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TWO-PION CORRELATIONS IN HEAVY ION COLLISIONS

by

William Allen Zajc

ABSTRACT

An applicatior of intensity interferometry to relativistic heavy
ion collisions 1is reported. Specifically, the correlation betweer
two like-charged pious is used to study the reactious Ar+KCl—52ni +X
and Ne+NaF—>2w +X. Source sizes are obta’ued that are consistent
with a simple geometric interpretation. Lifecimes are less well
determined but are indicative of a faster pilon production process
than predicted by Monte Carlo cascade calculations. There appears to
be a substantial coherent component of the pion source, although
neasurement 15 complicated by the presence of final state interac-

tionsg.

Additionally, the generation of spectra of uncorrelated even.s
is discussed. In particular, the influence of the correlation func-
tion on the background spectrum isa analyzed, and a preacription for
removal of this influence is given. A formulation to describe the

statistical errors in the background is also presented.

Ffinally, drawing from the available literature, a self-contained

introduction to Bose~Einstein correlations and the Hanbury-Brown=-



Twiss effect 18 provided, with an emphasis on points of contact

petween classical and quantum mechanical descriptions.
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CHAPTER I

INTRODUCTION

A. Objectives of Relativistic Heavy Ion Physics

The systematic study of relativistic heavy ion collisions (RHIC)
became possible in 1974, with the advent of the Berkeley Bevalac.
Prior to this, cosmic rays provided the only source of relativistic
nuclei, which made experimental control of the energy and mass of the
projectile impossible. The Bevalac provided experimenters with beams

up to A = 57, with energies ranging from 50-2100 A*MeV.

It was expected that a number of unusual phenomena cculd be
observed with this new facility. For example, the tirst three papers
of the High Energy Heavy Ion Summer Study of 1974l diacuss shock
waves, highly excited nuclear matter, and density isomers. It was
also hoped that one could determine the nuclear equation of state,
thereby obtalning the energy per nucleon W(p,T) for densities p
exceeding normal nuclear demsity and for temperatures T>0. In addi-
tion to the intrinsic interest in W(p,T), knowledge of this quantity
1s essential to theoretical studies of supernovae and neutron stars.
Further practical benefits were predicted for such fields as cosmic
rays (of course), atomic physics at high Z, creation of neutron rich

isotopes, etc.

In the ensuing years of experimentation and theoretical study,

maeny of these practical results have indeed been obtained. However,



the search for exotic physics has been largely unrewarded. Single-
particle spectra of all reaction products are smoothly varying, with
the exception of the well-understood Coulomb enhancement of " yield
observed near beam velocity by Sullivan et al-2 Determination of the
nuclear equation of state has thus far proved impossible, due to fin-
ite particle effects, incomplete equilibration, large single-
scattering components, etc. Furthermore, vastly different assump-
tions regarding the reaction dynamics lead to quite similar final
states, thus allowing a variety of models to predict single-~particle
cross—-sections to within a factor of two. As emphasized in a recent
review by Nagamiya and Gyulass:y,3 the actual physics for single-
particle observables lies in understanding and reducing this factor

of two.

An alternative (and complementary) approach to the refinement of
existing single-particle measurements Js the study of multi-particle
spectra and correlations. For example, the in-plame/ouc-of-plane
two~proton correlation has proven valuable in resolving the various
procesges that producz2 protons in a given phase space region-4 Other
forms of two-proton analysis may probe the size and shape of the
mid-rapidity proton aource.s'6 The ultimate limit of multi-particle
measurements is the global analysis of all (charged) particles. For
instance, the authors of Ref. 7 show that the eigenvalues of the

kinetic flow tensor

1
Fij - ; Em—p' pi(B)'pJ(ﬁ)

1re useful parameters to describe the flow patterns of heavy-ion



collisions. (Here m, and pi(p) are the mass and i-th momentum com=

P

ponent y respectively, of the P-th particle.)

A particularly interaesting two-particle state is that for two
like~charged pions. Because two like pions obey Bose statistics, the
two-pion relative momentum spectrum provides a sensitive tool for
exploring the properties of the pion source. This thesis descrives a
series of experiments designed to determine the pion source parame-
ters through the use of intensity interferometry. In the next sec—

tion, we begin by considering the pion production mechanism in RHIC.

B. The Pion Source in RHIC

Pion production in relativistic heavy ion collisions has been
extensively studied, both experimentally and theoretically. (See
Ref. 3 and the papers cited therein.) There are several reasons for
this attention. First, pilons are produced in abundance at RHIC eper-
gies ( 0.5-2.1 A+GeV ). For example, at 1.8 A-GeV, nearly 60% of the
NN total cross section goes into pion production. Secondly, both
pilon production via the dominant (resomant) reaction NN—»N\ and the
piop~nucleon interaction nN~-»nN are well understood at a (nearly)
fundamental level. Furthermore, the O-model, a phenomenclogical
prescription for incorporating the effects of higher-order meson
exchange and chiral invariance, has led to the prediction of novel
states of nuclear matter,8 and of the pion field (See, e.g., the
results of Ref. 9 ) Finally, since m"<<mN , and since plons are
bosons, one 18 led to consider the possibility of coherent pion radi-

ation,m i.e., the creation of a "classical" pion field through
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bremmstrahlung of the nucleons. This would be an interesting object
indeed! Since two-pion interferometry is capable of measuring both
the space~time extent of plon production and the degree of coherence
of the pion field, it is a valuable method for clarifying pion pro-

duction processes in RHIC.

C. QOrganization of this Thesis

Chapter II contains an explication of intensity interferometry.
Since this technlque 1s often "explained” by reference to the
Hanbury-Brown-~Twiss effect, and since the HBT effect itself is often
the subject of considerable confusion, a fairly extensive discussion
ie devoted to the origins of the Bose-Einstein interference and to
clagsical explanations of the HBT effect, as well as its application
to particle physics. Chapter 1II describes the experimental
apparatus used to measure our two-pion events, while Chapter IV
details the analysis of these data. Resgults are presented in Chapter
V, with conclusions and directions for future research given in
Chapter VI. There are several appendices containing detailed

descriptions of various results, methods, avd calculations.

Unless otherwise noted, natural units are used in this work,

that is, ti=c=l.



CHAPTER 11

INTENSITY INTERFEROMETRY

A. Introduction

Intensity interferomectry uses the correlations between identical
particles (usually bosons) to determine properties of the particle
source and/or emission process. 1In optics, this technique is often
referred to as the Hanbury-Brown-~Twiss (HBT) effect; in particle
physics it 1s known as the Goldhaber-Goldhaber-Lee-Pais (GGLP)
effect. This chapter 1s intended to provide a roughly (but not
rigorously) historical introduction to these methods 1y emphasizing

the physical origins of like-particle interference.

