price of $\$5.42/10^6$ Btu for all electric sectors, with all outputs mea-

sured in Btu of delivered electricity. A single price is used for all electric sectors to avoid bias in calculations of energy product prices.

6. Shale Oil, Coal Gasification and Coal Liquefaction

The prices for these fuels are tied to the desired I-O prices of crude oil and crude gas. The desired crude shale oil price of $\$1.50/10^6$ Btu is 18% above the crude oil price; so the desired I-O price of shale oil is $\$1.39/10^6$ Btu in 1967 dollars. Similarly, the assumed coal liquids price of $\$2.40/10^6$ Btu is 7% above the crude oil price; so the desired I-O price of coal liquids is $\$2.11/10^6$ Btu. Finally, the assumed coal gas price of $\$2.36/10^6$ Btu is 5% above the crude gas price; so the desired I-O price of coal gas is $\$2.07/10^6$ Btu.

The method for calculating all twelve desired I-O energy prices is summarized in Table 7.

C. Alignment of Coefficients to Desired 1985 Prices

As in 1967, the major transactions between the energy supply sectors must be adjusted to take into account the fact that these sales will not in general be made at the same price as sales to other sectors of the economy. In 1967, we were able to compare the BNL transactions values with the BEA values in order to make this adjustment. In 1985, however, it is not known what the values of these transactions should be and the values in Table 8 were judgementally chosen. These eight adjustment factors must be inserted into the price calculation program so that the corresponding A matrix coefficients are multiplied by these factors prior to calculating I-O prices.

In addition, coefficients for coal to coal liquids and coal to coal combined cycle electric generation were cal-

TABLE 7
Calculation of Desired I-O Energy Prices

Sector	Measurement Unit	Specified Price, 67\$/10 ⁶ Btu			Desired I-O Price, 67\$/10 ⁶ Btu
coal	raw coal	P_c	x	PI^*	P_c^{IO}
crude oil	crude	P_{co}	x	PI	P_{co}^{IO}
crude gas	crude	P_{cg}	x	PI	P_{cg}^{IO}
shale oil	syncrude	P_{so}	$x P_{co}^{IO} \div P_{co}$		P_{so}^{IO}
coal gas	procsd. gas	P_m	$x P_{cg}^{IO} \div P_{cg}$		P_m^{IO}
coal liquids	syncrude	P_{cl}	$x P_{co}^{IO} \div P_{co}$		P_{cl}^{IO}
refined oil	refined	P_{ro}	x	PI	P_{ro}^{IO}
pipeline gas	delivered gas	P_{pg}	x	PI	P_{pg}^{IO}
coal combd. cycle	dlvd. elec.				
fossil electric	dlvd. elec.				
LWR electric	dlvd. elec.				
HTGR electric	dlvd. elec.				
hydroelectric	dlvd. elec.				

* Price index for non-energy goods and services; approx. .878 for 1985/1967.

** Average price of electricity from BESOM solution.

TABLE 8
1985 Adjustment Factors for Major Fuel Transactions

$T_{2,6}$	(crude to refined oil)	.77
$T_{2,7}$	(crude to pipeline gas)	.61
$T_{1,9}$	(coal to electric)	.67
$T_{6,9}$	(refined to electric)	.75
$T_{7,9}$	(pipeline gas to electric)	.75
$T_{3,6}$	(shale to refined)	.77
$T_{4,7}$	(coal gas to pipeline gas)	.61
$T_{5,6}$	(coal liquids to refined)	.77

culated from BESOM and inserted in the A matrix so that prices could be estimated correctly for these technologies, even though their output levels were zero in the 1985 example.

In order to obtain the desired prices discussed above, the Property-Type Income (PTI) coefficients for the energy supply sectors are adjusted until the desired prices are obtained. The 1967 PTI coefficients and the 1985 PTI coefficients are compared in Table 9. All other value added coefficients for the energy sectors are unchanged from their 1967 values.

Table 10 shows the value added coefficients for all 110 sectors of the BNL model and Table 11 shows the final set of sectoral prices as calculated from equation 2 for 1985.

If one wishes to set up the model for a different set of 1985 energy prices, it is necessary to first ask what factors are causing the difference in energy prices from the base case. The reasons then provide a basis for changing A matrix and value added coefficients in the alignment process. A shift toward greater stripmining, for example, would be reflected through certain A matrix changes in the coal column and changes in the property type income and employee compensation coefficients. Further, changes in government tax rates can be reflected in the indirect business tax coefficients.

