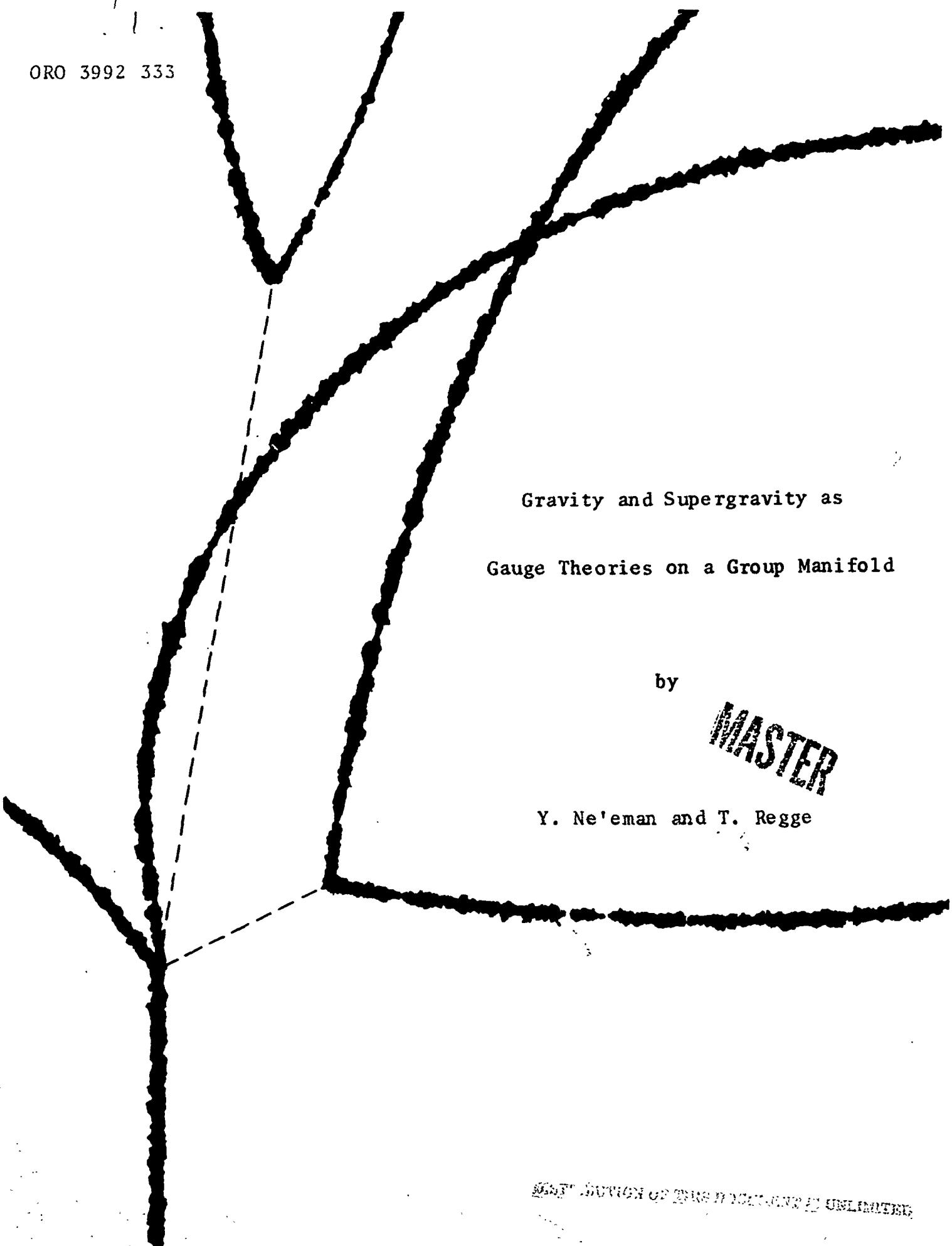


11

ORO 3992 333



Gravity and Supergravity as

Gauge Theories on a Group Manifold

by

MASTER

Y. Ne'eman and T. Regge

© 1979 JOURNAL OF PHYSICS COMMUNICATIONS

"Projective" and "Nonprojective" Gauge Theories on a Group Manifold

卷之三

Department of Physics and Astronomy, Tel Aviv University *
Tel Aviv, Israel

Center for Particle Theory, University of Texas**
Austin, Texas 78712, USA

School of Natural Sciences, The Institute for Advanced Study *
Princeton, New Jersey 08540, USA

INSTITUTE OF POLYMER, UNIVERSITÀ DI TORINO
I-10127 TORINO, ITALY.

