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Abstract

Penetration of Antelope tuff targets by steel penetrators is the subject of discussion in
the present investigation. Specifically, the effect of sliding friction between projectile
and target on penetration is examined. The finite element code PRONTO 2D is used
~ to perform a parametric study of the coefficient of friction. Both constant and velocity
. dependent coefficient of friction representation have been included in the current
investigation. Results indicate that increases in the coefficient of friction increase the
penetration resistance although the relationship is nonlinear in nature. In terms of
peak deceleration and depth of penetration, both the constant and velocity dependent
coefficient of friction representation provide almost identical results. However, only
the velocity dependent cases show the characteristic of increasing deceleration prior
to the conclusion of the penetration event. For this reason, the velocity dependent
representation of the coefficient of friction is preferred over the constant friction
- coefficient representation.. : '
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1. V'Introdu"cltikon B

In many problems involving penetration into geological targets, it is important
to determine the forces imparted to the penetrator by the target material during the
penetration process. One of the mechanisms which has been recognized to contribute
to the increase in resistance to penetration is the sliding friction between the pene-
trator and target material. However, this is also one of the least understood areas in

-penetration analysis. In most cases, a simple Coulomb friction formula in the form
of f = u N has been assumed, where f and N are, respectively, the forces tangent and
normal to the interface and p is the coefficient of friction. In the Coulomb friction
formula, the coefficient of friction i can be taken either as a constant or as a function
of the penetration velocity. Longcope and Forrestal [1] and Forrestal [2] have studied
the effect of sliding friction in geological target penetration problems in the context

- of the cavity expansion method. To the author’s best knowledge, no similar analysis

on sliding friction based on the finite element method exists in the literature.

In this investigation, a parametric study on the effect of sliding friction in pene-
trating geological targets is conducted using the finite element code PRONTO 2D {3].
In general, the friction mechanism in finite element codes is modeled by the contact
surface algorithms. The contact surface algorithm in PRONTO 2D models Coulomb
friction with either a constant coefficient of friction or a velocity dependent friction
law expressed by

B = oo+ (o — foo) €™ (1)

where yo and p, are the low and high velocity friction coefficients, respectively, « is
a decay constant, and v, is the velocity. Note that as v, — 0, the friction coefficient p
. takes the value of the low velocity coefficient po. Both the constant and the velocity
dependent friction coefficient representation have been used in the present study to
simulate the effect of sliding friction. Within each representation, a range of friction
coefficient values have been included in the study. The physical problem selected
for this study is the Antelope tuff penetration experiment conducted by Young [4].
"The problem was chosen because it has been treated previously by Chen [5] using
PRONTO 2D without considering the effect of sliding friction. In general, the results
indicate that increasing friction coefficient increases the resistance to penetration.
~ This increase in penetration resistance is not linearly proportional to the increase in
the coefficient of friction. In terms of peak deceleration and depth of penetration,
both the constant and the velocity dependent friction coefficient representations pro-




vide almost identical results. However, because of the observed increase in the mag-
nitude of the deceleration in the penetrator immediately preceding the conclusion
of the penetration event, the velocity dependent friction coefficient representation

is judged to simulate the effect of sliding friction better than the constant friction
representation.



2. Problem Description

In this section, descriptions of the test configuration and the finite element sim-
ulation of the antelope tuff field test [4] are presented. The test geometry consists
of a steel penetrator (Figure 1) with 2 6.0 CRH (caliber radius head) ogival nose, a
total length of 1.56 m, an aft-body diamater of 0.156 m, and mass 162 kg which was
propelled with a 0.305-m- diameter, smooth-bore, recoilless gun (Davis gun) to an
impact velocity of 520 m/s into a semi-infinite antelope tuff medium. It is necessary
in Davis gun tests to use a pusher plate fitted to the end of the penetrator in order

28 = 01156 m

1.20 m- — _ s
_ .56m >
CRH = R/2a 6.0

’Figure 1. 'Penetrator Geometry

" to fill the inside dla,meter of the bore and ca.rry the gun pressure. In the Antelope
. tuﬁ' field test, a steel pusher plate welghmg 55 kg was used.

