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1. INTRODUCTION 

In this talk I describe work done in collaboration with Rajan Gupta (Los 

Alamos), Gerry Guralnik and Greg Kilcup f Brown), and Apoorva Paiel (CERN). 

This is very much a progress report, and in fact the numerical results 1 present 

below differ from those that were shown in the conference. We have found, and 

corrected, a simple error in our analysis program. I think that there are no further 

bugs, but only time will tell. 

One of the excellent features of this workshop was the interaction between the 

different lattice groups, and between those using approximate analytic methods 

and the lattice groups. It became apparent to me from these conversations, and 

from the comments of others since, that there is sot only a gulf of comprehension 

between those practicing analytic and approximate method*, but that there is also 

a gulf between those of us using staggered fenniona and those (represented here by 

Gavela, Maiani and Martinelli (ORSAY/CERN/ROME) 1 and by Soni (UCLA) 3) 

using Wilson fermions. Thus I am devoting the first half of this talk to an attempt 

to explain, as dearly as I can, what it is that we actually have to calculate with 

staggered fermions, and what are the problems with our approach. In particular, I 

hope to make it possible for others to read our technical papers3 and not get lost in 

tbe maze of symbols *nd abbreviations. None of our work is technically difficult, 

but there are many details to encode in equations, and thus we resorted to a 

compact notation. La retrospect, this made the papers rather hard to penetrate. 

After all has been made crystal clear, I will turn to some new material. Pint 

I want to explain the numerical tricks that we have found useful, and quite pos­

sibly essential, in order to complete the calculation of tbe amplitudes needed for 

both tbe real and imaginary parts of the kaon decay amplitudes. Second, we have 
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comoleted a calculation of the 1-loop mixing amongst the four-fermici operatont 

whose matrix elements one wishes to calculate. This is a standard lattice pertur-

bative calculation, which only becomes tricky because of the enormous number of 

operators that appear with staggered fermions. Part of this calculation has been 

done independently by Sheard4. We have not fully checked our calculation, nor 

checked our results against those of Sheard, so our numbers should be considered 

preliminary. 

Finally, I will discuss some new results for matrix elements, which use the new 

numerical techniques. We have results for the electromagnetic penguin (BMP) 

operator - also known as the "electro-penguin" operator - and for the kaon B 

parameter. The cognoscenti will immediately realise that these matrix elements 

do not involve the so-called "eye diagrams*, and thus are the simplest to compute 

numerically. The BMP matrix element is indeed simple to calculate, and all three 

groups roughly agree on its matrix elements. The B parameter for the kaon is 

much harder to calculate. It is here that staggered fermions have an advantage 

because of the exact axial symmetry. This guarantees the correct chiral behavior 

of the matrix element, at least for small enough kaon masses. We see an interesting 

pattern of deviations from the correct chiral behavior, using kaon masses as small 

or smaller than the other groups have used, which may mean that the calculations 

will be somewhat harder than one might have hoped. 

In the talk at the workshop, I also discussed our somewhat old (though still 

perfectly valid) results for the matrix element of the penguin operators responsible 

for the non-zero value of e*. This discussion added little to that I gave in a talk at 

Moriond5 and has in any case been updated in a another talk6. Thus I have said 

little about it in this writeup. In any case, I think that it is too early to determine 
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the sixeof the systematic errors due to, among other things, the quenched approx­

imation. Thus I do not want to advertise lattice results too enthusiastically, when 

I am not confident that tbey w? !1 stand the test of time. 

Despite this, my general feeling at the moment is one of guarded optimism. The 

other groups have laid the foundation for the calculation of the matrix elements 

using Wilson fermions, and have shown that the method yields results which are 

just beginning to appear abo^e the noise. This is very impressive, though for 

the moment one should be T^utious about the precise numerical values. We have 

built upon the earlier work and, I claim, found a way to do the calculations with 

staggered fermions. Ultimately, both methods must agree on the answer, and 

such agreement will provide a stringent check on the unimportance of the lattice 

approximation. 

2. STAGGERED FERMIONS 

Staggered reunions were invented by Sussldnd7 (in the Hamiltonian formula­

tion) in order to have a formulation of lattice fermions with a chiral symmetry 

(discrete in the Hamiltonian case). Euclidean staggered fermions were studied ex­

tensively by Jan Smil and various collaborators'. In the Euclidean formulation 

there is a continuous chiral symmetry which is softly broken by the mass term. 

For this reason staggered fermious have been the laboratory for lattice studies of 

chiral symmetry breaking. And it was because of this that we decided to look into 

the calculation of weak decay amplitudes of kaons, since chiral symmetry plays an 

important role in the physics of pions and kaons. 

Nothing comes for free. The advantage of having a chiral symmetry is offset by 

a four-fold increase in the number of flavors. This means that, at least in the way 
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we axe doing the calculation, one is not simulating the theory one wants to, i.e. 

QCD. One has more flavors than one wants, and this has to be taken into account. 

With Wilson fermions, on the other hand, one recovers chiral symmetry only in the 

continuum limit, but one can work with the physical number of flavors. Thus with 

Wilson fermions the continuum theory is QCD. In the following, I will nuke a few 

comparisons between the Wilson and staggered fermion approaches, but my major 

emphasis will be on explaining what assumptions go into the staggered fermion 

calculation. 

For my purposes here, the easiest way to discuss staggered fermions is to collect 

the four flavors of fermion into a 4 x 4 matrix, Q* Lorentz transforms act on Q 

from the left, in the usual way for a spinor, while the U(4) of flavor acts from the 

right. Q lives on sites p, and the lattice action without gauge fields can be written 

sp - W E f E * $*$**<*)+2 E ^ (s* *FQW») +2m ^W) 
r L f f J 

Here Nj as 4 is the number of continuum fermions that the staggered fermions 

represent, and the relative normalization of terms is correct, but not important 

for the following, ft runs over the four Euclidean directions, and AJ?' is the i-th 

symmetric lattice derivative in the u-th direction. The first and third terms are the 

usual naive discretization of the Dirac action, while the second term is a Wilson-

fennion-like term which removes the doubling problem. Note that this term is of 

0 ( a ) relative to the other terms, a being the lattice spacing. It is also the only 

term in the action which contains flavor gamma matrices (those to the right of the 

Qs), and thus it breaks the flavor symmetries. 

