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Introduction

The main purpose of chemical characterization of aerosol particles is
to provide information about their chemical composition. This information
should ultimately help in identifying their sources, formation mechanisms,
and fate in the atmosphere.

Carbon-, sulfur-, and nitrogen-containing particles account for most of
the anthropogenically generated particulate burden in urban areas. Considerable
attention has been given to understanding the origin and speciation of the
sulfur and nitrogen components, but until recently relatively little effort
has been directed toward the carbonaceous aerosol, which is often the single
most important contributor to the submicron aerosol mass. The objective of
this. paper—is-tooutline a methodology developed in our laboratory to quanti-
tate the amounts of different classes of carbonaceous particulates collected
at various urban locations in the United States. The analysis of the results
provides an assessment of the relative aﬁounts of primary and secondary parti-
culate carbon at these locations.

Carbonaceous particles in the atmoéphere consist of two major components
— graphitic or black carbon (sometimes referred to as elementa} or free carbon)
and organic material. The latter can be either directly emitted from sources

(primary organics) or produced by atmospheric reactions from gaseous precursors

(secondary organics). For the sake of clarity, we define soot as the total

primary carbonaceous material, i.e., the sum of graphitic carbon and primary
organics.

Black carbon can be produced only in a combustion process and is therefore
definitely primary. Because of this, black carbon can be used as a tracer for

primary carbonaceous particles. The problem of differentiating the primary
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and secondary components would be simple if black carbon were the only primary
component. However, because many sources besides black carbon produce substan-
tial amounts of primary organic material, the differentiation of these two
components can be achieved only by a systematic study of large numbers of
samples collected directly from sources, source-dominated environments, and
well-aged ambient air. The ambient samples should also be collected in areas
with widely different atmospheric chemical characteristics (e.g., degree of
photochemical activity).

Two approaches have been used in our studies. The first essentially
involves a systematic study of 24-hr average black carbon to total carbon
ratios, since measurements of this ratio from a number of source samples give
insights into the relative black to total carbon ratio of primary emissions
and the source variabilities. Secondary material will not contain the black
component, but it will increase the total mass of carbon and will therefore
reduce the black to total carbon fraction.

For example, photochemical gas to particle conversion reactions should be
most pronounced in the summer in the Los Angeles air basin, while in the winter
these reactions should play a much smaller role and the primary component should
be much more important. These different photochemical conditions should mani-
fest themselves in the ratio of the black carbon to total carbon of these par-
ticles. That is, under high photochemical conditions one would expect this
ratio to be significantly smaller than under conditions obviously heaQily
influenced by sources.

This approach to the identification and quantitation of primary and secon-
dary carbonaceous aerosols involves a systematic comparison of particulates
collected from a wid; range of ambient sites asiwell as combustion sources.

Ambient particulates are sampled at sites that differ significantly in
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meteorology, photochemical activity, and source composition. Source samples
have been obtained at a tunnel and a parking garage, and from direct source
samplings.

The second approach in our studies relies on the evolved gas (COZ) thermal
analysis method as a means of "fingerprinting'" the organic and black carbon
components of source emissions, source-enriched samples, and ambient particles.

The differences between these should correspond to the secondary component.

Methods

In our field experiments the samples are collected in parallel on prefired
quartz fiber and Millipore filter membranes. The Millipore filter is used for
X-ray fluorescence (XRF) elemental analysis and for the LBL laser transmission
technique [1]. The latter technique gives a measurement that is proportional
to the amount of light-absorbing (black) carbon present on the filter. The
quartz filter is used for total carbon determination by a combustion method
similar to that described by Mueller et al. [2].

