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Absfrucf
Dimcnslon Is pcrhnps Lhc rnnwt basic propcrl.y of ml fitLrilcl nr, III Ihi:: piipl~r M r
discuss a variety of dlffcrcnt ddlnitions or dimcnslnn, cnnq)~llv thrir V,IIIICSfor il
typical cxamplo, and rcvlcw prcvlous work on t hc rllmunsinn of (;hi~otl(: ilt Ir,\[ -
torw Thc rclovwi dcflniLions of dimmwion arc of two gumv-,11 typ(’~, I,tw[. I.11,11
depend only on mclrlc propcrllcw mld thmm [hi~l. drpcnd on prrh,ll)llls( ic pro-
pcrtlns (that is, they dcpimd on h? frcqunnry wllh whirh u l,vpI(!id i riljf’rl my
%irdts d~ilcrcnl regions of the nLtructor), Ihnlh our cxnmp]o nnd tlIIP prrvln~ls
work Lhut wc rcvlcw support the conclusion Lhnl all of t-ho j~rnl),il)illsllr dlmI’11
elons I,ako cm Lhc mnc vdlur, which WI!(Ii]ll L!m “dim(’nsinn of Itw n,II In-,d 11111,1,+
urc”, and rdl of the mctrlc dlmenslrmti tuku on u comrnnn vIdIIr, whlrh WI*r, Ill
lhr “ft IIAUI dirntmsion”, Furltwrmnrc, lhc dlmvnsiol~ of t hu Ilillllrill nlrusiwi’ IS
QplCillly eqlld I.LItl)l! ll~ii],UllCN dlr]lon~ion, til]irh Is [l~~fl,l(!dill 1(11.IIIsof I,j,,ll)lll,(),
rwnlmrs, and thu~ Is uMJully fnr cnsicr Lo Culuulnhs ltmn my (JIIIIV’drflniI 10I]
Bccauw! 11 Is [!~tr,puliibl~ nnd motx’ phy~I!isI\lly rrlw, n!, ~(} f,t~ll 111,1~[11[1(11111{911.

talon of lhc naturnl nmnsurc iNnlorls Imprw[nnt [him Iii,. friu’lci] dilll(’tlslon.
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1. IntroducL.i~’~

h i9 he pUrpL. or this paper 10 discuss and review qucslioms rclaling to lt!c
dimension of chaotic ‘tLractors. Before doing so, however, wc should first say w’hIIL
we mean by the word “a! I.ractor”.

1.1. ALtncbfm

In this paper we consider dynamical systems such as maps (discrcLc time, n)

or ordinary differential equ~Lions (continuous time, t)

+= G(z(t)).

where tn both cases x is a veclor. Thus given an initial value of x (aL n = O for lhc
map or 1 = O for the diflercntial equalions) an orbiL Is general cd ((z ,,zU,,, ,,z,,, )
for the ma and x(t) for Lhe diflcrcnlial cqualions). Wc shall hc irl.cruslcd In

fattractors or such systems. ]aoscly speaking, an aLtracLor is somcLhing lh,~L
%tlracts” initial conditions from a region around iL om:e Lrar!sien Ls have died OLI[,
More precisely, an dkuchw is a compact SCL,A, with Lhc propcrLy U~al Lhcrc is i.I
neighborhood of A such thaL for almost cveryl iniLial condition Lhc limll SCLof the
orbiL as n or t++= is A, ThIIs, almosl wcry LrajccLory in this nclghborhocrd of A
passes arbitrarily C1OSCto every poinl of A The bmtin nJ nthzction of A is LIIL’I*lo-
sure or Lhc set of initial conditions LhaL approach A,

Wc arc primarily intcrcstcd in chmfic &Ltractors, Wc give a dcfini Lion of rh,ms
h Sec. 111,but the reader may also wish 10 scc Lhc reviews glvcn m rcfrrcnrrs ~! -
4].

1.2. Why b~lldy ~ension?
The dimension of an atLrac Lor is clrnrly Lhu flrsL ICWI of knnwlcdgr nc!rL*ss, iry

to charncLcrize its propcrLics, Gcm’ridly spcnking, wc IIIny lhink of I lIC dlmrrl::ioll
m giving, in some wny, Lhu umounL of information nrccssary 10 sp(’ci[y Lhr pnsll IVII
c)?a pnir~Lon the atLracLor 10 within mgiven acclrrilc!~ (cf. SLIC,II), ‘1’hrdinlrnslr~fl IS
also a lower bound on Lhc nurrlbcr of csscnLl,d variables ncwlrd IL) tllm-lf.I 11111
dynamics,

For 6implc altraclors, drflning and determining Lhr dinlr:lslon is (’;w}o l’(~r
example, using my roasonablc definition of dirncnslon, a stiltirm;~ry llrnu ir~drtv’ll-
dcnl cqulllbrium (fixed poinl) hus dlmrn~ic-m zrrn,

!

[1 sliibl~ p(’rir)dlr’ riyr’illill iw]
limit cycle) has dirucnsion one, mld a doubly 1)(’riocllu allrm!tur (2-lnrus) II,IS
Imumdon Lwo, 11 is bccausc Lhcir slrurLurc! IN vury rc*guliir Illnt III(.I dlnwr:siorl

thcsrq simplu aLLraclors L~kcs on inlrfinr ~iilut~~.



mmzs?uru associated with a given altracl.or The natureJ measure provides a notion
of the relative probability of occurence of differenl regions of Lhc attraclor. JI.JSL
as chaotic attractors can have very complicated properLics, the natural measures
of chaotic attracLom often have complicated properties that make the rclcvanl
tuzsignment of a dimension a nontrivial problem.

Precise definitions of such terms as “natural measure” follow, but WC!would
fhst like to give an example in order to motivate the ncnlral qucslions we arc
addressing in this paper.

Consider the following two dimcnsiorml map2:

En+l =zn+~n+6cQs2nyn mod 1

Un+l =zn+@m rncd 1 (!)

For small values of 6, Sinai [5] has shown that the atlractor of Lhis map is Ihc
entire square, and is thus or duncnsion 2. Therefore almost every inilial condlllnn
generates a trajectory Lhat eventually comes arbitrarily CIOSCto every poinl on I tic

Figure 1
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square. However, consider the typical trajectory shown in Fig, 1. Certain regions
are visited far more often than others. The natura’. measure of a given region is
proportional to the frequency with which it is visited (see 2SC. 2,2,2), in this case
the natura measure is highly concentrated ir~ diagoml bands whose density of
points is much greater than the average. ‘. Furthermore, as shown in Fig. 2, if a
microscope is used to magnify a smaU piece of the attractor, the same sort 0[
structure is still seen.

For this map we do not know if the value of 6 chosen to construct Fig. I is
small enough to insure that the dimension of the attractor is two. For pract.ic al
purposes, though, this may be irrelevant. Even if a trajectory eventually comes
=bitrarily close to any given point, the amount of time required for this 10 happen
may be enormous. In order to assign a relevant dimension that will characteri~c
the trajectories on the attractor, the natural measure must be taken into account
For this example the dimension that characterizes properties of the natural mras-
we is between one and two.

These considerations are not as esoteric as they might secm. Wc are u1!i-
m,ately not as interested in whether the dimension of a given att.raclor is 3, I or 7,2
EMwe are in whether it is on the order of three or on the order of thirty. As KC
Ehall see, a proper undcrstandin.g of pmbabtii~lic nolions of dimension leads to an

A blow-up of the strip runrkcd il: Fig. 1, Kxpandil:g it tlclrixuf:t.illly, Wllill ilJJjl(’ill”S [(J 1)1’ 11 sll’ -
glc blind in Fig. 1 is now xrur! tu l.wtl rcJllrcL!oI,r.11bnr;cls,
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efficient method of ‘.omputing the dimension of chaolic attractors, that provides
the best known method of answering such questions.

The main points u, this paper can be summarized as follows:
vA. Afthough there are a variety of different definitions of dimension, the relevant

deflnitioo.s are of two t~es, those which only depend on metric propcrlics,
and those which depend on metric and probabilistic properLics (1.c., thry
involve the m:ural me=ure of the attractor).

E. Current evidence supports the conclusion lhat all of the metric dimensions
typically take on the sarnc value, and all of the probabilistic dimensions also
typically take on the same value.

3. Current evidence supports a conjecLur~d relationship whereby the dimcns]on
of the n~tural measure can be found from a knowledge of Lhe sLabili Ly proper-
ties of an orb; i on the attractor (i. e., knowledge or the Lyapunov numhcrs).

4. For typical chaoLic attractors we conjecture th.aL the distribution of frequen-
cies wiLh w~ch an orbit visi Ls diffcren L regions of Lhc aLtrac[or is, in a cc”rlair~
sense, log-normal (Sec. V),

Points 1-3 are summarized in Tablt: 1. The firsL two entries !n Lhc Lablc art!
metric dimensions, while the next flvc are probabilistic dimcnsir)t~s. L1ndcr Lh~’
hypoLhcsis that all the metric dimensions yield the same value (Point 2), wc call
this value the jmctd dk.emsiun and dcnoLc it cff. Similarly, 1[all Lhc probabilistic
dimensions yield the same value, wc call this value the dimemmm oj the m-dun-d

mEtzwre, and denote it d~, AILhough Ln special cases dp equals d~, Lypically
UF > d~. 13nally, the lasL entry in Table 1, the I,yapunov dimcnslon, is by dcflnitlnn
the predlt:Led value of dp obLaincd from the Lyapunov numbers (cf. J)oinl 3) ‘1’111’
Lyapunov dimension is in a different category Lhan the oLher dimensions lIstrd,
tince It is defl.ncd In terms of dynamical properties of an al Lrac Lor, raLhcr Lhiin

—.

