
F 

Distribution SAND--88-2485 

DE89 002994 
UC-32 

PENETRATION INTO DRY POROUS ROCK: A 
NUMERICAL STUDY ON SLIDING FRICTION 

SIMULATION 

E. P. Chen 
Applied Mechanics Division I11 
Sandia National Laboratories 

Albuquerque, New Mexico 87185 

I 

Abstract 

Penetration of Antelope tuff targets by steel penetrators is the subject of discussion in 
the present investigation. Specifically, the effect of sliding friction between projectile 
and target on penetration is examined. The finite element code PRONTO 2D is used 
to perform a parametric study of the coefficient of friction. Both constant and velocity 
dependent coefficient of friction representation have been included in the current 
investigation. Results indicate that increases in the Coefficient of friction increase the 
penetration resistance although the relationship is nonlinear in nature. In terms of 
peak deceleration and depth of penetration, both the constant and velocity dependent 
coefficient of friction representation provide almost identical results. However, only 
the velocity dependent cases show the characteristic of increasing deceleration prior 
to the conclusion of the penetration event. For this reason, the velocity dependent 
representation of the coefficient of friction is preferred over the constant friction 
coefficient representation. 
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1. Introduction 

In many problems involving penetration into geological targets, it is important 
to determine the forces imparted to the penetrator by the target material during the 
penetration process. One of the mechanisms which has been recognized to contribute 
to the increase in resistance to penetration is the sliding friction between the pene- 
trator and target material. However, this is also one of the least understood areas in 
penetration analysis. In most cases, a simple Coulomb friction formula in the form 
of f = p N has been assumed, where f and N axe, respectively, the forces tangent and 
normal to the interface and p is the coefficient of friction. In the Coulomb friction 
formula, the coefficient of friction p can be taken either as a constant or as a function 
of the penetration velocity. Longcope and Forrestal [ 11 and Forrestal [2] have studied 
the effect of sliding friction in geological target penetration problems in the context 
of the cavity expansion method. To the author’s best knowledge, no similar analysis 
on sliding friction based on the finite element method exists in the literature. 

In this investigation, a parametric study on the effect of sliding friction in pene- 
trating geological targets is conducted using the finite element code PRONTO 2D [3]. 
In general, the friction mechanism in finite element codes is modeled by the contact 
surface algorithms. The contact surface algorithm in PRONTO 2D models Coulomb 
friction with either a constant coefficient of friction or a velocity dependent friction 
law expressed by 

c 1 =  Po0 + (Po - Po0) e-7u* (1) 

where and poo are the low and high velocity friction coefficients, respectively, 7 is 
a decay constant, and is the velocity. Note that as tt# 3 0, the friction coefficient p 
takes the value of the low velocity coefficient PO. Both the constant and the velocity 
dependent friction coefficient representation have been used in the present study to 
simulate the effect of sliding friction. Within each representation, a range of friction 
coefficient values have been included in the study. The physical problem selected 
for this study is the Antelope tuff penetration experiment conducted by Young [4]. 
The problem was chosen because it has been treated previously by Chen [SI using 
PRONTO 2D without considering the effect of sliding friction. In general, the results 
indicate that increasing friction coefficient increases the resistance to penetration. 
This increase in penetration resistance is not linearly proportional to the increase in 
the coefficient of friction. In terms of peak deceleration and depth of penetration, 
both the constant and the velocity dependent friction coefficient representations pra- 
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vide almost identical results. However, because of the observed increase in the mag- 
nitude of the deceleration in the penetrator immediately preceding the conclusion 
of the penetration event, the velocity dependent friction coefficient representation 
is judged to simulate the effect of sliding friction better than the constant friction 
represent at ion. 
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lem Descri 

In this section, descriptions of the test configuration and the finite element sim- 
ulation of the antelope tuff field test [4] are presented. The test geometry consists 
of a steel penetrator (Figure 1) with a 6.0 CRH (caliber radius head) ogival nose, a 

propelled with a 0.305-m- diameter, smooth-bore, recoilless gun (Davis gun) to an 
impact velocity of 520 m/s into a semi-infinite antelope tuff medium. It is necessary 
in Davis gun tests to use a pusher plate fitted to the end of the penetrator in order 

\% total length of 1.56 m, an aft-body diamater of 0.156 m, and mass 162 kg which was u. 

