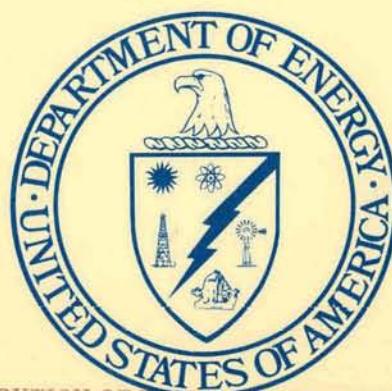


08/1/78
3-1-78

BNL 50841

Sh. 301


MASTER

THE ENDANGERED SPECIES ACT AND ENERGY FACILITY PLANNING: COMPLIANCE AND CONFLICT

Daniel Shreeve, Charles Calef, John Nagy

BIOMEDICAL AND ENVIRONMENTAL ASSESSMENT DIVISION
BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

Prepared for
DIVISION OF TECHNOLOGY OVERVIEW/ASEV
UNITED STATES DEPARTMENT OF ENERGY
UNDER CONTRACT NO. EY-76-C-02-0016

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BNL 50841

UC-13

(General, Miscellaneous, and
Progress Reports (Non-nuclear) - TID-4500)

UNCLASSIFIED

THE ENDANGERED SPECIES ACT AND ENERGY FACILITY PLANNING: COMPLIANCE AND CONFLICT

Daniel Shreeve*, Charles Calef, John Nagy

MAY 1978

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

*Present address: Northeast Missouri State University,
Kirksville, Missouri 63501

BIOMEDICAL AND ENVIRONMENTAL ASSESSMENT DIVISION
NATIONAL CENTER FOR ANALYSIS OF ENERGY SYSTEMS

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Dey

N O T I C E

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy (DOE), nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy \$5.25; Microfiche \$3.00

May 1978

600 copies

Abstract

New energy facilities such as coal mines, gasification plants, refineries, and power plants because of their severe environmental impacts may, if they are sited haphazardly, jeopardize endangered species. By law, conflicts between energy facility siting and endangered species occurrence must be minimized. To assess the likelihood of such conflicts arising, we have used data from the Fish and Wildlife Service, Endangered Species Office, that describe species' ranges by county. We have matched this data set with county level occurrences of imminent energy developments to find counties of overlap and hence potential conflict. An index has been developed to measure the likelihood of actual conflict occurring in such counties. Factors determining the index are: numbers of endangered species inhabiting the county, number of energy-related developments and to what degree the county remains in a wild or undeveloped state. Maps have been prepared showing (1) geographic ranges of endangered species by taxonomic groups (mammals, fish, etc.) and (2) counties of conflict.

I. THE ACT

Planners who must propose sites for power plants, coal mines, and other energy facilities face a complex responsibility for estimating both the health and ecological effects of their proposals. In comparing two or more different site choices, they consider both environmental and economic factors, hoping to maximize benefits and minimize impacts. Because of the many factors which contribute to environmental effects alone, it is rarely possible to make a quantitative decision acceptable to all.

The Endangered Species Act of 1973¹ effectively constrains development plans to those areas where the well-being of endangered species will not be jeopardized. The Act charges all Federal agencies with the responsibility to aid in the protection of the species listed as endangered in the United States (currently about 200). In addition to prohibiting actions against endangered species by private citizens, the Act prohibits federal agencies from funding or authorizing a project which jeopardizes any one of the species. This includes entering into a cooperative agreement such as an agreement to supplement a project of private industry or local government with federal funds. It authorizes funds for research on U.S. endangered species and describes a procedure for adding species to the list (Figure 1). It mandates that all federal agencies shall cooperate with state agencies in programs that benefit endangered species, including those for the identification of critical habitats. The Act does not void state laws designed to protect wildlife. For example, states may draw up endangered species lists more inclusive than the federal list, or may define criteria for the "taking" of endangered species more stringent than those in the Federal Act.

As explained in a recent New York Times article,² the Act can halt any project in which federal dollars or permits are involved, "from dams on Big Darby Creek to highways in Mississippi and coal mines in Montana." All species on the list have equal legal status, the most lowly mollusk on a par with the spectacular bald eagle.

Some planners might suggest that if a complex siting decision conflicted with the Act the law might be changed, at least regarding the particular nuisance species. This is contradicted so far by the historical record. The arduous process of listing or removing a species (Figure 1) invites "bureaucratic entanglement" at many stages. At least 10 distinct hurdles must be overcome before a species' status can be changed, and even a single step may require the agreement of many officials: "Step 6, for example, requires that after a staff scientist has drafted proposed rules and usually an assessment of the environmental impact of protecting the particular species, his report must carry no fewer than 12 signatures from department head and managers within the Department of the Interior. The entire process takes a minimum of 36 work days ... and several of the steps provide for waiting periods of up to 90 days before the next step can begin."²

As the Act now reads, the removal of a species from protected status would follow the same procedure. A special amendment to the Act might be passed by Congress to exclude a particular species, or even a group of species, but this is unlikely. Another tactic that growth proponents might exploit would be to encourage an amendment to Section 7 that would exempt a particular plan, perhaps a plan for damming a river system. Just such a threat to the Act's integrity may emerge in this session of Congress. Senator Howard Baker (R-Tennessee) is expected to submit an amendment to exempt specific public

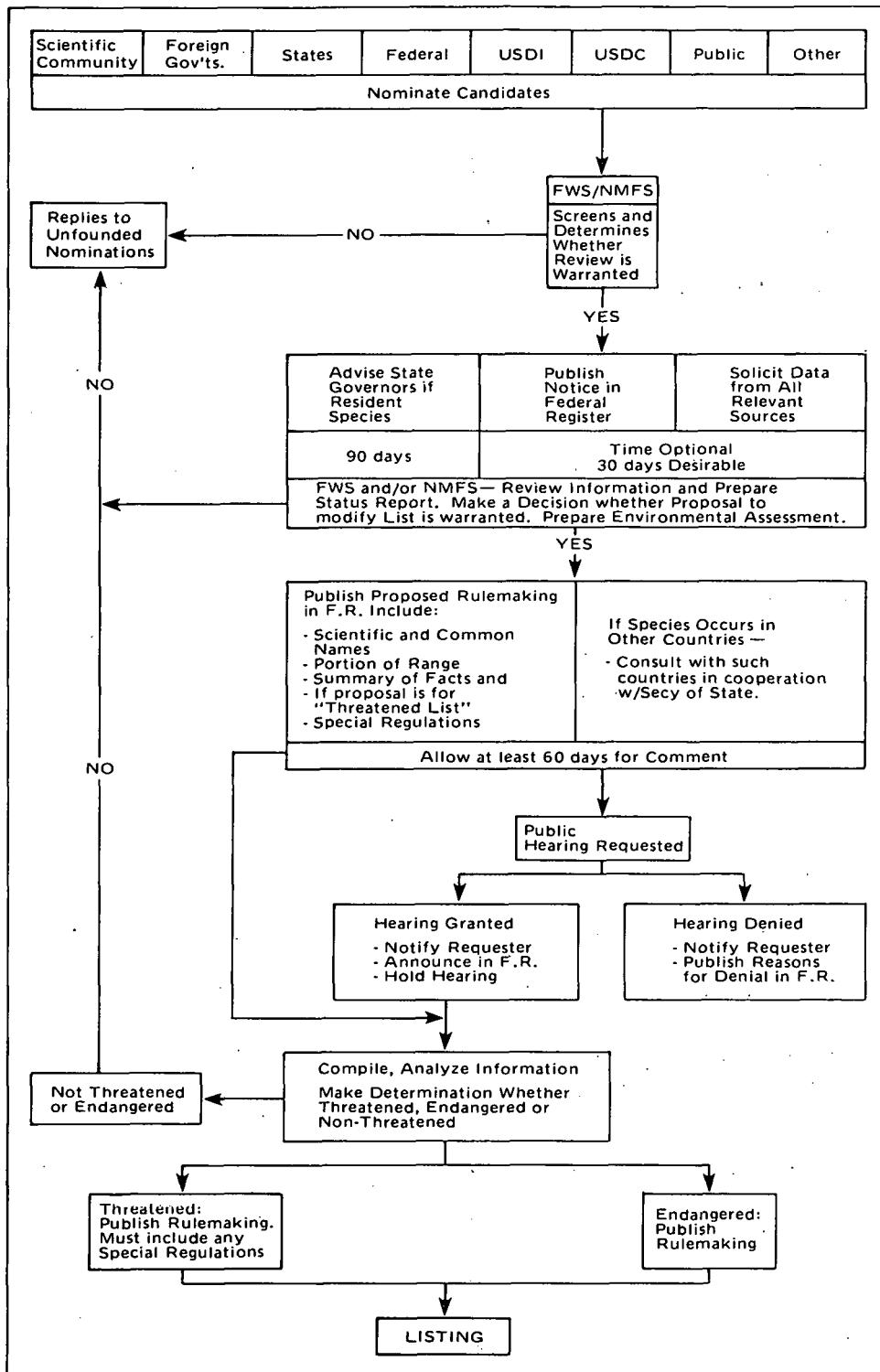


Figure 1. Procedure for modifying lists of threatened or endangered species. Note basic three step process: notice, proposed rulemaking, final rule making. F.R. = *Federal Register*; FWS = U. S. Fish and Wildlife Service; NMFS = National Marine Fisheries Service; USDC = U.S. Dept. of Commerce; USDI = U.S. Dept. of the Interior.

Figure courtesy Bruce MacBryde. From, "Plant Conservation in the United States Fish and Wildlife Service," in, *Extinction is Forever*, New York Botanical Garden, 1977.

works projects (such as the Telleco Dam in his home state) from compliance with Section 7 of the Act.³

It seems unlikely that a conflict between a growth plan and protection of an endangered species would be resolved by changing the law. Because of this reality, the many steps required to add new species to the list invite political opposition at many stages. This is germane, since important cases now approaching the courts involve species that are proposed for protection rather than already listed. One can well imagine the intense political opposition to listing species that are already in conflict with growth plans.

The efforts of conservationists are international in scale. Ten years were required to design and convene an international conference for the protection of endangered species, and during that time 6% of all mammal extinctions in history occurred.⁴ The long-term effort to agree on international measures for endangered species conservation can be expected to endow the agreement with strong resistance to change.

In considering the importance of the Act to energy planners, it is relevant whether the original impetus of the Act has grown or declined during a period when the U.S. is increasing the exploitation of domestic energy resources. The history of court challenges based on endangered species is still a short one,⁵ but there is evidence that the Act will become increasingly important to planners; it is certain that the list of species will be greatly lengthened. Section 12 of the Act enjoined the Smithsonian Institution to review the status of the U.S. flora and propose candidates for the endangered species list. The Institution proposed ~3000 species of plants to the Endangered Species Office, and the Office proposed about 1850 of these for recognition as endangered species. The species are being considered in batches of 12 to 14; the first four species, living on San Clemente Island in California, were added to the official list in late 1977.

II. CONFLICTS BETWEEN GROWTH PLANS AND THE ACT

One of the most controversial conflicts involves the Telleco Dam project in Tennessee. Because the snail darter (Percina tanasi), an endangered fish, would be destroyed by the dam, the \$80 to \$100-million project was halted when three-fourths completed. A candidate for the list, Anthony's river snail (Athearnia anthonyi), is also found at the site.

Rejecting arguments that the Telleco Dam project should be exempted from compliance with Section 7 of the Act, the Sixth Circuit Court of Appeals ruled "that the extinction of a species was too severe a consequence to warrant exempting a substantially completed activity solely on the basis of dollars already spent The degree of completion of a project was irrelevant."⁶

The Environmental Defense Fund has lately opposed the Army Corps of Engineers, objecting to the latter's plan to reverse the flow of a portion of the Little Tennessee River by building a parallel stream. This plan, like the Telleco Dam, could affect local races of the snail darter. The impact statement for this plan is short and simply mentions the species found at the site which are included on federal and state endangered species lists.

A proposal for two dams near Columbus, Ohio, sponsored jointly by the city of Columbus and the Army Corps of Engineers, may fail to be implemented because of the presence of an endangered mollusk, the tan riffle shell (Epioblasma walkeri), which might prevent Federal funding or authorization.

A rare snapdragon in a remote area of northern Maine could thwart construction of the \$600-million Dickey Lincoln hydroelectric project. The furbish lousewort, believed extinct, has been found at the site by an Army Corps of Engineers botanist. It has been proposed as a candidate for the endangered species list and will very likely be included.

A strong provision of the Act is its power to designate critical habitat. "'Critical habitat' means any air, land, or water area ... the loss of which would appreciably decrease the likelihood of the survival and recovery of a listed species or a distinct segment of its population."⁶ An example of the Act's power in this regard is the recent proposal of critical habitat for the grizzly bear (*Ursus arctos horribilis*) in the northern Rocky Mountain states. The U.S. Fish and Wildlife Service (USFWS) has proposed 13 million acres as critical habitat, causing local citizens to fear that private enterprise in the area will be inhibited; in fact, the effect of the proposal is not precisely known. According to the U.S. Forest Service, activities that might be affected include "timber management, livestock grazing, recreation (including wilderness use), oil and gas leasing, water diversion, and road and trail construction."⁷

III. LEGAL PRECEDENTS

Two cases, National Wildlife Federation versus Coleman and Sierra Club versus Froehlke, serve as examples of how the Act may be interpreted when federal plans are alleged to threaten an endangered species. In the former case, the plaintiff invoked the Act in an attempt to stop progress of Highway 110 which would have crossed habitat of the Mississippi sandhill crane (*Grus canadensis pulla*), probably affecting about 40 members of this species. The plaintiff was successful and obtained an injunction that prevents the Federal Highway Administration from continuing construction.

In Sierra Club versus Froehlke, in contrast, the plaintiff failed legally to prevent the construction of the Merramac Pass Lake Dam near St. Louis, in spite of a claim that such construction would threaten the Indiana bat (*Myotis sodalis*) by usurping its cave roosts. The plans for the dam received a setback early in 1977 when President Carter impounded the construction funds

(effectively halting the projects), pending further studies, for 19 water development actions including this one. The endangered species controversy has already figured in recent renewed public hearings on the dam; two officially endangered species, the gray bat (Myotis grisescens) and Higgins' eye pearly mussel (Lampsilis higginsi), have been found at the site.

The differences between these early court cases constitute the principal evidence for judging how the Act will be enforced. The cases demonstrate that the wording of the Act is imprecise; interpretation will depend on precedents set by each controversy or on clarification of ambiguities by new rulings by the USFWS published in the Federal Register.

In the case of National Wildlife Federation versus Coleman, the USFWS armed the batteries of the plaintiff by declaring 10,000 acres as critical habitat of the crane, including the area to be traversed by the proposed highway. This agency declared that "construction activities, incidental intrusions, and subsequent related commercial and residential development of the area all constitute a significant threat to the well-being of the crane." The plaintiffs presented expert testimony by wildlife biologists to prove that the highway would in fact threaten the crane, and the district court judge further remarked that the Federal Highway Administration in an impact statement had acknowledged the inevitable development contingent on such construction.⁵

In the case of Sierra Club versus Froehlke, the Sierra Club amended its original complaint against the Merramac Pass Lake Dam to include the impact on the Indiana bat almost two years after initiating the suit. The Sierra Club did not prove that the area of the impact was critical habitat of the Indiana bat; and the area was not declared as critical habitat by the USFWS although it was under consideration. The USFWS instead urged a moratorium on the project, pending further study. The plaintiff was not successful.⁵

The outcome of the two cases depended also on interpretations by the court of certain vaguely worded passages in the Act. According to the court, the Act requires any federal agency planning a project that could threaten an endangered species to consult with the Department of the Interior regarding possible consequences of the plan, and the consultations should be "meaningful" even though the Department of the Interior should not be regarded as having absolute "veto power." In National Wildlife Federation versus Coleman, the highway project was effectively blocked in part because the defendants simply failed to consult at all with the USFWS (within the Department of the Interior). At the time of the case, the authority of the USFWS was undetermined, but strict procedures and requirements for consultation have recently been formulated.

The USFWS, in an important rule making⁶ affirmed that interagency consultations are mandatory when an agency judges its activities may jeopardize a particular species. Each federal agency must initiate consultations--but only if it decides that a program may conflict with the Act. "The Secretary of the Interior is not empowered to veto the final actions of such agencies even when he is convinced, after the requisite consultation has ensued, that they violate the Act." It appears that court challenges on a case-by-case basis will be the only way to resolve conflicts between endangered species and development; no definitive administrative procedure seems to exist.

Another vague part of the Act is the requirement that a federal agency planning a potentially hazardous project not only should be cognizant of the Department of Interior recommendations but also should actively promulgate policies that aid in the preservation of listed species. This implies that such agencies are required to explore to some unspecified extent, the effects of their plans on endangered species. According to the court's interpretation in National

Wildlife Federation versus Coleman, the Federal Highway Administration "failed to fulfill its mandatory duty to take the necessary steps 'to insure' that the highway will not jeopardize the crane or modify its critical habitat."⁵

IV. METHODS OF PLANNING THE LOCATIONS OF ENERGY FACILITIES

Knowledge of the distribution and habits of endangered species is vital in planning the locations of electric power plants, gasification plants, mining operations, and other energy-related activities. In the formulation of an impact statement for a particular site, the value of the habitat that will suffer a change must be considered. If the Act is interpreted precisely, the value of habitat occupied by an endangered species is absolute.

The siting of power plants by private industry serves as an example of the procedure for locating energy facilities in general. Historically, it has been common for companies to choose a site purely for its economic advantages, acquire it without public announcement, and begin construction. Such a procedure preempts the property of interest before speculators can purchase it in order to sell it at a profit to the utility or to accompanying industry. This procedure is now no longer common because an environmental impact statement must be filed, which must be made public for review, and because the general trend toward careful planning has forced utilities to put more thought into site selection. The obstacles to any plan may be monumental, and the procedure for approval is so complex that some local governments virtually direct the location of plants by simply buying up the preferable sites for eventual sale to the power company.⁸

Because of the many opportunities provided by alleged adverse environmental effects for federal, state, and private opposition to a siting plan, Schuster⁹ states, "Someplace else is getting to be a mighty hard place to find The clamor against siting new power generating plants is hurting the utility industry's

ears, and fouling up system growth plans." Schuster suggests that groups with the power to thwart a plan have a duty to propose alternatives. He expounds a policy of "one-stop" site approval, i.e. that a single agency should have the authority to accept or reject a plan.

