JLTIEEY NN
Wﬁ 7 O/

SLAC-PUB--4711
DE89 002389

STAGGERING TOWARDS A
CALCULATION OF WEAK AMPLITUDES™

STEPHEN R. SuAnPE'

Stanford Linear Accelerator Center
Stanford Universily, Stanford, California 94309

ABSTRACT

An explanation is given of the methods required to calculate hadronic matrix
elements of the weak Hamiltonian using lattice QCD with staggered fermions. New
results are presented for the 1-loop perturbative mixing of the weak interaction
operators. New numerical techniques designed for staggered fermicas are described.
A preliminary result for the knon B parameter is presented.

Proceedings of the Ringberg Workshop on
Hadronic Matrix Elements and Weak Decays
April 18-22, 1988, Ringberg Castle, Germany

* Work supported by the Depariment of Energy, contract DE-AC03-765F00515.
t Address after 9/16/88: Physics Department, FM-15, University of Washington, Seattle,
WA 98195



o= ;?;k oV~

(o0 9509315 -

1. INTRODUCTIOXN

In this talk | describe work done in collaboration with Rajan Gupta (Los
Alamos), Gerry Guralnik and Greg Kilcup (Brown). and Apoorva Patel (CERN).
This is very much a progress report, and in fact the numerical results 1 present
below differ from those that were shown in the conference We have found, and
corrected, a simple error in our apalysis program. I think that there are no further
bugs, but only time will tell.

One of the excellent features of this workshop was the interaction between the
different Iattice groups, and between those using approximate analytic methods
and the Iattice groups. [t became apparent to me from these conversations, and
from the comments of others since, that there is not only a gulf of comprehension
between those practicing analytic and approximate methods, but that there is also
a gulf between those of us using staggered fermions and those (represented here by
Gavela, Maiani and Martinelli (ORSAY/CERN/ROME)" and by Soni (UCLA)?)
using Wilson fermions. Thus I am devoting the first half of this talk to an attempt
to explain, an clearly as | can, what it is that we actually have to calculate with
staggered fermions, and what are the problems with our approach. In particular, 1
hope to make it possible for others to read our technical papers? and not get lost in
the maze of symbols end abbreviations. None of our work is technically difficult,
but there are many details to encode in equations, and thus we resorted to a
compact notation. In retrospect, this made the papers rather hard to penetrate.

After all has been made crystal clear, I will turn to some new material. First
I want to explain the numerical tricks that we huve found useful, and quite pos-
sibly essential, in order to complete the calculation of the amplitudes needed for

both the real and imzginary parts of the kaon decay amplitudes. Second. we have

© MASTER

DISTRIBUTION OF THIS DDCUMENT IS UNLIMITED

W



completed a calculation of the 1-loop mixing amongat the four-fermiun operators
whose matrix elements one wishes to calculate. This is a standard lattice partur-
bative calculation, which only becomes tricky because of the enormous number of
operators that appear with staggered fermions. Part of this calculation has been
done independently by Sheardt. We have not fully checked our calculation, nor
checked our reaults against those of Sheard, so our numbers should be considered
preliminary.

Finally, I will discuss some new results for matrix elements, which use the new
numerical techniques. We have results for the electromagnetic penguin (EMP)
operator — also known as the “electro-penguin” operator — and for the kaon B
parameter. The cognoscenti will immediately realize that these matrix elements
do not involve the so-called “eye diagrams”, and thus are the simplest to compute
numerically. The EMP matrix element is indeed simple to calculate, and all three
groups roughly agree on its matrix elements. The B parameter for the kaon is
much harder to calculate. It is here that staggered fermions have an advantage
because of the exact axial symmetry. This guarantees the correct chiral behavior
of the matrix element, at least for small enough kaon masses. We see an interesting
pattern of deviations from the correct chiral behavior, using kaon masses as small
or sinaller than the other groups have used, which may mean that the calculations
will be somewhat harder than one might have hoped.

In the talk at the workshop, I also discussed our somewhat old (though still
perfectly valid) results for the matrix element of the penguin operators responsible
for the non-zero value of ¢. This discussion added little to that I gave in a talk at
Moriond® and has in any case been updated in a another talk®. Thus I have said

little about it in this writeup. In any case, I think that it is too early to determine
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the size of the aystematic errors due to, among other things, the qi:ched approx-
imation. Thus ] do not want io advertiae lattice results too enthusiastically, when
I am not confident that they wi) stand the test of time.

Despite this, my general feeling at the moment is one of guarded optimism, The
other groups have laid the foundation for the calculation of the matrix elements
using Wilson fermions, and bave shown that the method yields results which are
just beginning to appear above the noise. This is very impressive, though for
the moment one should be ~»utious about the precise numerical values. We have
built upon the earlier work and, I claim, found a way to 'do the calculations with
steggered fermions. Ultimately, both methods must agree on the answer, and
such agreement will provide a stringent check on the unimportance of the lattice
approximation.

2. STAGGERED FERMIONS

Staggered fermions were invented by Susskind? (in the Hamiltonian formula-
tion) in order to have a formulation of lattice fermions with a chiral symmetry
(discrete in the Hamiltonian case). Euclidean staggered fermions were studied ex-
tensively by Jan Smit and various collaborators?. In the Euclidean formulation
there is a continuous chiral symmetry which is softly broken by the mass term.
For this reason staggered fermions have been the laboratory for lattice studies of
chiral symmetry breaking. And it was becavse of this that we decided to look into
the calculation of weak decay amplitudes of kaons, since chiral symmetry plays an
important role in the physics of pions and kaons.

Nothing comes for free. The advantage of having a chiral symmetry is offset by

a four-fold increase in the aumber of flavors. This means that, at least in the way



we are doing the calculation, one is not simulating the theory one wants to, i.e.
QCD. One has more flavors than one wants, and this has to be taken into account.
With Wilson fermions, on the other hand, one recovers chiral symmetry only in the
continuum limit, but one can work with the physical number of Bavors. Thus with
Wilson fermions the continuum theosy is QCD. In the following, I will make a few
comparisons between the Wilson and staggered fermion approaches, but my major
emphasis will be on explzaining what assumptions go into the staggered fermion
calculation.

