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Abslract

Dimension is perhaps the most basie properly of an atlractor. In thiz paper we
discuss a variety of diffcrent deflnitions of dimension, compute their values for a
typical example, and review previous work on the dimension of chaotic attrac-
tors. The rclevant definitions of dimension arc of two general typer, Lthose thal
depend only on metric properties, and those that depend on prebabilistic pro-
perties (that is, they depend on the frequency with which a typieal trajectory
visits duferent regions of the attractor). Hoth our example and the previeus
work Lthal we review support the conclusion thal all of Lhe probabilistie dimen
slons take on Lhe same value, which we call the "dimension of The natural meas
urc”, and all of the metric dirnensions take on a common value, which we eall
the "fractal dimension”. Furthermore, the dimension of the nalural measure s
typleally equal to the Lyapunov dimension, which s defined in terms of Lyapunoy
numbers, and thus is usually far easier to caoleulate than any other defimtion
Because IL 18 computable and more physically relev, nt, we feel that the dimen:
rlon of the ratural measure is more important than i fractal dirnension.

To nprnur in an Issue of 'hysica D to be titled Order in (haos, the procecdings of
@ conference held In Tos Alamos, May 24-28, 1083,
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1. Introductinn

It is the purpc - of this paper Lo discuss and review queslions relaling to Lhe
dimension of chaotic ttractors. Before doing so, however, we should first say whul
we mean by the word "attractor”.

1.1. Attractors
In this paper we consider dynamical systems such as maps (discrele time, n)

sy = F(za),
or ordinary differential equ:.lions (continuous time, t)

dz(t)
-—a(—)-_ G(z (1)).

where in both cases x is a vecltor. Thus given an initial value of x (al 7 = 0 for Lhe
map or ¢ = D for the differential equalions) an orbil is generaled ((z;.z2.....Z,.
for the map and x(t) for the differential equations). We shall be ir'eresled in
attractors for such systems. looscly speaking, an altraclor is somelhing thal
"attracts" initial conditions from a region around il on:e transienls have dicd out.
More precisely, an attractor is a compact sel, A, with the property that there is a
neighborhood of A such that for almost every! initial condition the limit scl of the
orbit as nort-+= is A. Thus, almosl every Llrajcclory in this ncighborhood of A
passes arbitrarily close to cvery poinl of A The basin nf atlraction of A is the vlo-
sure of the sel of initial conditions Lthat approach A.

We arc primarily interested in chaotic atiractors. We give a definition of chaos
hi Scc. 1], but the reader may also wish Lo sce Lhe reviews given 1n refercnces | 1-
4).

1.2. Why Study Dimension?

The dimension of an atlraclor is clearly the first level of knowledge necessary
to characlerize its properties. Generally speaking, we may Lthink of the dimension
as glving, in some way, the amount of information necessary Lo specify the position
of a poirit on the attractor Lo within a given accuracy (ef. Sec. I1). The dimension is
a@lso a lower bound on Lhe number of essential variables needed to model the
dynamics.

For simple attractors, defining and determining the dimension 1s easy l'or
example, using any reasonable deflnition of dimension, a stationary lime indepen-
dent cquilibrium (Axed point) has dimension zero, a stable periodie oxeillation
limit cycle) has diniension one. and a doubly periodic altractor {2-lerug) has

imonsion two. 1L is because their structure is very regular that the dimension
thesr simiplo attractors takes on integer values.

Chaolic (strange) atlraclors, however, often have a struclure that is not sim-
le; they are often nol manifolds, and frequently have a highly fractured charace:
er. For chaolc attractors, intuition based on propertics of regular, smooth exan-
les does not apply. The most uselul notions of dimension take on values thal are
yplcally not integers.

To fully understand the properties of a chaotlie al'ractor, one must take into

account not only the attractor itself, bul alto the “rdistribution” or “densaty™ of
points on the attractor. This 1s more preciscly discussed in terms of the natural

1The phraxe "almost every” here sipnifien that the set of initind comd:tions in D e giboshaod e
which the corremponding LiniL set in nut A can be covered by noset of arbitrenly weall volume (e, hasle:

bengue mensure zerv).



measure associaled with a given altraclor The natural measure provides a nolion
of the relative probability of occurence of different regions of the attractor. Jusl
as chaotic aitractors can have very complicated propertics, the natural measurcs
of chaotic attractors often have complicated properties that make the relevant
assignment of a dimension a nontrivial problem.

Precise definitions of such terms as "natural measuie” follow, bul we would
first like to give an example in vrder to molivate the cenlral queslions we are
addressing in this paper.

Consider the following two dimensional map?:
Ene1 =Zp +Yyn + 6cos2my, mod ] (¢
Yn+1 = Z, + 2y, mod 1 H

For small values of &8, Sinai [5] has shown that the atlractor of this map is the
enlire square, and is thus of dumension 2. Therefore almost every inilial condition
gencrales a trajectory that evenltually comes arbitrarily close to every point on the

Successive iterates of the initial point 2, = 0.5, ¥, = 0.5 using Eq. (1) with 6 = 0.1. 80,000
points nre shown. Almest any iritial condition gives a qualitatively similor plot, the location
of Lthe individual polnts of course changes, but Lthe location of the dark bands does pot, ke
density of tuese pointy ix deseribed by the natural measure of Lhis ottroctor. (For exam
ple, the outlined parallelogram (which is blown up in Fig 2) cortainx approximately 27% of
the points of n typieal traje tory, and thus can be said to have o notural meossure of approx
iraalely 0.27.)

Eifod 1 meany that the values of x and y are truncated Lo be less than or equal to one and their in-
teger part are discarded. o that the nap in defined on the umt square,



square. However, consider the typical trajectory shown in Fig. 1. Certain regions
are visited far more often than others. The natura' measure of a given region is
proportional to the frequency with which it is visited (see Lac. 2.2.2), in this case
the natura. measure is highly concentrated in diagonal bands whose density of
points is much greater than the average.’. Furthermore, as shown in Fig. 2, if a
microscope is used to magnify a small piece of the attractor, the same sort of
structure is still seen.

For this map we do not know if the value of § chosen to construct Fig. 1 is
small enough to insure that the dimension of the attractor is two. For praclical
purposes, though, this may be irrelevant. Even if a trajectory eventually comes
arbitrarily close to any given point, the amount of time required for this Lo happen
may be enormous. In order to assign a relevant dimension thatl will characterize
the trajectories on the attractor, the natural measure must be taken into account.
For this example the dimension that characterizes properties of the natural meas-
ure is between one and two.

These considerations are not as esoteric as they might seem. We are ulli-
mately not as interested in whether the dimension of a given attractor is 3.1 or 3.2
as we are in whether it is on the order of three or on the order of thirty. As we
shall see, a proper understanding of probabilistic nolions of dimension lcads Lo an

b — - S

Figure 2

A bluw-up of the strip marked in: Fig. 1. Fipanding it horizontally, What appears to be o sie-
gle band in Fig. 1 is now seen to be o colleetiorn of bands,

8n fact, for small values of &, Sinai [5] haw shown that Tor any £ > O, there exists a collection of
tiny squarey whoye Lotul area ix less than ¢, and such et almos! every trajeclory spenda 1 — & of the
time inkide this collection of squares. Thexe squares cover what in called the core of the atiractor. (Yee

Sec. VIL.)



efficient method of ~omputing the dimension of chaolic attractors, thal provides
the best known method of answering such questions.

The main points v. this paper can be summarized as follows:

Although tkere are a variety of different definitions of dimension, the relevant
definitions are of two types, those which only depend on metric properties,
end those which depend on metric and probabilistic properties (i.c., they
fnvolve Lthe najural measure of the attractor).

2 Current evidence supports the conclusion that all of the melric dimensions
typically take on the samc value, and all of the probabilistic dimensions also
typically take on the same value.

3. Current evidence supports a conjectured reiationship whereby the dimension
of the n.tural measure can be found from a knowledge of the stabilily proper-
ties of an orbii on the attractor (i.e., knowledge of the Lyapunov numbers).

4. For typical chaolic attractors we conjecture that the distribution of frequen-
cies with which an orbit visits different regions of the altractor is, in a cerlain
sense, log-normal (Sec. V).

Points 1-3 are summarized in Table 1. The first two entries in the table are
metlric dimensions, while the next flve are probabilistic dimensions. Under the
hypothesis that all the metric dimensions yield the same value (oint 2), we call
this value the fractal dimension and denote it dp. Similarly, il all the probabilislic
dimensions yield the same value, we call this value the dimension of the natural
measure, and denote it d, Although In special cases dp cquals d,, Llypically
dr > 4, Tinally, the last cntry in Table 1, the lyapunov dimension, is b) definition
the predlt ted valuc of d, oblained from the Lyapunov numbers (ef. Point 3). The
Lyapunov dimension is in a diffcrent category lhan the other dimensions listed,
gince it is defined in terms of dynamical properties of an attractor, rather than

(X

Namec of Dimension Symbol Gencric Name Symbol
capacily dep fractal d
HausdorfT dimension dy dimension F
information dimension d,
d-capacily deo(19)

Y-Hausdor(T ditnension dy(0) dimension of Lthe
rolnlwisn dimensivn natural measure d,
iausdor(T dimension of the core u(cora)
Lyapunov dimension ;, i L -
Table 1
Current evidenee indicates that tynically the twe dunepsions in the first box toke on (le

sorme value, called the fraclal dimension, while the fve dimensions in the secord box Loke on
another typleally amaller value, called the dimenxion of the mceasure.



metric and natural measure properties.

1.3. Qutline

This paper is organized as [ollows: In Sec. 11 we give several definitions of
dimension. Sec. IIl reviews conjectures relating Lyapunov numbers to dimension.
These conjectures are particularly impor.ant because the Lyapunov numbers pro-
vide the only known eflficient method to computle dimension. In sections IV, V, VI,
and VII. we compute all the dimensions discussed .iere for an explicitly soluable
example, the generalized Baker's transformation. in addition, based on this exam-
ple. in Sec. V we propose a new conjecture concerning the frequency with which
different values of the probability occur. Section VII gives a discussion of the
"core"” of attractors, and Sec. VIl gives another example supporting the connection
between Lyapunov numbers and dimension (an attractor which is Lopologically a
torus but is nowhere differentiable). Section IX reviews relcvant resulls from
numerical computations of the dimension of chaotic attractors. Concluding
remarks are given in Sec. X.

