

166
PPPL-2121

UC20-G

PPPL-2121

DR#0258-5

I-160205

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

TILT AND SHIFT MODE STABILITY
IN A SPHEROMAK WITH A FLUX CORE

By

J.M. Finn and S.C. Jardin

JULY 1984

MASTER

PLASMA
PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CHO-3073.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America.

Available from:

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$ * ; Microfiche \$3.50

<u>*PAGES</u>	<u>NTIS</u> <u>Selling Price</u>	
1-25	\$5.00	
26-50	\$6.50	
51-75	\$8.00	
76-100	\$9.50	
101-125	\$11.00	
126-150	\$12.50	
151-175	\$14.00	
176-200	\$15.50	
201-225	\$17.00	
226-250	\$18.50	
251-275	\$20.00	
276-300	\$21.50	
301-325	\$23.00	
326-350	\$24.50	
351-375	\$26.00	
376-400	\$27.50	
401-425	\$29.00	
426-450	\$30.50	
451-475	\$32.00	
476-500	\$33.50	
500-525	\$35.00	
526-550	\$36.50	
551-575	\$38.00	
576-600	\$39.50	
		For documents over 600 pages, add \$1.50 for each additional 25 page increment.

TILT AND SHIFT MODE STABILITY IN A SPHEROMAK WITH A FLUX CORE

PPPL--2121

John M. Finn[†] and Stephen C. Jardin

DE84 015149

Plasma Physics Laboratory, Princeton University

P.O. Box 451, Princeton, NJ 08544

ABSTRACT

The stability of spheromak equilibria with a flux core, or reversal coil, is studied by means of an ideal MHD code. Results depend critically upon whether the flux hole region (the current free area just inside the separatrix) is treated as perfectly conducting plasma or as vacuum. This indicates that the tilt and shift modes persist as resistive instabilities if they are stable in ideal MHD. Specifically, for nonoptimally shaped equilibria, the flux core must nearly touch the current channel if the flux hole is vacuum, whereas the core may be slightly outside the separatrix if the flux hole has conducting plasma. A larger margin exists for optimally shaped equilibria.

[†]Permanent address: Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, MD 20742

Tilt and shift modes¹⁻⁴ are to date the most important global instabilities in spheromaks. Indeed, they have been observed in every experiment to date.⁵⁻⁷ Previous work on these modes indicates that for long plasmas, with a small vertical field index (specifically $Z_s/R_s \gtrsim 0.6$, where Z_s is the half length of the separatrix enclosing the closed flux surface region and R_s is its radius; see Fig. 1), the tilt is the most unstable mode.^{3,4} A mode crossing occurs near $Z_s/R_s = 0.6$ so that for shorter plasmas, with a larger field index, the shift mode has the larger growth rate.^{3,4}

Previous studies have had spherical or cylindrical conducting walls. In all cases one or both modes are unstable with the walls far from the plasma, but are stabilized as the walls are moved in.^{3,4}

Previous studies have also considered the open field line region to be plasma (and thus to be line-tied to the walls)³ or vacuum.^{3,4} All studies of these modes after the earliest had a so-called flux hole region just inside the separatrix where no current (poloidal or toroidal) flows. In some cases this region was treated as conducting plasma³ and in others as vacuum,⁴ but no systematic comparison between these two models has been performed.

In this paper we consider spheromak equilibria with a flux core (or field reversal coil) within the conducting walls as in the Princeton experiment S-1 and in the Maryland device MS currently being designed. The difference in terminology reflects the fact that the flux core in S-1 is responsible for inducing both poloidal and toroidal fields, whereas in MS the coil or coils will be responsible for poloidal fields only.