In the ﬁmte element idealization in Flgure 2, the ogival nose shape of the pene-
trator and the pusher plate have been included in the model. This is in contrast to
the previous analysis in [5] where the ogival nose was approximated by a conical nose

-and the pusher plate was not modeled. The finite element mesh in Figure 2 consists
~of 3008 elements and 3166 nodes. Because of axisymmetry, only half of the actual
geometry needs to be included in the finite element model. Both the penetra.tor and
‘the pusher plate are made of steel whose mechanical propertles are given in Table 1.
These are standard steel properties with the exception of the mass density value of
6.2 Mg/m® which is low in comparison to the commonly used value of 7.8 Mg/m3.
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This is because in the test, materials were removed from the penetrator to accom-
modate instrumentation packages. Since in the finite element model, the penetrator
is modeled as a solid material, the mass density of the steel is adjusted in order to
recover the correct weight for the penetrator. The adjustment in mass density affects

Table 1. Steel Mechanical Properties

~ Mass Density 6.2 Mg/m®
Young’s Modulus  200.0 GPa
Poisson’s Ratio 0.32
Yield Stress ~ 0.896 GPa
Hardening Modulus - 1.186 GPa

the wave velocity which in turn, influences the high frequency response of the pen-
etrator. It is not expected to influence significantly the rigid body response of the
penetrator. Since the primary purpose of the calculation is to obtain the rigid body
responses of the penetrator so as to compare with the measure data, this adjustment
in mass density is justified. The pusher plate is taken to have the same diameter as
the Davis gun and the thickness of the plate is determined by using the combination
of the 6.2 Mg/m® mass density for the steel and the total weight of 55 kg for the
plate. In the finite element calculations, the steel is modeled as an elastic/plastic
material with the properties in Table 1 with the additional assumption of isotropic
hardening. Only six and two elements are used, respectively, to model the penetrator
and the pusher plate because steel is stiffer than tuff such that little deformation is
expected in the penetrator and the pusher plate. This has also been confirmed from
post-test examinations.

By taking advantage of the nonreflecting surface capability in PRONTO 2D [3],
the semi-infinite Antelope tuff target is modeled as 2 9 m deep and 1 m in radius block.
The right-hand side and bottom surfaces of the block are designated as nonreflecting
surfaces. These surfaces essentially prevent the reflection of waves impinging on
them. The use of these surfaces reduces the target size to manageable proportions
for the finite element analysis. For the target material properties, Longcope and
Forrestal [1] have shown that a linear hydrostat and a linear, Mohr-Coulomb failure
criterion provide good approximations to triaxial test data for Antelope tuff. They
described the inelastic material response by

p=K(1-po/p) = Kn » (2)
o, — 04 = sp + To; 0= (1-5/3)Q (3)
Og Z -Y . (4)
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where p is the hydrostatic pressure, po and p are densities in the undeformed and
~ deformed configurations, n is volumetric strain, o, and o, are radial and circumfer-
ential stress components, s and 7, define the failure criterion, Q is the unconfined
compressive strength, and Y is the tensile strength.” The soil and crushable foam
model in PRONTO 2D [3] can describe the material responses given by the above
equations exactly. From published data by Forrestal [2] and Hightower [6], numerical
values of pp = 1.71 Mg/m?, K = 2.0 GPa, Q = 15.0 MPa, 7, = 10.0 MPa, s = 1.0,
and Y = 1.72 MPa are used in the present calculation for Antelope tuff. In addition,
the shear modulus of the material is a required input to the soil and crushable foam
model in PRONTO 2D. Using a Young’s modulus value of 5 GPa, as suggested by [6],
and a Poisson’s ratio of 0.234, the shear modulus of the Antelope tuff is estimated
to be 2.03 GPa.
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3. Finite Element Computational Procedure

The computational procedure is similar to that in [5] except for the treatment
of the pusher plate and the ogive nose. Specifically, the pilot hole (or tunneling)
assumption has been invoked. This amounts to displacing the nodes in the target
that are located on the axis of symmetry by an infinitesimal amount from that axis,
thus relieving the displacement constraints on these nodes. Physically, this is the
same as creating a crack at the center of the target block and thus preassigning the
path of penetration. This is required because the elastic/plastic model assumed for

- the target provides no fracture mechanism to allow material separation. As has been
discussed in [5], for normal penetration problems, the pilot hole assumption under
the penetrator nose seems reasonable since symmetry constrains the penetrator to
advance along at the center of the target.

The penetrator and the pusher plate combination are moving downward initially
into the target at 520 m/s. The end surface of the penetrator is assumed to be in
frictionless contact with the front surface of the pusher plate. Posttest observations
indicated that the pusher plate was stripped from the penetrator by the target ma-
terial. In the current calculation, a rigid wall boundary condition at the top surface
of the target is assumed for the contact surface in the pusher plate. Thus, when the
penetrator penetrates approximately a body length into the target, the pusher plate
is stripped from the penetrator and its effect on further penetration of the penetrator
disappears.