We begin by considering intensity fluctuations since the need
for Bose~Einstein stetistics (it and Fermi-Dirac statistics are the
ultimate scurce of all multi-particle interference phanomena) first
arose from such considerations. Much of the next section is taken

11

directly from the excellent article by A. Pais” entitled "Einstein

and the Quantum Theory."
2. The Origins of Bose-Einstein Statistics

Note: this section uses units such that h and ¢ appear explicitly.

The systematic study of fluctuation phenomena in statistical

mechanics was pioneered by Einstein. In 1904, he applied his result



for the mean-square fluctuation in energy

((AB)Z) - krzg% (I1.1)
to the total energy of a blackbedy oven at temperature T witn volume
v,

E(T) = Vfp(), )y = 4oTv (11.2)
to obtain

(@®?) = texavr® . (11.3)

(Here ¢ is the Stefan-Boltzmann constant.) The meaning of this result
becomes apparent when we ugse Wien’s displacement law hc/Ahlax = gkT ;

3 ~ 2.8, to express g, the relative energy fluctuatioms, in terms of

Amax’ the most probable wave~length in the blackbody spectrum:

2 3 3
- {@e®) - 605> Anax . 1. Amax (11.4)
E@? a® Y 2V

Thus, for small T, it 13 possible for § to be arbitrarily large.
This should be contrasted with the case for an ideal (classical) gas
of N particles, where E(T) = gNkT implies - 3%-' 0(%0, independent

of temperature. As one might guess from the presence of Ama in Eq.

X
II.4, the large fluctuations for the blackbedy results from the wave
nature of the photons. This may not appear suprigsing until one

recalls that the usual derivation of the Planck’e law requires attri-
buting particle-like properties to the radiation field. This, one of
the first hints at complementarity, was further elucidated in 1909 by

Einstein, again by considering the fluctuations of blackbody radia-

tion. This time he restricted the analysis to the fluctuations of



the energy density p(v,r)vdv withia a small sub-volume v and fre-
quency interval V. Here we present a slightly simplified argument by
examining the mean-square dispersion in photon number for one cavity

mode k. In equilibrium we have

llk'

exp (3] ) -1 (113

where ¢ = hvk. One may then readily calculate (Q&nk)2>, either by
relating ;k to the meaa energy of the mode and using eqmn II.1 or by

explicitly calculating

(@p?) - (27} - ]

for a quantized oscillater. In elther case, ome obtains

(Qnp ) -5, + nkz (II1.5)

which is the essential result of this section.

A8 we ghall see, the two terms on the RHS of Eqn. II.6 reflect
the particle and wave aspects, resgpectively, of photon number fluc-—
tuations. The first term is precisely what one would obtain from a

distribution of classical particles with mean a obeylng Poisson

statistics, i.e., (QSp) ) = 0. The second term, EQ, is proportional
to the number density squared and thus is an interference term, ag

expected from a wave 1ntetpretation-12

While we have derived this result for blackbody radiatiom, the
form 18 a general one. To see how it arises in a different context,

consider a phototube with efficiency ﬁ illuminated by a light beam of



fixed (for now) intensity I. The mean number of counts n in an
interval T is then n = §IT. Since we have somehow fixed the inten~-
sity, n 18 constant in time, so the distribution of actual counts m

detected in time T is given by a Poisson distribution:

P(mjn) = Lﬁ%fe-n-
In practice, however, one (usually) finds that the intensity I, and
thus n, are themselves fluctuating quantities. Thus to find the
total dispersion in the number of counts m, we must alsg average over
the distribution of n"s. Denoting such double averaging by ((...)),
and using the results for the first two moments of a Poisson distri-

bution with fixed n, viz. () =, and <m2> = 2% + n, we obtain
{{@m®)) = (=) - (=)’ 338
()= ()

.;+[n—2-:].

where a bar indicates the result of averaging over the distribution

of n. Rewriting in terms of intensity, this result is

am? =%+ §21'2[(12(c)> - fz] (11.8)

Thus far, the only content of Eqns. II.7 and II.8 1s mathemati-
cal; they simply reflect the results of performing a double average.
We now introduce the physics of the argument by exploring the origin

of the “:tensity fluctuationa. First note that 1if I(t) is



produced by the output of one oscillator,

2
( t + 1g(t))
I(t) = 1/240(: Eoe 11"0 ,

then, regardless of the variation of the ¢(t), the intensity 1is

fixed, (Iz(t)) - fa, and we recover the counting statistics of a sim-

ple Poisson. This is not an artificial example, e.g., a gain-

gtabilized laser is well approximated by such a description. If,

however, I(t) is formed by the superposition of many sources j
o8 e + 19, (e

cl 2 Ee »

0f),%, 0

and 1if the pj’s are time~varying in a mutually incoherent fashion (as

I(t) = 1/24 (11.9)

in collision broadening, for example), then the relative phases add
in random walk fashion, there are large fluctuations in intensity
(over the time scale of the ¢j'a variation), and one camn easily

showl'3 that (Ik(t)) = Kl 'fk. In this case, we have (Am)2 -n+ ;2,

in accord with Eqn. II.6. Since this limit depends essentially on
the linear addition of the electric fields, the use of the expression

‘wave noise’ for the second term is justified.

We now return to our chronological development. In 1924, Bose
showed that eqne II.5 could be derived through the machinery of con-
ventional statistical mechanics, provided one regarded the photons as
indistinguishable particles. In the same year, Einstein boldly
extended Bose’s result to the molecular gas, by using the demsity of

states approporiate for massive (non-relativistic) particles and
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requiring particle conservation. He showed in 192514 that these

modifications did not affect the (particle + wave) forw of the fluc-

tuations. Therefore, he concluded that this must

express indirectly a certain hypothesis on a mutual influence
of the molecules which for the time being is of a quite mys-

terious naturess.
One can interpret part of the fluctuations in an analo-

gous way by sttributing to a gas some kind of radiation in a
suitable way, and by calculating the interference fluciua-
tions. I go into further details because I believe that this
is more than an analogy.

Mr. L. de Broglie has shown, 1in a very remarkable
thesis, how one can attribute a wave field to a material par-
ticleess

Thus, for Einstein, Bose statistics implied wave mechanics, mot vice

versae.