NOTICE
TO ALL EMPLOYEES
OF THE
FEDERAL BUREAU OF INVESTIGATION,
DEPARTMENT OF JUSTICE,
THAT AN EMPLOYEE MAKES
A COMPLAINT CONCERNING THE
FEDERAL BUREAU OF INVESTIGATION, OR
THE DEPARTMENT OF JUSTICE, OR
THEIR POLICIES, OR WORK.

* Research supported in part by the U.S. - Israel Binational Science Foundation

** Research supported in part by the U.S. Energy Research and Administration Grant E(40-1) 3992

Research supported in part by NSF Grant 40768X.

Abstract

We construct generalizations of Gravity, including Supergravity, by writing the theory on the Group manifold (Poincaré for Gravity, the Graded-Poincaré group for Supergravity). The action involves forms over the group, restricted to a 4-dimensional submanifold. The equations of motion produce a Lorentz-gauge in gravity and supergravity, and an additional anholonomic supersymmetric coordinate transformation which reduces to the "local supersymmetry" of supergravity.

In this letter we propose a method for the construction and discussion of generalizations of conventional Einstein gravity theory, including recent theories of supergravity. ¹⁾ .

The idea is to write such a theory on a group manifold. Let G be [a non semi-simple] Lie group of dimension c [e.g. the Poincaré group P for gravity, the Graded Poincaré ²⁾ formal-group ³⁾ GP for supergravity]. On G we give a set of c forms ρ^A and define G -curvature as the 2-forms

$$R^A = d\rho^A - \frac{1}{2} \rho^B \wedge \rho^E C_{BE}^{..A} \quad (1)$$

where $C_{BE}^{..A} = -(-1)^{b+e} C_{EB}^{..A}$ are the (graded, with b, e the gradings ⁴⁾ of B, E) structure constants of the Lie algebra \mathfrak{g} of G . For the case $\rho^A = \omega^A$, where ω^A are the left invariant Cartan forms on G , $R^A = 0$ and (1) realizes the Cartan-Maurer equations. We refer to this case as the "flat" geometry.

We regard the ρ^A as the "objects" of the theory, to be treated as the potentials of a Yang-Mills G -gauge theory, and the η^A are the corresponding field-strengths. Given any C -multiplet η^A (η_A) we define G -covariant derivatives as,

$$(D\eta)^A = d\eta^A - \rho^B \wedge \eta^E C_{BE}^{..A} \quad (2)$$

$$(D\eta)_A = d\eta_A + \rho^B \wedge \eta_E C_{BA}^{..E}$$

Gravitational theories follow from an Action of the form

$$A = \int_{\mathbb{M}^4} R^A \wedge \zeta_A \quad (3)$$

where \mathfrak{m}^4 is any 4-dimensional submanifold of G , and $\zeta_A = \zeta_A(\rho)$ is a 2-form constructed as a quadratic polynomial in the ρ^A . A should be stationary with respect to all variations of ρ^A and of \mathfrak{m}^4 . This last condition turns out, however, to be trivially satisfied by virtue of the general covariance of the theory. The theory should admit "flat" space $\rho^A = \omega^A$ as a solution. The field equations can be symbolically written as

$$R^A - \frac{\delta \zeta_A}{\delta \rho^B} - D\zeta_B = 0 \quad (4)$$

which is satisfied by $\rho^A = \omega^A$, $R^A = 0$ only if

$$D\zeta_A(\omega) = 0 \quad (5)$$

A form ζ_A satisfying (5) will be designated as a pseudo-curvature.

Clearly, the action (3) is not invariant under all G -gauge transformations. For example, Einstein gravity ⁵⁾, which can be written as in (3),

$$\zeta_{ab} = \epsilon_{abcd} \rho^c \wedge \rho^d, \quad \zeta_a = 0 \quad (6)$$

$$A = \frac{1}{8} \int_{\mathfrak{m}^4} R^{ab} \wedge \zeta_{ab}$$

is only $SO(3,1)$ gauge-invariant. Therefore, the assumption of a pseudo-curvature ζ_A breaks the G -symmetry. Pseudo-curvatures are tied to a non-trivial Segal-Inönü-Wigner contraction procedure from a semi-simple group G' to G ; in the above case, from $SO(3,2)$ to P . In fact, if $C_{BE}^{..A}(\epsilon)$ are the structure constants of G' , and $C_{BE}^{..A}(0) = C_{BE}^{..A}$ those of G ,

$$\left. \frac{\partial C_{BE}^{..A}(\varepsilon)}{\partial \varepsilon} \right|_{\varepsilon=0} \rho^B \wedge \rho^E = \zeta^A \quad (7)$$

is a pseudo-curvature. Pseudo-curvatures are related to the Chevalley cohomologies on groups, and to the MacDowell - Mansouri derivations⁶⁾ of gravity theories.