Figure 1. Penetrator Geometry 

to fill the inside diameter of the bore and 
tuff field test, a steel pus 

the finite element 

the gun pressure. In 
late weighing 55 kg was used 

in Figure 2, the ogival nose shape of the pene- 
trator and the pusher plate have been included in the model. This is in contrast to 
the previous analysis in [5] where the ogival nose was approximated by a conical nose 
and the pusher plate was not modeled. The finite element mesh in Figure 2 consists 
of 3008 elements and 3166 nodes. Because of axisymmetry, only half of the actual 
geometry needs to be included in the finite element model. Both the penetrator and 
the pusher plate are made of steel whose mechanical properties axe given in Table 1. 
These are standard steel properties with the exception of the mass density value of 
6.2 Mg/ms which is low in comparison to the commonly used value of 7.8 Mg/m3. 
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This is because in the test, materials were removed from the penetrator to accom- 
modate instrumentation packages. Since in the finite element model, the penetrator 
is modeled as a solid material, the mass density of the steel is adjusted in order to 
recover the correct weight for the penetrator. The adjustment in mass density affects 

Table 1. Steel Mechanical Properties 

Mass Density 6.2 Mg/mS 
Young’s Modulus 200.0 GPa 
Poisson’s Rutio 0.32 

Yield Stress 0.896 GPa 
Hardening Modulus 1.186 GPa 

the wave velocity which in turn, influences the high frequency response of the pen- 
etrator. It is not expected to influence significantly the rigid body response of the 
penetrator. Since the primary purpose of the calculation is to obtain the rigid body 
responses of the penetrator so as to compare with the measure data, this adjustment 
in mass density is justified. The pusher plate is taken to have the same diameter as 
the Davis gun and the thickness of the plate is determined by using the combination 
of the 6.2 Mg/mS mass density for the steel and the total weight of 55 kg for the 
plate. In the finite element calculations, the steel is modeled as an elastic/plastic 
material with the properties in Table 1 with the additional assumption of isotropic 
hardening. Only six and two elements are used, respectively, to model the penetrator 
and the pusher plate because steel is stiffer than tuff such that little deformation is 
expected in the penetrator and the pusher plate. This has also been confirmed from 
post-test examinat ions. 

By taking advantage of the nonreflecting surface capability in PRONTO 2D [3], 
the semi-infinite Antelope tuff target is modeled as a 9 m deep and 1 m in radius block. 
The right-hand side and bottom surfaces of the block are designated as nonreflecting 
surfaces. These surfaces essentially prevent the reflection of waves impinging on 
them. The use of these surfaces reduces the target size to manageable proportions 
for the finite element analysis. For the target material properties, Longcope and 
Forrestal [l] have shown that a linear hydrostat and a 
criterion provide good approximations to triaxial test 
described the inelastic material response by 

p = K(1- Po/P)  = Ktl 

linear, Mohr-Coulomb failure 
data for Antelope tuff. They 
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where p is the hydrostatic pressure, po and p are densities in the undeformed and 
deformed configurations, 7 is volumetric strain, a, and a8 are radial and circumfer- 
ential stress components, s and ro define the failure criterion, Q is the unconfined 
compressive strength, and Y is the tensile strength. The soil and crushable foam 
model in PRONTO 2D [3] can describe the material responses given by the above 
equations exactly. From published data by Forrestal[2] and Hightower [6], numerical 
values of po = 1.71 Mg/ns, K = 2.0 GPa, Q = 15.0 MPa, ro = 10.0 MPa, s = 1.0, 
and Y = 1.72 MPa are used in the present calculation for Antelope tuff. In addition, 
the shear modulus of the material is a required input to the soil and crushable foam 
model in PRONTO 2D. Using a Young’s modulus value of 5 GPa, as suggested by [6], 
and a Poisson’s ratio of 0.234, the shear modulus of the Antelope tuff is estimated 
to be 2.03 GPa. 
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(b) ZOOMED VIEW OF PENETRATOR 