For my purpoees here, the casiest way to discuss staggered fermions is to collect
the four flavors of fermion into a 4 x 4 matrix, Q.? Lorentz transforms act on §
from the left, in the usual way for a spinor, while the U{4) of flavor acts from the
right. @ lives on sites y, and the lattice action without gauge fields can be written

Sr=4N}Y [Z’n (@a871.Q) +2 3 Tr (Qrs6{Qrns) +2m 'n(vo)]

Here Ny = 4 is the number of continuum fermions that the staggered fermions
represent, and the relative normalization of terma is correct, but not important
for the following. p runa over the four Euclidean directions, aad &f) is the i-th
symmetric lattice derivativein the u-th direction. The first and third terms are the
uwsual naive discretization of the Dirac action, while the second term is a Wilson-
fermion-like term which removes the doubling problem. Note thai this term is of
) relative to the other terms, o being the lattice spacing. It is also the only
term in the action which contains flavor gamma matrices (those to the right of the
Q@s), and thus it breaks the flavor symmetries.

So far this locks very similar to four copies of the standard Wilsun fermion

action. The second term breaks the flavor diagonal chiral symmetry, and also

5



breaks all the off diagonal flavor symmetries. For Wilson fermions, the breaking
of chiral symmetry means that the quark mass m gets additively renormalized,
and one has to calculate non-perturbatively where Lhe chiral symmetry is restored
when one is away from the continuum limit. However, the reason for baving four

flavors is that the action retains a flavor non-singlet chiral symmetry gencrated by

Q@ — Q+ify0rs
Q— Q@ +i0nQrs

This symmetry is exact for m = 0, and guarantees that mass renormaljzation
ia multiplicative. Thus, even at finite a, the symmetry is always restored when
m — 0. It is only for four flavors (or multiples of four) that this trick can be
played, i.e. that the Wilson term retains a chiral symmetry.

Let me immediately comment. on a confusion/objection to what [ have just
said. The axdal symmeiry is a flavor non-singlet symymetry. Thas one can regroup
left and right handed components and the symmetry will appear like a vector
symmetry. Which of these is the correct grouping is determined by the way in
which the chiral symmelry breaking condensate aligns. With the Ravor diagonal
mass term, the condensate is forced to be a flavor singlet: (Tr(QQ)) # 0. This
in turn forces the diagonal groupings of left and right handed components, and
relative to this the symmetry displayed above is indeed axial. That chiral symmetry
breaking does occur, and that it does so in this way, has been shown analytically
for strong coupling, and numerically for intermediate and weak couplings.

To include gauge fields into the staggered fermion action one must spread the
16 component @ field over a 2! hypercube of a lattice with half the lattice spacing.
That is, each lattice point to which a (¢ field is attached becomes a hypercube. On
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cach point of the fine lattice one has a single component field y. These are related
to the @ fields by
QW = —= T Am+h) = —= T 2babadad (4 h).
\/ﬁ; » N} %

Here A = (M, Az, A3, by) runs over the 2* positions in the hypercube, and the
equation defines I'y. The original action Sy was constructed such that, when
writlen in terms of Lthe 3, only nearest neighbor Lerms survive. Terms with greater
“distance™ between ¥ and x cancel between the first and second terms in Sy. The
mass term by itself is local (“distance 07) in terms of the xs. To make the theory
into & gauge theory, one puts group matrices on links, endows % and x with color
indices, and simply inserts the appropriate link matrix between neighboring ¥ and
x- This means that some of the gange fields are inside the Q beld, rather than
between adjacent Qs. This peculiarity is needed to retain all the symmetries,
discrete and continuous, of the free staggered action. Without these symmetries,
oue can dyuamically generate extra mass terms, such as 3., Te{(QQ1,), which do
not break the chiral symmetry!®. Relative to these mass terms, the symmetry
displayed above is vector.

The complete symmetries of the staggered action are important if one wants
to classify operators and states into irreducible representations. This classification
was first studied by Golterman and Smit!!, and then simplified and extended by
Greg Kilcup and ['2. For the calculation of weak amplitudes, the most important
part of the symmetry is the axial transformation displayed above. In terms of the
single componen* reld it is

Wr) — y{n)e'(")?

n) — (n)e' ¥
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Here the points on the fine jattice are now labelled by n, and «{n) is +1 on even
points, —1 on odd points. It is also useful to know how various ) bilinears appear
when expanded out in terms of the xs. A general bilinear ia T{QT',QT }), where
the T, s are members of the Clifford algebra representing the spin and Bavor of
the bilinear, respectively. Each member of the Clifford algebra is specified by a
four-vector of binary numbers. It is simple to see that the bilinear consists of a sum
of the form 37, [phase(h, 3, p)%(h + s + p)x(A)). Here the arithmetic is mod-2, and
the pkase, which is £1, depends on A, s and p. Thus the displacement between
the fields is s +p; we often refer to |s + p|* as the “distance” of the operator.

My point in going through this is to emphasize a major numerical headache one
has when dealing with staggered fermiona: that one must use non-local operators.
Compared to Wilson fermions, staggered fermions have a computational advantage
because they only have one component per site. Thus the matrices to inverti are
smaller than for Wilson fermions. However, unless one is careful, this gain can be
wiped out by the need to use non-local operators.

It may be helpful to display some examples of the bilinears that we need in to
calculation of weak amplitudes. The simplest is the singlet scalar density: Tr{(QQ).
This is distance 0, 22d is simply Y, X(A)x(A) wilk no phases. The next most
simple operator is the pseudoscalar density with the flavor associated with the
axial symmetry: Tr(Qys@7s). This is the operator that the scalar density mixes
with when one makes au axial rotation. Thus it is the operator which creates
the (psevdo-)Goldstone pion associated with the spontaneous breakdown of the
axial symmetry. It is also distance 0: ), e(h)5{h)x(h). The conserved vector
current and partially conserved axial currents are both distance 1: Tr{Q7,@) and

Te(Qvu75Q@7ys).- The former is a flavor singlet, while the latter has the by now



familiar non-singlet flavor. We will also need the vector current with the flavor
quantum pumbers of the conserved vector current. Tr(Q=~,@+s), and the flavor
singlet axial vector current, Tr(@v,75@Q). Both are distance 3. and both correspond
to symmetries that are broken by the Wilson-like-term in the action. Finally,
we peed the nop-singlet scalar, Tr(Q@Q7s), and the Aavor singlel pseudoscalar,
Tr{Q@7sQ)- These are both distance 4.