It is natural to ask "Why did Einstein not discover the HBT
effect?” (Here HBT effect is defined as the use of photon fluctua-
tions in a light beam to determiue the size of the source.) Einstein
was obviously intimately acquainted with all details of photon fluc~-
tuation phenomena. In addition, much of his later life was devoted
to pondering the apparent paradoxes of quantum theory; the interfer-
ence of photons produced from opposite sides of a star is a (less
gsubtle) cousin to the Einstein-Podolsky-Rosen paradox. Of course,
chis i3 the sort of question that will never be definitively
answered. Ome response.15 however, that is certainly consistent with
all known facts, 1s that Einstein was indeed awsre of the HBT effect

but regarded it as a trivial consequence of photon statistics.
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G+ The Work of Hanbury-Brown--Twiss

This section describes the application of intensity inter-
ferometry to astronomy, as ploneered by Hanbury-Brown and Twiss.
Also in this section we present a derivation of the HBT result based
solely on classical considerations, as well as an argument by Purcell
that clarifies the role of photon counting in the HBT effect. An
extensive (and very readable) account of the HBT technique may be

found in The Intensity Interferometer by Hanbury Brown.16

In 1949, Hanbury Brown, Jennison, and Das Gupta17 measured the

angul ar size of the radio sources Cygnus A and Cassiopeia A by com-

paring the noise correlations between two separated antennas. Since
this method was based on firmly established radic frequency tech-
niques (the theory of bandwidth-limited Gaussian noise as detected by
a square-law detector, see, e.g. Lawson and Uhlenbeck18 ), thelr
result cccasiomed little coutroversy. The extension of these methods
to the optical donain, however, was quite a different matter.

The following objections (among others) were raised: l.) In his

19 Dirac states "Interference between two dif-

quantum mechanics text
ferent photons never occurs.”" 2.) Two laboratory experiments had been
performed that falled to observe correlations in the photon count

]
20,21 3.) For optical frequencies, the shot noise (i.e., the

rate.
particle-like photon number fluctuations) would far exceed the wave
noise. In the radioc source case, the wave noise 18 the greater of

the two, and indeed is solely responsible for the noise correlations.
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It is instructive to examine these objections poirt by point.
The first criticism simply results from quoting out of context.
irac made this statement with reference to double-slit photon dif-
fraction experiments, to refute the erroneous interpretation that
diffraction results from the interference of two photon "waves". In
fact, the diffraction persists to intensities so low that the chance
of finding two photons simultaneously in the apparatus is negligi~-

ble.22

The second objection would appear to be more substantial, based
as it 1s on physical evidence. Here the fault is not a conceptual
one, rather it is an experimental one. While the¢ data as reported by
these experiments are correct, it is possible to show (see, e.g. Pur~
cell23 ) from the stated values of the resolving time and bandwidth
(for both experiments), that their sensitivity i1s such that hundreds
of years of observation time would be required to see the HBT

enhancement.

The third point is a real one, although again it is dispensed
with through suitable design of the measuring apparatus. It 1s cer=-
tainly true that for visible light the shot noise 1s the dominant
source of fluctuations. The "trick" lies in the comstruction of a
detector that is sensitive only to the wave noise; this is precisely

what Henbury Brown and Twiss did.

Finally, one might attempt to meet all objections of principle
by the following reasoning (anm argument by intimidation): First, the

exigtence of noise correlations was established beyond doubt at radio



frequencies. To apply the technique to electromagmetic radiation at
other frequencies (higher or lower) we simply note that, according to

Bohr,z4

The typical features of electromagnetic fields do mot depend
on scale, since the two fundamental constants— the velocity
of light ¢ and the quantum of action h- du not allow any fix-
ation of quantities of dimensions of a lemgth or time inter-
val.

(Emphasis added)

We now turn to a classical analysis of an idealized HBT experi-
ment, as given by Hanbury Brown-16 Consider the situation shown in
Fig. 1, where two sources Pl and P2 are separated by a distance 2R.
They may be regarded, for instance, as two atoms emitt?.; light on
opposite limbs of a star, radiating with frequencies w, and uy, and
with random phases ¢1 and pz, respectively. The light in each arm of
the detector first passes through a polarizer, so that we may add the
electric fields algebraically, not vectorielly. This 1s simply for
mathematical convenience. It next atrikes an optical Eilter such
that the light that is transmitted satisfies uy = w, & w ; the degree
to which this conditioan 1s satisfied determines the spectrum of beat
frequencies that our system must be capable of measuring. Assume
that the sum of their signals 18 detected at both points A and Bj;
both detectors are assumed to give an output proportioual to the
local intensity of radiation, 1.e., proportional to the square of the
electric field. (A phototube has this propercy.) The output of each

detector 1is passed through the low-pass filters fi; as we shall see,
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these filters uust b. designed to pass frequencies in the typical
range of uy - w, vwhile rejecting both dc and high frequencies > w

The photocurrent at A is then given by

1, = KA‘-Elsin(mltAlﬂil) + Ezsin(mztAzﬂbz)]z , (11.10)

where KA is some constant of proportionality incorporating all

relevant detector properties. Similarly,

1B = KB[#lsin(uicBI+¢l) + Ezsiu(u§:32+¢2)]2

Writing ull:A1+pl! Al, and so on, we may wrike :LA as

1, = KALEisinz(Al) + 28 E,sin(Al)sin(A2) + Egsinz(AZ)] (I1.11)

- g Efsmz(m) + X B,|cos(al-A2) = cos(AH»AZ)] + Egslnz(AZ)

-1 202y p2 2 _p2. 2 -
lzKA{ (nl+Ez) Elcos (2al) Ejcos®(242) ZElEzcos(A1+A2)

+ ZElEzcos (Al-A2) }

This result contains five terms. The first is just the average dc
current from the two sources in the absence of interference. The
filter £ can easily be designed so that this current is not passed.
The next three terms oscillate at the sum frequencies of the two
sources and thus are of order 2u; a low pass filter will remove them.

The rewalning term is the output current of £, demoted E(iA); it has
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-~

a time dependence wy = uwy and thus may be regarded as a slowly
varying beat frequency. A similar expression is obtained for f(iB)

by letting A-»B everywhere.

The key insight of Hanbury Brown and Twiss was to form the pro-~

duct of f(iA) and f(iB) in a correlator C, before performing any
further data processing. The correlator C produces an output signal

proportional to the product of the two input currents. Therefore,

i, = f(iA)'f(in) (II.12}

- KAKBEfxg cos<A1-Az)-cos<sl-Bz)]

- KAKBEfEf{ cos[(Al-AZ) + (Bl—BZ)] + cos[(Al—AZ) - (31—32)]

Expanding the arguments of the cosines,

(Al=A2) £ (B1=B2) = ml(t:Al £ :Bl) - ml(tAZ + :Bz) (I1.13)

+ [(pl-pz) % <;él-¢2):|

Since the sources 1 and 2 are assumed independent, $, and $, are
mutually random variables, so that an ensemble average over terms
ligearly proportional to them gives no contribution. Therefore, the
first term in eqn 11.15, which from the results of eqn. II.ll1 con-
tains a cosine of pl-pz, must vanish over long observation times. On

the other hand, the second term is independent of the phases! Thus,
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the time-averaged i, is proportional to only this last term:

C

22
1, KAKBEIEZcosI:ul(:M )~ wy(e,, th)]. (II.14)

. 22 -
= KAKaElEz“‘{ “‘l_(‘AL"BL) - “Az“nz)}

Specializing for convenience to the specific geometry illustrated in
Fig. 1, where A 18 on a line perpendicular to the line joining Pl and
P2, and B 18 slightly displaced parallel to the same line, we find
for the quantity in square brackets above (the difference of the

differences in path length)

