

UPGRADING OF COAL LIQUIDS

Interim Report

Hydrotreating and Reforming H-Coal Process Derived Naphthas

Gim Tan and Armand J. deRosset

UOP Inc.
Corporate Research Center
Ten UOP Plaza
Des Plaines, IL 60016

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Date Published - March, 1978

Prepared for the United States Energy Research
and Development Administration
Under Contract No. EF--77-C-01-2566

88
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Blank Page

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT.....	1
1. INTRODUCTION	2
2. EQUIPMENT.....	2
3. CHARGE STOCKS.....	3
3.1. Naphtha Hydrotreating.....	3
3.2. Naphtha Reforming.....	4
4. RESULTS AND DISCUSSION.....	4
4.1. Naphtha Hydrotreating.....	4
4.2. Naphtha Reforming.....	6
4.2.1. Reforming Upgraded Naphtha.....	7
4.2.2 Reforming Hydrocracked Naphtha.....	8

LIST OF TABLES

	<u>Page</u>
Table 1. Distillation of H-Coal Naphtha.....	10
Table 2. Inspection Data of H-Coal Naphthas.....	11
Table 3. M S Analysis of H-Coal Naphtha 3531-1-2.....	12
Table 4. Inspections of H-Coal Hydrocrackate A.....	13
Table 5. Inspections of H-Coal Hydrocrackate B.....	14
Table 6. Upgrading H-Coal Naphtha, Plant 629, Run 215.....	15
Table 7. Upgrading H-Coal Naphtha, Plant 629, Run 216.....	16
Table 8. Upgrading of H-Coal Naphtha 3531-1-2, Product Distribution, Plant 629, Runs 215 and 216.....	17
Table 9. Upgrading H-Coal Naphtha 3531-1-2, Distribution of Hydrogen Consumption, Plant 629, Runs 215 and 216.....	18
Table 10. Distribution of Upgraded H-Coal Naphtha.....	19
Table 11. Platforming ^(R) Upgraded H-Coal Naphtha 3531-4, Plant 636, Run 220.....	20
Table 12. Platforming Upgraded H-Coal Naphtha 3531-4, Product Distribution and M S Analysis, Plant 636, Run 220, Period 10.....	23
Table 13. Platforming Upgrading H-Coal Naphtha 3531-4, Product Distribution and M S Analysis, Plant 636, Run 220, Period 5.....	24
Table 14. Platforming Upgrading H-Coal Naphtha 3531-4, Product Distribution and M S Analysis, Plant 636, Run 220, Period 14.....	25
Table 15. Distribution of H-Coal Hydrocrackate A (3531-15).....	26
Table 16. Distribution of H-Coal Hydrocrackate B (3531-18).....	27
Table 17. Platforming H-Coal Hydrocrackate A (3531-15), Plant 508, Run 1457.....	28
Table 18. Platforming H-Coal Hydrocrackate B (3531-18), Plant 508, Run 1458.....	30
Table 19. Platforming H-Coal Hydrocrackate A (3531-15), Product Distribution and M S Analysis, Plant 508, Run 1457, Period 1.....	31

LIST OF TABLES (Continued)

	<u>Page</u>
Table 20. Platforming H-Coal Hydrocrackate A (3531-15), Product Distribution and MS Analysis, Plant 508, Run 1457, Period 4.....	32
Table 21. Platforming H-Coal Hydrocrackate A (3531-15), Product Distribution and MS Analysis, Plant 508, Run 1457, Period 7.....	33
Table 22. Platforming H-Coal Hydrocrackate B (3531-18), Product Distribution and MS Analysis, Plant 508, Run 1458, Period 1.....	34
Table 23. Platforming H-Coal Hydrocrackate B (3531-18), Product Distribution and MS Analysis, Plant 508, Run 1458, Period 2.....	35
Table 24. Platforming H-Coal Hydrocrackate B (3531-18), Product Distribution and MS Analysis, Plant 1458, Period 3.....	36
Table 25. Platforming H-Coal Hydrocrackate B (3531-18), Product Distribution and MS Analysis, Plant 508, Run 1458, Period 4.....	37
Table 26. Platforming H-Coal Hydrocrackate B (3531-18), Product Distribution and MS Analysis, Plant 508, Run 1458, Period 5.....	38

LIST OF FIGURES

	<u>Page</u>
Figure 1. Naphtha Hydrotreating Plant.....	39
Figure 2. Naphtha Reforming Plant.....	40
Figure 3. Deposit of Carbonaceous Material on Preheater.....	41
Figure 4. Yield Octane Curve for Upgraded H-Coal Naphtha.....	42
Figure 5. Yield Octane Curve for H-Coal Hydrocrackate A.....	43
Figure 6. Yield Octane Curve for H-Coal Hydrocrackate B.....	44

ABSTRACT

The objective of this work was to evaluate the applicability of commercial UOP hydrotreating and reforming processes to naphthas derived from the H-Coal process. Three naphthas were studied. One was the primary naphtha generated from the H-Coal syncrude operation. The other two products were from hydrocracking H-Coal gas oil.

The primary H-Coal naphtha was rerun in a laboratory column to remove color materials and heavy ends generated during storage. Because of the high contents of nitrogen, sulfur and oxygen, this naphtha was catalytically hydrotreated at moderate conditions to bring the heterocyclics content within the limits acceptable as a Platformer charge stock.

The upgraded H-Coal naphtha and the two hydrocracked naphthas were reformed over a commercial Platforming[®] catalyst in bench scale continuous units. Data were obtained at base pressure, 1.5 x base space velocity, and a range of temperatures for the purpose of constructing yield octane curves. Since all these feeds were highly naphthenic, reforming was successfully carried out at high space velocity and relatively low temperatures with high gasoline yields.

In addition to routine analyses, mass spectroscopy (MS) analyses were carried out on the primary H-Coal naphtha, Platformer feeds, and selected reformates.

1. INTRODUCTION

The objective of this program was to determine the applicability of commercial UOP conversion processes to coal liquid distillates generated by two ERDA sponsored processes: H-Coal and Exxon Donor Solvent (EDS).

Four tasks are identified under this program. Each of these tasks covers coal distillate liquids from both the H-Coal process and the EDS process. The first task involves two stage continuous hydrocracking of coal liquid distillates. The second task entails processing of distillates through continuous hydrotreating and fluid catalytic cracking units. The third task covers processing of coal derived naphthas through continuous hydrotreating-reforming bench scale units. The fourth task involves all data correlation.

This report covers work under Task 3 on hydrotreating and reforming H-Coal process derived naphthas. Investigation was carried out on three distinct naphthas. One was a primary naphtha produced directly in the H-Coal process. The other two were hydrocracked naphthas prepared under work in Task 1 for H-Coal gas oil.

Hydrotreating and reforming of EDS process derived naphthas will be covered in a separate report.

2. EQUIPMENT

Naphtha hydrotreating was carried out in a bench scale continuous unit (UOP Research Plant 629). A simplified flow diagram of this plant

is shown in Figure 1. Hydrogen and primary coal naphtha were passed concurrently downflow over a fixed bed (100 ml) of commercial hydro-treating catalyst. The catalyst was a composite of Group VI and Group VIII metals on a high surface area refractory support.

Reforming of upgraded H-Coal naphtha was conducted in UOP Research Plant 636 while reforming of the hydrocracked naphthas was carried out in another similar reforming plant (Plant 508). Figure 2 is a simplified flow diagram of a bench scale reforming plant. The reforming reactor was loaded with 50 ml of a commercial Platforming catalyst.

3. CHARGE STOCKS

3.1 Naphtha Hydrotreating

One small drum of primary naphtha (LO-364, UOP No. 96-3336) from H-Coal syncrude operation was received at Des Plaines in October, 1976. The content was found to be nine gallons. This was rerun in two batches (Table 1) in a laboratory column to remove color bodies and heavy ends generated during storage. Analysis of a blend (No. 3531-1) of the overheads from the two batches showed 1200 wt-ppm sulfur, 2176 wt-ppm nitrogen and 7100 wt-ppm oxygen. These are quite high compared to petroleum-derived naphthas.

In accordance with current UOP procedures for evaluating Platformer charge stocks, it was necessary to hydrotreat the naphtha to bring the heterocyclics content within acceptable limits. Since the hydrotreating conditions required were not known, it was decided to rerun two batches

of an earlier shipment (December, 1975) of H-Coal primary naphtha (LO-200, UOP No. 125-4358) to ensure adequate supply of feedstock in case problems arose during hydrotreating operation. Data from all four batch distillation operations are summarized in Table 1. The last two IBP-400°F fractions were blended with the first blend (3531-1) to give 15 gallons of hydrotreating feedstock. Tables 2 and 3 show the inspections and MS analyses of the rerun primary H-Coal naphtha (3531-1-2).

3.2. Naphtha Reforming

Platforming runs were carried out on the upgraded naphtha and two hydrocracked naphthas.