In general terms, this paper has two functions. One is to present a review of
the current status of research on the dimension of chaotic attraclors. The other
purpose is to present new results (Secs. IV-V]).

. Definitions of Dimension

In this section we define and discuss six different concepts of dimension. The
first two of these, the capacity ard the Hausdorfl dimension, requirc only a metric
(i.e., a concepl of distance) for their definilion, and consequently we refer to Lthera
as "metric dimensions”. The other dimensions we will discuss in this scction arce
the information dimension, the ¥-capacity, the ¥-Hausdorfl dimension, and the
pointwise dimension. These dimensions require both a metric and a probabilily
measure for their definition, and hence we will refer to them as "probabilistic
dimensions".

In this paper we compute the values of these dimensions for an example that
we believe is general enough Lo be "Lypical” of chaotic altractors, al lecast regard-
ing the question of dimension. We find that the metric dimensions take on a com-
mon value. Whenever this is the case, we will refer Lo this common value dg as the
fractal dimension?. Tor our example we also find that the probabilistic dimensions
lake on a common value d,, which we will refer Lo as the dimension of the nafural
measure. As we summarizc in Conjecture 1, we [cel that Lhis »quality is a general
property, true for typical cascs.

Cenjecture 1. For a typical chaotic attractor the capacily and Hausdor(T
dimensions have a common value dp, and the informatioen dimension, 9-
capacily, ¥-Hausdor({T dimension, and pointwise dimensions have a com-
mon value d, i.c.

dec =dy = dy
and
d; =de(8) =dy(¥) =dp = d,
4The term fructal wax originally coined by Mrndelbirot [0]. However, he uses "fracial dore won™ ns

& synonym for HausdorfT dimension. We should nlvo mention that in some of our previous pape » onthes
subject [7-10), we uned the tern "fructal dimension” as a synonym for capacity, rather than our current
usage as described in the text,



Note: For the case of diffeomorphisms in two dimensions, L.S. Young has rigorously
proven that information dimension, pointwmise dimension, and the HausdorfT dimen-
sion of the core (see Sec. V1) all take on the same value [11].

In addition to the dimieasions defined in this seclion, we will also discuss thre»
others®: the Lyapunov dimension, the capacity of the core, and the Hausdorfl
dimension of the core. Lyapurov dimension is discussed in Sec. lll, and the latter
two dimensions are discussed ‘n Sec. VII. For our example the Lyapunov dimension
and Hausdorff dimension of the core are equal to d,,, while the capacily of the core
is equal to dp.

2.1. Metric Dimensions

We begin by discussing two concepts of dimension which apply Lo scts in
spaces on which a concept of distance, i.e., a metric is defined. In parlicular we
begin by discussing the capacity and the HausdorfT dimension.

2.1.1. Capacity

The capacity of a set was originally defined by Kolmogorov [13]. ILis given by
do = i 1B (2)
log ()

where, if the set in question is a bounded subsect of a p-dimensional Fuclidean
space RP, then N{e) is the minimum number of p-dimensional cubes of side ¢
nceded to cover the set. [For a point. a line, and an area, N{e) ~ 2, A{¢) ~¢ !, and
N(£)~ 2 and Eq./ (2) yields dp = D0, 1, and 2, as expected. However, for more
general sets {dubbed fractals by Mandelbrot), d¢ can be noninteger. For cxamplr,
consider the Canlor set obtained by the limiting process of deleting middle thirds,
as. lustrated in Fig. 3. If we choose € = (1/3)™. then N = 2™, and Eq {2) yiclds

- log 2 = 0.6
c lOg 3 0.830...

If one is content to know where the set lies Lo within an accuracy &, then lo
specily the localion of the set, we need only specify the position of the X{&) cubes

covering the set. Equation (2) implies thal for small £, log N (r) =dc log {:.—)-

Hence, the dimension tells us how much infecrmation is necessary to specify the
location of the sct to within a giv.. Y accuracy. If the sel has a very fine scaled
structure (typical of chaotic attractors), then it may be advaatageous to introduce
sorme coarse-graining into lthe description of the sel. In this case, ¢ may be
thought of as specifying the degrce of coarse-graining.

2.1.2. HausdorfT Dimension

The capacity may be viewed as a simplified version of the [HausdorfT dimension,
originally introduced by Hausdorfl in 1919[14]. (We have reversced hislorical order
and defined capacity before Hausdorfl dimension because the definition of laus-
dorf! dimension is more involved.) We believe that [or attractors these two dimen-
¢ions are gencrally cqual. While it is possible to construct simple examples Jf sets

®Note that in this paper we will not discuss the concept of fopolugicul dimension, = a-¢ its app’ ci-
tiun Lo chaotic dynamics is not clear. It value iy an inLeger and 1t is generally equal to ne:ther dp nor
dp. For discussions of Ltopological dimension, we refer the reador to Hurwicz and Wallmman {12].

8Sets can be constructed for which the lim'L of Eq. (2) does not exist, We wouid then say Lhat the
capacily is not defined.
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Figure 3

The first few steps ir the construction of the classic exarmple of a Cartor sel.

where the Hausdorfl dimension and the capacity are unequal’, thesc do not seem
to aJply) to attractors. (Although they may apply to the core of attractors. Sec
Sec. VII.

To define the Hauv - lorfl dimension of a set lying in a p dimensional Huchdean
space, consider a covering of 1t with p-dimensional cubes of variable 2dge length #,
Dcfine the quantity {4(e) by

by(e) = in.f)]s.‘.

vhere the infimum (i.c. minimum) extends over all possible coverings subject to
the censtraint that g, < £. Now let

i = 1:15161 Lg(g).

Hausdorfl showed that there exists a critical value of d above which Iy = 0 and
below which Iy = =, This critical value, d = dy. is the llausdorfT aimension. (I’re-
cisely al d = dy, I3 may be either 0, =, or a posilive fimle number.) This concept
of dimension will be used in Secs. IV, V1, and VII. It is casy to sce that dp > d,,P.

TFor example, for the sel of numbers 1, ;— %—
vieldsdp = ”.

870 show that dg > dj, consider a covering copsisti ing ubhes of e dc i = E. Then due to
the infimum in the definition of !,(..S we sce that Ig(E) - Osp J’ qu isfien ld(T;l> ly(r).

-:—,. the HuusdorfT dimension is zcro while (1)



2.2. Probabilistic Dimensions

£.2.1. The Natural Measure on an Attractor

Note that, in compuling d¢ from Eq. (2), all cubes used in covering the attrac-
tor are equally important even though the [requencies with which an orbil on Lhc
attractor visils these cubes may be very different. In order Lo take the frequency
with which each cube is visited into account, we need Lo consider not only Lhe
attractor itself, but the relative frequency with which a typical orbil visits diffcrent
regions of the attractor as well. We can say that some regions of the attracter arc
more probable than others, or alternatively we may speak of a measurc on Lhe
attractor®. We define the natural measure of an ettractor as follows: For each cube
C and initjal condition x in the basin of attraction. deiine u{x.C) as the fraction of
time that the trajectory originating frotn x spends in C.'® If almost every such x
gives the same value of u(x,C), we denote this value x{C) and call u the nafural
measure of the attractor]15]. The natural measure gives the relative probability of
different regions of the atlractor as obtained from time averages, and therefore is
the "natural” measure to consider. We will acsumec throughout that any atiractor
we consider has a natural measure, at least whenever C is one of the cubes we are
using to cover the attrac'or.

The four definitions discussed in the remainder of this section are defined for
altractors with a metric and a natural measure defined on them.

2.2 Information Dimension

The information dimension, d;. is a gencralizaltion of the capacily thut Llukes
inte account the relative probability of Lhe cubes used to cover the sel. This
dimension was originally introduced by Balatoni and Renyi [.6].

The information dimension is given by

d1=lim-—!—@)1—. n
¢-0 log{c_) (‘)

where
- ?‘%) 1
I(E) - =|P‘IOEF¢_'

and P, is the probability contained wilhin the i®* cube. Letung the i¥ cube of side
e be G, P =u(C). Nole that if all cubes have cqual probability then
lil:; =]log N(¢), and hence dg=4d;. lowever, for uncqual probabilitics
I(z) <log N(t). Thus, in general, d¢ > d;.

In information theory the quantily I{e) defined in kg (3) has a specific mean-
Ing [17]. Namely, it is the amounl of information recessary Lo specily Lhe stale of
the system to within an accuracy e, or equivalently, il is the informalion oblained
in making a measuremcnl thal is uncertain by an amount £. Since for small »,

I(e) ~d; log -:— we may view d; as telling how [asl the informalion necessary Lo

specily a point on the attractor increases as ¢ decreases. (For a more extensive
discussion of the physical mecaning of the informalion dimoension, see Refs 7 and

Thus taking the limit € -» 0 and making use of Fq. (2) we sec that dyy > d,.

®Although there arc many measures possible for a given attractor, we ire vy itierexied in vle of
thern, the natural measure.

tu(z.C) = l‘."."' 4r(z,C), where jie(z.C) is the fraction of Lime spent in € up Lo some Mute
time T.
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~2.23. 9-Capacity

Another deflnition of dimension which we shall be interesled in is what we will
call the 9-capacity, dc(¥). Essentially, this quantity is the capacity of that part of
the attractor of highest probabilily,

where N(¢;9) is the minimum number of cubes of side £ nceded Lo cover at least a
fraction ¥ of the natural measure of Lthe attractor. In other words, the cubes must
be chosen so that their combined natural measure is at !ecast 9. Thus dg(1) = de.
For the examples we study here, we find that for any value of 3 < 1, the ¥9-capacity
ls indcpendent of 9, but that dg(¥) for ¥ < 1 may differ froin ils value al 3 = 1. In
particular d¢(9) = d, for ¥ < ! and d¢(B¥) = de for ¥ = 1. ¥—capacily was originally
defined by Frederickson et al. [7). Similar quantities have also been defined by
Ledrappier [18,, and Mandelbret [19].