Figure 2. Finite Element Mesh 
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3. Finite Element Computational Procedure 

The computational procedure is similar to that in [5] except for the treatment 
of the pusher plate and the ogive nose. Specifically, the pilot hole (or tunneling) 
assumption has been invoked. This amounts to displacing the nodes in the target 
that are located on the axis of symmetry by an infinitesimal amount from that axis, 
thus relieving the displacement constraints on these nodes. Physically, this is the 
same as creating a crack at the center of the target block and thus preassigning the 
path of penetration. This is required because the elastic/plastic model assumed for 
the target provides no fracture mechanism to allow material separation. As has been 
discussed in [5], for normal penetration problems, the pilot hole assumption under 
the penetrator nose seems reasonable since symmetry constrains the penetrator to 
advance along at the center of the target. 

The penetrator and the pusher plate combination are moving downward initially 
into the target at 520 m/s. The end surface of the penetrator is assumed to be in 
frictionless contact with the front surface of the pusher plate. Posttest observations 
indicated that the pusher plate was stripped from the penetrator by the target ma- 
terial. In the current calculation, a rigid wall boundary condition at the top surface 
of the target is assumed for the contact surface in the pusher plate. Thus, when the 
penetrator penetrates approximately a body length into the target, the pusher plate 
is stripped from the penetrator and its effect on further penetration of the penetrator 
disappears. 

e right-hand side and bottom surfaces of 
the target are assigned nonreflecting surfaces. The left-hand side and top surfaces are 
assigned contact surfaces with the outside surface of the penetrator. The contact sur- 
face algorithm in PRONTO 2D [3] code allows the Coulomb sliding interface friction 

city dependent (Equation (1)) coeffi- 
By varying the coefficient of friction 

between the penetrator and target surfaces, it is intended to parametrically examine 
its effect on penetration. Altogether, six different cases have been considered. The 
first three cases utilize constant coefficients of friction with values of 0.08,0.05, and 
0.0, respectively. Cases four, five, and six are represented by velocity dependent coef- 
ficients of friction. The constant y and po in Equation 1 are taken to be 0.2 and 0.5, 
respectively, for all three cases. In Equation 1, the value of fi, is varied from 0.08, 
0.05, and 0.0, respectively, for cases four, five, and six. The velocity dependence of 
these friction coefficients is shown in Figure 3. The trend of these curves agrees with 
those measured by Montgomery [7] for gliding metal rotating bands. Also, from the 
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friction between contacting surfac 



studies in [l] and [2], the values of the friction coefficients selected here appear to be 
within reasonable ranges. 
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Figure 3. Velocity Dependent Friction Coefficients 
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4. Results and Discussions 

Before proceeding to the presentation of results, the experimentally measured 
penetrator deceleration history is given in Figure 4 for reference purposes. The 

3000 

n 2000 
Q, 
W 

0 

I I I 

15 



to find the best friction fit to the experimental data. As has been stated in the last 
section, six cases have been treated. The deformed mesh history plots for case 3 
in which the sliding coefficient is taken to be a constant with p = 0.0 are shown 
in Figures 5 and 6, respectively, for early and later times. The severe distorsion 
of the target around the penetrator is evident in these figures. The stripping of 
the pusher plate is also shown in Figure 5. Because of the bulging of the target 
at the top surface, penetration of the pusher plate into the target occurs. This 
pusher plate-target material interaction will only influence the deformation patterns 
of the pusher plate and of the local areas in the target near the center and on the 
top surface. It is not expected to have any significant effect on the penetration 
process of the penetrator. Figure 6 also shows that the penetrator rebounds after 
its downward motion terminates. These plots are typical for all other cases. The 
amount of rebounding is dependent on the coefficient of friction; that is, the larger 
the coefficients of friction, the less the amount of rebounding. 