One might object to the use of the Q bilinears, since, in terms of the xs, they
do not retain all of the symmetries. Including appropriate phase factors, the full
action is invariant under unit translations ou the fine lattice. In terms of the
Qs, this symmetry is a mixture of a translation and a flavor-spin rotation. The
bilinears by themselves do not form a representation of this symmetry. For example
consider the action itself — the first term in SF is not a scalar under the full lattice
symumetry group, but can be made so by the addition of the O(a) term. This is the
solution in general: one ci 1 add terms of O(a) and obtain good representations of
the lattice group, at least for zero momentum bilinears!!-"2_ This means that, if
one is sufficiently close to the continuum limit, one can leave out the extra terms.

1 will have more to say on this in the section on perturbative mixing.

For four fermion operators we have found it simplest to write everything in
terms of Qs. Qur operators thus live on a single 2! hypercube, and, when written
in terms of xs, are made up of a sum of 16 x 16 terms. In fact, our anaiysis
programs first convert the propagators calculated in terms of the ys into the @
basis.

The operators we use thus extend over two timeslices. This clouds their inter-
pretation as operators local in time. However, for staggered fermions the transfer

matrix must be defined as moving one over two timeslices. The construction has
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been sketched by Smit!!. Thus there is no problem of principle, though one might
be worried that the approach to the continuum limit might be slower than with

Wilson fermions, since there can be momentum “within" the operators.

So far I have been discussing material well known to all practitioners of stag-
gered fermion caleulations. Let me summarize, before proceeding into the weak am-
plitude calculations. A single staggered species represents four degenerate flavors
in the continuum limit. This is true in perturbation theory (at least to the order
that detailed calculations have been done); whether it is true non-perturbatively
can only be tested by numerical calcnlations. A simple consequence of the sym-
metry restoration would be the appearance of multiplets of 15 degenerate states
(16 in the quenched approximation) for each spin-parity. Thus there should be 16
pions, 16 rhos, etc.. On the lattice, these multiplets are split up into several smaller
ones. For example the 15 ps, each with 3 spin components, break down into 7 three
dimensional and 4 six dimensional representations. Amongst the pions, only that
with flavor 75 should show exact Goldstone behavior. But the other 14 should also
do so in the continuum limit.

These straightforward tests have only been applied in any detail to pions in
SU(2) gauge theory!3. Further tests have been hindered by the cxpense of calcu-
lating fermion propagators. Most calculations only use 1, or at most 2, base points
for the propagators, with whick one can only priject onto a few of the possible
states. A spin-off from our calculations is a measurement of many more masses.
With the wall-source technique described below, we measure 4 pion and 12 rho
masses, with the latter falling into 8 distinct representations. The resulting masses
as a function of average quark mass (ail masses are in lattice units) are shown in

Figure 1. The smallest quark mass is roughly half the strange quark mass. This
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is based on 24 measurements on 16° x 40 configurations at J = 6.0. We find the
result quite encouraging. The errors on the ps, and the heaviest 3 xs, are of the
same size as the splitting between the representations. However, the Goldstone
pion is significantly lighter than the others. There is a slight curvature visible in
the Goldstone pion curve, and if one plots the square of its mass versus the quark
mass the points fall on a straight line extrapolating to the origin. This is the ex-
pected chiral behavior, which is guaranteed by Ward Identities. Similar plots for
the other pions are also consistent with straight lines, but extrapolate to non-zero
values at mg, = 0.

Let me now turn to our staggered calculation of weak amplitudes. As | see
it, there are two possible methods. The first is to break the degeneracy between
the Bavors explicitly, and to identify the four flavors as u, d, s and 4. Such
explicit breaking is indeed possible®. The trouble with this approach i that (a)
one has to adjust the symmetry breaking terms non-perturbatively; and (b) some
of the currents from which one is building the weak Hamiltonian are not partially
conserved. This is exactly the situation one has with Wilson fermions, and one has
to perform a similar theoretical analysis of the recovery of the flavor symmetries
in the continuum Lmit!s. This analysis has not heen donr but it seems to me
doubtful that one would gain anything over Wilson fermions.

The approach we have Iollowed is based on using the exact axial saymmetry to
the fullest possible extent. We bave to introduce one species of staggered fermion,
i.c. one @ matrix, for each continuum favor: U/, D, S, .... Our external particles
are the Goldstone pions constructed from the same quarks as in the continuum,
e.g. our “K*" is created by Tr{l/4s54s). This means that (if we only consider

the light quarks} the theory we are simulating has 12 flavors in the continuum
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limit. | stress that this is NOT QCD. 1t is a relative of QCD in which we can
measure matrix elemenls, and from those measurements deduce something about
the matrix elements in QCD.

The fact that the theory is different from QCD has been the source of some
coofusion. I nave heard and read the fellowing argument against the use of stag-
gered fermions. In QCD, the vector part of the weak current is related to the
clectromagnetic current by an SU(3) rotation, and the triangle diagram consisting
of the x? axial current, and two electromagnetic currents is anomalons. With stag-
gered fermions, the weak current is represented by the conserveri vector and axial
currents, and the x° is created by the conserved axial current. But the iriangle di-
agram involving these currents is not anomalous on the lattice. Thus the mapping
from QCD to staggered fermions must be faulty somewhere.

The flaw in this argument is that, in cur approach, the weak current ia 3ot
represented by the conserved lattice currents. As will be spelled out below in
gory detiil, one maps from continuum to lattice contraction by contraction, not
operator by operator. Some of the contractions of a continuum operator use the
Jattice conserved currents, others do not. It is true that we make essential use of the
axial symmetry. In fact, the staggered theory we use has, for 3 continuum flavors,
a set of currents satisfying an SU(3)y x SU(3), algebra. But, as the argument
given above shows, these currents differ from those of the continuum, and one can
only use the algebra indirectly.

It might be worth mentioning that one can extract the usual anomalous terms
from triangle diagrams, if one uses appropriate currents. The reason that the VAA
triangle with conserved currents vanishes is that A has flavor 45, while V is flavor

sicglet. Thus the triangle has a flavor factor of Tr({vys) = 0. If instead one uses the
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flavor singlet axiai curreat. Tr(@7,+s@Q). which is not conserved, one obtains the
conlinuum anomaly multiplied by a factor of .-\"f." The factor of Ny comes from
the four Bavors running around the loop. This is a ni.e check on the consistency
of the interpretation of staggered fermions.