The upgraded naphtha was prepared by hydrotreating the rerun primary naphtha. Inspections of this Platformer feed (3531-4) are shown in Table 2.

The hydrocracked naphthas were products from work under Task 1 for H-Coal gas oil. The first hydrocracked naphtha (designated as H-Coal Hydrocrackate A) was a blend of products from the second-stage hydrocracking of H-Coal gas oil studies (Plant 601, Runs 749 and 751) conducted at 500 psig below base pressure. Similarly the second hydrocracked naphtha (H-Coal Hydrocrackate B) was a blend of products from studies (Plant 601, Runs 756 and 757) conducted at 500 psig above base pressure. Inspections of these two feedstocks are given in Tables 4 and 5.

4. RESULTS AND DISCUSSION

4.1. Naphtha Hydrotreating

The primary objective in the hydrotreating of the H-Coal primary

naphtha was the reduction of the nitrogen, sulfur, and oxygen contents to the levels acceptable as a Platformer charge stock. Hydrotreating was carried out over a commercial hydrotreating catalyst in a bench scale continuous unit (UOP Research Plant 629). In Run 215 processing conditions were briefly explored during the first two days of operation to reach target levels of 30 wt-ppm oxygen and less than 1 ppm nitrogen and sulfur. These targets were reached at moderate severity of operation. No attempt was made to optimize hydrotreating conditions. The run was on stream for 325 hours. Results are summarized in Table 6. At 300 hours on stream a 60-psia pressure drop was observed across the reactor. This increased to 75 psia at 323 hours. The run was terminated when the pressure drop jumped up to 105 psia at 325 hours on stream.

Upon disassembling the reactor, plugging was located at the preheating section. Excessive deposit of carbonaceous material was found on the spiral preheater (Figure 3). This problem was attributed to the presence of gum in the feed. Analysis showed that nitrogen jet gum content in the primary naphtha was 40 mg/100 ml (Table 2). Significant amounts of white substance, which was suspected to be ammonium chloride, were found deposited on the reactor wall and the spacers at the outlet side (bottom) of the catalyst bed. This substance was confirmed by chemical analysis to be mainly ammonium chloride. Analysis of the feedstock showed that Cl content was 23 wt-ppm (Table 2).

A new run (Run 216) was started with fresh catalyst and with the preheater replaced by 15 inches of No. 9 quartz chips. The run was carried out under similar conditions to continue the processing of Platformer feedstock and subsequently to rerun products from Runs 215 and 216 which contained more than 1 ppm nitrogen. Data obtained are summarized in Table 7. During the run no significant pressure drop

across the reactor was observed.

Table 8 is a summary of an overall material balance made for the hydrotreating operation for the purpose of obtaining product distribution data. Total over 100% represents hydrogen added to the feedstock. Since moderate conditions were used, only a trace amount of gas (C₁-C₄) was produced. The yield of upgraded naphtha was 99.9%.

Similarly a hydrogen balance was made to obtain distribution of hydrogen consumed. Results are summarized in Table 9. The table shows that 13.8% of the hydrogen consumed was required for the reduction of nitrogen, sulfur, and oxygen contents to acceptable levels. As might be expected, a major portion of this amount of hydrogen was used in oxygen removal. The bulk (86.2%) of the total hydrogen consumed effected an increase in hydrogen content from 12.80 to 13.59% (Table 2). This amount of hydrogen is "recoverable" via dehydrogenation of naphthenes in the subsequent reforming operation.

4.2. Naphtha Reforming

The three Platformer feeds were reformed over a commercial Platforming catalyst in bench scale continuous units. Each run was carried out at base pressure and 1.5 x base space velocity. A range of temperatures was employed for the purpose of obtaining yield-octane curves. Since these were high naphthene feedstocks, the required reforming temperatures were relatively low. As naphthene dehydrogenation is a fast reaction, a high space velocity was adequate. At these low severity conditions the yield of gasoline of a given octane number is generally very high.

In addition to routine analyses, MS analyses were made on feedstocks and selected C₆+ reformates.

4.2.1. Reforming Upgraded Naphtha.

The upgraded H-Coal naphthas from Plant 629, Runs 215 and 216 were blended to provide a Platformer feedstock. Inspection data for this upgraded naphtha are given in Table 2. Table 10 shows the product distribution of C₆- and C₆+. These results were obtained by fractionation and gas liquid chromatography analysis. The table also shows the results obtained from MS analysis of the C₆+ fraction.

The upgraded naphtha was reformed at base pressure, 1.5 x base space velocity, and over a range of temperatures to obtain data for constructing a yield octane curve. Data obtained are summarized in Table 11. This table shows the reforming conditions, product yields, and inspections of the C₅+ product (stabilized reformates). The table also includes the Research octane number (RON) of the C₅+ products obtained at various conditions. Figure 4 is the yield octane curve constructed from data shown in Table 11.

Mass spectroscopy analyses were made on three selected C₆+ reformates. These results, as well as the corresponding product distribution data, are shown in Tables 12, 13, and 14. These tables were arranged in the order of increasing temperature. The relative temperature [T-T(base), °C] corresponding to data shown in Tables 12, 13, and 14 are -88, -66, and -18°C. Since increasing the temperature results in increased rate of reaction, these tables also appear in the order of increasing RON of the

C_5^+ reformate. Table 12 shows results for product with the lowest RON (94.2), while Table 14 shows results for product with the highest RON (102.6).

Since the run was made at constant pressure and space velocity, the increase in reforming temperatures was solely responsible for the increase in the reformate RON. An inspection of Tables 12, 13, and 14 shows that dehydrogenation was the primary reaction. The product distribution data show that hydrogen yields at relative temperatures of -88, -66, and -18°C were 2.5, 3.0, and 3.4%, respectively. Inspection of the MS results for hydrocarbon types (P, N, and A) showed that in Tables 12 and 13 the aromatics in the reformates increased solely at the expense of the naphthenes. Table 14 shows that at the highest temperature studied, aromatics increased drastically not only at the expense of the naphthenes, but also, to a lesser degree, at the expense of the C_9^+ paraffins. At this temperature dehydrocyclization became significant.

4.2.2. Reforming Hydrocracked Naphthas

Similar Platforming runs were carried out for Hydrocrackates A and B. Hydrocrackate A was a blend of hydrocracked naphthas obtained at 500 psig below base pressure, while Hydrocrackate B was a similar blend of hydrocracked naphthas obtained at 500 psig above base pressure. Inspections of these two feedstocks are given in Tables 4 and 5. These tables show that the hydrogen content of Hydrocrackate A was 13.09%, and that of Hydrocrackate B was slightly higher (13.47%). Tables 15 and 16 give the distribution of C_6^- and C_6^+ , and the MS analysis of the C_6^+ fractions of these charge stocks.

Platforming runs were carried out at identical pressure and space velocity, as used for the upgraded primary naphtha. Studies were conducted over a range of temperatures to obtain yield-octane correlations. Results are summarized in Tables 17 and 18. Figures 5 and 6 are the corresponding yield octane curves constructed from these data.

Since these feeds are highly naphthenic, temperature requirement is relatively low. As in the reforming of upgraded primary naphtha, naphthene dehydrogenation was the primary reaction. These data show that in producing a reformate of a given RON, Hydrocrackate A generally required a lower reforming temperature than Hydrocrackate B. Also, the yield of stabilized reformate of a given RON is higher with Hydrocrackate A. These results reveal that at a given reformate RON, the hydrocracked naphtha obtained at 500 psig below base hydrocracking pressure gave a higher yield of gasoline, and required a lower reforming temperature than a hydrocracked naphtha obtained at a pressure 1000 psig higher.

Tables 19-21 show MS analysis of the selected C₆+ reformate from processing Hydrocrackate A, while Tables 22-26 show those from reforming Hydrocrackate B.

Table 1

Distillation of H-Coal Naphtha

I. LO-364
UOP No. 96-3336

1.	<u>Cut No.</u>	<u>Temp., °F</u>	<u>Wt., g</u>	<u>Wt-%</u>
	1 ^(a)	IBP-400°	13,230	94.0
	Botts.	400°+	843	6.0
			14,073	100.0
2.	1 ^(a)	IBP-400°	11,945	94.3
	Botts.	400°+	725	5.7
			12,670	100.0

II. LO-200
UOP No. 125-4358

1.	<u>Cut. No.</u>	<u>Temp., °F</u>	<u>Wt., g</u>	<u>Wt-%</u>
	1 ^(a)	IBP-400°	11,184	77.5
	Botts.	400°+	3,238	22.5
			14,422	100.0
2.	1 ^(a)	IBP-400°	11,043	78.3
	Botts.	400°+	3,061	21.7
			14,104	100.0

(a) Cut No. 1 from these 4 batch distillations were blended to give a hydro-treater feedstock designated as 3531-1-2.

