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Abstract

We construct generalizations of Gravity, including Supergravity, by 

writing the theory on the Group manifold (Poincarfi for Gravity, the Graded- 

Poincarfi group for Supergravity). The action involves forms over the group, 

restricted to a 4-dimensional submanifold. The equations of motion produce 

a Lorentz-gauge in gravity and supergravity, and an additional anholonomic 

supersymmetric coordinate transformation which reduces to the "local super- 

symmetry" of supergravity.



In this letter we propose a method for the construction and discussion of 

generalizations of conventional Einstein gravity theory, including recent 

theories of supergravity. ^  '

The idea is to write such a theory on a group manifold. Let G be [a non

semi-simple] Lie group of dimension c [e.g. the Poincar€ group P for gravity,

21 3")
the Graded Poincar£ formal-group GP for supergravity). On G we give a

A
set of c forms p and define G-curvature as the 2-forms

R = dp - h p . p (1)

A  b e  A  4*1
where Cgg = - (-1) C^g ' are the (graded, with b,e the gradings of B,E)

f
\ A  A

of G. For the case p = cu , where oi

are the left invariant Cartan forms on G, R'̂  = 0 and (1) realizes the Cartan-

Maurer equations. We refer to this case as the "flat" geometry.

A
We regard the p as the "objects" of the theory, to be treated as the po-

A
tentials of a Yang-Mills G-gauge theory, and the R are the corresponding field

\
strengths. Given any C -multiplet n' (n^) we define G-covariant derivatives as

,n ,A , A B E . A 
(Dn) = dn - p - n cBP

( D n ) A  = %  * p s - nE c ^ E

( 2 )

Gravitational theories follow from an Action of the form



4

4
whcrefl\ is any 4-dimensional subr>anifold of and = C^Co) is a 2-form cons­

tructed as a quadratic polynomial in the o A  should be stationary with respect

A 4
to all variations of p and of*11 . This last condition turns out, however, to be

trivially satisfied by virtue of the general covariance of the theory. The theory

A \
should admit "flat" space p = oi as a solution. The field equations can be sym- 

bolycally written as

A 6c a
* " T f  “ DS  = 0 <4)

<5p

which is satisfied by pA = RA = 0 only if

DCa (u>) = 0  (5)

A form satisfying (5) will be designated as a pseudo-curvature.

Clearly, the action (3) is not invariant under all G-gauge transformations. 

For example, Einstein gravity , which can be written as in (3),

?ab " eabcd p ' p » Ca ” 0
(6)

A = i
n

is only S0(3,l) gauge-invariant. Therefore, the assumption of a pseudo-curvature 

breaks the G-symmetry. Pseudo-curvatures are tied to a non-trivial Segal- 

Inbnu-Wigner contraction procedure from a semi-simple group G1 to G; in the

above case, from SO(3,2) to P. In fact, if are the structure constants

of G', and C ' ' A(0) = C*’A those of G,
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3 cbeA to
3e E = 0

( 7)

is a pseudo-curvature. Pseudo-curvatures are related to the Ciievalley cohomo­

logies on groups, and to che MacDowell - Mansouri derivations ^  of gravity 

theories.

The action (3) for supergravity is given by selecting l as:

'’ao ~ eabcd p p

^ a  =  0
(8)

—  . —  a a w
C = -4i py P yr or C a a

^  &  
-4i y5 Y P P

We assume the validity of the field-equations (4) throughout G. Clearly, 

if A is invariant under a gauge subgroup H &  G (i.e. S0(3,l) for both P and GP), 

a solution on G can be derived from its boundary value on Z = G/^ through the 

so-called factorization hypothesis,

A A B ,,-lv.A 
p = 0̂  + 7 ad(q )B (9)

where, locally, G has coordinates (z, q), zeZ, qsH, x are the (factorized)

A A
forms on Z, the restrictions of the Cartan forms u to H. We conjecture that

A 4
in general p is determined by its boundary values on anyyq , apart from a generic

coordinate transformation on G. This can be proved to hold if a solution of (4) 

is sufficiently close to a factorized one. Globally, one cannot exclude the pos­

sible existence of "twisted" topologically inequivalent factorized solutions sharing



-  6 -

the same boundary conditions on HI . 

