' SENT BY:Xerox Telecopier 7320 + 3=16-83 110:22AM 2158969708-708 252 5045 ® 2

DOE/ER/61371--1
EXHIBIT A DE93 009773

DOE Report No. DOE/ER/61371-1

Title and Subtitle "Foundationg fota Syntatic Pattérn
Recognitdan System for Germomic "DNA
Sequences"

Report Period - .
(1f applicable) 1 December 1991 through
. .31 March 1993 .

Personal Author(s) Dr. David B. Searles

Contractor's Name

Trustees of the ﬁniversity of Penmnsylvania
and Address

133 South 36th Street, Suite 300
Philadelphia, PA 19104-3246

Report Date March 1993

Prepared for

Department of Energy (THE U. S.)
DOE Sponsorahip and : ,
DOE Inscrument Number Agreement No. DE-FGO2-92ER61371

Ay
B

; . L
UISTRIBUTION 8F THIS DOCUMENT IS UNLIMITER

- ¢

Justification

Personnel

Prof. David Searls (30%). Dr. Searls will serve as principal investigator, making the major

design decisions and coordinating the work of all project staff and interactions with collabo-
rators.

Programmer/Analyst (100%). One full-time Master’s level person will be the chief program-
mer on the project, responsible for all graphical interface development, for integration of
new parser code and configuration control of the software package as a whole and associated
libraries, and for expert-level grammar development in association with collaborators.

Programmer/Analyst (40%). One additional Master’s level person specializing in systems pro-
- gramming and algorithins will devote 10% time performing systems administration tasks spe-
cific to this project, and 30% time working on the incorporation of advanced parser technology.

Programmer/Analyst (40%) One additional Master’s level person specializing in databases
and Prolog programming will be primarily responsible for adaptation of the system to new
input formats, including interconnection, database interfaces, header processing, and ASN.1
interface, and assisting in grammar design.

Budget Assistant (15%) The departmental office will provide program management support.

Equipment and Supplies

Workstation: The SPARCstation 10 requested under this application will be used by one of the
project staff (three existing SPARCstation 2’s will be provided for the remainder). This
significantly more powerful workstation will also be configured as a network “Parse Server”
for use in off-line batch parsing of computationally intensive queries on an availability basis,
and by collaborators for X-hosted remote access at any time. An annual service contract is
also budgeted, in line with our current arrangements.

Remote Access Software: Software for X-based access to the parse server from Macintosh, PC,

and X-terminal platforms will be necessary to promote the use of the system by collaborating
biologists without easy access to workstations.

Color Laser Printer: The extensive use of scientific visualization in the proposed work will re-
quire color output, and the relatively expensive supplies associated with it, for permanent

records of parses, reports, publications, and presentation transparencies, both for the staff
and for collaborators.

Miscellaneous Supplies: These will include copier supplies, general office supplies, costs of mail-
ing, etc.

Travel

Travel costs represent an annual estimate based on 2x5 person-days to Washington DC for scientific

and collaborator meetings, 1x4 person-days to San Francisco for scientific conferences, and 1x2
person-days to Boston for collaborator meetings.

1

Project Description

Objectives

The goal of the proposed work is to extend, refine, and apply the Principal Investigator’s research
into linguistic analysis of biological sequences. This will result in the creation of a software system
that will perform sophisticated pattern recognition and related functions (1) at a level of abstraction
and with expressive power beyond current general-purpose pattern-matching systems for biological
sequences; and (2) with a more uniform language, environment, and graphical user interface, and
with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms,
than current special-purpose analytic software. The specific aims to be accomplished are:

1.

Extended development of the graphical user interface and visualization tools. A current dy-
namic parse visualization tool will be enhanced, and supplemented with static data visualiza-
tion routines for high-level iconic depiction of parse results. A graphical interface will be im-

plemented to support interactive grammar development and refinement in a rapid-prototyping
mode.

Development of embeddability “hooks” for incorporation of, and by, other algorithms. The
system will be made into a platform for the application of other algorithms in a hierarchical
fashion, focusing them on regions of interest, providing a uniform environment for input,
output, and parameter management, and assembling results into the grammar’s structural

model. The grammar system itself will also be made embeddable in other platforms where
appropriate.

Incorporation of advanced parser technology and application to eukaryotic gene parsing. Cur-
rent developments in island parsing, probabilistic parsing, etc. will be embedded in the
system, driven by the specific practical problem of efficient recognition of protéin-coding eu-
karyotic genes. Current statistical and heuristic gene-finding algorithms will be adapted to

grammatical expression, to allow for greater flexibility and contextually structured applica-
tion.

Extension of the repertoire of input formats accepted and header information processed by
the parser. The current GenBank flat file entry parser will be extended to handle a variety
of other formats, and to extract additional information from features tables for graphical
depiction and high-level parsing. Facilities for transparent connection to relational databases
and ASN.l-formatted data streams will also be developed.

Eztension of the grammar system to encompass protein sequence at multiple levels. The parser
will be extended to accept single-letter protein code as its primary sequence, with which mo-
tifs will be described. Longer-term goals include the development of secondary structure

grammars and potentially even the description of tertiary structures using coordinate gram-
mars.

Collaborations aimed at specific biological and computational problems. In order to further
drive the development of the system in biologically relevant directions, collaborations with bi-
ologists for grammar development, and with computational biologists for parser development,
will be undertaken. A facility for remote access to the parser will be provided.

Distribution and promotion of the software and associated libraries. Periodic releases of the
software to any interested parties will be accompanied by full documentation and a reasonable

5

level of support, in particular in the development of new grammars. Grammars will be
maintained in a central, publicly-accessible repository of biological feature specifications, for
use either with the parser or with other programs.

2 Background

The task of describing and searching for substrings of interest in long biological sequences has
assumed a central role in experimental molecular biology. Here, we very briefly review current ap-
proaches, and then present technical background for the methodology proposed in this application.

2.1 Search in Molecular Biology

The task of search in biological sequences and sequence databases can be viewed in terms of varia-
tions on the basic problem of string search, or the discovery of a specified substring in a much longer
target string. Well established variants of this problem, all of which are useful in molecular biology,
include: (1) information retrieval search, which typically enhances the basic techniques with the
ability to specify boolean combinations of substrings that work against large, flat databases of text
to retrieve relevant blocks of information; (2) similarity search, in which dynamic programming and
other sophisticated computational techniques are used to retrieve examples of sequence data that
may share an evolutionary relationship to part or all of a given string, often by virtue of some mu-
tational model embodied in the algorithm; and (3) pattern-matching search, which involves a more
or less abstracted description or model of a substring or class of substrings of interest, as opposed
to an actual instance of such a string for comparison. We consider the latter two in particular.

2.1.1 Regular Expression and Similarity Search

By and large, similarity and pattern-matching sea.~h can be distinguished by their concept of the
object of the search: in similarity search, a concrete ezample is given to a special-purpose algorithm
that performs a single uniform style of search, whereas in pattern-matching search an abstract
description of a set of strings is given to a general-purpose algorithm whose exact computational
behavior depends on the nature of the specification. (Thus, the latter specification has more of the
flavor of a simple computer program than does the example string supplied to the former.)
Examples of regular expression pattern-matching search and similarity search software abound,
typified in the IntelliGenetics package by the QUEST and IFIND programs [26], respectively, and
in GCG by FindPattern and FastA [13]. Since full alignment dynamic programming algorithms
are inherently O(n?), these similarity search programs use speedups based, for example, on hash-
table lookup of k-tuples instead of individual bases; moure recent enhancements to similarity search
are aimed at even greater efficiency, as in BLAST [3], which sacrifices some sensitivity but in a
statistically well-founded way. On the other hand, enhancements to the inherently O(n) regular
expression search algorithm generally involve attempts to increase the expressive power of regular
expressions, particularly with features important to the domain such as inverted and direct repeats
[1, 62], without sacrificing efficiency. As we will see, adding such features is not simply a convenience,
for “native” regular expressions are unable to express unbounded repeats, and repeats of any length
are extremely awkward. Generally end-users of these regular expression matchers do not attempt
very complex expressions, since their inherently “flat” format makes it difficult to build up layered
specifications with many interdependencies. Nevertheless there has been much recent interest in

just such deep patterns, for example in certain forms of protein motifs, which make use of enhanced
regular expression pattern-matching [33].