So far this locks very similar to four copies of the standard Wilson fermion 

action. The second term breaks the flavor diagonal chiral symmetry, and also 
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breaks all the off diagonal flavor symmetries. For Wilson fermions, the breaking 

of chirat symmetry means that the quark mass m gets additively renormalized, 

and one has to calculate non-perturbatively where the chiral symmetry is restored 

when one is away from the continuum limit. However, the reason for having four 

flavors is that the action retains a flavor non-singlet chiral symmetry generated by 

Q—>Q + MlsQlts 

This symmetry is exact for m = 0, and guarantees that mass renormaljzation 

ia multiplicative. Thus, even at finite a, the symmetry is always restored when 

m —• 0. It is only for four flavors (or multiples of four) that this trick can be 

played, i.e. that the Wilson term retains a chiral symmetry. 

Let me immediately comment, on a confusion/objection to what I have just 

said. The axial symmetry ia a. flavor nvnsingtet symmetry. Thau one can regroup 

left and right handed components and the symmetry will appear like a vector 

symmetry. Which of these is the correct grouping is determined by the way in 

which the chiral symmetry breaking condensate aligns. With the flavor diagonal 

mass term, the condensate ia forced to be a flavor singlet: (Tr($Q)) ft 0. This 

in turn forces the diagonal groupings of left and right handed components, and 

relative to this the symmetry displayed above is indeed axiaL That crural symmetry 

breaking does occur, and that it does so in this way, has been shown analytically 

for strong coupling, and numerically for intermediate and weak couplings. 

To include gauge fields into the staggered fennion action one most spread the 

16 component Q field over a 2* hypercube of a lattice with half the lattice spacing. 

That is, each lattice point to which a Q field is attached becomes a hypercube. On 
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each point of the fine lattice one has a single component field \ . These are related 

to the Q fields by 

Here A = (Ai,A2,A3,A<) runs over the 2* positions in the hypercube, and the 

equation defines I \ . The original action Sp was constructed such that, when 

written in terms of the xa, only nearest neighbor terms survive. Terms with greater 

"distance* between X" * n <* X cancel between the first and second terms in Sr- The 

mass term by itself is local ("distance 0") in terms of the x»* To make the theory 

into a gauge theory, one puts group matrices on links, endows x *od x with color 

indices, and simply inserts the appropriate link matrix between neighboring x and 

X- This means that some of the gange fields are inside the Q field, rather than 

between adjacent Qs. This peculiarity is needed to retain all the symmetries, 

discrete and continuous, of the free staggered action. Without these symmetries, 

one can dynamically generate extra mass terms, sach as J^, Ti(@Qjm), which do 

not break the chiral symmetry 1 0. Relative to these mass terms, the symmetry 

displayed above is vector. 

The complete symmetries of the staggered action are important if one wants 

to classify operators and states into irreducible representations. This classification 

was first studied by Goltennan and Strut", and then simplified and extended by 

Greg Kilcup and I 1 3 . For the calculation of weak amplitudes, the most important 

part of the symmetry is the axial transformation displayed above. In terms or the 

single component held it is 

\{n) — X{n)e"ln)t 

T ( n ) _ * x ( n ) e " ( " J * 



Here the points on the fine lattice are now labelled by n, and c(n) is +1 on even 

points, — 1 on odd points. It is also useful to know how various Q bilinears appear 

when expanded out in terms of the x s - A general bilinear ia Tr(Qr«Qrl), where 

the Tsj are members of the Clifford algebra representing the spin and Savor of 

the bilinear, respectively. Bach member of the Clifford algebra is specified by a 

four-vector of binary numbers. It ia simple to see that the bilinear consists of a sum 

of the form J^ t [ p a u e ( a i * i p ) x { ^ + a + p)x(A)]. Here the arithmetic is mod-2, and 

the phase, which is ±1 , depends on h, s and p. Thus the displacement between 

the fields ia s +y, we often refer to \s + p | 3 as the "distance" of the operator. 

My point in going through this is to emphasize a major numerical headache one 

has when dealing with staggered fermions: that one must use non-local operators. 

Compared to Wilson fermions, staggered fermions have a computational advantage 

because they only have one component per site. Thus the matrices to invert are 

smaller than for Wilson fermions. However, unless one is careful, this gain can be 

wiped out by the need to use non-local operators. 

It may be helpful to display some examples of the bilinears that we need in to 

calculation of weak amplitudes. The simplest is the singlet scalar density: Tr(<jQ). 

This is distance 0, *^d is simply Ylk Jf(n)x(M with no phases. The next most 

simple operator is the pseudoscalar density with the Savor associated with the 

axial symmetry: Tr(($1tsQ7s)- This is the operator that the scalar density mixes 

with when one makes aa axial rotation. Thus it is the operator which creates 

the (pseudo-)Goldstone pion associated with the spontaneous breakdown of the 

axial symmetry. It is also distance 0: J^fc

 cC*)x{n)x(M* The conserved vector 

current and partially conserved axial currents are both distance 1: TT{QJMQ) and 

Tr(<?7MT5Q7s)- The former is a flavor singlet, while the latter has the by now 
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familiar non-singlet flavor. We will also need the vector current with the flavor 

quantum numbers of the conserved vector current. TrCQ-^Q^s), and the flavor 

singlet axial vector current, Tt^fpisQ). Both are distance :]. and both correspond 

to symmetries that are broken by the Wilson-like-term in the action. Finally, 

we need the non-singlet scalar, Tr(XJQ~ts), and the flavor singlet pseudoscalar, 

Tr{(775<?). These are both distance 4. 

One might object to the use of the Q bilineaxs, since, in terms of the x 3 i they 

do not retain all of the symmetries. Including appropriate phase factors, the full 

action is invariant under unit translations on the fine lattice. In terms of the 

Qs, this symmetry is a mixture of a translation and a flavor-spin rotation. The 

bilineazs by themselves do not form a representation of this symmetry. For example 

consider the action itself - the first term in Sp is not a scalar under the full lattice 

symmetry group, but can be made so by the addition of the O{o) term. This is the 

solution in general: one a ~\ add terms of 0{a) and obtain good representations of 

the lattice group, at least for zero momentum bilineais 1 1 ' 1 2 . This means that, if 

one is sufficiently close to the continuum limit, one can leave out the extra terms. 

I will have more to say on this in the section on perturbative mixing. 

For four fermion operators we have found it simplest to write everything in 

terms of Qs. Our operators thus live on a single 2* hypercube, and, when written 

in terms of ^s, are made up of a sum of 16 x 16 terms. In fact, our analysis 

programs first convert the propagators calculated in terms of the xs into the Q 

basis. 