Table 2

Inspection Data of H-Coal Naphthas

	<u>Rerun Naphtha</u>	<u>Upgraded Naphtha</u>
Sample No.	3531-1-2	3531-4
°API @ 60°F	43.7	46.8
Sp. Gr. @ 60°F	0.8076	0.7936
Distillation, ASTM D-86		
IBP, °F	132	153
5%	170	185
10%	189	199
20%	215	217
30%	233	231
40%	251	246
50%	260	263
60%	292	284
70%	312	306
80%	328	329
90%	251	352
95%	373	367
EP	396	393
% Over	99.0	99.0
Hydrogen, Wt-%	12.80	13.59
Carbon, Wt-%	85.90	86.45
Sulfur, Wt-ppm	1289	3.9
Nitrogen, Wt-ppm	1930	0.63
Oxygen, Wt-ppm	5944	34
Chloride, Wt-ppm	23	4
FIA, Vol-%		
A	24.7	18.9
O	5.2	0.0
P&N	70.1	81.1
M S Hydrocarbon Types, Vol-%		
A	18.6	17.6
N	55.5(b)	63.4
P	16.2	19.0
Bromine Index	19.3(a)	296
RON, Clear	80.3	66.8
N ₂ Jet Gum, mg/100 ml	40.0	

(a) Bromine number.

(b) Vol-% of polars and olefins are 4.2 and 5.5, respectively (Table 3).

Table 3

MS Analysis of H-Coal Naphtha 3531-1-2

<u>Hydrocarbon Types</u>	<u>Vol-%</u>				
Paraffins	16.2				
Naphthenes					
Monocycloparaffins	48.1				
Bi, Dicycloparaffins	7.2				
Tricycloparaffins	0.2				
Aromatics					
Alkylbenzenes	12.7				
Indanes/tetralins	5.8				
Naphthalenes	0.1				
Polars					
Phenols	3.1				
Pyridines	0.8				
Thiophenes	0.3				
Olefins*					
Monoolefins	1.3				
Diolefins or Monocycloolefins	3.7				
Triolefins or Dicyclomonoolefins	<u>0.5</u>				
Total	<u>100.0</u>				
<u>Carbon No.</u>	<u>Aromatics</u>	<u>Polars</u>			
	J=6	J=8	J=12		
5				0.4	
6	0.45			0.8	0.2
7	2.84			1.6	0.2
8	4.04	0.10		0.7	
9	2.96	1.67			
10	1.68	3.31	0.1		
11	0.68	0.71			
12	<u>0.03</u>	<u>0.02</u>			
Total	<u>12.68</u>	<u>5.81</u>	<u>0.1</u>	<u>3.1</u>	<u>0.8</u>

* The total olefin number was obtained by SiO_2 separation, but the split is estimated since no calibration coefficients are available.

Table 4

Inspections of H-Coal Hydrocrackate A

Sample No.	3531-15
°API @ 60°F	49.7
Sp. Gr. @ 60°F	0.7809
Distillation, ASTM D-86	
IBP, °F	120
5%	148
10%	162
20%	184
30%	202
40%	218
50%	233
60%	250
70%	269
80%	289
90%	319
95%	336
EP °F	400
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	13.09
Carbon, Wt-%	86.52
Sulfur, Wt-ppm	0.1
Nitrogen, Wt-ppm	0.1
Oxygen, Wt-ppm	40.9
Chloride, Wt-ppm	1.0
FIA, Vol-%	
A	33.6
P&N	66.4
M. S. Hydrocarbon Types, Vol-%	
A	34.43
N	52.35
P	13.22
RON, Clear	84.2
Bromine Index	298

Table 5

Inspections of H-Coal Hydrocrackate B

Sample No.	3531-18
°API @ 60°F	49.4
Sp. Gr. @ 60°F	0.7822
Distillation, ASTM D-86	
IBP, °F	127
5%	156
10%	172
20%	194
30%	213
40%	231
50%	248
60%	262
70%	288
80%	311
90%	342
95%	375
EP °F	518
% Over	98.5
% Bottoms	1.5
Hydrogen, Wt-%	13.47
Carbon, Wt-%	86.13
Sulfur, Wt-ppm	8.2
Nitrogen, Wt-ppm	0.13
Oxygen, Wt-ppm	40.9
Chloride, Wt-ppm	<1
FIA, Vol-%	
A	23.3
P&N	76.7
M S Hydrocarbon Types, Vol-%	
A	23.26
N	62.05
P	14.69
RON, Clear	80.2
Bromine Index	126.0

Table 6

Upgrading H-Coal Naphtha

Plant 629, Run 215

LHSV/LHSV (base): 0.125; P-P (base), psig: 450

<u>Period No.</u>	<u>Hours on Stream</u>	<u>T-T(base), °C</u>	<u>S, ppm</u>	<u>N, ppm^(a)</u>	<u>O, ppm</u>
Feed			1289	1930	5944
LO	32	18	~0.7	1.3	25
4	93	23	~0.7	1.4	13
6	128	23	0.72	-	-
8	153	23	1.4	3.2	33
9	182	28	0.38	3.2	-
11	200	33	0.51	1.0	20
15	272	33	0.51	3.0	22
17	296	33	-	0.76	-
19	323	33	-	0.76	-

(a) Products which contain more than 1 ppm N are to be reprocessed in Run 216 in order to reduce N content to 1 ppm.

Table 7

Upgrading H-Coal Naphtha

Plant 629, Run 216

P-P (base), psig: 450

Period No.	Hours on Stream	T-T (base), °C	LHSV/LHSV(base)	S, ppm	N, ppm ^(a)	O, ppm
Feed				1289	1930	5944
LO	20	33	0.125	0.76	23	
5	88	33	0.125	0.76	33	
8	135	33	0.125	2.1		
10 ^(b)	160	42	0.125	0.13		
11	183	43	0.125	0.13	10	
13	206	43	0.188			
18	257	43	0.188	0.13		

(a) Products which contain more than 1 ppm N are to be reprocessed.

(b) Began to reprocess products with more than 1 ppm N.

Table 8

Upgrading H-Coal Naphtha 3531-1-2
Product Distribution

Plant 629, Runs 215 and 216

Product Distribution, Wt-% of Feed

Liquid Product ^(a)	99.9
Gas (C ₁ -C ₄)	<0.1
H ₂ O	0.7
H ₂ S	0.1
NH ₃	<u>0.2</u>
Total	<u>100.9</u>
H ₂ Consumption, Wt-% of Feed	0.9
H ₂ Consumption, SCF/bbl	480

(a) Designated as upgraded H-Coal naphtha 3531-4.

Table 9

Upgrading of H-Coal Naphtha 3531-1-2
Distribution of Hydrogen Consumption

Plant 629, Runs 215 and 216

Hydrogen Consumption, Wt-%

Liquid Product ^(a)	86.2
Gas (C ₁ -C ₄)	<0.1
H ₂ O	8.3
H ₂ S	0.9
NH ₃	<u>4.6</u>
Total	<u>100.0</u>
Total Hydrogen Consumption, SCF/bbl	480

(a) Designated as upgraded H-Coal naphtha 3531-4.

Table 10
Distribution of Upgraded H-Coal Naphtha

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
n-Butane }		
Isopentane }	1.4	2.0
n-Pentane }		
Cyclopentane	0.4	0.4
C ₆ Plus	98.2	97.6
Total	100.0	100.0

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	15.96
Naphthenes	
Monocycloparaffins	55.02
Bi, Dicycloparaffins	9.49
Tricycloparaffins	0.09
Aromatics	
Alkylbenzenes	16.54
Indans, Tetalins	2.83
Naphthalenes	0.07
Total	100.00

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J=6	J=8	J=12
6	3.47	9.71	1.34		
7	2.46	15.57	4.77		
8	2.45	12.53	5.06	0.0	
9	5.99	9.85	3.09	0.76	
10	0.93	5.27	1.65	1.68	0.07
11	0.66	2.00	0.63	0.33	0.00
12	0.00	0.09	0.00	0.06	0.00
13	0.00	0.00	0.00	0.00	0.00
Total	15.96	55.02	16.54	2.83	0.07

Table 11

Platforming[®] Upgraded H-Coal Naphtha 3531-4

Plant 636, Run 220

Period No.	Feed	1	2	4	5
Reforming Conditions					
P-P (base), psig		0	0	0	0
T-T (base), °C		-52	-52	-59	-66
LHSV/LHSV (base)		1.43	1.49	1.48	1.51
Product Yields					
H ₂		3.4	3.2	3.1	3.0
C ₁ -C ₃		0.8	0.7	0.5	0.3
n-C ₄	0.4	0.5	0.6	0.5	0.4
i-C ₄		0.2	0.2	0.1	0.0
C ₅ +	99.6	99.5	95.2	95.8	96.3
Total	100.0	100.0	100.0	100.0	100.0
Product (C₅+) Inspection					
°API @ 60°F	46.8	36.0	35.3	35.8	36.9
SP.Gr. @ 60°F	0.7936	0.8448	0.8483	0.8458	0.8403
Distillation, ASTM D-86					
IBP, °F	153	161	156	165	164
5%	185	188	186	191	190
10%	199	201	200	202	204
30%	231	238	239	240	240
50%	263	272	274	276	277
70%	306	311	316	318	321
90%	352	367	370	370	372
95%	367	393	396	391	395
EP	393	462	453	444	425
RON, Clear	66.8	99.8	99.8	98.7	97.7
Elemental Analysis					
Hydrogen, Wt-%					10.74
Carbon, Wt-%					88.92

Table 11 (Cont'd.)