2.1.2 Inductive Pattern Matching

Pattern specifications based on weight matrices [64, 68] or connectionist techniques [37, 61, 65]
have been used extensively in molecular biology as well. Here the distinction between similarity
and pattern-matching search blurs. These methods can be viewed as similarity search in which
a number of exemplars, rather than a single search string, are supplied. On the other hand,
they can be viewed in terms of a pattern built up inductively. In the case of weight matrices,
that pattern may be abstracted as a consensus sequence, and the matrix can be considered to be
simply a subtler expression of the latter. There may be a much deeper model in the case of neural
network recognizers, but the structure of that model is typically far from apparent in the derived
“specification”. These techniques have the great advantage of being able to “learn” from properly
presented data, but the relative difficulty of inserting and/or extracting any hypothesized structure
in their patterns limits their utility in many contexts.

2.1.3 Special Purpose Pattern-Matchers

A number of programs have been written that detect what might be termed higher-order patterns,
but by and large these are specific to the purpose and may not be easily generalizable. Typical of
these are programs to find transfer RNAs in genomic sequences, of which the most successful has
been one developed at Los Alamos [16]. This was able to fairly reliably find known tRNA sequences
and when run over all of GenBank found a large number of previously unknown potential tRN As,
many of which are thought to be authentic. This is a procedural program which follows a flow chart
of activities ranging from applying weight matrices for known conserved sequences to analyzing the
potential for secondary structure. The latter source of information about the tRNA molecule
is interesting in that it represents dependencies between positions in the primary sequence rather
than outright conserved sequence. This aspect of tRNA was emphasized in another pattern-matcher
[22], which could also be generalized to other recurring secondary structures such as autocatalytic
introns; the pattern descriptors in this case were regular expression-like.

2.1.4 Gene Finding

Perhaps the most active current area of higher-order pattern recognition in biology is that of “gene
finding”. In actual practice, this activity seems to devolve tc two problems: recognizing signal
sequences, in particular splice sites, and distinguishing coding regions (exons) from noncoding
regions. To a large degree these problems are duals of each other, in that completely solving one
would essentially provide a solution to the other. Until recently, however, they were addressed
separately; recognition of splice sites was attempted using techniques such as weight matrices
and neural nets [9, 30, 32, 42, 62], while a variety of statistical techniques, beginning with codon
usage frequencies and extending also to Markov chain models and connectionist methods, have
been applied to the identification of coding regions [5, 15, 17, 29, 65]. While the results of these
studies have been increasingly impressive, using these distinct approaches in isolation may never
be completely satisfactory.

The most successful such system, the multiple-sensor neural net Grail [65], in fact uses a combi-
nation of evidence from seven previously-described algorithms to identify about 90% of large exons
with about one in six false positives. The trend, in fact, is toward layered or rule-based architectures
which combine evidence about not only coding regions but splice sites as well, to better delineate
the former and to reduce the combinatoric possibilities of the latter [19, 23, 25, 35]). Systems such
as gm [19] and Geneld [25], which along with Grail are the first to find practical use, owe their
relative success to a hierarchical organization of evidence based on statistical measures, and above
all to their ability to consider that evidence in mutual context. Current work on the Grail system,

in fact, involves the incorporation of “syntactic” rules in a hierarchical blackboard system.

2.2 Linguistic Approaches

Abstract, declarative, hierarchical descriptions of sets of strings are precisely the raison d’étre of
the science of computational linguistics, and of the study of formal grammars. Recently a number
of studies have adopted a “linguistic” view of DNA sequences. Most of this work has involved
examinations of the occurrences of “words” in DNA in what is essentially an information-theoretic
approach [14, 27], or using statistical analyses of vocabularies in the tradition of comparative
linguistics [6, 47, 48]. These approaches, however, can be distinguished from a more recent approach
to linguistics, pioneered by Noam Chomsky, which attempts to study higher-order phenomena in
languages. Such an approach has been taken by only a few authors [7, 12, 52], and apparently
only the PI has pursued extensively the use of grammars as a means to accuplish generalized
pattern recognition in this domain, as a form of parsing; this work is reviewed in the accompanying

Progress Report and appendices. As background, we briefly introduce here the formal foundations
and the relevant implementation techniques.

2.2.1 Formal Language Theory

In the realm of formal computational linguistics, a language is defined in terms of an alphabet L,
which is a finite set of symbols; in the case of DNA sequences, such symbols should be the nucleotide
bases, so that ¥pna = {g,¢,a,t}. A DNA molecule can then be represented as a string over Xpna,
that is, a finite sequence of symbols from Epna. The set of all possible strings over an alphabet is
denoted by £*, and a language, formally, is any subset of T*.

The concern of formal linguistics is the finite representation of languages which may themselves
be infinite; the goal is an economy of expression, in an abstract representation, as an alternative to
exhaustively enumerating all the allowable strings in a language. Such cogency may also have the
benefit of capturing some kind of essential, clarifying generalization about the structure or syntaz
of a linguistic system, preferably related to the meaning ur semantics of the language elements. For
this purpose, language generators called grammars have proven extremely useful. Grammars specify
languages through sets of rules or productions, which achieve the desired succinctness largely by
referrin~ to each other and to themselves recursively. Perhaps the most important class of grammars
is the contezt-free grammars (CFGs, which specify the contert-free languages, CFLs). A CFG has
the set ¥ of symbols from the language, called terminals, and an additional set of symbols called
nonterminals; these symbols are used in a finite set of rules whose members are denoted by A = u
where A is a nonterminal and u is a string of terminals and nonterminals. A grammar generates the
string elements of its language by taking a starting symbol S and rewriting it, by repeatedly finding
a rule whose left-hand side matches some nonterminal in the current string, and substituting that
rule’s right-hand side, until the string contains all terminals. Such derivation steps are denoted by
a double arrow, ==, so that for the simple grammar with ¥ = {a,b,c}, nonterminals § and X,
and rules § = aX, X = bX, and X = ¢, one possible derivation is:

S = aX = abX = abbX == abbc

We can say that the language generated by a grammar G is the set of all strings w over ¥ such
that w ic derivable from S, or in set notation {w € £* | § =* w}, where =* denotes any
number of applications of ==. For the example given, this grammar formalism would appear to
be preferable to either trying to list the infinite set of strings {ac,abc, abbe, abbbe, - - -}, or using the
informal description {w | w is an a followed by any number of b’s followed by a c}. For one thing, it
makes feasible the computational task of parsing a string to determine whether it is in the language

specified by the grammar. A useful byproduct of parsing is the production of a parse tree reflecting

8

the grammar rules applied and giving a kind of structural description of grammatical features in
the input string—exactly the kind of output that is desired in describing certain biological sequence
data.

CFGs have proven to be very useful in the field of compiler construction, where, in the form of
BNF (Backus-Naur Form) descriptions, they are used to formally specify programming languages.
An even more interesting application of computational linguistics, however, is in understanding
natural language—a complex problem that has stimulated a large body of research. Although
straightforward CFGs can be written that cover many aspects of natural language syntax, natural
languages in their full generality are now thought to require greater than context-free power [51].

