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ABSTRACT

The stability of spheromak equilibria with a flux core, or reversal coil,
is studied by means of an ideal MHD code. Results depend critically upon
whether the flux hole region (the current free area Jjust inside the
separatrix) is treated as perfectly conducting plasma or as vacuum. This
indicates that the tilt and shift modes persist as resistive instabilities if
they are stable in ideal MHD. Specifically, for nonoptimally shaped
equilibria, the flux core must nearly touch the current channel if the flux
hole is vacuum, whereas the core may be slightly outside the separatrix if the
flux hole has conducting plasma. A larger margin exists for optimally shaped

equilibria.
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Tilt and shift modes1—4 are to date the most important élobal
instabilities in spheromaks. Indeed, they have been observed in every
5-7

experiment to date. Previous work on these modes indicates that for long

plasmas, with a small vertical field index (specifically Zg/Rg 2 0.6, where Zg
is the half length of the separatrix enclosing the closed flux surface region

3,4

and Ry is its radius; see Fig. 1), the tilt is the most unstable mode. A

mode crossing occurs near 2;/Rg = 0.6 so that for shorter plasmas, with a

larger field index, the shift mode has the larger growth rate.3’4

Previous studies have had spherical or cylindrical conducting wallgl In
all cases one or both modes are unstable with the walls far from the plasma,
but are stabilized as the walls are moved in.3’4
Previous studies have also considered the open field line region to be

3,4 All studies of

plasma (and thus to be line-tied to the walls)3 or vacuum.
these modes after the earLiest had a so-called flux hole region just inside
the separatrix where no current (poloidal or toroidal) flows. In some cases
this region was treated as conducting plasma3 and in others as vacuum,4 ﬁut no
systematic comparison between these two models has been performed.

In this paper we consider spheromak equilibria with a flux core (or field
reversal coil) within the conducting walls as in the Princeton experiment S-1
and in the Maryland device MS currently being designed. The difference in
terminology reflects the fact that the flux core in S-1 is responsible for
inducing both poloidal and toroidal fields, whereas in MS the coil or coils
will be responsible for poloidal fields only. ,

In the equilibrium code used, the boundary conditions on the poiéidal
flux ¢y are y(r,z) on the cylindrical walls, corresponding to bias coils

providing a given field index (mirror ratio) and ¢y = const on the surface of

the flux core (reversal coil). The equilibria considered have



rB¢ = g(y) = o [(¢/¢m - ¢°/¢m)2 + 52]1/2 - ¢, wherer, ¢, z is a cylindrical
coordinate system with ¢ the toroidal angle, ¥ is the flux at the O-point on
the magnetic axis, y, is the flux at the inner boundary of the flux hole, ¢ is
a parameter determining the size of the region over which the current goes to
zero, and g determines the overall plasma size. These equilibria and their
stability, without a flux core, have been studied in Ref. 3. For the present
purposes we fixed Vo and € to the values found to be optimal in Ref. 3 .

The stability code used here is the initial value ideal MHD code
described in Ref. 3. Line tying was not included, i.e., the open field line
area was considered to be vacuum. We do not move walls to find marginal
stability, but rather vary y., the flux on the flux core. Decreasing vy,
decreases the distance between the core and the separatrix and for y, < O
wraps more of the flux iﬁ the closed flux surface region aréund the core.
Since the core is of finite size, to some extent it can carry the s ame types
of eddy currents as can a cylindrical or spherical wall.

We treat the flux hole region as either perfectly conducting plasma or as
vacuum in order to compare the results. As is well known, a closed flux
surface region outside a current carrying plasma provides a stabilizing
influence in MHD if it contains perfectly conducting fluid, as compared to the
case when the region has vacuum, and if a mode rational surface m = nq (m is
the poloidal mode number, n the toroidal mode number, and q the safety factor)
exists in the region. Tilt and shift modes are basically m = 1 modes, but
their m = O compgnents, present because of toroidal effects, satisfy m = ng
throughout the region, where g = 0. On this basis we should expect plasma in
the flux hole region to have a stabilizing effect.

The stability results we present are the growth rate of the most unstable

mode normalized by a nominal Alfven time Ya/vy, where a is the wall radius.



The density is assumed to be uniform throughout the plasma. This is plotted
against y,, the flux at the flux core (reversal coil), normalized to a flux
Y = Boa2/2 based on a nominal field Bo. (In this normalization Vo the value
at the magnetic axis, is generally -0.3, y(a,o) = 0,3, and y(a,L), where L is
the length of the cylindrical can, is considerably larger due to field index.]

The first set of equilibria has a fairly large field index that produces
a nearly optimally shaped plasma (ZS/Rs ~ 0.6) when the flux core is absent.
For the model with plasma in the flux hole, the growth rate shown in Fig. 2 as
a function of y, decreases as y, » 0, with a plateau near y, = 0.10. The
eiqeﬁfunctions are about equally tilt and shiftlike in this region indicating
that the plateau 1is due to proximity to the mode crossing point.
Below y_. = 0.10, <y decreases fairly sharply again and marginal stability
occurs at y, = 0.025. The plasma is very oblate at this point and the
eigenfunction is almost a pure shift mode. Flux surfaces for an equilibrium
near the marginal point are shown in Fig. 1.

In Fig. 2 we also show the growth rate as a function of Vo for the high
index equilibria when the flux hole region is considered to be vacuum. Here
the growth rates are much larger. There is again a plateau due to mode
crossing near Yo = 0.05 and marginal stability at y, = -0.06. The edge of the
plasma for this case is at VYo = -0.062 so that, within computational error,
the fiux core needs to touch the edge of the plasma to stabilize the mode. At
marginal stability the plasma is very oblate and the eigenfunction is very
shiftlike.