Name of IAmcnsion Symbol

capaci Ly dc
JIausclorfT dimcnslon d)l
—.

information dlmcnsion

J

dl
t9-cqmclLy cf~(19)
O-lluu.sdorfl cfiIncn~ion tifi(19)

r
ol.nLwlscId]mcnsirn
iausdurff dimrnsion of Lhc core 2 //(corrf)

—.
liyapunm dimr;sion z!,
. . —— .1

I’abl(?1,

Generic Name

frucLal
dimension

rip

-—. —

—— ..—



metric md natural measure properties.

1.S Outline

This paper is organized as follows: ln Sec. 11 we give several definitions of
dimension. Sec. 111reviews conjectures relating Lyapunov numbers to dimension.
These conjectures are particularly impor;ant because the Lyapunov numbers pro-
vide the only known efficient method to compute dimension. In sections IV, V, Y],
and VI], we compute all the dimeusiions discussed her~ for an explicitly soluablc
example, the generalized Baker’s transformation. in addition, based on this exam-
ple, in See, V we propose a new conjecture concerning the frequency wilh which
different values of the probability occur. Section WI gives a discussion of Lhc
“core” of attractors, and Sec. VI]] gives another example supporting the connection
between Lyapunov numbers and dimension (an attractor which is Lopologically a
torus but is nowhere differentiable). Section IX reviews relevant resul Ls from
numerical computations of the dimension of chaotic attractors, Concluding
remarks are given in Sec. X.

In general terms, this paper has two functions. One is to present a review of
the current status of research on the dimension of chaotic attractors. Thc o~hcr
purpose is to present new results (Sees. IV-VI).

Il. Definitions of Dimension

In this section we defh and discuss six different concepts of dimension The
first two of these, the capacity and the Hausdorff dimension, require only a mrLric
(i.e, a concepL of disLance) for their defi.niLion, and consequently we refer Lo Lhcm
as “metric dimensions”. The other dimcrisions we will discuss in this section i-mr
the information dimension, the O-capacity, the O-Hausdorff dimcns]on, and the
pointwise dimension. These dimensions require both a mrtric and a probubilily
measure for their definition, and hence we will refer to thcm as “prob~bllivlic:
dimensions”.

In this paper we compuLe the values of Lhese dimensions for an example th,~t
wc believe is general cn~ugh 10 be “l}p]cal” of chaotic aLLraclors, c~LICML regard -
lng the question of dimension. Wc tlnd that the metric dimensions Lake on a con]-
mon value. Whenever this is the case, wc will refer LOthis common vtllur d}. i~s th(’
j+actal dirnensbn 4. ~or our example we also find that the probab]list. ic dirncnsinns
lake on a common val~c d~, which wc will refer to as Lhr d~mr~n~7finOj Ih(: TL.fl.lurH~
measure, As we summarize in Conjecture 1, wc [ccl thal this ?qlii-di(y is il grnvr,il
property, true for typical cases

flmjecture 1. For a typical chaoLic aLlracL.or the caparlly and llill]~dnrfT
dimensions have u common value dF, and lhe in formil Lirm dimr7nsion, 13-

capacily, ti-llausdorff dimension, and poln Lwisc dimensions htivc a con-
mon value d~, i,[~,

cfc = dll - C+

nnd

dJ = r%-(o)= all{(d) = d/I T dp
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Note: For the case of diffeomorphisms in two dimensions, L.S. Young has rigorously
proven that information dimension. pointvnse dimension, and the HausdorfY dimen-
sion of the core (see Sec. VI]) all take on the same value [11].

In addition to the dimensions defined in this section, we will also discuss lhrc~
otherss: the Lyapunov dimension, the capacity of the core, and the Hausdorff
dimension of Lhe core. Lyapunov dimension is discussed in Sec. 111,and Lhc lal Lt?r
two dimensions are discussed ‘n Sec. VII, For our cxarnple the Lyapuno\ dimension
and Hausdorff dimension of Lhe core are equal to cf~, while Lhc capacily of Lhc corr
is equal to df.

Z 1. Metric Dimcn9ion9
We begin by discussing two concepts of dimension whish

spaces on which a concept of distance, i.e., a metric is defined.
begin by discussing Lhe capacity and the HausdorfT dimension.

2.1.1. CspaciLy

appl,y to sets in
In p~rLicular wr

The capacity of a set was originally defined byKolmogorov[13]. 11is given by

*=#!NkL
m (5 (2)

where, if the set in question is a bounded subset of a p-dimcnsiorml lluclid~’an
space RP, then hl[e) is the minimum number of p-dim ensiorml cuhcs or side t
ncmded to cover the set. ~or a point, a line, and an area, ,’U[E)- :, A’(r) - ~ 1, ,md
N(c) - C-2, and Eq. / (2) yie!ds dc = O, 1, and 2, as expcc Led. However, for moru
general sets (dubbed j%cfals by h!andelbrot), dc can be nonint.czrr. F’or rxampl[’,
consider the Canlor set obtained by the lirnitmg process of dclc~ing middle Lh]rds,
as. Illustrated in Fig. 3. If we choose c = (1/ 3)”, then N = 2~, and Eq (2) yields

~c = *’ 0.630. ..

If onc is conlcnt to know where Lhe set lies 10 wiLhin an accurac) E, thrn Lo
specify the localion of the set, we need only specify the posl L~onor thr .K(L) CUINIS

covering the set. Equdlon (2) implias thaL for Srndl] c, log i%’(~)~ d: log {~).

Hcncc, the dimension tells us how much infcrmaLion is ncccssary Lo sprcify ~1111
locaLion of Lhe set to wiltdn a gib.. ‘. accurficy. ]f Lhc SC1 has a v~ry finu schli’d
structure (typical 01 chaotic attractors), then it may be adva,lla~cous LOInlroduc:l’
Borne coarse-graining inLo the dcscripLion or the sel. In this case, u may bcI
thoughL of as specifying the degree of coarse-graining.

2.1.2. Hausdorff Dimension

The capacity may be viewed M a simplified version of the llausdorff dimension,
originally introduced by HausdorfT in 1919 [ 14]. (WP have rcvcrsc’d hlslorlral ordcjr
and defined capacity before Haussdcrfl dimension bccEIusc Lhc dcfini Lion of 1l,ius-
dorff dimension is more involved.) We believe Lhat ror i~t.trartors lhesr two dlm~ll-
6ions uc generally equal. While iL 1s possible Lo consLruc L smlpl~’ rxflnlpl~}s ~f SC*LS

~Nole lhat in thimpaper wr will noL dimuw Lhc cmccpk o! (mwlu,yicul chm~wmnl S-V..(I ;:s n~p~ (.;I-
tiu:l Lo c?moLic dyn~rnics is noL clcur. ILB vduc k m inLcgcr und !: is e~~l[~~il!!~ cq.A !U:w::!wr d}, :Iur
ff~ For dimumions of Lopo]ogical d~mcnsion,wcrefer Ux-rc.ldw to Ilarwkn and ~i:~~:nun [ ]2],

%CW can be construc:cd b which !JIClim;Lof Eq. (2) doc~ noL cdst, WI! wud;d :hrn WY lhui :}IC

CapaciLy ia not defined.
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Figure 3

The timt few steps in the conelruction of the classic example of a Cn~LorSI:l.

where the Hausdorfl dimension and the capacity are uncqua17, these do not secm
to ~)ply to aLtracLors. (AILhough they may apply to the core of attractors. Sec
sec. VII.)

To define Lhe Hau lorff dimension of a set lying in a p dimensional Thclldcan
space, consider a covering of It with p-dimensional cubes of variable edge lc~[h FL
Ilcfl.ne Lhe quantity ld (c) by

where the infunurn (i.c, minimum) extends over all possible coverings subjf>cl to
the constrain that C5s c. Now lot

l-hmsdorfl showed that Lhere exists a critical value of d above wt,ich ld = O i.lld
below wl,ich ld = =, This critical value, d = dll, is thr IIausdorf’f almcnsion. (l’rc-
cisely al d = dH, Id may be either O, FM,or a posi Live fJruLc number. ) This conccpl
o! dimension will bc used in Sees, IV,11, nnd V]]. N is easy to scc that dc :’ dlln,
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&2. 1. The Natuml Meaeum on an Atbctor
Note that, in compulmg dc from Eq. (2), all cubes used in covering the aLLrdc-

tor are equally important even though the frequencies with which an or~il on Lhc
attractor visits these cubes may be very different, In order Lo take the frequency
with which each cube is visited into account, we need 10 consider not only lhc
attractor itself, but the relative frequency with which a typical orbil visits dlffm-cnl
regions of the attractor as well. We can say that some regions of the aLLractor arc
more probable than others, or allermtively we may speak of a measure on Lhc
attractor. WF define Lhe natural measure of an e~.tractor as follows: For each cII1>c1
C and initial condition x in the basin of attraction. define #(x,C) as tho fraclion of
time that the trajectory originating from x spends in C.10 If almost every such x
gives the same value of (x, C), we denoLc this va~uc A(C) and call p the ndurd

fmea.mre of the attractor. 15]. The natural measure gives the relative probability of
different regions of the atlraetor as obtained from time averages, and Lhcrcforr is
the “natural” measure to consider. We wdl amunc throughout that nny aLLrarlot”
we consider has a natural measure, at least whenever C is one or the cubes we iir~
using to cover the at.tracl or.

The four defln.itions discussed in the remainder of this sccLion arc dcflrmd [or
altract,ors with a metric and a natural measure defined on thcm.