E.2.4. ¥-Hausdorfl Dimension

In analogy with the relaticnship between capacity (a melric dimension) and
VU-capacity {(a probability dimension), we inlroduce here a prohabilily dimunsion
based on the Hausdorfl dimension. Ve call this new dimension the ®-llausdor(T
dimension and denote it dy(8). To define the ¥-Hausdor(T dimunsion, modify the
definition of HausdorfI dimension as foilows: Define {3(z.3) by

La(eB) =inf Yed
¢

where now the infimum extends over all possible £; € € whirh cover a fraction 7 ol

the tolal probability of the set. We define dy(3) as Lhat value of d beiow which

lz(¥) == and above which [4(¥) = 0, where {;(8) = ling Ly(:.9). This concepl of
[

dimension will be used in See. V1.

B.2.5. Pointwise Dimension

Roughly speaking, the poinlwise dimension d;, is the expenent with which the
Lotal probabllily cortained in a ball deercases as Lhe radius of the ball decreases
To make Lhis nolion mere precise, let 4 denole Lhe natural pi.'.ability measure on
the attractor, and let B,(z) denotc a ball of radius & centered about a point x on
the attractor. Roughly speaking, u(/(z)) ~ £®. Morc preciscly, Young| 1] defines
this dimension as

dy(z) = iy SEALEAZD), )

If d,,S:) Is iIndependent of x for almost all x with respecel to the measure g, we cail
dy(z) = dy tho pointwise dimension. Similar definitions of ditnension have also
been glven by Takens [20] and Janssen acd Tjon | 21].

£.3. Using a Grid of Cubes to Compute Dimension

Some of tic definitions we have used, such ax the capacity, allow any location
or orlentation of the cubes used Lo cover the altractor. In a numericeal

1153y "almost all x with respect to the measure u” we mean that the set of x which does nol saisly
this i» a net of x4 moanure zero.
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experiment, however, it is much more convenient to select the cubes used to cover
the attractor out ol a fixed grid, as shown in Fig. 4. For thes» dimensions (d¢. dy,
and dg(¥)) it can be shown that selecting from a fixed grid of cubes gives the same
value of the dimension as an optimal collection of cubes. For examgle, for the case
of an atlraclor in a two dimensional space, using a fixed grid Lo compute N(&) in liq.
(2) results in an increase of at most a factor of four in N(£), which has no effect on
the value of the dimension. Nole that this is not true for the Hausdor(T dimension,
which requires a more generai cover.

In principle, the definilions of dimension given in this section and the use of a
fixed grid provide spccific prescriptions for obtaining capacily, informalion dimien-
sion, and Y-capacily. To find approximate values for these dimensions, one can
generale an orbit on Lthe altraclor using a compuler, and then divide Lthe space
conlaining the orbit into cubes of side £ in order Lo estimale the numbers N(r),
1(g). or N{e:9). By examining how N{z), I1(¢), and N(¢:9) vary as ¢ is decreased Lhe
value of Lhese dimensions can be estimated.

As discussed in Sce. 1X, however, in praclice Lthe agenda described abeve for
compuling dimension may be diflicull, costly, or impossible. Thus 1t is of interest
Lo consider olther means of obtaining Lthe dimension of chaolic attraclors. The ne«t
gecclion deals with this gquestion. In parlicular, we discuss a conjecture that Lhe
dimension of chaolic atlraclors can be deitormined directly from the dynamics in
Lermis of l,yapunov numbers

\\
g\I\J
\.
.\:f.

Y

Figure 4

The region of phase space containing an attraetor can be divided with a fined ped of cubes,
whicn can be used to compute capacity, information dimension, or 9-capacity.
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1Il. Lyapunov Numbers and Lyapunov Dimension

The Lyapunov numbers quantify the average stability propertics of an orbit on
an attractor. For a flxed point attractor of a mapping, the Lyapunov numbers arc
simply the absolute values of the eigenvalues of the Jacobian matrix cvalualed at
the fixed point. The Lyapunov numbers generalize this notion for more compli-
cated attraclors. As we shall see, for a typical attraclor thorz is a conncclion
belween average stabilily properlies and dimension. The possiblily of such a con-
nection was first pointed out by Kaplan and Yorke [22] and later by Mori |23].

3.1. Definition of Lyapunov Numbers

For expository purposes, for most of this paper we shall consider p-
dimensional maps,

Ens) = F(’n).

where x is a p-dimensional veclor. We emphasize, however, Lhal similar considera-
tions Lo those below apply Lo flows (e.g., systems of differential equalions), includ-
ing infinile dimensional systems such as parlial diffcrential cquaticns. To define
the lLyapunov numbers, let J, = [J(z,)/ (z, ,)...J(z,)] where J(x) is the Jarobian
matrix of the map, J(z) = rry and let j(n) > jo(n) > - - - > jp(n) be the magm-

tudes of the elgenvalues of J,,. The Lyapunov numbers are

L
N=lmiAe)™. i=12.p. (0
where the positive real n™ rool is Laken. The Lyapunov numbers gencrally depend

on the cholce of Lthe nitial conditiun z;. The lyapunov numhbers were originally
defined by Oseledee [24). We have Lhe convenlion

AN>> >,

For a two dimensional map, for example, A, and Ap are the average prineipal
strelching faclors of an infimitesimal circular area (ef. Fig. b)), T'or a chavtie

BV
ITL RATIONS OF n
n i A8
THU 2D MAP
Flgure

n Hterations ol o two dirensional mnp transform a sufficiently small eleele of radies 8 op
proximately into an ellipse with mojor nnd minor radii (A)" ¢ and (A4, where Ay aed A are
the Lyapunov numbers,
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attractor on the average nearby points initially diverge at an exponenlial rate, and
hence at least one of the Lyapunov numbers is greater than one. This makes quan-
titative the notion of “sensitive dependence on initial condilions”. We will take
A; > 1 as our definition of chans. (Note that many authors refer to Jyapunov
ezponents rather than Lyapunov numbers. The lLyapunov exponents are simply Lhe
logarithms of the Lyapunov numbers.)

In this paper we assume that almost every inilial condition in the basin of any
attractor that we consider has the same lLiyapunov numbers. Thus, the speetrum of
Lyapunov numbcrs may be considered to be a properly of an allraclor. This
assumplion is supported by numerical experiments [2b]. Exceplional trajectorics,
such as unstlable fixed points on the atlraclor, typically do nol saniple the whole
attractor and thus typically have Lyapunov numbers that are different from those
of the attractor. Those poinls in the basin of atlraction thal have different
Lyapunov numbers or for which Lyapunov numbers do not exisl are here assumetd
to be of measurc zero. (In other words, they may be covered by a collection of
cubes of varying size having arbitrarily small Lotal volume).

3.2. Definition of Lyapunov Dimension

The following discussing contains a heuristic argument thal molivales a con-
nection between Lyapunov numbers and dimension. Consider a lwo dimensional
map. Supposc we wish to cornpule the capacity of a chaclic attractor, for which
A; >1 >Aa. Cover the allractor with N(&) squares of side €. Now, ilerate the miap g
Llimes. For q fixed and ¢ small enough, the acuon of the mapping is roughly hinear
over the square, and vach square will be steetehed into a long thin parallelogramn
From the deflnilion of the Lyapunov numbers, the average longlh of these pial-
lelograms is (A))? £, and Lhe average width Is (A2)? £. Now, suppose we had used a
finer cover of squares of side (Ap)? &, (See Vig. 6.) To cover cach parallelugram

takes aboul (—'—)' smaller squares. Thus, i ¢ ix suppased that all squares on the

altractor behave in this Lypical way, then one is lead Lo the estiniate
A
N(Mr) & (GHTNG). ()

d
Molivated by Kg. (2). assame N(r)ﬁlk(:—) € and substitule into bolh side of
F.q. (7). This gives
3 o e Mye T yde
(gt TG
Collecting terms, Laking logarithmes, and solving for de gives

dc =1 + 'I—D'-p'—ﬁ*

log -—
A
We will see that this expression is often meamngful even when this he urcstie derivae
Uon l4 invalld, so we will coll it the Lyopunov dimensian o,

log A
d, =14+ DR

(™

lop —

Az

Generalization of the above heuristic o gument to p dimengictal maps paves (e f

Rof. [7]))



13

&)

Figure

A achematic llustration of Lhe heuristic argument for the Lyapunov dimoeassion. The image
ol cacl small square in (a) is approximately o porallelogram which has v en stretebed hor-
izontally by a lactor of Af and cortracted vertically by a fuctor AJ. The imuges In (b) thus
require. a smuller cover of squares as shawn in (¢).

dJ. =k + lﬂg (AIRE“M! ' (9)
log
A

where k is the largest valuc "~= which AAg . A\ > 1. If A < 1, deflne d, =0, if
MAz..Ap > 1, define &), = p. We sk .l refer to d) as the Lyam nov dimension. This
quantity was originally defined by Kaplan and Yorke | 22], who arlginally gave It as
lower bourd on the fractal dimension.

From the abuve argument once might be templed to guass that de = d,,. The
lyapunov numbers arc avarage quantitices, however, and Lo conipute an average,
eacn cubae must be weighted according Lo iLs probability. ‘The eapacity does not dis-
tinguish between probable and improbable cubes. To understand how some cubes
might have vastly diffcrent probabilitics than ethers, conside * an atypieal square of
a two dimensional map. 1f the area of the imnges of this square deereases half ax
fast as Lhe average for k iLerations, then its &A™ image will be 2% Limes larger than
thoe image of a Lypical square, and the number of nquares needed Lo cover iU will be

tities greater Lthan the typical value, In fact, as will bo evident from considera
tions of explicit examples (cf. See. V), iL Is commonly Lthe case that the vast major-
ity of cubes needed Lo cover Lthe attractor are atypical, and do not represent the
rropnrllea of time avernges. Hy this we mean that all the atypical cubes taken
ngother contain an extremiely small fraction of the total probability on the attrac-
Lor yel account for almost all of N(£). Furthermore, this tendeney (inerenses as s
dccreases. The behavior of the atypieal cubes under ileration ix in general not
deseribed by the Lyapunov numbers. 1L s clear, then, that in order for this esti
mate lo be valid, we must congider only Lthe more probable cubes, .o, the estimale
should be in terms of the dimension of the natural measure cather than the
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ca&mclty. Assuming the equality of probabilistic dimensions (Conjecture 1), we are
led Lo the following conjecture:

Conjecture 2: For a Lypical'? attractord, = d;.
YP M

In the following six scclions we present evidence supporling Lhis conjecture. Also,
L.S. Young has proved some rigorous resulls along Lhese hines, which are reviewed
in the next subsection.