A schematic representation of the LBL laser transmission (optical attenua-
tion) apparatus is shown in Fig. 1. This apparatus compares the transmission
of a 633-nm He-Ne laser beam through a loaded filter relative to that of a
blank filter. The loaded filters are placed in the beam with the loaded side
towards the laser; after multiple scattering through the filter substrate,
the light is collected by an f/1 lens and focused on a photomultiplier tube.
The data presented in this paper were obtained from particles collected on
Millipore filters. This technique is based on a principle similar to that of
the opal glass method used by Weiss et al. [3] and measures the absorbing,
rather than the scattering, properties of the aerosol. The relationship

between the optical attenuation and the black carbon content can be written as:
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[Cblack] = (I/K) x ATN s (1)

where ATN = -100 1In(I/I I and IO are the transmitted light intensities for

O)'
the loaded filter and for the filter blank.
Besides the black carbon, particulate material also contains organic

material which is not optically absorbing. The total amount of particulate

carbon is then:

[Ciot) = [Chiack] * [Corg] . (2)

We define specific attenuation (o) as the attenuation per unit mass of total

carbon:

_ATN
M (U I KX [Chiackl/I€q¢] - (3)

The determination of specific attenuation therefore gives an estimate of black
carbon as a fraction of total carbon.

The proportionality constant K, which is equal to the specific attenuation
of black carbon alone, was recently shown to have an average value of 20 [4].
In principle the percentage of soot (i.e., primary carbonaceous material) in
ambient particles can be determined from the ratio of ambient specific attenua-

tion and an average specific attenuation of major primary sources:

[Soot]/C = o (4)

. o .
amblent/ source

The thermal analysis method used in our studies is a modified version of
the apparatus originally developed by Malissa et al. [5]. Our version [6]
enables measurement of optical attenuation simultaneously with the evolution

of C02. Thermal analysis is used to obtain total carbon, black carbon,
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organic carbon, and carbonate carbon. A schematic representation of the
thermal analysis apparatus used in our studies is shown in Fig. 2. The main
components of this apparatus are a quartz tube and a temperature-programmed
furnace. The tube is mounted axially inside. the furnace. The particulate
sample, collected on a prefired quartz filter, is placed in the quartz tube so
its surface is perpendicular to the tube axis. The tube is constantly supplied
with pure oxygen. The excess oxygen escapes through an axial opening at the
end of the tube, while the remainder of the oxygen (and other gases evolved
during analysis) passes through a nondispersive infrared analyzer at a constant
flow. In addition to the variable temperature furnace, the apparatus also
contains a constant temperature furance, usually kept at about 850°C. The
segment of quartz tube inside the constant temperature furnace is filled with
a copper oxide catalyst to ensure that carbon-containing gases evolved from
the sample are completely converted to COZ' This is especially important at
relatively low temperatures when complete oxidation to C02 does not occur.

The actual measurement consists in monitoring the CO2 concentration as
a function of the sample temperature. The result is a 'thermogram' — a plot
of the CO2 concentration vs. temperature. The area under the thermogram is
proportional to the carbon content of the sample. The carbon content is quan-
titated by calibrating with a calibration gas (CO2 in oxygen) and by measuring
the flow rate through the system. This calibration is crosschecked by analyzing
samples of known carbon content. The thermograms of ambient and source aerosol
samples reveal distinct features in the form of peaks or groups of peaks that
correspond to volatilization, pyrolysis, oxidation, and decomposition of the
carbonaceous material.

To determine which of the thermogram peaks corresponds to black graphitic

carbon, the intensity of the light beam produced by a He-Ne laser is monitored



7 LBL-11805

by a photomultiplier and displayed by the second pen of the chart recorder,
simultaneously with the measurement of the CO2 concentration [6]. 1In actual
experiments the light penetrating the filter is collected by a quartz light
guide and filtered by a ﬁarrow band interference filter to eliminate the effect
of the glow of the furnaces. An examination of the CO2 and light intensity
traces enables the assignment of the peak or peaks in the thermograms corres-
ponding to the black carbon because they appear concomitantly with the decrease
in sample absorptivity.

In Fig. 3, a complete thermogram of an ambient sample is shown. The lower
trace represents the Co, concentration vs. the sample temperature, while the
upper curve corresponds to the light intensity of the laser light beam that
reaches the detector during the temperature scan. Inspection of the thermo-
gram shows that a sudden change in the light intensity occurs concomitantly
with the evolution of the CO, peak at about 470°C. The light intensity Iy
after the 470°C peak has evolved, corresponds to that of a blank filter. This
demonstrates that the light-absorbing species in the sample are combustible
and carbonaceous. We refer to these species as black carbon. The carbonate
peak evolves at about 600°C; and as carbonate is not light absorbing, it does
not change the optical attenuation of the sample. 1In addition to black carbon
and carbonate, the thermogram in Fig. 3 also shows several distinct groups of
peaks at temperatures below v 400°C that correspond to various organics.