I_(‘Al"m) - (“Az‘“az)] = l_(‘m"Az) - (‘m"nz)] (11.15)

"~ n|
o - [qna(d.a,z S

L}
—~

Therefore, one can write foxr the final form of 1c:

1, = Kcos(mz%i—) - Kcos(ledA—g) (11.16)

That 1s, the noilse in the two channels will be correlated provided

49
3 S
this requires d ~ 100 m per msec of arc.

o
1, where © is the angular size of the star. For A = 5000 A,

This argument, while straightforward, may be sufficiently com-
plicated algebraically that the physics is no longer manifest. Qual-

itatively, the HBT effect results as follows: A star consists of a
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macroscopically large number N of independent radiators, whose elec=—
tric fields add linearly. {(Eqn 1I1.9 is an example of such a sum.)
Since the phascs ¢i are mutually incoherent, this produces an inten-
sity subject to large fluctuations over time. However, these fluc-
tuations cannot occur over arbitrarily short times. Rather, there
exists a time scale given by the inverse bandwidth of the light
admitted to our system. {This is true since the bandwidth A deter-
mines the range of frequencies that can beat against each other to
create a time-varying intensity envelope.) Thus if we measure tne
noise at time t, then again at time t + x, it is unlikely to have had
changed very much if T < AL\)' Similarly, referring agaim to Figure 1,
if B is sufficiently close to A, the noise profile, created by the
sum over the phase of arrival times tBi for each independent source
i, will not be drastically different from the corresponding sum con-
ducted at the point A. Only as d becomes significantly greater then

%% will the noise at B become different from that at A.

To complete this section, a derivation due to Purcell23 is given
that makes clear the connection between two-channel correlated noise
and eqn II.6 of the previous section. We present here a version of
this argument speci.lized to detectors of zero resolving time; again
this is for simplicity only. Consider a light bear of one polariza-
tion with intensity such that a phototube pleced in the beam counts n
photons per unit time. If the light 13 from a chaotic source (e.g.,
a thermal one), the fluctuations ia this rate are given by eqn 1I.6,

i.e., (Q}n)z) - :(l + ;). Split the beam with a half-silvered mirror
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so that one beam contains an iatensity of EI, the other contains 1,,
with o = ;I + ;;: The fluctuations in each of the split beams are
also governed by eqn II.6 However, we could connect our phototube
outputs for 1l and 2 together (count in the OR mode) and demand that

we recover the fluctuations resulting from a total of n photons.

Machematically,
(@w?) =ac1+3
m?) =2 1+7) (11.17)

_ - —, =2
= ( n, + a, Y+ ( o, + n, )

but
{(@m?) = {a¢ 2, + 0, 1%

2 2 .
- (@np?) + {(&ny )+ 2(am, Le,)
Substituting ;I( 1+ ;I ) for nl’s mean-gsquare dispersion, amd simi-

larly for n,’s, one obtains:

2
{on o,y ~ o5, (11.18)

Thus, the fluctuation formula for Boge-Einstein statistics leads

directly to correlated noise counting rates, without the need for the

intermediary classical wave picture.

D, Intensity Interferometry in Particle Physics

This section develops selected aspects of Bose-Einstein statis-
tica as applied to particle physics. This material 1s intended to be
introductory only; most results specific to RHIC are deferred until

Chapter Five. Here we will show that correlations between identical
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plons are determined by the properties, in particular, the space-time
extent, of the pion source, thus providing a strong analogy to the
role of photon correlations in the HBT effect. However, while analo=
gous to the HBT technique, in another sense two~plon correlat:ions are
complementary, in that the correlations appear in the relative
energy-momentum of the detection process, rather than in the distri-
bution in gpace and time of arrival at the detector positions.25'26
Similarly, while the derivations of the previous section relied upon
either classical wave interference or (non-classical) particle oumber
fluctuations, the approach here will be dominated by quantum mechani-
cal indistinguishability, which in turn implies symmetrization of the
wave function. WNevertheless, it should be remembered that these are
all different methods of describing the same physical phenomena.

The first application of intensity interferometry to particle
physics was made in 1960 by Goldhaber, Goldhaber, Lee, and PaisZ7
(GGLP). They studied the distribution of opening angles between
pions from the annihilation of 1.05 GeV/c ;'s on protons in a propane
bubble chamber. It was found that the mean opening angle for like
plon pairs was significantly smaller than that for unlike pion pairs.
GGLP explained this in the framework of the Fermi statistical
model,28 with the additional requiremeunt of symmetrization between
like particles. To see how this comes about, consider first the
expression for the differential croas section do to produce N parti-

cles from a reaction with total four-momentum PTOT:
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1=N{ o dp, <t 1=N
dow= C P (Q) [1 ——={87( P - Z2p,) . (11.19)
N N 1m1 (2")3 2B, TOT ~ 5,F1

Here CN is a normalization constant, V is the quantization volume,
and pi = (Ei;;;) is the four-momentum of the i-th particle. The
product 1n brackets, along with the delta~function, is simply the
available N-body phase space. ?N(n) represents the probability that

all N particles are simultanecusly in the reaction volume Q, thus

- > 2
R - J"'Jd"l“'drnu’u' (11.20)
a o
1f one assumes the N particles are statistically independeant, the

wave function !N is then the product of plane waves:

i T
=N “Fi1'Fy

B i=1 ¥
In this case, it is apparent that PN(Q) - (njV)N. What GGLP showed
was that the distribution of pion pair opening angles required modi-
fying ,N by symmetrizing the product wave function between like pion
pairs. After doing so, the phase~space integrals were evaluated via
Monte=Carlo integration, leading to good agreement with the observed

opening angle distributions for values of the reaction volume radius

R between O-E:EZ and 0.75;?:, or roughly between .7 and 1.0 fm. (It
L]

is interesting to unote that in his 1950 papet.za Fermi makes explicit
note of neglecting like-particle symmetrizatiom requirements. It
dozs no disservice to the authors of Ref. 27 to suggest that, had tic
available data warranted such a treatment, Fermi himself may have

made a GGLP-atyle analysis of meson correlations.)
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29-31 at higher enmergies found radii simi-

Further ﬁ; experiments
lar to those obtained by GGLP. Bartke et al-32 were the first to
examine the mean opening angle as a function of the relative momentum
between the piona. Again, they found R £ 1 fm, in this case for the
reaction np—>p4n+3n-. The extersion to hadron~hadron reactions with
three and even four identical pionms in the final state was performed

by Boesebeck et al.33

All of the above experiments relied on some variant of a Monte=-
Carlo integration over the phase space of the N = 2 "other" particles
in a N particle event. This procedure becomes increasingly burden-—
pome as the CM-energy, and hence the event multiplicity, increases.
One may turn this fault into a virtue by taking the N = o limit,
i.e., by applying the techniques of statistical mechanics. For exam-
ple, Knoxsa showed that the multiplicity distribution of piomns in p+p
reactions at 405 GeV is not Poisson, but is well described by assum—
ing the pions form a partially degenerate boson gas. However, pre-~
cisely because the statistical assumption appears valid, more
detailed dynamical information is difficult to obtain by such
integral methods.