The operators we use thus extend over two timestices. This clouds their inter­

pretation as operators local in lime. However, for staggered fermions the transfer 

matrix must be defined as moving one over two timeslices. The construction has 
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been sketched by Smil 1 1 . Thus there is no problem of principle, though one might 

be worried that the approach to the continuum limit might be slower than with 

Wilson fermions, since there can be momentum "within" the operators. 

So far I have been discussing material well known to all practitioners of stag­

gered fermion calculations. Let me summarize, before proceeding into the weak am­

plitude calculations. A single staggered species represents four degenerate flavors 

in the continuum limit. This is true in perturbation theory (at least to the order 

that detailed calculations have been done); whether it is true non-perturbatively 

can only be tested by numerical calculations. A simple consequence of the sym­

metry restoration would be the appearance of multiplets of 15 degenerate states 

(16 in the quenched approximation) for each spin-parity. Thus there should be 16 

pions, 16 rhos, etc . On the lattice, these multiplets are split up into several smaller 

ones. For example the 15 pa, each with 3 spin components, break down into 7 three 

dimensional and 4 six dimensional representations. Amongst the pions, only that 

with flavor 7s should show exact Goldstone behavior. But the other 14 should also 

do so in the continuum limit. 

These straightforward tests have only been applied in any detail to pions in 

SU(2) gauge theory 1 3. Further tests have been hindered by the expense of calcu­

lating fermion propagators. Most calculations only use 1, or at most 2, base points 

for the propagators, with which one can only project onto a few of the possible 

states. A spin-off from our calculations is a measurement of many more masses. 

With the wall-source technique described below, we measure 4 pion and 1? rho 

masses, with the latter falling into 8 distinct representations. The resulting masses 

as a function of average quark mass (all masses are in lattice units) are shown in 

Figure 1. The smallest quark mass is roughly half the strange quark mass. This 
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is based on 24 measurements on 163 x 40 configurations at J = 6.0. We find the 

result quite encouraging. The errors on the ps, and the heaviest 3 ITS, are of the 

same size as the splitting between the representations. However, the Goldstone 

pion is significantly lighter than the others. There is a slight curvature visible in 

the Goldstone pion curve, and if one plots the square of its mass versus the quark 

mass the points fall on a straight line extrapolating to the origin. This is the ex­

pected chirai behavior, which is guaranteed by Ward Identities. Simitar plots for 

the other puns are also consistent with straight lines, but extrapolate to non-zero 

values at 

Let me now turn to our staggered calculation of wealc amplitudes. As I see 

it, there are two possible methods. The first is to break the degeneracy between 

the flavors explicitly, and to identify the four flavors as u, d, 3 and c 1 4 . Such 

explicit breaking is indeed possible". The trouble with this approach is that (a) 

one has to adjust the symmetry breaking terms non-perturbitively; and (b) some 

of the currents from which one is building the weak Bamiltonian are not partially 

conserved. This is exactly the situation one has with Wilson fermions, and one has 

to perform a similar theoretical analysis of the recovery of the flavor symmetries 

in the continuum limit1*. This analysis has not been dour- but it seems to me 

doubtful that one would gain anything over Wilson fermions. 

The approach we have followed is based on using the exact axial symmetry to 

the fullest possible extent. We have to introduce one species of staggered fermion, 

i.e. one Q matrix, for each continuum flavor: U, D, S, Our external particles 

are the Goldstone pions constructed from the same quarks as in the continuum, 

e.g. our "A*+" is created by Trt^sS'js)- This means that (if we only consider 

the light quarks} the theory we are simulating has 12 flavors in the continuum 
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limit. I stress that this is NOT QCD. It is a relative of QCD in which we can 

measure matrix elements, and from those measurements deduce something about 

the matrix elements in QCD. 

The fact that the theory is different from QCD has been the source of some 

confusion. I have heard and read the following argument against the use of stag­

gered fermions. In QCD, the vector part of the weak current is related to the 

electromagnetic current by an SU(3) rotation, and the triangle diagram consisting 

of the x° axial current, and two electromagnetic currents is anomalous. With stag­

gered fermions, the weak current is represented by the conservei vector and axiaS 

currents, and the x° is created by the conserved axial current. But the triangle di­

agram involving these currents is not anomalous on the lattice. Thus the mapping 

bom QCD to staggered fermkms must he faulty somewhere. 

The flaw in this argument is that, in our approach, the weak current is not 

represented by the conserved lattice currents. As will be spelled out below in 

gory detail, one maps from continuum to lattice contraction by contraction, not 

operator by operator. Some of the contractions of a. continuum operator use the 

lattice conserved currents, others do not. It is true that we make essential use of the 

axial symmetry. In fact, the staggered theory we use has, for 3 continuum flavors, 

a set of currents satisfying an SU(3)v * SU(Z)A algebra. But, as the argument 

given above shows, these currents differ from those of the continuum, and one can 

only use the algebra indirectly. 

It might be worth mentioning that one can extract the usual anomalous terms 

from triangle diagrams, if one uses appropriate currents. The wison that the VAA 

triangle with conserved currents vanishes is that A has flavor 75, while V is flavor 

sicglet. Thus the triangle has a flavor factor of Trf/ys) = 0. If instead one uses the 
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flavor singlet axiai current. Trf^-^-^Q). which is noi conserved, one obtains (he 

continuum anomaly multiplied by a factor of A"/.16 The factor of Nf comes from 

the four flavors running around the loop. This is a nLe check on the consistency 

of the interpretation of staggered fermions. 

Having brought up the factors of iVy, let me make a further comment. If the 

flavor breaking terms become unimportant as a —• 0, then in the way we do the 

calculations there is a trivial overall factor of Nj for each valence fermion loop. 

We can simply remove this by hand. The corrections to this are suppressed by 

powers of a. Much larger effects of flavor breaking will be discussed in section 

4. What is much more worrisome is bow to remove the factors of Nj in the 

dynamifal quark loops. This can be done formally by taking the Njth root of the 

fermions determinant. This is » standard procedure for those wishing to Btudy 

chiral symmetry breaking as a function of the number of flavors. If the flavor 

symmetry breaking is weak, then taking the root does indeed reduce the symmetries 

of the theory. But extensive tests will need to be done to see how fast the continuum 

limit is approached. 