In the speciai cas: thal rvery initial condilion on the attractor generates Lhe
same Lyapunov numbers, we will say Lhat the atlractor has absolule lyapunov
numbers. In this case It is not necessary Lo distinguish probable from improbable
cubes, and the above conjecture can be made in terms of the fraclal dimension
rather Lthan the dimension of Lhe natural measure. We call this Conjecture 3.

Conjeclure 3: Il ApAa....Ap gencraled from cvery (not just almiost every)
{nitial condilion take on the same value, and il A; > 1, then for a typical 1=

attractor of this lype dr = d; = d,,.

The requirement of Conjecture 3 that every initial condition on the attraclor
gcnerate tho sar 2 Lyapunov numbers is very restrictive and only holds for special
cases. For example, it holds il the Jacobian matrix of the map is independent of x
In more general cases, the requiramentl of Conjecture 3 would be expecled to fuil
because of the existence of unstable fixed and periodic poinls on the altractor
For example, if z, is chosen to be precisely on an unstable fixed pont, e
Lyapunov numbers gencraled will simply be the eigenvalues of J(z;) These will
typically be different from those genecrated by a chaolic ortit on the atlractor
Examples for which Conjecture 3 s valid will be special cases of the more general
example prescented in Lhe following scection. In addition, an example for which Con-
Jecture 0 can be proven to hold 1% glven in Sce VIIL

3.3. Revicw of Rigorous Resulls Concerning lyapunov Dimension

In addition Lo the analylie and numerical evidenee we will give for conjecture:
1-31n the remainder of this paper, there are veveral rigorous resulls supporting:
these stalements which are reviewed in this section For example Ledeappier © it
has proven an inequality that is somewhat similar to Conjecture 2 In particular,
he defines a dimension that we will call dy.y, which ig the 9-capacity in the hirnat e
U goes toone, i c.

Qiag = Lini dp(19).

¥or (2 diffcomorphisnis™ he has shown thal

¥ he reanon for the word "typical * ix thal there ezt exnnples of mnps thet do ot sat <y
d, = d;. Thene maps are exceplional, however, in that arbit-arly small perturbatons of them restore
lrl‘e ranjectured equality of d, and oy, An example of surch an atypical cane i where o point z, 0w
tracting and yet has Ay = 1 (Le., the Jacobinn matnx 2% nav an cigenvaluye 41 al z,) e it o

here in due Lo higher order tetn, The attraclor I8 a point and so has dimengion zem, yet dy o 1 S
perturbationy, however, will dextroy thin delicate balance. For example, the one dorens ong’ eep
Zgyy ™ F(2) = oz -2 hawn Axed point ntr = Owith Ay = 1 fara = 1Tyelr = Owatiom b ag T
tion ia clanged, however, nsnoon axa w 1. When [af <), dy, =0, and when Jal > 1, 0 ¢ fs 1 e
allracting,

", ? diffromorphier in a twice differentinble invertible mapping whose Jacolan has non sesa
Auterminant everywhere.
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dy = djg
The proof is a rigorous version of Lhe heuristic argument thal we have given
(Fig. 8). Also, Douady and Oesterle [26] have proven that an upper bound for the

fractal dimension can be obtained yielding an expression like liq. (8), where the
numbers they use are basically upper bounds for the Lyapunov numbers.

L.S. Young [11] has proven scveral resulls Lthat strongly support conjecturcs !

and 2. Particularly relevan!. are the [ollowing two Lheorems!.
1. If dy ezxists then

dp = d; = dy(core) = djea, (10)
2. For twa dimensional C? diffeornorphisms with A; > 1 > Ay, d, erisis.
and
_h, log A,
dp_hEAl (1+log—]—) (11)
Az

(See Sec. V1l for a definition of dy(core).) k, denoles the Kolmogorov entropy® of
the attractior Ltaken with respect to the measure g, and A} and Ay arc the Lyapunov
numbers with respecl to 4. (More preciscly. almosl cvery initial condition x with
respect (o 4 give A; and Ap as the lyapunov numbers.)

For Axiom-A atlractors Bowen and Ruclle [15] bave shown that there 1s a
nalural measure such thal such h, with respect to Lhis measure ix Lhe sum of the
one. ror atltractors with only one lyapunov number greater than one, this amphe
that h, = log A;. Thus, for Axiom-A altractors ol two dimensional muaps, Ligs {9 7))
yiceld :f:, = d,. Therefore Young has shown Lhat Conjecture 2 holds for this caxe. (It
has been conjectured Lhat Lthe relationsinp between hy, and the positive Ay holus Tor
non Axiomn-A aitraclors that have a nalural measure ) This result for the ciase of
Axiom-A atiractors of lwo dimensional maps has also been obtained independentiy
by Pelikan [30].

1V. Gencralized Baker's Transformation: Scaling

4.1. Definilion of Geneoralized Baker's Transformation

In this seclion we define Lthe example which we will study in detail in thes aned
the following four scctions  Although we feel that Lhis exaniple s general enough te
be Lvpical of low dimensional chaotic attractors (at least concermng its dinen
slonal properties), it is also simple encugh that all of the dimenson: dizeussed m
this paper can be analytically caleulated'. Thus, for this example, we shiall be able
to verify Conjectures 1-3 in a case where generally dp 7 o, A we shall show
Sec. V, another nice properly of thiz map is that it allows us Lo ivesbgale certan
properties of the natural probablity distribulion in detil.

. ———— e — ———— e e - Ememt s

Mpor thene results Young does not require the existence of 8 natura! ireasare, ' vathes asepees
sitnply the exintence of nome invarinn!l measure g In this caxne the Lyapaiov nardeeay are e ob
tained when wtarting at alimont every iniua! point with respeet to a4,

"The Kulmogorov entropy, origiaally defined by Shannon [17] and apphed o dy e’ syt e by
Kolmugoruy [27] and Sinat [28), pute a quent:tative vajue on the average amoant of sew nfonat o ol
tained from a sequence of mewvnzeent: Hee [0] or [P0) for Shynoeatly motvated sovews Noe ot
Lthin in alxo called metrie entropy  The name rmetra entropy derives from the caanesiee wropen '
thin quantity, in fact, the definition of metric entropy yoen not reqinee a medee (B0 does peqa oe o
m:eaxire).

1 xcept fur the 9-lnasdortl dunension, lor which we only obtn anupper boal.



Figure 7

The Gereralized Baker's Transformation.

The map Lo be ronsidered is

A“:n ”yn <n,
Ty = Y AT ifyn >

(1)

a Yn: ily, <a,
Uni =
Ly T

where we shall assume 0<x, <1 and 0 <y, < 1. If this condition is sati=ficd ne
Lally it 1s also satisfied at all subsequent terales Pigure 7allustrates the action of
Ling riap on the umt square  As shownan Fig. 7, we Lake n, Ay Ay < ¥, and Ay = A,
Figure §§ shows the result of appiying the map two times to the umt square or
Fig s =een that, if the x interval [0,Ag ] 15 magnificd by a factor Yo bevones

a precise replica of Fig 7(d). Simlarly, if the xanterval 1% %4 A | is magmified by
< o nreplica of Fig 7(d) agaimn results This sell sinlarty property of g {°0) will

Ao
gubsequently be used to obtan dy:, ), dy, and d,.

4.2. Lyapunov Numbers of Generalized Bakor's Transformmation

Now we eonzider the Lyapunoy numbers Lquation !:_’(h? mvolves ¥ alone wnd
consizts of a hnear steetehing on each of the y mtervals [0a) and (o] Thas
almost every v intbal condition in [0,1] will penesate an erpgodie orbit iny with une -
form denaity in [0,1]0 The Jacabinn of By, (12) 1 diagronal and depends only on v
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Figurce 8

After mpplying the generalived baker's transformation to the unit square twice, only the
shaded regions remain.,

La(y) 0
J = l Y l'l(y)]
where
N fy<a
l'i‘(y)=[J\. iry >«
and
I
a fy<n
Iy) =] ify >a
i-n

Thus applying liy. () woe have

).
A= 'l‘".'l_l I La(yn) daly) ™

or

. o o 4 T8 o
log A, = .l.".'.'.' n lop at log 54

f

where =1 —a. n, I8 the number of Limes the orbit hag been in the sot y <,
and ng 15 Lthe number of Umes the orbit haa beenin the set y > a Sinee for almost

any ¥, the orbil in y 18 ergodic with untform denstty in 0,1, lim -';"-- =, and
noew
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similarly lim '—:—= B. Thus

1 1
\, = i 2 3
log N aloga+ﬂlogﬁ (13)
Similarly, we obtain for A;

log Az =alog Ay + Blog ;. (14)
Yo siniplify notation in this and subsequent expressions, let
. ’_ L _1— i
H(n)-aloga + (1--a) log T (1%)
H(a) is called the binary entropy function and is the amount of information con-

taincd in a coin-toss where ticads has a probability a.

The Lyapunov dimension of the attracltor cf the gencrahized baker's transfor-
mation (Eq. (12)) is

H{a)

d, =1+ 1
alog r+ﬁlo

1 (16)
T ———
* N
In the [ollowing sections we compule the values of the dimensions defined in this
Eapnr. and show that all the probabilily dimensions Lake on the value given in

q. (18).

For all but special values of A5, Ay, and a. there exist unstable periodie orbit«
whose lyapunov numbers are different from those given in hgs (13) and {i2) Y/
Thus, in g~rneral we expect thal Conjecture 2 rather than Conjecture 3 apphies and
oy #d,

4.3. Capacily of Guncralized Baker's Transformation

To caiculate dp we first noee thal the altractor is @ product of a Cantor st
along x and the interval [0,1] along y. Thus the caparily, or any of the other
dimensions, are in the form d; - ! + dp, where 4 is the dimension of the attractor
in Lthe x direction We will gencerally use a bar over a dimension Lo refor te the
dimension along Lthe x direction.