Fortunately, Kopylov and Podgoretskii, in an extensive series of
articlee.35-4l showed that this difficulty way be avoided through use

of the two-piom correlation function, roughly defined as
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(11.21)

Under appropriate conditions, it can be shown that:

i ->
CZ(PI’PZ) Cz(q ch); (II.22)
- - ->
q = Py = Pl s

qo - lEZ = Ell )
and that l:!2 is proportional to a constant plus the absolute square of
the Fouriler transform of the space-time cistributiom of pion sources,

i.e.,

C2<?.q0) « 1+ |P(71),q0)|2 (11.23)

We may understand this result qualitatively by applying the
rules of quantum mechanics for indistinguishable events to the exper=~
iment illustrated in Fig. 2. Assume that a detector located at ?1
measures a plon of momentum ?1 in coincidence with the detection of
a pion of momentum -p>2 at location ?2. (The requirement of a coin-
cidence in time is not needed to insure some comdition like
AE*Ar %M. The resolving time must simply be adequate to assure us
that ine detected pions came from the same nuclear collision, which
in turn implies that their wave-packets were once very near each
other.) If the source of the pions has some non-zero space~time
extent, there are two ways that such a two-pion event may occur:
7

Either a pion with ?1 was emitted at 1 and a pion with -p>2 was
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emitted at ?2, or the pion with ?1 was emitted at ?2 while the pion

with ?2 was emitted at ?1- These two alternative histories of the -

system are, in general, indistinguishable. Therefore, we must add

the amplitudes before squaring the matrix element. Writing

pixj - ?i-?j - Eitj. and assumlng the pions are described by plane-

wave states, the amplitude for a two-pion event 18 given by:
Ty @ L TV

2

(11.24)
ipl(xl-rz) . 1pz(xz-r1)
e e

We note in passing that adding the amplitudes for indistinguishable
processes has led us automatically to write a wave function symmetric
under the particle imterchange r1 Cm=D> T, thereby making contact

with the approach of GGLP. The probability is then proportiomal to

- -2 .
¥(p s ) " = 1+ °°5[(P2'p1)('1'r2)] (11.25)
Assiming the pion sources act independently, and are distributed in
space and time according to a distribution function p(?,t), the
result for the two-pion counting rate is found by integrating over

the distribution of pion production sites LFL
— = 4 4 - - —> = .2
P(p,.p,) = Id r d rp(r,t plr,,t,) [¥(p )P, (11.26)
- 2
=1+ Ip(qaep) ™,
where g, ?, and q, are as given above.

As an example, assume the distribution of sovrces is described

2,2 2, 2
by a Gaussian in space and time, that is, P(?,t) « e’ /Rt .
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The correlation function is then given by

-4°R%/2 - /2

- 0 (II.27)
C,{q,q,) = 1 + e
2 0

Thus, for large momentum and/or energy differences, C2 approaches

one. It shows an enhancement for relative momenta q = é-and for

relative energies g ~ %. It is just when these conditions are

satisfied that the Heisenberg relations insure- that the alternative

propagation paths are truly indistinguishable. This provides another

quantum mechanical interpretatiom of the classical HBT effect, since

when (see Eqn. II.16) %F € 1 we can no longer tell which photon came

from which side of the star. Also note that for any gource density

function that satigfies

- - - e d
Pz('l"l"z’tz) - p(rl.tl)'p(rz,tz) (I1.28)

with

-
Jp(r.t)d“r =1
we have szgLo.qo-O) = 2, in accord with the general rule that the
probability of finding two identical bosons in the same state is

twice that for non-identical parc1c1e3.42

Since Kopylov’s and Podgoretskii’s initial suggestion, correla-
tion funetion methods have become an accepted 1f not widespread tool

43-33 and recently ete” annihilacion,55

of hadron~hadron physics,
where a ?-pion correlation function has also been measured. Gen-
erally, the sizes and lifetimes so obtailned are consisteant with

R=cr=1 fm. (See Ref. 56 for a recent review.) In RHIC, both
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57558 Gnd experimentalsg-ﬁz work indicates that two-pion

theoretical
measurements are capable of providing valuable information about the
plon source. This thesis describes the results of such an experi-

ment.

We close this chapter with two observations. First, the results
of this section should make it clear that intensity interferometry is
not unique to bosons. Had we considered, in the derivation of Eqn
I1I.24, the simultaneous detection of twc fermions (in the same spin
state), the plus sign in the amplitude would have been replaced by a
minus sign in this and the following equations, leading to an anti-
correlation at small relative momentum. Such an effect has been

3,63,64 and observed6 for two protomns emitted in heavy ion

predicred
collisions. In this case, however, the effect of anti-symmetrization
is outweighed hy the final state coulomb and strong interactions
between the two protons. It shovld also be appatent that correla=-
tions between fermions is limited to the particle regime; there are
no (macroscopic) fermion "waves" since Fermi statistics prevents the

occupation number of any one mode from ever exceeding two (including

the spin degeneracy).

As our gecond observation, we note that the discussion of the
properties of CZG?;qo) is a heuristic one in that many potentially
complicating factors have been neglected. For instance, the final
state interactions between the two pions, and between the pions and

58

rhe residual matter of the collision, have been neglected. A more

fundarental complication is the assumption of statistically indepen~
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dent emission of pions by a distributed source. This is clearly an
approximation based on the relative scale of the plon wevelength vs.
the spatial extent of the source that must be examined case by case.
Finally, the fact that plons are bosons implies that it is (in prin-
ciple) possible to construct states of the field that exhibit classi-
cal properties. For example, if the source of the pion field may be
treated as c-number, the resulting pion state 1s a coherent one of
indefinite particle number. Such a state would show no GGLP effect,
even though the role of Bose-Einstein statistics has been fully
incorporated in its construction. {(The optical analog of this plon
state 15 the field from a gain-stabilized laser, which was shown in
the Section B of this chapter to exhibit classical, not Bose—~
Einstein, particle-~number fluctuations.) Many authox558'65-7o have
examined the possibility of coherence and its experimental signature
in two pion interferometry. The ilnterpretation of present evidence,

48

however, is complicated by experimeantal systematics, and by unob-

71

served dynamic effects, ~ it therefore remains inconclusive.



CHAPTER TIII

EXPERIMENTAL APPARATUS

The experiments described in this thesis are high-resolution
studies of pion correlatiomns from the reactions

20ye + NaF ~ 20" + X.