An early description of the environmental values of a proposed site may expedite the approval procedure by avoiding the wasted energy of defending plans rejected on environmental grounds. Modern planners are therefore increasingly inclined to consider environmental interests simultaneously with economic advantages. A group at Argonne National Laboratory has proposed¹⁰ that maps of environmental resources be compared with maps of economic assets in the consideration of potential sites. "Candidate regions for siting can ... be determined by simply holding up mechanical overlays of transparencies of these maps and 'looking for the holes' in a computer-aided analog to the methodology of McHarg When this technique was employed in the examination of optimum sites for nuclear power plants in the Commonwealth Edison service area in northern Illinois, it predicted quite well the problems or lack thereof that would characterize the plants then built or under construction."

Calvert and Heilman⁸ suggest that first the economical areas for construction should be defined and then progressive subsets of these should be selected on the basis of such criteria as topography, water supply, site accessibility, geology and soils, and pollution effects. After an initial selection involving some "intuitive screening" candidate sites would be ranked according to environmental effects, development costs, and public acceptance factors. After a consideration of possible conflicts with other land uses, the development costs would be weighed against the environmental effects to reach a single quantitative rating assigned to each candidate. The most favorable sites would then be investigated in detail.

This method is not truly quantitative since it relies on some "intuitive screening." Furthermore, Calvert and Heilman fail to note that the order of screening affects the weighting of each factor: the factors considered earlier affect the final decision more than do those considered later. That a screening process is intuitive does not necessarily imply that it is faulty or inefficient. The quantification of environmental impacts depends on simultaneous comparison of many factors, each of which must be identified precisely. Although a perfect siting methodology may be a distant goal, geographic data on environmental resources and advantages are obviously helpful during site selection and in realistic comparison of alternative plans. Siting methodology is probably the most advanced for electric power plants. In comparison, the siting of new coal mines, for example, is capricious and is negligent of environmental factors.

V. PURPOSE OF PRESENT RESEARCH

The presence of endangered species is a necessary part of the characterization of a site's environment. Unlike most other aspects of the characterization, however, it has value already assigned. Since this value in any impact statement is very high, it is vital to know the national distribution of endangered species and to pinpoint areas where their presence may conflict with energy developments. (The purpose of our work is aptly symbolized by the Department of Energy seal on the cover of this report: the head of an endangered species, the bald eagle, juxtaposed with symbols of energy engineering technology.)

Here we identify counties with potential conflicts by mapping distributions of endangered species and proposed energy developments. The analysis will alert planners to the need for detailed research when an energy facility is planned in a county with many endangered species. Even in such a county an endangered

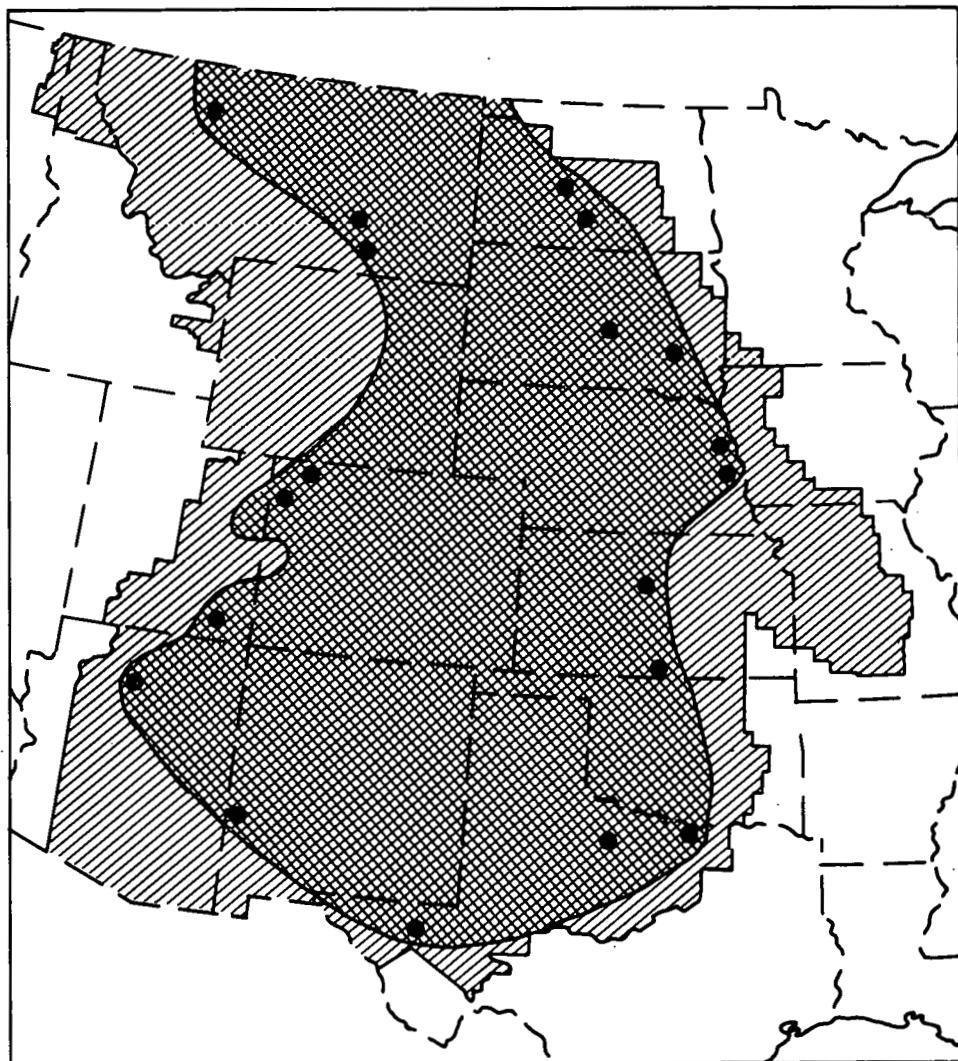
species may inhabit or require only a local part, which may go untouched by development. The present analysis is limited to certain energy-related threats to endangered species already listed. Other energy-related threats (pipelines, oil wells, etc.) are considered to be less severe than those dealt with. A host of particularly serious threats (highways, urbanization, industrialization, etc.) are not included because they are related only loosely to the energy system.

VI. DATA

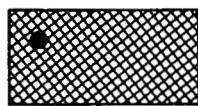
Data from the Endangered Species Office, USFWS, were used to obtain the distribution of endangered species on a county scale. While some data were already recorded on the county level, distributions of most species were given in terms of Aggregated Subareas (i.e., small river basins) of the Water Resource Council. The latter were converted by using a map that delineates Aggregated Subareas by their contained counties. Our rearrangement of the data resulted in two files: (1) the number of endangered species in each U.S. county for each taxonomic group (mammals, birds, reptiles, amphibians, fishes, insects, mollusks, and plants), and (2) a listing of the species found in each county. A version of the latter file is reproduced in Appendix A.

The Endangered Species Office distribution data can be grouped into four classes of reliability with gradations between them.

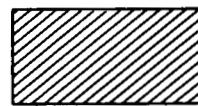
1. The distributions of some groups of organisms, for example mollusks and plants, are very exactly known. Any county for which a given species is listed is known to include that species.
2. The distribution of the American alligator (Alligator mississippiensis), which is fairly common and has a wide range, illustrates another level of certainty. The alligator, being a transient species, is not always found in all the counties for which it is listed but is highly mobile and may recolonize


them at any time, so that any of the counties might harbor alligators within a span of several years.

3. A third level of accuracy applies to the data for species that are rare but widespread. The black-footed ferret (Mustella nigripes) has not actually been witnessed over the last 50 years in all the counties in which its presence is listed, but the range of the few sightings is very extensive. It appears to be very rare, yet widely distributed. On the basis of the similarity of habitats throughout the range shown (Figure 2), each of the counties may potentially harbor the ferret, but how many of them actually do so at any given time is not known.


Figure 2 also illustrates how Aggregated Subareas only approximate the range of species. Whether by intent or mistake, the Endangered Species Office included as part of the black-footed ferret's range and Aggregated Subarea extending well into Missouri. As far as we can determine, the ferret has never been observed in Missouri and is not on a list of rare and endangered species published by that state.

4. The Endangered Species Office excluded from their distribution data a number of bird species which, "because of their vast distribution and/or rarity or unknown status, cannot be precisely assigned to aggregated subareas."¹¹ These include the familiar bald eagle (Haliaeetus leucocephalus), peregrine falcon (Falco peregrinus anatum), and ivory-billed woodpecker (Campephilus principalis). Such birds are not included in our study but are listed in Table 3 with an explanatory footnote. The data on certain other species are no more reliable than the data on the excluded birds, and yet the Endangered Species Office has assigned these species to Aggregated Subareas. The eastern cougar (Felis concolor cougar) has been indicated to have a range covering most of the eastern U.S. although, like the excluded birds, it has a vast distribution and a rare or uncertain status. Clearly the cougar's range as listed is historical


DISTRIBUTION OF BLACK FOOTED FERRET
IN UNITED STATES

RANGE OF Mustela nigripes ACCORDING TO:

"MAMMALS OF
NORTH AMERICA"

ENDANGERED
SPECIES OFFICE

● = MARGINAL SIGHTING

Figure 2. Range of black-footed ferret (*Mustela nigripes*) according to *Mammals of North America*, by Hall and Kelson (12), and U.S. Fish and Wildlife Service, Endangered Species Office. Endangered Species Office approximates range using aggregated subareas of Water Resource Council. Marginal sightings, some dating from early twentieth century, used by Hall and Kelson to define range.

and its inclusion by the Endangered Species Office is inconsistent. The grizzly bear, a rare but well-known species, is listed as occurring throughout certain Aggregated Subareas in northeastern Montana. This again is an approximated or historical range and its use for such a well studied and located species is inappropriate. In spite of these inconsistencies, the Endangered Species Office data have been used without alteration in our work.

In interpreting the reality of a potential conflict between an energy facility and an endangered species, the reliability of distribution data must be a factor. A coal mine opening in a county harboring an endangered bivalve or fish carries a greater conflict potential than does a new mine in a county within the "range" of the eastern cougar. Workers doing further studies on conflicts between endangered species and development would do well to refine the distribution data, perhaps in conjunction with the Endangered Species Office or state and local experts.

VII. SPECIES INCLUDED FOR STUDY

As of December 31, 1977, the USFWS had listed 201 species as endangered or threatened whose ranges, in part or in whole, came under the jurisdiction of the United States. The list is not static: since the beginning of 1978 species have been added (e.g., the leopard darter), populations of the species from other geographic areas included (e.g., the bald eagle), the status of some populations has changed, and subspecies have been aggregated (e.g. the gray wolves). For this study we use the list as it existed at the beginning of the year and plan to update the report every year. In addition, the future inclusion of proposed species and of species listed by individual states will increase the usefulness of the study.

Of the 201 U.S. species, we excluded 31 species with ranges entirely outside the 50 states and 15 species with ranges definitely or possibly

Table 1
Summary of Status and County Range Mapping: U.S. Species as of 31 Dec 1977

	Endangered	Threatened	Range mapped	Range not defined	Outside 50 states	Total
Mammals	36	2	22	7	9	38
Birds	68	2	45	8	17	70
Reptiles*	9	3	8	0	4	12
Amphibians	5	2	6	0	1	7
Fish	30	9	39	0	0	39
Snails	0	0	0	0	0	0
Clams	23	0	23	0	0	23
Crustaceans	0	0	0	0	0	0
Insects	6	2	8	0	0	8
Plants	4	0	4	0	0	4
Total	181	20	155	15	31	201

* American alligator counted as threatened.

overlapping the 50 states but not defined by the USFWS.¹¹ The remaining 155 species are included in the range and conflict maps. The quality of the range data, as discussed above, varies from precise to more or less questionable, to unreliable.

Table 1 summarizes the status and location of the U.S. species by taxonomic group. Tables 2 through 9 list each species by common name, scientific name, and family; indicate its status; and note species excluded from the study because their range is outside the 50 states, they have an undefined range, or they may be extinct.

Table 2

Mammals (Status of Bear and Otter is Threatened; all others are Endangered)

Common name	Scientific name	Family
Bat, gray	<u>Myotis grisescens</u>	Vespertilionidae
Bat, hoary, Hawaiian	<u>Lasiurus cinereus semotus</u>	Vespertilionidae
Bat, Indiana	<u>Myotis sodalis</u>	Vespertilionidae
Bear, grizzly	<u>Ursus arctos horribilis</u>	Ursidae
Cougar, eastern	<u>Felis concolor cougar</u>	Felidae
Deer, key	<u>Odocoileus (Dama) virginianus</u>	Cervidae
	<u>clavium</u>	
Deer, white-tailed, Columbian	<u>Odocoileus virginianus leucurus</u>	Cervidae
Dugong*	<u>Dugong dugon</u>	Dugongidae
Ferret, black-footed	<u>Mustella nigripes</u>	Mustelidae
Fox, kit, northern**	<u>Vulpes velox hebes</u>	Canidae
Fox, kit, San Joaquin	<u>Vulpes macrotis mutica</u>	Canidae
Jaguar**	<u>Panthera onca</u>	Felidae
Jaguarundi, cacomitl**	<u>Felis yagouaroundi cacomitli</u>	Felidae
Jaguarundi, tolteca**	<u>Felis yagouaroundi tolteca</u>	Felidae
Manatee, West Indian (Florida)	<u>Trichechus manatus</u>	Trichechidae
Margay**	<u>Felis wiedii</u>	Felidae
Mouse, harvest, salt marsh	<u>Reithrodontomys raviventris</u>	Cricetidae
Ocelot**	<u>Felis pardalis</u>	Felidae
Otter, sea, southern	<u>Enhydra lutris nereis</u>	Mustelidae
Panther, Florida	<u>Felis concolor coryi</u>	Felidae
Prairie dog, Utah	<u>Cynomys parvidens</u>	Sciuridae
Pronghorn, Sonoran	<u>Antilocapra americana</u>	Antilocapridae
	<u>sonoriensis</u>	
Rat, kangaroo, Morro Bay	<u>Dipodomys heermanni morroensis</u>	Heteromyidae
Seal, monk, Hawaiian	<u>Monachus schauinslandi</u>	Phocidae
Squirrel, fox, Delmarva	<u>Sciurus niger cinereus</u>	Sciuridae
Peninsula		
Whale, blue*	<u>Balaenoptera musculus</u>	Balaenopteridae
Whale, bowhead*	<u>Balaena mysticetus</u>	Balaenidae
Whale, finback*	<u>Balaenoptera physalus</u>	Balaenopteridae
Whale, gray*	<u>Eschrichtius gibbosus</u>	Eschrichtidae
Whale, humpback*	<u>Megaptera novaeangliae</u>	Balaenopteridae
Whale, right*	<u>Eubalaena</u> spp.	Balaenidae
Whale, sei*	<u>Balaenoptera borealis</u>	Balaenopteridae
Whale, sperm*	<u>Physeter catodon</u>	Physeteridae
Wolf, gray (Texas)**	<u>Canis lupus monstrabilis</u>	Canidae
Wolf, Mexican	<u>Canis lupus baileyi</u>	Canidae
Wolf, northern Rocky Mountain	<u>Canis lupus irremotus</u>	Canidae
Wolf, red	<u>Canis rufus</u>	Canidae
Wolf, timber, eastern	<u>Canis lupus lycaon</u>	Canidae

*Range of species does not include the 50 states.

**Range of species not well defined or species possibly extinct. These species not included in county range maps.

Table 3

Birds (Status of Shearwater and Sage sparrow is Threatened; all others are Endangered)

Common name	Scientific name	Family
Akepa, Hawaii	<u>Loxops coccinea coccinea</u>	Drepanidae
Akepa, Maui	<u>Loxops coccinea ochracea</u>	Drepanidae
Akialoa, Kauai	<u>Hemignathus procerus</u>	Drepanidae
Akiapolaau	<u>Hemignathus wilsoni</u>	Drepanidae
Albatross, short-tailed**	<u>Diomedea albatrus</u>	Diomedidae
Blackbird, yellow-shouldered**	<u>Agelaius xanthomus</u>	Icteridae
Bobwhite, masked (quail)	<u>Colinus virginianus ridgwayi</u>	Phasianidae
Condor, California	<u>Gymnogyps californianus</u>	Cathartidae
Coot, Hawaiian	<u>Fulica americana alai</u>	Rallidae
Crane, sandhill, Mississippi	<u>Grus canadensis pulla</u>	Gruidae
Crane, whooping	<u>Grus americana</u>	Gruidae
Creeper, Hawaii	<u>Loxops maculata mana</u>	Drepanidae
Creeper, Molokai (kakawahie)	<u>Loxops maculata flammea</u>	Drepanidae
Creeper, Oahu (alauwahio)	<u>Loxops maculata maculata</u>	Drepanidae
Crow, Hawaiian (alala)	<u>Corvus tropicus</u>	Corvidae
Curlew, eskimo*	<u>Numenius borealis</u>	Scolopacidae
Dove, ground, Palau**	<u>Gallicolumba canifrons</u>	Columbidae
Duck (teal), Laysan**	<u>Anas laysanensis</u>	Anatidae
Duck, Hawaiian (koloa)	<u>Anas wyvilliana</u>	Anatidae
Duck, Mexican	<u>Anas diazi</u>	Anatidae
Eagle, bald, southern*	<u>Haliaeetus leucocephalus</u> <u>leucocephalus</u>	Accipitridae
Falcon, peregrine, American*	<u>Falco peregrinus anatum</u>	Falconidae
Falcon, peregrine, arctic*	<u>Falco peregrinus tundrius</u>	Falconidae
Finch, Laysan and Nihoa**	<u>Psittirostra cantans</u>	Drepanidae
Flycatcher, fantail, Palau**	<u>Rhipidura lepida</u>	Muscicapidae
Flycatcher, monarch, Tinian Island**	<u>Monarcha takatsukasae</u>	Muscicapidae
Gallinule, Hawaiian	<u>Gallinula chloropus</u> <u>sandvicensis</u>	Rallidae
Goose, Canada, Aleutian	<u>Branta canadensis leucopareia</u>	Anatidae
Goose, Hawaiian (nene)	<u>Branta sandvicensis</u>	Anatidae
Hawk, Hawaiian (io)	<u>Buteo solitarius</u>	Accipitridae
Honeycreeper, crested (akohekohe)	<u>Palmeria dolei</u>	Drepanidae
Kite, Florida Everglade (snail hawk)	<u>Rostrhamus sociabilis plumbeus</u>	Accipitridae
Mallard, Marianas**	<u>Anas oustaleti</u>	Anatidae
Megapode, La Perouse's**	<u>Megapodius laperouse</u>	Megapodiidae
Millerbird, Nihoa**	<u>Acrocephalus kingi</u>	Sylviidae
Nukupuu, Maui and Kauai	<u>Hemignathus lucidus</u>	Drepanidae