We now oblain ¢z by making use of the sealing properly of the generaliod
baker's transforniation, discussed at the end of See 4.1, We write N{(#) as

N(c) = dale) + Ny(2),

whete N,(r) ix the number of x intervals of lenglh £ needed tn cover Lhit parl of
the attractor which hes in the x interval [OAG ], and Ny (#) 18 the analogous quantity

for the x interval [¥, % + Ay ]. From the scaling property, N,(r) = N -'——-). and sinn

N
LY

larly /Wy (e) = N(i——). Thus

N(e) = "‘i’) + NG (17)

— . -

TTo rer that for aimox. a'l parameter values the Lyrpirn v numbers of the gearralized baker's
transformation are ot Hhuuhllr, (;pn.‘idvr the specindl mtiai comdition on the attrac or w.th y valae
Vi = Ya Wirre Yy, = i'l ~ad at) N Thin imtial coadtion forts pomiy to oe u? the pocits o the
uu!'-.n\;le pcri'olc.] 2 orbit, (Yo .Yy Ve .y.,....s. where ¥y = @0 Y. Nowe D€y €y, €1, we
hnve - = —L - ¥, and the Lyapunov numbern generated by thiivitinl combition are A ¢ (e 1) ¥

and Ag“= (Ng 1\:, )u. rather than those given by Fyna. (1) and (14).



Assuming heuristically that N(g) &k e % for small ¢, substituting into Eg. (17)
gives

k(DT =k (2 4 k(2%
implying that

1= N 4 0%, (18)

which is a transcendental equation for dp. As expected, Eqns. (18) and (1B) show
that, in general, 1 + dp = d¢ # d;. Ilowever, for the special choice A, = A,, a = %,
corresponding to Eq. (12) with A; =2, the two agree. Note that for Lhis case the
Jacobian matrix is constant, the Lyapunov numbers are therefore absolute, and
Conjecture 3 applies

In obtaining I ‘'n order to kecp the argument simple, we have made the
strong asswnplir {e)®™k £ ¢ for small £, which implies the existence of
the limit given in ! .imition of capacity, Eq. (2). We can, howrver, show Lhal the

limit given In Eq. () exists ard dp must satisly Fq. (18) i+ a rigorous manner, as
fcllows:

Define E(¢) by
N(E) = Fe(e) e T,
where d is defined by 1 = A2 + A8, Substituting this into Eg. (17) then viclds
Fe(t) = a Fo(==) + B Le( == 1
) ] c(e) C(M) ﬂC(N) (:9)
where @ = AJ and A =Ag. and are independent of £. Nolice that by definition

x + =1, so Lhe above expr.ssion says that Eg{e) is a weighted average of ils

values al —— and x‘— Chor-c r), and £ so that £, > £5 > 0. Since N{¢) and hence
b
F¢(c) are finite and posilive for any finite &, there exist finite non-zero numbers

13, > By > U such that B; < Ep(r) < M, lor €, >& >£5. We can assume that ) and ry
€ =
arc chosen so that El— Is large. Since a+ =1, kKq. (19) mplies that

2
B < E¢{z) < B, also apg'ics Lo the wider interval £, > € > 2, £5. Repeating Lhis argu-
ment increases the domain of validity of the bound to £; > & > Afta. and so on
Hence Eg(t) is bounded uniformly from above and below for arbitranly smuall »

Thus the limit of bg 2) exists and = g (In facl it can be shown Lhal Lig. (:9)
U
implies that limFe(e) Is a constant if 2828 i< an irrational nuriber.) Note that in
£-0 log A,

Kq. (18). since both terms on the right hand side arc monotonically derreasing, dg
oblained from solving Lhis equalion is unique.

4.4. Compulation of Ilausdor(T Dimecnsion

The lausdorfl dimension 4y can be caler.ated by an argument that is
very similar to the one used above in computing Lthe capacily. let
E‘, = dy — 1, the Hausdorft dimension along X, Applying Lthe scaling property
o! the map !'n the quanmtity g(#) (defined in Sce. 2), we oblain

La(r) = (A)8 Lg( ) + (Ao)8 Ly ().
» »

Substiluling “'(.':) = Fy(e) & @ -©) jnto the above cquation, we apain find thal
l'.'”(? salisfles Iqg. (llls. Thus Lhe limil £ +0 yiclds lf seorly =0fordc<d, or

d > dg, respectively. Henee, as predicted in See. I, the HausdorfT dimension



and capacily are equal, dy = dg.

4.5. Calculation of Information Dimension

The information dimension d; can also be calculated by a scaling argument
similar to that used above in computing the capacity. Once again, let dy =1 + o,
and express the summalicn for I(¢) in Eq. (4) as thc sum of contributions from the
two strips in Fig. 7(d),

I(e) = I, (e) + I, (). (20)

The total probability contained in strip [0,As ] is a, and that in strip [%. Ay + %] is f.
Assuming that it takes N(e) strips of width £ to cover the whole attraclor, then
from the scaling property of Eq. (12). covering the strip [0. A;] al resolution eA,
also requires N{t) strips. Thus

L(er) = Vo A
.tu)—ma 1log 5

= a [log a‘-+ 1(e)]
Hence, replacing £A; by ¢ in the above,

I,(e) = alog £—+ a l(iﬁ

() = flog g+ B 1(;.

Thus

I(z) = a I(£) + 8 I(:=) + H(a). 1

() (;:9 i (M) (a) (23)

where 1l{a) is given by Fg. (15). Motivated by Eg. {3), il we assume thal

1{€) = d; log E_—-l‘or small £, and subsUitule for I{¢), I('\Ll-), and I(;T) in the abeve
equalion we obtain

&1 = lh'(gl 1

alog —+ Blog —

B Blog 3

which is in turn cqual lo d;. The assumption that /() = d; log :— can be made

rigorous in the limil as £-= using an argument that is complelely analogous Lo that
uscd in deriving Lhe vapacity in Lhe last part of Sec. 4.73.

We should menlion thal Alexander and Yorke [:0] have compuled the
Lyapunov and Information dimersions of Lhe generalized baker's Lransformaiion
for lhe special case a =%, A=)\, = Ay, where A> ¥ In this case d; =2 lor
uncountably many values of A they find thal also d; = 2, although there are cerlain
special values of A for which d; < 2.

In order Lo calculale the oLher probabilily dimensions listed in Table i, morce
Information concerning the probability distribulion is required. This is dealt with
in Scc. V, and we therefore defer calculation of of the remaming dimensions to the
goclions [ollowing Sec. V.
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V. Distribution of Probability

In this section we derive the form o! the probability distributivn §P, (e)] associ-
ated with the natural measure L of the generalized baker's transformalion. Herc /,
denotes the probability of the 1** cube G of edge ¢, i.e., P, = #(G). The collection
of numbers {F;(z)] may be also be thought of as the result of coarse graining Lhe
natural measure. This probability cistribution is interesting both for its own sake,
and because it Is needed to compule some of the dimensions that we are
interested in. In what follows we restrict ourselves to the case in which
As = Ap = Ap which keeps the width of all the strips the same. Thus a parlicularly
convenient partition for computing {7;] is the sel of 2" nonempty strips obtained
by iterating the unit squaie n times.

Starting with a uniform probability distribution, on one application of the map
two strips are produced, one with total probability a and the olher with lotal pro-
bability 8. (See Fig. 7(d).) If the map is applied again (Fig. B). there results unc
strip of probability 2% one of probability 82, and two of probability a 8. In gencral.
after n applications of the map, there resull 2" strips of width (Az)" and probab.li-
tiesa™ g™ "™ m = 0,1,2....n. The number of strips with probability a™g\" ™) js

=n!
Z(n.m) = (n—m)m!’ (22)
i.e., the biromial coeflicient. Since we take a <} < 8, lower m correspends lo

more probable strips, i.e. strips of grealer nalural measurc. The Lolal probability
contained in these Z(n,m) strips is

W(n.m) = a™ gin-m) 2(n.m). (23)
Note the similarity to a sequence of coin tosses; Using a coin with probability a of
heads and 8 of tails, for a sequence of n flins the total number of sequences with m

occurences of heads is given by Eq. (22), and the likelihood of all such sequernices 1s
given by Eq. (25).

For large n (small £) it is convenient to have smootlh estimates for Z{n.m) and
¥(n.m). Using Sterling'. approximation, i.e.,

logn'=(n + %) log(n+1) - (n+1) + lag (2m¥ + O(n 1),
we obtain from Eq. (22)
log Z = (n +}%) log(m +1) - log (2m)¥ + 1.

Expanding this expression in a Taylor scries aboul ils maximum value, m = %—.
yields
e
Z(n.m) ~ _2‘/2"__7\/:1:_ e‘*[i'(m 2—, " (2)
Similarly, from Eq. (23), #(n,m) is
W(nm)w 1 g ¢naf (20)

Vv2mnaf
Note thal, since these cxpressions were oblained by Taylor scries —xpansion,
Fq (24) is only valid for l:':——%-l << 1, and Kq. (25) is only valid for ]1:——— n} <«
However, since the width of these Gaussians is 0(# Fq. (24) is vahd for mosl of
the strips, and Eq. (25) is valid for inosl of the probauility.
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Fig. 9 shows a schematic plol of 7 and W. It is clear [rom this flgurc thal, for
large n, almost all of the probabilily is contained in a very small fraction of the
total number of strips. Furthermore, this situation is accentuated as £ gels
smaller (n gets larger;,. since the widlh of the Gaussians given in Fgs. (24) and {20)
decreases according to n¥. In the limit as £-0 these Gaussians approach delta
functions, and they do not overlap. We feel that Lthe above properties arc typical
featurss of chaolic attractors.

6.1. Log-Normal Distribution of Probabtililics
It is instructive to rewrite Eq. (25) in another form. leol p = a™g™ ™) denote

the probability of a strip. and reexpress Eq. (25) in terms of u = log L rather than
. . , P
m. rmis proportional to u, and W(n,m) becomes

{u 1)
- = 1 T T 20 (26)
F(u) Vono - )
where
B .., 1,
_ [agiog Brog 21
log ——
A
and

W

'
0(/iw) | r/

\->+- Ale— ~ O(ViIA)

FAGAN

Z

—~ — 2

1
z 1

Figure 2

A schemalic representaticn of Lthe distribution of probabilitice on the sltracter. 2(r ) s
the number of cubes wizh probability p = a™ g™ ™) and W{r,m) is tke sum of the proba-
bility cortained in cubes af probability p. For large nand 7%—-.:lu:w \o ils mean value, these
arc bulh approximately Gaussian distributions in !'!L!-whusu width 1# proportional lo r. (e the
limit as 1. 2=, W and 7 become delte functions, and no lorger overlap.
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Y, = dj log :— (27)
with d; given by Eq. (16). Eq. (26) is only valid if
(u—1,)° 1
= <log = (=20)

corresponding to I-"-:-"-— a| << 1. F(u)du is the total probability conlained in strips

whose values of u = log 1 fall between u and u + du. Thus we sce that the loga-

rithm of p Las a Gaussian distribution, or in other wes,rds, p has a log-normal dislri-
bution, We believe that this is Lypically true of chaotic atlractors. In particular, we
offer the following conjecture’®,

Conjeciure 4: Let A be a chaolic attractor of a p dimensional invertible
dynamical system, and assume thal Lhis atlractor has a natural measurc
ft. Cover A with a fixed grid of p dimensional cubes of side length .