The example 1 want to work through is the kaon B parameter. This is denned 

as the ratio of the matrix element 

M = <7Tol 3.7,(1 + 7s)d. 3*7,(1 + 75)* |*o>, 

to its value in vacuum saturation approximation: B — j^f/(4/3/J-m^). Here a 

and b are color indices, and in my normalization fr =s 135 MeV. This definition of 

B is not renonnalization group invariant, and sometimes one defines an invariant 

B parameter by multiplying by appropriate powers of a,. 1 prefer not to do this 

since there are considerable ambiguities in the value of a$, a point I will come back 
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to in section A. Lattice calculations give both the numerator and denominator of 

B, but it is better Lo compare their ratio to experiment since there w»ll be some 

cancellation of errors. For example, the uncertainty in the overall scale appears 

only logarithmically, through the scale of the coefficient functions. 

The first step towards putting the matrix elements on the lattice is to imag­

ine that there are two extra quarks, call them <f and a', which are degenerate 

respectively with d and s. Then we can rewrite the matrix element as: 

M = M1 + M1 

M1 m < X | sVfr(l + 75)4 SVfcO + 73)d- l*o> 

M2 = {7t0\ * . 7 , U + T s ) < -17,(1 +75)d* \K0) 

where K$ is composed of s* and <f. The point of including the extra quarks is lo 

uniquely specify the contractions. The superscripts on the M indicate the number 

of color index loops that there are in the contractions. This breakdown of M is 

straightforward in the quenched approximation. For the full theory we have to 

stipulate that one uses only the square root of the determinant in the measure, i.e. 

only s and d are dynamical. 

Next, let us decompose the matrix element a second time 

Ml = ( X | si-frd, 5t7,4. \K0) 

MA = f^ol *l*rj.75*4 S W K 4 I \K0)t 

with a similar equation for M2, The subscripts indicate whether we have taken 

the W or AA part of the matrix element. Wt have now broken M down into four 

parts. H is a very important fact that each separately satisfies a Ward Identity 
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which guarantees that it vanishes a.- rn/,m/,. in lhe i lnral limit. I his is clearly 

not true if the primed quarks are replaced by the onzinal quarks. For then there 

is a second contraction in which the operator appears lo have an SS+PP spin 

structure. This gives a matrix element which does not vanish in the chiral limit. 

This is the reason for the device of the primed quarks. 

Let me discuss three objections to the argument that each of the pieces of M 

vanishes separately in the chiral limit. First, ] have kept only the 3 and d quarks 

dynamical, so the symmetry of the dynamical quarks is smaller than that of the 

"valence" quarks. Thus my theory is Dot well defined. However, one can resort to a 

derivation of the chiral behavior involving quark propagators on background gauge 

fields. This "hands-on11 method (see below) mimics term by term the continuum 

current algebra derivations ol Ward Identities. It clearly fails if there is no cbirally 

invariant regulator. The second objection is that the renormalization group will 

mix the operators with others. In fact, in the continuum, using massless quarks, 

the four operators mix only among themselves. The eigenvectors are LL and LR 

operators, with particular color structures. Thus, mixing amongst these operators 

is consistent with the claim that they all have the same cbiral behavior. Again, 

one needs to respect the chiral symmetry in the perturbative calculation. 

The final objection is that the chirally invariant regulator that is required to 

rebut the first two objections does not exist on the lattice. This is true; but this is 

where staggered fermions with their chiral symmetry ride in to save the day. What 

exactly goes wrong without the chiral symmetry? One example is that the one 

loop perturbative corrections mix an operator such a* .\d\- with thai appearing in 
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I lie mixing is perlurbalively calculable, and thus in principle can be subtracted 

,ivvAv However, the matrix element just displayed does not vanish in the chiral 

limit, so that 1-loop perturbative subtraction may still leave a large residue. This 

can make the extraction of the true matrix element difficult, as discussed here by 

Martinelli1 and Soni 3. 

This problem is fixed by increasing the number of flavors by a factor of Nj. 

If I maintain the device of keeping the primed quarks the staggered theory has 

16 flavors—5, D, S* and D1. Out of the SU{16)L x 51/(16)j» symmetry only an 

SU(4)v * SU{A)j\ subgroup is exact on the lattice. But this residual symmetry can 

be used to protect certain matrix elements and thus remove the third objection. 

One way to do this is as follows. Create the external kaons with Tr(5f^D^i), to 

that tbey are pseudo-Goldstone pions. Replace each bilinear in the four fennion 

operator with the corresponding staggered bilinear using flavor 75. Thus, for ex­

ample: 

Ml -> - ^ < * o | Tr (5 l7^ .7 s ) Tr(3tt„ZVw) \Ka) 

M\ - i - f l f o l TK5l7,75B,75) Tr(5 f c 7^5^7s) l*0> 

The factors of l/Nf account for the four flavors flowing around the two loops (one 

factor of \/Nf is accounted for by the normalization of the staggered kaon wave 

function). Notice that the V terms have become distance three operators, while 

the A terms are distance 1. This explains the notation we adopted to refer to these 

lattice matrix elements:3 

Ml-* E2

3 Ml^E\ M2

A^ E 2 M\ - Ej . 

Here the subscript is the distance, and the superscript the number of color loops. 
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The E in this notation refers to the facl that these are so-called "eight" diagrams, 

as opposed to tbe "eye" diagrams that probably explain the A / = 1/2 rule. 

As an aside, let me mention that there are other prescriptions for calculating 

the matrix elements. The above method breaks the bilinear into two separate 

traces over the staggered flavor indices. Apoorva Pat e l 1 7 , in bis strong coupling 

calculations, uses a single staggered flavor loop. There is no theoretical reason 1 

know of to prefer one method over the other; in fact, it would provide a nice che*' 

if the two methods gave the same answer. The methods differ by terms that vanish 

in the continuum limit. But, for the moment, we proceed with the two-flavor-trace 

staggered operators. 

A similar tine of argument provides a prescription for calculating other matrix 

elements. Tbe EMP matrix elements, for example, involve distance 0 (PP) and 

distance 4 (SS) contractions. In the notation which we have just introduced, one 

has to use E£, Eg, Ej and Ej. The full expressions are given in Ref. 3. The 

only new twist occurs for the eye diagrams. In these, one bilinear converts a kaon 

into a pion, while the other is attached to the eye loop. Tbese bilinears must be 

replaced by staggered fermion bilinears with flavor matrix /, tbe identity. This 

swaps the distances: V is now distance 1, A distance 3, etc.. The notation for 

the eye diagrams follows logically from that given above: lc

d, where c = 1,2 is the 

number of color loops, and d = D, 1,3,4 is the distance. One final notation is that 

for the odd distance bilinears, tbe distance label can be augmented with a direction 

to indicate the index fi. Thus 

E? = Ef x + E? r + Ef, + E? t. 

in case you are longing for more details, these are provided in Ref. 3. 
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So, to summarize, we first have to accept that in the continuum limit a single 

species of staggered fermion represents four degenerate flavors. Then we Lake the 

weak matrix elements in terms of the physical quarks, quadruple the number of 

quark flavors, and form particular contractions io the resulting multi-flavor theory. 

