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Abstract

We construct generalizations of Gravity, including Supergravity, by
writing the theory on the Group manifold (Poincaré for Gravity, the Graded-

Poincaré group for Supergravity). The action involves forms over the group,

restricted to a 4-dimensional submanifold. The equations of motion produce

a Lorentz~gauge in gravity and supergravity, and an additional anholonomic
supersymmetric coordinate transformation which reduces to the "local super-

symmetry' of supergravity.



In this letter we propose a method for the construction and discussion of
generalizations of conventional Einstein gravity theory, including recent
theories of supergravity. .

The idea is to write such a theory on a group manifold. Let G be [a non
semi-simple] Lie group of dimension c¢ [e.g. the Poincaré group P for gravity,
the Graded Poincaré 2) formal-group 3) GP for supergravity]. On G we give a

set of ¢ forms oA and define G-curvature as the 2-forms

R"=dp -13p .p Cip (1)

where A

Céé = -(-1)be Céé A are the (graded, with b,e the gradings 4) of B,E)
structure constants of the Lie algehra g of G. For the case ol\ = mA, where mA
are the left invariant Cartan forms on G, RA = 0 and (1) realizes the Cartan-
Maurer equations. We refer to this case as the "flat" geometry.

e regard the pA as the "objects" of the theory, to be treated as the po-
tentials of a Yang-Mills G-gauge theory, and the QA are the corresponding field-

strengths. Given any C -multiplet n (nA) we define G-covariant derivatives as,

A ..
oom? = dnA ) pB ) nE CBEA
(2)
_ ..E
(Dn)A = dnA MRS CBA

A= J A (3)
ﬂn4 A



whcrem4 is any 4-dimensional subranifold of G, and CA = CA(D) is a 2-form cons-

tructed as a quadratic polynomial in the oA A should be stationary with respect

.. 4 g i
to all variations of pA and ofM . This last condition turns out, however, to be

trivially satisfied by virtue of the gencral covariance of the theory. The theory

. A . . .
should admit ''flat" space pA = w as a solution. The field equations can be sym-

bolycally written as

H e v, -0 @

which is satisfied by o™ = u”, P = 0 only i®
D, (w) = 0 (5)

A ‘orm CA satisfying (5) will be designated as a pseudo-curvature.
Clearly, the action (3) is not invariant under all G-gauge transformations.

For example, Einstein gravity 5), which can be written as in (3),

- c d -
“ab = €aped ° L £, =0
(6)

_ 1 ab
A=g [ a R %ab
mn
is only S50(3,1) gauge-invariant. Therefore, the assumption of a pseudo-curvature

;A breaks the G-symmetry. Pseudo-curvatures are tied to a non-trivial Segal-

Inbnu-Wigner contraction procedure from a semi-simple group G' to G; in the

above case, from S0(3,2) to P. In fact, if CééA(e) are the structure constants

of G', and CééA(O) = ¢ thuse of G,



..A

a C (g) .

__BE 77 .o LB A (N
3€ e =0

is a pseudo-curvature. Pseudo-curvatures are related to the Cnevalley cohomo-

logies on groups, and to thc MacDowell - Mansouri derivations ©) of gravity

theories.

The action (3) for supergravity is given by selecting Ly as:

. c
- = e A
ab abed P e

§,= 0 (8)

)
]

. — a3 a ot . a a
-41 py »p Yo OT L = 41 vg Y P P

ile assume the validity of the field-equations (4) throughout G. Clearly,
if A is invariant under a gauge subgroup Ha G (i.e. SO(3,1) for both P and GP),
a solution on G can be derived from its boundary value on Z = G/H through the

so-called factorizatrion hypothesis,

ot =y + 7% aa@™Ht ®

where, locally, G has coordinates (z, q), zeZ, qtH, fB are the {factorized)

_ forms on Z, mﬁ the restrictions of the Cartan forms wA to H. We conjecture that
in general p° is determined by its boundary values on anyyq4, apart from a generic
coordinate transformation on G. This can be proved to hold if a solution of (4)

is sufficiently close to a factorized one. Globally, one cannot exclude the pos-

sible existence of "twisted" topologically inequivalent factorized solutions sharing



the same boundary conditions ontnd.