The action (3) for supergravity is given by selecting ζ_A as:

$$\zeta_{ab} = \epsilon_{abcd} \rho^c \wedge \rho^d$$

$$\zeta_a = 0 \quad (8)$$

$$\bar{\zeta}_a = -4i \bar{\rho} \gamma^a \rho^a \gamma_5 \quad \text{or} \quad \zeta^a = -4i \gamma_5 \gamma^a \rho^a \rho$$

We assume the validity of the field-equations (4) throughout G . Clearly, if A is invariant under a gauge subgroup $H \subset G$ (i.e. $SO(3,1)$ for both P and GP), a solution on G can be derived from its boundary value on $Z = G/H$ through the so-called factorization hypothesis,

$$\rho^A = \omega_H^A + \tau^B \text{ ad}(q^{-1})_B^A \quad (9)$$

where, locally, G has coordinates (z, q) , $z \in Z$, $q \in H$, τ^B are the (factorized) forms on Z , ω_H^A the restrictions of the Cartan forms ω^A to H . We conjecture that in general ρ^A is determined by its boundary values on any \mathcal{M}^4 , apart from a generic coordinate transformation on G . This can be proved to hold if a solution of (4) is sufficiently close to a factorized one. Globally, one cannot exclude the possible existence of "twisted" topologically inequivalent factorized solutions sharing

the same boundary conditions on \mathbb{M}^4 .

On P (GP), eq. (9) becomes,

$$\begin{aligned} \rho^{ab} &= (\Xi^{-1} d \Xi)^{ab} + \tau^{cd} \Xi^{db} \Xi^{ca} \\ \rho^a &= \Xi^{ca} \tau^c \\ (\rho &= u(\Xi^{-1}) \tau) \end{aligned} \tag{10}$$

where $\Xi^{ab} \in H$, $\Xi^{ab} \Xi^{cb} = \delta^{ac}$ (we disregard the Minkowski metric). Z is \mathbb{R}^4 in F, and $\mathbb{R}^{4/4}$ ("superspace", with 4 Bose and 4 Fermi dimensions ⁷⁾) in GP. For P and Einstein's gravity, Z coincides with \mathbb{M}^4 so that (9) connects solutions on possible choices of \mathbb{M}^4 as discussed. For GP, \mathbb{M}^4 is still a submanifold of $\mathbb{R}^{4/4}$. In principle, eq. (4-5) should determine the extension of the form ρ^A to $\mathbb{R}^{4/4}$ from their restriction on \mathbb{M}^4 . However, this is not achieved through a gauge transformation as it is for the Ξ^{ab} variables on $SO(3,1)$. In order to compute the change in the ρ^A while moving infinitesimally from a surface \mathbb{M}^4 to $\mathbb{M}^{4'}$, we utilize a generalization to an arbitrary group G of a set of transformations defined by Von der Heyde ⁸⁾ and by Hehl and collaborators ⁹⁾. Carrying out an infinitesimal coordinate change $x^M \rightarrow x^M + \epsilon^M$ (M, N are holonomic indices; A, B are anholonomic) we find for the change in ρ^A ,

$$\delta \rho^A = D \epsilon^A - 2 (\epsilon, R^A) \tag{11}$$

where (this is an "anholonomicized general coordinate transformation", AGCT)

$$\epsilon^A = \epsilon^M \rho_M^A \quad , \quad \rho^A = dx^M \rho_M^A$$

and

$$R^A = \frac{1}{2} dx^M \wedge dx^N R_{MN}^A$$

$$(\epsilon, R^A) = \frac{1}{2} dx^M \epsilon^N R_{MN}^A = \frac{1}{2} \rho^B \epsilon^C R_{BC}^A$$
(12)

The ϵ^A are related to the lapse and shift functions of the standard canonical formalism of General Relativity. For the index A in the Majorana range, eq.(11) yields the "local supersymmetry" transformations of supergravity. However, the exact comparison with supergravity requires the repeated use of field equations (4-5). For GP, the field equations are,

$$R^a = 0$$
(13a)

$$R^{ab} \rho^f \epsilon_{abfe} - 2i \bar{R} \gamma_5 \gamma_e \rho = 0$$
(13b)

$$\gamma^a \rho^a R = 0$$
(13c)