(The introduction of the 5* and / / served to pick out particular contractions, and 

is not strictly necessary once we go to the staggered theory where we have a chira] 

symmetry which allows us to separate one contraction from another.) Dividing by 

appropriate factors of JV/ we come to a calculation using staggered fermions which 

gives the same answer as the original QCD calculation. 

The question which must be on the tip of everyone's tongue is: What is the 

purpose of such acrobatics? The answer is Ward Identities. The correlation func­

tions implicitly defined above satisfy simple Ward Identities which mimic those 

of the continuum matrix elements. These Ward Identities imply that the chiral 

behavior expected of the continuum theory holds true also on the lattice. This is 

to be compared to the Wilson fermion approach in which the chiral behavior has 

to be regained by various subtractions (at least for f he B parameter). 

Let me use the kaon B parameter, again, to give an example of the Ward Iden­

tities in action. Here, one calculates an "eight" correlator, in which the operators 

described above reside at time 0 (all operators are at zero spatial momenta), the 

kaon is created at time t/f, and then destroyed at \-g. Call this correlator E{LK, t-g). 

Tbe required matrix element is obtained by talcing tx —* oo and t-g —» — oo, and 

extracting the coefficient of the leading exponential behavior. Of course, the roles 

of ±00 can be switched. The Ward Identities state (and this is true for m, jt m j ) : 1 3 
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Thus the correlators vanish if either of the k&ons is put lo zero momentum. This 

is true configuration by configuration (whether generated with quenched or full 

measure), and for each of the matrix elements E£ separately. It ia also independent 

of the mrnntT in which gauge links are put in the non-local operators (see below). 

However, it is necessary that the pion be created by the local pion operator. 

To use these identities one assumes that the pioa contribution dominates the 

correlator, and that there is a momentum expansion lor the pion matrix elements. 

Then it follows that the matrix elements are oc pKPjr- Thus, on shell, they are 

proportional to- m\. Let me stress that the assumptions leading to these conclu­

sions may be questionable in present simulations, since quite large quark masses 

are being used. Nevertheless, for small enough quark masses the conclusions should 

hold. 

For iVtails of how the Ward Identities work for eye diagrams, see reference 

12. Things are slightly more complicated, but again just as in the continuum. It 

is our claim that we can calculate all the matrix elements needed for Icaon decay 

amplitudes, both real and imaginary parts3. 

Let me now turn to two technical issues that are crucial to actually carrying 

out this program: how one deals numerically with non-local operators, and how 

one calculates the finite parts of the connection between continuum QCD operators 

and our funny staggered operators. 
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3. NUMERICAL TECHNIQUES 

We have tested and are using four sort-of-new ideas. The first is to put the 

lattice into a hybrid gauge, defined as follows. The lattices are generated using 

periodic boundary conditions in all directions. They axe first fixed to T^I>4M 

gauge (the lattice equivalent of £ 9JJ4" = 0). This makes the configurations 

maximally smooth, and as close to the trivial configuration as possible. There 

are possible problems with Gribov copies, which for the roc a lent we ignore. The 

second step in the gauge fixing process is to put the "edge" t ime slices (labelled 

t = 0, 39) into Coulomb gauge. This is the lattice version of £ » ~ M ^ J ** = "* 

and makes the spatial links oo these timeslices even more smooth, at the expense 

of roughening the time-directed links sticking out of these timeslices. Again, we 

ignore possible problems of Gribov copies. 

The point of tMs gauge fixing is two-fold. First, it allows us to deal with the 

problem of making the non-local operators gauge invariant. One has two options: 

either put in the links between X'X pairs with contracted color indices; or use 

a fixed gauge and ignore the links. In our previous work 3 , we chose the former 

option, while now we are using the simpler second option. The operators differ by 

a finite, perturbatively calculable amount, and so eventually one should do it both 

ways and compare. We use Landau gauge because it flattens out the gauge field 

in a way consistent with the symmetries of the operators (again, modulo possible 

Gribov problems). We can also do the perturbative calculations in Landau gauge. 

The reason for putting the edges of the lattice into Coulomb gauge is to allow 

the use of "wall sources". Traditionally, fermion propagators are calculated from 

a single base point. When one combines such propagators with their conjugates, 

one is creating mesons with a local operator. This causes two problems. First, the 
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overlap of the operator with the sta.i« is suppressed by powers of a - the operator 

is too small. Second, the operator couples to radial excitations quite strongly. 

Exactly the same problems were found in gluebalt calculations using small Wilson 

loops to create the states. Progress in glueball mass calculations has required the 

use of extended and smeared operators. The larger size of the operators increases 

the overlap with the states, and lowers the coupling to excitations. Furthermore, 

with gauge links one haa the additional problem of ultraviolet noise, and this is 

reduced by the smearing. 

We have attempted to mimic this approach i s closely as possible with fermions. 

Our idea, based lor ~-ly on that of Bilkire eC aJ 1 B, is to solve the Dirac equation 

with a source const "»f ̂ -functions at every site on one timeslice. When one 

contracts the resulting aagator with its conjugate, one is creating states with an 

operator consisting of a SK * of terms in which quark and antiquark are separated 

by all possible distances. This *"*»"• that our operators are as extended as possible, 

enhancing the signal and reducing the coupling to radial excitations. The use of 

a fixed gauge means that the terms with separated quark and antiquark do not 

average to zero. The choice of a smooth gauge is to reduce the ultraviolet noise as 

much as possible. 