On P (GP), ea. (9) becomes,

pab = (= -1 d = )ab . er = db z ca
03 =z ca (10)
(o = uiEHr)
where Z ab ¢ H, © ab - cb _ sac (we disregard the Minkwoski metric). Z is IR4 in T,

and R*# ("superspace”, with 4 Bose and 4 Fermi dimensicns 7)) in GP. For P and

Einstein's gravity, Z coincides withln4 so that (9) connects solutions on

possible choices of m4 as discussed. For GP,M,4 is still a submanifold of
a/é < . . . A

R /['. In principle, ea. (4-5) should deterrine the extension of the form p
to IR4/4 from their restriction onm4. However, this is not achieved through

a gauge transformation as it is for the & ab variables on S0(3,1). In order
to compute the change in the 'A while moving infinitesimally from a surface
“‘4 to rl[q' , we utilize a generalization to an arbitrary group G of a set of-
transformations defined by Von der Heydeg) and by Hehl and collaboratorsg) .
Carrying out an infinitesimal coordinate change xM - x” + r—:" M, N are

holonomic indices; A, B are anholonomic) we €£ind for the change in pA,

ot =t -2, (11)
where (this is an "anholononized general coordinate transformation', AGCT)
A t A
eA - eM pMA ) ol o dx’

g7



and
RA=15dM ,de RMNA
(12)
e, RN = 5 ad! N RmA - 3 B C RBCA
The sA are related to the lapse and shift functions of the standard canonical
formalism of General Relativity. For the index A in the Majorana range,

eq.(11) yields the '"local supcrsymmetry" transformations of supergravity.

However, the exact comparison with supergravity requires the repeated use of

field equations (4-5). For GP, the field equations are,
R?2 = 0 (13a)
ab f s T =
R o €ibfe - 2i R Yg¥e P = 0 (13b)
vy 2 R =0 (13c)

Direct calculation of the anholonomic components RBCA from (13) yields,

R _2=0, R .A=0 Ao

» Ryg » Reapy s (14)

where a is a (translation) vector index, (ab) skew-symmetric tensor value (for

an $0(3,1) direction)component, o,B are Majorana spinor indices for the

odd generators. The surviving components can be seen to coincide with those

of ref.(lo), after some algebra involving (13b). Inserting these components



in eq.(11) reproduces the conventional supergravity transformations

cd ca
&% =De? (15)
_ c d
) =De - p € Rcd
where
D eab = d ab R pat . .tb_tb _at
D ea = d ea . pat ) et - pt ) eat + E-Ya e (16)
D e =de + 4 (pab oab) “ e -k Uab o ~ Eab

In this sense, the exponentiation of equations (11) starting from an arbitrary
1nf is ""condensed" into forms pA on m4/4, and the 34/4 theory can be viewed as
the collection of supersymmetric-related theories on‘\f. Formula (11) therefore
solves in principle the problem of constructing supersymmetyic transformations
for any theory. Clearly, the field equations impose very stringent conditions
on RBEA’ and supergravity is certainly unique in yielding these restrictionms.
However, any covariant theory on GP or R4/4 is compatible with (11), with the

A

specific form of Rp." depending on the field equations. The values of these

curvature components may then be much more complicated and there is no a priori

) e . e s e 4
guarantse that kBE are “anctionals of the roserictions 2€ 2 on m only, as

needed in order that (11) be an effective transformation. In the present



formulation, the choice of an action is highly restricted by (5). In all
supersymmetry theories, we expect the m4 to remain an even 4-dimensional
manifold. This avoids the use of the Berezin integrations) on the variables,
whose formal difficulties have impeded the development of viable 8-dimensional
actionsn)lz). From our point of view, the odd variables are just a short-

hand for a collection of Fermi fields needed to specify Yl\4 ¢ G.

An extended exposition of these ideas will be published elsewhere.
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