In the equilibrium code used, the boundary conditions on the poloidal flux ψ are $\psi(r,z)$ on the cylindrical walls, corresponding to bias coils providing a given field index (mirror ratio) and $\psi = \text{const}$ on the surface of the flux core (reversal coil). The equilibria considered have

$rB_\phi = g(\psi) = \mu_0 [(\psi/\psi_m - \psi_0/\psi_m)^2 + \epsilon^2]^{1/2} - \epsilon$, where r , ϕ , z is a cylindrical coordinate system with ϕ the toroidal angle, ψ_m is the flux at the 0-point on the magnetic axis, ψ_0 is the flux at the inner boundary of the flux hole, ϵ is a parameter determining the size of the region over which the current goes to zero, and μ_0 determines the overall plasma size. These equilibria and their stability, without a flux core, have been studied in Ref. 3. For the present purposes we fixed ψ_0 and ϵ to the values found to be optimal in Ref. 3.

The stability code used here is the initial value ideal MHD code described in Ref. 3. Line tying was not included, i.e., the open field line area was considered to be vacuum. We do not move walls to find marginal stability, but rather vary ψ_c , the flux on the flux core. Decreasing ψ_c decreases the distance between the core and the separatrix and for $\psi_c < 0$ wraps more of the flux in the closed flux surface region around the core. Since the core is of finite size, to some extent it can carry the same types of eddy currents as can a cylindrical or spherical wall.

We treat the flux hole region as either perfectly conducting plasma or as vacuum in order to compare the results. As is well known, a closed flux surface region outside a current carrying plasma provides a stabilizing influence in MHD if it contains perfectly conducting fluid, as compared to the case when the region has vacuum, and if a mode rational surface $m = nq$ (m is the poloidal mode number, n the toroidal mode number, and q the safety factor) exists in the region. Tilt and shift modes are basically $m = 1$ modes, but their $m = 0$ components, present because of toroidal effects, satisfy $m = nq$ throughout the region, where $q = 0$. On this basis we should expect plasma in the flux hole region to have a stabilizing effect.

The stability results we present are the growth rate of the most unstable mode normalized by a nominal Alfvén time $\gamma a/v_A$, where a is the wall radius.

The density is assumed to be uniform throughout the plasma. This is plotted against ψ_c , the flux at the flux core (reversal coil), normalized to a flux $\psi = B_o a^2/2$ based on a nominal field B_o . [In this normalization ψ_m , the value at the magnetic axis, is generally -0.3 , $\psi(a,0) \approx 0.3$, and $\psi(a,L)$, where L is the length of the cylindrical can, is considerably larger due to field index.]

The first set of equilibria has a fairly large field index that produces a nearly optimally shaped plasma ($Z_s/R_s \approx 0.6$) when the flux core is absent. For the model with plasma in the flux hole, the growth rate shown in Fig. 2 as a function of ψ_c decreases as $\psi_c \rightarrow 0$, with a plateau near $\psi_c = 0.10$. The eigenfunctions are about equally tilt and shiftlike in this region indicating that the plateau is due to proximity to the mode crossing point. Below $\psi_c = 0.10$, γ decreases fairly sharply again and marginal stability occurs at $\psi_c = 0.025$. The plasma is very oblate at this point and the eigenfunction is almost a pure shift mode. Flux surfaces for an equilibrium near the marginal point are shown in Fig. 1.

In Fig. 2 we also show the growth rate as a function of ψ_c for the high index equilibria when the flux hole region is considered to be vacuum. Here the growth rates are much larger. There is again a plateau due to mode crossing near $\psi_c = 0.05$ and marginal stability at $\psi_c = -0.06$. The edge of the plasma for this case is at $\psi_c = -0.062$ so that, within computational error, the flux core needs to touch the edge of the plasma to stabilize the mode. At marginal stability the plasma is very oblate and the eigenfunction is very shiftlike.

Next, we show a sequence of equilibria with a smaller field index in order to be nearer the optimum shape at marginal stability. First consider the cases where the flux hole is filled with plasma. As seen in Fig. 3, γ here is much larger in the range $0.1 < \psi_c < 0.2$, relative to the cases of

Fig. 2, and examination shows an extremely tiltlike eigenfunction due to elongation. For $0.05 < \psi_c < 0.1$, the eigenfunction is a mixture of tilt and shift, i.e., near the mode crossing; the growth rate decreases sharply showing marginal stability at $\psi_c = 0.05$.