<u>Period No.</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>
Reforming Conditions					
P-P (base), psig	0	0	0	0	0
T-T (base), °C	-66	-78	-78	-88	-88
LHSV/LHSV (base)	1.53	1.49	1.45	1.43	1.49
Product Yields					
H ₂	3.0	2.8	2.8	2.6	2.5
C ₁ -C ₃	0.3	0.2	0.2	0.2	0.2
n-C ₄	0.4	0.5	0.4	0.4	0.2
i-C ₄					0.2
C ₅ +	96.3	91.1	96.7	91.9	97.1
Total	100.0	91.6	100.0	92.3	100.0
					92.5
					97.1
					92.7
Product (C₅+) Inspection					
°API @ 60°F	36.6	37.5	37.8		38.2
Sp. Gr. @ 60°F	0.8418	0.8373	0.8358		0.8338
Distillation, ASTM D-86					
IBP, °F	166	169	160		169
5%	188	192	188		194
10%	201	204	201		206
30%	237	238	237		239
50%	274	275	272		275
70%	310	312	312		317
90%	358	368	367		366
95%	397	392	387		384
EP	452	435	438		418
RON, Clear	97.7	96.0	95.9	94.4	94.2
Elemental Analysis					
Hydrogen, Wt-%					11.76
Carbon, Wt-%					88.20

Table 11 (Cont'd.)

Period No.	11	12	13	14
Reforming Conditions				
P-P (base), psig	0	0	0	0
T-T (base), °C	-33	-33	-18	-18
LHSV/LHSV (base)	1.56	1.40	1.55	1.50
Product Yields	Wt-%	Vol-%	Wt-%	Vol-%
H ₂	3.3	3.6	3.2	3.4
C ₁ -C ₃	0.9	1.0	1.2	1.2
n-C ₄	0.4	0.6	0.5	0.4
i-C ₄	0.1	0.2	0.2	0.2
C ₅ +	95.3	89.2	94.7	88.6
Total	100.0	90.0	100.0	89.4
Product (C ₅ +) Inspection				
°API @ 60°F				33.7
Sp. Gr. @ 60°F				0.8565
Distillation, ASTM D-86				
IBP, °F				162
5%				188
10%				204
30%				241
50%				276
70%				317
90%				372
95%				394
EP				452
RON, Clear	100.9	101.3	102.3	102.6
Elemental Analysis				
Hydrogen, Wt-%				10.11
Carbon, Wt-%				88.96

Table 12

Platforming Upgraded H-Coal Naphtha 3531-4
Product Distribution and M S Analysis
Plant 636, Run 220, Period 10

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.5	
C ₁ -C ₃	0.2	
n-C ₄	0.2	0.2
i-C ₄	0.0	0.0
n-C ₅	1.9	2.4
i-C ₅	0.5	0.6
C ₆ Plus	<u>94.7</u>	<u>89.5</u>
Total	<u>100.0</u>	<u>92.7</u>

Reformate (C₅ Plus)

Yield, Vol-%	92.5
RON, Clear	94.2

M S Analysis of C₅ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	17.84
Naphthenes	
Monocycloparaffins	14.90
Bi, Dicycloparaffins	1.45
Tricycloparaffins	0.00
Aromatics	
Alkylbenzenes	55.78
Indans, Tetralins	8.41
Naphthalenes	<u>1.62</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	<u>Paraffins</u>	<u>Monocyclo- paraffins</u>	<u>Aromatics</u>		
			<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	3.54	5.20	9.79		
7	4.26	4.34	17.63		
8	3.59	2.71	13.67	0.0	
9	2.74	1.61	8.27	2.83	
10	2.24	0.77	4.30	4.27	1.05
11	1.47	0.27	1.84	1.18	0.52
12	0.0	0.0	0.28	0.13	0.05
13	0.0	0.0	0.0	0.0	0.0
Total	<u>17.84</u>	<u>14.90</u>	<u>55.78</u>	<u>8.41</u>	<u>1.62</u>

Table 13

Platforming Upgraded H-Coal Naphtha 3531-4
Product Distribution and M S Analysis
Plant 636, Run 220, Period 5

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	3.0	
C ₁ - C ₃	0.3	
<u>n</u> -C ₄	0.4	0.6
<u>i</u> -C ₄	0.0	0.0
<u>n</u> -C ₅	2.6	3.3
<u>i</u> -C ₅	0.8	1.0
C ₆ Plus	<u>92.9</u>	<u>86.8</u>
Total	<u>100.0</u>	<u>91.7</u>

Reformate (C₅ Plus)

Yield, Vol-%	91.1
RON, Clear	97.7

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	18.85
Naphthenes	
Monocycloparaffins	8.80
Bi, Dicycloparaffins	0.63
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	61.99
Indans, Tetralins	7.72
Naphthalenes	<u>2.01</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	3.30	4.00	13.30		
7	4.15	1.40	20.60		
8	3.77	1.80	14.77	0.0	
9	2.94	1.13	8.05	3.09	
10	2.60	0.39	3.71	3.73	1.28
11	1.66	0.08	1.38	0.84	0.64
12	0.43	0.0	0.18	0.06	0.09
13	0.0	0.0	0.0	0.0	0.0
Total	<u>18.85</u>	<u>8.80</u>	<u>61.99</u>	<u>7.72</u>	<u>2.01</u>

Table 14

Platforming Upgraded II-Coal Naphtha 3531-4

Product Distribution and M S Analysis

Plant 636, Run 220, Period 14

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	3.4	
C ₁ - C ₃	1.2	
<u>n</u> -C ₄	0.4	0.6
<u>i</u> -C ₄	0.2	0.2
<u>n</u> -C ₅	1.6	2.0
<u>i</u> -C ₅	0.8	1.0
C ₆ Plus	<u>92.4</u>	<u>85.1</u>
Total	<u>100.0</u>	<u>88.9</u>
<u>Reformate (C₅ Plus)</u>		
Yield, Vol-%		88.1
RON, Clear		102.6

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	11.71
Naphthenes	
Monocycloparaffins	4.63
Bi, Dicycloparaffins	0.32
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	74.38
Indans, Tetralins	6.33
Naphthalenes	<u>2.63</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

<u>Carbon Number</u>	<u>Paraffins</u>	<u>Monocyclo-paraffins</u>	<u>Aromatics</u>		
			<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	3.43	2.30	13.96		
7	3.61	0.98	24.65		
8	2.46	0.89	18.20		
9	1.25	0.39	10.60	2.86	
10	0.70	0.07	4.89	2.87	1.59
11	0.26	0.0	1.82	0.55	0.86
12	0.0	0.0	0.26	0.05	0.16
13	0.0	0.0	0.0	0.0	0.02
Total	<u>11.71</u>	<u>4.63</u>	<u>74.38</u>	<u>6.33</u>	<u>2.63</u>

Table 15

Distribution of H-Coal Hydrocrackate A (3531-15)

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
n-Butene	-	-
Isopentane	0.6	0.8
n-Pentane	0.1	0.1
Cyclopentane	-	-
C ₆ Plus	<u>99.3</u>	<u>99.1</u>
Total	<u>100.0</u>	<u>100.0</u>

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	13.22
Naphthenes	
Monocycloparaffins	43.10
Bi, Dicycloparaffins	9.25
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	32.31
Indans, Tetralins	2.12
Naphthalenes	0.0
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-Paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	5.50	6.20	8.88		
7	4.26	12.45	9.87		
8	2.60	11.40	6.67	0.00	
9	0.80	7.34	3.17	2.05	
10	0.00	5.25	3.72	0.07	0.0
11	0.04	0.46	0.00	0.00	0.0
12	0.00	0.00	0.00	0.00	0.0
13	0.00	0.00	0.00	0.00	0.0
Total	<u>13.22</u>	<u>43.10</u>	<u>32.31</u>	<u>2.12</u>	<u>0.0</u>

Table 16

Distribution of H-Coal Hydrocrackate B (3531-18)

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
n-Butane	0.6	0.8
Isopentane	5.2	6.5
n-Pentane	0.7	0.9
Cyclopentane	0.3	0.4
C ₆ Plus	93.2	91.4
Total	100.0	100.0