The thermogram in Fig. 3 was obtained with a 1.46-cm-diameter disc cut
out of a sample collected on prefired quartz fiber filters. The temperature
ramp rate was 10°C/minute. The integrated area under the CO, trace is pro-
portional to the total carbon concentration. For this sample the total carbon
concentration, determined by thermal analysis, was 17.9 ug (C)/cmz. The black
carbon, determined from the thermogram, composes 14% of the total carbon.

This value can be crosschecked by using the optical attenuation and total
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carbon data. The specific attenuation for this sample, determined in a sepa-
rate measurement, is ¢ = ATN/C = 3.00. The estimated percentage of black

carbon (as a percent of total C), determined from measurement of optical attenua-
tion and total carbon only, is 100 x 3.0/20.0 = 15%. This value is in excel-
lent agreement with the percentage of black carbon determined directly from

the CO2 thermogram.

Results and Discussion

The data presented in this paper consist of information obtained from
analyses of 24-hr samples (collected weekdays) and multi-day samples (collected
over weekends) [4]. Table I lists the routine sampling sites with the
beginning date of sampling. In this section we present data on total average
24-hr concentrations of total carbon, specific attenuation, and estimated
black carbon concentrations for ambient and source samples. By determining
an average specific attenuation value for sources, the soot (total primary
carbon) fraction can be estimated from Eq. 4.

Figure 4 shows the variations of 24-hr total carbon (weekends excluded)
at the Fremont, California, site. These data cover the period from July 1977
to January 1980. The 24-hr histogram superimposed on the bar diagram repre-
sents the monthly averages. It is evident that there are significant day-to-
day variations in total carbon. The maximum and minimum daily concentrations
differ by an order of magnitude. The monthly averages are at peak values
during the November-December periods of each year. The variations in optical
attenuation for the same samples are represented in Fig. 5. The pattern of
ATN values resembles that‘of total carbon and shows similar seasonal variations.
The specific attenuation (ATN/C) variations represented in Fig. 6 are much

less pronounced and show no clear seasonal variations. Similar features of
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total C, ATN, and ATN/C are also observed at other sites.

The data on total carbon, black carbon (from Eq. 3), and specific attenu-
ation are presented in Tables II and III. These results imply that there is
a correlation between the black carbon and the total carbon content at every
site studied. Furthermore, a study of a number of source samples shows that
there is also a strong correlation between optical attenuation and total carbon
for these samples. The correlations between optical attenuation and total
carbon for the three California sites, Argonne, and source samples are shown
in Fig. 7 (a-e) [7].

Results obtained from ambient samples imply that the fraction of graphitic
soot to total particulate carbon is approximately constant under the wide
range of conditions occurring at a given site. On specific days, however,
there can be large variations in the ratio, reflecting the variations in the
relative amounts of organic and black carbon. The least squares fit of the
data shows regional differences which are related to the fraction of black
carbon due to primary emissions. These differences suggest an increase in the
relative importance of the primary component for samples collected at Berkeley,
Fremont, Anaheim, and Argonne.

Soot contains not only black carbon but also various organic material.
Because the organic soot component does not absorb light, the specific atten-
uation of soot is much less than 20, the o value of pure black carbon. Table
IV lists the average and extreme values of specific attenuation and the
black carbon fraction of a number of source samples.

The percentage of soot in ambient carbonaceous particulates can be
estimated by comparing the o of sources with that of ambient samples. The
fraction of soot is given in Eq. 4. Table V lists the mean specific
attenuation of ambient samples (weekends excluded) in order of decreasing o

-~

and soot fractions obtained by using Eq. 4 and o = 5.85.
source
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Based on this estimate, the New York City carbonaceous aerosol is essen-
tially primary soot. A different value of 0 s would certainly chaﬁge the
estimated soot percentage. However, New York City's average soot content would
nevertheless remain the highest, irrespective of the actual numerical value of
= T It is logical that samples from this location have the highest soot
content because the site represents a heavily traveled street canyon. Fremont
and Anaheim samples have on the average the smallest soot content; as may be
expected, because both sites represent receptor sites. According to the above
estimate, Denver has the smallest specific attenuation value. It is possible
that high-altitude combustion results in increased emissions of primary organics;
however, we note that the number of samples from this location is small
compared to that from other sites, so the results should be taken with caution.