Table 3
(Continued)

Common name	Scientific name	Family
Oo, Kauai (oo aa) (honeyeater)	<u>Moho braccatus</u>	Meliphagidae
Ou	<u>Psittirostra psittacea</u>	Drepanididae
Owl, Palau**	<u>Otus podarginus</u>	Strigidae
Palila	<u>Psittirostra bailleui</u>	Drepanididae
Parrot (amazon), Puerto Rican**	<u>Amazona vittata</u>	Psittacidae
Parrot, thick-billed	<u>Rhynchopsitta pachyrhyncha</u>	Psittacidae
Parrotbill, Maui	<u>Pseudonestor xanthophrys</u>	Drepanididae
Pelican, brown*	<u>Pelecanus occidentalis</u>	Pelecanidae
Petrel, Hawaiian, dark-rumped	<u>Pterodroma phaeopygia sandwichensis</u>	Procellariidae
Pigeon, plain, Puerto Rican**	<u>Columba inornata wetmorei</u>	Columbidae
Poo-uli	<u>Melamprosops phaeosoma</u>	Drepanididae
Prairie chicken, greater, Attwater's	<u>Tympanuchus cupido attwateri</u>	Tetraonidae
Rail, clapper, California	<u>Rallus longirostris obsoletus</u>	Rallidae
Rail, clapper, light-footed	<u>Rallus longirostris levipes</u>	Rallidae
Rail, clapper, Yuma	<u>Rallus longirostris yumanensis</u>	Rallidae
Shearwater, Manx, Newell's	<u>Puffinus puffinus newelli</u>	Procellariidae
Shrike, loggerhead, San Clemente	<u>Lanius ludovicianus mearnsi</u>	Laniidae
Sparrow, Cape Sable	<u>Ammospiza maritima mirabilis</u>	Fringillidae
Sparrow, sage, San Clemente	<u>Amphispiza belli clementae</u>	Fringillidae
Sparrow, seaside, dusky	<u>Ammospiza maritima nigrescens</u>	Fringillidae
Sparrow, song, Santa Barbara	<u>Melospiza melodia graminea</u>	Fringillidae
Starling, mountain, Ponape**	<u>Aplonis pelzelnii</u>	Sturnidae
Stilt, Hawaiian (black-winged)	<u>Himantopus himantopus knudseni</u>	Recurvirostridae
Tern, least, California	<u>Sterna albifrons browni</u>	Laridae
Thrush, Kauai, large	<u>Phaeornis obscurus myadestina</u>	Turdidae
Thrush, Kauai, small	<u>Phaeornis palmeri</u>	Turdidae
Thrush, Molokai	<u>Phaeornis obscurus ruthae</u>	Turdidae
Warbler, (wood), Bachman's*	<u>Vermivora bachmanii</u>	Parulidae
Warbler, (wood), Kirtland's	<u>Dendroica kirtlandii</u>	Parulidae
Warbler, reed**	<u>Acrocephalus luscinia</u>	Sylviidae
Whip-poor-will, Puerto Rican**	<u>Caprimulgus noctitherus</u>	Caprimulgidae
White-eye, great, Ponape**	<u>Rukia sanfordi</u>	Zosteropidae
Woodpecker, ivory-billed*	<u>Campephilus principalis</u>	Picidae
Woodpecker, red-cockaded*	<u>Picoides (Dendrocopos) borealis</u>	Picidae

*Range of species not well defined or species possibly extinct. These species not included in county range maps or conflict estimates.

**Range of species does not include the 50 states.

Table 4

Reptiles

Common name (status)	Scientific name	Family
Alligator, American (E,T)	<u>Alligator mississippiensis</u>	Alligatoridae
Anole, giant* (E)	<u>Anolis roosevelti</u>	Iguanidae
Boa, Puerto Rican* (E)	<u>Epicrates inornatus</u>	Boidae
Crocodile, American (E)	<u>Crocodylus acutus</u>	Crocodylidae
Lizard, ground, St. Croix* (E)	<u>Amciva polops</u>	Teiidae
Lizard, leopard, blunt-nosed (E)	<u>Crotaphytus silus</u>	Iguanidae
Lizard, night, island (T)	<u>Klauberina riversiania</u>	Xantusiidae
Snake, garter, San Francisco (E)	<u>Thamnophis sirtalis tetrataenia</u>	Colubridae
Turtle, sea, hawksbill* (E)	<u>Eretmochelys imbricata</u>	Cheloniidae
Turtle, sea, leatherback (E)	<u>Dermochelys coriacea</u>	Dermochelyidae
Turtle, sea, Ridley, Atlantic (E)	<u>Lepidochelys kempii</u>	Cheloniidae
Watersnake, salt marsh, Atlantic (T)	<u>Nerodia (Natrix) fasciata taeniata</u>	Colubridae

*Range of species does not include the 50 states.

Table 5

Amphibians (Red Hills salamander & Coqui Threatened; others Endangered)

Common name	Scientific name	Family
Coqui, golden*	<u>Eleutherodactylus jasperi</u>	Leptodactylidae
Salamander, blind, Texas	<u>Typhlomolge rathbuni</u>	Plethodontidae
Salamander, desert slender	<u>Batrachoseps aridus</u>	Plethodontidae
Salamander, long-toed, Santa Cruz	<u>Ambystoma macrodactylum croceum</u>	Ambystomatidae
Salamander, Red Hills	<u>Phaeognathus hubrichti</u>	Plethodontidae
Toad, Houston	<u>Bufo houstonensis</u>	Bufonidae
Treefrog, Pine Barrens	<u>Hyla andersonii</u>	Hylidae

*Range of species does not include the 50 states.

Table 6

Fish

Common name (status)	Scientific name	Family
Bonytail, Pahranagat (E)	<u>Cila robusta jordoni</u>	Cyprinidae
Cavefish, Alabama (T)	<u>Speoplatyrhinus poulsoni</u>	Amblyopsidae
Chub, humpback (E)	<u>Cila cypha</u>	Cyprinidae
Chub, Mohave (E)	<u>Gila (Siphateles) mohavensis</u>	Cyprinidae
Chub, slender (T)	<u>Hybopsis cahni</u>	Cyprinidae
Chub, spotfin (T)	<u>Hybopsis monacha</u>	Cyprinidae
Cisco, longjaw (E)	<u>Coregonus alpenae</u>	Salmonidae
Cui-ui (E)	<u>Chasmistes cujus</u>	Catostomidae
Dace, Moapa (E)	<u>Moapa coriacea</u>	Cyprinidae
Dace, warm springs, Kendall (E)	<u>Rhinichthys osculus thermalis</u>	Cyprinidae
Darter, bayou (T)	<u>Etheostoma rubrum</u>	Percidae
Darter, fountain (E)	<u>Etheostoma fonticola</u>	Percidae
Darter, Maryland (E)	<u>Etheostoma sellare</u>	Percidae
Darter, Okaloosa (E)	<u>Etheostoma okaloosae</u>	Percidae
Darter, slackwater (T)	<u>Etheostoma boschungi</u>	Percidae
Darter, snail (E)	<u>Percina tanasi</u>	Percidae
Darter, watercress (E)	<u>Etheostoma nuchale</u>	Percidae
Gambusia, Big Bend (E)	<u>Gambusia gaigei</u>	Poeciliidae
Gambusia, Clear Creek (E)	<u>Gambusia heterochir</u>	Poeciliidae
Gambusia, Pecos (E)	<u>Gambusia nobilis</u>	Poeciliidae
Killifish, Pahrump (E)	<u>Empetrichthys latos</u>	Cyprinodontidae
Madtom, Scioto (E)	<u>Noturus trautmani</u>	Ictaluridae
Madtom, yellowfin (T)	<u>Noturus flavipinnis</u>	Ictaluridae
Pike, blue (E)	<u>Stizostedion vitreum glaucum</u>	Percidae
Pupfish, Comanche Springs (E)	<u>Cyprinodon elegans</u>	Cyprinodontidae
Pupfish, Devil's Hole (E)	<u>Cyprinodon diabolis</u>	Cyprinodontidae
Pupfish, Owens River (E)	<u>Cyprinodon radiosus</u>	Cyprinodontidae
Pupfish, Tecopa (E)	<u>Cyprinodon nevadensis calidae</u>	Cyprinodontidae
Pupfish, warm springs (E)	<u>Cyprinodon nevadensis pectoralis</u>	Cyprinodontidae
Squawfish, Colorado River (E)	<u>Ptychocheilus lucius</u>	Cyprinidae
Stickleback, threespine, unarmored (E)	<u>Gasterosteus aculeatus williamsoni</u>	Gasterosteidae
Sturgeon, shortnose (E)	<u>Acipenser brevirostrum</u>	Acipenseridae
Topminnow, Gila (E)	<u>Poeciliopsis occidentalis</u>	Poeciliidae
Trout, Arizona (T)	<u>Salmo apache</u>	Salmonidae
Trout, cutthroat, greenback (E)	<u>Salmo clarki stomias</u>	Salmonidae
Trout, cutthroat, Lahontan (T)	<u>Salmo clarki henshawi</u>	Salmonidae
Trout, cutthroat, Paiute (T)	<u>Salmo clarki seleniris</u>	Salmonidae
Trout, Gila (E)	<u>Salmo gilae</u>	Salmonidae
Woundfin (E)	<u>Plagopterus argentissimus</u>	Cyprinidae

Table 7
Clams (All are of family Unionidae; all are Endangered)

Common name	Scientific name
Mussel, pearly, bean, Cumberland	<u>Villosa (Micromya) trabilis</u>
Mussel, pearly, birdwing	<u>Conradilla caelata</u>
Mussel, pearly, Curtis	<u>Epioblasma (Dysnomia) florentina curtisi</u>
Mussel, pearly, dromedary	<u>Dromus dromas</u>
Mussel, pearly, fat pocketbook	<u>Potamilus (Proptera) capax</u>
Mussel, pearly, green-blossom	<u>Epioblasma (Dysnomia) torulosa gubernaculum</u>
Mussel, pearly, Higgins' eye	<u>Lampsilis higginsi</u>
Mussel, pearly, lamp, Alabama	<u>Lampsilis virescens</u>
Mussel, pearly, monkeyface, Appalachian	<u>Quadrula sparsa</u>
Mussel, pearly, monkeyface, Cumberland	<u>Quadrula intermedia</u>
Mussel, pearly, pale lilliput	<u>Toxolasma (Carunculina) cylindrella</u>
Mussel, pearly, pigtoe, fine-rayed	<u>Fusconaia cuneolus</u>
Mussel, pearly, pigtoe, rough	<u>Pleurobema plenum</u>
Mussel, pearly, pigtoe, shiny	<u>Fusconaia edgariana</u>
Mussel, pearly, pink mucket	<u>Lampsilis orbiculata orbiculata</u>
Mussel, pearly, Sampson's	<u>Epioblasma (Dysnomia) sampsoni</u>
Mussel, pearly, tubercled-blossom	<u>Epioblasma (Dysnomia) torulosa torulosa</u>
Mussel, pearly, turgid-blossom	<u>Epioblasma (Dysnomia) turgidula</u>
Mussel, pearly, white cat's paw	<u>Epioblasma sulcata delicata + perobliqua</u>
Mussel, pearly, white warty-back	<u>Plethobasis cicatricosus</u>
Mussel, pearly, yellow-blossom	<u>Epioblasma (Dysnomia) florentina florentina</u>
Pimpleback, orange-footed	<u>Plethobasis cooperianus</u>
Riffle shell, tan	<u>Epioblasma (Dysnomia) walkeri</u>

Table 8
Insects (Swallowtail butterflies are Threatened; others are Endangered)

Common name	Scientific name	Family
Butterfly, blue, El Segundo	<u>Shijimiaeoides battoides allynii</u>	Lycaenidae
Butterfly, blue, lotis	<u>Lycaeides argyrogynon lotis</u>	Lycaenidae
Butterfly, blue, mission	<u>Icaricia icarioides missionensis</u>	Lycaenidae
Butterfly, blue, Smith's	<u>Shijimiaeoides enoptes smithi</u>	Lycaenidae
Butterfly, elfin, San Bruno	<u>Callophrys mossii bayensis</u>	Lycaenidae
Butterfly, metalmark, Lange's	<u>Apodemia mormo langei</u>	Riodinidae
Butterfly, swallowtail, Bahama	<u>Papilio andraemon bonhotei</u>	Papilionidae
Butterfly, swallowtail, Schaus	<u>Papilio aristodemusponceanus</u>	Papilionidae

Table 9
Plants (All are Endangered)

Common name	Scientific name	Family
Broom, San Clemente	<u>Lotus scoparius traskiae</u>	Fabaceae
Bushmallow, San Clemente Island	<u>Malacothamnus clementinus</u>	Malvaceae
Indian paintbrush, San Clemente Island	<u>Castilleja grisea</u>	Scrophulariaceae
Larkspur, San Clemente Island	<u>Delphinium kinkense</u>	Ranunculaceae

VII. ENERGY-RELATED THREATS TO ENDANGERED SPECIES

Our objective was to determine how the ranges of endangered species overlap with counties bearing one or more of the following characteristics.

1. Planned electric generating stations, including hydroelectric.¹³
2. Planned sites for coal gasification plants.^{14,15}
3. Coal production in excess of 1 million tons in 1972.¹⁶
4. Rapidly increasing coal production, defined as more than 1 million tons production per year to be added between 1975 and 1980.^{15,17}
5. Population increase greater than 50% between 1960 and 1970.¹⁸
6. Sites of new or expanding oil refineries or natural gas processing plants.^{14,15}

IX. CONFLICT INDEX

A single index was worked out which shows for each county, the likelihood of conflicts between endangered species and the energy related characteristics listed above:

$$I = S \cdot A \cdot N$$

where,

S is the number of endangered species in the county,

A indicates the presence of from 1 to 6 of the characteristics listed above, and

N is a factor having integer values from 1 to 5 that measures to what degree a county has already been developed, i.e., how far it has departed from a natural state.

The factor N adds realism to the measure of conflict between energy plans and endangered species because (1) an already heavily populated, industrialized, and polluted county stands a lower chance of actually harboring endangered species than a pristine county even though it may be a potential habitat,

and (2) an increment of development in an already developed county should have less impact than the first encroachment in a pristine county.

Six factors were used to measure the level of development of a county (i.e., its degree of unnaturalness):

1. Value added in manufacturing, a measure of industrialization.
2. Value of mineral shipments, a measure of disturbance due to mining.
3. Value of farm products sold, a measure of another form of preemption of land, habitat destruction, and water pollution.
4. Total retail sales, a measure of business activity.
5. Total fuel consumed, a measure of total human activity and air pollution.
6. Population density.

For each of the six values, all counties were ranked and given a score of 1 to 10 according to whether they were in the first, second, . . . , tenth decile of all counties for that particular parameter. To obtain an overall naturalness index for a county, its six scores were summed. Thus, the highest possible score, 60, would mean that a county was in the highest decile (top 10%) of all counties in each of the six categories. Because a scale of 6 to 60 is too broad and implies more detail than is justifiable, the scale was compressed to 1 to 5 with 5 indicating the most natural conditions and 1 the most heavily developed. The naturalness factor is given in Table 10 for the most critical of the endangered species counties.

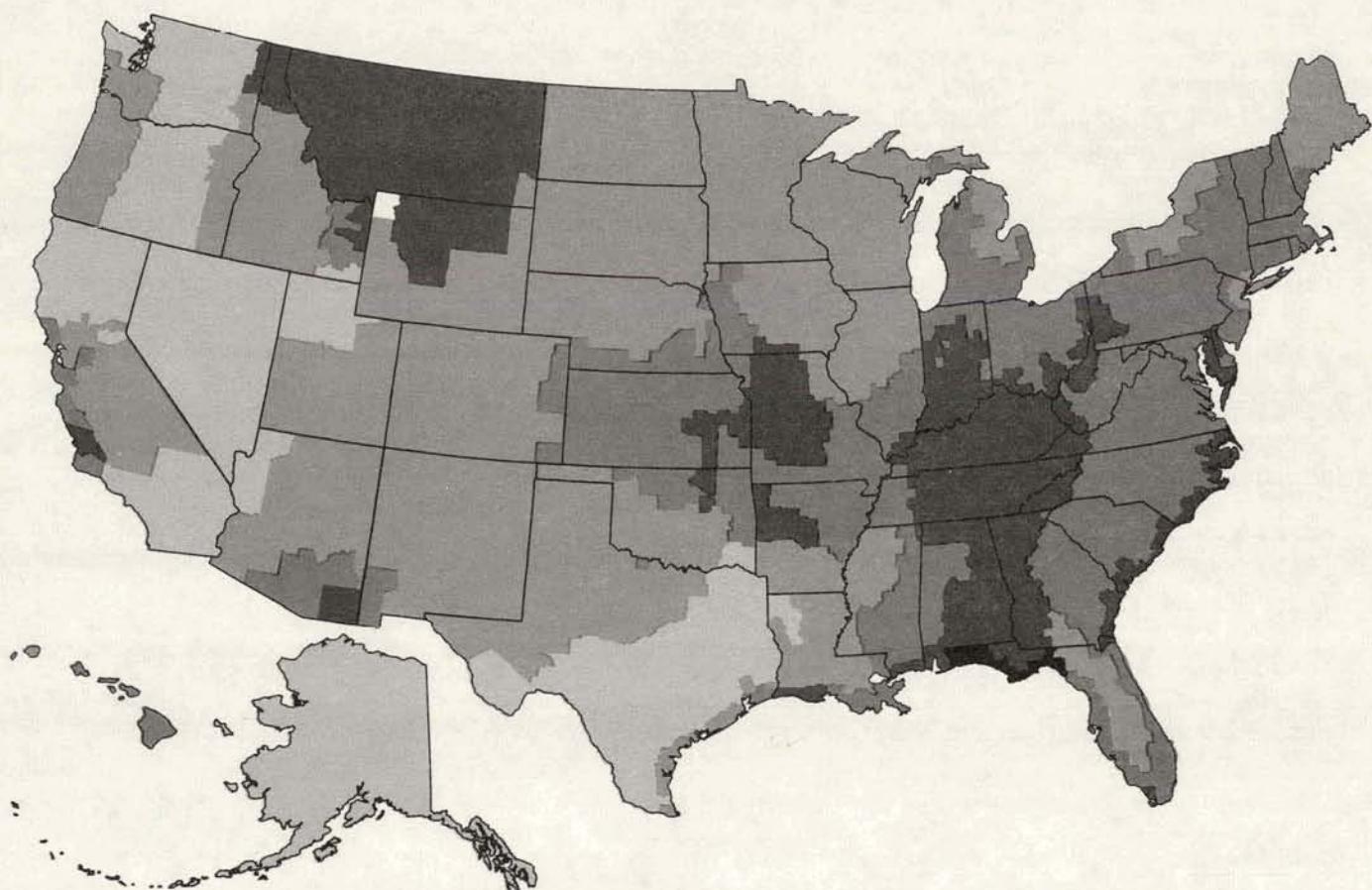
To illustrate the calculation of the conflict index, the following data on Suffolk County, New York, can be used. Two endangered species, the shortnose sturgeon (Acipenser brevirostrum) and the Indiana bat (Myotis sodalis) may inhabit this eastern Long Island county. They are threatened by two of the developments being considered, planned electric power plants and a rapidly increasing population. However, because Suffolk is among the most densely populated

industrialized, and polluted counties, and is in the top 10% in farm and retail sales and only slightly lower in mineral industries, its index of naturalness is 59 out 60, or class 1, the lowest category. Therefore its conflict index is

$$I = 2 \cdot 2 \cdot 1 = 4 .$$

X. RESULTS

Maps


Maps were prepared (with the provisos of Section VII) showing the ranges of endangered species included in this study, by taxonomic groups (Maps 1 to 7). Map 8 indicates roughly for each county the amount of human disturbance, or conversely, the degree of natural (factor N described above). The most heavily developed counties (index 1) occur in a belt across the northern midwest through southern New England, and the least developed (index 5) in the high plains and intermontane west. A map (Map 9) showing total species times naturalness (two of the three factors in the conflict index, $I = S \cdot A \cdot N$) may be useful to those concerned with endangered species distributions (as modified by the naturalness index) in connection with development plans not considered in this report.