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	14.69
Naphthenes	
Monocycloparaffins	48.71
Bi, Dicycloparaffins	13.03
Tricycloparaffins	0.31
Aromatics	
Alkylbenzenes	20.19
Indans, Tetralins	3.01
Naphthalenes	0.06
Total	100.00

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	3.17	6.70	3.72		
7	2.36	12.68	6.95		
8	2.77	13.11	5.30	0.0	
9	3.66	8.70	2.97	2.76	
10	1.88	6.11	1.25	0.25	0.06
11	0.85	1.02	0.00	0.00	0.00
12	0.00	0.18	0.00	0.00	0.00
13	0.00	0.21	0.00	0.00	0.00
Total	14.69	48.71	20.19	3.01	0.06

Table 17

Period No.	Feed	Platforming H-Coal Hydrocrackate A (3531-15) Plant 508, Run 1457							
		1		2		3		4	
Reforming Conditions									
P-P (base), psig		0		0		0		0	
T-T (base), °C		-78		-103		-118		-133	
LHSV/LHSV (base)		1.50		1.51		1.45		1.45	
Product Yields	Wt-%	Vol-%	Wt-%	Vol-%	Wt-%	Vol-%	Wt-%	Vol-%	Wt-%
H ₂			1.7		1.2		0.9		0.6
C ₁ -C ₃			0.5		0.3		0.2		0.2
n-C ₄			0.5	0.6	0.4	0.6	0.5	0.7	0.6
i-C ₄			0.2	0.3	0.2	0.2	0.1	0.2	0.1
C ₅ Plus	100.0	100.0	97.1	93.4	97.9	95.6	98.3	96.3	98.5
Total	100.0	100.0	100.0	94.3	100.0	96.4	100.0	97.2	100.0
Product (C ₅ ⁺) Inspection									
°API @ 60°F	49.7		44.3		41.0		45.2		46.2
Sp.Gr. @ 60°F	0.7809		0.8049		0.8203		0.8008		0.7963
Distillation, ASTM D-86									
IBP, °F	120		140		152		132		140
5%	148		160		170		152		162
10%	162		174		180		165		173
30%	202		210		216		201		208
50%	233		245		253		235		241
70%	269		290		297		277		282
90%	319		344		351		331		336
95%	336		380		375		350		362
EP	400		424		427		410		430
RON, Clear	84.2		98.9		96.6		93.7		91.6
Elemental Analysis									
Hydrogen, Wt-%	13.09		11.92		12.33		12.42		12.70
Carbon, Wt-%	86.52		88.33		87.50		88.26		88.07
Sulfur, Wt-ppm	0.1		0.1		<0.1		<0.1		<0.1
Nitrogen, Wt-ppm	0.1		0.1		0.1		0.1		0.1

Table 17 (Cont'd.)

<u>Period No.</u>	<u>5</u>	<u>6</u>	<u>7</u>
Reforming Conditions			
P-P (base), psig	0	0	0
T-T (base), °C	-78	-58	-38
LHSV/LHSV (base)	1.49	1.53	1.47
Product Yields			
H ₂	1.7	1.8	2.1
C ₁ -C ₃	0.5	0.8	1.1
n-C ₄	0.6	0.7	0.6
i-C ₅	0.1	0.2	0.2
C ₅ Plus	<u>97.1</u>	<u>93.6</u>	<u>96.0</u>
Total	<u>100.0</u>	<u>94.6</u>	<u>100.0</u>
Product (C₅+) Inspection			
°API @ 60°F	42.3	41.7	40.5
Sp.GR. @ 60°F	0.8134	0.8170	0.8227
Distillation, ASTM D-86			
IBP, °F	138	126	134
5%	160	150	154
10%	171	176	167
30%	209	208	212
50%	247	245	252
70%	285	287	289
90%	346	340	348
95%	367	360	372
EP	429	418	448
RON, Clear	98.3	99.6	101.2
Elemental Analysis			
Hydrogen, Wt-%	11.50	10.89	10.48
Carbon, Wt-%	88.81	88.65	88.66
Sulfur, Wt-ppm	<0.1	<0.1	<0.1
Nitrogen, Wt-ppm	0.1	0.1	0.1

Table 18

 Platforming H-Coal Hydrocrackate B (3531-18)
 Plant 508, Run 1458

Period No.	Feed	1	2	3	4	5
Reforming Conditions						
P-P (base), psig		0	0	0	0	0
T-T (base), °C		-118	-98	-78	-53	-13
LHSV/LHSV (base)		1.48	1.49	1.50	1.49	1.50
Product Yields	Wt-%	Vol-%	Wt-%	Vol-%	Wt-%	Vol-%
H ₂			0.9	1.2	1.5	1.9
C ₁ -C ₃			0.2	0.3	0.5	0.9
n-C ₄			0.4	0.6	0.6	0.7
i-C ₅			0.1	0.2	0.2	0.2
C ₅ Plus	100.0	100.0	98.4	96.5	97.2	94.1
Total	100.0	100.0	100.0	97.3	100.0	96.2
Product (C ₅ +) Inspection						
°API @ 60°F		49.4	45.4	44.1	43.4	41.9
Sp.Gr. @ 60°F		0.7822	0.7999	0.8053	0.8090	0.8160
Distillation, ASTM D-86						
IBP, °F		127	134	143	140	132
5%		156	159	165	160	159
10%		172	172	178	175	173
30%		213	214	216	217	217
50%		248	248	252	255	257
70%		288	291	296	299	301
90%		342	342	349	356	354
95%		375	379	399	392	381
EP		518	524	524	510	461
RON, Clear		80.2	90.6	93.6	95.6	98.1
Elemental Analysis						
Hydrogen, Wt-%		13.47	12.39	11.99	11.57	11.42
Carbon, Wt-%		86.13	87.75	87.86	87.67	88.52
Sulfur, Wt-ppm		8.2	< 0.1	<0.1	<0.1	<0.1
Nitrogen, Wt-ppm		0.13	0.1	0.1	0.1	0.1

Table 19

Platforming H-Coal Hydrocrackate A (3531-15)
Product Distribution and M S Analysis

Plant 508, Run 1457, Period 1

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	1.7	
C ₁ -C ₃	0.5	
n-C ₄	0.5	0.6
i-C ₄	0.2	0.3
n-C ₅	1.3	1.6
i-C ₅	6.0	7.6
C ₆ Plus	<u>89.8</u>	<u>84.2</u>
Total	<u>100.0</u>	<u>94.3</u>

Reformate (C₅ Plus)

Yield, Vol-%	93.4
RON, Clear	98.9

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	15.66
Naphthenes	
Monocycloparaffins	12.58
Bi, Dicycloparaffins	1.26
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	65.86
Indans, Tetralins	4.35
Naphthalenes	<u>0.29</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J-12
6	4.53	6.30	7.43		
7	4.28	3.73	20.23		
8	3.58	1.59	19.54	0.0	
9	2.05	0.59	11.85	2.34	
10	1.22	0.37	6.07	2.01	0.29
11	0.0	0.0	0.74	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0
Total	<u>15.66</u>	<u>12.58</u>	<u>65.86</u>	<u>4.35</u>	<u>0.29</u>

Table 20

Platforming H-Coal Hydrocrackate A (3531-15)
Product Distribution and M S Analysis

Plant 508, Run 1457, Period 4

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	0.6	
C ₁ -C ₃	0.2	
n-C ₄	0.6	0.8
i-C ₄	0.1	0.2
n-C ₅	1.4	1.8
i-C ₅	6.6	8.3
C ₆ Plus	<u>90.5</u>	<u>86.9</u>
Total	<u>100.0</u>	<u>98.0</u>

Reformate (C₅ Plus)

Yield, Vol-%	97.0
RON, Clear	91.6

M S Analysis of C₆ Plus Fraction, Vol-%

1. Hydrocarbon Types

Paraffins	9.56
Naphthenes	
Monocycloparaffins	26.69
Bi, Dicycloparaffins	4.20
Tricycloparaffins	0.13
Aromatics	
Alkylbenzenes	52.23
Indans, Tetralins	6.73
Naphthalenes	0.46
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	0.22	7.70	11.17		
7	0.96	2.39	16.33		
8	1.35	4.83	13.42	0.0	
9	3.77	4.74	7.38	4.09	
10	1.87	3.37	3.52	2.31	0.20
11	1.38	2.17	0.41	0.33	0.07
12	0.0	0.98	0.0	0.0	0.08
13	0.01	0.51	0.0	0.0	0.11
Total	<u>9.56</u>	<u>26.69</u>	<u>52.23</u>	<u>6.73</u>	<u>0.46</u>

Table 21

Platforming H-Coal Hydrocrackate A (3531-15)
Product Distribution and M S Analysis

Plant 508, Run 1457, Period 7

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.1	
C ₁ -C ₃	1.1	
n-C ₄	0.6	0.8
i-C ₄	0.2	0.3
n-C ₅	2.2	2.8
i-C ₅	6.2	7.7
C ₆ Plus	<u>87.6</u>	<u>81.0</u>
Total	<u>100.0</u>	<u>92.6</u>