A similar method has recently been used, independently, by the APE collabo­

ration to calculate badron masses with Wilson fermions 1 9. They find spectacular 

success for baryon masses. Our tests of the efficacy of the wall sources are much 

less thorough, so we are much encouraged by the APE results. The APE method 

actually differs from ours in a number of ways. Their wall source does not run 

across the entire lattice—this mav reduce the signal less *han the noise, since the 

gauge configuration is loss smooth over longer distances. We prefer to keep our 
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source across the entire lattice since this forces the states to be at zero spatial 

momentum. Secondly, we use Dirichlet, rather than periodic, boundary conditions 

ID the time direction. Our sources actually sit right next to the boundary. This is 

to allows as to use the entire center of the lattice to make measurements of matrix 

elements. Furthermore, we have found3 that spurious contributions in which quark 

tinea wrap around the lattice in the time direction can make it harder to extract 

the signal. Such contributia'ji are forbidden by the fixed boundary conditions. 

The final difference concerns the number of S functions used. APE do a separate 

calculation for each initial color and spinor index. We do a separate calculation for 

each initial color, but we are using simultaneously * delta function at all the spinor 

(and staggered flavor) positions. Let me illustrate the idea for Wilson fermions-

A similar calculation would put a ^-function at all spinor positions. If two of the 

resulting propagators were combined one would create states of all possible spin-

panties. However, far enough from the source only the lightest state, the pion, 

would survive- In this way a single calculation could yield a cheap, though dirty, 

pion. 

We are actually not quite an cheap as this. After some experimentation, we 

settled on using two wall sources: all sites with the same phase (called '9'), and all 

sites with phase c(n) (called V ) . A q source alone is unsatisfactory for the following 

reason. If we combine a q with its conjugate (to make a qq), then when one works 

out which meson states are created 2 0, one finds that there are two pions. One is the 

Goldstone pion, which we want. In the notation for bilinears introduced above, it 

has [s;f |=[l l l l ; 1111], The other pion has quantum numbers [1111; 1101]. Notice 

that the other pion is distance 1 in the z direction, an example of the fact that 

combining two wall sources gives particles of ali distances. Although the other pion 
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is not as light as the Goldstone pion (see Figure 1), it is not sufficiently suppressed 

for our purposes. We can project against it by forming qq + oo. Because of the 

e(n) in the o source, 99+00 does not couple to any odd spatial distance states. Of 

course, 99 + 00 still couples to a number of ps, etc., but these are all sufficiently 

heavy as to oe unimportant. 

We calculate with 9 and o wall-sources from both ends of the lattice. Using 

these, we can extract the masses of many states, most of them non-local, by pro­

jecting on the open end of the quark propagators. The Goldstone pion, and the 

other pion, are the only particles whose signals travel entirely across the lattice. 

The pa make it somewhat less than half way across, and the baryons less still. Nev­

ertheless, most the signals are very clean, with little evidence for radial excitations, 

so we can extract masses quite cleanly. Our wall sources allow us to investigate 

new baryons too. Most exciting is that w<: can extract the staggered equivalent of 

the A mass for the first time. 2 0 

For present purposes, the most important point of the wall sources is that 

they produce zero momentum pions abundantly, and that if we produce them from 

both ends of the lattice, then we have free fermions legs to contract together in 

the middle of the lattice. We do this contraction using all the complicated non­

local operators that are required for staggered fermions. Furthermore, we can do 

this across the entire spatial lattice, thereby increasing the signal. In addition to 

measuring all the matrix elements we want for kaon decays, this will allow us to 

make many checks, which I don't have lime to go into here. It is also possible to 

use the same wall sources to create 2 or more pions: we have not yet investigated 

this avenue. 

An example of our raw data is shown in Figure 2. This is for the E^( matrix 
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element, i.e. the time component of the AA, two-color-loop part of the B parame­

ter. Also shown is the lattice vacuum saturation result. Near the edges there are 

contributions from the many heavier particles that are created by the wall sourcea. 

From t = 10 — 29, however, the pion contribution is dominant. Notice that this 

contribution is flat, because, whatever the position of the operator, a pion baa to 

propagate the length of the lattice. To extract numbers we average over the central 

region, and use the jackknife method to estimate errors. However, it is clear that 

we do not need to do any fancy fitting to extract the signal. Signals of similar 

quality are found in most channels. 

Let me mention some disadvantages of our methods. One is that we cannot 

check the exponential fall off of the external piana individually. This is not essential, 

but would be a nice check. We can make this check by moving the wall-sources 

to a different time. By using extended sources we have also lost the exact Ward 

Identities described above. Of course, if the conclusions concerning the chiral 

behavior of the matrix elements are true, theft they should be independent of the 

operators which create the pions. Nevertheless, in the event of a departure from 

the expected behavior, it would be nice to have correlators for which the Ward 

Identities apply. Fortunately, we do have such data on 12 3 X 30 lattices, at slightly 

stronger coupling. The final disadvantage concerns the extraction of actual matrix 

elements, rather than ratios such as the B parameter. We create the states with 

a very complicated operator sitting right next to the boundary. We need to know 

the amplitude for this creation, and the only way to calculate this is to destroy the 

state at the other end of the lattice with the same operator. Fortunately, for the 

pion, we can calculate this amplitude, though not for the more massive particles. 

[ promised four new ideas, and only have described two. Let me very briefly 
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describe the others. The first is to use extrapolation when calculating propagators 

at a variety of masses OD the same configuration. We are using n?=.03, .02 and 

.01. We first calculate with the heaviest mass (270 conjugate gradient iterations}, 

then use this as a seed for m = .02 (260 iterations). This is standard practice, 

and saves ~ 200 iterations. However, we then linearly extrapolate point by point 

to get a seed for the m = .01 calculation, which then takes 400 iterations instead 

of 700. Thus we reduce the time needed, by 30%. If we want further propagators 

we use polynomial extrapolation to whatever order b allowed. This is important 

since, to do the subtractions required for the A / = 1 / 2 amplitudes, we have to use 

a numerical derivative with respect to the quark mass. 

Finally, to calculate the inner loop in the eye diagrams we need propagators 

from nearly all points, but only to close by neighbors. To do this we are using 

pacudo-fermions. These have been generated, and are presently being analysed. 3 0 

4. PERTTJRBATTVE CORRECTIONS 

An essential ingredient in any lattice measurement of weak amplitudes is a 

calculation of the relationship between the continuum operators we want to use, 

and the lattice operators we are forced to use. The fact that we want to use 

continuum operators is forced upon us by the lattice fermion doubling problem. 

If we could put the standard model on the lattice without breaking the chira] 

symmetry, then we could simply use the lattice regularization scheme as a standard 

instead of. say, MS. But, as discussed above, we either have to break the chiral 

symmetry explicitly (Wilson fermions), or do our calculations in a different theory 

(staggered). 
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One does the calculations by probing the operators using massless quark and 

antiquark external states at small (or zero) momenta. At tree level, the continuum 

and lattice operators give the same matrix elements (once appropriate factors of 

N/ have been removed by hand); this is by construction. At one-loop, there are 

logarithmic divergences which are regulated on the lattice by the finite lattice 

spacing, and in the continuum by some scheme such as dimensional reduction. 