As has been mentioned previously, the right-hand side and bottom surfaces of
the target are assigned nonreflecting surfaces. The left-hand side and top surfaces are
assigned contact surfaces with the outside surface of the penetrator. The contact sur-
face algorithm in PRONTO 2D [3] code allows the Coulomb sliding interface friction
representation with either a constant or a velocity dependent (Equation (1)) coeffi-
cient of friction between contacting surfaces. By varying the coefficient of friction
between the penetrator and target surfaces, it is intended to parametrically examine
its effect on penetration. Altogether, six different cases have been considered. The
- first three cases utilize constant coeflicients of friction with values of 0.08, 0.05, and
- 0.0, respectwely Cases four, five, and six are represented by velocity dependent coef- -
ficients of friction. The constant 4 and y, in Equation 1 are taken to be 0.2 and 0.5,
respectively, for all three cases. In Equation 1, the value of yo is varied from 0.08,
0.05, and 0.0, respectively, for cases four, five, and six. The velocity dependence of
‘these friction coefficients is shown in Figure 3. The trend of these curves agrees with
those measured by Montgomery [7] for gliding metal rotating bands. Also, from the
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studies in [1] and [2], the values of the friction coefficients selected here appeax to be

within reasonable ranges.
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3

4. Results and Discussions

Before pfoceeding to the presentation of results, the experimentally measured
penetrator deceleration history is given in Figure 4 for reference purposes. The
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measured depth of penetration was 7.0 m. It must be emphasized that thepurpose
- of present study is to establish the behavior trend of the sliding friction and is not
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to find the best friction fit to the experimental data. As has been stated in the last
section, six cases have been treated. The deformed mesh history plots for case 3
in which the sliding coefficient is taken to be a constant with g = 0.0 are shown
in Figures 5 and 6, respectively, for early and later times. The severe distorsion
of the target around the penetrator is evident in these figures. The stripping of
-the pusher plate is also shown in Figure 5. Because of the bulging of the target
at the top surface, penetration of the pusher plate into the target occurs. This
pusher plate-target material interaction will only influence the deformation patterns
~of the pusher plate and of the local areas in the target near the center and on the
top surface. It is not expected to have any significant effect on the penetration
process of the penetrator. Figure 6 also shows that the penetrator rebounds after
its downward motion terminates. These plots are typical for all other cases. The
amount of rebounding is dependent on the coefficient of friction; that is, the larger
the coefficients of friction, the less the amount of rebounding.

Figures 7-9 exhibit, respectively, the time histories of the downward displacement,
velocity, and acceleration at the center of gravity of the penetrator for the three cases
of constant coefficient friction. Similar plots for the velocity dependent coefficient of
friction cases are shown in Figures 10-12. The acceleration plots represent rigid
body responses which are obtained by differentiating the velocity history curves
and filtering out the resulting acceleration of the high frequency components. The
differentiation and filtering were done using the code GRAFAID [8]. Recall that for
velocity dependent cases, Equation 1 is used in which the parameters po and 4 have
been fixed at 0.5 and 0.2, respectively, and only g is varied. From Figures 7-8 for
the constant coefficient of friction cases, it is clear that increasing the value of the
coefficient of friction decreases the depth of penetration and the time duration of the
total penetration event. The same is true for the velocity dependent coefficient of
friction cases in Figures 10-11 where the high velocity friction coefficient is varied.
In fact the curves in Figures 7 and 8 are almost identical to those in Figures 10 and
11, respectively. This indicates that the static (constant) and dynamic (velocity de-
pendent) representation of the friction coefficient have very little effect on the depth
of penetration and velocity history of the penetrator. The maximum depths of pen-
etration are 5.1 m, 5.8 m, and 7.5 m, respectively, for the static cases of p equal to
0.08, 0.05, and 0.0. For the dynamic cases, the maximum depths of penetration are
5.2 m, 5.8 m, and 7.5 m. Figure 9 shows that by increasing the friction coefficient,
the peak value of the deceleration has also been elevated. Typically, the first peak in
the deceleration curve corresponds to the time at which the nose of the penetrator
is embeded in the target, and the second peak occurs immediately after the time at
which the pusher plate has been stripped. Beyond this point in time, the decelera-
tion decreases with time until the arrest of the penetrator when it suddenly drops to
zero. The same characteristics are observed in Figure 12 for the dynamic case except
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that immediately before the conclusion of the penetration event, 2 sudden surge in
the deceleration occurs because of the increase in sliding friction as the penetrator
velocity decreases to zero. At early times, the deceleration histories for the static
and dynamic cases are almiost identical to each other. This is evidenced in Figure 13
where the deceleration history curves for the static and dynamic cases with x# and
Koo equal to 0.05 are plotted. However, in reference to Figure 4, the measured data
also show the sudden increase in deceleration prior to the arrest of the penetrator.
Therefore, the velocity dependent friction coefficient representation appears to be
more realistic than the constant representation. In Figure 12, the magnitudes of the
peak deceleration immediately prior to the arrest of the penetrator appears to be the
same for all three cases. This peak magnitude is dependent on the sliding friction
coefficient at low velocities. Since in the present calculations, the low velocity fric-
tion coefficient is fixed at 0.5 for a.ll three cases, the resulting peak decelerations are
therefore snmlar
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5. Summary