The low field index case with vacuum in the flux hole is also shown in Fig. 3. Again, growth rates are much larger compared with the case of plasma in the flux hole region. There is a slight plateau in growth rate above $\psi_c = 0.10$ and a sharp drop for $0.05 < \psi_c < 0.10$, where the mode is becoming more shiftlike as ψ_c decreases. Marginal stability occurs at $\psi_c = 0.05$ and the edge of the plasma is at $\psi_c = -0.066$ in this case. Marginal stability in this case has the flux core slightly more removed from the plasma than in the high field index case, due to the plasma being slightly longer. Flux surfaces for a low field index equilibrium near marginal stability are shown in Fig. 4.

These results show further evidence of the fact that for nonoptimally shaped plasmas (generally outside the range $z_s/R_s = 0.6 \pm 10\%$), a metal wall must nearly touch the plasma at some point to stabilize tilt or shift modes. In our cases this means that the flux core must nearly touch the separatrix whenever the flux hole region is plasma (although the spacing is not so small in the low field index case because the plasma is nearly optimally shaped at marginal stability). When the flux hole region is considered to be vacuum, the core must nearly touch the current carrying plasma. The advantage in having a large amount of flux from the closed field line region around the core, namely having the conducting core material near the plasma, is nearly offset by the fact that this mode of operation produces very oblate plasmas subject to shift modes.

We have shown that there is a substantial difference between the results

obtained by treating the flux hole region as a conducting plasma (without current) on the one hand and as a vacuum on the other. In the typical experiment, the flux hole region contains plasma which is conducting but cooler, and therefore more resistive than the core of the plasma. Therefore, our results show that tilt and shift modes, when they are observed in plasmas with a flux core near or within the separatrix, are resistive instabilities. We have bracketed these results with two models, treating the flux hole region as perfectly conducting and as nonconducting, respectively. However, to compute the actual growth rate, whenever the former model predicts stability and the latter model predicts instability, a code with finite resistivity is required.

ACKNOWLEDGMENTS

We would like to thank M. Yamada for stimulating discussions. This work was supported by the U. S. Department of Energy Contract # DE-AC02-76-CHO-3073.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REFERENCES

- 1 M. N. Rosenbluth and M. N. Bussac, Nucl. Fusion 19, 489 (1979).
- 2 J. M. Finn, W. M. Manheimer, and E. Ott, Phys. Fluids 24, 1336 (1981).
- 3 J. M. Finn and A. Reiman, Phys. Rev. A24, 2835 (1981); Phys. Fluids 25, 116 (1982).
- 4 S. Jardin, M. Chance, R. Dewar, R. Grimm, and D. Monticello, Nucl. Fusion 21, 1665 (1981).
- 5 H. Bruhns, Y. P. Chong, G. C. Goldenbaum, G. W. Hart, and R. A. Hess, in Proc. 3rd Symposium on the Physics and Technology of Compact Toroids, Los Alamos (1980), p. 97.
- 6 I. Henins, H. Hoida, T. Jarboe, R. Linford, J. Marshall, K. McKenna, D. Platts, and A. Sherwood, *Ibid*, p. 101.
- 7 C. Munson et al., in Proc. 4th Symposium on the Physics and Technology of Compact Toroids, Livermore (1981), p. 149.

FIGURE CAPTIONS

Fig. 1 Flux surfaces for a high field index spheromak equilibrium with flux core (reversal coil) near the separatrix, $\psi_c = 0.05$. This equilibrium is nearly marginally stable if the flux hole is filled with plasma.

Fig. 2 Normalized growth rate γ as a function of ψ_c the flux at the flux core, for the high index class of equilibria with plasma in the flux hole region (bottom curve) and with vacuum in the flux hole region (top curve).