Conflicts

The conflict index described above was used to prepare Table 10, which shows the rank order of the counties most critical (index ≥ 10) with regard to endangered species versus energy development. The most critical area is the southern Appalachians (including western Kentucky), where 24 of the top 37 conflict counties are found. The main reason for this is the presence of many endangered species; this region is the highest ranking not only in conflict but also in richness of endangered species. Most of the species richness is due to the many kinds of endangered freshwater bivalves. Other areas of the country do not have such a variety of endangered species and therefore do not rate as

MAP 1

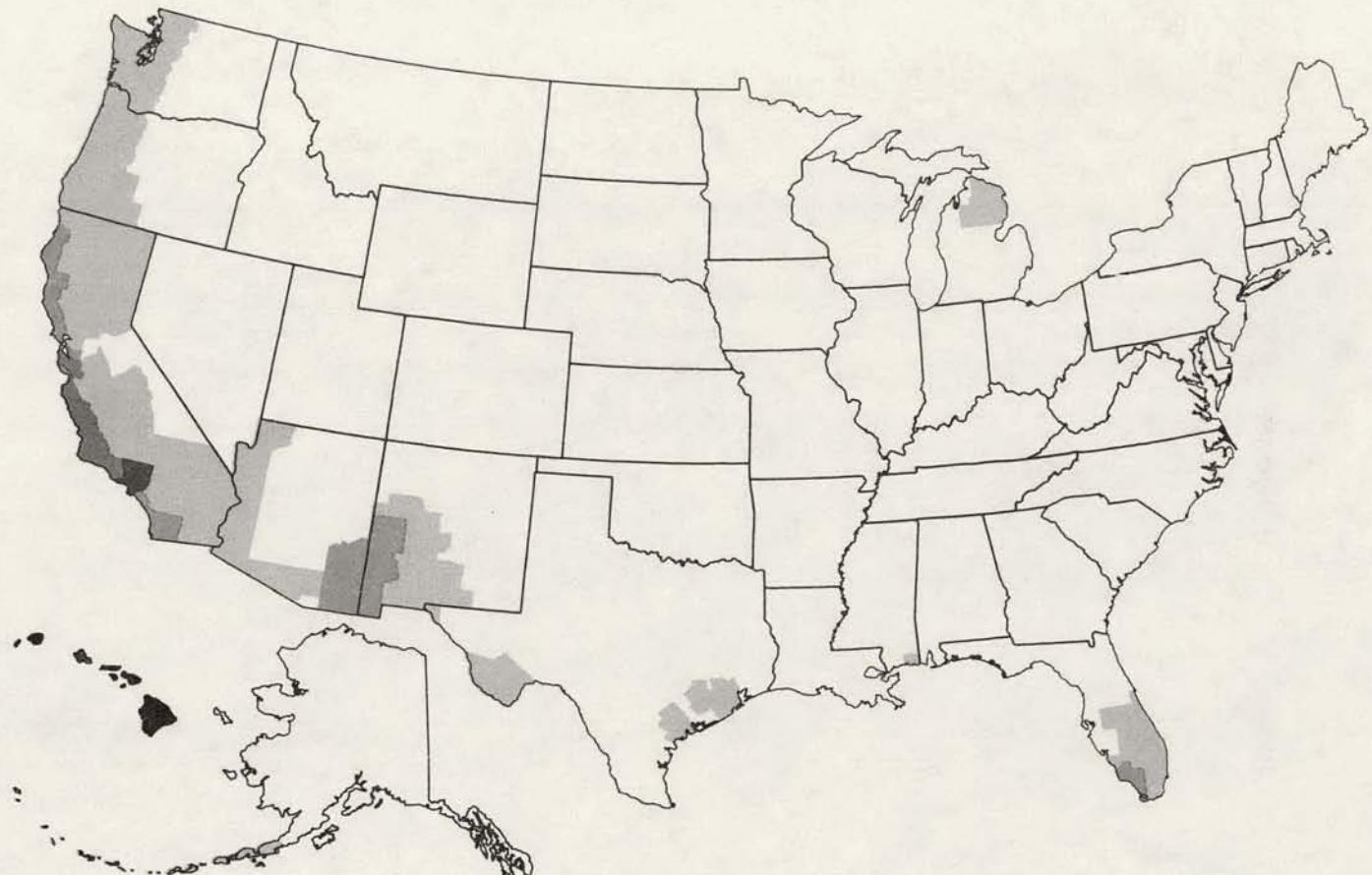
ENDANGERED MAMMALS BY COUNTY

NUMBER OF SPECIES

0

1

2


3

4

MAP 2

ENDANGERED BIRDS BY COUNTY

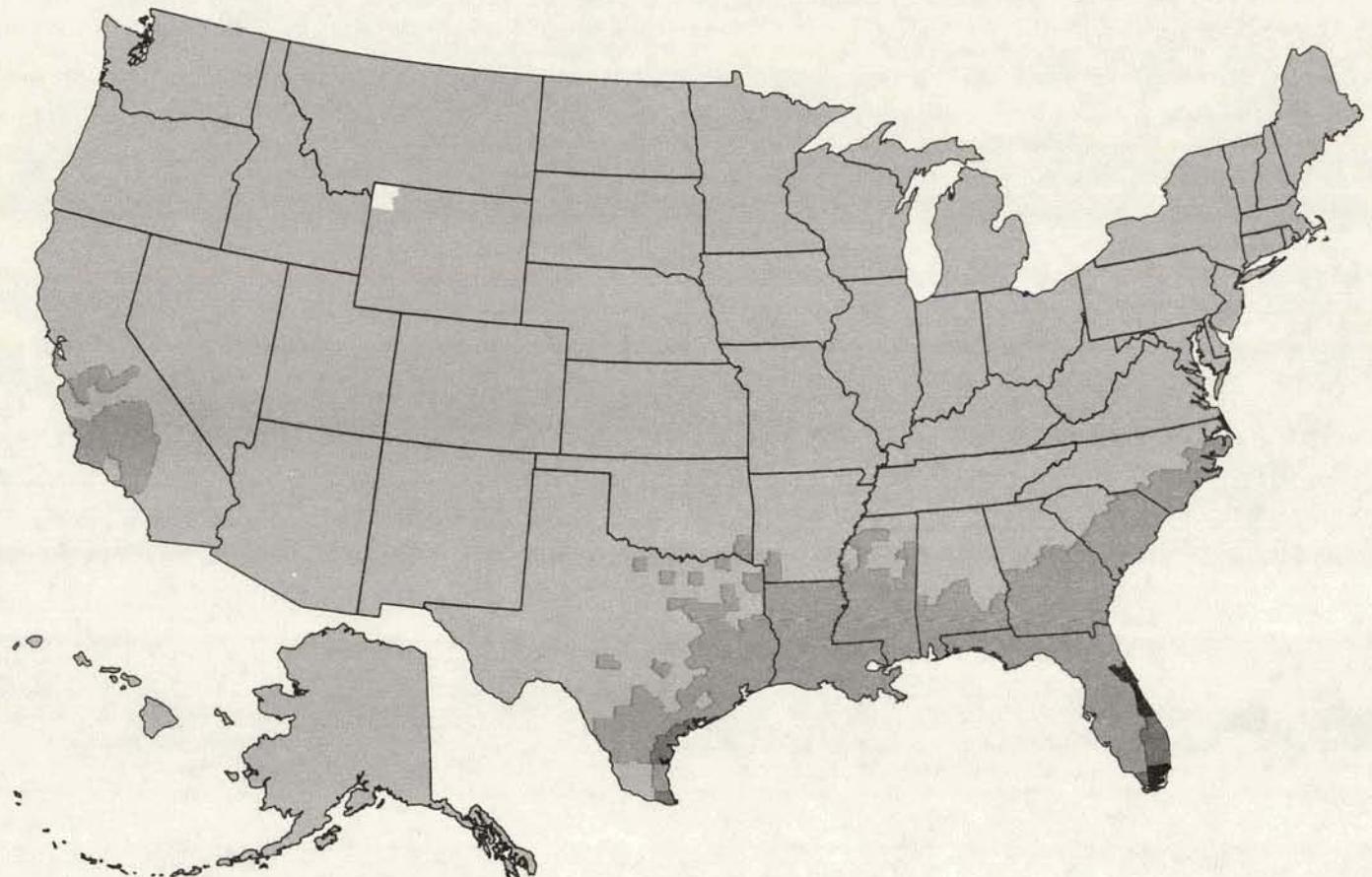
NUMBER OF SPECIES

0

1

2

3


4-6

7-13

MAP 3

ENDANGERED REPTILES BY COUNTY

NUMBER OF SPECIES

0

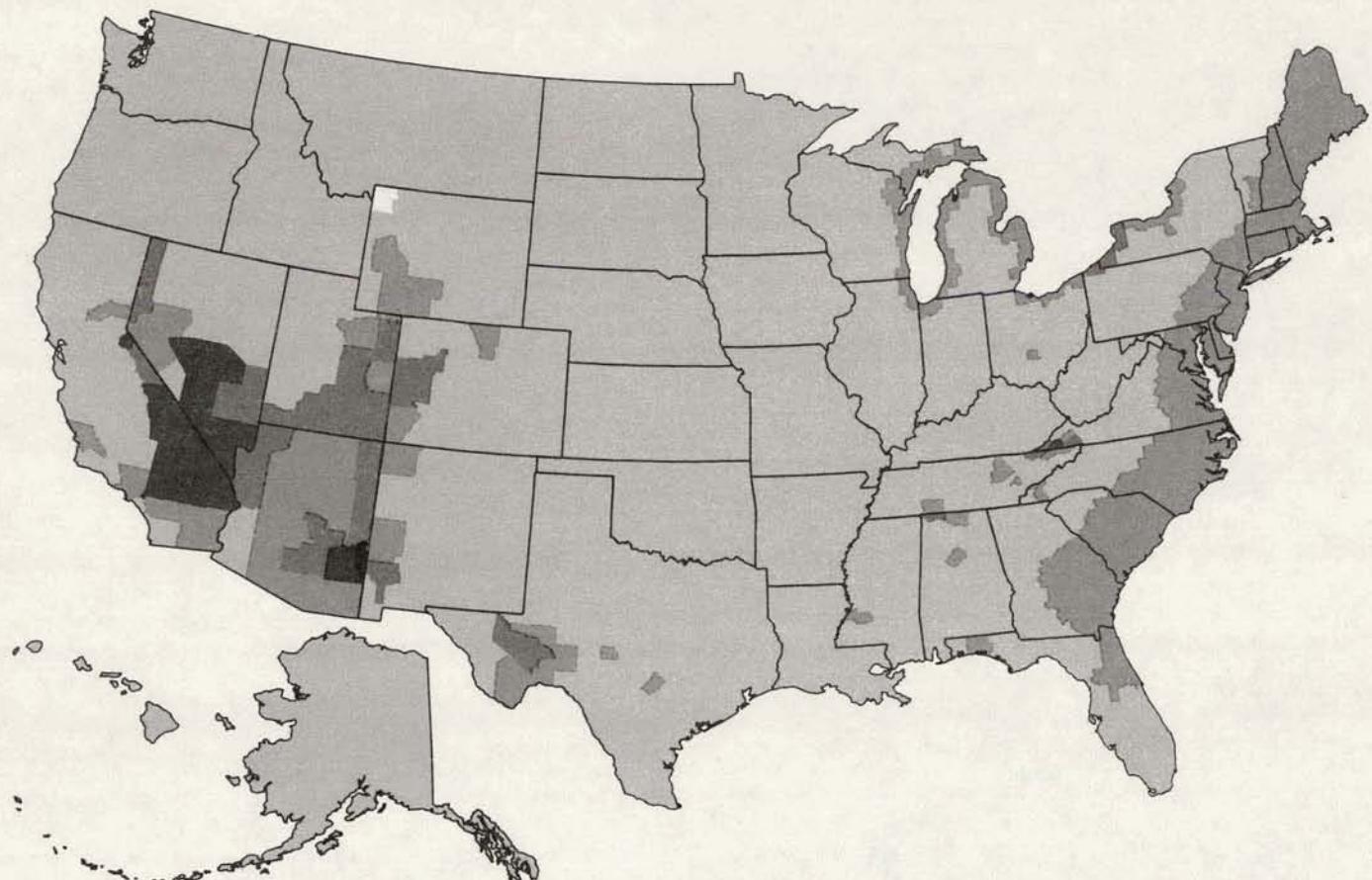
1

2

3

MAP 4

ENDANGERED AMPHIBIANS BY COUNTY



NUMBER OF SPECIES

MAP 5

ENDANGERED FISHES BY COUNTY

NUMBER OF SPECIES

0

1

2

3

4

MAP 6

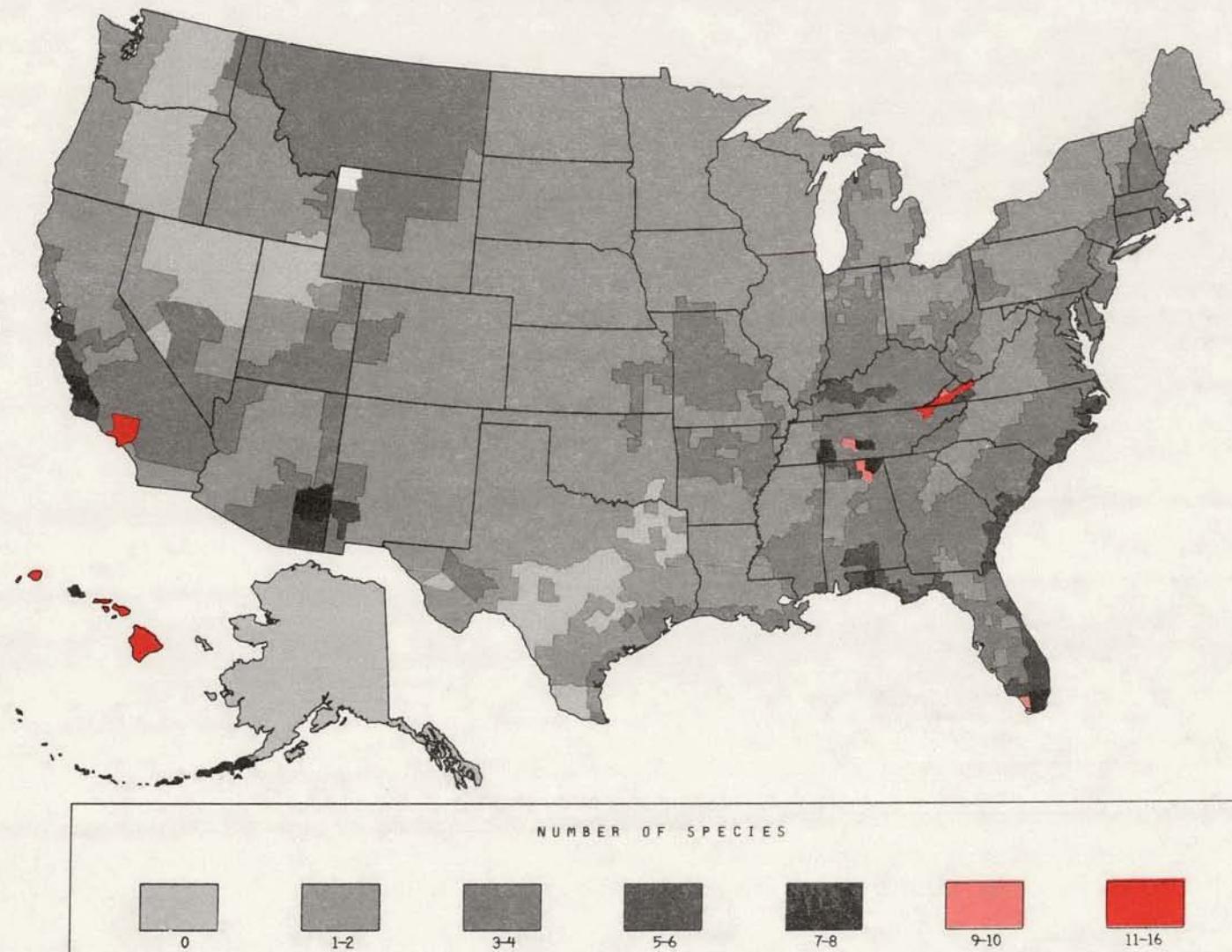
ENDANGERED CLAMS BY COUNTY

NUMBER OF SPECIES

0

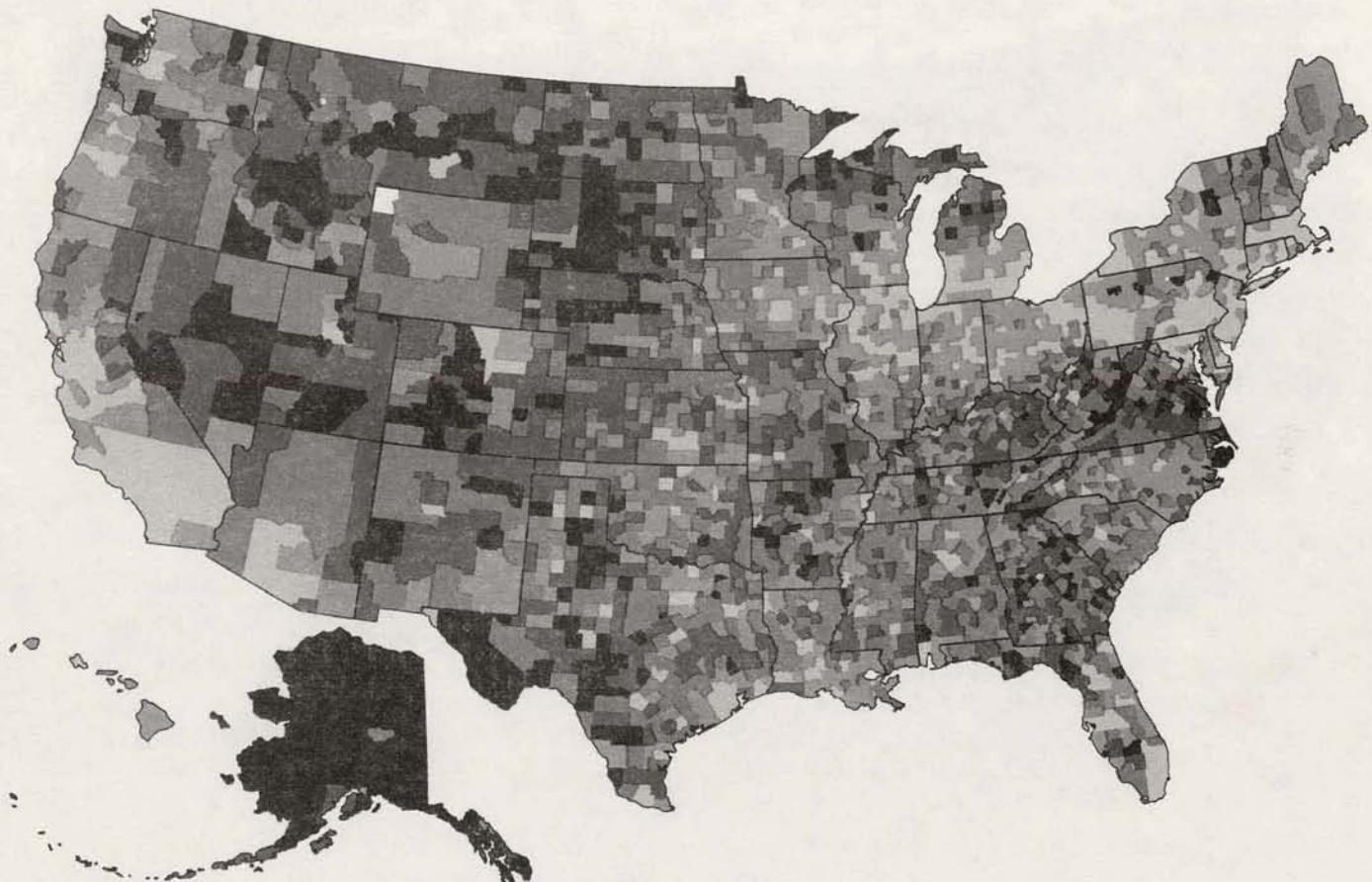
1

2


3-4

5-7

8-10


MAP 7

TOTAL ENDANGERED SPECIES BY COUNTY

MAP 8

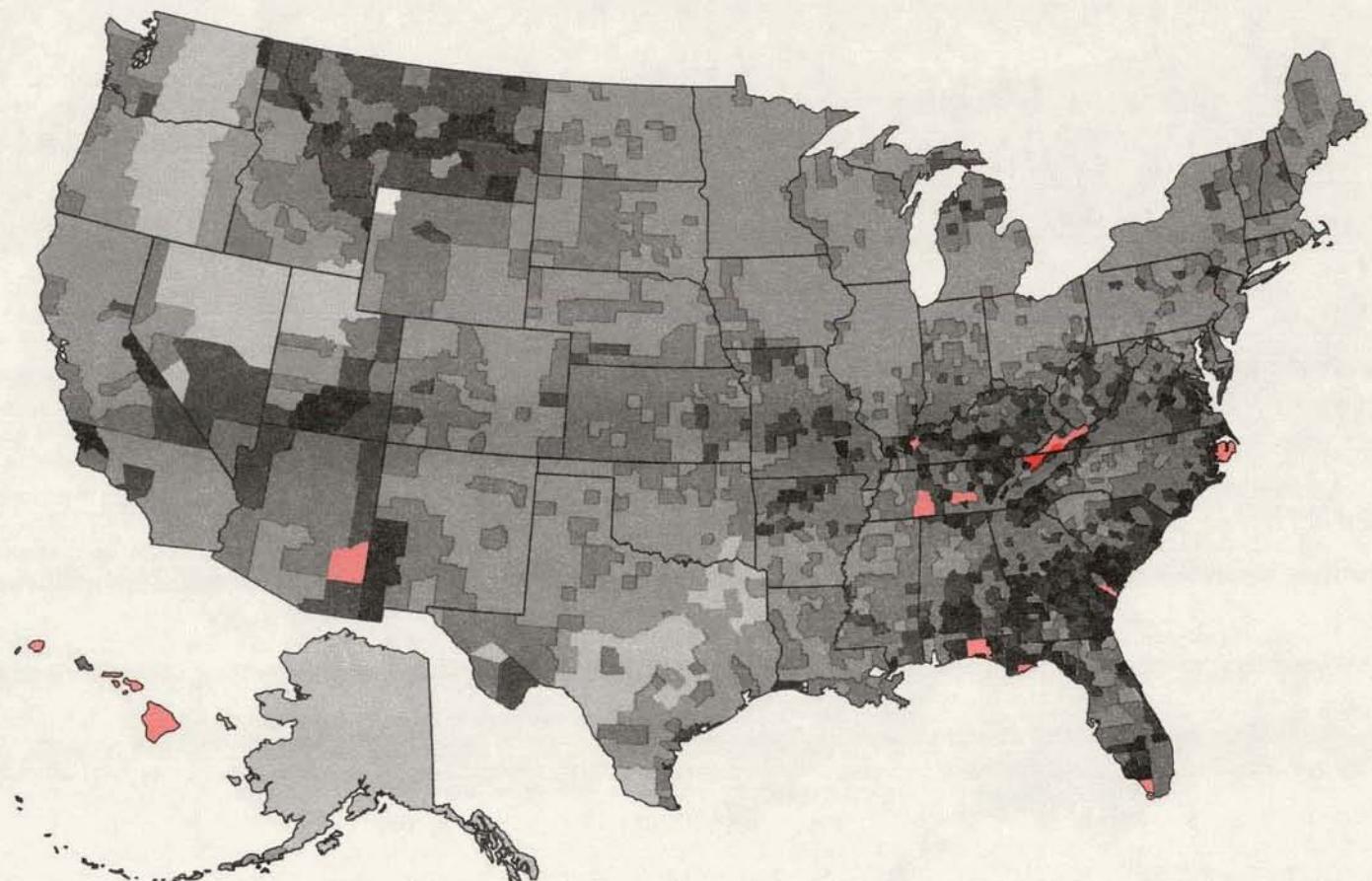
HABITAT PREEMPTION BY MAN'S ACTIVITIES

INDEX OF NATURALNESS

1

2

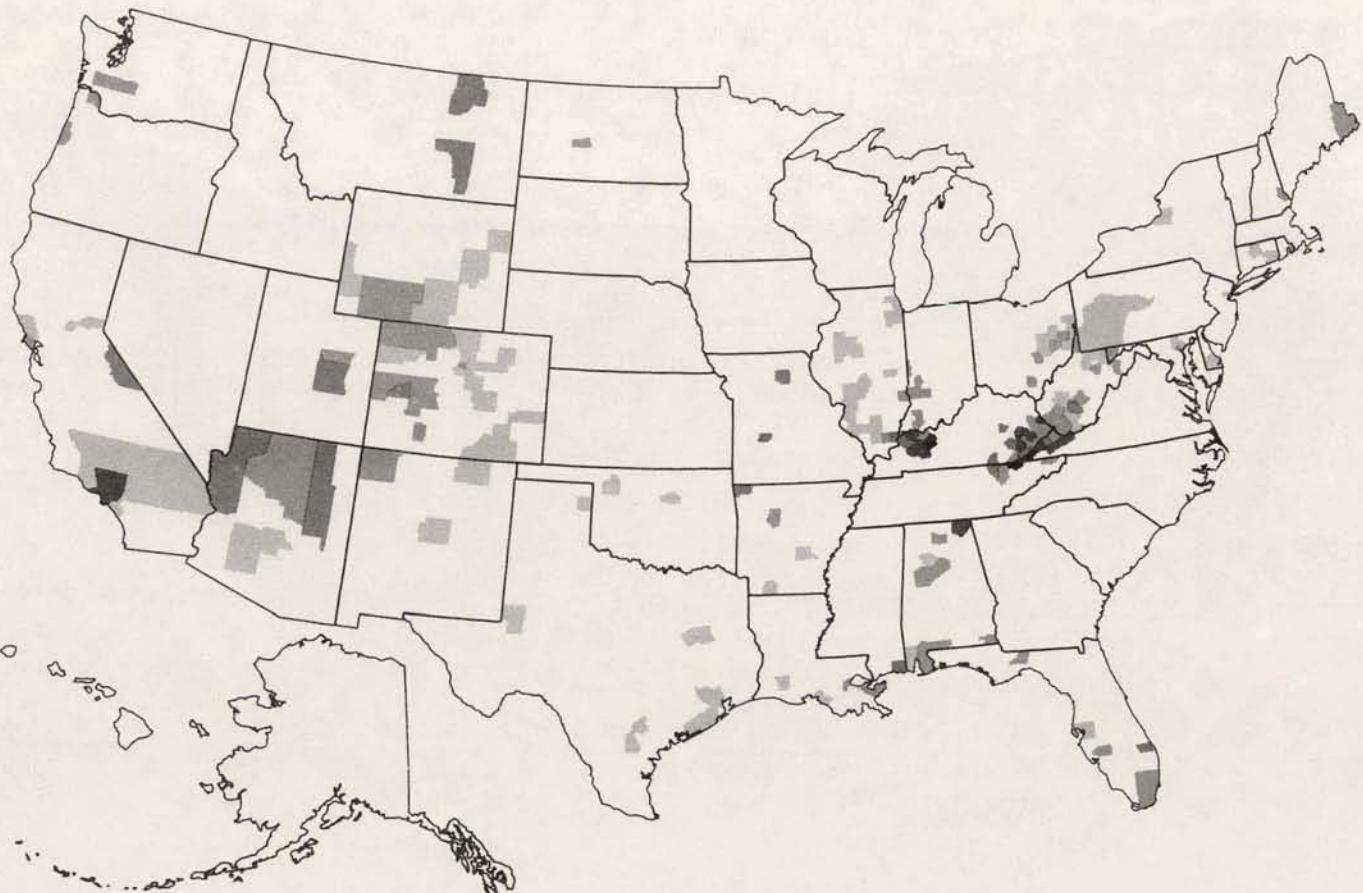
3


4

5

MAP 9

TOTAL SPECIES TIMES NATURALNESS



SPECIES X NATURALNESS

MAP 10

ENDANGERED SPECIES - ENERGY DEVELOPMENT CONFLICTS

CONFLICT INDEX

0

1-4

5-9

10-19

20-29

30-42

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

high in conflict potential. Hawaii has many endangered species, but the threats to their continued existence, although real, are not among the particular developments being considered here. The southern Appalachians are known to be a coal mining area, and planned future expansion of coal output is the major threat to the endangered species there. The inclusion of coal mining as one of the technologies considered in this work resulted in Appalachia's dominating the conflict table.

Some of the counties listed in Table 10 as having high conflict indices actually deserve lower rankings than those obtained by our procedure (these are indicated by asterisks). These counties are thought to be overrated because of the unlikelihood of their actually harboring the endangered species associated with them. For example, the eastern cougar, Indiana bat, and gray bat have such uncertain ranges and are so rare that they are unlikely to cause strong conflicts with coal mining activities in, say, Martin County, Kentucky. Since such conflicts are, nevertheless, possible, especially considering the undeveloped nature of these counties, the listings have been retained in the table. While the likelihood of conflicts arising in counties with $I < 10$ is generally low, a number of such counties may have higher potential than their index shows due to the certain presence in them of sensitive species and destructive developments. These selected counties have also been included in Table 10.

A more complete picture of potential conflict may be gotten from Map 10 which shows how the index varies over the entire country.

Because the data on endangered species ranges can be used to assess potential conflicts with energy technologies or threats other than those considered here, a listing of all counties with their resident endangered species is given in Appendix A. This shows endangered species concentrations apart from estimates of naturalness and conflict. Total endangered species for all counties may be read from Map 7.

Table 10

County & State	Confl. index	Natural-ness	Endangered species involved (see key)	Developments (see key)
Claiborne TN	42	3	1, 2, 3, 20, 21, 22, 23, 27, 31, 32, 33, 34, 38, 39	CA
Lee VA	33	3	1, 2, 3, 20, 22, 23, 31, 32, 34, 38, 39	CA
Ohio KY	30	3	1, 2, 3, 18, 27	CP, CA
Russell VA	28	2	1, 2, 3, 20, 21, 22, 23, 28, 31, 32, 33, 34, 39, 41	CA
Jackson AL	28	2	2, 3, 5, 22, 23, 24, 28	CA
Wise VA	27	3	1, 2, 3, 20, 22, 23, 31, 33, 34	CA