Next, we show a sequence of equilibria with a smaller field index in
order to be nearer the optimum shape at marginal stability. First consider
the cases where the flux hole is filled with plasma. As seen in Figqg.

3, Y here is much larger in the range 0.1 < y, < 0.2, relative to the cases of



Fig. 2, and examination shows an extremeély tiltlike eigenfunction due to
elongation. For 0.05 < y, < 0.1, the eigenfunction is a mixture of tilt and
shift, i.é., near the mode crossing; the growth rate decreases sharply showing
marginal stability at y, = 0.05.

The low field index case with vacuum in the flux hole is also shown in
Fig. 3. Again, growth rates are much larger compared with the case of plasma
in the flux hole region. There 1is a slight plateau in growth rate
above Y, = 0.10 and a sharp drop for 0.05 < Yo < 0.10, where the mode is
becoming more shiftlike as Y. decreases. Marginal stability occurs
at y, = 0.05 and the edge of the plasma is at Yo = -0.066 in this case.
Marginal stability in this case has the flux core slightly more removed from
the plasma than in the high field index case, due to the plasma being slightly
longer., Flux surfaces for a low field index equilibrium near marginal
stability are shown in Fig. 4.

These results show further evidence of the fact that for nonoptimally
shaped plasmas (generally outside the range Zs/Rs = 0.6  10%), a metal wall
must nearly touch the plasma at some point to sﬁabilize tilt or shift modes.
In our cases this means that the flux core must nearly touch the separatrix
whenever the flux hole region is plasma (although the spacing is not so smali
in the low field index case because the plasma is nearly optimally shaped at
marginal stability). When the flux hole region is considered to be vacuunm,
the core nust nearly touch the current carrying plasma. The advantage in
having a large amount of flux from the ciosed field line region around the
core, namely having the conducting core material near the plasma, 1s nearly
offset by the fact that this mode of %peration produces very oblate plasmas
subject to shift modes.

We have shown that there is a substantial difference between the results



obtained by treating the flux hole region as a conducting plasma (without

current) on the one hand and as a vacuum on the other., In the typical

experiment, the flux hole region contains plasma which is conducting but

cooler, and therefore more resistive than the core of the plasma. Therefore,

our results show that tilt and shift modes, when they are observed in plasmas
with a flux core near or within the separatrix, are resistive instabilities.
We have bracketed these results with two models, treating the flux hole region

as perfectly conducting and as nonconducting, respectively. However, to

compute the actual growth rate, whenever the former model predicts stability

and the latter model predicts instability, a code with finite resistivity is

required,

ACKNOWLEDGMENTS

We would like to thank M. Yamada for stimulating discussions. This work

was supported by the U. S. Department of Energy Contract # DE~ACO02-76-CHO-

3073.

DISCLAIMER

ncy of the United States
i s prepared as an account of work sponsored by an :fe mireor G of thei
Covctmmen waNpither the United States Government nor any age yle o 1;ai,imy O .
P k:s any warranty, express of implied, or assu.me-s an{. ong e oaratin S e, or
er.n-ployees,h!:ezwum‘“y eompleteicay, of usefulness of any 1nf<n'ml:aw|"m:,ly D . Rofor
o ‘0:1.1 losed, OF r;presem.s that its use would not infringe p e e, e ek,
Proce;s relis;fz)s al;y specific commercial product, proccs:; (ir s::v;:plyy e e recom.
manafa i ssarily constitute om
herwise does not nece: ' o eat. The vie
A avor i States Gouvernment OF any 3ag
i i the United State! ; o the
me“datf"f‘v " f? vo:::ir:yexprcssed herein do not necessarily state or reflec
and opinions of a ‘ :
Unite(r States Government vt any agency thereof.



REFERENCES
M. N. Rosenbluth and M. N. Bussac, Nucl. Fusion 19, 489 (1979).
J. M. Finn, W, M. Manheimer, and E. Ott, Phys. Fluids 24, 1336 (1981).
J. M. Finn and A. Reiman, Phys. Rev. A24, 2835 (1981); Phys. Fluids 25,
116 (1982).
S. Jardin, M. Chance, R. Dewar, R. Grimm, and D. Monticello, Nucl. Fusion
21, 1665 (1981).
H. Bruhns, Y. P. Chong, G. C. Goldenbaum, G. W. Hart, and R. A. Hess, 1in
Proc. 3rd Symposium on the Physics and Technology of Compact Toroids, Los
Alamos (1980), p. 97.
I. Henins, H. Hoida, T. Jarboe, R. Linford, J. Marshall, K. McKenna, D.
Platts, and A. Sherwood, Ibid, p. 101,

C. Munson et al., in Proc. 4th Symposium on the Physics and Technology of

Compact Toroids, Livermore (1981), p. 149.



Fiqg.

Fig.

Fig.

Fig.

1

2

3

4

FIGURE CAPTIONS
Flux surfaces for a high field index spheromak equilibrium with flux
core (reversal coil) near the separatrix, Ve * 0.05. This equilibrium

is nearly marginally stable if the flux hole is filled with plasma.

Normalized growth rate y as a function of y, the flux at the flux
core, for the high index class of equilibria with plasma in the flux
hole region (bottom curve) and with vacuum in the flux hole region

(top curve).

Normalized growth rate y as a function of y, for the low index case
with plasma in the flux hole region (bottom curve) and with vacuum in

the flux hole region (top curve).

Flux surfaces for a low field index spheromak with flux core (reversal
coil) inside the separatrix Yo = ~0.025, This equilibrium is nearly

marginally stable with vacuum in the flux hole region.
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