On P (GP), eq. (9) becomes,

4

ab , . -1 , . >ab cd _ db _ ca
p = ( = d r )  + r - r

p a  =  *  c a  t c ( 1 0 )

where H « H, S Z. = Sac (we disregard the Minkwoski metric). Z is R 4 in F,

4/4 71
and IR ("superspace", with 4 Bose and 4 Fermi dimensions ) in GP. For P and

4
Einstein's gravity, Z coincides with*l so that (9) connects solutions on

4 4
possible choices of 1*1 as discussed. For GP, is still a submanifold of

4/4 A
IR . In principle, eo. (4-5) should determine the extension of the f o m  p  "

4/4 4
to IR from their restriction ontft . However, this is not achieved through

ell)
a gauge transformation as it is for the S variables on S0(3,l). In order

A
to compute the change in the f  while moving infinitesimally from a surface 

4 4'
tlj t o U  » we utilize a generalization to an arbitrary group G of a set of

transformations defined by Von der J-leyde^ and by Hehl and collaborators5̂ .

M H M
Carrying out an infinitesimal coordinate change x •* x + e (M» N are

a

holonomic indices; A, B are anholonomic) we find for the change in p ,

6pA = D eA - 2 (e, ?A) (11)

where (this is an "anholononized general coordinate transformation", AGCT)

A M A A , fl A
e = e p m  , p = dx pM



A
The e are related to the lapse and shift functions of the standard canonical 

formalism of General Relativity. For the index A in the Majorana range, 

eq.(ll) yields the "local supcrsymmetry" transformations of supergravity. 

However, the exact comparison with supergravity requires the repeated use of 

field equations (4-5). For GP, the field equations are,

Ra = 0 (13a)

YaDa R = 0 (13c)

A
Direct calculation of the anholonomic components Rg^ from (13) yields,

RBC 3 * 0 ' Ra6A - 0 ■ R (ab) BA ■ 0 C14>

where a is a (translation) vector index, (ab) skew-symmetric tensor value (for 

an SO(3,l) direction)component, o,B are Majorana spinor indices for the 

odd generators. The surviving components can be seen to coincide with those 

of ref.^10^, after some algebra involving (13b). Inserting these components
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in eq.(ll) reproduces the conventional supergravity transformations

where

f ab . ab c d n ab c-a _ ab 
6p = D e  - p e R ,  - p e R

cd ca

6p‘” = D ea (15)

Sp = D e - pC R ^

ab , ab at tb tb at 
D e  = d c + p * e - p  * e

n a , a  at t t a t —  a
D e  = d e  + p  * e - p  ~ e + p y e (16)

_ , , , ab ab.. . ab ab
D e  = de + % (p a ) ~  e - H a p ~ e

In this sense, the exponentiation of equations (11) starting from an arbitrary

4 A 4/4 4/4
is "condensed” into forms p on IR , and the «R theory can be viewed as

the collection of supersymmetric-related theories on^\4 . Formula (11) therefore

solves in principle the problem of constructing supersymmetric transformations

for any theory. Clearly, the field equations impose very stringent conditions

A
on RgP , and supergravity is certainly unique in yielding these restrictions.

4/4
However, any covariant theory on GP or R is compatible with (11), with the

A
specific form of Rfig depending on the field equations. The values of these

curvature components may then be much more complicated and there is no a priori 

guarantee that cvre ‘V.rictionals of the restrictions of pA cn nr£ only, ar.

needed in order that (11) be an effective transformation. In the present
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formulation, the choice of an action is highly restricted by (5). In all

4
supersymmetry theories, we expect the to remain an even 4-dimensional

31
manifold. This avoids the use of the Berezin integration * on the variables, 

whose formal difficulties have impeded the development of viable 8-dimensional 

actions**^ . From our point of view, the odd variables are just a short­

hand for a collection of Fermi fields needed to specify i f f  f G.

An extended exposition of these ideas will be published elsewhere.
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