Tazewell VA	24	2	1, 2, 3, 21, 22, 23, 27, 31, 32, 33, 34	CA
Breathit KY	24	4	1, 2, 3	CP, CA
Martin KY	24	4	1, 2, 3	CP, CA
Leslie KY	24	4	1, 2, 3	CP, CA
Knott KY	24	4	1, 2, 3	CP, CA
McLean KY	20	4	1, 2, 3, 18, 27	CA
Muhlenburg KY	20	2	1, 2, 3, 18, 27	CP, CA
Hopkins KY	20	2	1, 2, 3, 18, 27	CP, CA
Henderson KY	20	2	1, 2, 3, 18, 27	CP, GS
Harlan KY	18	3	1, 2, 3	CP, CA
Navajo AZ	18	3	10, 12	CP, CA, PP
McCreary KY	16	4	1, 2, 3, 29	CA
Webster KY	15	3	1, 2, 3, 18, 27	CA
Martin FL	15	3	4, 5, 6, 37, 40	PP
Mono CA	15	5	15, 16, 17	MI
Estill KY	12	4	1, 2, 3	CP
Clay KY	12	4	1, 2, 3	CP
Gallatin IL	12	3	1, 2, 3, 19	CA
Union KY	12	3	1, 2, 3, 19	CA
Scott TN	12	4	1, 2, 3	CA
Dickenson VA	12	4	1, 2, 3	CA
Hickory MO	12	4	2, 3, 10	CA
Macon MO	12	4	2, 3, 10	CA
Valley MT	12	4	8, 9, 10	GS
Rosebud MT	12	4	8, 9, 10	CA
Fayette WV	12	3	1, 3, 18, 19	CA
Emery UT	12	4	10, 11, 12	CA
Delta CO	12	4	10, 11, 12	CP
Mohave AZ	12	4	11, 13, 14	MI
Benton AR	12	2	2, 3, 5	PP, MI
Jackson MI	10	2	3, 4, 5, 7, 37	RF
Carbon UT	9	3	10, 11, 12	CA
Jefferson AL	9	1	3, 5, 42	CA, GS, PP
Baldwin AL	8	2	3, 4, 5, 37	RF
Sullivan TN	8	2	1, 2, 3, 38	RF
Marin CA	8	2	43, 44, 45, 46	RF
Dade FL	8	1	4, 5, 6, 37, 40, 47, 48, 49	PP
St. Bernard LA	6	2	4, 5, 37	RF
Mesa CO	6	2	10, 11, 12	CP
San Juan NM	6	3	10, 12	CA

Table 10 (Continued)

County & State	Confl. index	Natural-ness	Endangered species involved (see key)	Developments (see key)
Sweetwater WY	6	3	10, 11	RF
Daviess KY	5	1	1, 2, 3, 18, 27	CA
Broward FL	5	1	4, 5, 6, 37, 40	MI
Mobile AL	4	1	3, 4, 5, 37	RF
Sonoma CA	4	1	43, 44, 45, 46	PP
Kanawha WV	4	1	1, 3, 18, 19	CA
Matagorda TX	4	2	4, 37	RF
Oswego NY	4	2	1, 50	RF
San Bernardino CA	4	1	12, 14, 51, 52	PP
St. Mary LA	3	1	4, 5, 37	RF
Hillsborough FL	3	1	4, 5, 37	PP
Pinellas FL	3	1	4, 5, 37	PP
Orleans LA	3	1	4, 5, 37	RF
Brazoria TX	3	1	4, 37, 53	RF
Harris TX	3	1	4, 53, 54	RF
Maricopa AZ	2	1	10, 12	PP

Key to Species

1. Eastern cougar
2. Gray bat
3. Indiana bat
4. American alligator
5. Florida panther
6. Florida everglade kite
7. Mississippi sandhill crane
8. Grizzly bear
9. Northern Rocky Mountain wolf
10. Black-footed ferret
11. Humpback chub
12. Colorado River squawfish
13. Woundfin
14. Yuma clapper rail
15. San Joaquin kit fox
16. Paiute-cutthroat trout
17. Owens River pupfish
18. Pink mucket pearly mussel
19. Tuberculed blossom pearly mussel
20. Birdwing pearly mussel
21. Turgid-blossom pearly mussel
22. Fine rayed pigtoe pearly mussel
23. Shiny pigtoe pearly mussel
24. Alabama lamp pearly mussel
25. White warty back pearly mussel
26. Orange footed pimple back
27. Rough pigtoe pearly mussel
28. Pale lilliput pearly mussel
29. Cumberland bean pearly mussel
30. Sampson's pearly mussel
31. Dromedary pearly mussel
32. Green-blossom pearly mussel
33. Cumberland monkeyface pearly mussel
34. Appalachian monkeyface pearly mussel
35. Yellow-blossom pearly mussel
36. Bahama swallowtail
37. West Indian manatee
38. Slender chub
39. Yellowfin madtom
40. Leatherback sea turtle
41. Tan riffle shell
42. Watercress darter
43. Aleutian Canada goose
44. California clapper rail
45. Salt marsh harvest mouse
46. Southern sea otter
47. American crocodile
48. Bahama swallowtail
49. Schaus swallowtail
50. Blue pike
51. Unarmored three spine stickleback
52. Mohave chub
53. Attwater's greater prairie chicken
54. Houston toad

Key to Developments

CA = Coal mine Additions 10^6 tons/yr by 1980 CP = 1972 Coal Production $> 10^6$ tons
 GS = coal Gasification site planned PP = planned Power Plant
 MI = in-MIgration $> 50\%$ 1960 - 1970 RF = planned ReFinery

XI. CONCLUSIONS

Conflicts between the Endangered Species Act and "development," be it energy-related or not, are likely to increase markedly in the near future in the absence of careful planning; the importance of the Act in preventing unwise development in sensitive areas cannot be overemphasized. We draw this conclusion after considering the following:

1. Endangered species are very widely distributed across the country.

It is almost impossible to say a priori that any particular area slated for development does not contain an endangered species population. Detailed surveys for endangered species at the site are required to be sure even if the site is merely within the species' potential range.