Fig. 3 Normalized growth rate γ as a function of ψ_c for the low index case with plasma in the flux hole region (bottom curve) and with vacuum in the flux hole region (top curve).

Fig. 4 Flux surfaces for a low field index spheromak with flux core (reversal coil) inside the separatrix $\psi_c = -0.025$. This equilibrium is nearly marginally stable with vacuum in the flux hole region.

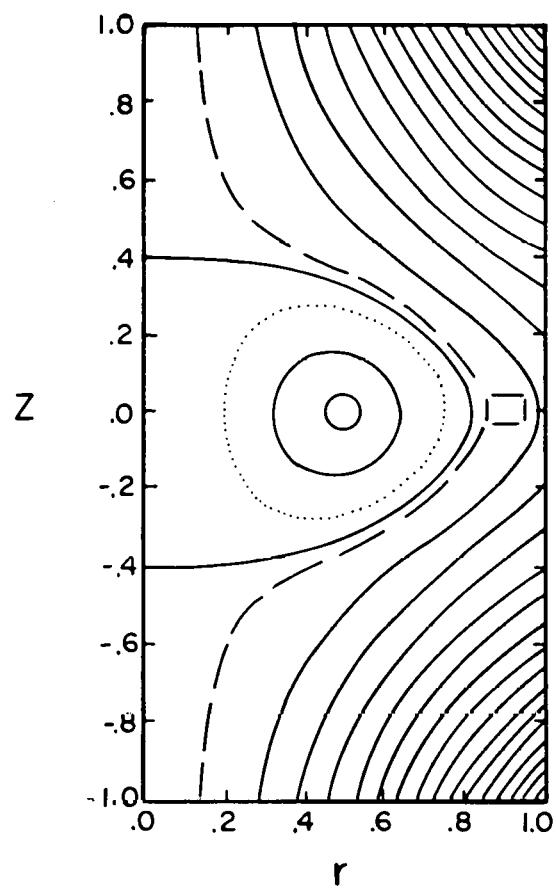


Figure 1

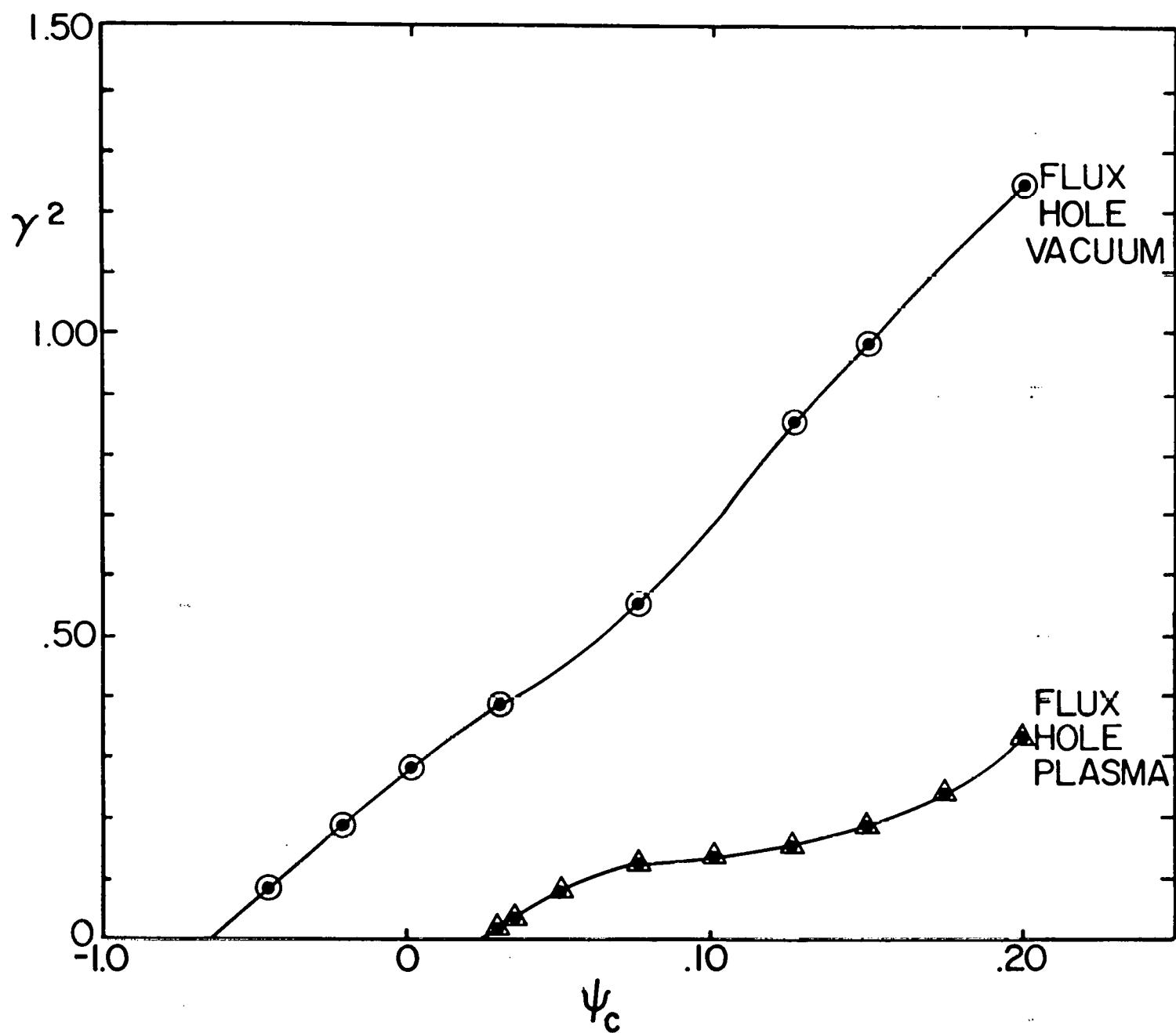


Figure 2

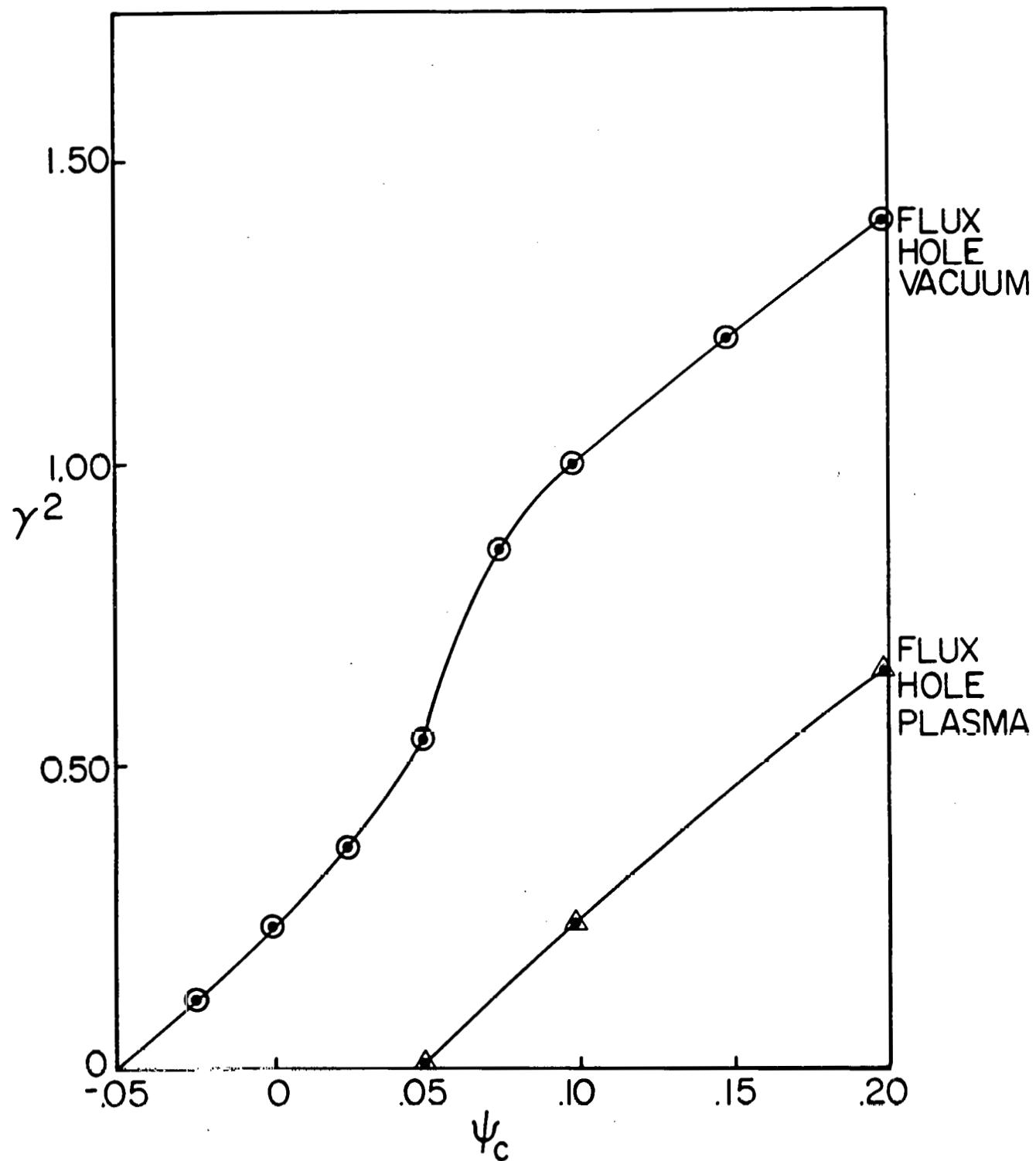


Figure 3

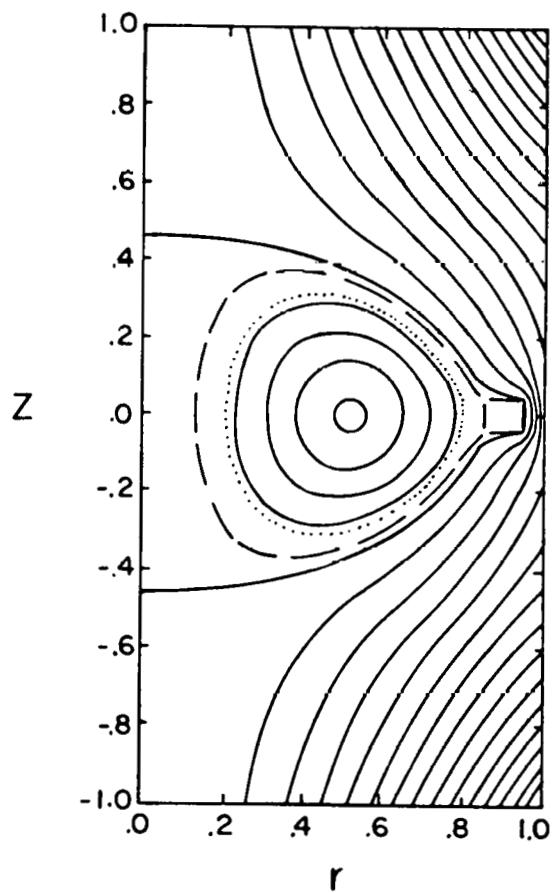


Figure 4

EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasma Res Lab, Austra Nat'l Univ, AUSTRALIA
Dr. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verheest, Inst theoretische, BELGIUM
Dr. D. Palumbo, Dg XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakanaka, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hennes Bernard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Zhengwu Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Radet, CEN-BP6, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Mual, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra, Mohen Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Var Ruchi Marg, INDIA
P. Kaw, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostagni, Univ Di Padova, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Clella De Palo, Assoc EURATOM-CNEN, ITALY