1.8 a-Gev “Oar + KCL — 2n° + X and 1.8 A-Gev
We elected to measure pion pairs in a relatively small regiou of
phase space with high statistics and good (absolute and relative)
momentum resolution; in this sense our results are complementary ta

58,61 at this energy. In particular, we

streamer-chamber measurements
studied pilons emitted near 90 degrees in the center-of-mass, since at
this angle the effects of strong and Coulomb interactions with the

2 Such

spectator nuclear matter are most susceptible to analysis.
pions appear near 40 degrees in the laboratory with momenta peaked
about 300 MeV/c. Therefore, they may be momentum analyzed by simple
magnetic spectrometer gystems. This chapter provides a brief
description of the experimental hardware and on-line data acquisition

software. The discussion of off-line analysis 1is presented in

Chapter IV.

A. Beam Transport and Monitoring

All measurements were made at the Berkeley Bevalac. Fully

4OAr from the SuperHILAC are injected into

gtripped 8.5 A-MeV zoNe or
the main ring of the Bevatron, where they are accelerated to

1.8 A-GeV. At this energy, the repetition rate is 10 pulses pet

27
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minutrn. Following resonant extraction, the beam is tramsported to
our target via a conventional beamline of magnetic dipoles and qua~-
drupoles. The final quads are located approximately 5 meters

upstream from the target; typical beam spots are 1l cm. x 1 cm.

The targets are chosen to provide an essentially equal-mass sys-
tem with respect to the projectile, i.e, a KCl target is used for
40sr beams and a NaF target for 204e peams. The difference Letween
the resulting nuclear systems and the exactly symmetrical case is
expected to be small. In particular, pion source size parameters
should not be affected since they are determined by geometric, not
isotopic, properties. A target thickness between 0.5 and 1.0 gm/cm2
provides a good compromise between the conflicting requirements of

high event rate and low multiple scattering in the target.

The beam intensity is monitored by an ionization chamber located
at the end of the vacuum pipe, approximately one meter from our tar-
get« The output current is measured by a Ortec 439 current integra-
tor, which converts the ion chamber current to pulses that are read
by a CAMAC scaler. The ion chamber calibration is obtained from a
fit to all previous measurements by our group and others, performed
over a wide variety of energies and intensities. The respoanse is
linear and in excellent agreement with the calculated calibration.
Further details are presented in Appendix A. Typical intensities

o8 40

range from 1 Ar per opill to nearly 109 zohe per spill; a spill

18 glightly less than one second.
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B« The Spectrometer

A plan view of the spectrometer is shown in Fig. 3. Pions pro-
duced in the target have their incoming trajectories determined by
the two small MWPCs, are bent by the magnetic field, and then pass
through the two large MWPCs, thus defining their outgoing trajec-
tories. A lead collimator, 30cm from the beamline and 20cm thick,
has an opening angle of 10 degrees, centered about 45 degrees with
respect to the beam axis. Due to the target spot size, the range of
accepted pilon laboratory angles 1s from 37 degrees to 53 degrees.
Immediately following the lead wall are two trigger counters Sl and
S2; they provide the START signal for time-of-flight measuremeuts.
Behind MWPC4 1s an two~layer array of counters, first Bl to Bl0, fol-
lowed by Al to AB. The geometric overlap of Ai with Bj segments the
active area of MWPC4 into 17 strips Aﬂk, k = l-»17. Two-pion events
are defined by requiring two separate AB combinatious in colncidence;
such a coincidence is also the STOP for the time-of=-flight. Further
details are presented in the "Fast Electrouics and Computer” section
of this chapter. A cylindrical array of tag counters surrounds the
target to provide event-multiplicity information. We now present a
more detailed description of the individual components of the spec-

trometer system.

B.1. The JANUS Magnet

The magnet uted (JANUS) 18 a standard Bevatron H-magnet with a
55.9cm X 167.6cm (22" X 66") pole-tip. The gap is shimmed to 21l.5cm

to allow insertion of MWPC2 betwee.. the pole~tips. All runs were
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made with a 9.0 kilogauss field, which corresponds to a current of
roughly 500 amperes. The field was measured indirectly by monitoring
the voltage drop across a gshunt resistor, and directly via a dall
probe located on the bottom pole~tip. The field varied by less than

«2% from run to run.

B.2. Scintillation Counters

The active area of Sl waa 27cm ¥ 20.3cm, with a thickness of 5
mme S2 measured 32cm ¥ 15.2cm, with a 7mm thickness. Both were
viewed with XP2020 phototubes equipped with active bases designed for
high count rate enviroments. Typical counting ratea for S§1¢S2 were a
few times 105 per second; individual rates, particularly for Sl were

even higher.

All AB counters were S5mm thick, with a vertical active height of
30 5cus Three differeant widths (33cm, 19.lcm, and 9.5cm) were used
to create the staggered hodoscope array as ahown in Fig. 3. These
counters were equipped with RCA 8575 two-inch phototubes, mounted in

the LBL standard base assembly.

The small tag counters Ti‘ i = l-»l4 wmeasure 47cm X 1l2cm, are
3mm thick, and are mounted in a cylindrical array of radius 30cm just
downatrean of the target. Each has an angular width of roughly 22.5
degrees so that complete azimuthal coverage would require 16
counters. The two countera in the direction of JANUS are uissing,
gince, 1f present, the pions accepted in the apectrometer would pass

through their additional mass, greatly decreasing our momentum reso-
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lution. The T counters use EMI 9843B integral tube and base assem-

blies. Each set of three T counters is covered by one C counter,

with active area 57cm X46cm and thickness lem. The C-counters are

viewed with RCA 8575 phototubes. 50 mil of copper are placed before
1y

the T=counters, and 7 of copper after thea, to reduce the background

from soft x-rays, heavy fragments, etc.

B.3. Multi-wire Proportional Chambers

The four MWPCs form the heart of the spectrometer, since they
provide the spatial information for each pion trajectory. The two
small chambers MWPCl and MWPC2 are identical; each has an active area
of 30.2cm X 14.2cm and three planea of sense wires at
45%, 90°%, and 0° with respect to the horizontal. Similarly, the two
large chambers MWPC3 and MWPC4 are 1dentical; each has an active area
of 200cm x 25cm with three planes of sense wires at
+307, 900, and =30° with regpect to the horizontal. Aside from the
differing sense~plane angles between the small and large MWPCs, the
internal details of all four chambers are the same: the sense-planes
are separated by l.4cm, the wire separation is 2mm, and each chamber
has an effective mass for multiple scattering of roughly 35 mg/cmz.
All wires are read out with the modular electronics system described

in Ref. 73.

L. Fast Electronics

Fig. 4 illustrates the overall flow of control in defining an

event. The sequence begins when two pions pass through S1 =~nd »2.
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The thresholds on these countere are set to correspond to twice
minimum ionizing pions, thus providing a strong bias towards two-pion
events. Two signals are taken from S2; the first passes through a
high~threshold discriminator szhigh to enforce the above r-yuirement;
the second fires a low-level discriminator Szlow which defines the
timing of the coincideuce signal § = 51-szlow-szhish-(uAsrax GATE).
This process reduces time slewing from pulse-height variation to a
minimum. It is important to do so since gince 5 determines the tim=-

ing of our event.