Having brought up the factors of /¥y, let me make a further comment. If the
fiavor breaking terms become unimportant as ¢ — 0, then in the way we do the
calculations there is a trivial overall factor of Ny for each valence fermion loop.
We can simply remove this by hand. The corrections to this are suppressed by
powers of a. Much larger effects of flavor breaking will be discussed in section
4. What is much more worrisome is how to remove the factors of Ny in the
dynamical quark loops. This can be done formally by taking the Nyth root of the
fermions determinant. This is » standard procedure for those wishing to study
chiral symmetry breaking as a function of the number of flavors. If the flavor

symmetry breaking is weak, then taking the root does indeed reduce the symmetries
of the theory. But extensive tests will need to be done to see how fast the continuum

limit is approached.
The example 1 want to work through is the kaon B parameter. This is defined
as the ratio of the matrix element

M = (K| 3a75(1 + 75)da F37.(1 + v5)ds | Ko),

to its value in vacuum saturation approximation: B = M/(4/3ffm}). Here a
and b are color indices, and in my normalization f, = 135 MeV. This definition of
B is pot renormalization group invariant. and sometimes one defines an invariant
B parameter by multiplying by appropriate powers of a,. 1 prefer not to do this

since there are considerable ambiguities in the value of a,, a point I will come back
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to in section 4. Lattice caleulations give both the numerator and denominator of
B, but it is better to compare their ratio to experiment since there will be some
cancellation of errors. For example, the uncertainty ia the overall scale appears

oaly logarithmically, through the scale of the coefficient functions.

The first step towards putting the matrix elements on the lattice is to jmag-
ine that there are two extra quarks, call them d' and s', which are degenerate

respectively with d and s. Then we can rewrite the matrix element as:

M= M4 M3
M= (El ,1a(1 + 1)} Tova(l + 13)da | Ko)

M? = (Ko 3Lyl + 18)d, Simn(l + 15)ds [Ko)

where K{ is composed of s’ and J'. The‘point of including the extra quarks is lo
uniquely specify the contractions. The superscripts on the M indicate the number
of color index loops that there are in the contractions. This breakdown of M is
straightforward in the quenched approximation. For the full theory we bave to
stipulate that one uses only the square root of the determinant in the measure, i.e.

only s and d are dynamical.

Next, let us decompose the matrix element a second tirne
M= My + MY
My = (Kol Siredi Ssrnda | Ko)
My = (Kol Foramsd) Srvavsda | Ka),
with a similar equation for AM?. The subscripts indicate whether we have taken

the VV or AA part of the matrix element. We have now broken M down into four

parts. [t is a very importan: fact that each separately satisfies a Ward ldentity
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which guarantees that it vaniskes as ragmy in the clural hinut. This s cleariy
not true if the primed quarks are replaced by the orniminal quarks. For then there
is a second contraction in which the operator appears to have an $5+PP spin
structure. This gives a matrix element which does not vanish ia the chiral limit.

This is the reason for the device of the primed quarks.

Let me discuss three objections to the argument that each of the pieces of M
vanishes separately in the chiral limit. First, ] bave kept only the s and d quarks
dynamical, so the symmetry of the dynamical quarks is smaller than that of the
“valence™ quarks. Thus my theory is pot well defined. However, one can resert to a
derivation of the chiral behavior involving quark propagators on background gauge
fields. This “hands-on™ method (see below) mimics term by term the continuum
current algebra derivations of Ward Identities. It clearly fails if there is no chirally
invariant regulator. The second objection is that the renormalization group will
mix the operators with others. In fact, in the continuum, using massless quarks,
the four operators mix only among themselves. The eigenvectors are LL and LR
operators, with particular color structures. Thus, mixing amongst these operators
is consistent with the claim that they all have the same chiral behavior. Again,
one needs to respect the chiral symmetry in the perturbative calculation.

The final objection is that the chirally invariant regulator that is required to
rebut the first two objections does not exist on the lattice. This is true; but this is
where staggered fermions with their chiral symmetry ride in to save the day. What
exactly goes wrong without the chiral symmetry? One example is that the one

loop perturbative corrections mix an operator such as .M{. with that appearing in

(R o] Favsdh Fovsde [AD).
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[be mixing is perturbatively calcolable, and thus in principle can be subtracted
away., However, the matrix element just displayed does not vanish in the chiral
limit. so that i-loop perturbative subtraction may still leave a large residue. This
can inake the extraction of the true matrix eiement difficuit, as discussed here by
Martinelli' and Soni®.

This problem is fixed by increasing the number of flavors by a factor of Ny.
If I maintain the device of keeping the primed quarks the staggered theory has
iI6 flavors—S5, D, §' and I’. Out of the SU{16); x SU(16)z symmetry only an
SU({4)v x SU{4} 4 subgroup is exact on the |attice. But this residual symmetry can
be used to protect certain matrix elemenis and thus remove the third objectioa.
One way to do this is as follows. Create the external kaons with Tr{3ys Dys), so
that they are pseudo-Goldstone piops. Replace each bilinear in the four fermion
operator with the corresponding staggered bilinear using flavor 45. Thus, for ex-
ample:

M3 — 7:7{?:,] Tr(?.qr,D’_-;s) Te(Svvu Dyys) 1 Ko)
1 —
M) - Tv}(ml Te(S,1svs Dyvs) Tr{Ssv,.7v5Davs) | Ko)

The factors of 1/Nj account for the four flavors flowing around the two loops (one
factor of 1/Ny is accounted for by the normalization of the staggered kaon wave
function). Notice that the V terms have become distance three operators, while
the A terms are distance 1. This explains the notation we adopted to refer to these

lattice matrix elements:?
M{ — E3 M}, —E] M3 -E! M, - E].

Here the subscript is the distance, and the superscript the number of color loops.
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The E in this notation refers to the fact that these are so-called “eight” diagrams,
as opposed to the “eye” diagrams that probably explain the Al = 1/2 rule.

As an aside, let me mention that there are other prescriptions for calculating
the matrix e¢lements. The above method breaks the bilinear into two separate
traces over the staggered flavor indices. Apoorva Patel'?, in bis strong coupling
calculations, usey a single staggered flavor loop. There is no theoretical reason |
know of to prefer one method ¢ver the other; in fact, it would provide a nice che+’
if the two methods gave the same answer. The methods differ by terms that vanish
in the continuum limit. But, for the moment, we proceed with the two-favor-trace
staggered operators.