2. There are many endangered species hot spots--undeveloped counties with many species--particularly in the southern Appalachian region. Some of the counties in this region are already planning million-ton per year expansions in their coal output and/or power plants, dams, and pumped storage. The region as a whole is undergoing rapid growth in population and industrialization, a phenomenon found throughout the "sun belt" in the South and West. The Blue Ridge has proved to be prime territory for vacation home development, right up to the borders of Smokey Mountain National Park. It is an area of recreational retreat from sultry southern cities.

3. Historical endangered species conflicts involving litigation have occurred in "unexpected" places judging from the numbers of species potentially at risk in other places. For example, the Mississippi sandhill crane battle was fought in Jackson County, Mississippi, a county with (at the time) 4 endangered species and a naturalness value of 2 (i.e., a relatively developed county) giving a conflict index of 8. Since 68 counties have indices ≥ 8 , many conflicts can be expected to materialize. It is of some interest that Jackson County reappears as a likely "conflict" county in Table 10. Since the Mississippi

sandhill crane controversy, the West Indian manatee, a coastal marine mammal, has been added to the list of endangered species probably inhabiting this county. Fuel Desulfurization, Inc., has announced plans for a new 200,000 barrel per day refinery to be built on the Jackson County coast. The counties having high indices, e.g. those over 20, have as yet been untouched by controversy. When their endangered species resources are "discovered," future developments if they have adverse effects on the species, are certain to result in numerous court challenges.

4. The potential addition of 1800 plant species to the official endangered species list can only augment the chances for conflicts.

Our data are probably conservative, underestimating the potential for conflicts in several ways. First, the ranges of certain endangered species may in fact be broader than indicated, and some species have not even been considered here. Various species designated as endangered by states are not included in our data. A group of endangered, widely distributed birds were also left out (including the bald eagle, a specimen of which was recently illegally shot in Suffolk County, New York). Recent studies at the Merramac Dam site in Missouri have shown the presence of the Higgins' eye pearly mussel which was not known at the time of the original suit involving only the Indiana bat. Second, experience has shown that endangered species conflicts can occur even in developed counties. For example, a population of the Houston toad (Bufo houstonensis) living in a park in the city of Houston is potentially threatened by oil drilling proposed for the park. Our methods are biased against the probability of conflicts in such counties resulting in a conservative estimate of conflict.

XII. REFERENCES

1. Endangered Species Act of 1973, P.L. 93-205, 87 Stat. 884, 16 U.S.C. 1531 et seq.
2. Hopson, J.L., A plea for a mundane mollusc, The New York Times Magazine, pp. 58-76 (Nov. 14, 1976).
3. U.S. Congress, Environmental Study Conference, Weekly Bulletin, pp. 33-4 (Jan. 16, 1978).
4. Morton, R. G., World Wildlife Conference, Dept. of State Publ. 8729, General Foreign Policy Series 279, Office of Media Services, Bureau of Public Affairs, Washington, DC, 1973.
5. Environmental Law Institute, Implementing Section 7 of the Endangered Species Act of 1973: First notices from the courts, Environmental Law Reporter, 6, 10120-3 (1976).
6. Federal Register, 43, No. 2, 870-876 (January 4, 1978)
7. Grizzly critical habitat: What will be excluded?, High Country News 8, 23 (Nov. 19, 1976).
8. Calvert, J. D. and Heilman, W. L., A new approach to power plant siting, Presented at Am. Soc. Civil Engineering Annu Convention and Nat. Environmental Engineering Meet., St. Louis, 1971.
9. Schuster, R., Power plant siting, Power Eng. 74, 12, 29-35 (Dec. 1970)
10. Frigerio, N.A., Habegger, L.J., King, R.F., Hoover, L.H., Clark, N.A., and Cobian, J.M., A Methodology for Assessment of Energy Facility Siting Patterns, Argonne National Laboratory, Regional Studies Program.
11. Distribution compendium of listed endangered and threatened species, Data sheets from the Office of Endangered Species, Washington, DC, 1976.
12. Hall, E.R. and Kelson, K.R., The Mammals of North America, Vol. 2, The Ronald Press, New York, 1959.
13. New Generating Plants, the May 1976 summary of electric utility construction plans, Power Eng.
14. Projects to expand fuel sources in eastern states, U.S. Bur. Mines Inf. Circ. 8725, 1976.
15. Projects to expand fuel sources in western states, U.S. Bur. Mines Inf. Circ. 8719, 1976.
16. Minerals Yearbook 1973, Vol. 1: Metals, Minerals and Fuels, U.S. Bur. Mines, GPO, Washington, DC, 1975.
17. Campbell, J.M., New Coal Production Planned in Appalachia, 1975-1985, Appalachian Regional Commission, Washington, DC, 1976.
18. County and City Data Book 1972, U.S. Bur. of the Census, GPO, Washington, DC 1973.
19. Drysdale, F.R. and Calef, C.E., The Energetics of the United States of America: An Atlas, BNL 50501-R, 1977.

**KEY TO SPECIES CODES
LISTED IN APPENDIX A**

1	STURGEON, SHORTNOSE	FISH	56	GOOSE, CANADA, ALEUTIAN	BIRD	159	MUSSEL, PEARLY, LAMP, ALABAMA	CLAM
2	COUGAR, EASTERN	MAMMAL	57	DEER, WHITE-TAILED, COLUMBIAN	MAMMAL	160	MUSSEL, PEARLY, WHITE WARTY-BACK	CLAM
3	BAT, GRAY	MAMMAL	58	RAIL, CLAPPER, CALIFORNIA	BIRD	161	PIMPLEBACK, ORANGE FOOTED	CLAM
4	BAT, INDIANA	MAMMAL	59	MOUSE, HARVEST, SALT MARSH	MAMMAL	162	MUSSEL, PEARLY, PIGTOE, ROUGH	CLAM
5	SQUIRREL, FOX, DELMARVA PENINSULA	MAMMAL	60	LIZARD, LEOPARD, BLUNT-NOSED	REPTILE	163	MUSSEL, PEARLY, PALE LILLIPUT	CLAM
6	DARTER, MARYLAND	FISH	61	CONDOR, CALIFORNIA	BIRD	164	MUSSEL, PEARLY, BEAN, CUMBERLAND	CLAM
7	ALLIGATOR, AMERICAN	REPTILE	62	FOX, KIT, SAN JOAQUIN	MAMMAL	165	MUSSEL, PEARLY, SAMPSON'S	CLAM
8	PANTHER, FLORIDA	MAMMAL	63	SNAKE, GARTER, SAN FRANCISCO	REPTILE	166	MUSSEL, PEARLY, DROMEDARY	CLAM
11	SPARROW, SEASIDE, DUSKY	BIRD	64	TERN, LEAST, CALIFORNIA	BIRD	167	MUSSEL, PEARLY, GREEN-BLOSSOM	CLAM
12	KITE, FLORIDA EVERGLADE (SNAIL HAWK)	BIRD	65	STICKLEBACK, THREESPINE, UNARMORED	FISH	168	MUSSEL, PEARLY, MONKEYFACE, CUMBERLAND	CLAM
13	SPARROW, CAPE SABLE	BIRD	66	SALAMANDER, LONG-TOED, SANTA CRUZ	AMPHIBIAN	169	MUSSEL, PEARLY, MONKEYFACE, APPALACHIAN	CLAM
14	DEER, KEY	MAMMAL	67	RAIL, CLAPPER, LIGHT-FOOTED	BIRD	170	MUSSEL, PEARLY, YELLOW-BLOSSOM	CLAM
16	DARTER, OKALOOSA	FISH	68	CHUB, MOHAVE	FISH	171	BUTTERFLY, SWALLOWTAIL, BAHAMA	INSECT
17	DARTER, WATERCRESS	FISH	69	SALAMANDER, DESERT SLENDER	AMPHIBIAN	172	BUTTERFLY, SWALLOWTAIL, SCHAU	INSECT
18	CRANE, SANDHILL, MISSISSIPPI	BIRD	70	SPARROW, SONG, SANTA BARBARA	BIRD	173	DARTER, SNAIL	FISH
19	CISCO, LONGJAW	FISH	71	TROUT, CUTTHROAT, PAIUTE	FISH	174	MADTOM, SCIOTO	FISH
20	WOLF, TIMBER, EASTERN	MAMMAL	72	PUFFISH, OWENS RIVER	FISH	175	CROCODILE, AMERICAN	REPTILE
21	WARBLER, (WOOD), KIRTLAND'S	BIRD	73	PUFFISH, TECOPA	FISH	176	MANATEE, WEST INDIAN (FLORIDA)	MAMMAL
22	PIKE, BLUE	FISH	74	BAT, HOARY, HAWAIIAN	MAMMAL	177	RAT, KANGAROO, MORRO BAY	MAMMAL
23	WOLF, RED	MAMMAL	75	OU, (HONEYCREEPER)	BIRD	178	WATERSNAKE, SALT MARSH, ATLANTIC	REPTILE
24	BEAR, (BROWN), GRIZZLY	MAMMAL	76	PALILA (HONEYCREEPER)	BIRD	179	TREEFROG, PINE BARRENS	AMPHIBIAN
25	WOLF, NORTHERN ROCKY MOUNTAIN	MAMMAL	78	THRUSH, KAUAI, LARGE	BIRD	180	CAVEFISH, ALABAMA	FISH
26	FERRET, BLACK-FOOTED	MAMMAL	79	THRUSH, KAUAI, SMALL	BIRD	181	CHUB, SLENDER	FISH
27	TROUT, CUTTHROAT, GREENBACK	FISH	81	PARROTBILL, MAUI (HONEYCREEPER)	BIRD	182	CHUB, SPOTFIN	FISH
28	TOAD, HOUSTON	AMPHIBIAN	82	CREEPER, MOLOKAI (KAKAWAHIE) (HONEYCREEPER)	BIRD	183	DARTER, BAYOU	FISH
29	PRairie CHICKEN, GREATER, ATTWATER'S	BIRD	84	AKIALOA, KAUAI (HONEYCREEPER)	BIRD	184	DARTER, SLACKWATER	FISH
30	GAMBUSIA, CLEAR CREEK	FISH	85	OO, KAUAI (OO AA) (HONEYEATER)	BIRD	185	MADTOM, YELLOWFIN	FISH
31	DARTER, FOUNTAIN	FISH	86	GOOSE, HAWAIIAN (NENE)	BIRD	186	SALAMANDER, RED HILLS	AMPHIBIAN
32	SLAMANDER, BLIND, TEXAS	AMPHIBIAN	87	PETREL, HAWAIIAN, DARK-RUMPED	BIRD	187	LIZARD, NIGHT, ISLAND	REPTILE
33	CRANE, WHOOPING	BIRD	88	AKEPA, MAUI (HONEYCREEPER)	BIRD	188	TURTLE, SEA, RIDLEY, ATLANTIC	REPTILE
34	DUCK, MEXICAN	BIRD	89	NUKUPUU, MAUI + KAUAI (HONEYCREEPER)	BIRD	189	TURTLE, SEA, LEATHERBACK	REPTILE
35	GAMBUSIA, BIG BEND	FISH	90	HONEYCREEPER, CRESTED (AKOHEKOHE)	BIRD	191	SEAL, MONK, HAWAIIAN	MAMMAL
36	GAMBUSIA, PELOS	FISH	91	THRUSH, MOLOKAI	BIRD	193	WOLF, MEXICAN	MAMMAL
37	PUFFISH, COMANCHE SPRINGS	FISH	92	GALLINULE, HAWAIIAN	BIRD	194	OTTER, SEA, SOUTHERN	MAMMAL
38	CHUB, HUMPBACK	FISH	93	AKEPA, HAWAII (HONEYCREEPER)	BIRD	195	CREEPER, HAWAII (HONEYCREEPER)	BIRD
39	DACE, WARM SPRINGS, KENDALL	FISH	95	AKIAPOLAUAU (HONEYCREEPER)	BIRD	196	PARROT, THICK-BILLED	BIRD
40	SQUANFISH, COLORADO RIVER	FISH	96	CROW, HAWAIIAN (ALALA)	BIRD	197	POO-ULI	BIRD
41	TROUT, ARIZONA	FISH	97	STILT, HAWAIIAN (BLACK-WINGED)	BIRD	198	SHRIKE, LOGGERHEAD, SAN CLEMENTE	BIRD
42	BONYTAIL, PAHRANAGAT	FISH	98	COOT, HAWAIIAN	BIRD	199	SHEARWATER, MANX, NEWELL'S	BIRD
43	DACE, MOAPA	FISH	99	HAWK, HAWAIIAN (IO)	BIRD	200	SPARROW, SAGE, SAN CLEMENTE	BIRD
44	WOUNDPIN	FISH	100	DUCK, HAWAIIAN (KOLOA)	BIRD	201	RIFFLE SHELL, TAN (MUSSEL, PEARLY, BROWN-BLOSSO	CLAM
45	RAIL, CLAPPER, YUMA	BIRD	101	CREEPER, OAHU (ALAUWAHIO) (HONEYCREEPER)	BIRD	202	BUTTERFLY, BLUE, EL SEGUNDO	INSECT
46	PRairie DOG, UTAH	MAMMAL	149	MUSSEL, PEARLY, HIGGINS'S EYE	CLAM	203	BUTTERFLY, BLUE, LOTIS	INSECT
47	PRONGHORN, SONORAN	MAMMAL	150	MUSSEL, PEARLY, CURTIS'	CLAM	204	BUTTERFLY, BLUE, MISSION	INSECT
48	TROUT, GILA	FISH	151	MUSSEL, PEARLY, PAT POCKETBOOK	CLAM	205	BUTTERFLY, BLUE, SMITH'S	INSECT
49	TOPMINNOW, GILA	FISH	152	MUSSEL, PEARLY, WHITE CAT'S PAW	CLAM	206	BUTTERFLY, ELFIN, SAN BRUNO	INSECT
50	BOBWHITE, MASKED (QUAIL)	BIRD	153	MUSSEL, PEARLY, PINK MUCKET	CLAM	207	BUTTERFLY, METALMARK, LANGE'S	INSECT
51	KILLIFISH, PAHRUMP	FISH	154	MUSSEL, PEARLY, TUBERCLED-BLOSSOM	CLAM	208	INDIAN PAINTBRUSH, SAN CLEMENTE ISLAND	PLANT
52	PUFFISH, DEVIL'S HOLE	FISH	155	MUSSEL, PEARLY, BIRDWING	CLAM	209	BROOM, SAN CLEMENTE	PLANT
53	PUFFISH, WARM SPRINGS	FISH	156	MUSSEL, PEARLY, TURGID-BLOSSOM	CLAM	210	LARKSPUR, SAN CLEMENTE ISLAND	PLANT
54	TROUT, CUTTHROAT, LAHONTAN	FISH	157	MUSSEL, PEARLY, PIGTOE, FINE-RAYED	CLAM	211	BUSHMALLOW, SAN CLEMENTE ISLAND	PLANT
55	CUI-UI	FISH	158	MUSSEL, PEARLY, PIGTOE, SHINY	CLAM			

APPENDIX A
TABLE OF ENDANGERED SPECIES BY COUNTY

APPENDIX A (CONT.)

APPENDIX A (CONT.)