Each geometrically allowed AB combination is provided with a
coincidence circuit. Fig. 4 shows only two of these, 1.Bj and
Al'Bm. In reality, there are 17 such combinations. A majority logic
bax creates the signal [ = (AB)k'(AB)n, k ¥ n, i.e., I] meana two dif-
ferent elements of the AB array have fired, indicating a pair of
pions has successfully traversed the spectrometer. A single-pion

trigger is simply set by reducing the majority level requirement to

one, so that only one AB=combination is required.

A final requirement for a event is the signal FO = Fagt Cut from
the MWPC’s. Due to restrictions in the MWPC electronicsg, this signal

18 defined as

FO = (f1+f2+f3)°(£4+f +f ) f7 f8 E9E10 f11 f1
where fi is the fast out for the i-th plane. (Thes planes are num-
bered in the order they are traversed, thus plane #1 is the first
plane in MWPCl whil: plane #12 is the last plane in MWPC4.) The

important point here is that any one of the three planes in MWPCl
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(and similarly for MWPC2) is sufficient to (help) create a FO.
Therefore, it is imperative that the inefficiencies of these planes

be very low to prevent a high trigger rate on useless events.

The event definition is thus EV = S<[]*FO. When this condition
is satisfied, A WRITE gate is sent to the MWPC electronics, enabling
the read-out of struck wires. A signal is also sent to the CAMAC,
initiating the read-out of all TDC, ADC, and pattern word data for
that event. Simultaneously, the fast electronics is gated off to
prevent further triggers until all data has been read. (This enters

the EV definition through S.)

The readout of the CAMAC is controlled by a Micro-programmed
Branch Driver (MBD) operating the Los Alamos data acquisition system
"Q"-74 The MBD writes the event data into a 800 word buffer of a
PDP-11/45. When this buffer is full (typically it contains 3-5
events), the Q system writes it to magnetic tape. The maximum
acquisition rate is approximately 200 events per spill due to tape-

speed limitations.



CHAPTER IV

DATA ANALYSIS

This chapter contains a step=by-step description of the off-line
data analysis procedures. The data written to tape by the on-lime
data acquisition system pass through four levels of analysis. The
first level, performed on the PDP-1l used for data acquisition,
selects all reasonable candidates for a u-pioun event, where n is
greater than or equal to the trigger requirement for that particular
run. This process, known as "pruning", writes an output tape which
13 then analyzed on a VAX system by a second level of routines. At
this stage, all good events are found, momentum analyzed, and written
to a tertiary file for further processing. This file is then used by
the third level of programs to create the correlation function, which
in turn is processed by the fourth level of programs to obtain pion
gource parameters by fitting various distributions to the correlation

function so derived.

We now turn to a more detailed examination of each of these
steps. Since cbservation of the Bose~Einstein enhancement depends in
an essential fashion on the data analysis, the discussion, particu-
larly for the third level, will be quite extensive. Many of the con-
clusions presented in the following sections are based on the results
of a Monte Carlo written to simulate the spectrometer system. The

derails of this Honte Carlo code are presented in Appendix C.

34
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A. First Pass: Effective Edge Approximation

Analysis begins by finding all hits in the four MWPC’s. Under
ideal conditions, a charged particle passing through one of our
MWPC’s will fire at least one wire in each of the three sense planes.
These three wires then form a triangle, localizing the trajectory to
l-2mm. However, operating conditions, particularly for MWPC! and 2,
are far from ideal, in that they are exposed to a flux of charged
particles of 105-106 s-l. The plane-by-plane efficiency is then sub~
gtantially less than 100%. This fact, combined with the restriction
on the Fast Out requirement mentioned in the “Faat Electronics”" sec-
tion of Chapter III, implies that many of our otherwise good two~pion
triggers will have only two of three wires present per hit in a given
MWPC. It is therefore necessary that all two-wire crossings in the
MWPC’s also be considered as hits, provided that these crosses are

unambiguously determined, i.e., that they are not the vertices of a

large triangle.

Once all hits are found, track selection begina by considering
all possible ingoing Ttays to the spectrometer, and all outgoing rays
from the spectrometer. An ingoing rey is defined as a combination of
any hit in MWPCl with any hit in MWPC2. Similarly, an outgoing ray
i3 defined as any hit in MWPC3 combined with any hit in MWPC4. The
ingoing tays, projecied back to the target, ara required to originate
from within 10cm of the nominal beam-spot locatiom. The outgoing
rays are required to have an exit angle less than tie minimal

entrance angle to the spactrometar, i.e., they must correspond to a
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potential trajectory for a charged particle bent in the appropriate

direction.

Each ingoing ray 1is them paired with earh cutgoing ray to deter-
mine if they lie on an allowed trajectory through the magnet. This
determination is made using a simple geometric requirement in the
effective edge approximation, as described in Appendix B. The effec-
tive edge is calculated via three separate prescriptions. The first

73 for the additional distance beyond the

uses an analytic result
pole~tip edge Leff over which the field is considered constant (See

also Figure 6):

L df, _ 1n(—‘i—)] .

eff ~ 2m 1+s
In this expression s is a solution to

s = tan( s—':i—h),
h 1s the vertical distance between the pole-tip surface and the
center of one of the coils, and d is the gap. The second method of
obtaining Leff uses the Monte Carlo to calculate actual trajectories
using the full field map. For a track of momentum p, traversing a
pole-cip of width 2L wich a central field of Bo’ the effective edge

is then given by

plsineout - Sineinl

2(L+1L (1v.1)

efe)

n&?

o

where ein and eou are the entrance and exit angles, respectively, to

t
the field region. (See Appendix B for further details.) Finally, one

may define the effective edge as that point where the field falls to
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half the central value. For the JANUS magnet, these three methods

agree to within lmm.

Once the effective edge has been calculated, Eqn. IV.1l may be
inverted to give the momentum as a function of ein and gout' These
angles, of course, are obtained from the MWPC information. Such a
procedura is accurate to about 1.5%. This number is not the momentum
resolution; it simply represents the intrinsic accuracy of the effec-
tive edge approximation for ideal trajectories as compared to propa-
gation in the complete field map.  In practice, the fact that MWPC2
lies within the fringing field means that the measured ein is not

identical to the asymptotic value; this effect degrades the accuracy

of the method to roughly 2.5%.

Once a candidate trajectory is obtained, and i1ts momentum calcu-
lated, the motion in the vertical plane is checked for consistency
with the effects of vertical focusing from the fringe field. Specif-
ically, the hits in the first two MWPC’s are used to predict the
vertical location of the hits in the last two MWPC’s. This is done
using simple first—order ray optics; the actual calculation is found
in Appendix B. A cut is then made on the difference between the

actual and the calculated vertical position in MWPC3 and MWPC4.