Regular expressions also specify languages. However, the set of regular languages is strictly a
subset of the CFLs, for no regular expression can specify certain self-embedding structures such
as palindromes; computationally, these require a stack to store information about dependencies
between distant elements of the string. In fact, even the CFLs are a strict subset of the context-
sensitive languages (CSLs), described by grammars that have more than one symbol on the LHS
of rules. While CFLs are restricted to describing nested dependencies, CSLs can specify crossing
dependencies, such as those found in copy languages, which contain duplicated strings of arbitrary
_ extent. These language classes all take their place on the Chomsky hierarchy of languages, which
categorizes the linguistic complexity of any given language, and which serves as the basis for analysis
of the decidability and/or tractability of recognizing strings of any language with general-purpose
parsers. O(n) parsers are easily designed for regular and determinsitic CFLs—those that can be
recognized without the need to backtrack on the input string—and O(n®) parsers exist for any CFL.
Certain well-defined characteristics of CFLs may permit more efficient general-purpose parsing, and
for any particular, narrowly-defined language special-purpose linear-time recognizers can often be
designed. Languages beyond context-free are increasingly more difficult to recognize by general-
purpose parsers, and much effort has gone into defining language classes “slightly greater” than
context-free that are adequate to a particular domain (such as natural language) yet can be parsed
efficiently.

The mathematical discipline of formal language theory also provides many tools for evaluating
properties of grammars and languages such as their ambiguity, referring to strings that may be
derived via multiple distinct parses. A simple example of this from natural language would be the
sentence I was given the paper by Watson and Crick, which with different syntactic parses could
either suggest that someone gave me their famous paper, or that those famous persons gave me
some paper. Much of the field of Natural Language Processing is concernc d with reducing the
syntactic ambiguity of sentences by incorporating knowledge of semantics, etc., into the analysis.

2.2.2 Syntactic Pattern Recognition

This methodology is not limited to computer languages or human natural languages, but can be
extended to all manner of signals, images, or other data which have underlying structure. This
observation has led to the development of the field of Syntactic Pattern Recognition (SPR) [21].
SPR makes use of the tools and techniques of computational linguistics, such as grammars and
parsers, to specify and search for patterns in data. Because grammars intrinsically promote the
hierarchical abstraction of features, these can be built up to a very high level while maintaining a
clear, modular “knowledge base.” Moreover, grammars by their nature detect individual features
in this higher-level context, which creates a much greater degree of discrimination than isolated
searches. SPR benefits from a strong formal foundation, but also incorporates features that extend
the expressive power of grammars where necessary for the domain. For example, “noisy” signals can
be dealt with by so-called stochastic grammars [21], which incorporate probabilities into grammars
in a natural way (see §3.3.3). SPR, in fact, has been classified as a form of pattern-directed inference,

and indeed we have found that it provides an excellent framework for the incorporation of heuristics
at many levels. SPR has been successfully applied to such problems as general signal processing,
handwritten character recognition, and karyotype analysis by the PI [54, 57] and many others [21],
and our initial results with SPR and the linguistic analysis of DNA (see Progress Report) suggest
that they are appropriate approaches to the complexities of this domain as well.

2.2.3 Logic Grammars

Prolog is a programming language that implements a procedural interpretation of a subset of first-
order predicate logic. It uses a particular clausal form that allows programs to be written as
databases containing atomic predicates called facts, e.g., protein(hemoglobin), and rules which
are written in the form protease(X) :- protein(Y), degrades(X,Y). This can be read “X is a
protease if Y is a protein and X degrades Y.” Prolog’s rules and facts, together called relations, can
be queried to perform inferences by backward-chaining proof, using a mechanism called resolution,
and the resulting system is able to perform computation as controlled deduction—in fact, a form
of theorem proving.

Prolog’s history is closely linked with the formallsm of Definite Clause Grammars (DCGs), and
the notion that grammars can be expressed as rules of a Prolog program [46]. The process of parsing
a string then becomes that of proving a theorem given that string as input and the “axioms” of a
grammar. In practice, such a grammar would appear as in the code below.

s —-> [a], x. x -—> [bl, x | [c].

In Prolog, logical predicates begin with a lower-case letter, and in DCGs these correspond to
nonterminals. Terminals are shown as Prolog list elements; lists generally appear within square
brackets, with list elements separated by commas (e.g., [a,b,c]). The vertical bar in the second
rule is an “or” (disjunction), so that this rule for z actually represents the two rules given previously.

DCGs actually require a translation step to become Prolog clauses, because Prolog must have a
mechanism for manipulating the input string, which it does by maintaining the string in “hidden”

parameters of the nonterminals. The first DCG rule above would be translated to the following
Prolog rule:

s(s0,s) :- so=[alsi], x(S1,S). x(S0,S8) :- so=[bls1], x(51,8) ; so=[cls].

(Note that variables in Prolog begin with upper-case letters). When nronterminals are translated,
they have two variable parameters added—sometimes called difference lists—corresponding to the
lists that will be passed in and then back out, i.e. the input string and what is left of it after the
nonterminal consumes some initial string from it. Terminals are translated such that the specified
alphabetic elements are “consumed” from the front of the input list. The difference lists are arrar.ged
so that the span of the LHS nonterminal is that of the entire RHS. Thus, actual top-level calls to s
would succeed in forms such as s([a,c],[]) or s([a,b,b,c],[]) (with the empty list being the
necessary remainder after the parse succeeds); in our implementation, a double-arrow infix operator
is used to express such queries, following the formal notation, e.g. s ==> "abbc". Note also that
a useful alternative notation for lists is as strings within double quotes (whose elements actually
correspond to ASCII character codes); we will use this for DNA, e.g., "gattac".

DCGs actually have power far beyond CFGs, due to their ability to attach parameters to nonter-
minals, embed arbitrary code in rule bodies, etc. It is our belief that they offer a firm foundation
for a language that can be a powerful descriptive tool for molecular genetic features, and also offers
a flexible analytical and control mechanism through Prolog’s built-in DCG parser.

10

2.3 Biological Sequence Grammars

The PI has pursued this idea to the point of developing and deploying an advanced prototype
system called GENLANG, implemented as an augmented DCG with additional ‘C’ code for input
management and other speedups. This effort is described in (1) the accompanying Annual Progress
Report (DOE Report Number DOE/ER/60998-3) and in more detail in (2) the users manual
attached to that report as DOE Report Number DOE/ER/60998-4 and (3) in a preprint of a
review article [56], previously submitted as DOE Report Number DOE/ER/60998-2 and attached

to this application as an appendix. The reader is referred to these and in particular to the following
points:

e a series of formal results concerning the position of the language of DNA in the Chomsky

hierarchy (greater than context free) and its nondeterminism, inherent ambiguity, closure
properties, etc.

- a the use of these results in the design of a domain-specific grammar formalism, called string
variable grammar, and its incorporation into GENLANG

e the much-improved syntax of the current version of GENLANG, using a uniform convention
of attribute lists for parse control, constraints, parameters, etc.

e the adoption of delayed evaluation of gaps, permitting alternative search strategies and effi-
ciency enhancements including the use of hash tables

a more sophisticated, hierarchical cost management techniques for imperfect matching over
complex features

» a wider range of input formats, including the use of GenBank flat files (with attributes for
selection of entries)

a the new graphical parse visualization tool, which allows for real-time depiction of growing
parse trees and finer backtracking control

e recent results in large-scale parsing of tRNA genes, group I introns, and other higher-order
structures

o the PostScript-based sequence visualization tool, RSVP, which we propose to incorporate into
GENLANG

3 Research Plan
The major paragraphs below correspond to the Objectives given previously.

3.1 User Interface and Visualization

Well-designed graphical user interfaces are critical factors in user acceptance of software, and this
is especially important for a system of the sophistication of GENLANG. The ultimate end users of
the system are unlikely to be familiar with parsing algorithms, logic programming, and recursive
grammar design, and an intuitive, task-oriented graphical interface is the first and best place to
address the need to guide them through the process.

11

3.1.1 Parser Visualization and Control

Even for sophisticated grammar designers and logic programmers, visualization of a parse develop-
ing in real time is a great boon. It helps in debugging grammars, which otherwise must be traced
through deeply recursive calls on a conventional Prolog debugger; when the grammar is portrayed
in action against the backdrop of the input string itself, this is much easier. It also gives a dynamic
depiction of “non-determinism traps”, or points at which an inefficiently-written grammar begins
thrashing on the input. For novices to grammar design, nothing is so educational as a real-time
view of the procedural incarnation of their declarative grammars.