A similar line of argument provides a prescription for calculating other matrix
elements. The EMP matrix elements, for example, involve distance 0 (PP) and
distance 4 (SS) contractions. In the notation which we have just introduced, one
bas to use E}, E3, E} and EZ. The full expressions are given in Ref. 3. The
only new twist occurs for the eye diagrams. In these, one bilinear converts a kacn
into a pion, while the other is attached to the eye loop. These bilinears must be
replaced by staggered fermion bilinears with flavor matnix /, the identity. This
swaps the distances: V is now distance 1, A distance 3, etc.. The notation for
the eye diagrams follows logically from that given above: 15, where ¢ = 1,2 i3 the
namber of color loops, and d =0, 1, 3,4 is the distance. One final notation is that
for the odd distance bilinears, the distance label can be augmented with a direction

to indicate the index z. Thus
Ef = E‘i’: + Egy + E"l's + E;.'l

1n case you are longing for more details, these are provided in Ref. 3.

17



So, Lo summarize, we first have to accept that in the continuum limit a single
species of staggered fermion represents four degenerate flavors. Then we Lake the
weak matrix elements in terms of the physical quarks, quadruple the number of
quark flavors, and form particular contractions in the resulting muiti-Aavor theory.
{The introduction of the §’ and ¥ served to pick out particular contractions, and
is not strictly necessary once we go to the staggered theory where we have a chiral
symmelry which allows us to separate one contraction from another.) Dividing by
appropriate factors of N; we come to a calculation using staggered fermions which
gives the same answer as the original QCD calculation.

The question which must be on the tip of everyone's tongue is: What is the
purpose of such acrobatics? The answer is Ward Identities. The correlation func-
tions implicitly defined ab-ave satisfy simple Ward ldentities which mimic those
of the continnum matrix elements. These Ward Identities imply that the chiral
behavior expected of the continuum theory holds true also on the lattice. This is
to be compared to the Wilson fermion approach in which the chiral behavior bas
to be regained by various subtractions (at least for the B parameter).

Let me use the kaon B parameter, again, lo give an example of the Ward Iden-
tities in action. Here, one calculates an “eight” correlator, in whick the operators
described above reside at time 0 (all operators are at zero spatial momenta), the
kaon is created at time ¢y, and then destroyed at {7 Call this correlator E(ix . tp)-
The required matrix element is obtained by taking ¢ — oo and ¢ — —oo, and
extracting the coefficient of the leading exponential bebavior. Of course, the roles

of +00 can be switched. The Ward Identities state (and this is tcue for m, # mgh:1?
Y E(tx.tg) = »_E(tx,tg) = 0.
Ix lir
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Thus the correlators vanish if either of Lthe kaons is put to zero momentum. This
is true configuration by configuration (whether generated with quenched or full
measure). and for each of the matrix elements Ej scparately. It is also independent
of the mapner in which gauge links are put in the non-local operators (see below).
However, it is necessary that the pion be created by the local pion operator.

To use these identities one assumes that the pion contribution dominates the
cocrelator, and that there is a momentum expansion for the pion matrix elements.
Then it follows that the matrix elements are o pxPg- Thus, on shell, they are
propostional to> m%.. Let me stress that the assumplions leadiag to these conclu-
sions may be questionsble in present simulations, since quite Jarge quark masses
are being used. Nevertheless, {for small enough quark masses the conclusions should
hold.

For details of how the Ward ldentities work for eye diagrams, see reference
12. Things are slightly more complicated, but again just as in the continuum. It
is our claim that we can calculate #ll the matrix elements needed for kaon decay
amplitudes, both real and imaginary parts3.

Let me now turn to two technical issues that are crucial to actually carrying
out this program: how one deals numerically with non-local operators, and how
one calcalates the finite parts of the connection between continuum QCD operators

and our funny staggered operators.
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3. NUMERICAL TECHNIQUES

We have tested and are using four sort-of-new ideas. The first is to put the
lattice into a hybrid gauge, defined as follows. The lattices are generated using
periodic boundary conditions in all directions. They are first fixed to Landan
gauge (the lattice equivalent of 3°_ 8,47 = 0). This makes the configurations
maximally smooth, and as cleee to the trivial configuration as possible. There
are possible problems with Gribov copies, which for the mrc a.ent we ignore. The
second step in the gauge fixing process is to put the “edge” time slices (labelled
t = 0, 39) intc Coulomb gauge. This is the lattice vemsion of Ei_,', 8;4; = 0,
and makes the spatial links on these timeslices even more smooth, at the expense
of roughening the time-directed links sticking out of these timeslices. Again, we
ignore possible problems of Gribov copies.

The point of tk's gauge fixing is two-fold. First, it allows us to deal with the
problem of making the non-local operators gauge invariant. One has two options:
either put in the links between ¥-x pairs with contracted color indices; or use
a fixed gauge and ignore the links. In our previous work®, we chose the former
option, while now we are using the simpler second option. The operators differ by
a finite, perturbatively calculable amount, and so eventually one should do it both
ways and compare. We use Landau gauge because it flattens out the gauge field
in a way consistent with the symmetries of the operators (again, modulo poesible
Gribov problems). We can alio do the perturbative calculations in Landau gauge.

The reason for putting the edges of the lattice into Coulomb gauge is to allow
the use of “wall sources”. Traditionally, fermion propzugators are calculated from
a single base point. When one combines such propagators wilh their conjugates,

one is creating mesons with a local operator. This causes two problems. First, the
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sverlap of the operator with the stz .2s is suppressed by powers of a - the operator
is too small. Second. the operator couples 1o radial excitations quite strongly.
Exactly the same problems were found in glueball calculations vsing small Wilson
loops to create the states. Progress in glueball mass calculations bas required the
use of extended and smeared operators. The larger size of the operators increases
the overlap with the states, and lowers the coupling to excitations. Furthermore,
with gauge links one has the ad ditional problem of ultraviolet noise, and this is
reduced by the smearing.

We have attempted to mimic this approach as closely as possible with fermions.
Our idea, based lor ~ly on that of Billoire ¢ al'®, is to solve the Dirac equation
with a source consi ~f é-functions at every site on one timeslice. When one
contracts the resulting sagator with its conjugate, one is creating states with an
operator consisting of a 3. ¢ of terms in which quark and antiquark are separated
by all poasible distances. This means that our operators are as extended as possible,
enhancing the signal and reducing the coupling to radial excitations. The use of
a fixed gauge means that the terms with separated quark and antiquark do oot
average to zero. The choice of a smooth gauge is to reduce the ultraviolet noise as
much as possible.