TABLE 9

Comparison of 1967 and 1985 Property Type
Income Coefficients (\$/10⁶ BTU)

coal	.036	.217
crude oil and gas	.175	1.038
shale oil	--	1.045
coal gas	--	1.134
coal liquids	--	.937
refined oil	.064	.064
pipeline gas	.155	.155
coal combd. cycle elec.	--	3.108
fossil electric	2.039	2.635
LWR electric	2.039	2.150
HTGR electric	--	3.100
hydroelectric	2.039	1.714

Table 10

1985 Value Added Coefficients
(1967 \$/10⁶ Btu, \$/\$)

Sector	Labor Services	Business Taxes	Capital Services	Other VA	Scrap Adjustment
1	.15017	.00464	.21700	-.00847	.03000
2	.01702	.01834	1.03800	-.25256	.19000
3	.06700	.13051	.04500	.00579	.14000
4	.09446	.04338	1.13400	0.00000	0.00000
5	.10894	.12051	.93700	0.00000	0.00000
6	.04340	.13051	.06419	-.13638	-.09050
7	.06209	.04338	.15454	.20518	0.00000
8	.36328	.28361	3.10800	0.00000	1.12000
9	.36837		2.63280	-1.03764	.71000
10	.34364	.26436	2.15000	.43686	.21000
11	.36545	.24361	3.10000	0.00000	0.00000
12	.34976	.26317	1.71400	2.85366	-.21000
13	0.00000	0.00000	0.00000	0.00000	0.00000
14	0.00000	0.00000	0.00000	0.00000	0.00000
15	0.00000	0.00000	0.00000	0.00000	0.00000
16	0.00000	0.00000	0.00000	0.00000	0.00000
17	0.00000	0.00000	0.00000	0.00000	0.00000
18	0.00000	0.00000	0.00000	0.00000	0.00000
19	0.00000	0.00000	0.00000	0.00000	0.00000
20	0.00000	0.00000	0.00000	0.00000	0.00000
21	.01629	.02525	.20078	0.00000	0.00000
22	.03102	.03331	.38559	0.00000	0.00000
23	.05731	.00788	.49812	0.00000	0.00000
24	.22975	.02326	.27920	.01366	0.00000
25	.12540	.04404	.18425	.00647	0.00000
26	.26609	.04439	.10547	.00566	0.00000
27	.21644	.02059	.24266	.00103	0.00000
28	.13203	.02370	.41977	-.04999	0.00000
29	.21112	.00605	.09360	.00092	0.00000
30	.23178	.00605	.05761	.00151	0.00000
31	.24215	.00604	.04407	.00119	0.00000
32	.25323	.00604	.10462	.00128	0.00000
33	.28960	.00605	.09397	.00111	0.00000
34	.28637	.00415	.12090	.00109	0.00000
35	.40900	.00414	.05525	.00072	0.00000
36	.24696	.00685	.06465	0.00000	-.00262
37	.09140	.05009	.07290	.01491	0.00000
38	.04382	.07809	.13932	.00111	-.00126
39	.13647	.00597	.08679	.00189	-.00388
40	.11240	.00569	.09787	.01477	0.00000
41	.20127	.00604	.06431	.00042	-.00041
42	.13882	.03397	.07707	0.00000	-.00072
43	.15449	.00937	.13667	0.00000	0.00000
44	.13557	.00741	.11470	0.00000	0.00000
45	.20223	.00722	.10456	.00041	0.00000
46	.20329	.00717	.1170	.00000	0.00000
47	.16389	.01110	.14318	-.00439	-.00109
48	.17407	.00706	.08178	-.00002	-.00355