The parser visualization tool developed for GENLANG to date can be extended in many ways to
make it still more practically useful. A wider range of variations in the form and size of the output
will be incorporated to fit the correspondingly wide range of scales over which the parser is useful,
from simple features to complex genes, gene clusters, and other assemblages. Since a common
mode of use is to parse for features and then compare with the GenBank features table, we will
incorporate features table annotations into the display, as opposed to the separate “info” window
now presented, to make such comparisons easier. (This will be accomplished through the GenBank
entry parser and its follow-ons, to be described in €3.4.) Currently user-defined arguments to
nonterminals are shown on the graphical display, but standard attributes such as cost and size
must be gleaned from the printed parse tree output, so as to avoid clutter on the display; we will
extend the system so that such collateral information can be seen in a pop-up window by clicking
on the nonterminal.

A facility for printed graphical output will also be developed. The current graphical form of
the parse trees, now available only as rather poorly-resolved screen dumps, will be translated to
PostScript for a high-resolution, appropriately packaged output format. In addition, more styl-
ized PostScript output formats will be developed to reproduce the abstractions of the parse tree
in graphical forms already familiar to biologists, using icons, labels, and conventions typical of
publication illustrations (e.g. blocks for coding regions, line segments in a triangular “hat” over
introns, ellipses at protein-binding sites, etc.). We will use code from RSVP for-this purpose,
perhaps even generating its intermediate language from Prolog, but the much greater power and
degree of hierarchical abstraction in GENLANG will permit and require more comprehensive, global
graphical conventions. These can be specified by attributes of the grammar (just as for the current
parser visualization tool), and where necessary with post-processes that take the (appropriately)
list-structured parse tree as their input. A crude version of the latter technique has already been
used by the PI and a collaborator to generate publication-style output from a parse tree [58].

It should be emphasized that such output is not limited to standard genes or to linear depic-
tions. Biology has given rise to many imaginative and sometimes rather abstract techniques for
scientific visualization of sequence data, e.g. Nussinov plots of secondary structure [45], helical
wheel plots of peptides to detect amphiphilic regions [13], and widely-used conventions for depic-
tion of secondary-structural motifs of proteins, not to mention the more obvious uses of graphical
plots of hydrophobicity [31], etc. We believe that a term-structured, hierarchical data structure
such as a parse tree, and an underlying pattern-recognition system capable of expressing and de-
tecting distant and complex dependencies, will be a superior base for developing these as well as
entirely novel visualization techniques as new grammass are explored. (Note also that grammars
are not limited to one or even two dimensions—see §3.5.3).

Finally, as visualization techniques are explored in connection with the parser, and as the limited
expressive powers of RSVP are thus expanded upon, it will become desirable to reincorporate certain
of the images designed for these purposes back into the X-based graphical interface, so that again
they may be presented to the user in a dynamic fashion during the parse and be made available
for meaningful interaction. This will be a long-term goal of the project.

12

Dk . . . W I

3.1.2 Grammar Development Interface

All the graphics development to date, and that described in 43.1.1, is to do with the output of the
parser. At least as important ultimately will be the creation of a graphical interface to support
grammar development and management. Grammars, like any code, are intimidating and tedious
to maintain in a monolithic listing, and despite the benefits of parser visualization, debugging of
logic grammars using the standard four-port model of Prolog can be very challenging. Also, the
management of multiple parameters and attributes, particularly involving powerful logic variables
and list structures, becomes cumbersome. These issues can be addressed to a very great extent by
this grammar development interface.

Grammars are inherently declarative, hierarchical, and modular. We will take advantage of this
by creating a window-based grammar management system in which each major nonterminal will
have its own stylized, named window that can be popped up at any time for modification. These will
be under the control of a master grammar management window, with iconic representations of the
nonterminals and a cross-reference graph connecting them so that it is immediately apparent what
invokes what. (Note that this will be isomorphic to the derivable parse trees, modulo recursion and
disjunction.) A more compact form of this will be “walking” menus to quickly descend a derivation
tree. The attribute lists will be removed from the nonterminals, and instead represented as fields
of the standard nonterminal windows. Appropriate “widgets” will be used to further simplify
the representation and modification of attributes; for example, cost constraints will be entered by
“slider” buttons with optional type-in.

Gaps will have a special window format that will allow much more flexible specification of costs
to be associated with them. While it is now possible to specify the cost of a gap as a mathematical
function of its size (in the simplest case just some multiple of its length), one might wish to more
easily design a complicated discontinuous function. For example, a gap might most commonly be
within a certain size range, with the distribution falling off sharply on one side and more gently
on the other, perhaps with other inflections. The gap window will have a rudimentary drawing
tool, by which the user can simply draw the cost function versus size. Buttons will also be able
to automatically draw certain standard functions, such as a normal distribution, with touch points
that the user could drag to change mean and standard deviation of gap sizes. (These techniques are
now common in graphics programming, and it is likely that public domain code could be re-used
in this and many other cases.)

The grammar manager will also assist in revision control, maintaining multiple versions of a given
nonterminal from which the user can quickly reselect the active one. This feature we have found
from our own experience to be highly desirable. For initial grammar design, one special window will
be designated as a “scratchpad” available for rapid recompilation of selected features, which will
be capable of dynamic modification during pauses in the parse, based on the users’ observations of
the parser visualization

Perhaps most importantly, we will develop a source-level debugger, so that less experienced users
will be able to observe a single-stepped parse at the level of the grammar, rather than the underlying
(and much more complex) Prolog code. Quintus’ source-level debugger does not currently support
such “term-expanded” source code, but the fact that the grammar rules all have standardized hidden
parameters, and guard clauses and “trail hooks” to implement various constraint attributes, means
that such a source-level debugger would be a reasonable longer-term goal. Ultimately, we would
extend this support to the level of the graphical grammar manager itself.

3.2 Embeddability

As the repertoire of sequence analysis software available increases, and with the growing trend
toward integrated systems, the ability of such a system to embed other algorithms, and to itself be

13

embedded, becomes increasingly important. We will address both of these needs.

3.2.1 Embedded Algorithms

The ability to embed pre-existing code is critical if for no other reason than to avoid re-implemen-
tation of what are often very sophisticated algorithms, in the public domain or otherwise available.
Quintus Prolog offers a foreign function interface to ‘C’, Pascal, and Fortran, as well as UNIX
system calls. In addition, the logic grammar paradigm encourages in-line calls to arbitrary code
(Prolog or otherwise) in the bodies of gramiar rules. Thus there should be no intrinsic obstacle
to incorporating other well-modularized code into the pattern recognition process of an individual
rule.

We distinguish between algorithms that we will actually embed in the grammar as built-ins, and
mechanisms we will create to make it easy for new algorithms to be embedded by users. In the
former category is dynamic programming minimum-cost alignment [60], which wiil be implemented
as a generalization of our cost function, i.e. allowing indels as well as mismatches, where so
designated by the user. While this algorithm is O(m - n) in both time and space for m and n the
lengths of the sequences, in our paradigm there is a maximum cost threshold which will allow us
both to limit the range of input examined (n) and the distance moved from the central diagonal
of the cost matrix [18]. While these speedups would not be available with the non-linear gap cost
functions that are preferred in these algorithms, it must be remembered that our purpose is just to
augment our simple cost function for short probes and not to replicate full alignment of lengthy pairs
of strings. For small enough probes and cost thresholds, in fact, a linear-time recognizer is possible.
albeit with greater cost at compile-time [66]. For the full dynamic programming method, we can
also save a factor on space, since no alignment need be returned, only a cost [67]; however, when such
features are preceded by GENLANG gaps, it will be necessary to maintain a two-dimensional matrix
in order to “scan” for an acceptable local alignment without discarding data on each increment of
the starting point. We can also make use of the already-existing hash table to speed up matching
on longer strings, where somewhat less sensitivity to substitutions is acceptable [69]. Finally, in the
longer term, we will replace the hash table of the input with a suffiz tree, which can also be built in
linear time [40] and which can be used not only to speed up dynamic programming [41], but also
to return longest direct repeats from any position (not just the set of those as long or longer than
the k-tur:!.: size of the hash table). We will explore the possibilities of analogous data structures for
longest inverted repeats, and of “n differences” algorithms based cn suffix trees for loose matches
[41].