Assign each nonemply cube G probability £, = u(G), and let U = log IL‘_
i

Lot %, be the rre ., of the numbers U;, and let ¢2 be the variance. For
typical chaotic allractors, in the limit as £-20 values of U sufTiciently
close Lo the mean (in the sense of Fq. (28)) approach a Gaussian distrili-
tion. In other words, the corresponding values of 74 approach a lo,-
normal distribution.

Note that [ is the informalion oblained in a measurement that finds Lthe ot
inside of the i cube [1,8,9]. Thus, Conjecture 4 states Lhat for chaotic atlractors
the information is approximately normally distributed for small £.

The function 7Z(n.m) given in Kq (24), can also be reexpressed in terms of p
rather than m. When thi- is done, with similar restrictions to Lhose of Iig (26). Lhe

resultl is alko a Gaussian in lerms of u = log L When recast in the more general

gelting of Conjectlure 4, this says that the number of cubes (4 whose values [ he
between u and u + du arc given by a Gaussinn distribution. (Similar restrictions
to those given in Conjecture 4 apply.)

V1. Computation of Probabilistic Dimensions

In this seclion we verify Conjecture: 1 and 2 for the generalized baker's
transformation by expiicitly computing all of the probalnhty ditcensions deflned in
Bre. I1. In order to simplifly the computations, for all but. the ¥ [lausdor dinen
glon we restrict oursclvex to the case in which Ag = Ay Ap. For the 8§ -Hausdor(T
dimension we treal the most peneral case in which Ay # Ay, out are only able to
obtain an upper bound for the dimension.

6.1. Altermatc Derivalion of Infornialion Dimention

Now that we know Lhe probability distribution for the peneralized baker's
transformalion for Ay = Ay Ap, we can oblain the infortmation dimension direetly

from its definition. I'rom Kq. (4) and kg, (26) 1(¢) is the average value of log Jooor
[}

S r— e -

87he form of thin comyecture wax develuped tn collaboration with Erica Jen.
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I(c) =f'u. F(u)du = u,

Since from Eq. (27) u, = d; log —:_—. Eq. (4) yields d; =d;, (previously shown in
Bec. IV for the more general case Ag # Ap). Thus the mean value of Lthe log -norinal
distribution is simply the information containea in the probabilily distribution, and
its scaling ralc is /(z) ~ d, log -:7- dimension of the natural measure.

6.2. Delermination of 9-capacily

Here we calculate dp(8) for Ay = A, = Ap. We choose £ cqual to the widlh of a
slrip, £ = A§, As usual, for convenience we compule Lthe B-capacily of the atlractor
rojected onlo Lhe x axis, i.e. dg(8) = dp(9) — 1. The S-capacity dg(9) is defined in
erms of the minimum number of intervals N(x;9) of width £ that have Lotal natural
mcasurc at lcasl 9.

o
N(ev)= ), Z(n.m), (%)
m=0
whicre my is the largest integer such Lthat
mg-1
2 W(nm)<9, (ac)
m=0

To find mg we use Fg. (24) and approximate the suniin Eg. (29) by anintegral,

_lm_na®
2nap 1.1

y e
R e
v Verafin /. ®
Thus for fixed ¥ we eblain

my il M aff. .
el erfo V{0) o ()
y 5 ===
where erfe(z) = v ¢ dr. Now, consider Fq. (29). The principal contriba

tion Lo the sum will come from m values very close Lo iy, as depeted i Fipg 00
Thus we use Bgns  (24) ad (25) to approximate Z{n,m) as

ﬂ n ( s__ m [m _"")i'.

/ BRI e oo g Umap (v2)
¥ (n.m) JEmah ' :
The ter (g—-)'" decreases as m decrcaskes away from g, and thi deerease 1is very
Am_nal?
ropld compared Lo the variation of ¢ ™ Thus an perfornung the sum
UL

Kq (29), we may approximate e ™ o bemg constant and egqual teats: value ol
m. = my. lHence the only i dependent termn the sum s (1:—)"‘. Sinee

mf ﬂ._"‘ul ﬁ."l..ﬁ
,,?'.‘n(n) (u) ’ (f o)’
we (ind Lthat

NU-':") ~ ﬁ- n my L

1
In '. -

From Eq. (4) and n . ————- the above estiate of N(#.9) yiclds o (0) o)
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Figure 10

The prinetpnl contribution to the sum needed te compute N(e;9) (Eg (29)) comes Trem
values of mnear my.

agruement with Conjocture 3.

8.3. Computalion of ¥-llaundorl Dimeansion

In this section we obtiur an upper hound on the 9-HauzdorfT dimension of the
aencralized Raker's transforimadion with Ay # Ay (Recall that for our work in the
previous section we took Ag = Ap.) We oblamn an mnequality for the o phausdorf
dimuengion by using a specifie covering along x to compute the sum

(e 9) = 2‘:».‘.

where the £y <1 cover a fraction € of the natural measure of the attractor Oue
choice for Lhe Fy is specified below, Taking the it ax e o0, we find that there 10 n
value of d at which L°(,9) crosses over from = to 0. For the parhition we have
chonen, wo find thit crossover ocears ol d - dy. We believe that the value we
obtain |x in fact the true 9 HausdorM dimension However, we cannot be =ure thal
the particular covering, we have chesen pives the lowest posabdle value of A, andd
thux we can only gay that we have obtained an upper lnnt

Alter n iterations: of the map, an imbially amiform probatality distrbation in
the unit sguare s transforined to 2% steips with widths APAN ™ L probabilitne s
am A" Mo = 0,1,2, n As shown in Bg (22), the number of soeh stepe s Adnm)
We shall choote the i to cover the most probable stepe so that 6 of the Lotal pre
bability i eovered ¢ for our coverloy 15 ¢ Jual to the width of the widest step,
whith fa etiher (Ag)" or (A )", whichevee e larper. Lething e{nm) bo

Ug(n.m) = (AP "AMY Z(n ),

we have Lhat



L(e.8) = Zh" = E Uy(n.m). (33)

We still have yet to specify which m values are to be included in the sum. To do
this, we expand Ly(n,m) about its maximum value {as done for Z and W in Sce. V),
and obtain

[_"l.- L]'e ]

dydn d, 2 d

Us(n.m) ~ [~+NLaw exp—Y z ,‘:::N (94)
-\/2"“ (AS+AE (AS+2D) n(AG+AS)(AS+A] )J

In order Lo compute Ig(¢.9), we must consider the natural mensure as well os Ug(n,m).
Nole thot for the general case we are cornsidericg now with Ag » Ay, W(r,m1) oblained in:
Eq. (25) continues Lo be the correct expression for the distribution of probabilities in cacl:
atrip. Depending on the values of a, d, A, ard Ay, W may peak at a value of m that s
smaller, Jurgor, or equal Lo the value of m at the peak of Uy, Comparing the location of the
peaks of the Gaussiany in Kq, (34) (for U) and in Eq. (20) (for W), we see thal there are Lhree
casen

o L,
Cavn 2 ad (M"*‘M)"md

AR ——————
Cored: = YISV
Caves 1 and 2 may be shown Lo be equivalent ax follows  From Lhe case 2 mequality aed the
fact that a + # = 1, we obtain g < W But, if we deftnem!’ by m = n-m’, ard chorgpe

the xums over m Lo sums over m’, then the roles of (o,Ag) and (A.A4) are irtereliaeped, ard
cane 2 i converted Lo cuse 1. We shall not consider case 3 here; suffice it Lo say That o doen
not alter the remilts oblalned from corsideration of caes 1 ard 22 Therefore b iz suffeer |
to compule the 9-l{uusdar? duncnsion for cose 1.

For case 1, seleeting o the best covering of intervals that contine 9 of the tatal proba
bility in cany Sinee W remains vahd, we get o covering that inelides 9 of e tatal ratual
measure by Ineluding intervals whose value of m s less Lhan my, Just o we did for 1he corm
pulation of ¥-capacity. Furthermore, sinee Py peaks ot o larger value of "'l' thi W does,
Lhix aclection gives the smallest velue of L. The situahion iz analogous La e cerputatie
of 9-capacity, except that here (e role of 7 ix played by Uy (ef g 10) o evaluale

o '"f
=), Uslnam) ()
m: 0
wo note that, as for the analogous evaluation Tor 9- eapacity e the previocs schzection, the
priceipal contribution to the surm corien fror e values elose to g This we apprasi-nte
Lig(re ) nx
A:IA‘I m

ﬂ"'ﬂ“' m) W (n )

['y(nm)
with Wapprosimated by Eq (9 Procesding as o See 60 we obtain ae eshient e for 1750 6)

Qo) ~n W™ T ™

a
or
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log [L4(£.9)] % —n [d—(d;)] log (,}2—>.

for ¢-0 (i.e., n+=) we obtain I;(¥) =0 for d > d; and {5(¥) == for d < d;. Thus
remembering that dy(38) = dy(¥) + 1,

dy(8) s dp, (36)

As already mentioned, we expect that the above inequalily is really an equality. This expec-
tatlon is reinforced by the fact that when 9 = 1 we recover Lthe exacl expression for the
Hausdorfl dimension computed in Eq. (18). To see that this is true, replace my in Fg (30)
by n. From the form of Uy, this sum is simply the binomial expansior of (Ad + AF)". As

n s, Lhis quantity isOor = ford > dy or d < dy, where dy; satisfies )\:” + A =1, which
Is the same as Eq. (18). That is, for Lhe specific choice of £; Lthat we have used, we obtain Lhe
carrect value of dy. Since the same choice of the &; was used in obtaining dy (), it secrs
plausible Lhat the equalily might apply in Eq. (36).

8.4. CompulaLion of tho Pointwise Dimension

We now consider Lhe poinlwise dimension for the gencralized baker's Ltransfor-
mation with A; = A, <), and we show that d; exists and s equal lo d;,.