It is instructive to present the specific attenuation data in the form
of histograms representing their frequency of occurrence. Histograms for
New York and Fremont (Fig. 8) show that the occurrence of high specific atten-
uation samples is much greater for New York than for Fremont. 1In Fig. 9 the
histogram of specific attenuations of a number of source samples is shown
together with those for New York and Fremont. The distribution for sources
looks similar to the distribution for New York. This supports the inference
that the New York samples, on the average, consist almost entirely of primary
carbonaceous material. Histograms for other sampling sites are shown in
Figs. 10 and 11.

It is clear from the results described so far that the ratio of black
carbon to total carbon may vary on specific days. However, no large syste-
matic differences are found as a function of the ozone concentration, which

is viewed as an indicator of the photochemical activity [7]. This is graphically

demonstrated in Fig. 12, which shows the distribution of the ratios of the
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optical attenuation to total carbon content for ambient samples from all the
California sites taken together, subdivided according to peak hour ozone
concentration. Clearly there is no trend for high-ozone days to be character-
ized by aerosols which have a significantly reduced black carbon fraction.
This places a low limit on the importance of secondary organic particulates
formed in correlation with the ozone concentration.

Results in Table V suggest that the California sites have an organic
component that occurs in excess of sources of source-dominated organics. This
excess should be equal to the secondary organic material, which can be conven-
iently identified by the thermal analysis method.

We have already described how thermal analysis can be used to obtain the
total carbon, black carbon, organic carbon, and carbonate carbon. The greatest
strength of this method, however, is its ability to '"fingerprint' source-
produced carbonaceous particles and their contribution to the ambient aerosols.
As an illustration, in Figs. 13 and 14 we show the thermograms of a sample
collected in Manhattan (high o) and one collected in Berkeley (low o). The
common features of both thermograms are the black carbon peak, the peak at
~ 340°C, and the peaks occurring below v 250°C which correspond to the volatile
organics. The Berkeley sample clearly shows the presence of a prominent
peak at ~ 380°C which is absent in the thermogram of the New York sample.

This peak (or possibly group of peaks) may correspond to secondary organic
species.

To check this hypothesis, we have performed solvent extractions on some
of the ambient samples and obtained thermograms of the insoluble filter
residues [8], since according to an operational definition of Appel et al.

[9], "primary' organic carbon is cyclohexane-extracted carbon; '"secondary"

carbon is the difference between the total carbon extracted by the benzene,
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methanol-chloroform sequence and the cyclohexane-extracted carbon. The
thermograms of sequentially extracted filters should thus show which peaks
can be identified with primary and secondary organics.

The result of one such experiment with a sample collected in Berkeley
is shown in Fig. 15. Cyclohexane extraction has removed practically the
entire volatilevorganics, which — according to the above definition — should
be primary species. The peak at ~ 380°C is removed only with the polar
benzene-methanol-chloroform solvent. This is consistent with our preliminary
assignment — that this peak is due to secondary species. The black carbon

peak, as expected, was not removed by solvent extraction.
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Table I. LBL aerosol sampling sites.

Site

LBL-11805

Lawrence Berkeley Laboratory
BAAQMD monitoring station
SCAQMD monitoring station
Argonne National Laboratory

DOE Environmental Measurements
Laboratory

National Bureau of Standards

Denver Research Institute

Location Date of first sample
Berkeley, California 1 June 1977
Fremont, California 15 July 1977
Anaheim, California 19 August 1977
Argonne, Illinois 22 January 1979
Manhattan, New York 22 November 1978
Gaithersburg, Maryland 23 January 1979

Denver, Colorado 15

November 1978

S o FTPE o - S
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Table II. Carbon concentrations (ug/ms). v
Average Highest Lowest
Site C BC C BC C BC
New Yotk 15.2 4.2 '53.1 12.6 3.4 "0.6
Argonne 8.1 1.7 25.1 5.2 3.1 0.2
Gaithersburg 6.1 1.4 17.6 5.6 2.5 0.3
Denver 9.8 1.6 30.8 5.3 4.1 0.2
Anaheim 16.6 3.1 112.9 17.4 3.1 0.3
Fremont 12.0 2.1 75.6 9,2 5.4 0.3
Berkeley 6.7 1.3  31.7 5.2 3.0 0.3

=S BT

LBL-11805
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Table T11. Specific attenuation (o) and black carbon (BC) (% of total C) from
ambient samples.