E-2.2. Information Dimensicm
The in.orwudion dimfion, dZ. is a gcncralizaLion of Lhc capacl ly Lhul LiAkrs

lnte account the rclativn probability of Lhc cubes used Lo cover Lhc SCL. ‘1’his
dimension was originally Introduced by Balatoni and Renyi [16].

The information dimension is given by

dl .~mxEL_
‘“O log f:) ‘ (3)

where

and Pi is the probability contaLned wilhin the i’~ cube. I,rtLlng Ihc i.ti cube! or SI:I(I
; ~be ~, Pi = #(CL). NoLe that if all cubes have equal probublllly (hrn

[1
= log N(E), and hence ~ = dl. IIowevcr, for un[!ql]i~l prnbi~bi]lllis

{ E < log N(c). Thus, in general, dc > df.

In information Lhcory Lhe quanllly l(c) ddlncd in ftq (3) has u sprcific} ~l[*illl-
lng [17]. Namely, it is the amounL of lnrormahon ncccssary Lo spcrir]” lhI: ~lillf~ or
the sysLem to within an accuracy c, or equivalently, il is the informnlion oh[,~in[”cl
b making a rnr?asuremcnl thaL is unccrLain by an amount E. SIncr [or Smiill F,

f(f) = d, log :, wc may view d] m tcliing how fasL lhc lnrormi~licm n[’ress, ir-y lU

specify a poln~ on Lhc aLLraclor Incrcascs as L dccrcascs. (For i~ mow’ L*XIL1llSIV(’

discussion of the physical meaning of Lhc m[ormaLion dlrnunsion, SCC!l{rfs ‘i ,md

Thus Inking Lhc !indt C -’0 nnd makinc usc of I?q. (2) wc scc LIIU1 dli ~ dc.

time T.
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WUt. d+ipacitv
Another dcflnitfon of dimension which we shall be interested in is what we will

call the d-capacity, &(d). IAsentiedly, this quantity is the capacity of that part of
the at.tracto; of h&hest probability, - - -

where N(e;fl) is Lhc mhimum number or cubes of side E needed LO
fraction ti of the natural measure of Lhc attractor. In other words,

(-f)

cover at lcasl a
the cubes musl

be chosen so that their combined natural measure is at !casL d. Thus de(l) = dc.
For the examples wc study here, we tlnd that for any va!uc of * c 1, lhe ti-capacity
Is indcpendenL of 0, but that dc(fl) for O <1 may differ from its value aL O = 1, III
particular ~(fl) = d for fl < ! and dc(ti) = ric for # = 1. ti-capacily was originally

“tdefined by Frcderlc sorl et al. [7]. Similar quantities have also been dcfin~’d b:;
Ledrappier [ lBJ, and Mandelbrct [ 19],

E.24. d+ausdoti Dimension

In analogy with the relationship between capacity (a mclric dimension) and
O-capacity (a probability dimension), we inlroduce here a prohabilily dimunsiol]
based on the Hausdori’1 dirncnsion. We call Lhis ncw dimension lhc +l]ausdorfl
dimension and denote it d}l(ti), To define Lhc f-HausdorfT dimunsion, modiry Ltlr
definition of HausdorfT dimension as f~ilo~s: I)cfinc Id (c,I.9) by

where now the Mmum extends over all possible Ci < c wl~irh cover a frilclion T9m’
the LoLid probability of Lhe set. WC dci’lnc dfl(ti) M LhaL valuu of d h~:inw WIIII:II
l~(ti) = = and above which ~d(0) = O, where id (0) = :,% ~ (} ,19), TINS roncrpl [Jf

d.imcnslon will bc used in Sec. }’1,

E.25. IWntwisc Dimension

Roughly spcaklng, ~Ac poinLwlsc dimcnslon + is Lhc rxp(vl[’rll wilh whicl~ I III!
total probability conl~Jncd in a ball dccrcascs as lhc radius d lIIV billl d(!~rri~s(’~
To make Lhls nolion more preciuc, let # dcnot.c Lhc natural pi”,.;.,,ll}ililj’ 1]1L’ilSLll.l’ (N1
the attracLor, and Icl l?c(z) dcnoLc a ball of radius c ccnlcrnd ub[wl n pmnt x on
the attractor, Roughly speaking, U(f.it(z)) - E%, h!orc prucis(’ly, l’t)llr~~?,fI i I Aufim’s
this dimension as

(h)

\

lf q z) IS lndcpcndcnL of x for i.dmnst Al x with rc’spuc:l. to llw nll’il+ur[’ p,” WI:ctlil
%(z = ~ tha poinftiw dimcnslon, Similar clMlnlLlons of [lllll[iri~l[)ll llil\~ij ill~(}

been glvcn by Takcns [201 nnd Jnnssw-r ui-.d ‘1’jon121].

ti,3. Using n Grid of Cubes LOCompulc Dimctwdon
Some of LIICddlnlllon~ WIIhiiv~ usrd, SIICII i~~ lhc [:il~),ll’ilj”, ,\ll IJ\f’ ;lrlJ’ I[}[till i[)tl

or orlcnlaLion of lhc cubes uw:d Lo cover Lhc UILruclor, Ill il Ilillll(’1.l(’ ill

“f~ “a]MIOT~ ~] Z WiLh rC#JIFCt tO L}Ic llll!lLYUrt! p“ we Illctlll I hnl 1}1(’ m“l (J! B W}llc!l lIIW!I 11111 WI: 1:1!)’

Mu IY n d 0!P nmnmur~zero.
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experiment, however, it is much more convenient to select Lhc cubes used tcJ cover
the atLracLor OULor a fixed grid, as shown in Fig. 4. For thcs.~ dimensions (dc, dl,
and dc(ti)) it can be shown that selecting from a fixed grid of c:ubcs gives the same
value of the dimension as an optimal collection of cubes. For exam Fle, for ;hc rasr!
of an atlractor in a two dimensional space, using a fixed grid Lo compul.c N(E) in l:q
(2) results in an increase of at most a factor of four in N(E), which has no cflrcl on
Lne value of the dimension. Nole that this is rml tru~ for the IIausdorff dimcl; sio]l,
which requires a more generai cover.

In principle, the definitions of dimension gi~rcn in this section and lhr usc O; n
ficd grid provide specific prescriptions for obLaining capacity, information dimefl-
slon, and ti-capacilv. To find approximate values for Lhcsc dimensions, onc ciiII
gcncraLe an orbit. on the aLLraclor using a ~:onlpuLer, and then divic?u lINJ sp, IccI
containing the orbit inLo cubes of side c in order Lo csLima Lc Lhc nunlbcrs N(F),
l(c), or N(E;13). 13y cxarnining how N(c), I(E), md N(c;19) v~ry as c is dccrcascd lIICI
value of Lhcse dimensions can be csLimaLcd.

As discussed in Sec. 1X, however, in prac Licc Lhc a.gcnda dcscrih~’d UIJCVI’fIJr
cornpuhng dimension nlam~bc dlfTIculL, costly, or Impossible, Thus II is of II II PI’1’::L

,.

Lo consider oLhcr means of obtaining Lhc dimension of chaotic attrilclors. ‘1’hcnl-;l
Bcction dcnls wiLh Lhls qucsticm, In particular, wc discuss a conj[!rluru Lh,ll 11)11
dimension of c-haolic ~LlracLors can bc dckrrnincd dir~c Lly from lhc dj’l~i~nlie~ III
tcrnis c)I l,yapunnv numbers

m

IV*=:..-,<,.=. =.,.-.

— I [ I
II l--t--l- IL , 1 1 #



III. Lyapunov Nu.mlxmi and Lyapunov l)irnension

The Lyapunov numbers quantify the average stability properties of an orbit on
an attrac Lori For a fixed point attractor of a mapping, Lhc Lyapunov numbers am
simply the absolute values of the eigenvdues of the Jacobian matrix cvalualcd ml
the ilxed point. The Lyapunov nu.mbcrs generalize this notion for more compli-
cated attractors. AS we Bhall see, for a typical attraclor thorc is a connection
between avwage stablllly properLies and dimension, The possiblily of such a con-
nection was flrsL pointed out by Kaplan and Yor!te [22] and laLer by Morl 123].

3.1. M!Inition af Iyapunov Numbom
For expository purposes, for most of Lhls paper wc shall consider p-

dlmensional maps,

Em+, = Iqzn),

where x is a p-dlmcnslonal vector. We emphasize, however, LhaL similar cons;d~’r,l-
tions to those below apply Lo flows (e.g., systems of diihmcn:ial cqlml]ons), incllld-
ing Inflni Le dimensional syslcms such as parllal diffcrcntid rqudicns. To dCfilU’

~P = [t/(zn)J(zn. ,).,.J(Z1)] where J(x) is Lhc .limcd)iiulthe 1tyapunov numbers, let J

matrix of the map, J(z) = ~ and let j ,(7L) > jg(m) * m~. * jP (m) bc Lhc nlilgnl-

Ludcs of Lhc clgcnvalucs of Jn, The liyapunov nunlbcrs arc

(G)

where the posillvc rcd nfh rool is li~kel~. Thu l,yilpul~ov numhors g[’nuridl~’ d(!p(~rlll
on Lhc choice of lhc mitiul condlliun Zl, The l,yapunov numhl!rs wt!rc originidl)’
dcflncd by Oselcdcc [24]. WC’have the convention



attractor on the average nearby points iniLially diverge at an cxponcnlial rat.c, imd
hence at least one of the Lyapunov numbers is grealer than one. This makes quan-
titative the notion of “sensitive dependence on initial conditions”. Wc will Lhkc
Al >1 as our defMtion of chaas. (NoLc thal many authors rc[cr to l,yrqmn.rm
eqcnents rather than Lyapunov numbers. The Iiyapunov exponents arc simply ll)c
logarithms of the Lyapunov numbers.)