Biblioteca, del CNR EURATOM, ITALY
Dr. H. Yamato, Toshiba Res & Dev, JAPAN
Prof. M. Yoshikawa, JAERI, Tokai Res Est, JAPAN
Prof. T. Uchida, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Prof. Sigeru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Satoshi Itoh, Kyushu University, JAPAN
Tech Info Division, Korea Atomic Energy, KOREA
Dr. R. England, Ciudad Universitaria, MEXICO
Bibliotheek, Fom-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Lilley, University of Waikato, NEW ZEALAND
Dr. Suresh C. Sharma, Univ of Calabar, NIGERIA

Prof. J.A.C. Cobrel, Inst Superior Tech, PORTUGAL
Dr. Octavian Petrus, ALI CLUZA University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SO AFRICA
Fusion Div. Library, JEN, SPAIN
Prof. Hans Wilhelmsson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlsson, Uppsala Universitet, SWEDEN
Centre de Recherchesen, Ecole Polytech Fed, SWITZERLAND
Dr. W.L. Weise, Nat'l Bur Stand, USA
Dr. W.M. Stacey, Georg Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Prof. Norman L. Oleson, Univ S Florida, USA
Dr. Benjamin Ma, Iowa State Univ, USA
Prof. Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Askew, Auburn Univ, USA
Dr. V.T. Tolok, Kharkov Phys Tech Ins, USSR
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