49	.26350	.00733	.11798	.00013	-.00336
50	.08613	.00940	.18133	.00330	0.00000
51	.0704	.00858	.10552	-.03999	0.00000
52	.11143	.00683	.16372	.00168	0.00000
53	.13438	.00892	.09430	.02104	0.00000
54	.20488	.00892	.10233	-.14980	0.00000
55	.22520	.00894	.07205	-.17024	0.00000
56	.15000	.00198	.11790	.01523	-.00071
57	.21197	.00095	.08207	.00753	-.00446
58	.29312	.00450	.07880	0.00000	-.00005
59	.11670	.00898	.18007	.00264	0.00000
60	.18547	.01155	.14035	.00037	0.00000
61	.22629	.01169	.09482	.02796	-.00683
62	.13849	.00829	.11258	.02008	-.00832
63	.12996	.00926	.11548	.00000	-.00851
64	.20064	.00691	.08670	.00260	-.00317
65	.21589	.00819	.12094	0.00000	-.01295
66	.21612	.00698	.14030	.00135	-.00129
67	.16174	.00722	.09067	.00368	-.00323
68	.17492	.00725	.08864	.00213	-.00149
69	.24178	.00915	.1454	.00175	-.00568
70	.21350	.00716	.07667	0.00000	-.00163
71	.25320	.00862	.12036	.00164	-.00096
72	.18626	.00687	.08488	.00442	-.00108
73	.20326	.00806	.11001	.00133	-.00404
74	.28640	.00686	.13182	.00183	-.00150
75	.22410	.00509	.11040	0.00000	-.00037
76	.16749	.00532	.09399	0.00000	-.00173
77	.20611	.00754	.11754	.00301	-.00216
78	.13338	.00625	.10370	0.00000	-.00221
79	.18082	.00668	.17256	-.00057	-.00245
80	.18549	.00580	.08467	.00001	-.00135
81	.20747	.00577	.06985	.00718	-.00222
82	.25968	.00793	.10204	0.00000	-.00423
83	.11143	.04630	.06840	.00586	-.00228
84	.25466	.01059	.03057	.00167	-.00106
85	.27375	.00696	.04541	.00053	-.00240
86	.17589	.00766	.10320	.00017	-.00205
87	.22240	.00505	.27242	.00004	-.00088
88	.14812	.00724	.11363	.02083	-.00220
89	.16866	.03716	.17075	.00374	-.00255
90	.24501	.03611	.16594	.00007	0.00000
91	.21694	.03551	.16317	.00031	0.00000
92	.15591	.02616	.12016	-.12022	-.00469
93	.17814	.03372	.15493	-.00892	-.00634
94	.32852	.03886	.17834	0.00000	0.00000
95	.42498	.04633	.22228	0.00000	0.00000
96	.16635	.12755	.36581	.00686	0.00000
97	.26913	.01032	.15298	.00016	0.00000
98	.07981	.05658	.08209	0.00000	0.00000
99	.35163	.14011	.15648	.00034	-.00001
100	.34575	.00109	.11588	.00172	-.00011
101	.01272	.1614	.58463	0.00000	0.00000
102	.00733		.2244	.00011	0.00000
103	.20687	.01346	.24307	.00001	-.00030
104	.14843	.01390	.12484	.00258	0.00000
105	.29816	.07632	.14611	.00704	0.00000
106	.42121	.05005	.20856	.00006	0.00000
107	.84459	.08869	.97564	.04779	0.00000
108	.17235	0.00000	.36927	.00002	0.00000
109	0.00000	0.00000	0.00000	0.00000	0.00000
110	0.00000	0.00000	0.00000	0.00000	0.00000