Jn this paper wo assu.mo that almost eu~~ initial cond Ilion in Lhc ba%in of i~l~y
attractor that wc consider has the same I,yapunov numbers. Thus, Lhc spectrum nr
I.yapunov numbers may be considered to be a properly of an aLlrimtor. ‘1711s
assumption is supporlcd by numerical cxpcrlmcnls [2S]. Itxccplional Lriijcclotmit’s,
such as unslablc fixed poinls on Lhc atlraclor, typically do nol sanlplu lhc wholcI
attractor and Lhus typically have Lyapunov numbers Lhat ure diflercnl from hlSL!
of the aLtracLor. Those poinls in Lhc basin d attraction thi~l hi]vc diflrrrfll
I,yapunov numbers or for which l,ynpunov numbers do nol cxisl iirC hLIIT ii~slilll(:(l
to bc or measure zero. (In olhcr words, they may bc covcrcd by 1AcollL’cLion nl
cubes or varying size having arbitrarily smull 10LuIvo!umc).

3.2. Dcfhition 01Lyepunov Dimcnaion
The following discussing cnnlains a hcurislic nrgumrnl. lhiil rlldi~i~l IIS iI [1[)11-

ncctlnrr between Lyapunov numbers and dimension. Corwidcr ii lwo dlmrnsinll,d
map. SUpposc wc wish to compulc the capacity of a chaclic at[ruclor, [or NllII:h
Al >1 >&. Cover the aLLrdcLor wlLh K(c) sqUrlrL!S or side c. Now, ilurdc L!III rll,q~ [I
limes. ~or q fixad and c small enough, the UcLlon of Lho mapping is roughly llr~(iilr
over thr square, and ci~~h square will hC1SIImCIL’h L’d into a long lhin p,wt~llrloflrillll
From Lhc dL’flrLillOn d Lhc l,yapunov numlwrs, LtIC ~\’t.~r~gl’ILnglll Of llI(Is(~ ])ili”iil-
lclogrums is (Al)q c, and Lhc ~vcri c width Is (A2)~ c.

T
~OW, S11]1]10S(’ WL’ htIIi IIS[’[! II

flncl cover o[A;quarus 01 :;idc’ (A2 v E, (SCC l’ig, G.) TO CnL’L!r rti\L’ll Jmrdll~,lu~r,.111

t~kcs aboul ( ~~ rzmallur sqlli~rcs, 1“1111s, f~ U ?k s~~q)r):;(!rf 11)”11 illl stlll,]r[’s nll I 11(’

(i)

1 de
~oLiVdLL1d by Hq. (2), il~sllmc! A’(r) RIk [# , ilnd Slll)S[l[Ll~I’ II1[IJ Ill)ltl <1111’ III

I,q. (7), ‘[”hisgivm

Cnllwllng Lcrms, Luklng ln~ctrilllrrls, and solving f(’r dc glVIIN
Iofl A,

de:= 1 + —-—,
log ~



El



ca aclty, Assuming the equality of probabilistic dimensions (C.onjcclurc ?), Wr iir~
[le Lo Lhc folJowing conjecture:

@k?ectUre 2: For a Lypicali2 attraclor dg = dL.

h Lhe following six scc Lions we prcscnl cvidm-mc suppnrling this ccmjuclur(’. Also,
L.S, Young has prwed some rigorous rcsulls along Lhcse hncs, which arc rrw’it’wtd
in the ncxl subsection.

]n Lhc speciai casl thal rl~e~ inilial condilion on Lhc utLraclor gmx’rol(’s 1l~LI
Same Lyapunov numbers, wo will say lhat Lho atLrac Lor has rzbsohd R 1,yiIpLInrN’

numbers. In Lhis case IL Is not ncccssary 10 distinguish probable from in~prol),illlr~
~ubcs, and Lho abavc conjecture can bc made in terms or Lhc fraclal dlnl~’nsion
ralhcr lhan the dimension of lhc rmlural measure, WCcall Lhls C;onjc~~turu 3,

Cl@ecfure 3: If A1,As,,,.AP gcncralcd from every (nrit just rdnicwl cv[,r{~
inihal cnndilion Lake on the ~amc value, imd if Al > 1, Lhf:n [or il ~)’@L’iLl ‘-

‘attractor of this Lypc dt- = dL = dp,

The rcquircmcnt of Conjcclurc 3 that cwwy inilial condll,lon on ~hL1 ~l\ll’~clL~r
gcncrato Lho sam? l,yapunov numbers is very rcslrictivc and only holds for spucltd
cases. For cxnmplc, IL holds ir the Jucnbian malrix or Lhc mi~p is llld L’pcndt!lll [~fK
In more general cases, the rcquiromcnl of ConjrcLurc O would k uxprc?lcd [n ft~Il
bccausc of the cxislcncc of unslfiblc flxcd and pcriod!c poinls 011 ll~c il[trii[’[[~1,
For example, If ZI iS chosen tn br prl~ris[~ly on ~ln Lln~ti\l}lL’ fix[’rl jlIIIIII, I III,

Lyapunov nurnbcrs gcncralcd will simply bc Lhr ~lgcnvi~ll~cs or J (xl) “I-II(ISII WIII
Lypcally bc diff~’rcnl from lhosc grncrulrd hy n ~l]iidi~ cwl~ll on I.11(*illlr,i[.l[lr
hxumplcs for which Conjucluru 3 :s vidid WIII be iipcwlid cimIs d lIIU M(JI’U &I’II(II,d

example prcscnlcd in lhv following suc Lion, In addition, m l’x,inlpl[~ for WhICII [: IMI-

jcclurc 3 CM bc proven 10 hold is glvcn in SCC \llll.

9.3. Kcvicw of Kigorous Itcsulh Conccmlng IIynpunov Dimension

—.—— . -—
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7he proof Is a rigorous version of the heurislic argument that we have ~ivr’n
(Fig. 6), Also, Doumly and Oesterle [26] have proven that an upper bound for the
fractal dlmenslon can be obtained yield~ng an expression like l.;q. (0), where Ihc
numbers they usc arc basically upper bounds for the I.yapunov numbers.

L.S. Young [11] has proven several resulls Lhat slrongly supporl conjcclurcs I

and 2, Particularly relevant. are the following two lheorernsl’.
1, II ~ srkts thm

~ = d] = dH(core) = dl.~, (10)

E, For two dimerwiam.zl ~ diffemmqhiwn--- tih Al > 1 > A~, + Pm’sfs.

(11)

[See Sec. VI] for a definition of d}{(cor~). ) hk dcnolcs the Kolmr)gnrov rn[ropyl’ [jr
the atlracior Lakcn wilh rcspccl Lo lhe measure p, and Al and A;!iiru 111[1l,~ii]>lit][~~
numbers with respect Lo p. (More prcciscly. almosl every ini Lliil uondlllon x }~1111
respect LOu give Al and h as lhc lyapunov numbers. )

F’or Ax.rom-A aLLracLors Howcn and Ruc]lc [ 15] have shnwl~ lhii( l]l(~rl, IS ii

nalural measure such that such h~ wilh rc*spccL LO ibis mciwurr is 1111’sun] Of I Ill.
one. For atlructors with only onc ltynpu IIovnumhrr grcdcr llli~l] IMII:, 1111:+IIiIIIIII I
that h = log Al. Thus, for Axlonl-A altrticLors or two dlmcnsiontd III,I)IS, lk~s [9 : “)
yield $~ = df,, Thcrcforc Young hus shorn Ltmt Crmjcrlurc 2 holds fol’ tl]ls r,ts(I, (11
his been conjectured lhat Lhc rulaLionslllp be Lwccn h~ arid llm pLMI:IVtI A, IILIIIIS r(lr”

non Axiom-A ailracLors LhaL havc LI rmlurul measure ) ‘l’his r~’wul( fur tlw cii~r’ r’f
Axiom-A aLtraclors of lwo dimrnsiuni~l rnnps htis alsn bIII’n rJ~lilini’(1 illd(’]tf’l:!l[’1111~
by Pclikm [00].

lV. Gcnwdizcd Ihkcr’s Trmlsfornlal-ion: Scaling

4.1, IMnilion of Gcnorulizcd Ihknr’s l’rarmfonnatlon
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log ),, = a log $+ #l log J-
P

(13)

Similarly, wc obtain for A2

To simplify notation In this and subscqucnL c~pressiorls, let

H(a) = u log $+ (l--n) log ~1~ (1 :))

H(a) is called Lhc Mmvy snbopy @nclicrn nnd is Lhc r.mlrmnl of information ccm-
Laincd in a coin-toss where t,cads has a probability a.