Finite element analyses of penetration problems into geological media have been
performed. Detailed descriptions on material modeling, boundary conditions, and
major assumptions are given. Specifically, the effect of sliding friction on penetra-
tion was examined. Both the constant and velocity dependent friction coefficient
representation have been studied. In terms of the depth of penetration and the peak
deceleration, the two representations yield almost identical results. However, because
the constant friction coefficient representation cannot model the sudden increase in
deceleration prior to the conclusion of the penetration event, the velocity dependent
representation should be a preferred model to sliding friction in penetration analysis
problems. :

27







- References

[1] Longcope, D. B. and Forrestal, M. J., Penetration of Targets Described by a
Mohr-Coulomb Failure Criterion with a Tension Cutoff, Journal of Applied Me-
chamcs 50, 327-333(1983). '

[2] Forresta.l M. J., Penetration into Dry Porous Rock, International Joumal of
Solids and Structures 22 (12), 1485-1500(1986).

3] Taylor, L. M., and Flana.gan, D. P.,, PRONTO 2D - A Two-Dimensional Tran-
sient Solid Dynamics Program, Sandia National Laboratories Report, SANDE6-
0594, Sandia National Laboratories, Albuquerque, NM, 1987.

(4] Young, C. W., Letter’Report on Davis Gun Test TP-3 (R801889), Sandia Na-
tional Laboratories, Albuquerque, NM, 1980.

5] Cheh, E. P., Finite Element Simulation of Penetration Into Geological Targets,
Theoretical and Applied Fracture Mechanies 8, 125-135(1987).

- [6] Hightower, M. M., Memo to Distribution on Penetration Benchmark Calculation
Information, Sandia Na.tiona.l‘Laboratories, Albuquerque, NM, March 16, 1987.

[7] Montgomery, R. S., Surface Melting of Rotating B’a.nds‘, Wear 38, 235-243(1976).

[8] Adams, C. R., GRAFAID Code User Manual Version 2.0, Sandia National Lab-
oratories chort SAND84-1725 Sandia National Laboratories, Albuquerque,
NM, 1985. :

38 [ 29







Distribution:

Dr. S. C. Chou

SLCMT-BM. :

U. S. Army Materials md Technology
Laboratory

Watertown, MA 02172-0001

Dr. G.C. Sih - :

Institute of Fracture and Solid Mecha.mcs
Bldg. 19
Lehigh University

. Bethlehem, PA 18015

Sandia Internal:

1510
1520
1521
1522

1522

1522
1523
1523
1523
1523
1524
1524
1530
1531
1533
1533
1533
1650
. 3141

J.

NEDUPRORSEE R

G.
- C.
8.

W. Nunziato
W. Davison
Krieg
Reuter, Jr.
Kipp
Reedy, Jr.
Biffle
Chen (10)
Flanagan
. Taylor
Miller
Longcope
Hayes .

WHRIOITRO=QU

I Kerley
W. Peterson .
A. Landenberger (5)

8141-2 For DOE/OSTI (8)

3151

5161

5165

5165
8241

8524

9122
9122
0122
9122

w'

QO<RETRPE

I. Klein (3)
E. Gronager

.J. Patterson

K. Thomas
L. Chiesa
W. Dean .

J. Forrestal
M. Hightower
K. Luk

W. Young

ezcg/ 31




	1 Introduction
	2 Problem Description
	3 Finite Element Computational Procedure
	4 Results and Discussions
	5 Summary
	References
	1 Penetrator Geometry
	2 Finite Element Mesh
	3 Velocity Dependent Friction Coefficients
	4 Experimental Data on Deceleration History
	5 Early Time Deformed Mesh Plots
	6 Late Time Deformed Mesh Plots
	7 Displacement History Plots for Constant p
	tory Plots for Constant p

	9 Deceleration History Plots for Constant p
	10 Displacement History Plots for Velocity Dependent p
	11 Velocity Hist Plots for Velocity Dependent p
	12 Deceleration History Plots for Velocity Dependent p
	13 Decelerations for p and pm Equal to