In embedding algorithms, our philosophy is to use the grammar as a framework to house and
apply possibly expensive algorithms selectively against regions of interest (as they are called in
the signal processing community). Not only does this achieve the economy of ignoring “boring”
regions, but it allows the results of the algorithms to be assembled into a hierarchical context, and
to have their results combined with those of other algorithms as well. In order to accomplish this
with any particular algorithm, it must be made to fit into the GENLANG parsing paradigm, which
means that (1) it musi be applicable to some window on the primary sequence or, in combination
with a preceding GENLANG gap, it must be able to scan some range of sequence presented to it as
a ‘C’ character array; (2) it must be capable of having any parameters passed to it as arguments,
which will then be controlled and thus “tunable” at the attribute level of the grammar; and (3) it
must return a result in one of four forms: (a) either logical success or failure at any given position,
or (b) within a range, a position at which it first succeeds, or (c) in either of the first two cases,
logical success together with some scalar value representing “goodness of fit” expressed as a cost
(which for many algorithms may involve reversing its sign), or (d) within a range, a set of positions
representing logical successes with scalar cost values falling below an imposed cost threshold. (The

14

forms (c) and (d) are closely related to those implicit in stochastic grammars [21]).

We have found that a wide variety of currently-used algorithms can be made to conform to
this paradigm, ranging from simple weight matrices to neural net recognizers to measures of local
similarity. As an example of this approach, our tRNA grammar could be improved upon by passing
putative introns to a Zuker program [71] (or similar RNA-folding algorithm) and translating the
minimum energy returned into a cost. The cost thyeshold could be adjusted so that the quality of
the entire tRNA match would depend in part on the ability of the postulated intron to form tight
stems, which is observed to occur in forms too widely varied to express as a single string variable
expression [34]. On the other hand, applying this O(n3) algorithm beyond the limited context of
introns “proposed” by the grammar would be very slow.

For algorithms which for theoretical or practical reasons cannot be easily integrated into the
grammar paradigm. it may nevertheless be desirable for a grammar to make use of their output. In
many cases this can be conveniently accomplished by running a global algorithm as a preprocess and
storing its results in the GENLANG chart; this is conceptually appropriate since such preprocesses
produce intermediate results, which is the purpose of the chart vis-a-vis the grammar, and it is also
practical insofar as tlie mechanisms already exist for the grammar to make use of the chart (even
exclusively—a grammar can refer only to charted nonterminals, and never even have recourse to the
primary sequence). As will be seen, charted data can range from fine-grained numerical properties
to more typical course-grained features.

(It may be supposed that this use of preprocesses is a force-fit with respect to the grammar
formalism; in reality the correspondence with theory and practice is quite natural. Context-sensitive
grammars can be used to “side-affect” or systematically alter an input string to achieve the kind of
“piped” architecture used in fields such as signal processing to successively filter and transform data
streams. The PI has written extensively on the use of logic grammars for this purpose [54, 57, 59],
and others have used similar “cascaded” grammars to good effect in natural language processing
[70], where there is a natural progression of phonetic, syntactic, semantic, and pragmatic analyses.)

3.2.2 Embedding in Other Systems

It is our prejudice that a grammar-based system is a superior platform for marshalling a wide
variety of algorithms and techniques, for applying them in a directed manner, for assembling their
results into structural models that coalesce multiple lines of evidence, for rapid-prototyping and
tuning parameters and cost thresholds in a uniform context, and indeed for managing sequence
analysis activities at the user interface level. However, we will not impose our viewpoint on those
who might wish to avail themselves of the sophisticated pattern-matching capabilities of GENLANG
proper, in the context of their own sequence analysis platforms. Part of the proposed effort will be
to make GENLANG easily embeddable in other packages.

Quintus Prolog programs are now fully embeddable in other languages, e.g. they can be called
directly from ‘C’ code. The design of GENLANG has been such that an invocation of the parser at
the top level is nothing more than an ordinary Prolog goal, capable of being called by other Prolog
code or indeed by ‘C’ code; parameters are easily packaged as well. Quintus run-time systems can
be created for established grammars so that such embedding can be done without the cost of a full
development package. We will assist other computational biologists in performing such integrations
(see §3.6).

In addition to simple arguments that may be returned by GENLANG to a governing system, some
such systems may wish to make use of the structured output of the parse tree. This will depend
on the ability of the outer system to pass term structure, but Prolog could be of help in flattening
it if necessary. Moreover, not only is the form of the parse tree customizable under the control
of grammar attributes, but being a canonical form it would also be possible to translate it to a

15

wide variety of flat forms using generative logic grammars that specify the output expected by the
embedding system; the PI has used this technique in a number of instances [55, 57].

3.3 Parser Technology

At the heart of GENLANG is a fundamentally unsophisticated recursive-descent parser, which how-
ever is tremendously flexible, residing as it does in a logic programming framework, and which has
been optimized for many characteristics of the domain. We will continue to enhance the parser,
using more advanced techniques from the literature, and of our own invention. In this effort, we will
benefit from a collaboration with Prof. Mitch Marcus of the Computer and Information Science

Department, an authority on parsers for natural language (in particular, probabalistic parsing); a
letter from him is attached.

3.3.1 Parser Extensions

Some of the aspects of grammars that are most daunting to newcomers, such as the heavy use of
recursion, can be handled more automatically by the parser. We will introduce a notation, similar
to the very intuitive Kleene star operator of regular expressions, that will denote iteration in the
body of a grammar rule and generate optimized code for recursion of various types (e.g. longest,
shortest, least cost, etc.). This will also serve to avoid non-terminating constructions, which in fact
can also be addressed even in left-recursive rules through intelligent use of GENLANG’s chart, by
incorporating Farley deduction [46] or even by bottom-up parsing.

Chart parsing affords not only greatly increased efficiency on backtracking by storing intermediate
results, but alsc a convenient persistent database of partial results to supplement the parse tree;
a facility will be implemented to save the latter, for examination or re-use. The chart mechanism
that we have implemented involves not only a well-formed substring table in Prolog, but a facility
for skipping rapidly over gaps using two auxiliary bit arrays for each charted nonterminal, marking
where the nonterminal has been tried and where it has succeeded. This is most suitable for features
that occur at an intermediate granularity, in the range of one per 100-1000 base pairs. For less
frequently occurring features, we will extend the chart parser to save the positional information
in the Prolog database rather than in ‘C’ arrays; this will involve somewhat more computation
but a great space saving. It will also be the appropriate format for importing the results of some
algorithms run as preprocesses (see §3.2.1). For more frequently occurring features (>one per
hundred bps), we will also make available a form of chart which exclusively uses ‘C’ arrays, with
no entries in the Prolog database. This fine-granularity chart will have, in addition to positional
bit arrays, dynamically-allocated integer arrays wherever necessary to store the span, cost, and
user-specified parameters associated with the features; this will be the appropriate mechanism for
storing local scalar properties of sequence (e.g. base class ratios, probabilities of coding regions from
Markov or connectionist models, hydrophobicity of polypeptides, helix- or sheet-forming tendencies,
etc. as well as arbitrary values defined by the grammar). In this case also some such values will be
the result of preprocesses that will inform the higher-level grammar. The granularity of the chart
and other characteristics will be specified as attributes of the corresponding nonterminals so that,
as always, widely-varying sources and formats of information will be uniformly integrated into the
formalism.