As previously noled in Secc. IV, application of the map n limes Lo the unit
square produccs 2" strips of widths (Ag)". (Recall that we are assuming Ag = Ay .) In
order to compute the pointwise dimension, we choose a point x &l random with
respecl to the natural measure 4, comput. the natural measure contained 1nan

ball cenlered about x, l.e. (u(H.(x)). and compule the ratio of (1, {z)) to log %— n

the limit as £ goes Lo zero. The simplest case for this computation occurs when
A < -:— so tha! Lhe gaps between strips are bigager than the strips themiselvey, as

pictured in Fip. 11(a). Choosinghu point %X at random wilh respeat to the natural
measure u, let S, denote the n' order strip of width (A;)"™ that the point x hes in
letling € = (Ag)™, the natural measure conlained in a ball of radius ¢ around x (1 ¢,
the x interval [z = (Ag)". = + (Ag)"]) will be equal to the natural measure of the
strip S,. ~egardless of where in the strip x hes  (See Mg, 11(a) ) The natural meas:
ure contatned in a given strip Is a™@™ ™), where n 2= o> 0, where m depend: on
the particular strip that x happens to he in. (See Sce V) Thus, we have

“nl M— hrn !.0_‘! IJ(S") - ]ln] ."l_l.Qﬂ_“.+ 1!'_— "_'_)l.”g [‘

——

ORE  ne= NIOgAg  no= n 1op Ay

(Zh')

In the limit as n grows large, as shown in See. V (see Fig 9), the tolal probalyhity

¥W(n.m) contained in strips of a given i value is a approximalely Gaussian conterod

about %= a. ‘Thus, in th» limit as nnoem ft beeomes overwhelnnngly hikely that
™’

l"f— = . Thus for almost every x with respect to the natural measure g, lun W "
) s

(This 1= Just a statement of the law of large numbers ) Putting this into Lg (40)
plves

pit(=)) | aldogoad fllogf o M) .,

3\“.‘.‘ _—lng X log Ag I 1 ! (1)
og =
Ag
(See Bgs (19) and (16) )
To extend thiy computation of the pointwixe dimension Lo he caxe That Yo A, - 1. fior

any Ay <% choose a k sueh that V< ¥ - Ay (o, for A, = : this relation ix xatisfied for
any k>0, for A, £ 0900, for any k> 1; ete)), Then we can show p(1,(r)) = a ¥ (o),



Figure 11

ta) Computing the pointwise dimension: for tre case that A, < ; (1) "he case Ay > ; I

whicel the compulatien oo ittle more compheatoed,

where, without loxs of geperolity, we have assurand a=<f Since #,(z) 2 S, we Love alio
() & S ) Thus g8y = pa(1(2)) 7@ B u(Sp) whick with 1'q ((17) yields dy - o,
(Our exaluatior of g (27) bolds rot for e o0 vt rather bolds for the restreeted s et of 2 MY
n =12, however, it ax rol bard to show that that e fact aaphies g (F) for ever
mequenee of ¢ paarp to0)

Thus we have shown thal for the j eneralized baker's tran o nmtion the point
wikze dimension (8 equal to the diunenzion of the natural meazure {(Although s
have only shown this for Ay = Ag. 111 nol hard to extend thes recult to A, 2 A,

Vil. 'The Core of Altractors

As xhown i Sece V, for the generalized baker's transforiation, typaealdly
almost all of the probability s contained o very iall fraction of thee tetal
number of cubies necded Lo cover the attractor In the ot aie pocs to sero, Hh
fraction pgoe: Lo zero. ‘Thus, the natural measure of the altractor 2 coneentrat
on i subsket of the attracecr. We will eall s subeet the ecore of the allracter

To get a betler fecl for why thie comes about, and Lo mee how the properties: of
the core are related Lo thoxe of the attractor and its natoral measiaree, congeder he
gpecial cae of the peneralized baker's: transformation where Ay Ay 4 A wee
have already seen, at the 2 Jevel of approximation the natural measure conge
of 2" vertoal strps of probability a™ g™ " For Large noand f#5 o0 steips with zmall
vilues of o will contamn much more of the patural meazsare than bops with large
valuer of i Fig 13 shows a plot of the a™ level approximation to thie probalnhity
dimtribution az a functionof x with Ay Ay Yoo n < ¥oand 50 The probalal
ity thisteibution looks a: though 10 were tade up of spike:, showing that aleady ol
w10 the vatural meature hat become quite coneenterated o certam ecubes O



Figure 12

The natural probability distribition of the pereralized baker's transforration projpected
onto the x axix, and course praiced wang iclervaly of width » 2 2 0 g b cane noe M

and A\g = Ay — ¥ "

this case Intervals).

To understand the form of ths probability detribubion, at i anstraetne to
represent the probabibity distribution of these steips i terms of x rather than m
To do this, approvitate x using aits first nobimary digit, te as a bimary decimial
truncated after r digits Let m be the number of ones contamed i the e n
Aipits of the binary expansion of X The patural measure of the strip S, {0F) contan
(g x 1 then u(S,(r)) » n™pin m) (See the digcussion af the bemnnng: of See V)
As we have already shown (see e 9), when weattenan termes of i, for larpe o the
natural measure 1= approxinately a Gaussian coentered about an, and i the b
where nodx large alimost all the measure bz contmmned e steps with e on
other words, the natural measure of the generalized baker's transformation for
Aa - A = Y concentrated on those values of x that have Vs m therr binary espoan
giohx 1n Lthe fraction a, op equivalently, 0= i the fraction £ I the ot i all
the natural micasure s contamed in this set, which we will call the eore of thee
attractor

For thig case (A, Ay - ¥) the atteactor i the entive unit square "The core of
this atteactor is densze on the attractor. In other words, any pont of the attract-r
hax pointz of the core arbatrarily close toat Henee any covering of the core mu -
alzo be o covering of the atlractor, and visa versa Thus the capaaity of the core s
the =amme nr that of the attractor The HaoedorT dimensen, i contras?, e mere
gubtle, and i faect, cotnputing the HinasdortT dionension of the et of pombere: whoe

binary expanzions have o piven frachion of ones e elaze problem i Chee stady ol
Hoavzdortt dimension [8Y] The Havsdor T ditnenziion of ths el s

log i
(Bee Eg (15)) Ther result waz conjeetured by Good e 2900 18] aand proved by
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Fgpleston in 1949 [33]. Also. the HausdorfT dlmcns‘lon of a very similar example
(involving Lernary rather than binary expansions) was proven by HBesicowvileh in
1931 [34].

Thus, for this example we sce Lthal the HausdorfT dimension of Lthe core is equal
to the dimension o the natural measure, and the capacity of the core is equal to
the fraclal dimension of Lthe attractor. For the casc of diffecomorphisras of the
planc, the former resull has been proven by Young [11]. We suspect that this s a
property of typical attractors.

VIII. An Altractor that is a Nowhere Differenliable Torus

This seclion contains a review of the work of Kaplan, Mallet-Paret, and Yorke
[35] on the dimensien of a chaolic altraclor in a sctting that is quite different from
that of the generalized baker's transformation. The attractor described below has
the seme lopological form as a lorus, and yeol is nowhere differentiable, thus pro-
viding an interesting example of the nonanalytic forms that can be produced by
chaotic dynances.

Consider the following map:

'llol:z'rn + Un mod 1
Vnor = Zn % Yn mod 1 (29
Ly T Az, + 7’(-"51“!/")

where x and y are laken mod 1, 2 can be any real number, and pis periodie s
and y wilh pu riod 1 and s al least five times differentiable {For 1:\.un||:

plr.y) = cosZnx.) In order to keep 2 bounded, A s chosen belween 0 and 3 Note
that the cigenvalues and vigenvectors of the Jacobian taatry of g \’V)) oo
lnd(.‘{mmlvm of x. vy, and 2z Thus erery mitial condition has the same Lyapunoy
numbers, i e, the Lyapanov numbers are absolute, so that i ths case Conjectine
15 relevant, and we expecet that the fractal dimension and the dinenszion of the
natural measure should be equal

The t'r]u.\lwn' fm Xoand y oare independont of 2 and in Tact are the claae

Anaziov or "eat” map | lhl
Tnn A ‘n T
Yna Y mod:

21]

Thus, the x-y dynidme: are chactie, and are unafTeeted by the value of 2

where

To underztand the 2hape of the attractos in the 2 direction, putl o sample
tial ronthition into by (N) For example, conaider (£, 4y, 0) 2y, take: on the form

LT *:_‘_,\ A ‘]’(In ko Yn x)
-1

. ' r ) Tn & _ X Iy
Making use of the Taet thal n &) A n

thown that the surface piven by

Cand letting nopo toanfinaty, it can be

e(r.y) . \ AV V(AR ]
"

i ariant and e the unmgue atteactor of thiz dynanneal system
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g(x.y) has some very interesting properties. For A < ;B— where R = —-——3+2\/5.

2(x.y) is smooth and has dimension 2. If A > -‘—, however, for most choices of p,

(x.y) is nowhere differentiable. A Lypical cross seclion of z(x,y) is shown in Fig. 13.
To understand intuitively how the nondifferentiability of z(x.y) comes about, notice
that z(x,y) is the sum of an infinite number of periodic functions whose arguments
are the successivo iterales of the cat map. Unless A is small enough to diminish
the effect of highor order iterates, the value of the sum can swing wildly as x or y
change.

The lyapunov num\t}nrs of the map given in Fiq. (39) arc A; = K, Az = A, and
M= -L. where R = 3—+i as given above. Kaplan, Mallel-I'-rel, and Yorke [35]

have shown that Lthere are two possibilities for the dimension of z(x,y)
Either
(i) z(x.y) is nowhere differentiable and

de = d,

(ii) z(x,y) is differentiable and dg = 2.
For given p, the nownere differentiable case occurs for nearly every choice of A
Thus we see that Conjecture 3 is satisfied for U.'s example.

or

Figure 11

A crons section of a nowhere differentiable torus, made gsing g (9) with: A chiosen sa Lha

d¢=2}$.
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IX. Numerical Compulalions

In this section we discuss some aspe:xis of the numecrical computalion of
dimension. First we will discuss Lhe basic ideas behind numerical cemputations of
dimension, secondly we will discuss some of the problems enccuntlered in such
computations, and flnally we will review some previous numerical work.