These logarithmic divergences need to be the same for both lattice and continuum 

operators; that this is true for the staggered fermion operators we use is a non-

trivia) check of our approach. The finite parts of the one-loop corrections, on the 

other hand, give different corrections to the lattice and continuum operators, and in 

particular different inlying amongst the operators. Thus one must use a particular 

combination of lattice operators, with appropriate correction factors, in order to 

represent a given continuum operator. 

To make this concrete let me first consider corrections to fermion bilinears 

Otf = Ti(QrMQr\). For the operators made gauge invariant by the addition of 

gauge links, these corrections were calculated by Golterman and Smit8 and by 

Daniel and Sheard.2 1. We 3 2 have checked these results, and extended them to 

operators in Landau gauge with no gauge links. The general form of the answer hi 

OfONT = o M r r + £ Of^i^ (*/«• - c*) 
i 

di = (a, - l ) ( l n ( a V ) - 4.29201) - y ^ 

where both t and j serve as labels for spin and flavor, d, are the finite residues 

of the cancelled logarithmic divergences, and a} are the finite mixing terms, a, 

depends only on the spin of the bilinear: it is [4,1,0,1,4] for s=[S,V,T,A,P], The 

continuum subtractions have been done in the dimensional reduction scheme, which 
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ha* introduced the scale ft. 

The possible mixings are constrained by a subgroup of the full staggered 

symmetry'1. Thus many of the bilinears. including all the examples given above, 

do not mix. Furthermore, it turns out that the few off-diagonal entries are small. 

The diagonal elements depend sensitively on whether one uses the Landau gauge 

operators, or the standard ones. With the latter choice the en range from +27, 

for a distance 0 operator (i=[0000; 0000]), to -50, for distance 4 (i=(0000; 1111]). 

We work at g = 1, so this corresponds to a large variation of about 0.6 in the 

correction. On the other band, the correction ranges from +27 to -5 for the Lan­

dau gauge operators. A large part of this difference is due to the absence of gtuon 

tadpole loops for the Landau gauge operators. These give a contribution of — —13 

per link for the standard operators. Thus the Landau gauge operators are prefer­

able sot only because they are simpler to use, but also because they have smaller 

perturbative corrections. 

The corrections to the four fermion operators at 1-loop have been calculated by 

Sheard4, and independently by us 2 2 . Sheard does the calculation only for operators 

with gauge links included. This is a big mess, and we are in the process of checking 

our results, and comparing with those of Sheard. We have in addition calculated 

the penguin graphs which are needed for the A / = 1/2 operators. 

For the Landau gauge operators which we actually use, the calculation reduces 

to that for bilinears. This reduction is done using Fierz transforms and charge 

conjugation, as in the continuum. Thus I am quite confident in the numbers I 

will present, though they await final confirmation. The only difficulty with the 

calculation is one of bookkeeping. The lattice symmetries do not provide much 

restriction on the mixing, since many combinations of two bilinears transform as 
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scalars. The only restrictions come from the axial symmetry. 

Consider the example of the operator 

n 

This mixes itself and with 

Tr(X7M75^7s) Tr(5i7p75^-75); T r f S ^ ^ . T s ) T r f S r ^ T s ) ; 

T r ( 5 l 7 ^ 7 ^ ) Tr(^7M75^.); Tr(3£££ 7j.7s) Tt(y»Z>»7*7s>; -

All the operators in the list, including those represented by the ellipses, have dis­

tance 1 or distance 3. This is required by the axi&l symmetry. Ail of these operators 

separately satisfy the Ward Identity described in section 2. The first three oper­

ators have the same flavor as the original operator. In the continuum, these are 

the only operators that would be needed, and all receive logarithmically divergent 

coefficients. On the lattice it b also true that these three are the only operators to 

get divergent coefficients, and these coefficients agree with those of *he continuum* 

Thus the lattice anomalous dimension matrix is the same as that in the continuum. 

The finite correctioas, however, produce all the other operators in the list, as well 

as contributing to the first three. 

Now comes a tricky point, which is very important. The perturbative calcula­

tion has taken into account the short distance effects of the flavor breaking term 

in the action. A low momentum quark-antiquark pair approaching the bare lattice 

operator actually sees it as a sum of the operators listed above. Let the HfQ pair 

be projected into a particular spin and flavor state. Then only those operators in 

the list which have the same Savor as that of the external state will contribute. 

28 



The claim is that the non*perturbative dynamics which combines the ^Q pair into 

a state only breaks the flavor symmetry at 0 (a ) , and is thus very small. This is 

checked by the restoration of flavor symmetry in the spectrum. The flavor-breaking 

is only logarithmically suppressed (i.e. appears in g{a)) in the finite parts of the 

perturbative corrections, and these cannot be ignored. Thus the finite corrections 

to operator* which have the same flavor as the external states must be kept. 

This argument can actuaQy be checked by usLig different external states, ana 

we are in the process of doing this. 3* 

Aastuning that this argument is correct, the perturbative calculation simplifies 

considerably- We need keep only the fear operators nto which the B parameter 

decomposes My^- When aU the dust settles we find that the matrix of correc­

tions (incroding the kgarithmic perl) is diagonal (to 1% accuracy) and that all the 

diagonal nit mints be in the range —(26 — SS^/16*2. Thus one makes only a 2% 

error if one simply multiplies all matrix elements by a factor of 1 —30^3/18xa ~ .81. 

This is an acceptable taxc for a correction. The correction term for the vacuum 

saturated matrix element is exactly diagonal and of siee —31Ag*flfhr*. Thus, to 

a very good approximation the B parameter receives no perturbative corrections. 

The situation is not so clean for the EMP operators. The mixing matrix is 

not diagonal, and the entries are Urger. The extreme case is the correction to the 

vacuum saturation matrix element of sixe 1 — 94e*/16ir3 « .40. Again, when one 

takes ratios to form the quantities Eh and B* (see Ref. 3 for definitions), there is 

a large cancellation of the perturbative corrections. Nevertheless, their large size 

is cause for concern. 