Reformate (C₅ Plus)

Yield, Vol-%	91.5
RON, Clear	101.2

M. S. Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	13.14
Naphthenes	
Monocycloparaffins	6.08
Bi, Dicycloparaffins	0.59
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	75.45
Indans, Tetralins	4.29
Naphthalenes	<u>0.45</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	8.06	4.60	9.02		
7	4.26	1.11	24.22		
8	0.82	0.37	22.37	0.12	
9	0.0	0.0	12.60	2.31	
10	0.0	0.0	6.51	1.86	0.35
11	0.0	0.0	0.73	0.0	0.10
12	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0
Total	<u>13.14</u>	<u>6.08</u>	<u>75.45</u>	<u>4.29</u>	<u>0.45</u>

Table 22

Platforming H-Coal Hydrocrackate B (3531-18)
Product Distribution and M S Analysis

Plant 508, Run 1458, Period 1

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	0.9	
C ₁ -C ₃	0.2	
n-C ₄	0.4	0.6
i-C ₄	0.1	0.2
n-C ₅	1.4	1.7
i-C ₅	6.0	7.5
C ₆ Plus	<u>91.0</u>	<u>87.3</u>
Total	<u>100.0</u>	<u>97.3</u>

Reformate (C₅ Plus)

Yield, Vol-%	96.5
RON, Clear	90.6

M. S. Analysis of C₆ Plus Fraction, Vol-%.

I. Hydrocarbon Types	
Paraffins	15.03
Naphthenes	
Monocycloparaffins	31.35
Bi, Dicycloparaffins	7.09
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	41.76
Indans, Tetralins	4.25
Naphthalenes	<u>0.52</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	6.39	5.70	6.80		
7	4.57	12.12	10.59		
8	3.44	8.33	10.77	0.0	
9	0.51	3.51	7.79	1.90	
10	0.12	1.69	4.93	1.94	0.18
11	0.0	0.0	0.81	0.31	0.14
12	0.0	0.0	0.03	0.05	0.11
13	0.0	0.0	<u>0.04</u>	<u>0.04</u>	<u>0.09</u>
Total	<u>15.03</u>	<u>31.35</u>	<u>41.76</u>	<u>4.25</u>	<u>0.52</u>

Table 23

Platforming H-Coal Hydrocrackate B (3531-18)
Product Distribution and M S Analysis

Plant 508, Run 1458, Period 2

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	1.2	
C ₁ -C ₃	0.3	
n-C ₄	0.9	1.2
i-C ₄	0.1	0.2
n-C ₅	1.2	1.5
i-C ₅	5.1	6.3
C ₆ Plus	<u>91.2</u>	<u>87.0</u>
Total	<u>100.0</u>	<u>96.2</u>

Reformate (C₅ Plus)

Yield, Vol-%	94.8
RON, Clear	93.6

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	16.65
Naphthenes	
Monocycloparaffins	25.91
Bi, Dicycloparaffins	4.69
Tricycloparaffins	0.23
Aromatics	
Alkylbenzenes	47.26
Indans, Tetralins	4.70
Naphthalenes	<u>0.56</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

<u>Carbon Number</u>	<u>Paraffins</u>	<u>Monocyclo-paraffins</u>	<u>Aromatics</u>	<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	5.14	5.70	6.46			
7	4.36	9.81	13.84			
8	3.94	6.05	13.15	0.00		
9	1.97	2.57	8.22	2.12		
10	1.22	1.49	4.79	2.25	0.22	
11	0.02	0.29	0.80	0.35	0.15	
12	0.00	0.00	0.00	0.00	0.12	
13	0.00	0.00	0.00	0.00	0.07	
Total	<u>16.65</u>	<u>25.91</u>	<u>47.26</u>	<u>4.70</u>	<u>0.56</u>	

Table 24

Platforming H-Coal Hydrocrackate B (3531-18)
Product Distillation and M S Analysis

Plant 508, Run 1458, Period 3

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H_2	1.5	
$\text{C}_1 - \text{C}_3$	0.5	
n-C_4	0.6	0.8
i-C_4	0.2	0.2
n-C_5	1.3	1.6
i-C_5	5.4	6.7
C_6 Plus	<u>90.5</u>	<u>85.8</u>
Total	<u>100.0</u>	<u>95.1</u>

Reformate (C₅ Plus)

Yield, Vol-%	94.1
RON, Clear	95.6

M. S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	15.27
Naphthenes	
Monocycloparaffins	21.30
Bi, Dicycloparaffins	3.32
Tricycloparaffins	0.21
Aromatics	
Alkylbenzenes	54.20
Indans, Tetralins	5.05
Naphthalenes	<u>0.65</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	3.97	6.40	7.76		
7	3.89	7.34	14.60		
8	3.83	4.39	14.81	0.0	
9	2.10	1.84	9.83	2.12	
10	1.48	1.10	6.08	2.52	0.25
11	0.0	0.23	1.10	0.41	0.18
12	0.0	0.0	0.02	0.0	0.12
13	0.0	0.0	0.0	0.0	0.10
Total	<u>15.27</u>	<u>21.30</u>	<u>54.20</u>	<u>5.05</u>	<u>0.65</u>

Table 25

Platforming H-Coal Hydrocrackate B (3531-18)
Product Distribution and M S Analysis

Plant 508, Run 1458, Period 4

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	1.9	
C ₁ -C ₃	0.9	
n-C ₄	0.7	1.0
i-C ₄	0.2	0.3
n-C ₅	1.5	1.9
i-C ₅	5.2	6.5
C ₆ Plus	<u>89.6</u>	<u>84.0</u>
Total	<u>100.0</u>	<u>93.7</u>

Reformate (C₅ Plus)

Yield, Vol-%	92.4
RON, Clear	98.1

M S Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Thpes		
Paraffins		15.13
Naphthenes		
Monocycloparaffins		13.64
Bi, Dicycloparaffins		2.19
Tricycloparaffins		0.00
Aromatics		
Alkylbenzenes		62.94
Indans, Tetralins		5.26
Naphthalenes		<u>0.84</u>
Total		<u>100.00</u>

II. Carbon Numbers Distribution

<u>Carbon Number</u>	<u>Paraffins</u>	<u>Monocyclo-paraffins</u>	<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	6.97	5.20	9.59		
7	5.05	5.45	18.14		
8	2.58	2.37	16.62	0.00	
9	0.53	0.62	10.59	2.12	
10	0.00	0.00	6.69	2.66	0.33
11	0.00	0.00	1.22	0.37	0.25
12	0.00	0.00	0.06	0.07	0.14
13	0.00	0.00	0.03	0.04	0.12
Total	<u>15.13</u>	<u>13.64</u>	<u>62.94</u>	<u>5.26</u>	<u>0.84</u>

Table 26

Platforming H-Coal Hydrocrackate B (3531-18)
Product Distribution and M S Analysis

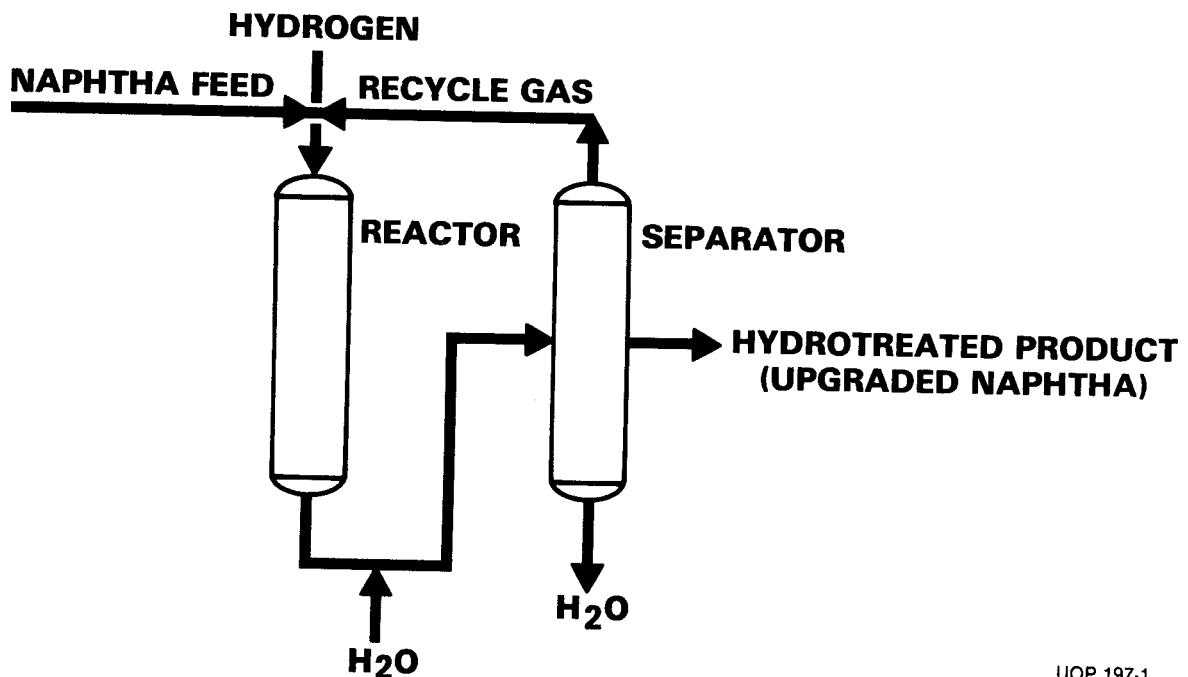
Plant 508, Run 1458, Period 5

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.2	
C ₁ -C ₃	2.0	
n-C ₄	0.9	1.2
i-C ₄	0.4	0.5
n-C ₅	3.8	4.8
i-C ₅	4.7	5.9
C ₆ Plus	<u>86.0</u>	<u>79.1</u>
Total	<u>100.0</u>	<u>91.5</u>