Certain embedded algorithms will be integral to the grammar translation and parsing process.
Our current weight-matrix feature, for example, is not just a recognizer but an optimizing compiler
of disjuncts of exemplars (see Progress Report) which reorders the parse to examine positions in
order of information content. We will add additional attributes to this feature to allow correlations
of ba<_ doublets and perhaps triplets, negative exemplars, and other variations on weight matrix
methods where they can be neatly expressed as an adjunct to a formal grammar (e.g. the RTIDE

16

[68] and cONSENsUS [64] programs). For that matter, there is no conceptual reason other than
the outrageous “compile times” involved that such grammatical formulations of exemplars could
not be used with machine learning methods such as decision trees and neural networks. (Two of
our collaborators, in fact, have used grammars as domain models in effect to “bias” connectionist
learning methods in this domain [44, 61].) In any case, the operation of the parser will be kept
consistent with the use of such methods in the most efficient manner possible (e.g. parse reordering),
and also with ancillary data structures including the current hash table and the proposed suffix
trees.

It will have been noted that the efficient operation of the parser is inextricably involved with the
treatment of GENLANG gaps as search engines. The facility for passing lazy gaps will be extended
to efficiently support the use of gaps with arbitrary cost functions (see §3.1.2). In the short term,
we will alter the parser such that the size of the gap tried will automatically proceed from the least
costly (most likely) to the most costly (least likely), within the current cost threshold; thus, if a
gap is designated by its cost function as being normally distributed about a mean of 10, the order
of gap sizes tried might be 10, 9, 11, 8, 12, 7, etc. until the cost was too great. In the longer
term, we would extend this idea to recursive nonterminals and especially the combination of a gap
and a nonterminal, as follows: Currently, lazy gaps allow the user to designate that the search on
the string should be either breadth-first among disjuncts (using the attribute wide), or depth-first
(deep), as described in the Progress Report. We have recently introduced a new attribute for best-
first parse of a subtree (best) which will find all combinations of gap and nonterminal within the
range of the gap, and then succeed with each of those combinations in order of least cost. While
this will not reduce the computation time for potentially expensive nonterminals, it will often be
appropriate to perform all parses on a suitably restricted subtree in order to rearrange the order
in which they are presented to the user in an interactive session. Moreover, we will investigate the

use of A* search or similar techniques to prune our best-first search mechanism, so as to produce
a speedup even for all-parse results.

3.3.2 Island Parsing

Island parsing is bottom-up parsing in which the order is not necessarily left-to-right, and where
it may in fact be “inside-out.” We routinely employ such techniques in GENLANG already, using
positional operators which allow for arbitrary movement on the input string, and thus accomplish
a re-ordering of evaluation. For example, in the tRNA grammar described, for scanning long
sequences we actually search for the relatively well-conserved loop of the T¥C-arm first, then back
up and find the remainder of the molecule, for a several-fold speedup. However, this re-ordering is
“manual” insofar as it is explicitly directed in the grammar. We will investigate methods by which
the right hand sides of grammar rules can be automatically re-ordered by deducing the features
that are likely to be most discriminating and/or deterministic, and searching for them first. This
is already done in the case of weight matrices, and with abstract evaluation of rules should be
possible (at least with non-recursive subtrees) as well; Staden [63] has described related techniques
for certain biological patterns in particular. This will unburden the user of having to deal with this
particular procedural aspect of the parser. It will require particular attention to interactions with
the chart [36], but we feel that our current architecture can address these concerns.

One method we have developed for accomplishing a variety of parse re-ordering is the use of
recursive derivation, or executing a parse within a parse [53]. This is useful in controlling multiple-
level parsing (e.g. assembling exons and then parsing the polypeptides) and also for expressing the
superposition of elements in the string (which can also be denoted using the ampersand connector
to specify features that must co-occur or overlap on the input) [53]. We have shown that the
combination of superposition and gaps can express a wide range of interval relationships [2, 54].

17

The current version of GENLANG provides limited support for recursive derivation (where it refers
exclusively to predetermined spans on the already-loaded inpnt string), and this would be extended
to allow dynamic loading of additional sequence, or rearrangements of the loaded sequence.

3.3.3 Probabalistic Parsing

It is interesting to note that the field of natural language processing has recently turned to p)obabilis-
tic parsing to address longstanding problems of building large robust grammars and performing
best-first parsing [11], just as the most successful gene-finding algorithms are using empirically-
derived statistical methods. We will investigaie whether techniques can be borrowed from this
very active field of research that will be useful in our domain, such as the methods used to gather
statistical data about structured features [8, 39] and the incorporation of probabilities into chart
parsers {36, 38].

Stochastic grammars are a formal system for attaching probabilities to grammar rules, such
that a probability is derived for any successful parse based on multiplying the values of every rule
invoked [21]. We note that our current cost system is incompatible with this, since costs range
over positive reals, with zero being “most probable,” and are summed over subtrees of the parse.
However, it should be possible to implement other cost models using the existing hidden parameter
mechanism, or even to mix them under the control of attributes. It would also be necessary (and
potentially very useful) to allow for alternate models for combining evidence from disjunctions,
conjunctions, and concatenations of features (concatenation being the ordinary interpretation for
adjacent grammar elements); currently costs are summed in the latter two cases, and a minimum
taken over disjuncts, but arguments can be made for multiplying concatenations (as in stochastic

grammars), taking the maximum of conjuncts, etc. We will investigate the utility of such measures
as the need arises.

3.3.4 Gene Parsing

As a means of driving the parser development in useful directions, we will further develop protein-
coding eukaryotic gene grammars, incorporating the methods that have been published recently
for detecting splice junctions and coding regions into our hierarchical syntactic parse. Some such
methods will be straightforward to integrate, such as the filters used in GeneID [25] regarding base
frequencies and covariances between base positions in adjacent codons; such heuristics can be incor-
porated into the current grammar’s cost mechanism to contribute to decisions about the desirability
of continuing an exon versus trying a weak splice donor. Other methods may depend upon planned
enhancements to the parser or embedded algorithms, such as statistical/connectionist measures;
for this we will depend upon the advice of our collaborators who work in these fields [44, 61]. Most
importantly, the cc mbinatoric nature of this problem will depend upon adequate implementations
of the proposed best-first parsing mechanism in conjunction with the chart. We will also go be-
yond current algorithms, taking advantage of the grammar’s strengths to incorporate contextual
information (e.g. upstream signals), globally-imposed constraints (e.g. apparent periodicities in
spacings between adjacent introns [4]), and recursive analyses (e.g. examining postulated exons by
recursive derivation for known protein motifs, perhaps in exon-bounded functional domains, and
for continuity of characteristics, such as hydrophobicity or amphipathic periodicity, even crossing
intron/exon boundaries).

While the gene grammars developed may be the most taxing problem addressed by GENLANG, it
is important to emphasize that GENLANG is not intended to be yet another gene-finder. Possibly it’s
greatest general utility will be at a level of complexity midway between motifs and eukaryotic genes,
finding features with sufficient higher-order structure and variation that other pattern-matchers
are deemed inadequate, yet not so complex as to require extraordinary skill at devising grammars.

18

This is not to say that gene grammars will be inaccessible to any but experts; once written, gene
grammars should provide a perspicuous framework within which the average developer can alter
cost thresholds and other parameters, and switch alternative heuristics in and out, with ease. At the
same time, the expert will have available the power to integrate entirely novel sources of evidence,

and the end-user will have a practical run-time system for visualizing putative genes and their
variations in new sequence data (see §3.6).