The Lya unov dl,ncnslon of ~hc aLtraclor C: Lhc gcncridizcd bfikcr’s lriinsror-
r ))matiorl (Eq. i 2 is

]n the following scclions wc compulc Lhc valut’s or the dimcnsicms defined in Ihls

Eq, [16),
apcr, and show LhaL all lhc probability dimensions Luku on Lh(’ v~luc given i;]

hr all buL spucial Vduc:i of Am,~, nf]cl a, Lh(W cxisl unsL,d]l~ p~’rlodl[’ CWIJII+

whose I,yapunov numbers ~rc d: fTcrcllL Ponl Ihosv ~ivLn In l;qs ( !0) tIIId (; J:) 1’
Thus, In g~ncral wc cxpccL tbi~L Conjccllirc 2 r,llhrr Lh,m (:mjt’cl Ut-r’ 3 ;Ipld ItIs iJ~lIl
dp # dp,

4.3. Capacity of Ccncrallzcd Mkcr’s IYandormntion

hldy /Jb(&) = N( &), Thus

N(t) = N(&) + N(;b-) (I ‘i’)
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Assuming heuristically that N(c) w k cac for small c, substituting inlo Eq. (1 i’)
gives

wblch Is a transcendental cqualion for ~c. As expcctcd, Eqns. (10) and ( ]8) show
that, in general, 1 + ac = ~ # d~. IIowever, for the special choice & = ~, a = ~,
corresponding to Eq. (12) with Al = 2, the two agree, Note that for Lhis case Lhu
Jacobian matrix is constant, the Lyapunov numbers arc Lhercfore absoluLc, and
Conjecture 3 applies

In obtmning 1 “n order to keep the argument simp?e, wc hnvc made Lhc
strong assmnplil”” , l“) m ~ #G for small c, which implies the cxislcncc o!
thu limit given in I .linl Lim o~cnpacity, Eq. (2). We can, hnwr’vcr, SI1OWlhil[ lIIc”
limit given In Eq. (2J tixists ard dc must saLisIy Eq. (1 fl) i“ a rigorous mnnncr, as
fGl]OWS:

I)eflne fi’c(~) by

N(c) = EC(C) c“-~,

where ~ is d~dlnud by 1 = A~ + &z, Substituting Lhls inlo Eq. (17) lhcn yields

(:9)

whc~c H = ha and ~ = ~;, and tire indrprndcnl of c. NOIICC thi~t by dclinll Inn
R + /3 = 1, so the above cxpr sdun says Lhat EC(C) is a wci~ht.ud average of 11s

arc chosen so thaL ~ Is large. Since a + ~ = 1, Itq. (19) lmpllc~ lh~ll

Hz < fi’c(s) < 1?, also apFfi~s 10 Lhc wider Inlcrval c1 > c > }~ru, ltc’pr:idi~ lhis tN”#lI-
mcnl incrcascs Lhc domain of valldlty of the bound Lo rl > E > ~ct2, and so m)
Hence KC(C) is bounded uniformly [rem iibok-c and lwlow for arbit tiirl]y SM,III }
Thus the limlL of Xc 12) CXISLSand & = d. (In facL iL can bc shown lhal Eq, \ t 9)

log Aa
implies that IIlh’c(c) IS u crmslanl if ——is an irralionill nunlhor, ) Notr I!lilt Ill

log Ah
Rq, (18), since balh terms on Lhc right him-d side arc monotonically drrrwwingi ~C
ohLidncd fronl solving lhis cqunllon is unique,

4.4. CompulaLionOf lInusdorfT Uimcnsion
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and capacity are equal, dn = dc.

4.5. Calcu.lati~ of Information IXmension
The information dimension di can also bc calculated by a scaling argumcnL

similar to that used above in computing Lhc capacity, once again, IcL df = 1 + dl
end express the summaLi@n for l(c) in Eq, (4) as the sum of conLrlbut.ions from Lllc
two strips in Fig. 7(d),

1(E) = /a(E) + ]~ (E). (20)

The total probability conLained in strip [O,&] is a, and that in sLrip [~, A~ + ~] is ~.
Assunmg that it Lakes N(c) strips of widLh c to cover Lhc whole allraclor, lhrn
from the scaling property of Eq. (12), covering the sLrip [0, &] aL rcsululion cA.
also requires N(c) strips. Thus

N)
/a(EAm) = i! 1a P8 log —

~=1 a Pi

= a [log ;-+ I(E)].

Hence, replacing ~~ by c in Lhe above,

Thus

I(c)= al(&) +/?1(:;) + H(a), (21)

where II(a) is given by Eq. (1S). i!oLivaLcd by Eq. (3), ir wc a:surrIc Iha[

/(&) = d, log ~for small E, and SU1]SIIIULOfor l(r), /(&&), imd /( &) In lhr almvII

equaLion wc obtain

which is in lurn equal Lo ~r,. The assumption thaL l(c) = dl lot } can bc rrl,idr

rigorous in the limiL as c-~m using an argument lhaL is completely ~fiidosou.s 10 th,ll
used in deriving Lhc?cupaclLy in Lhc last parL of Sec. 4.3.

Wc should mcnlion LhaL Afuxandcr and Yorkc [; 0] h,ivc compulcd I Ill’
I,ynpunov and information dimcrisions of Lhc gcncralixcd lmkrr’s Lrmansform&lon
for Lhc spccinl cwrc a = ~, A = ~m = A~, where A > )$. In lhis cww rfl, = 2, I“or
uncountably many values of A they find LhaL also dl = 2, although lhcrc arc ccrl,~lrl
special w-dues of A for which dl <2.

In otdcr Lo ciilculnLc the oLhcr probabillLy dlmcnslons Iislcd in ‘Ihblc !, more’

Information concerning Lhc prob~bility dislrlhulion is rcquirud. This is dl?,dt wllh
[n SCC. Y, ~~nd wc [her-cforc cfcfcr c~]cllldlion t-ifof []IC rpm;lll~illg dllllprwi[]rls t o I III!

frociions followlrig See, V.



V. Distribution of Probability

In this section we derive the form of the probability distributim~ [Pi(c)] associ-
ated with the natural measure # of the generalized baker’s transformation. Here ]Jl
denotes the robability of the i“ cube ~ of edge c, i.e., Pi = p(~). The collection

f’of numbers Pi(c)] may be also be thought of as the result or coarse graining the
natural measure. This probability distribution is interesting boLh f~r its own sake,
md because it 1s needed to compule some of the dimensions that we arc
interested in. In what follows we restrict ourselves to the case in wh!ch
& = ~ = Az, which keeps the width of all the strips the same, Thus a particularly
convenient partition for compuhng [pi] is the seL of 2n nonempty strips obmincd
by iLeratiug the unit square n times.

Starting with a uniform probability distribution, on one application of the map
two strips are produced, one with total probability a and the oLhcr with Lotal pro-
bability ~. (See Fig. 7(d).) If the map is applied agail~ (Fig, 8), there results unc~
strip of probabdity 2P, one of probability ~~, and two of probability a ~. In gcnural,
efLer n a placations 01 the map, *here resulL 2’ strips of width (Az)n and prob~b,ll-

?tics a’” ~’ ‘“’), m = 0,1,2,,. .n. The number of strips with probability fi~pfn ‘ml is

Z(7t,m) = -—
(J)!na! ‘

(22)

i.ei, the bir.omial coefficient. Since we Mm u < M < ~, lowur m corresponds 10
more probable strips, i.e. strips of greaLer naLural measure. The Ldal probabilil}-
containcd in Lhese Z(n, m) strips is

IV(n,m) = am ~~n-ml Z(n,m). (2.3)

Note the similarity to a scqucncc or coin tosses: using a coin h-ith probahill(y n of
heads and ~ of tails, for a sequence of n flins the toLal number of sequences wilh n]
occurrences of heads is given by Eq. (22), and the likelihood of all such scqurrlccs IS
given by Eq. (2S).

For large n (small c) it is convenicnL to havr smooth estimaLcs for Z(n, m) nnd
W(n,m), L7sing Stcrlinpm. approximation, i.c,,

[ogn! =(n +)$) log(n+l)--(n+l) +lo3(2rr)~+ Cl(n 1),

wc obtain from Eq. (22)

Expanding this expression in a Taylor series about iLs maximum valLIP, m = ~T

yields

(2))

Note thal, since these expressions were oblaincd by Taylor srrlw ‘~pmsim,

Ilq (24) is only valid for 1~- )$1<<1, and Kq. (%) is only v,~lid ror ]%- n! << ;
.

However, since the width or Lhcsc Caussians is 0(-#, Eq,

the sLrips, and Eq, (25) Is valid for inod of Lhc probtitilliLy.

(24) is Villld for IIIUSI “r



Fig. 9 shows a schematic plol of Z and W. IL is clear km this ffgurc lh,ll, ror
large n, almost all of the probability is contained in a very small fracLion or th(.
total number of stri s. Furthermore, this situation is accentuated as c gets

YCimkdler (n gets larger , since the width of the Gaussians given in Eqs. (2fi) and {2:J)
decreases according to df. In the limit as E-*O these Gaussi,ans approach dell ii
functions, and they do not overlap. Wc ~eel that Lhc above propcrLics arc Lypichl
fealures or chaotic attractors.

6.1. U@lonUal Distribution of FralmbiliLics

It is instructive to rewrite Eq. (25) in anoLhcr form. kl p = Qm$n ‘I dcnotu

the probability of a strip, and reexpress Eq. (2s) in terms of u = log ~r,~lhcr Lhi,l[l
P

m. m is proportional to u, and M’(n,m) bccomcs
(u -wo)~

1
.- —

# (26)F(u) = me ‘

where

[C@log :!og :-]

k+=
log &

and

A

z -L



w = dL log ; (27;

with dL given by Eq. (16). Eq. (26) is only valid if

(~-%)z 1—a log ~
#

[2U)

corresponding to I~- - al << 1. F(u)du is the total probability conlainer.1 in slrips
.

whose values of u = log &fall between u and u + du. Thus we scc thaL the loga-

rithm of p has a Caussia~dlstribution, or in other wcwcls, p has a log-normal distri-
bution, Wc believe that tkis is typically true of chaotic attractors. In particular, WC!
offer the following conjeclure;e.

Ch@clure 4: Let A be a chaotic attraclor of a p dimensional immrli.hh~
dynamical syslem, and assume that this attractor has a natural mcasuru
p Cover A with a flxcd grid of p dimensional cubes of side Icnglh #.

Assign each noncmply cube ~ probability Pt = ~(~), and Id [Ji = log ~.