Reformate (C₅ Plus)

Yield, Vol-%	89.8
RON, Clear	99.8

M S Analysis of C₆ Plus Fraction, Vol-%


I. Hydrocarbon Types

Paraffins	10.57
Naphthenes	
Monocycloparaffins	7.15
Bi, Dicycloparaffins	0.99
Tricycloparaffins	0.00
Aromatics	
Alkylbenzenes	73.11
Indans, Tetralins	6.24
Naphthalenes	<u>1.94</u>
Total	<u>100.00</u>

II. Carbon Number Distribution

Carbon Number	Paraffins	Monocyclo-paraffins	Aromatics J = 6	Aromatics J = 8	Aromatics J = 12
6	5.41	3.30	9.69		
7	3.78	2.86	19.06		
8	1.38	0.99	18.42	0.02	
9	0.00	0.00	14.61	2.77	
10	0.00	0.00	9.57	2.99	0.93
11	0.00	0.00	1.65	0.40	0.52
12	0.00	0.00	0.07	0.06	0.27
13	0.00	0.00	0.04	0.00	0.22
Total	<u>10.57</u>	<u>7.15</u>	<u>73.11</u>	<u>6.24</u>	<u>1.94</u>

FIGURE 1
NAPHTHA HYDROTREATING PLANT

UOP 197-1

FIGURE 2
NAPHTHA REFORMING PLANT

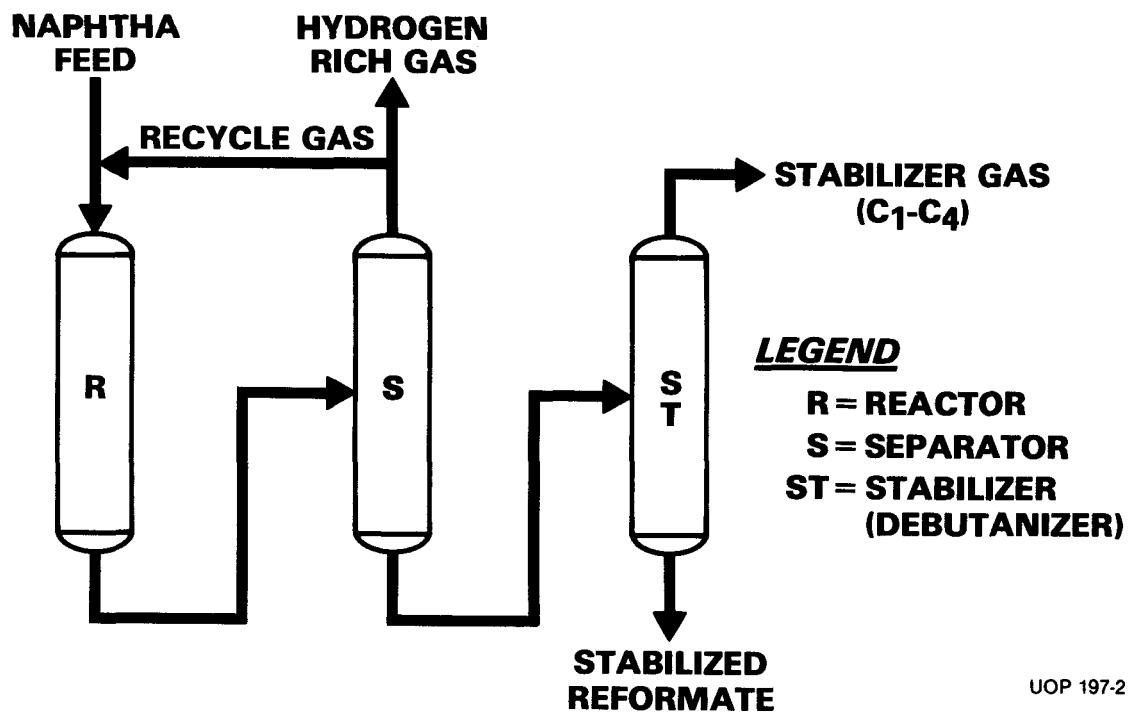
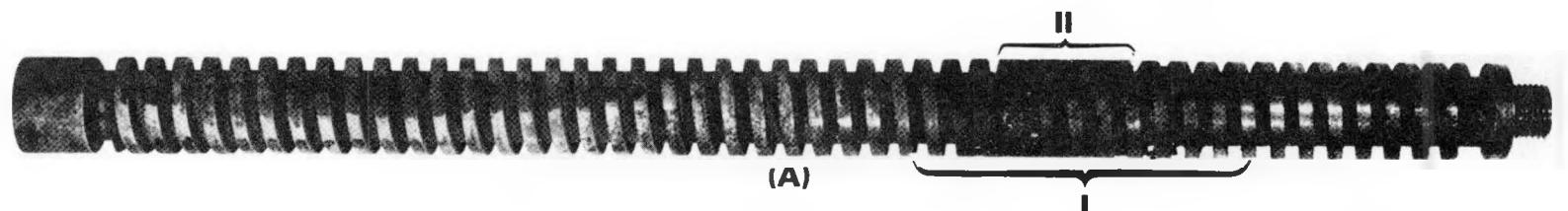
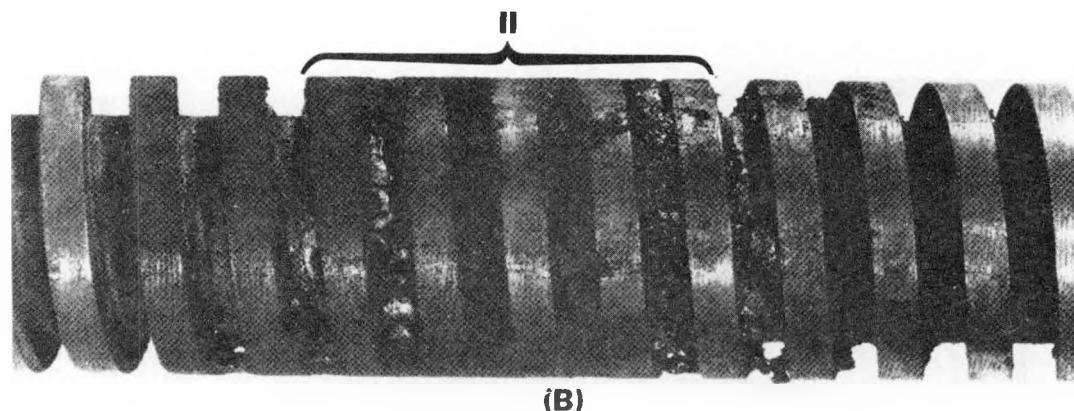
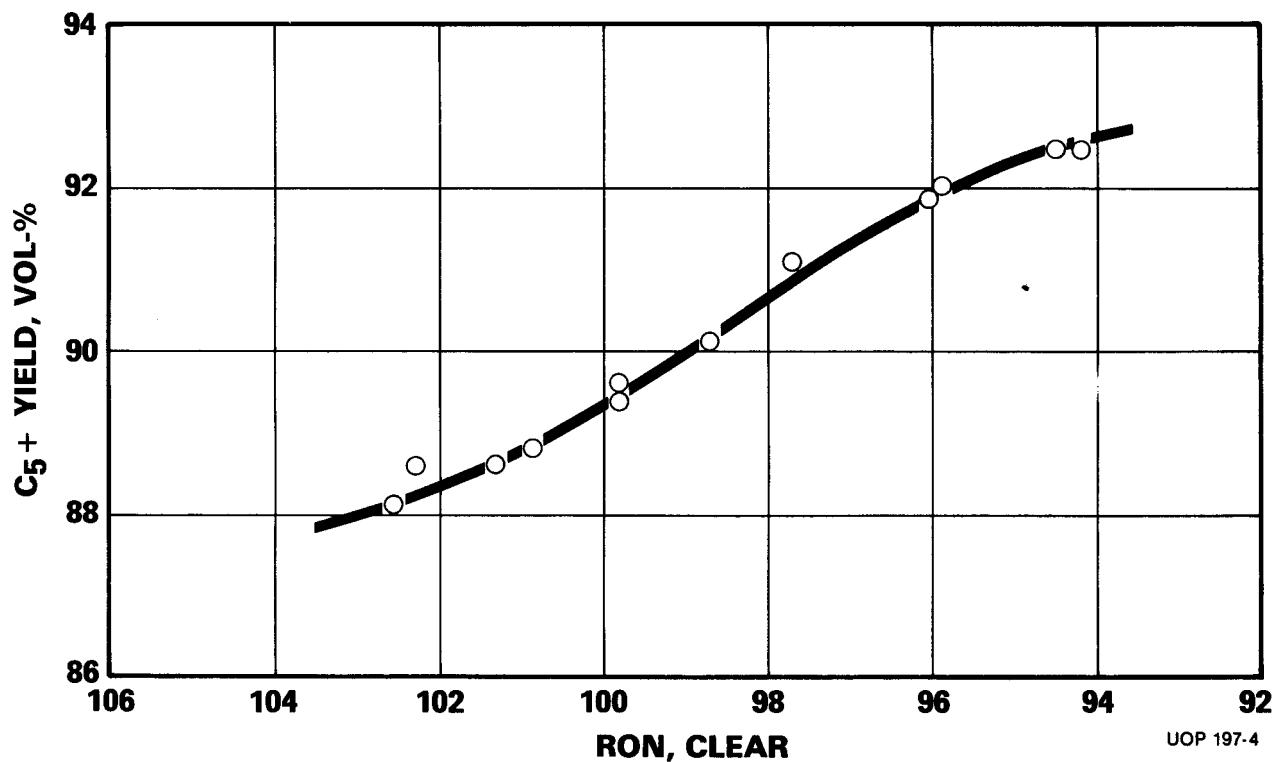
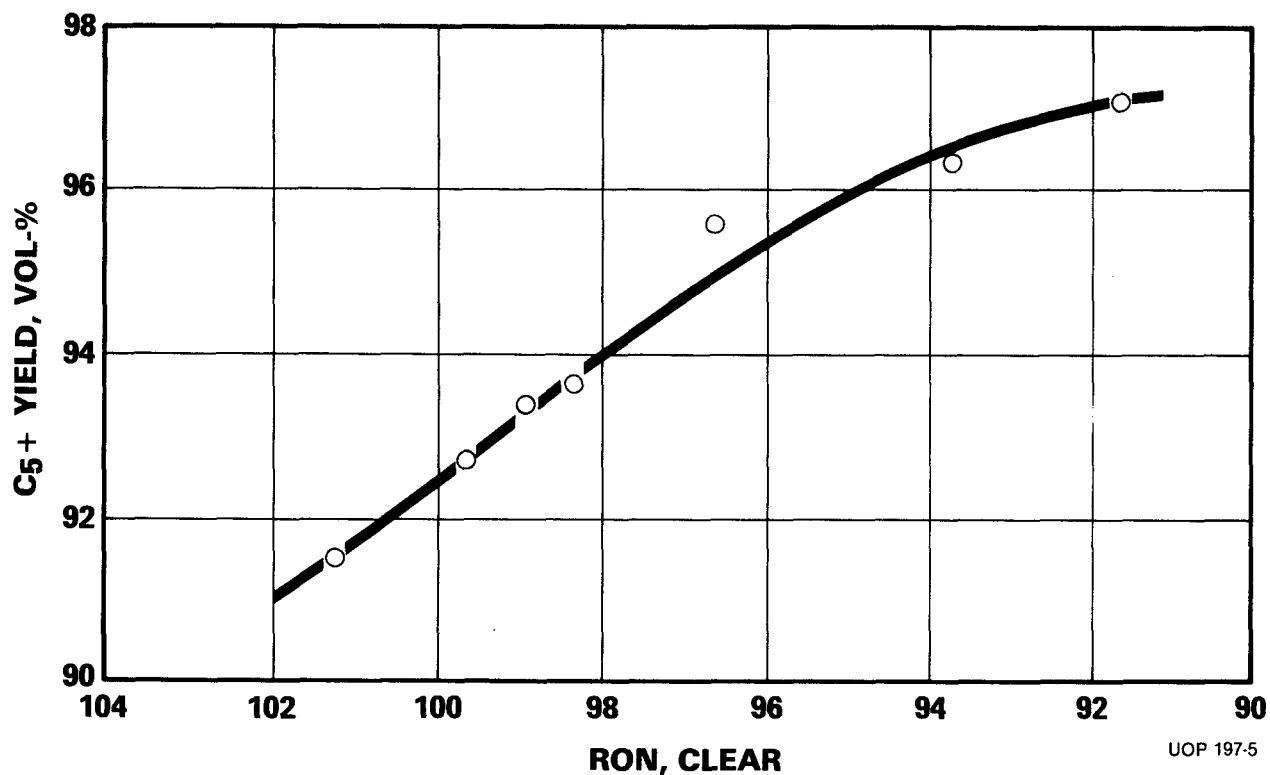