A similar method has recently been used, independently, by the APE collabo-
ration to calculate hadron masses with Wilson fermions!®?. They find spectacular
siccess for baryon masses. Our tests of the efficacy of the wall sources are much
less thorough. so we are much encouraged by the APE results. The APE method
actually differs from ours in a number of ways. Their wall source does not run
across the entire lattice-this mav reduce the signal less than the noise, since the

gauge configaration is lass smooth over longer distances. \We prefer to keep our
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source across the entire lattice since this forces the states to be at zero spatial
tnomentum. Secondly, we use Dirichlet, rather than periodic, boundary conditions
io the time direction. Our sources actually sit right next Lo the boundary. This is
to allows us to use the entire center of the lattice to make measurernents of matrix
elements. Furthermore, we have found? that spurious contributions in which quark
lines wrap around the lattice in the time direction can make it harder to extract
the signal. Such contributio- s are forbidden by the fixed boundary conditions.

The final difference concerns the number of § functions used. APE do a separate
calculation for each initial color and spinor index. We do a separate calculation for
each initial color, but we are using simultaneously & delta function at all the spinor
(and staggered flavor) positions. Let me illustrate the idea for Wilson fermions.
A similar calculation would put a §-function at all spinor positions. If two of the
resulting propagators were combined one would create states of all poasible spin-
parities. However, far enough from the source only the lightest state, the pion,
would survive. In this way a single calculation could yield a cheap, though dirty,
pion.

We are actually not quite as cl.eap as this. ARer some experimentation, we
settled on using two wall sources: all sites with the same phase (called ‘q”), and all
sites with phase ¢{n) (called *0’). A ¢ source alone is unsatisfactory for the following
reason. If we combine a ¢ with its conjugate (to make a gq), then when one works
out which meson states are created??, one finds that there are two pions. One s the
Goldstone pion, which we want. In the notation for bilinears introduced above, it
has [s;f]=[1111; 1111]. The other pion bas quantum numbers [1111; 1101]. Notice
that the other pion is distance ) in the z direction, an example of the fact that

combining two wall sources gives particles of ali distances. Although the other pion
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is not as light as the Goldstone pion (see Figure 1), it is not sufficiently suppressed
for our purposes. We can project against it by forming gq + 0o. Because of the
«(n) in the o source, qq + oo does not couple to any odd spatial distance states. Of
course, qq -+ oo still couples to a aumber of ps, etc., but these are all sufficiently
heavy as to ve unimportant.

We calculate with ¢ and ¢ wall-sources from both ends of the lattice. Using
these, we can extract the masses of many states, most of them non-local, by pro-
jecting on the open end of the quark propagators. The Goldstone pion, and the
other pion, are the only particles whose signals travel entirely across the lattice.
The ps make it somewhat less than half way acroes, and the baryons less still. Nev-
ertheless, most the signals are very clean, with little evidence for radial excitations,
50 we can extract masses quite cleanly. Our wall sources allow us to investigate
new baryons too. Most exciting is that w. can extract the staggered equivalent of
the A mass for the first time.?®

For present purposes, the most important point of the wall sources is that
they produce zero momentum pions abundantly, and that if we produce them from
both ends of the lattice, then we have free fermions legs Lo contract together in
the middle of the lattice. We do this contraction using all the complicated non-
local operators that are reqmred for staggered fermions. Furthermore, we can do
this across the entire spatial lattice, thereby increasing the signal. In addition to
measuring all the matrix elements we want for kaon decays, this will allow us to
make many checks, which 1 don’t bave time to go into here. It is also possible to
use the same wall sources to create 2 or more pions: we have not yet investigated
this avenue.

An example of our raw data is shown in Figure 2. This is for the EJ, matrix
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element, i.e. the time component of the AA, two-color-loop part of the B parame-
ter. Also shown is the lattice vacuum saturation result. Near the edges there are
contributions from the many heavier particles that arg created by the wall sources,
From ¢ = 10 — 29, however, the pion contribution is dominant. Notice that this
contribution is flat, because, whatever the position of the operator, a pion has to
propagate the length of the lattice. To extract numbers we average over the central
region, and use the jackknife method to estimate errors. However, it is clear that
we do not need to do any fancy fitting to extract the signal, Signals of similar
quality are found in most channels.

Let me mention some disadvantages of our methods. One is that we cannot
check the exponential fall off of the external pions individually. This is not essential,
buit wounld be a nice check. We can make this check by moving the wall-sources
to a different time. By using extended sources we have also lost the exact Ward
Identities described above. Of course, if the conclusions concerning the chiral
behavior of the matrix elements are true, theis they should be independent of the
operators whick create the pions. Nevertheless, in the event of a8 departure from
the expected bebavior, it would be nice to have correlators for which the Ward
Identities apply. Fortunately, we do have such data on 123 x 30 lattices, at slightly
stronger coupling. The final disadvantage concerns the extraction of actual matrix
elements, rather than ratios such as the B parameter. We create the states with
a very complicated operator silting right next to the boundary. We need to know
the amplitude for this creation, and the only way to calculate this is to destroy the
state at the other end of the lattice with the same operator. Fortunately, for the

pion, we can calculate this amplitude, though not for the more massive particles.

[ promised four new ideas, and only have described two. Let me very briefly
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describe the others. The first is to use extrapolation when calculating propagators
at a varety of masses on the same configuration. We are using m=.03, .02 and
.01. We first calculate with the heaviest mass (270 conjugate gradient iterations},
then use this as a seed for m = .02 (260 iterations). This is standard practice,
and saves ~ 200 iterations. However, we then linearly extrapolate point by point
to get a seed for the m = .01 calculation, which then takes 400 itevations instead
of 700. Thus we reduce the time needed by 30%. I we want further propagators
we use polynomial extrapolation to whatever order is allowed. This is important
since, to do the subtractions required for the A7 = 1/2 amplitudes, we have to use
a numerical derivative with respect to the quark mass.

Finally, to calculate the inner loop in the eye diagrams we need propagators
from nearly all points, but only to close by neighbors. To do this we are using
pacudo-fermions. These have been generated, and are presently being analysed.*?

4. PERTURBATIVE CORRECTIONS

An essential ingredient in any lattice measurement of weak amplitudes is a
calculation of the relationship between the continuum operators we want to use,
and the lattice operators we are forced to use. The fact that we want to use
continuum aperators is forced upon us by the lattice fermion doubling problem.
If we could put the standard model on the lattice without breaking the chiral
symmetry, then we could simply use the lattice regularization scheme as a standard
instead of. sav, A 5. But, as discussed above, we either have to break the chiral

symmetry explicitly (Wilson fermions), or do our calculations in a different theory

(staggered).