~oL ~ be Lhc rrc ., d Lhc numbers Ui, and Ict UEbc Lho vnriuncc, j“’~t”
typical chaotic utlractors, In the llmlt as c-~0 Values of U~ sufficiently
C1OSCLo Lhe mean (In the sense of J?q. (21J)) approach a Gaussian dislril”l -
tion, In other words, the corresponding vdLIrs of [~ approach i~ 10, I-
normal distribution.

Note Lhat [.ri is the informnLim~ chtainud in u mcasurcmcnt thiit fiIds LhI! O,IIJII.
lnsldc or the i’~ cube [1,fl,~]. Thus, Ccmj{@urr 4 stdcs that for ch~otlc i~llrii[glnt-+
the lnformution is approxlmalcly normidl y di~lribuLcd for small c i

Th~ funclion Z(n,m) given in Jtq (24), Ciln alsn bc rcrxprcssrd in lcrms d 1)
ralhcr Lhu.n m, Wlicn 1111~is done, wilh silllili~r, re~lricl,iof~s LOlhosu of Hq (Xl). 11111

rmult is also n GiiUSSliltl in lcrms of u = Iofl ~! Whrn rccnst in Lhu more [:1*111’ri\l
P

EcLting of Conjcclurr 4, Lhis says thi~l th[! numkmr nf Cllk!$ (: whosr Vril[il’s 1‘1 1111
bctwccn IL and u + tiu mc giv.!n by [1&mssinn dislril)ution. (S]mil,~r rUA.rIIJI I[)IIS
to lhosc given in CcnjccLurc d upply.)

VI. ~ompu I.Mien of I’robhil i~tic I)imcwiwm



l(c) =Ju F(u)du =%,

Since from Eq. (27) ~=dLlog$, Eq. (4) yields d] = dl, (previously shnwn in

6ec. ~ 10r the rnorc general case AS # Ah). Thus Lhc mean vtiduc of lhe log n~rrn~l
dlslrlbution is simply the information contained in Lhc probabi]ily dislribull’m, iilld

lts scaling rule is l(c) ~ du log ~ dimension or lhc nalural mcasurr.

6.2. IhNzrminalicm of dmapadly
Here wc cdcdatc dc(ti) for & = Aj = AZ, WC ~hoosc c t?quiil 10 tlI(’ Wldlh Of ii

slrip, G = A#, As usual, for con~cnicncc wc compulc lhc fl-ctiparily or ltlrl iii I riil’1 or

r
rojc~lcd onlo the x axis, i.e, dc(19) = dc(ti) – 1. The O-rap;triiy dc(ti) is dl’[im’[1 II)
crms of the minimum number of inlurvals N(E;ti) of wlrilh c lhal hiiVL! Lnlill IIiI! iiriil

mcagurc at lcasl a9.

A’(&:t9) = if Z(n,m), (~r’)
WI❑0

where mu is the Iargcsl inlcgcr such llmt

“’fi’w(m) <19, (m)
m =0

‘~o find m~ w1’USC ]’;q. f~~) illld [lpprfiXilIl,l~l’ [tlL’ SIIIII ill ]“;Cl, (;?!)) h~ iill llli[’fll’111,

Thus for flxcd O W l’l~lilln

(3:)

‘1’111”Jlrlnf’lpld 1’1)1111”11111

p n ( f!-)m [1!! fl[l)\-

x(nmm) ~ —-.._Q-.,.. .. r! L!lap
Vi?n7t,aj9

[XJ)



,,
I

Figur(! 10

[~(n ,m) :- (A#l “A#’)’i Z(71 ,T?:;,
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(33)

We slill have yet to spcclfy which m values are to be Included in the sum To rin
lh.ls, wc expand ~rd(m,~) aboul ils maximum VUIUC(as done for Z ilnd Win Src. 1“),
nnd obtain

(W)

In order 10compL’lc l~lE,U), wc must consider I ho n~lurtd mumurc m wcsllus [Id(n ,m ).
Nolc thnt for Lhc gcncrnl case wt! urc ccmsirh!ricg now with An P At, W(i:,r:l) d~Lililltd ii:
Eq. (2h) cent.inucs to bc lhc currccl crrprcwslon for Lhc dislributiorl U[ prtJbilbilll ivs ir: (!i](:l:
rntrlp. Ilcpcnding on Lhc vtd IIcMof a, d, A, FIrd AO, W muy prnk [II tI vul IIr d 1:1 I I;ill IS
●mullcr, lurgur, or uquul 10 LIM!VUIUU LJ[ rn IIL the pt!uk of [~~. (kr:lpiirir!~ I 1:() 1(1(’ill1(11:o: I1(,
pcnks of the Gnuasian* in Kq, (W) (for U) urld in Itq, (2b) (for W), wt! NI!r Ll:ill I l:f’ro ilr(l I I:rfwl
Casc::l

&:

CM(’ ‘: a < {ti~ll ‘

-—Ca.wC)2: a > ~til,~), and

cm.{! n: (A= ——,
(A~;A#J



e?

log [1;(C,19)]~ -n [cf-(ci~)]log (;)

for c+O (i. e., n +-) we obtain Zd”(fl) = O for d > ~L and /do(fl) = M for d C d],. Tt:~s
remernberiog Lhal dfi (a9) = &(’l!) + 1,

k already mentioned, wc r?xpecl Lhat the above inequality is really an equality. This cxpor:-
letlnn is reinforced by the fact that when ‘1! = 1 wc recover the CXUCL expression for t-t:u
Hauedorfl dimension compulcd in Eq. (lE). To see lhut this is Lruc, rcplm:u m.d in ftq (3:J)
by n. From lhc form of V~, this sum is simply the binomial cxpalisioc of (

~,, + $ + N’)n. ,,+n +=+, this quantity iS (1 or m for d > & or d < ~~, where ~t{ sriLisf%!s ~ )1
= 1, wl:i[ll

Is the same as IZq,(18). That is, for Lhe spcclflc choice of EL thnt we huvc used, w(:ohtuir L}:(!
correct value of dfl, Since the same choice of the Ci was used in obti]inin~ d}{(ti), it SIPCI:IS
plausible lhnt Uw equuliLy might apply in Eq. (36).

6,4. CompuMion of tho POintwiso Dimension
We now consldcr Lhc poinlwisc dimension ror Lhc gcncralizcd bakvr’s lr~nsf[Jr-

malion with AS = Ab C )$, and wc show that ~ cxisls and Is cquul 10 d],.

As previously nolcd in See, IV, applic.alien of the map n Limus [G tl~r UIIII
square produces 2n strips of widths (Aa)n. (Recall that wc arc assuming Aa = A~. ) Ill
order LO compulc the pointwisc dimension, wc choose u ;minl x i:l rilld[)rll \\ 1[1 I

rcspccl to the nalural measure ~, compu~ the ndlurd measure I’Ol]lilinL!Cl In yII I

ball cenlcrcd uhnul x, I,c. (p(HC(x)), nnd conlpulc lhr ri\Llo of /i(l{L(z)) 10 ln~ ;- III

the IIn-dt us c goes to zero. The slmplcsl cusc for this COrrIpIIIi\LIOIIuc’(:urs WCIIi II

~< +-, so t}~il*. lhd gups bctwccn strips nrc hig~ur than Lht’ strips tllrrllst~lvt’!:, ii:<

(:111)

(W, I:(,!: (1 !,) ,,,,ri( l(l))
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Wl:w’ dlllll’ll::lnll IN t’qllld 10 11)(’ 1111111’11::11)11I)f 1111! Illllllrlll 1111’11::1111’ (.llllll Jll/:11 ‘.’ll

tlnl’[!on!y sh[)wn 11)11:fw- Au ...~b, IIIS11[)1ti,ird to Isxll’f)d Illis rl’~:lill It) AU # Al,

VJ1. The (WC:d AILrm:tom
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$’011111’:: Ilf Ill hill I“lllllillll 111111’11111111’1’I)r 1111’ Ilillllf”lll 1111’il:illl 1’ 1111111 :.11 IJI:; \\llll 1111’/:1,
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W 111 [Ill’ Ihllllrlll 1111’,1’illf”l” Ilil!l ll!”lml~llll’ 1~11111’ !Ql}lli’l”llll”tlll’tl Ill I“,*I 1,1111 I’11111’.: {111



r .. .. .