IA CLAYTON	4 149	KS BOURBON	3 4 26	KS SHERIDAN	4 26	KY LEWIS	2 3 4	LA LINCOLN	4 7
CLINTON	4 149	BROWN	4 26	SHERMAN	4 26	LINCOLN	2 3 4	LIVINGSTON	7 8
CRAWFORD	4 26	BUTLER	4 26	SMITH	4 26	LIVINGSTON	2 3 4 154	MADISON	4 7
DALLAS	4	CHASE	3 4 26	STAFFORD	4 26	LOGAN	2 3 4 201	MOREHOUSE	4 7
DAVIS	4	CHAUTAUQUA	3 4 26	STANTON	4 26	LYON	2 3 4	NATCHITOCH	7
DECATUR	3 4 26	CHEROKEE	3 4	STEVENS	4 26	MC CRACKEN	2 3 4 154	ORLEANS	7 8 176
DELAWARE	4	CHEYENNE	4 26	SUNNER	4 26	MC CREAMY	2 3 4 164	OUACHITA	4 7
DES MOINES	4 149	CLARK	4 26	THOMAS	4 26	MC LEAN	2 3 4 153 162	PLAQUEMINE	7 8 176
DICKINSON	4 26	CLAY	4 26	TREGO	4 26	MADISON	2 3 4	POINTE COU	7 8
DUBUQUE	4 149	CLOUD	4 26	WABAUNSEE	4 26	MAGOFFIN	2 3 4	RAPIDES	4 7
EMMET	4	COPEY	3 4	WALLACE	4 26	MARION	2 3 4	RED RIVER	7
FAYETTE	4	COMANCHE	4 26	WASHINGTON	4 26	MARSHALL	3 4 8	RICHLAND	4 7
FLOYD	4	COWLEY	4 26	WICHITA	4 26	MARTIN	2 3 4	SABINE	7 8
FRANKLIN	4	CRAWFORD	3 4	WILSON	3 4	MASON	2 3 4	ST BERNARD	7 8 176
FREMONT	4 26	DECATUR	4 26	WOODSON	3 4	MEADE	2 3 4	ST CHARLES	7 8
GREENE	4	DICKINSON	4 26	WYANDOTTE	3 4 26	MENIPEE	2 3 4	ST HELENA	7 8
GRUNDY	4	DONIPHAN	4 26			MERCER	2 3 4	ST JAMES	7 8
GUTHRIE	4	DOUGLAS	4 26			METCALFE	2 3 4	ST JOHN TH	7 8
HAMILTON	4	EDWARDS	4 26			MONROE	2 3 4	ST LANDRY	7 8
HANCOCK	4	ELK	3 4 26			MONTGOMERY	2 3 4	ST MARTIN	7 8
HARDIN	4	ELLIS	4 26			MORGAN	2 3 4	ST MARY	7 8 176
HARRISON	4 26	ELLSWORTH	4 26			MUHLENBERG	2 3 4 153 162	ST TAMMANY	7 8 176
HENRY	4	PINNEY	4 26			NELSON	2 3 4	TANGIPAHOA	7 8
HOWARD	4	FORD	4 26			NICHOLAS	2 3 4	TENSAS	4 7
HUMBOLDT	4	FRANKLIN	3 4 26			OHIO	2 3 4 153 162	TERREBONNE	7 8 176
IDA	4 26	GEARY	4 26			OLDHAM	2 3 4	UNION	4 7
IOWA	4	GOVE	4 26			OWEN	2 3 4	VERMILION	7 8 23 176
JACKSON	4 149	GRAHAM	4 26			OWSLEY	2 3 4	VERNON	7 8
JASPER	4	GRANT	4 26			PENDLETON	2 3 4	WASHINGTON	4 7 8
JEFFERSON	4	GRAY	4 26			PERRY	2 3 4	WEBSTER	7
JOHNSON	4	GREELEY	4 26			PIKE	2 3 4	WEST BATON	7 8
JONES	4	GREENWOOD	3 4 26			POWELL	2 3 4	WEST CARRO	4 7
KEOKUK	4	HAMILTON	4 26			PULASKI	2 3 4 164	WEST PELIC	7 8
KOSSUTH	4	HARPER	4 26			ROBERTSON	2 3 4	WINN	4 7
LEE	4 149	HARVEY	4 26			ROCKCASTLE	2 3 4	ME ANDROSCOGG	1 2
LINN	4	HASKELL	4 26			ROWAN	2 3 4	AROOSTOOK	1 2
LOUISA	4 149	HODGEMAN	4 26			RUSSELL	2 3 4	CUMBERLAND	1 2 4
LUCAS	4	JACKSON	4 26			SCOTT	2 3 4	FRANKLIN	1 2
LYON	26	JEFFERSON	4 26			SHELBY	2 3 4	KNOX	1 2
MADISON	4	JEWELL	4 26			SIMPSON	2 3 4 201	LINCOLN	1 2
MAHASKA	4	JOHNSON	3 4 26			SPENCER	2 3 4	OXFORD	1 2
MARION	4	KEARNY	4 26			TAYLOR	2 3 4 153 162	PENOBSCOT	1 2
MARSHALL	4	KINGMAN	4 26			TODD	2 3 4	PISCATAQUI	1 2
MILLS	4 26	KIOWA	4 26			TRIGG	2 3 4	SAGADAHOC	1 2
MITCHELL	4	LABETTE	3 4			TRIMBLE	2 3 4	SOMERSET	1 2
MONONA	4 26	LANE	4 26			UNION	2 3 4 154	WALDO	1 2
MONROE	4	LEAVENWORT	4 26			WARREN	2 3 4 153 162	WASHINGTON	1 2
MONTGOMERY	4 26	LINCOLN	4 26			WASHINGTON	2 3 4	YORK	1 2 4
MUSCATINE	4 149	LINN	3 4 26			EDMONSON	2 3 4 153 162	MD ALLEGANY	2 4
O'BRIEN	4 26	LOGAN	4 26			ELLIOTT	2 3 4	ANNE ARUND	1 2 4
OSCEOLA	4 26	LYON	3 4 26			ESTILL	2 3 4	BALTIMORE	1 2 4
PAGE	4 26	MC PHERSON	4 26			FAYETTE	2 3 4	BALTIMORE	1 2 4
PALO ALTO	26	MARION	3 4 26			FLEMING	2 3 4	CALVERT	1 2 4
PLYMOUTH	4 26	MARSHALL	4 26			FLOYD	2 3 4	CAROLINE	1 2 4 5
POCAHONTAS	4	MEADE	4 26			FRANKLIN	2 3 4	CARROLL	1 2 4
POLK	4	MIAMI	3 4 26			FULTON	2 3 4	CECIL	1 2 4 5
POTTAWATTA	4 26	MICHELL	4 26			GALLATIN	2 3 4 165	CHARLES	1 2 4
POWESHIEK	4	MONTGOMERY	3 4			GARRARD	2 3 4	DORCHESTER	1 2 4 5
RINGGOLD	3 4 26	MORRIS	3 4 26			GRANT	2 3 4	FREDERICK	1 2 4
SAC	4	MORTON	4 26			GRAVES	3 4	GARRETT	2 4
SCOTT	4 149	NEWHAHA	4 26			GRAYSON	2 3 4	HARFORD	1 2 4 6
SHELBY	4 26	NEOSHO	3 4			GREEN	2 3 4 153 162	HOBART	1 2 4
SIOUX	26	NESS	4 26			GREENUP	2 3 4	HOWARD	1 2 4
STORY	4	NORTON	4 26			HANCOCK	2 3 4	KENT	1 2 4 5
TAMA	4	OSAGE	3 4 26			HARDIN	2 3 4	MONTGOMERY	1 2 4
TAYLOR	4 26	OSBORNE	4 26			HARLAN	2 3 4	PRINCE GEO	1 2 4
UNION	3 4 26	OTTAWA	4 26			HARRISON	2 3 4	QUEEN ANNE	1 2 4 5
VAN BUREN	4	PAWNEE	4 26			HART	2 3 4 153 162	ST MARYS	1 2 4
WAPELLO	4	PHILLIPS	4 26			HENDERSON	2 3 4 153 162	SOMERSET	1 2 4 5
WARREN	4	POTTAWATOM	4 26			HENRY	2 3 4	TALBOT	1 2 4 5
WASHINGTON	4	PRATT	4 26			HICKMAN	3 4	WASHINGTON	2 4
WAYNE	3 4 26	RAWLINS	4 26			HOPKINS	2 3 4 153 162	WICOMICO	1 2 4 5
WEBSTER	4	RENO	4 26			JACKSON	2 3 4	WORCESTER	1 2 4 5
WINNEBAGO	4	REPUBLIC	4 26			JEFFERSON	2 3 4	MA BARNSTABLE	1 2 4
WINNESHEK	4	RICE	4 26			JESSAMINE	2 3 4	BERKSHIRE	1 2 4
WOODBURY	4 26	RILEY	4 26			JOHNSON	2 3 4	BRISTOL	1 2 4
WORTH	4	ROOKS	4 25			KENTON	2 3 4	DUKES	1 2 4
WRIGHT	4	RUSH	4 25			KNOTT	2 3 4	ESSEX	1 2 4
KS ALLEN	3 4	RUSSELL	4 25			KNOX	2 3 4	FRANKLIN	1 2 4
ANDERSON	3 4 26	SALINE	4 25			LARUE	2 3 4	HAMPDEN	1 2 4
ATCHISON	4 26	SCOTT	4 25			LAUREL	2 3 4 164		
BARBER	4 26	SEGWICK	4 26			LAWRENCE	2 3 4		
BARTON	4 26	SEWARD	4 26			LEE	2 3 4		
		SHAWNEE	4 26			LESLIE	2 3 4		
						LETCHER	2 3 4		

APPENDIX A (CONT.)

MA HAMPSHIRE	1 2 4	MI SCHOOLCRAFT	2 4 19	MN TODD	20	MS UNION	4	MO NODAWAY	4 26
MIDDLESEX	1 2 4	SHIAWASSEE	2 4	TRAVERSE	20	WALTHALL	4 7 8	OREGON	3 4
NANTUCKET	1 2 4	TUSCOLA	2 19	WABASHA	20 149	WARREN	4 7	OSAGE	3 4 26
NORFOLK	1 2 4	VAN BUREN	2 4 19	WADENA	20	WASHINGTON	4 7	OZARK	3 4
PLYMOUTH	1 2 4	WASHTENAW	2 4	WASECA	20	WAYNE	4 7 8	PEMISCOT	3 4
SUFFOLK	1 2 4	WAYNE	2 4 19 152	WASHINGTON	20 149	WEBSTER	4	PERRY	3 4
WORCESTER	1 2 4	WEXFORD	2 4	WATONWAN	20	WILKINSON	4 7	PETTIS	3 4 26
MI ALCONA	2 19 21	MN AITKIN	20	WILKIN	20	WINSTON	4 8	PHelps	3 4 26 149
ALGER	20	ANOKA	20	WINONA	20 149	YALOBUSHIA	4	PIKE	4 149
ALLEGAN	2 4 19	BECKER	20	WRIGHT	20	YAZOO	4 7	PLATTE	3 4 26
ALPENA	2 19 21	BELTRAMI	20	YELLOW MED	20	MO ADAIR	3 4 26	POLK	3 4 26
ANTRIM	2 4 19	BENTON	20	MS ADAMS	4 7	ANDREW	4 26	PULASKI	3 4 26
ARENAC	2 19	BIG STONE	20	ALCORN	3 4	ATCHISON	4 26	PUTNAM	3 4 26
BARAGA	20	BLUE EARTH	20	AMITE	7 8	AUDRAIN	4	RALLS	4 149
BARRY	2 4	BROWN	20	ATTALA	4 7	BARRY	3 4	RANDOLPH	3 4 26
BAY	2 19	CARLTON	20	BENTON	4	BARTON	3 4	RAY	3 4 26
BENZIE	2 4 19	CARVER	20	BOLIVAR	4	BATES	3 4 26	REYNOLDS	3 4 150
BERRIEN	2 4 19	CASS	20	CALHOUN	4	BENTON	3 4 26	RIPLEY	3 4
BRANCH	2 4	CHIPPEWA	20	CARROLL	4	BOLLINGER	3 4	ST CHARLES	3 4 149
CALHOUN	2 4	CHISAGO	20 149	CHICKASAW	4 8	BOONE	3 4 26	ST CLAIR	3 4 26
CASS	2 4	CLAY	20	CHOCTAW	4	BUCHANAN	4 26	ST FRANCOI	3 4
CHARLEVOIX	2 4 19	CLEARWATER	20	CLAIBORNE	4 7 183	BUTLER	3 4 150 151	ST LOUIS	3 4 149
CHEBOYGAN	2 19 21	COOK	20	CLARKE	4 7 8	CALDWELL	3 4 26	STE GENEVI	3 4
CHIPPEWA	2 19	COTTONWOOD	20	CLAY	4 7 8	CALLAWAY	3 4 26	SALINE	3 4 26
CLARE	2	CROW WING	20	COAHOMA	4 7	CANDE	3 4 26	SCHUYLER	4
CLINTON	2 4	DAKOTA	20 149	COPIAH	4 7 8 183	CAPE GIRAR	3 4	SCOTLAND	4
CRAWFORD	2 21	DODGE	20	COVINGTON	4 7 8	CARROLL	3 4 26	SCOTT	3 4
DELTA	19 28	DOUGLAS	20	DE SOTO	4	CARTER	3 4	SHANNON	3 4
DICKINSON	20	FARIBAULT	20	FORREST	4 7 8	CASS	3 4 26	SHELBY	4
EATON	2 4	FILLMORE	20	FRANKLIN	4 7	CEDAR	3 4 26	STODDARD	3 4 151
EMMET	2 4 19	FREEBORN	4	GEORGE	4 7 8	CHARITON	3 4 26	STONE	3 4
GENESEE	2	GOODHUE	20 149	GREENE	4 7 8	CHRISTIAN	3 4	SULLIVAN	3 4 26
GLADWIN	2	GRANT	20	GRENADA	4	CLARK	4 149	TANEY	3 4
GOEBIC	20	HENNEPIN	20	HANCOCK	4 7 8 176	CLAY	3 4 26	TEXAS	3 4 26
GRAND TRAV	2 4 19	HOUSTON	20 149	HARRISON	4 7 8 176	CLINTON	3 4 26	VERNON	3 4 26
GRATIO	2	HUBBARD	20	HINDS	4 7 8	COLE	3 4 26	WARREN	3 4
HILLSDALE	2 4 152	ISANTI	20	HOLMES	4 7	COOPER	3 4 26	WASHINGTON	3 4 149
HOUGHTON	20	ITASCA	20	HUMPHREYS	4 7	CRAWFORD	3 4 149	WAYNE	3 4 150
HURON	2 19	JACKSON	20	ISSAQUENA	4 7	DADE	3 4 26	WEBSTER	3 4 26
INGHAM	2 4	JACKSON	20	JASPER	4 7 8	DE KALB	3 4 26	WORTH	3 4 26
IONIA	2 4	KANABEC	20	JEFFERSON	4 7	DENT	3 4	WRIGHT	3 4 26
IOSCO	2 19 21	KANDIYOHI	20	JEFFERSON	4 7 8	DOUGLAS	3 4	MT BEAVERHEAD	24 25 26
IRON	20	KITSON	20	JONES	4 7 8	DUNKLIN	3 4 151	BIG HORN	24 25 26
ISABELLA	2	KOOCHICHIN	20	KEMPER	4 7 8	FRANKLIN	3 4 149	BLAINE	24 25 26
JACKSON	2 4	LAC QUI PA	20	LAFAYETTE	4 7	GASCONADE	3 4 26 149	BROADWATER	24 25 26
KALAMAZOO	2 4	LAKE	20	LAMAR	4 7 8	CARTR	26	CARBON	24 25 26
KALKASKA	2 4 21	LAKE OF TH	20	LAUDERDALE	4 7 8	GENTRY	3 4 26	CASCADE	24 25 26
KENT	2 4	LE SUEUR	20	LAWRENCE	4 7 8	GREENE	3 4 26	CHOUTEAU	24 25 26
KEWEEENAW	20	LINCOLN	20	LEAKE	4 7 8	GRUNDY	3 4 26	CUSTER	24 25 26
LAKE	2 4	LYON	20	LEE	4 8	HARRISON	3 4 26	DANIELS	24 25 26
LAPEER	2	MC LEOD	20	LEFLORE	4 7	HENRY	3 4 26	DAWSON	24 25 26
LEELANAU	2 4 19	MAHOMEN	20	LINCOLN	4 7 8	HICKORY	3 4 26	DEER LODGE	24 25 26
LENAWEE	2 4	MARSHALL	20	LOWNDES	4 7 8	HOLT	4 26	FALLON	24 25 26
LIVINGSTON	2 4	MARTIN	20	MADISON	4 7	HOWARD	3 4 26	FERGUS	24 25 26
LUCE	2	MEeker	20	MARION	4 7 8	HOWELL	3 4	FLATHEAD	24 25 26
MACKINAC	2 4 19	MILLE LACS	20	MARSHALL	4	IRON	3 4	GALLATIN	24 25 26
MACOMB	2 4 19 152	MORRISON	20	MONROE	4 7 8	JACKSON	3 4 26	GARFIELD	24 25 26
MANISTEE	2 4 19	MOWER	4	MONTGOMERY	4	JASPER	3 4	GLACIER	24 25 26
MARQUETTE	20	MURRAY	20	NESHOMA	4 7 8	JEFFERSON	3 4 149	GOLDEN VAL	24 25 26
MASON	2 4 19	NICOLLET	20	NEWTON	4 7 8	JOHNSON	3 4 26	GRANITE	24 25 26
MECOSTA	2 4	NOBLES	26	NOXUBEE	4 7 8	KNOX	4	HILL	24 25 26
MENOMINEE	19 20	NORMAN	20	OKTIBBHA	4 8	LACLEDE	3 4 26	JEFFERSON	24 25 26
MIDLAND	2	OLMSTED	20	PANOLA	4 7	LAFAYETTE	3 4 26	JUDITH BAS	24 25 26
MISSAURKEE	2 4 21	OTTER TAIL	20	PEARL RIVE	4 7 8	LAWRENCE	3 4	LAKE	24 25 26
MONROE	2 4	PENNINGTON	20	PERRY	4 7 8	LEWIS	4 149	LEWIS AND	24 25 26
MONTCALM	2 4	PINE	20	PIKE	4 7 8	LINCOLN	4 149	LIBERTY	24 25 26
MONTMORENC	2 21	PIESTONE	26	PONTOTOC	4	LINN	3 4 26	LINCOLN	24 25 26
MUSKEGON	2 4 19	POLK	20	PRENTISS	4 8	LIVINGSTON	3 4 26	MC CONE	24 25 26
NEWAYGO	2 4	POPE	20	QUITMAN	4 7	MC DONALD	3 4	MADISON	24 25 26
OAKLAND	2 4	RAMSEY	20	RANKIN	4 7 8	MACON	3 4 26	MEAGHER	24 25 26
OCEANA	2 4 19	RED LAKE	20	SCOTT	4 7 8	MADISON	3 4	MINERAL	24 25 26
OGEMAW	2 21	REDWOOD	20	SHARKEY	4 7	MARIES	3 4 26	MISSOULA	24 25 26
ONTONAGON	20 21	RENVILLE	20	SMITH	4 7 8	MARION	4 149	MUSSELSHEL	24 25 26
OSCEOLA	2 21	RICE	20	STONE	4 7 8	MERCER	3 4 26	PARK	24 25 26
OSCODA	2 21	ROCK	26	SUNFLOWER	4	MILLER	3 4 26	PETROLEUM	24 25 26
OTSEGO	21	ROSEAU	20	TALLAHATCH	4 7	MISSISSIPE	3 4	PHILLIPS	24 25 26
OTTAWA	2 4 19	ST LOUIS	20	TATE	4	MONITEAU	3 4 26	MONDERA	24 25 26
PRESQUE IS	2 19 21	SCOTT	20	TIFFAH	3 4	MONROE	4	POWDER RIV	24 25 26
ROSCOMON	2 4 21	SHERBURNE	20	TISHOMINGO	3 4 8	MONTGOMERY	3 4	POWELL	24 25 26
SAGINAW	2	SIBLEY	20	TUNICA	4	MORGAN	3 4 26	PRAIRIE	24 25 26
ST CLAIR	2 4 19	STEARNS	20			NEW MADRID	3 4	RAVALLI	24 25 26
ST JOSEPH	2 4	STEELE	20			NEWTON	3 4		
SANILAC	2 4 19	STEVENS	20						
		SWIFT	20						

APPENDIX A (CONT.)