Figures 7-9 exhibit, respectively, the time histories of the downward displacement, 
velocity, and kceleration at the center of gravity of the penetrator for the three cases 
of constant coefficient friction. Similar plots for the velocity dependent coefficient of 
friction cases are shown in Figures 10-12. The acceleration plots represent rigid 
body responses which are obtained by differentiating the velocity history curves 
and filtering out the resulting acceleration of the high frequency components. The 
differentiation and filtering were done using the code GRAFAID [8). Recall that for 
velocity dependent cases, Equation 1 is used in which the parameters po and 7 have 
been fixed at 0.5 and 0.2, respectively, and only p,,, is varied. From Figures 7-8 for 
the constant coefficient of friction cases, it is clear that increasing the value of the 
coefficient of friction decreases the depth of penetration and the time duration of the 
total penetration event. The same is true for the velocity dependent coefficient of 
friction cases in Figures 10-11 where the high velocity friction coefficient is varied. 
In fact the curves in Figures 7 and 8 are almost identical to those in Figures 10 and 
11, respectively. This indicates that the static (constant) and dynamic (velocity de- 
pendent) representation of the friction coefficient have very little effect on the depth 
of penetration and velocity history of the penetrator. The maximum depths of pen- 
etration are 5.1 m, 5.8 m, and 7.5 m, respectively, for the static cases of p equal to 
0.08, 0.05, and 0.0. For the dynamic cases, the maximum depths of penetration are 
5.2 m, 5.8 m, and 7.5 m. Figure 9 shows that by increasing the friction coefficient, 
the peak value of the deceleration has also been elevated. Typically, the first peak in 
the deceleration curve corresponds to the time at which the nose of the penetrator 
is embeded in the target, and the second peak occurs immediately after the time at 
which the pusher plate has been stripped. Beyond this point in time, the decelera- 
tion decreases with time until the arrest of the penetrator when it suddenly drops to 
zero. The same characteristics are observed in Figure 12 for the dynamic case except 
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that immediately before the conclusion of the penetration event, a sudden surge in 
the deceleration occurs because of the increase in sliding friction as the penetrator 
velocity decreases to eer early times, the deceleration histories for the static 
and dynamic cases are a dentical to each other. This is evidenced in Figure 13 
where the deceleration history curves for the static and dynamic cases with p and 
pee, equal to 0.05 are plotted. However, in reference to Figure 4, the measured data 
also show the sudden increase in deceleration prior to the arrest of the penetrator. 
Therefore, the velocity dependent friction coefficient representation appears to be 
more realistic than the constant representation. In Figure 12, the magnitudes of the 
peak deceleration immediately prior to the mest of the penetrator appears to be the 
same for all three cases. This peak magnitude is dependent on the sliding friction 
coefficient at low velocities. Since in the present calculations, the low velocity fric- 
tion coefficient is fixed at 0.5 for all three cases, the resulting peak decelerations are 
therefore similar. 
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(b) t=55.0m8 

Figure 6. Late Time Deformed Mesh Plots 
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5. Summary 

Finite element analyses of penetration problems into geological media have been 
performed. Detailed descriptions on material modeling, boundary conditions, and 
major assumptions are given. Specifically, the effect of sliding friction on penetra- 
tion was examined. Both the constant and velocity dependent friction coefficient 
representation have been studied. In terms of the depth of penetration and the peak 
deceleration, the two representations yield almost identical results. However, because 
the constant friction coefficient representation cannot model the sudden increase in 
deceleration prior to the conclusion of the penetration event, the velocity dependent 
representation should be a preferred model to sliding friction in penetration analysis 
problems. 
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