Average Highest Lowest

Site Dates on file ## samples 0 % BC o % BC g % BC_
New York Nov 78 - Apr 80 439 5.44 27% 11, .1 56% 2.8 14%
Argonne Jan 79 - Mar 80 438 4.30  22% 9.1 46% 171 6%
Gaithersburg Jan 79 - Mar 80 381 4.33 22% 8.0 40% 1.8 9%
Denver Nov 78 - May 79 141 3.23 16% St 29% 1.4 7%
Anaheim Aug 77 - Jan 80 852 3.70 19% 9.6 48% 0.8 4%
Fremont Jui 77 - Mar 80 924 3.55 18% 8.3 42% 1.6 8%
Berkeley Jun 77 - Apr 80 998 4 . 46% 1.2

.09 20%
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Table IV. Specific attcnuation (o) and black carbon (BC)(% of total C)
of source samples.

kveragc liighest Lowest

Source # samples a % BC o % BC g % BC
Parking garage 12 5.4 27% 7.7 39% 2.25 11%
Diesel 6 5.0 28% 5.7 29% 3.5 18%
Scooter 9 53l 26% 6.1 31% 4.2 21%
Tunnel 63 6.3 32% 12.5 63% 3.7 lé%
Natural gas 6 2.6 13% 3.3 17% 1.9 10%
Garage and tunnel 5.85 29%
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Table V. Mean specific attenuation of ambient samples.

Site # samples o SDEV  Soot (%)

New York 211 5.69 1.34 97
Gaithersburg 155 4.72 1.51 81
Argonne 221 4.35 1.64 74
Berkeley 513 4.28 1.47 73
Anaheim 444 3.99 . 1.71 68
Fremont 461 3.74 1.25 64

3.47 1.49 59

Denver 42
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Figure Captions

Figure 1. Schematic representation of the optical attenuation (laser
transmission) apparatus (from Ref. 1).

Figure 2. Schematic representation of the thermal analysis apparatus.

Figure 3. Thermogram of an ambient sample showing carbonate, black carbon,
and several forms of organic material.

Figure 4. Variations in the daily total carbon concentration at the Fremont,
California, site (from Ref. 4).

Figure 5. Variations in the optical attenuation at the Fremont, California,
site (from Ref. 4).

Figure 6. Variations in the specific attenuation at the Fremont, California,
site (from Ref. 4).

Figure 7. Plots of optical attenuation versus carbon loading in ug/cm2 for
particulate samples collected at Berkeley, Fremont, Anaheim, and Argonne,
and from various combustion sources. The solid line represents the least
squares fit of the data points (from Ref. 7).

Figure 8. Distribution of specific attenuation for the New York and Fremont
sites (from Ref. 4).

Figure 9. Distribution of specific attenuation for source, New York, and
Fremont samples (from Ref. 4).

Figure 10. Distribution of specific attenuation for Anaheim, California, and
Berkeley, California, sites (from Ref. 4).

Figure 11. Distribution of specific attenuation for Denver, Colorado;
Argonne, Illinois; and Gaithersburg, Maryland, sites (from Ref. 4).

Figure 12. Distribution of the ratios of specific attenuation subdivided
according to the peak ozone concentration. Note that the means of the

distributions are only marginally smaller at larger ozone concentrations,
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which puts a rather low limit on secondary organics produced in corre-
lation with ozone (from Ref. 7).
Figure 13. Thermogram of a New York sample with high specific attenuation.
Figure 14. Thermogram of a Berkeley, California, sample with low specific
attenuation.

Figure 15. Thermograms of a sequentially extracted ambient (Berkeley) sample.
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