1 have skimmed over an .important uncertainty by naively using g — \ t the 

lattice value. At 1 loop order, one could equally well use o(/i), the value of the 
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continuum dimensional reduction coupling constant. It is well known that lattice 

coupling constants are smaller than their continuum counterparts, for aft ~ 1. This 

translates into the possibility that the perturbative corrections might be almost 

twice as large aa the numbers quoted above. This would be tolerable for the B 

parameter, but not for the EMP matrix elements. Higher loop calculations a n 

needed to decide which is the correct coupling to use. 

5. RESULTS FOR B PARAMETERS 

With no further ado I present our new results. The raw numbers are shown in 

figure 3. We have three quark masses, allowing us to make 6 different kaons. To 

very good approximation the square of the kaon mass is proportional to the average 

quark mass, so the x axis can be thought of as m -̂. I show separately the "AA" 

contribution (MA - M\+ M^), the "W" contribution (Mv - My + My), 

and the sum (M). All of these are divided by the lattice vacuum saturation value 

for 4/3Af^|, so that they are correctly normalised B parameters. I stress that 

the results are essentially raw numbers, read off plots such as figure 2. The *rror 

analysis is done using the jackknife method. As just discussed, the perturbative 

corrections to B are very small. 

There are a number of features of the results that I want to bring out. The 

first concerns the chiral behavior of the matrix elements. Tbe vacuum saturation 

result is ec f%rri^ by definition. Thus if a matrix element has the correct chiral 

behavior, the B parameter will be independent of m f . If a matrix element is 

constant, however, then the B parameter will grow as l /m f . Our data seem to 

show that MA and Mv have the wrong chiral behavior, while their sum displays 
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the correct chira] behavior. 1 stress that each of the parts of M should separately 

behave as m\ in the chiral limit. 

What if anything, has gone wrong? One's first thought is that it has something 

to do with the wall sources. This can be ruled out by looking at our old 12 s x 30 

data. This data is leas extensive, but shows exactly the same pattern of bad chiral 

behavior. I showed some of the data in the 1986 lattice conference.34 We have sat 

on the data because we had no clear explanation of the poor chiral behavior. We 

worried that "wrap-around* contributions, allowed because we used anti-periodic 

boundary conditions, could have introduced systematic errors. The confirmation 

of the bad chiral behavior suggests thai the old calculation may be better than 

we thought- Because of this, and because the Ward Identities are exact for the 

old data, we have dragged it out and looked more carefully at bow the arguments 

leading bom Ward Identities to chiral behavior break down. We have come up with 

no simple answer, so far. But it is clear that terms of higher order than quadratic 

in the fcaon momenta are important. 

This is consistent with what I hope is the correct answer to what has gone 

wrong. Nothing! We are simply at too high a quark mass to see the chiral behavior. 

This explanation would have the My and MA curves level off at not much smaller 

quark mass. This is not solely an idea designed to save face. Vacuum saturation 

is found, in a number of lattice calculations, to work very well for large quark 

masses, for reasons that are not fully understood. Thus the MA curve in Figure 

3 should be 1 at large quark masses, while that for Mv should be 0. For small 

quark masses, chiral symmetry should apply, and both . H A and Mv curves should 

be Sat. If vacuum saturation is to fail anywhere, there must be a region where 

the curves differ significantly from a constant. It seems to me thai the transition 

31 



region is not likely to occur much above the strange quark mass. If so, and if 

I here are significant deviations from vacuum saturation, then the curves must look 

something like ours do. 

It would be very nice to see a similar decomposition of the Wilson fermion 

data. This cannot be done for the B panmete", bat it can be dose in the related 

case of A / = 3/2 J f - t w amplitudes. 

The full B parameter shows much better chiral behavior. This is due to a 

cancellation between the "AA" and "W" parts. Our original program had an error 

in the sign of the *W* part, leading to a very different result. Since our lightest 

quark has m, fis m,/2, the mass of our lightest kaon is roughly the same as that 

of the physical kaon. Assuming that BK depends only on the average quark mass, 

which is true within errors for our data, we have the result BK — 1-04(14)(??). I 

have purposely put in the question marks to emphasize that we do not know the 

systematic errors. In particular, we need to see whether BK does only depend on 

(he average quark mass when one of the mimscn is much lighter than the strange 

quark. Indeed, our own data shows us that large changes are occurring in some 

matrix elements. There is also the unknown systematic error of the quenched 

approximation. 

Despite these unknown errors, it must be pointed out that the Wilson fermion 

result1 is two thirds of ours. A conservative person would use this as an estimate 

of the systematic error. Furthermore, our result is evaluated at a scale of ~ 2 GeV, 

and so the appropriate coefficient function is larger than for smaller scales. So our 

number is definitely at the high end of the range that is usually considered. 

We also have new data for the matrix elements of the electromagnetic penguin 

operators. Here the perturbative corrections are larger, and involve non-trivial 
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mixing. Our preliminary results are B7 = O.S(2)(?) and B9 = 1.2(2)(?). In other 

words, our results are completely compatible with vacuum saturation approxima­

tion. They are also in agreement with our earlier data 3 within errors, and with the 

Wilson fermion calculations1'2. 

6. CONCLUSIONS 

] think that quenched lattice calculations of weak amplitudes are entering a 

phase in which detailed checks of systematic effects can be made. This is very 

encouraging. Perhaps foremost among the tests that must be done is a study of 

smaller quark masses. This is expensive in computer time, but if the results of 

Figure 3 are any guide, it is essential. Other checks I have in mind for us include 

detailed tests of perturbation theory, checking current algebra by comparing single 

pion and two pion amplitudes, and studying the way in which Ward Identities are 

saturated. Tests I would like to see done with Wilson fermions include a study 

of the final state interaction between the two pious in the K —* » T amplitudes. 

Current algebra guarantees that these interactions are small for small pion masses, 

but they need not be so for larger masses. 

I hope I have convinced you that staggered fermions offer a viable alternative 

to Wilson fermions. For some matrix elements, they are superior, because of 

the Ward Identities. For others, the complications of non-local operators makes 

them more difficult to use. In any case, a comparison of Wilson and staggered 

results is a stringent check on the size of lattice artifacts. There has been good 

agreement on the EMP matrix elements for some time. Now that we are able to 

calculate BJC a much more significant comparison can be made. Unfortunately, it 

suggests large systematic errors. We hope in the near future to have results for 

33 



the AI = 1/2 amplitudes, so that a comparison can be made with the results from 

Wilson fetmions that just appearing through the noise 1 ' 2 . 
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process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United Stales Government or any agency thereof. 
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