FIGURE 3

DEPOSIT OF CARBONACEOUS MATERIAL ON PREHEATER



THE 15-INCH SPIRAL PREHEATER



SECTION I OF THE 15-INCH SPIRAL PREHEATER

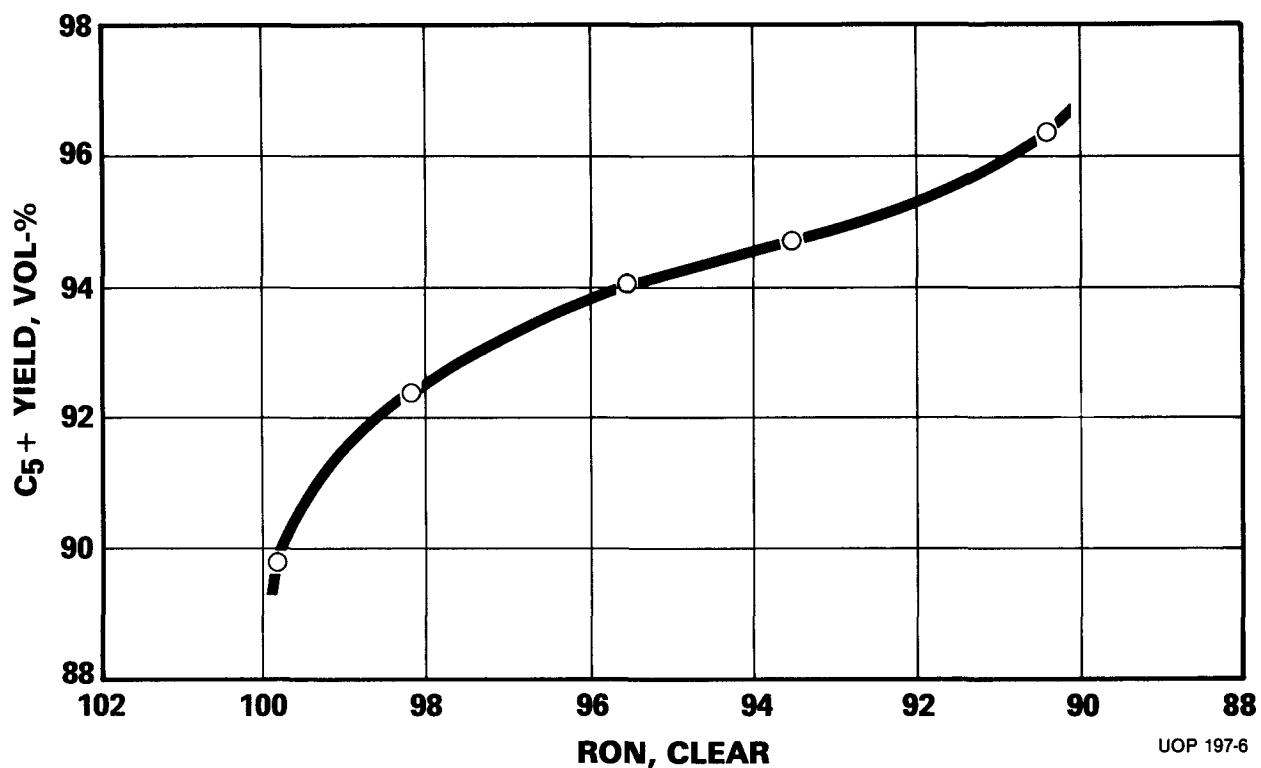

FIGURE 4
YIELD OCTANE CURVE
FOR UPGRADED H-COAL NAPHTHA

FIGURE 5
YIELD OCTANE CURVE
FOR H-COAL HYDROCRACKATE A

FIGURE 6
YIELD OCTANE CURVE
FOR H-COAL HYDROCRACKATE B

UOP 197-6