One does the calculations by probing the operators using massless quark and
antiquark external states at small (or zero) momenta. At tree level, the continuum
and lattice operators give the same matrix elements (once appropriate factors of
Ny have been removed by hand); this is by construction. At one-loop, there are
logarithmic divergences which are regulated on the lattice by the finite lattice
spacing, and in the continnum by some acheme such as dimensional reduction.
These logarithmic divergences need to be the same for both lattice and continuum
operators; that this is true for the staggered ‘ermion operators we use is & non-
trivial check of our approach. The finite parts of the one-loop corrections, on the
other hand, give different corrections to the lattice and continuum operators, and in
particular different mixing amongst the operators. Thus one must use a particular
combination of lattice operators, with appropriate correction factors, in order to
represent a given continuum operator.

To make this concrete let me first consider corrections to fermion bilinears
O,y = Tr(ﬁ[‘.QF}). For the aperators made gauge invariant by the addition of
gauge links, these corrections were calculated by Golterman and Smit? and by
Daniel and Sheard.?!. We™ have checked these results, and extended them to
operators in Landau gauge with no gauge links. The general form of the answer is

OFONT _ OFATT 4 3~ OMITE L (534, — o)
2 *
d; = (0, — 1)(In(a?s?) — 4.20201) — /&,

where both t and ) serve as labels for spin and flavor, d; are the finite residues
of the cancelled logarithmic divergences, and «¢;, are the finite mixing terms. o,
depends only on the spin of the bilinear: it is [4,1,0,1,4] for s={S,V,T,A,P]. The

continuum subtractions have been done in the dimensional reduction scheme, which
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has introduced the scale u.

The possible mixings are constrained by a subgroup of the full staggered
symmetry>}. Thus many of the bilinears. including all the examples given ahove,
do not mix. Furthermore, it turns out that the few off-diagonal eotries are small.
The diagonal elements depend sensitively on whether one uses the Landau gauge
operators, or the standard ones. With the latter choice the c;; range from 427,
for a distance D operator {i=[0000; 0000]), to -50, for distance 4 (i={0000; 1111}).
We work al g = 1, 30 this corresponds to a large variation of about 0.6 in the
correction. On the other band, the correction ranges from +27 to -5 for the Lan-
dau gauge operators. A large part of this difference is due to the absence of gluon
tadpole loops for the Landau gauge cperators. These give a contribution of ~ —13
per link for the standard operators. Thus the Landau gauge operators are prefer-
able not only because they are simpler to use, but also because they have smaller
perturbative corrections.

The corrections to the four fermion operators at 1-loop have been caleulated by
Sheard*, and independently by us??. Sheard does the calculation only for operators
with gauge links included. This is a big mess, and we are in the process of checking
our results. and comparing with those of Sheard. We have in addition calculated
the peaguin graphs which are needed for the AJ = 1/2 operators.

For the Landau gauge operators which we actually use, the calculation reduces
to that for bilinears. This reduction is done using Fierz transforms and charge
conjugation. as in the continuum. Thus I am quite confident in the numbers [
will present. though thev await final confirmaticn. The only difficulty with the
calculation is one of bookkeeping. The lattice symmetries do not provide much

restriction on the mixing. since many combinations of two bilinears transform as
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scalars. The only restrictions come from the axial symmetry.

Consider the example of the operator
Z TSy 115 04715) Tr(Ssvu1sDyrs)-
5

This mixes itself and with

Te(S, 173 D4vs) Te(BimumsDars)i  Te(SataDi1s) Te(SivaDims);
Tr(Fovu D) TrSinlan)i  T(FavuDl) Te(SiraDi):
TrSurursD}) Te(SiremDa)i TS Dhnews) T(BsDymars)i ---

All the aperators in the list, including those represented by the ellipses, have dis-
tance 1 or distance 3. This is required by the axial syrametry. All of these operators
separately satisfy the Ward Identity described in section 2. The first three oper-
ators have the same flavor as the original operator. In the continuum, these are
the only operators that would be needed, and all receive logarithmically divergent
coefficients. Om the lattice it is also true that these three are the only operators to
get divergent coefficients, and these coefficients agree with thoee of the continuum.
Thus the lattice anomalous dimension matrix is the same as that in the continuum.
The finite corrections, however, produce all the other operators in the list, as well
as contributing to the first three.

Now comes a tricky point, which is very impori..nt. The perturbative calcula-
tion has taken into account the short distance effects of the flavor breaking term
in the action. A low momentum quark-antiquark pair approaching the bare lattice
operator actually sees it as a sum of the operators listed above. Let the Q@ pair
be projected into a particular spin and flavor state. Then only those operators in

the Jist which have the same flavor as that of the external state will contribute.
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The claim is that the non-perturbative dynamics which combines the §Q pair into
a state only breaks the flavor symmetry at Ofa), and is thus very small. This is
checked by the restoration of flavor symmetry in the spectrum. The flavor-breaking
i only logarithmically suppressed (i.e. appears in g(a))} in the finite parts of the
perturbative corrections, and thesa cannot be ignored. Thus the finite corrections
to operators which have the same flavor as the external states must be kept.

This argument can actually be checked by usiug different external states, and
we are in the process of doing this.?®

Assuming that this argument is correct, the perturbative calculation simplifies
considerably. We need keep only the four operstors nto which the B parameter
decomposes—Ad3,. When all the dust scitles we find that the matrix of correc-
tions (including the logarithmic part) is diagonal {10 1% accuracy) and that all the
diagonal elements lic in the range —(26 — 36)g2/16x3. Thus one makes uly a 2%
error if one simply multiplies all matrix elements by a factor of 1 —3092/16x7 ~ .81.
This is an acceptable size for a correction. The correction term for the vacuum
saturated matrix element is exactly diagonal and of size —31.49%/16x2. Thus, to
s very good approximation the B parameter receives no perturbative corrections.

The situation is not 30 clean for the EMP operators. The mixing matrix is
not diagonal, and the entries are larger. The extreme case is the correction to the
vacuum saturation matrix element of size 1 — 9492/16x2 = 40. Again, when one
takes ratios to form the quantities By and By (see Ref. 3 for definitions), there is
a large cancellation of the perturbative corrections. Nevertheless, their large size
is cause for concern.