3.3.5 Logic Programming Technologies

Given the rate at which new technologies are being introduced, both in relation to parsing and logic
programming, it is not possible to predict which will be of use in the longer term to this application.
However, technologies from the latter field that will be followed in particular include: (1) constraint
logic programming, which in certain defined domains allows for a logic-oriented formulation of
problems that can be solved very efficiently by algorithms producing sets of answers (i.e. parses);
(2) abstract evaluation, where examination of the form of a logic program (i.e. grammar) may lead
to useful predictions concerning its behavior in advance of its actual execution; and (3) deductive
databases, a field much concerned with efficient evaluation of recursive queries in a logic framework.

3.4 Input Formats and Processing

The current means of conveying sequence data to the parser will be enhanced, in step with the
increasing sophistication of biological sequence databases. A particular design goal will be to
continue to specify such queries in a form consistent with the linguistic nature of GENLANG, and
with the theme of attibutes modifying grammar objects. For these purposes, we have enlisted the
collaboration of Profs. Peter Buneman and Susan Davidson of the Computer and Information
Sciences Department, whose areas of research include distributed heterogeneous databases and

advanced database query languages. (Our laboaratory has met with them on a biweekly basis for
the past year; a letter from Prof. Buneman is attached.)

3.4.1 Flat File Databases

The current DCG-based parser for input files handles GenBank flat files in IntelliGenetics format,
and is easily modified for slight variations, such as GCG format. It can also be extended to other
flat file formats with relative ease, and this will be done for one-of-a-kind databases of interest,
such as standard training sets, transcription factor databases [24], and the like. It will also be
straightforward to extend the current directory and file-system input manager to scan subdirectories
in a selective fashion, which will be useful in sequencing projects.

It will also be possible to extend the flat file input grammar to parse the features table of
GenBank (or analogous structures in other databases) and enter this information directly into
the chart. This will allow GENLANG to combine this information with the parse of the primary
sequence, for example confining itself to regions in a certain relationship to known features. In fact,
given the architecture of the chart parser it will be possible for GENLANG grammars to parse the
features table exclusively, without even consulting the primary sequence. The features table parser
will also supply information for portrayal on the graphical interface, at the direction of the user.
It will be possible to write grammars which search for instances of feature table entries with given
characteristics and/or relationships to each other, and then use the log files to save the structure
and primary sequences, e.g. for machine learning applications.

19

3.4.2 Relational Databases

We will also adapt our “linguistic” query mechanism to work with relational databases, such as
the relational form of GenBank. Just as the flat file parser uses a logic grammar parameterized by
attributes expressed at the command line query, it will be possible to use an analogous generative
logic grammar to formulate corresponding SQL queries. (We already have considerable experience
in interfaces from Prolog to relational databases, in particular in adapting a Quintus Prolog interface
to Sybase [23].) The functionality at the level of GENLANG will be the same (though more efiicient),
and in fact the user need not even be aware of the underlying mechanism of data access. We will,
however, work to augment the attribute system for greater flexibility, consistent with both the flat
and relational formats, e.g. to allow for multiple constraints on a single field and negation (which
are not currently possible).

At this point we will also extend the semantics of the right hand side of GENLLANG queries,
to allow for various types of combinations (effectively, string-oriented joins) of entries. Implicit
in current multiple-entry queries is thc notion of disjunction among those entries: a query to
genbank is really a query against each of its entries disjoined, e.g. (...) ==> seql | seq2 |
| seqN. Asnoted in §3.3.2, however, other connectives are used in our grammars, including ordinary
concatenation; this can be used on the right-hand side of a query, by the notation (...) ==> seql,
seq2, ... , seqN, to cause the entries to be examined in a connected sequence. Conjunction, on
the other hand, would require a query to succeed separately in every entry presented toit,e.. (...)
==> seql & seq2 & ... & seqN. This could be used to find structural commonalities fitting a
given general pattern among a series of entries, e.g. in the simplest case a string variable representing
actual common subsequences. In examining combinations of these connectives with gaps, we have
found [54] that this simple algebra has great expressive power to represent interval relations (2],
e.g. the superposition pattern (seql, ...) & (..., seq2) allows for an overlap between the end
of seql and the beginning of seq2. This will also be of obvious utility in sequencing projects. As
always, the rather neat declarative formulation permitted by grammars must be accompanied by
efficient procedural implementations in the parser, which in many cases will go beyond the naive
operational semantics already inherent in the logic programming paradigm.

3.4.3 ASN.1-Formatted Data

The National Center for Biotechnology Information has adopted ASN.1 as its data interchange
format for GenBank and affiliated data [43]. ASN.1 parsers are easily implemented (by design),
and we will either adapt an existing one or create a DCG with attribute parameters consistent with
our flat-file parser and relational query generator.

There is widespread interest in the use of object-oriented databases in this domain, particularly
as relates to genome databases [20]. Ultimately, our paradigm may be adapted to this form of data,
and in general we will be alert to possibilities for integrating GENLANG with physical and genetic
map data, e.g. parsing very high level charted data concerning map relationships of genes, gene
clusters, control regions, chromatin organization, etc. We have laid at least a theoretical foundation
for a linguistic formulation of mutation and rearrangement at the level of the genome [53}, and in

addition have experimented with karyotype description grammars which might be integrated with
structural grammars [55].

3.5 Protein Sequence Parsing

The current release of GENLANG parses only DNA sequences; we will extend it to deal with protein
as well, at a number of levels.

20

3.5.1 Primary Structure

Adapting the parser to accept sequences of the single-letter amino acid code is straightforward
at one level, but the system as a whole will need to be adapted to display protein sequence in
the parse visualizer, in the pretty-printed tree format, etc., and in addition the chart will require
modification. The input parser will be extended to read protein sequences from GenBank features
tables, including the cases of multiple gene products from single entries. The most significant
change will be to the cost mechanism for string matching; PAM matrices for this purpose will be
implemented in a manner consistent with the grammar formalism, as a special class of rule which is
compiled directly into the string matching routines rather than the usual Prolog rule. (Such rules
have already been prototyped in GENLANG for complementarity of string variables, e.g. assigning
fractional costs to G-T pairs). This relatively simple series of steps will allow us to bring GENLANG
to bear on the growing body of knowledge of protein motifs (d la Bairoch’s PROSITE database);
for features such as zinc fingers, for example, GENLANG will express in a natural way multiple
classes sharing structural features, residues with general but not absolute rules, size variations, and

incomplete or “degenerated” copies [28], and it will be especially useful as the “genetic code” of
the DNA-binding regions becomes apparent.

3.5.2 Secondary Structure

Secondary structural information will also be incorporated into GENLANG grammars. The work of
Rawlings has demonstrated the utility of a logic-based approach in pattern-matching of structural
motifs involving secondary structural elements [49], and the Ariadne system has used pattern-
directed inference to produce a number of biological results combining secondary structural infor-
mation with primary sequence patterns in what amount to enhanced regular expressions [33]. Like
these systems, GENLANG could use a preprocess to classify secondary structural regions, e.g. the
well-known Chou-Fasman algorithm [10]; we note, however, that this essentially rule-based system
could be implemented in GENLANG (and indeed portions of it have been [M. Noordewier, personal
communication]), and variations on this and related algorithms could be experimented with in a
grammatical context. By the same token, connectionist methods that have addressed this problem
with moderately improved results, including one developed by a collaborator [37], could be em-
bedded. We have argued [56] that grammars will prove intrinsically superior to regular-expression
pattern-matching in this domain because of the long range dependencies among residues in ap-
position, as well as parallel and anti-parallel interactions in (-sheets, amphipathic periodicities in
a-helices, and other inherently “grammatical” phenomena.

3.5.3 Tertiary Structure

While tertiary structure per se will not be addressed in depth in the proposed work, we note that
the field of syntactic pattern recognition has produced grammar formalisms that describe two-
and three-dimensional structures, in particular those which trace a path through space [21]. In
particular, coordinate grammars have coordinates in space associated with nonterminals, and rules
entail not only the usual rewriting but also the application of an associated function to derive new
sets of coordinates [50]. As a long-range goal we would prototype a grammar-based system for
describing known tertiary structures, allowing variations, substitutions of domains, etc.