The methods Lo compute dimcnsion vary considerably dcpending on the
dimension that onc wishes Lo compute. Thus far, we are aware of numerical com-
pulations only of capacily [37-41], Lyapuricv dimension [37-40}, and Hausdor(T
dimension [42]. Of these, only the studies involving the capacity and the Lyapunov
dimension were applied to attractors of dynamnical sy='*ems. In cach cuze, the com-
putations follow from the deflnitions. As we shall sec. the capacity is (in principle)
Slraightforward to compulo, but is in practice unfeasible to computle for all but
very low dimensional attracters. The lLyapunov dimension, 1n contrast, Is much
more fcasible Lo compute. We will begin the discussion wiln a description of thoe
ecompulation of Lyapunov dimension, and then go on Lo discuss Lhe computaiion of
capacity.

8.1. Numerical Compulation of lLyapunov *..ncnmon

The lLyapunov dimension is deflned in Lerms of the lyapunov numbers. (Scee
Sec. 111.) Thus, the work involved in compuling lLyapunov dimensian s i computing
the lyapunov numbers. Numcrical methods [:r doing this have been discussed by
Bennetin et al. [43], Shimada and Nagashima [44], and 1n infinite dimensions by
Farmer [38]. With appropriate sumerical canttion, the largest k Lyapunoy numibers
can be computed by following the evolution »i k nearby trajeciories simultancously
end mcasuring their rate of scparation. There are various numerical probloems=
with this method, however, and a better method 18 Lo follow only one trajectory, but
also follow k trajeclories of Lthe essociated equatl uns for the cvolution of vectors in
the tangent space. These methods have been successfully used in a variety of
nunierical studies.

For low dimenrional cases, such as two diraensional maps or sestems of three
autonomous ordinary differential equations, with a rnodern computer and plenty of
computer time, numerical computation of the dimensicns we discuss here directly
from their definitions is feasibie, as dizcussed fn the next subsection FEvenn such
low dimensional cases, however, tho computation of [yapunov dimensi. n s by far
less costly in terms of computer time ond memory than the eomputation of other
dimensions. For higher dimensional att cactors it appears Lhat only the Lyapunov
dimcension is computalionally feasible. The key reason thot the Lyapunov dimen-
glon Is feasible to compule numerically even for attractnrs of rather high dimien
slon (e.g. d;, ® 10) is that the difficully of the computation seales linearly with the
dimension of Lthe allractor times the dimension of Lthe space it hies in, rather than
exponenlially as it does for a computation of Lhe fractal dunension, or any of the
olher dimensions discussed in Lhis paper. The memory needed Lo compule the
largest ) Lyapunov numbers is equal to the memory needed tn numerically
Intecgrate tho equations under study, multiplied by j+1. (Nemory requirements are
usually a problem only In computations invelving partial differential egquations )
The computer time needed i the time needed to compute o time average to the
desired accuracy (which depends, among olher things, on the trregularily of the
nalural measure of the attractor), inultiplied by J4 1. Fortunalely it s only neces
sary to compute the largest Lyapunov number., and the number of these needed
depends on the dimension of the attractor rather than the dimension of the plase
epace. (See Bq (9).) This lincar dependenee on the dimension of the attractor ha:
ollowed compulation of the Lyapunov dimenrion for attractors of dimension as
large ax twenty | 28],
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We should mention one disadvantage concerning Lyapunov dimension. Namely,
it is not presently known how the Lyapunov dimension can be determined direclly
from a pgysical experiment. The difficulty comes about because, in some sense, in
order to determine lLyapunov numbers il is necessary to be able to follow adjacent
trajectories. To determine all the necessary Lyapunov numbers, it is necessary Lo
follow some trajectories (at least one) which are nol on the attractor. Thus it is
not possible to compute the Lyapunov dimension by simply observing behavior on
the attractor; onc must perturb the system from the attractor, and do so in a very
well defined way. This poses a very severe problem in the computation of dimension
from experimental data, one that is not present in the computation of other
dimensions.

9.2. Compulation of Fractal Dimension

In principle, it is quile straightforward lo use the definition of capacily,
Eq. (2). to compute the fractal dimension. The region of phase space surrounding
the attractor is divided up inlo a grid of cubes of size £, the equations are iteraled,
and the number of cubes N(¢) Lhat contain part of the attractor are counted. ¢ is
dccreased and the proress is repeated. If log N(£) is plotted against log &, in Lthe
limit os £ goes Lo zero the slope is Lhe fractal dimension.

The difficulty with this method is that one must use values of £ small enough to
fnsure that the asymiptolic scaling has been reached. (Sce Irochling et al. [40]
and Greenside et al {39] ) The total number of cubes conlaining part of the altrac-
tor scales roughly as

Ne)~ (D% (20)

Thus. the number of cubes increases ezponentially with the fractal dimension of
the ettractor. l'o gel a feel for the seriousness of this problem, plug in some lypi-
cal numbers If £ = 01 and dp = 3, then N = 109 exceeding the core memory of
all bul Lhe biggest currenl computers. Thus, computations of fractal dimensien
aro currcnlly notl fcasible for attractors of dimension significanlly greater than
three,

In addition. there is another potential problem involved in computing capa-
cily. In counling cubes, how can one be surc that all the nonempty cubes have
been counted? This probicm 1s compounded by the highly nonuniform distribution
of probability on an attraclor. In particular, if our hypothesis that the probability
iy distributed log-normally is eorrect, in order to count the highly imiprobable
cubes present in the wings of Lhe distribution requires thal a large number of
points on Lhe attractor must be gencrated. Furthermore, this number increases
rapidly as £ decreases.

The conclusion Is that a greal deal of care must be taken In the computation
of fractal dimension, and in particular, a sufficiently large number of points on the
allractor must be generated Lo insure that low probability cubes are nel left out in
the determination of N(r).

Although there are as yel no extensive resulls on direet computations of the
dimension of the natural measure, it may be casier to reliably compute than the
fractal dimension.

The reason for this ts that very improbable cubes are irrelevant for a computation
of the dimension of the natural measure. Nurnerical experiments on Uns topie are
currently in progress.
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9.3. Summary of Past Numericzl Experimenls

In this section we summarize previous numerical experiments on dimension
computation. The two studies most relevant to the topic under discussion are
those of Russel et al. [37] and Farmer [38]1. Both of these were madce in an atlempt
to test the Kaplan-Yorke conjecture [7,22]. (See Section I11.) In bolh of Lhese slu-
dies, the capacity of chaotic attractors was computed directly from the definition
The Lyapunov dimension was also computed, and compared Lu Lhe capacily.

In the study of Russel et al., five examples were examined. In cach case, Lhe
compu'ed capacity agreed with the compuled Lyapunov dimension to within exper-
imental accuracy; in several of these cases, this agreement was within three
significant flgures. These computations were done on the Cray!, a stale of the art
mainframe compuler; at the smallest value of £ = 27!, more than 10® cubes were
counted.

The numerical experiments of Farmer were donc using high dimensional
approximations to an infinile dimensional dynamical system. Because the cqua-
tions under study were more time consuming to integrale, and because Lhe vapi-
city computations were done on a minicomputer, it was only possible Lo achieve
about two significant figures of accuracy. The computed capacily and lLyapunov
dimcnsion agreed to this accuracy at Lhe two parameter values Lesled.

In 1980, Mor: [23] conjectured an allernate formula relating the fractal dimen-
sion to the spectrum of l.yapunov numbers. For attractors in a low dimension.l
ﬂhasc space, such as those studied by Russel et al. [37]. Mori's formula and the

aplan-Yorke formula (Kq. (9)) predict the same value. For higher dimensional
phasc spaces, however, Lthe two formulas no longer agree. Farmer's resulls sup-
port Lthe Kaplan-Yorke formula, and conclusively show thal the Mori formula i
Incorrecl for higher dimensions.

One puzzling aspecl of both of these numerical experiments is the striking
agrecment between the computed value of capacity and the Lyapunov dimension
The Kaplan-Yorke conjccture cquates the lLyapunov dimension to the dimension of
the natural measure, and therefore only gives a lower bound on the fractal dinien-
sion. Why, then, was such good agreement oblained between the computed capa-
city and the computed Lyapunov dimension? We do not yct understand Lhe answer
to this question, though further numerical experiments may resolve the question

X. Conclusions

We have given several different deflnitions of dimension. These divide into two
Lypes, those Lhal require a probabiiity measure for their definition, and those thal
o nol. (Refer back to Table 1.) For an example Lthat we believe is typical of
chaolic atlractors, i.e.. “he genceralized baker's transformation, our compulations
of dimension show that all of Lthe probabihistic defimitions take on nne value, which
we call the dimension of the natural measure, while the defittions that do not
require a probabilily measure take on another value, which we call the fractal
dimcnslon of Lthe attraclor. We bulieve thal this is true for typical altractors.

If the probability distribution on the atlractor 1s "eoarse grained” by covering
the attracltor with cubes, for the peneralized baker's transformation we find thaet
the probability contained in these cubes is distributed nearly log-normally when
the cubes are sufTiciently small. In other words, the total probabilily contained in
tubes whose natural measure is between u = log p, and u + du has a distribution
that ix nearly Gaussian, and as the size of Lhe cubes is decreased, 1t becomes more
nearly Gaussian. Furthermore, the number of cubes in a given interval of u al:o
has a Gaussian distributlion, but with a different mean and variance. (See Fig, 9)
As ¢ decroases, both of these distributions become narrower in o relative sense, in
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that the ratio of their variance to their mean decreases. In the limit as £ goes lo
zero, both distributions approach delta funclions: since their means are different,
fn this limit the two distributions typically do not overlap. Thus, almost all of Lhe
natural measure is contained in almost none of the cubes, and the natural measurc
i{s concentrated on a core set. The capacity of the core is the fractal dimension of
the attractor, while the Hausdorfl dimension of the core is the dimension of Lthe
natural measure. Once again, althcugh we have demonslrated the results men-
tioned in this paragraph only for the generalized baker's transformation, we feel
that they are true for typical chaotic attractors.

Most of the dimensions that woe have deflned are difficult to compute numeri-
cally. The Lyapunov dimension, however, is much easier to compute numerically
than any of Lthe other dimensions. We compule the Lyapunov dimension for the
generalized baker's transformation, and show that it is equal to the dimension of
the natural measure obtained from any of the other probabilistic dimensions that
we have investigaled. This supports the conjecture of Kaplan and Yorke.
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