1 bave skimmed over an.important uncertainty by naively using ¢ = 1, the
lattice value. At 1 loop order, one could equally well use g(p), the value of the



continuum dimensional reduction coupling constant. It is well known that lattice
coupling constants are smaller than their continuum counterparts, for au ~ 1. This
translates into the possibility that the perturbative corrections might be almost
twice as large as the numbers quoted above. This would be tolerable for the B
parameter, but pot for the EMP matrix elements. Higher loop calcuiations are
needed to decide which is the correct coupling to use.

5. RESULTS FOR B PARAMETERS

With no further ado I present our new results. The raw numbers are shown in
figure 3. We have three quark masses, allowing us to make 6 different kacns. To
very good approximation the square of the kaon mass is proportional to the average
quark mass, 5o the x axis can be thought of as m}.. I show separately the "AA”
contribution (M, = ML + AM3), the “VV™ contribution (My = M} + M}),
and the sum {AM). All of these are divided by the lattice vacuum saturation value
for 4/3M%,, %0 that they are correctly normalised B parameters. 1 stress that
the results are essentially raw numbers, read off plots such as figure 22 The ~rror
analysis is done using the jacklmife method. As just discussed, the perturbative
corrections to B are very amall.

There are a number of features of the results that I want to bring out. The
first concerns the chiral behavior of the matrix elements. The vacuum saturation
result is ox fm} by definition. Thus if a matrix element bas the correct chiral
behavior, the B parameter will be independent of m,. If a matrix element is
constant, however, then the B parameter will grow as 1/m,. Our data seem to

show that A4 and My bave the wrong chiral behavior, while their sum displays
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the correct chiral behavior. | stress that each of the parts of .M should separately
bebave as m%. in the chiral limit.

What if anything, has gone wrong? One’s first thonght is that it has something
to do with the wall sonrces. This can be ruled out by looking at our old 123 x 30
data. This data is less extensive, but shows exactly Lthe same pattern of bad chiral
behavior. I showed some of the data in the 1986 lattice conference.?* We have sat
on the data because we had po clear explanation of the poor chiral behavior. We
worried that “wrap-around™ contributions, allowed because we used anti-periodic
boundary conditions, could have introduced systematic errors. The confirmation
of the bad chiral behavior suggests that the old calculation may be better than
we thonght. Because of this, and because the Ward Identities are exact for the
old data, we have dragged it out and looked more carefully at how the arguments
leading from Ward Identities to chiral behavior break down. We have come up with
uo simple answer, so far. But it is clear that terms of higher order than quadratic
in the kaon momenta are important.

This is consistent with what I hope is the correct answer to what has gone
wrong. Nothing! We are simply at too high a quark mass to see the chiral behavior.
This explanation would have the My and M, curves level off at not much smaller
quark mass. This is not solely an idea designed to save face. Vacuum saturation
is found, in a number of lattice calculations, to work very well for large quark
masses, for reasons that are pot fully understood. Thus the M4 curve in Figure
3 should be 1 at large quark masses, while that for .My should be 0. For small
quark masses, chiral symmetry should apply. and both .\ 4 and My curves should
be flat. If vacuum saturation is to fail anywhere. there must be a region where

the curves differ significantly from a constant. [t seems to me that the transition
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region is not likely to occur much above the strange quark mass. If so, and if
Lthere are significant deviations from vacuum saturation, then the curves must look
something like ours do.

It would be very nice to see a similar decomposition of the Wilson fermion
data. This cannol be done for the B paramete~, bt it can be done in the related
case of AI = 3/2 K — == amplitudes.

The full B parameter shows much better chiral behavior. This is due to a
cancellation between the “AA™ and “VV™ parts. Our original program had an error
in the sign of the “VV™ part, leading to a very different result. Since our lightest
quark has mg &= m,/2, the mass of our lightest kaon is roughly the same as that
of the physical kaon. Assuming that By depends only on the average quark mass,
which is true within errors for our data, we have the result By = 1.04(14)(77?). 1
have purposely put in the question marks to emphasize that we do not know the
systematic errors. In particular, we need to see whether By does only depend on
the average quark mass when one of the masses is much lighter than the strange
quark, Indeed, our owx data skows us that large changes are occurring in some
matrix elements. There is also the nnknown systematic error of the quenched

approximation.

Despite these unknown errors, it must be pointed out that the Wilson fermion
result? is two thirds of ours. A conservative person would use this as an estimate
of the systematic error. Furthermore, our result is evaluated at a acale of ~ 2GeV,
and so the appropriate coefficient function is larger than for smaller scales. So our
number is definitely at the high end of the range that is usually considered.

We also have new data for the matrix elements of the electromagnetic penguin

operators. Here the perturbative cotrections are larger, and involve non-trivial
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mixing. Our preliminary results are B; = 0.5(2)(7) and Bs = 1.2(2)(?). In other
words, our results are completely compatible with vacuum saturation approxima-

tion. They are also in agreement with our earlier data® within errors, and with the

Wilson fermion calculations?-2,

6. CONCLUSIONS

1 think that quenched iattice calculations of weak amplitades are entering a
phase in which detailed checks of systematic effects can be made. This is very
encouraging. Perhaps foremost among the tests that must be done is a study of
smaller quark masses. This is expensive in computer time, but if the results of
Figure 3 are any guide, it is essential. Other checks I have in mind for us include
detailed tests of perturbation theory, checking current algebra by comparing single
pion and two pion amplitudes, and studying the way in which Ward Identities are
saturated. Tests I would like to see done with Wilson fermions include a study
of the final state interaction between the two pions in the X — xr amplitudes.
Current algebra guarantees that these interactions are small for small pion masses,
but they need not be so for larger masses.

I hope 1 have convinced you that staggered fermions offer a viable alternative
to Wilson fermions. For some matrix elements, they are superior, becaunse of
the Ward Idectities. For others, the complications of non-local operators makes
them more difficult to use. In any case, a comparison of Wilson and staggered
results is a stringent check on the size of lattice artifacts. There has been good
agreement on the EMP matrix elements for some time. Now that we are able to
calculate By a much more significant comparison can be made. Unfortunately, it

suggests large systematic errors. We hope in the near future to have results for
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the AJ = 1/2 amplitudes, so that a comparison can be made with the results from

Wilson fermions that just appearing through the noise!:2,
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