MT	RICHLAND	24	25	26	NE	PERKINS	4	26	NM	DONA ANA	26	34	NY	WASHINGTON	2	4	NC	ROCKINGHAM	2	4		
ROOSEVELT	24	25	26	PHELPS	26	EDDY	26	WAYNE	2	22			ROWAN	2	4		ROWAN	2	4			
ROSEBUD	24	25	26	PIERCE	26	GRANT	26	WESTCHESTER	1	4			RUTHERFORD	2	4		RUTHERFORD	2	4			
SANDERS	24	25	26	PLATTE	26	GUADALUPE	26	WYOMING	2				SAMPSON	1	2	4	7	SAMPSON	1	2	4	
SHERIDAN	24	25	26	POLK	4	HARDING	26	YATES	2				SCOTLAND	1	2	4	7	SCOTLAND	1	2	4	
SILVER BOW	24	25	26	RED WILLOW	4	HIDALGO	26	NC	ALAMANCE	2	4			STANLY	1	2	4		STANLY	1	2	4
STILLWATER	24	25	26	RICHARDSON	4	LEA	26	ALEXANDER	2	4			STOKES	2	4			STOKES	2	4		
SWEET GRAS	24	25	26	ROCK	26	LINCOLN	26	ALLEGHANY	2	4			SURRY	2	4			SURRY	2	4		
TETON	24	25	26	SALINE	4	LOS ALAMOS	26	ANSON	1	2	4		SWAIN	2	3	4	182	SWAIN	2	3	4	
TOOLE	24	25	26	SARPY	4	LUNA	26	ASHE	2	4			TRANSYLVAN	2	3	4		TRANSYLVAN	2	3	4	
TREASURE	24	25	26	SAUNDERS	26	MC KINLEY	26	AVERY	2	3	4		TYRRELL	1	2	4	7 176	TYRRELL	1	2	4	
VALLEY	24	25	26	SCOTTS BLU.	26	MORA	26	BEAUFORT	1	2	4	7	176	UNION	1	2	4		UNION	1	2	4
WHEATLAND	24	25	26	SEWARD	4	OTERO	26	BERTIE	1	2	4	176	WANCE	1	2	4		WANCE	1	2	4	
WIBAUX	24	25	26	SHERIDAN	26	QUAY	26	BLADEN	1	2	4	7	WAKE	1	2	4		WAKE	1	2	4	
YELLOWSTON	24	25	25	SHERMAN	26	RIO ARRIBA	26	BRUNSWICK	1	2	4	7	176	WARREN	1	2	4		WARREN	1	2	4
YELLOWSTON	24	25	26	SIOUX	26	ROOSEVELT	26	BUNCOMBE	2	3	4		WASHINGTON	1	2	4	7 176	WASHINGTON	1	2	4	
NE	ADAMS	4	26	STANTON	26	SANDOVAL	26	BURKE	2	4			WATAUGA	2	4			WATAUGA	2	4		
ANTELOPE	26			THAYER	4	26		CABARRUS	2	4			WAYNE	1	2	4		WAYNE	1	2	4	
ARTHUR	26			THOMAS	26	SAN MIGUEL	26	CALDWELL	2	4			WILKES	2	4			WILKES	2	4		
BANNER	26			THURSTON	4	SANTA FE	26	CAMDEN	1	2	4	176	WILSON	1	2	4		WILSON	1	2	4	
BLAINE	26			VALLEY	26	SIERRA	26	CARTERET	1	2	4	7	YADKIN	2	4			YADKIN	2	4		
BOONE	26			WASHINGTON	4	SOCORRO	26	CASWELL	2	4			YANCEY	2	3	4		YANCEY	2	3	4	
BOX BUTTE	26			WAYNE	26	TAOS	26	CATAHABA	2	4			BD	ADAMS	26							
BOYD	26			WEBSTER	4	TORRANCE	26	CHATHAM	1	2	4		BARNES	28								
BROWN	26			WHEELER	26	UNION	26	CHEROKEE	2	3	4		BENSON	28								
BUFFALO	26			YORK	4	VALENCIA	26	CHOWAN	1	2	4	176	BILLINGS	26								
BURT	26			NV	CARSON CIT	54	NY	ALBANY	2	4			BOTTINEAU	28								
BUTLER	4	26		CHURCHILL	54	ALLEGANY	2	CLEVELAND	2	4			BOWMAN	26								
CASS	4	26		CLARK	38	43	44	BRONX	1	4			BURKE	28								
CEDAR	26			DOUGLAS	54	BROOME	2	CRAVEN	1	2	4		BURLEIGH	26								
CHASE	4	26		ELKO		CATTARAUGU	2	CUMBERLAND	1	2	4		CASS	28								
CHERRY	26			ESMERALDA		CAYUGA	2	CURRITUCK	1	2	4	176	CAVALIER	28								
CHEYENNE	26			EUREKA		CHAUTAUQUA	2	DARE	1	2	4	7	DICKEY	26								
CLAY	4	26		HUMBOLDT		CHEMUNG	2	DAVIDSON	2	4			DIVIDE	28								
COLFAX	26			LANDER		CHENANGO	2	DAVIE	2	4			DUNN	26								
CUMING	26			LINCOLN	42	44	CLINTON	2	DUPLIN	1	2	4	7	EDDY	26							
CUSTER	26			LYON	54	COLUMBIA	1	DURHAM	1	2	4		EMMONS	26								
DAKOTA	4	26		MINERAL	54	CORTLAND	2	EDGECOMBE	1	2	4		POSTER	26								
DAWES	26			NYE	51	DELAWARE	2	FORSYTH	2	4			GOLDEN VAL	26								
DAWSON	26			PERSHING		DUTCHESS	1	FRANKLIN	1	2	4		GRAND FORK	28								
DEUEL	26			STOREY	54	ERIE	2	GASTON	2	4			GRANT	26								
DIXON	26			WASHOE	54	ESSEX	2	GATES	1	2	4		GRIGGS	28								
DODGE	26			WHITE PINE		FRANKLIN	2	GRAHAM	2	3	4		HETTINGER	26								
DOUGLAS	4	26				FULTON	2	GRANVILLE	1	2	4		KIDDER	26								
DUNDY	4	26		NH	BELKNAP	1	2	4	GREENE	2	4			LA MOURE	26							
FILLMORE	4	26		CARROLL	1	2	4	GUINEE	2	4			LOGAN	26								
FRANKLIN	4	26		CHESHIRE	1	2	4	HAMILTON	2	4			MC HENRY	28								
FRONTIER	4	26		COOS	1	2	4	HERKIMER	2	4			MC INTOSH	26								
FURNAS	4	26		GRAFTON	1	2	4	JEFFERSON	2	22			MC KENZIE	26								
GAGE	4	26		HILLSBORO	1	2	4	KINGS	1	4			MC LEAN	26								
GARDEN	26			MERRIMACK	1	2	4	LEWIS	2	2			MERCER	26								
GARFIELD	26			ROCKINGHAM	1	2	4	LIVINGSTON	2	2			MORTON	26								
GOSPER	4	26		STRATFORD	1	2	4	MADISON	2	22			MOUNTAIL	26								
GRANT	26			SULLIVAN	1	2	4	MONROE	2	4			NELSON	28								
GREELEY	26					MONTGOMERY	2	4			PEMBINA	28										
HALL	26					NASSAU	1	JONES	1	2	4	7	PIERCE	28								
HAMILTON	4	26		BERGEN	1	4	NEW YORK	1	4			RAMSEY	28									
HARLAN	4	26		BURLINGTON	1	2	4	NIAGARA	2	4	19	22	RANSOM	28								
HAYES	4	26		CAMDEN	1	2	4	ONEIDA	2	4			RENNVILLE	28								
HITCHCOCK	4	26		CAPE MAY	1	2	4	ONDONOGA	2	2			RICHLAND	28								
HOLT	26			CUMBERLAND	1	2	4	ONTARIO	2	2			ROLETTE	28								
HOOKER	26			ESSEX	1	4	ORANGE	1	2	4		SARGENT	28									
HOWARD	26			GLoucester	1	2	4	ORLEANS	2	22			SHERIDAN	26								
JEFFERSON	4	26		HUDSON	1	4		OSWEGO	2	22			SIOUX	26								
JOHNSON	4	26		HUNTERDON	1	2	4	OTSEGO	2	4			SLOPE	26								
KEARNEY	26			MERCER	1	2	4	PUTNAM	1	2	4		STARK	26								
KEITH	26			MIDDLESEX	1	4		QUEENS	1	4			STEELE	28								
KEYA PAHA	26			MONMOUTH	1	4		RENSSELAER	2	4			STUTSMAN	26								
KIMBALL	26			MORRIS	1	4		RICHMOND	1	4			TOWNER	28								
KNOX	26			OCEAN	1	2	4	ROCKLAND	1	4			TRAILL	28								
LANCASTER	26			PASSAIC	1	4		ST LAWRENCE	2	4			WALSH	28								
LINCOLN	26			SALEM	1	2	4	SARATOGA	2	4			WARD	28								
LOGAN	26			SOMERSET	1	4		SCHENECTAD	2	4			WELLS	26								
LOUP	26			SUSSEX	1	2	4	SCHOHARIE	2	4			WILLIAMS	26								
MC PHERSON	26			UNION	1	4		SCHUYLER	2	4												
MADISON	26			WARREN	1	2	4	SENECA	2	4												
MERRICK	26					STEUBEN	2	PENDER	1	2	4	176										
MORRILL	26			NM	BERNALILLO	26	34	48	196	SUFFOLK	1	4			OH	ADAMS	2	3	4			
NANCE	26			CATRON	26	34	48	196	SULLIVAN	1	2	4		PERSON	2	4						
NEMAHA	4	26		CHAVES	26	TIOGA	2	4			PITT	1	2	4	7	ASHLAND	2	4				
NUCKOLLS	4	26		COLFAX	26	TOMPKINS	2	RANDOLPH	2	4			ASHTABULA	2	4	22						
OTOE	4	26		CURRY	26	ULSTER	1	RICHMOND	1	2	4		ATHENS	2	3	4						
PAWNEE	4	26		DE BACA	26	WARREN	2	ROBESON	1	2	4	7	AUGLAIZE	2	4							

APPENDIX A (CONT.)

APPENDIX A (CONT.)

GREENE	2	3	4	154	TX BANDERA		TX GUADALUPE		TX NUECES	7	176	188	UT DUCHESNE	26	38
GRUNDY	2	3	4		BASTROP	28	HALE	26	OCHILTREE	26			EMERY	26	38
HAMBLEN	2	3	4		BAYLOR	26	HALL	26	OLDHAM	26			GARFIELD	26	38
HAMILTON	2	3	4		BEE	7	HAMILTON		ORANGE	7	23		GRAND	26	48
HANCOCK	2	3	4	155 156 157	BELL	7	HANSFORD	26	PALO PINTO	26			IRON	46	
	158	162	166	167 168 169	BEXAR	7	HARDEMAN	26	PANOLA				JUAB	46	
	181	185			BLANCO		HARDIN	7	PARKER	26			KANE	26	38
HARDEMAN	3	4			BORDEN	26	HARRIS	7	PARMER	26			MILLARD	46	
HARDIN	3	4	8	153 160 161	BOSQUE		HARTLEY	26	PECOS	26	36	37	MORGAN		
	162				BOWIE		HASKELL	26	POTTER	26			PIUTE	46	
HAWKINS	2	3	4	181	BRAZORIA	7	29	176	PRESIDIO	34			RICH		
HAYWOOD	3	4			BRAZOS	7	HAYS	31	RAINS				SALT LAKE		
HENDERSON	3	4	8		BREWSTER	34	35		RANDALL	26			SAN JUAN	26	38
HENRY	3	4	8		BRISCOE	26	HEMPHILL	26	REAGAN	26			SANPETE	46	
HICKMAN	3	4	8		BROOKS		HENDERSON	7	REAL				SEVIER	46	
HOUSTON	2	3	4		BROWN	26	HIDALGO		RED RIVER				SUMMIT		
HUMPHREYS	3	4	8		BURLESON	7	HILL		REEVES	26	36	37	TOOELE		
JACKSON	2	3	4		BURNET		HOCKLEY	26	REFUGIO	7	29	176	UINTAH	26	38
JEFFERSON	2	3	4		CALDWELL		HOOD	26	UTAH				UTAH		
JOHNSON	2	3	4		CALHOUN		HOPKINS		WASATCH	38			WASATCH	38	
KNOX	2	3	4		CALLAHAN	26	HOUSTON	7	WASHINGTON	38	44	46	WASHINGTON	38	
LAKE	3	4			CAMERON	7	HOWARD	26	WAYNE	26	38	48	WAYNE	26	
LAUDERDALE	3	4			CAMP		HUDSPETH	26	WEBER						
LAWRENCE	3	4	8	184	CARSON	26	HUNT						VT ADDISON	2	4
LEWIS	3	4	8		CASS	7	HUTCHINSON	26					BENNINGTON	2	4
LINCOLN	3	4	8		CASTRO	26	IRION						CALEDONIA	2	4
LOUDON	2	3	4	173	CHAMBERS	7	JACK	26					CHITTENDEN	2	4
MC MINN	2	3	4		CHEROKEE		JACKSON	7					ESSEX	2	4
MC NAIRY	3	4			CHILDRESS	26	JASPER	7					FRANKLIN	2	4
MACON	2	3	4		CLAY	26	JEFF DAVIS						GRAND ISLE	2	4
MADISON	3	4			COCHRAN	26	JEFFERSON	7					LAMOILLE	2	4
MARION	2	3	4		COKE	26	JIM HOGG						ORANGE	2	4
MARSHALL	3	4	8	155 156 163	COLEMAN	26	JIM WELLS	7					ORLEANS	2	4
	168	178	201		COLLIN	7	JOHNSON	7					RUTLAND	2	4
MAURY	3	4	8	155 156 163	COLLINGSWO	26	JONES	26					WASHINGTON	2	4
	168	178	201		COLORADO	7	KARNES	7					WINDHAM	1	2
MEIGS	2	3	4		COMAL	31	KAUFLA						WINDSOR	1	2
MONROE	2	3	4		COMANCHE	26	KENDALL						VA ACCOMACK	1	2
MONTGOMERY	2	3	4		CONCHO		KENEDY	176	188				ALBENARLE	2	4
MOORE	3	4	8		COOKE	26	KENT	26				ALLEGHANY	2	4	
MORGAN	2	3	4	182	CORYELL		KERR						AMELIA	1	2
OBION	3	4			COTTLE	26	KIMBLE	7					AMHERST	2	4
OVERTON	2	3	4		CRAKE	26	KING	26					APPOMATTOX	2	4
PERRY	3	4	8	153 160 161	CROCKETT	36	KINNEY						ARLINGTON	1	2
	162				CROSBY	26	KLEBERG	7	176	188			AUGUSTA	2	4
PICKETT	2	3	4		CULBERSON	26	KNOX	26	TERRELL	36			BATH	2	4
POLK	2	3	4		DALLAM	26	LAMAR	7	TERRY	26			BEDFORD	2	4
PUTNAM	2	3	4		DALLAS		LAMB	26	THROCKMORT	26			BLAND	2	4
RHEA	2	3	4		DAWSON	26	LAMPASAS		TITUS				BOTETOURT	2	4
ROANE	2	3	4		DEAF SMITH	26	LA SALLE	7	TOM GREEN				BRUNSWICK	1	2
ROBERTSON	2	3	4	281	DELTA		LAVACA	7	TRAVIS	7			BUCHANAN	2	3
RUTHERFORD	2	3	4		DENTON	26	LEE	7	UPSHUR				BUCKINGHAM	2	4
SCOTT	2	3	4		DE WITT	29	LIBERTY	7	VAL VERDE				CAMPBELL	2	4
SEQUATCHIE	2	3	4		DICKENS	26	LIMESTONE		VAN ZANDT				CAROLINE	1	2
SEVIER	2	3	4		DIMMIT	7	LIPSCOMB	26	VICTORIA	7	29		CARROLL	2	4
SHELBY	3	4			DONLEY	26	LIVE OAK	7	WALKER	7			CHARLES CI	1	2
SMITH	2	3	4		DUVAL	7	LLANO		WALLER	7			CHARLOTTE	2	4
STEWART	2	3	4		EASTLAND	26	LOVING	26	WARD	26	36		CHESTERFIE	1	2
SULLIVAN	2	3	4	181	ECTOR	26	LUBBOCK	26	WASHINGT				CLARKE	2	4
SUMNER	2	3	4		EDWARDS		LYNN	26	WEBB	7			CRAIG	2	4
TIPTON	3	4			ELLIS	7	MC CULLOCH		WHARTON	29			CULPEPER	1	2
TRUDSDALE	2	3	4		EL PASO	26	MC LENNAN		WHEELER	26			CUMBERLAND	1	2
UNICOI	2	3	4	154	ERATH	26	MC MULLEN	7	WICHITA	26	176		DICKENSON	2	3
UNION	2	3	4		FALLS		MADISON	7	WILBARGER	26			DINWIDDIE	1	2
VAN BUREN	2	3	4		FANNIN		MARION	7	WILLACY	188			ESSEX	1	2
WARREN	2	3	4		FAYETTE		MARTIN	26	WILLIAMSON				FAIRFAX	1	2
WASHINGTON	2	3	4	154	FISHER	26	MASON		WILSON	7			FAUQUIER	1	2
WAYNE	3	4	8	153 160 161	FLOYD	26	MATAGORDA	7	WINKLER	26			FLOYD	2	4
	162	184			FOARD	26	MAVERICK		WISE	7	26		FLUVANNA	1	2
WEAKLEY	3	4			FORT BEND	7	MEDINA		WOOD	7			FRANKLIN	2	4
WHITE	2	3	4		FRANKLIN		MENARD	30	YOAKUM	26			FREDERICK	2	4
WILLIAMSON	2	3	4		FREESTONE	7	MIDLAND	26	YOUNG	26			GILES	2	4
WILSON	2	3	4		FRIO	7	MILAM					GOOCHLAND	1	2	
					GAINES	26	MILLS					GRAYSON	2	4	
TX ANDERSON	7				GALESTON	7	MITCHELL	26				GREENE	2	4	
ANDREWS	26				CARZA	26	MONTAGUE	26				GREENSVILL	1	2	
ANGELINA	7				GILLESPIE		MONTGOMERY	7	ZAPATA				HALIFAX	2	4
ARANSAS	7	33	176	188	GLASSCOCK	26	MOORE	26	ZAVALA				HANOVER	1	2
ARCHER	7	26			GOLIAD	7	MORRIS	7				HENRICO	1	2	
ARMSTRONG	26				GONZALES		MOTLEY	26				HENRY	2	4	
ATASCOSA	7				GRAMES		NACOGDOCHE	7				HIGHLAND	2	4	
AUSTIN	7	29			GRAY	26	NAVARRO	7							
BAILEY	26				GRAYSON	26	NEWTON	7							
					GREGG		NOLAN	26							
					GRIMES	7									

APPENDIX A (CONT.)