Dr. G.A. Eliseev, Kurchatov Institute, USSR
Dr. V.A. Glukhikh, Inst Electro-Physical, USSR
Institute Gen. Physics, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Jülich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Dr. H.J. Kaeplier, University Stuttgart, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY

DOE Form RA-427
(10/80)

U.S. DEPARTMENT OF ENERGY

OMB NO. 038-R0190

UNIVERSITY CONTRACTOR, GRANTEE AND COOPERATIVE AGREEMENT
RECOMMENDATIONS FOR ANNOUNCEMENT AND DISTRIBUTION OF DOCUMENTS

See Instructions on Reverse Side

1. DOE Report No. PPPL-2121	3. Title Tilt and Shift Mode Stability in a Spheromak with a Flux Core
2. Contract No. DE-AC02-76-CH0-3073	
4. Type of Document ("X" one) <input checked="" type="checkbox"/> a. Scientific and technical report <input type="checkbox"/> b. Conference paper: Title of conference _____	
	Date of conference _____
	Exact location of conference _____
	Sponsoring organization _____
	<input type="checkbox"/> c. Other (Specify planning, educational, impact, market, social, economic, thesis, translations, journal article manuscript, etc.) _____
5. Recommended Announcement and Distribution ("X" one) <input checked="" type="checkbox"/> a. DOE's normal announcement and distribution procedures may be followed. <input type="checkbox"/> b. Make available only within DOE and to DOE contractors and other U.S. Government agencies and their contractors.	
6. Reason for Recommended Restrictions	
7. Patent and Copyright Information Does this information product disclose any new equipment, process or material? <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes If so, identify page nos. _____ Has an invention disclosure been submitted to DOE covering any aspect of this information product? <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes If so, identify the DOE (or other) disclosure number and to whom the disclosure was submitted. Are there any patent-related objections to the release of this information product? <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes If so, state these objections. Does this information product contain copyrighted material? <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes If so, identify the page numbers _____ and attach the license or other authority for the government to reproduce.	
8. Submitted by Barbara Pavelec	Name and Position (Please print or type) Organization Princeton Plasma Physics Laboratory
Signature <i>B. Pavelec</i>	Date 7/24/84

FOR DOE OR OTHER AUTHORIZED
USE ONLY

9. Patent Clearance ("x" one)
 a. DOE patent clearance has been granted by responsible DOE patent group.
 b. Report has been sent to responsible DOE patent group for clearance.