1

1’lgurt! 12

‘h! Ilillurd prul!llllilily dlsl rihl; iirm or I Ilv gfmf!llril]i’/,fd tmkr’r’~ Irilr:yl(]ri”l.11 1(11: III”(IJI’(’11’(1
(’1;1(1 l}:lS X ilNIS, 111!11l’(lllr:~f’ ~:rilil;lwl 1.::II:I! il:lr’rv,lls Of wl(lll; I : 2 ‘o II: Il”ts t.I::fI (I ( !{,.
OIX1 ~ = Ab .- )$

1“0 unill’r:’ll\tlll IIMI forrII flf I Ill:: jlr[~lhll~llily [Il::lrilnillnll, II i:: IIISI rlif.1 Ill’ III
ruprrs[’nt 11111prnlhll)lllly di:drllnil 1o11of 11111::11slrlps III lt’rnls of s rlilll(’r Itlrlll fII
‘1’o do ~i]ls, nJl]M’lWilllilll’ x lIFIII/! IIS fiI”sl I) l~lr]ilf”~ dI/:ll ::,
lriillthi[ud d[lIIr II 111/!lls

I f! 11+ II 11111,11’)’[ll’I’1 111111
IJ4 Ill lW IIP’ 11111111)1’r td 11111”s I’($111,11111’11 Ill 1111’flr”:l II

di~;lls d [Ill’ l~lllilf”,v l’XllilllL~lllll l~f X 1111’ fllllllrill Illf”tlsllrl’ [1[ Itll’ SII’1]1 s,,(z) l’(lll[ ,1111
111/: x l!: 1111’1) /J(l~’,, (r)) :’ rl’’’(fl” “’) (!+I’1, 1111’ dl!!l”llSSl[,ll ,11 Ill,, l,l,i!ll]llll~: [,[ f~l[. \ ]

AH W1’ lll~v~’ illrf:llll~’ SI1[IWI1 (S1’[! 1’1/! ~), \~llt’11 Wl”llll’rl Ill 11’1’ill!: [’f Ill, [1~1’ llll”~!l’ 11 1111’
Imliirn! llltsllSlll’l’ IS ilJ~lJrllNllllllll’1~ il (: IIIISSI,II1 I’11111’I”IVI ill~illll (!lI , tlllll Ill I Ill’ Il; l!ll
M’11[’l”t” II l:: 1,11’,:1” 1111111)::1 1111 1.11(! Illl!ll::llrl’ l:: I’11111111111’(1 Ill ::11’IIW V!llll ?11. (Ill !:1

01}101 wnlxls, llIr Imllmd Illoiwllrt’ d lllf I ~rlllmll17ud Imkl’r’s frlif I.. fiIrf IIIIl lotl fI’r
k - Ab ‘-y l:! t’flllI’l’111 I“ldfd [),, It,,,,:, v,,!,,,.,: ,,f ~ It,,,, t,,,~,! !’s Ill 1111111”l)lll,lr\” I.i,ll, lll

HIOI)H Ill lll~! frill’ 111111(1, r)i’ !vllll\’illt Illll~, ()’:: Ill ltlr’ [I”ill’ 111)11if III Illr. 1111111if O’*, (1//
lhr! Ililllll-id 1111’il!:llr(’ I* I’lllllilllll’11 Ill IIIIS !41’1, 1$1111’tl WI’ Mill 1,,111Itlll l’f)l’1, IIf 1111”
iillrlir’lnr.

I“or 1Ills [“nsl’ (~, A~ - XI) 1111~illllm~il’lr~r l:{ Illr’ rltllllm(’ IJIIII ::tllt,lt.i’ ‘I’l Ii I t[lt’r~ III
1111$ ill ll’ll[’I IN- l!: Ilr’lr:t’ 1)111111’ illl I’ill’l:i?m, Ill tdllr’1’ wl~l’11’:, ,111)’ 1}1)1111I,f Illr ,1111”,11,1.,1”
lUIN ))r~llllx id I Ill’ r’nl’r’ ,ml~il rllrily c.llvit’ Ill 11 Ill!lll,r, ,IIIy I, IWISIOIII~: ~lr 1111, (.IMVI 11111.1

nlsn IJI’ ii t’f~\’r’l-lll[! uf 11111 ill Irlir’lnr, iu}il vl::ll VI Ir!:lI ‘1’1111”:1111” l’lq)l\f Il,v 1![ Ill,’ 1“1,1’1’ l’:

lllr’ !: JIIIII’ [1!! Illiil Itf 1111’ illll’,lr’lrll’ ‘1’llr” 111Ilr:flIIl”fT Illtllt.11’:li’1], III IOIIIIlr, II!l, II! 1111111’

IIIIIJII[!, II! III III fiII’1, t’IIllll IllllllL! Illr* Iliill::lllll’fl 1111111”11”:11111Ilf Iltl’ :il’1 IJf 111111111111’::\\l III” II

ltllllllm~ l’Sl)Illl::ll~ll?I ll~lV1’ II ~’lVl’11 flm{lt’lllVl [If rvll’:: l“: {I 1’1,1::::11’ 111’1,1)11111 Ili 11,,. :.1 11(1) ,,1

llnll::llr Mmll (lllllr”lr:l[~ll Ill!] ‘1’llr’ Ilnll-:llllt’ff 1111111’ll::ltlll r~f 1111:1::1111:1

t~J/ “
Ii(n)

Icq! ::

(:;tii, Isrl (! !))) CI’tll!: l-,~!illll Wil!J r’llli)lll’1111”1111 1))’ (;III!II 11} :!1.:1 1:1:’1 .11111 111’ll\’lvl ll\



80

~gfllcslon in 19’19 [33]. Also, the llausdorf’f dimension of a very sinlili~r r)(i~nl]jl(’
finv;~~nf lcrnary rather than binary expansions) was prmrcn by IIcs,cowlcl, in

4 ,

t“hus, for this example we scc lhcll the IIausdorfl dimension of ll~c core is LIqLIi Il
to Lhc dimension o,”the natural rncdsurc, and Lhc cap~city of lhc core IS [’qUiil to
the fracLal dimrn.iion of lhc altraclor For Lhe Ci~sC of diffcomorphisr,ls of [ III’
plonc, Lhc former rcsulL has bc’cn proven by Young [ 11], Wc suspc:cL lhi~l lhis IS ii
propcrLy of typical allr~clors,

VIII. An ALt.ract.or Lhd is a Nowhere I)iflcrcnliablc Torus

Wtll’11’

‘1’1111::, 1111’ h’-!” {I,vll:llillf.:: ilrl’ I’1111(’111’, Illlfl III’(’ Illl,lfll’1’11’[1 1~)’ lt~r’ \“Illlll’ lJf /

‘I’(I 111]1111’::111111111111:: IIIIJJI {Jr IIIIJ ,llll’ll(’lr),’ ill 1111, t Illr IH(ll IJtI, ~1111 ,1 ::,IIII~Jlf* Ilil

tllll t’[)1)111111111 11111) 1:11 (:\!)) 1’{)1’ !’s,llll /)1!’, [’1)11 }:1111’I’ (r,, , ~/”, n) :,, 1,11; 1,:: 011 11)1’ fill’111

X:lll{ll l/: Il:ill [Jr 1111”rll[51 111,11
k:] “b:]

illl(l II II II IIL! II J:(I 1(, Illfillll}’, II (’111)III’

l:llll\\ll II I(1I 1111’ !:llr”f,ll’1’ /:l\’ 1111)}’

~!: ll}”l,ll.l,llll illlll l!: It II’ Illlll]llr’ ~ltll’,lt’l{}l. I)f Ill I:: (Ij’11,11111[’iil !i)’!:ll’111



E(x,y) has some

t(x,y) is smooth and

1very interesting propcrLles. For A < —,
R

has dimension 2. If A > ~, however, for
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3+J5where R = —
2’

most cholccs of p,

C(X,Y)is nowhere dlfferenliablc. A Lypical cross%ction of Z(X,Y) is shown in Pig. 13
To ~dersLaiad intuitively how the nbndiflcrc~lmbdity of Z(X:Y)Comes about, n~iicc
that z(x,y) is the sum of an inflnile number of pcrmdic funcLiuns whose argumunts
ere the successive Iteralos of the cat map. Unless A is small cnou~h 10 diminish
the eflcct of higher order iLcratos, the value of tho sum can swing wildly a~ x or y
change.

The I,yapunov numb rs of the map g!vcn in Eq. (39) aru Al = R, Ac = A, illld

b=~l
3+>5

where R = — as given abovo. Kaplon, Yallc’1-l’wcl, and Yorkc [~!)l

have shown that there ~rc ;WOpossibilities for Lhc climcnsion of z(x,y)
Eilhcr
(i) z(x.y) is nowhere diflcrcntiablc and

~ = dl,

or
(ii) z(x,y) is diffcrcntlablc and dc =2.

For given p, lhc nowncrc dlffcrcnliiiblc cusc occurs for newly every c:lwxcc of A
Thus wc scc thctl ConJcc Lure 3 is salisflud for it.’s rxunlplc,
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IX. Numcncal Comput.aliens

In Uds section we discuss some aspects of the numcriral computation of
di.mcnslon, First wc will discuss Lhc basic ideas behind numerical ccmpulillions or
dimension, secondl wc will discuss some o! the problems encmmlurcd in such

1computallons, and nally wc will review some previous numcrlcid work.

The methods to compute dimension vary considerably dcpcndlng on (he
dimension that onc wishes to compute, Thus fai-, wc arc awnrc of nurncricid rDm-
pulations only of capacily [37.41], I,yapI-w,cv dirncnslon [fi7-40], cmd l{imsdorfl
dimcnslon [42]. 01 these, only the Studics in’.’.~lvlng the capacity and Lhc l,J-,~pLmOV
dimcnsicm were applied to attractors of dynnmlcrd sy~iems. In cil~’h C,ISI?, tllc L1ofll -
putations follow from Lhe dcfhilions, As wc shall SCC. Lhe capaclly is (in principle)
nLralght,forward to compulc, hut is in prac:wc unfeasible to compulc for all but
very low dimensional attractors. The l.yapunov diimcnsirm. In coritr~st. Is much
more feasible Lo compute, Wc will begin the discussion wiLn a cluscriplion of 111[1
compuLatlon of I.yupunov dimension, and Lhm? go on Lo dlmmss (hr colll~luttii I(MI I.Jf

capacity.