Table 11

1985 I-O Prices

<u>Sector</u>	<u>I-O Price (\$/10⁶ Btu, \$/\$)</u>	<u>VA Purchases (1967 \$)</u>	<u>VA Coefficients (\$/10⁶ Btu, \$/\$)</u>	<u>Sector</u>	<u>I-O Price (\$/10⁶ Btu, \$/\$)</u>	<u>VA Purchases (1967 \$)</u>	<u>VA Coefficients (\$/10⁶ Btu, \$/\$)</u>
1	.556666	8.527281	.393359	56	.807947	8.726616	.324410
2	1.221125	42.326566	1.010808	57	.912231	.378458	.303060
3	1.389920	.417540	1.389295	58	.873745	1.758786	.376370
4	2.074875	.265813	1.271835	59	.855311	2.683872	.407785
5	2.110378	0.000000	0.000000	60	.920684	6.934955	.337747
6	1.590923	.400611	.011214	61	.941540	20.026623	.354109
7	1.713821	8.288754	.465186	62	.957327	10.865559	.271112
8	6.204063	0.000000	0.000000	63	.854420	1.419578	.246182
9	5.427907	20.254657	2.939014	64	.869608	7.726779	.293677
10	5.419400	9.254337	3.404857	65	.833956	5.305999	.332066
11	3.777156	0.000000	0.000000	66	.871954	8.592424	.369536
12	5.417436	7.119909	4.970595	67	.836616	2.374897	.279670
13	2.331113	0.000000	0.000000	68	.826643	1.475864	.271448
14	1.578291	0.000000	0.000000	69	.866405	3.692585	.375440
15	6.120090	0.000000	0.000000	70	.821911	1.670048	.295900
16	3.438240	0.000000	0.000000	71	.797058	4.596747	.382860
17	3.948706	0.000000	0.000000	72	.758225	2.815554	.281352
18	3.498929	0.000000	0.000000	73	.798699	4.217924	.318623
19	1.505854	0.000000	0.000000	74	.818607	2.653384	.425407
20	5.584859	0.000000	0.000000	75	.820922	5.089030	.339218
21	.914037	12.291726	.242313	76	.853908	2.846899	.265070
22	.914130	20.437671	.449921	77	.794790	5.714161	.332031
23	.946810	1.899460	.563307	78	.809908	2.821759	.241128
24	.920355	2.281691	.545877	79	.826394	3.057132	.358173
25	.933511	1.051892	.360156	80	.697458	6.879829	.274627
26	.969434	1.277916	.419611	81	.730725	3.883559	.278045
27	.886477	1.903473	.480721	82	.879273	1.952606	.365419
28	1.034226	.889223	.525519	83	.816331	19.682601	.229704
29	.864306	13.425838	.311684	84	.763052	5.676816	.296387
30	.858529	19.088026	.296942	85	.872976	5.723497	.324240
31	.858915	9.131177	.293459	86	.762481	2.752403	.284863
32	.840754	2.316304	.365172	87	.867684	4.168745	.499032
33	.841681	3.325569	.390718	88	.761797	5.046531	.287625
34	.855399	4.836381	.412505	89	.733435	9.523890	.397170
35	.817226	14.912234	.469109	90	.841659	3.972853	.497141
36	.780157	2.253185	.315841	91	.728946	13.811430	.415941
37	.873298	32.676724	.229308	92	.819483	1.459215	.177306
38	.924974	4.481250	.454479	93	.793221	5.718230	.357529
39	.854952	6.099558	.226850	94	.849113	.861888	.545714
40	.844049	1.842465	.230728	95	.844427	1.794800	.694644
41	.803620	9.786916	.269851	96	.813606	27.292223	.666572
42	.827944	1.636411	.218526	97	.907181	2.568763	.432632
43	.829623	7.203975	.300523	98	.964672	1.193263	.218470
44	.762677	.235436	.257372	99	.907242	195.343915	.648555
45	.825704	2.865716	.344428	100	.901485	45.262413	.503431
46	.803095	1.578547	.328987	101	.963368	158.759641	.738547
47	.905873	9.091883	.292686	102	.941203	19.318484	.550379
48	.834272	2.842266	.257472	103	.918668	50.245762	.492049
49	.838769	15.257573	.385574	104	.837360	10.909700	.443671
50	.984745	13.079827	.280156	105	.973530	7.876714	.527631
51	.874457	3.005396	.181154	106	.916613	64.176126	.634886
52	.859616	9.123587	.303658	107	1.024175	11.906039	.825390
53	.864414	1.377828	.258632	108	.968342	5.959573	.541630
54	1.187365	.146999	.166328	109	.855805	0.000000	0.000000
55	1.104601	.150726	.135950	110	.845763	0.000000	0.000000

References

1. Behling, D.J., W. Marcuse, M. Swift and R.G. Tessmer, A Two-Level Iterative Model for Estimating Inter-Fuel Substitution Effects, BNL 19863 (July, 1975).
2. Bureau of Economic Analysis, U.S. Department of Commerce, The Input-Output Structure of the U.S. Economy: 1967, Sur. Cur. Bus., 54, No. 2, 24-56 (1974).
3. Knecht, R.L. and C.W. Bullard, End Uses of Energy in the U.S. Economy, 1967, Center for Advanced Computation, University of Illinois at Urbana-Champaign, CAC Document No. 145 (September, 1975, rev.).
4. Bureau of Economic Analysis, U.S. Department of Commerce, Input-Output Structure of the U.S. Economy: 1967, Vol. 1 (1974).
5. Bureau of Labor Statistics, U.S. Department of Labor, 134-Order 1985 Input-Output Forecasts and 134-Order Deflators for the Years 1958-1971, unpublished, data tapes available from B.L.S., Washington, D.C.
6. Dullien, R.C., E.A. Hudson, B.S. Bernanke and D.N. Jorgenson, The Data Resources, Inc. Long-Term Inter-industry Transactions Model: Theory and Use, Data Resources, Inc., Cambridge, Massachusetts (September, 1976).
7. Almon, C., M.B. Buckler, L.M. Horwitz and T.C. Reimbold, 1973-1985 in Figures, implement to "1985: Interindustry Forecasts of the American Economy", Lexington Books, Lexington, Massachusetts (1974).
8. Bezdek, R.H., Long-Range Forecasting of Manpower Requirements - Theory and Applications, Institute of Electrical and Electronics Engineers, New York (1974).
9. Office of Planning, Analysis and Evaluation, U.S. ERDA, Analysis of Alternate Energy Futures, mimeo, (February 4, 1977).
10. Bureau of Mines, U.S. Department of the Interior, 1968 Minerals Yearbook, V. 1, Washington, D.C. (1970).
11. American Gas Association, 1974 Gas Facts, Arlington, Virginia (1975).