3.6 Applications

To provide additional technology “pull” on all of the development work proposed above, we have ar-
ranged a series of collaborations involving both computational biologists who wish to use GENLANG

L 21

in their work, and biologists who will provide “real world” problems to be addressed by GENLANG.
These collaborators span a range of three classes of users we envision for GENLANG: (1) ezxpert
users, computational biologists with some academic background in grammars and parsers, who
will use GENLANG as a platform for experimental development of sophisticated systems such as
gene-finders; (2) developers of intermediate-level grammars for motifs and higher-order structures
beyond the ken of simple pattern-matchers; and (3) end-users who will not write grammars but
who will use run-time systems developed in GENLANG, and who will have the ability to manip-
ulate the graphical interface and change parameters. For expert users, our goal is to provide a
versatile platform for experimentation with algorithms and heuristics for sequence analysis, with
well-integrated visualization tools, support for rapid prototyping and code integration, a natural
hierarchical abstraction, and strong formal underpinnings for analysis of those techniques. For de-
velopers, our goal is to create a language clear enough, a development environment helpful enough,
and a parser forgiving enough, that intermediate level grammars can be written by non-experts
including computational support staff and adventuresome biologists, without undue concern for
efficiency and other niceties of algorithm design. For end-users, our goal is to present a run-time
system with an attractive and functional graphical interface to a powerful pattern-matching system
using a library of functions devised by others, with easily adjustable parameters whose effects are
visually apparent, and outputs ranging from intuitive depictions of parse trees, to parse-driven
visualization tools, to publication-quality PostScript specifications.

Investigators who have either agreed to establish “sites” for GENLANG to be installed immedi-
ately for use in collaboration with the PI and in their own research, or who will provide the PI
with relevant biological problems, include:

s Dr. George Michaels of the National Institutes of Health, Division of Computer Resources and
Technology. Dr. Michaels sponsors a “collaboratory” of a number of computational biologists
who contribute to a suite of largely logic-based sequence and map analysis software, into which
GENLANG would be incorporated. Dr. Michaels would also collaborate in applying GENLANG
to specific biological problems, such as identifying RNAs sharing structure with portions of
the tRNA molecule, whose GENLANG grammar he has used extensively. i

a Prof. Mick Noordewier of the Computer Science Department and Waksman Institue for
Microbiology of Rutgers. Dr. Noordewier is a long-time user of GENLANG [58] who will
employ it to collect exemplars for machine learning and as a framework for the application
of neural net recognizers [44].

e Dr. Pat Gillevet of Harvard University, Director of the Human Genome Lab under Dr.
Walter Gilbert. Dr. Gillevat will employ GENI.ANG and related visualization technology in
their laboratory, and will incorporate GENLANG into their sequence analysis platform, GDE.

e Dr. Charles Lawrence of the Baylor College of Medicine, Director of the Genome Center
Informatics Core there. Dr. Lawrence is interested in using GENLANG for gene recognition,
and in embedding GENLANG into their environment for support of large-scale sequencing.

o Prof. Jude Shavlik of the Computer Science Department, University of Wisconsin, Madison.
Dr. Shavlik will collaborate on using GENLANG for domain theories to underlie connectionist
techniques he has pioneered [37, 61], and will also make use of GENLANG to further his
computational support of Dr. Fred Blattner’s E. coli sequencing effort at Madison.

o Prof. Steve Liebhaber of the Howard Hughes Medical Institute at the University of Pennsyl-
vania School of Medicine. Prof. Liebhaber, who is investigating certain complex zinc-finger
motifs and secondary structural regulation of alternative splicing, will interact with the PI in
creating GENLANG specifications of these systems and searching for similar patterns.

o Prof. Stephen Mount of the Department of Biological Sciences at Columbia University. Prof.
Mount has detailed rule-based models of splice signals, showing apparent species specificity;
we will collaborate with him in expressing these in grammar form and iteratively refining

22

through exhaustive searches.

Letters from these individuals are found in an appendix. In addition, the PI has had a number of
discussions with colleagues at Penn and in the Chromoseme 22 Genome Center who are interested
in supplying additional biological problems for test parposes.

3.7 Distribution

GENLANG will be freely distributed to academic, government, and non-profit research institutions.
The PI, who has six years of industry experience in directing software development, will manage
the continued development, distribution, and support of the software in such a way as to balance
the need for continued research with that for deployment, within the limited budget proposed.

3.7.1 Software Engineering Practices

As GENLANG evolves and increases its user base, more formalized software engineering practices will
be adopted, of necessity, than have been used in the early development phases. Standard practices
for configuration control and revision control will be followed, including extensive regression testing.
Code documentation, which is currently spotty, will be formalized in anticipation of modification
by expert collaborators, and in particular will incorporate modularization with change histories,
etc., at a “functional block” level (typically, several Prolog relations). Also, advantage will be taken
of the Quintus module system to isolate the system from possible name clashes, etc.

Compile-time checking, which currently has a repertoire of several dozen messages, will be greatly
extended. Application-specific exception-handling, currently done only at a very high level for
undefined grammar rules, etc., will be “pushed down” for greater effectiveness of runtime error
reporting. See §3.1.2 for a discussion of plans for a source-level debugger.

3.7.2 Software Distribution and Support

Inevitably, the language will continue to evolve rapidly even in this period, but to the extent possible
we will maintain backward-compatability and will provide assistance, both in documentation and
directly, in upgrading grammars. It is anticipated that major releases (i.e. significant changes in
functionality) will occur on the average of one per year during the period of this grant. “Dot”
releases (i.e. minor changes and bug fixes) and patches will be added as needed. These will be
accompanied by updated documentation, including release notes. The current manual contains an
extensive tutorial, but not a formal language definition and compact reference manual; these will be
added. The software will be supported on an informal basis, through electronic mail, to the extent
possible. This will include assistance in grammar development, with priority given to collaborators.
If necessary, a formal bug report system with prioritization will be adopted.

For new users without Prolog licenses or access to Sun workstations, we will offer the option of
remote execution on a SPARCstation 10 “parse server” proposed under this application (also to
be used by one of the staff for terminal service). This high performance machine should be able to
support a number of GENLANG jobs running interactively, and will also be used for overnight batch
execution of parses against databases. Remote access will include the ability to run the graphical
interface, by ‘X-hosting’ to a remote terminal which may be a Macintosh or PC (using software
proposed under the grant). We have successfully run GENLANG in this mode over the Internet from
Philadelphia to both Bethesda and Berkeley, with barely perceptible delays in screen response even
for parses with complex graphical interactions.

23

3.7.3 Grammar Repository

We will establish a repository for grammars and grammar fragments that will be a resource to users,
accessible over the Internet through anonymous FTP. This will include “vanilla” gene grammars
of various types available for modification by individual experimentalists, library routines of oft-
used sub-grammars, grammar “tricks” such as special recursive techniques, standard cost matrices,
well-known motifs in grammar form, and non-grammar-based algorithms adapted to be embedded
in GENLANG. Headers will contain information on authorship, references, parameter information,
and comments, and a subset of the repository will constitute a supported library for which the staff
will answer user inquiries. Users and especially collaborators will be strongly encouraged to share
their techniques and their experience through the medium of the repository.

The nearer GENLANG grammars approach the “linguistic” ideal of abstracted, declarative spec-
ifications, the more useful the repository will be as a knowledge base of higher-order biological
patterns, independent even of the particular procedural interpretation offered by the GENLANG
parser. The proliferation of special-purpose “boutique” databases of biological sequence infor-
mation, and many other signs, suggest that the time is ripe for a transition from data.bas_es to
knowledge bases in this field. However, the notion of standards for truly declarative yet sufficiently
powerful knowledge bases ic still controversial, and we believe that grammars constitute an at-

tractive first step towards a formally well-founded descriptive system for higher-order features of
biological sequences.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof, The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

24

 FILMED
419 [93