9,1. Numoricnl Compulalion of l~apunov L%.ncnsnon
lhc liyapunov dlmcnsion is dcflncd in Lrrrns of the l,yi~ptino\’ nunllmrs. (!i(’u

Sec. II].) 7’bus, the work Involved in compulini! I,yapunov dirnrnsliw !!: III I-LJITII)III llli~
tho l~apunov numbers. Numerical methods ftr doing this hilvl’ bwn c!IscII:sst’d I)y
8cnncLin CL al. [40], Shlmildi~ i~tld Nagashin~ii [441, and in lnflnll t! dlmrnsions l~~i
hrrncr [00]. l$iLh Upproprm[l! Ilunlcriuid cn’ili on, llu! liirgc~l k l,}”ilj)LIIIOV rlunll]!w
cm bc computed by fr)llowl~ Lhc CVOIU1Ion oi k ncimby trh]cr!tori(’s slfllulttlll(’(111~1}’
and mcasurlng thclr raLr of separation. Ttwrc nrc various nlll]l(’rici~! probll’ills
with this rncthod, however, und u bctlcr mctlwd IS Ln follow orIly oIm tr,]jl!l. tnry. IJUI
also follow k :rujcctorics of Lhc cssociatcd rqh}~t ms for the cvoluhnn of vcrtmw III
the tm-i~cnl Rpacc, ‘1’hPsL! trlclhnds hiivc MCII1 slIccc!i::fully USIIrl in ii v,irI(’lj’ [if
numcrkd studirx
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We should mention one disadvantage concerning Lyapunov dimension. Namely,
lt is not resently known how the Lyapunov dimension can bc determined dircclly

Rfrom a p ysical experiment. 71wsdifllculty comes about because, in some sense, in
order to determine l,yapunov numbers iL is necessary to be able to follow adjaccnl
trajectories, To determine all the necessary Lyapunov numbers, it is necessary 10
follow some trajectories (at least one) which are not on the attractor. Thus it is
not possible Lo compute the Lyapu.nov dimension by simply observing behavior on
the attractor; onc must perturb the syslcm from the attractor, and do so in a very
well dcflned way. I’his poses a very severe problem in the computation of dimension
from experimental data, one that is not present in the computation of other
dimensions.

0.2. Computation of Raetal Dimension

In principle, it Is quite straightforward Lo use Lhc definition of capacily,
Eq. (2), to compule the fracLal dimension, The rcglon of phase space surrounding
the attractor is divided up into a grid of cubes of size c, the equations arc lLcralcd,
and the number of cubes N(c) LhaL conlain parl of l.hc atlractor arc counlcd. c is

dccreascd and lhc proecss is repeated, If log N(c) is plot.lcd ugainst lo~ e, in Lhu
limit as c goes Lo zero Lhc slope is Lhc fracLal dimcnslon,

The difTiculLy wlLh Lhis mcLhod % that onc musL usc values of c small rnnugh 10
Insure LhaL Lhc asynlpLoLic scaling has been rcachcd. (See l“rochlin.g CL id. 1601
and Grccnsidc CLid i39] ) The total number of cubes containing parl 0[ lhc allrw -
tor scales roughly as

(.:0)

Ihus, Lhc numhrr of rLks ln~rr.ascs rxqxmmdimll~ with lho fr~~tiil rhmmsinn nf

Lhc rLtracLor. l-o get a feel for the scriou.ncss of Lhis problcm, plug in some lypi-

cal numbers If K = 01 i~nd dc = 3, Lhcn N ~ iO”, cxcccding Lhu cnrc mnmnr~” of
all buL Lhc blggcst currcnl conlpulcrx, Thus, conlpulalions of frii~[iil dirll[’1~sil~’1

aro currcnlly not fcaslblc for atlr~clor~ of dimension significantly gr[*i~l~~r I hii~ I

thrpc,

In addllion. there is another poLcnliid problcm invdv[!d in romp{ltlng ~ilpti.
clLy, In counLing cuhcs, how can one bc sure Lh~L all lhr nnn[’rnpty ruhus l~,ivtI
~ccn counLcd? ‘l’his prohicm IS cnmpoundud by I hc highly nonunl[orrn dlslrll>~lllnl~
of probability on an A1.ruclor, in pnrLiculur, if our hypnthrsis th,~l Ihr prchIIIIIIl }
h dlslrlhulcd Iog-normillly IS cma’ccL, in ordt!r tr’i counl t.ill! hI/\lIly lnll>rol},ll~lf,
cubes prcscnl In the \vlngs of Lhc dls Lrlbu Lion requires Lhl~l ii lim~v numhrl of
poink on lhc nttract.or must bc gcncrilLcd. Furlhcrrnmc, [his ll~mlbcr ln[*FL’ilSl’s
rupidly as c dccrcascs.

Allhough thtw twc! m yrl rm cxl.cnsivo rrsllll:: nn dir[v’1 [~L>lll]}\tti\lir)lls of 11111
dlmcnslon of Lhc niltllrid mciisurt!, iL nli\y be r!iwicr in rt’ll,il)ly [II)IIIIIIILIJ Itlii[i 1111~
frachd dwncnslon.



9.S, Sunmmy of Past Numetical Wpeitmenls

In this section we summarize previous numerical cxpcrimcnts on dimcnwon
computation. The two studies most relevant to the Lopic under discussion arc
those of Russel et al, [37] and Farmer [38 .

I
Both of these were made in an aLLcmpl

to test the Kaplan-Yorke co~ecture [7,22,. (See Section 111.) In bolh of Lhcsc SLU-
dies, the capacity of chaotic attractors was computed directly from Lhe dcfinlLion
The Lyapunov dimension was also computed, and compared lU Lhc capaciLy.

In the study of Russcl et al,, five examples were examined. In each case, Lhc
computed capacity agreed with the compuLcd Lyapunov dimension to wiihin cxpcr-
Imcntal accuracy; in several of these cases, this agreemenL was wilhin Lhrcc)
61gnJflcanL figures. These computations were done on the Gay!, a slalc or Lhc arl.

mainframe compuler; at the smallest value of c = 2-14, more Lhan :03 cubes were
counted,

The numerical experiments of Farme~ were done using high dimemsionul
approximations to an inllnile dimensional dynamical systcm. 13cci~use Lhc equi:-
tions under study were more Lime consuming to intcgraLe, and bccnusc lhc Cri~ii-

city computations were done on a minicompulcr, it was only possihlc Lo achlcv~l
about two significant figures of accuracy, The compulcd capaci[y tind l,ynpunov
dimension agreed to this accuracy at Lhe two parameter vGlues LcsLcd,

In 19CI0, Mori [23] conjectured an a! LcrnaLc formula relating lhc frm Lal dimen-
~ion to the spectrum of 1,yapunov numbers. For attractors in a IOWdlmcnsiofi.d

hasc space, such as lhosc studied by Ilusscl ct al. [3’7], Yori’s formula and 1ht.
E aplan-Yorkc formula (Eq, (9)) prcdicl Lhc same value. For h]gh~r dimrnslnn,ll
phiw Sp~Cl?S, howmwr, Lhct two formulas no ]ongcr ugrt!c. lrarnl~~r’s rcsul Ls sLip-

port Lhe Kaplan-Yorke formula, and conclusively show LhaL LIT(: \!ori forr~lul,~ is

lncorrccl for h~hcr dimensions.

One puzzling aspccL of both of Lhcse numerical cxpcrimcnLs is Lhc strikin~
agrccmcnt bctwrcn Lhc compuLcd value of cap~cily and Lhc l,:.rapunrw dimcnqion
The Kaplan-Yorkc conjecture cquaLcs Lhc I,yapunov dlmcnslon to Lhc dlnlcnslon nf
the naLural measure, and thcrc[orc only gives a Iowcr bound on Lhc rr~~?ltd dlnlcn-
slon. why, then, was such good agrccmcnL obLaincd br(wccn lhr romp~llrd ci~]lii.
city and Lhc compulcd I,yapunov dlmcnsion? M’c do noL ycL und~rslimd ll~c ans\v[*r
to Lhis qucsLion, Lhough [urihcr numericid cxpcrimcnts may rrsolvc lh[! CILIC*SLIOII

X Conclusions

WC Ilavc given snvrrid dlfkrcnt dcflnllions of dimension, ‘1’hc~c r!ivldc inlo I \\i>
L ‘pm, those LhaL rcqulrc a prolmbiiily measure for Lhcir dvfinlLion, iind Lhosr th,ll
J o noL. (Refer buck LO ‘~ablc 1,) For an example Lhi~L wc bclluvc is L~plrill I,f
chaoLlc nLLracLors, l.c., ‘.hc gcncr~limd bi~kcr’s Lrimsform,~Llon, our t!t)mpu[i~tlr,rl.<
of dlrncnsion show tha L id] of Lhc probi~bills Lic de finl Linns Lilk~ nn roll! viduc, Wl~ICIIl
wc call the dimrnsion of lhc naLurid mrmsurc, while Lhc dcfilulicms LhiiL do t~o[

require a probilbili Ly nlci~surc Lake on imolhcr viduc, which HP ci~ll Ihc rril[’l,il

dimcn+lon of the allrilcLor. We k!licvc Llml Lhls is true [or lypic;d i~ll II,ils[ m+,



that the ratio of their variance Lo their mean decreases. In the limit as c goes Lo
zero, both distributions approach delta functions: since their means are differenL,
tn this iimit the two distributions typically do not overlap. Thus, almost all or Lhe
natural measure is contained in almost none of the cubes, and the natural measure
is concentrated on a core set. The capacity of the core is the fractal dimension of
the attractor, while the Hausdorff dimension of the core is the dimension of llm
naWm.1 measure. Once again, althcugh we have demonstrated Lhe results mcn-
Lioned In Lhis paragraph only for the generalized baker’s transformation, we feel
that they are Lrue for typical chaoLic attractors,

Most of the dimensions that WLIhave defined are difficult to compute nu.mcri-
tally. The Lyapunov dim cnsion, however, is much easier to compute numeric~lly
than any of the other dimensions. We compute the Lyapunov dimension for Lhc
general.ized baker’s transformation, and show that it 1s equal Lo the dimension of
the natural measure obtained from any of the other probabilistic dimensions lha(
we have invesLigaled. This supports the conjecture of Kaplan and Yorke.
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