Direct calculation of the anholonomic components R_{BC}^A from (13) yields,

$$R_{BC}^a = 0, \quad R_{\alpha\beta}^A = 0, \quad R_{(ab)}^A = 0$$
(14)

where a is a (translation) vector index, (ab) skew-symmetric tensor value (for an $SO(3,1)$ direction) component, α, β are Majorana spinor indices for the odd generators. The surviving components can be seen to coincide with those of ref. ⁽¹⁰⁾, after some algebra involving (13b). Inserting these components

in eq.(11) reproduces the conventional supergravity transformations

$$\begin{aligned}\delta\rho^{ab} &= D\epsilon^{ab} - \rho^c \epsilon^d R_{cd}^{ab} - \rho^c \dot{\epsilon}^a R_{ca}^{ab} \\ \delta\rho^a &= D\epsilon^a \\ \delta\rho &= D\epsilon - \rho^c \epsilon^d R_{cd}\end{aligned}\tag{15}$$

where

$$\begin{aligned}D\epsilon^{ab} &= d\epsilon^{ab} + \rho^{at} \wedge \epsilon^{tb} - \rho^{tb} \wedge \epsilon^{at} \\ D\epsilon^a &= d\epsilon^a + \rho^{at} \wedge \epsilon^t - \rho^t \wedge \epsilon^{at} + \bar{\rho}^a \epsilon \\ D\epsilon &= d\epsilon + \frac{1}{2} (\rho^{ab} \sigma^{ab}) \wedge \epsilon - \frac{1}{2} \sigma^{ab} \rho \wedge \epsilon^{ab}\end{aligned}\tag{16}$$

In this sense, the exponentiation of equations (11) starting from an arbitrary \mathbb{M}^4 is "condensed" into forms ρ^A on $\mathbb{R}^{4/4}$, and the $\mathbb{R}^{4/4}$ theory can be viewed as the collection of supersymmetric-related theories on \mathbb{M}^4 . Formula (11) therefore solves in principle the problem of constructing supersymmetric transformations for any theory. Clearly, the field equations impose very stringent conditions on R_{BE}^A , and supergravity is certainly unique in yielding these restrictions. However, any covariant theory on GP or $\mathbb{R}^{4/4}$ is compatible with (11), with the specific form of R_{BE}^A depending on the field equations. The values of these curvature components may then be much more complicated and there is no a priori guarantee that R_{BE}^A are functionals of the restrictions of ρ^A on \mathbb{M}^4 only, as needed in order that (11) be an effective transformation. In the present

formulation, the choice of an action is highly restricted by (5). In all supersymmetry theories, we expect the M^4 to remain an even 4-dimensional manifold. This avoids the use of the Berezin integration³⁾ on the variables, whose formal difficulties have impeded the development of viable 8-dimensional actions¹¹⁾¹²⁾. From our point of view, the odd variables are just a shorthand for a collection of Fermi fields needed to specify $M^4 \in G$.

An extended exposition of these ideas will be published elsewhere.

References

- 1) D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, *Phys. Rev. D*13, 3214 (1976);
S. Deser and B. Zumino, *Phys. Letters* 62B, 335 (1976).
- 2) Yu. A. Gol'fand and E. P. Likhtman, *JETP Letters* 13, 452 (1971);
J. Wess and B. Zumino, *Nucl. Phys.* B70, 39 (1974).
- 3) F. A. Berezin and G. I. Katz, *Mat. Sb. (USSR)* 82, 124 (1970),
(English translation, 11, 311, 1970)
- 4) L. Corwin, Y. Ne'eman and S. Sternberg, *Rev. Mod. Phys.* 47, 573 (1975).
- 5) A. Trautman, *Bull. Acad. Pol. Sci., Ser. Sci. Mat. Astr. Phys.* 20, 185, 503, 895 (1972) and 21, 345 (1973).
- 6) S. W. MacDowell and F. Mansouri, *Phys. Rev. Letters* 38, 739 (1977).
- 7) A. Salam and J. Strathdee, *Nucl. Phys.* B76, 477 (1974).
- 8) P. Von der Heyde, *Physics Letters* 58A, 141 (1976).
- 9) F. W. Hehl, P. Von der Heyde, G. D. Kerlick, J. M. Nester, *Rev. Mod. Phys.* 48, 393, (1976).
- 10) C. Teitelboim, *Phys. Rev. Letters* 38, 1106 (1977).
- 11) J. Wess and B. Zumino, *Phys. Letters* 66B, 361 (1977).
- 12) L. Brink, M. Gell-Mann, Y. Ne'eman, P. Ramond, and J. Schwarz
"Superspace Lecture Notes", Aspen Center for Physics, 1977 Super-
gravity Seminar (unpub.).