If the number of surviving candidates is greater than or equal
to the trigger requirement (i.e., at least one track for a singles
Tun, at least two tracks for a two-plon rum), the event is written to
an output tape for further processing. The number of pruned events

ranges from 5 to 15% of our on~line triggers, depending on MWPC
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efficiency. The major souvces of bad events are inadequate chamber
information and single=-pion events simulating two-pion event signa-
tures in the AB array by creation of delta rays, which then fire an

adjacent countere.

B. Second Pass: Chebyshev Parametrization

The output of the pruning program is a tape containing one
record for each event. The event record consists of all the original
event information, i.e., hit wires, and ADC’s and TDC’s for all the
counters. Additionally, the tracking program specifies which wires
are associated with each good trajectory candidate it finds. The
purpose of the second stage of analysis is to calculate the momentum
and initial target pogsition of each track as accurately as possible,
as well as making further cuts on the data based on initial position
at the target (nlﬁ}ARG)‘ counter pulse heights, time=-of-flights,
etc. The algorithm chosen to cailculate the derived quantities such
as momentum and target location is based on a Chebyshev parametriza-
tion of known (Monte Carlo) trajectories. Since this method is well
described elseuhere.76'77 only the rudiments of the technique will be

presented here.

B.l. Discussion of the Method

Assume that a Monte Carlo describing a spectrometer has gen-
erated a set nf N events labeled by §, B = 1 to N, written as
?p - | ')?p,? 1+ Here X is used to denote the independent quantities,

P

and Y the dependent quantities. For example, for real events in our
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apectrometer, the set of struck wires for a track define
¥- (xl,xz,...,xn). and quantities such as T and ?TARG forn T»

(In the Monte Carlo, of course, this role is reversed.) What we seek
is some algorithm that, given ?, returns ?, that is, ?- l"(?). To
do so, the dependence of 7 upon ? obgserved in the Monte Carlo events

i3 used to parameterize this dependence for a general ?

This parametrization 1s in terms of a set of reduced variables,
obtained by the following prescription: First choose the origin for

the ?’s at their center-of-gravity, that is, form

T=T-0) ., (IV.2)

where the average is over the set of N Monte Carlo events. Then per-
7
P

significant linear combinations of x-basis components. This uefines

form a principal component analysis on the ‘s to find the most
a new basis of event vectors ?ﬁ in terms of a real orthogonal matrix
A:

'é’p - A-?p (1v.3)
A benefit of the principal component analysis 1s that the first com-
ponent of § 18 the most significant, 1.e., ashows the most variaticn
over the data set, followed by the second component, and so on. It
1s often the case that not all components of ¥ are independent; then
the least significant components of g are fixed. For example, Lif we
take ¥ as the set of tvelve reduced wire numbers for a trajectory
through our spectrometer (i.e., one hit per sense plane), then there

are at most eight fndependent componeats of T, since specifying the
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wire numbers of any two sense planes iIn a MWPC essentially determines
the wire number of the third sense plane, to within small corrections
due to parallax, finite spatial resolution, etc. Thus, components

9 = 12 of ? should show no variation over the data set, and Eqn.
IV.2 insures that they are in fact near zero. The _e)'s are then
further trangformed to restrict their variation to the interval

[-1,1), i.e., for each compenent 1,

P, ____E;_ (IV.4)
F sl 1]

The maximum is taken over the set of Monte Carlo events.
Once the ?’s are found, an expansion in Chebyshev polynomials
18 used to parametrize the dependence of the s upon the s, 1f
the first m components of ',5) are used in the expansion, we have
D s . Y T 1T, (T, (By)eoT, (0 w1y, 5)
1,:I.z,...,:Lm 1 2 m
where Tm(c) is a Chebyshev polynomial of order m. Chebyshev polyno-
mials are used for the expansion since they minimize the maximum
deviation of the fit from each data point, rather than some "global"
quantity such as chi-squared. This 1s precisely the property we
desire for parametrizing tracks, l.e., we seek a good approximation

to the ?‘e for each event.

B.2. Results of Chebyshev Parametrization

In practice, a guess for the various Yp's is first wmade. The

Chebyshev parametrization is then made for the difference between the
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guess and actual value. For example, a first guess to the momentum
13 given by inverting the effective edge formula Eqn 1IV.1l. Provided
the guess introduces no pathological bilases, this procedure results

in a much more rapid convergence of the above series.

The coefficients of the Chebyshev series are determined by con=
sidering 500 Monte Carlo events, distributed preferentially over the
boundaries of the JANUS spectrometer acceptance. Since the Chebyshev
parametrization has the mini-max property only over the interval
{-1,1], the physical acceptance boundaries must be slightly expanded
in selecting the Monte Carlo events. This insures that the reduced
variables ep encountered for real events will always be within the
applicable range of the fit. The fitted quantities are the spherical
components of the initial momentum vector (in the laboratory system)
;: and the initial x and y coordinates at the target. (The orienta=-
tion of the coordinate system 1s shown in Fig. 3) An expanaion of
roughly 25 terms suffices to obtain the accuracy given in Table 1

below:
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Table 1
Results from the Chebyshev Parametrization of
Ideal Monte Carlo Tracks

Quantity {e-£1t)) {(Me-£16) %)
Bl (Mev/c) -0.01 2,46
o (degrees) 6.43 %10~ 0. 060
¢ (degrees) 3.19 xlﬂ-s 0. 040
) 1.60 x10~* 0.253
y M€ (en.) 1.60 %1073 0.077

The above results are for ideal Monte Carlo tracks, i1.e., sto-
chastic effects such as multiple scattering and energy loss have been
turned off. Thus, Table 1 provides an indicatiom of the intrimsic
accuracy of the Chebyshev fit. Inclusion of multiple scattering and
energy loss in the target (here assumed to be 1 gm/cmz KCl), Sl and
52 counters, MWPC’s and the air determines the actuasl resolution
obtained for the fitted quanticies. These are shown in Table 2

below:
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Table 2

Resolution for Fitted Quantities in Presence of
Energy Loss and Multiple Scattering

Quantity ((actual-fitl} (igc:ual-fit)2>
Bl _(Mev/c) 3.74 3.79
8 (degrees) 0.042 1.01
 (degrees) 5.63 x1073 1.39
1™ (enl) -0.053 1.09
vy en.) 0.046 0.893

Note that, due to multiple scattering and energy loss in the
target »nd the § counters, the momentum of a typical pion is reduced
-
Alpy,q!
by not quite 4 MeV/c. Nonetheless, the momentum resolution -
1P Lag!
—
is, as a function of PLAB - 'pLABI’ everywhere less than 4%, as
shown in Fig. 9. Also shown in Fig. 9 is the absolute resolution,
le€e, 00 W <Qﬁp )2> 1,2. The behavior of ¢ ay a function of p
P LAB p LaB
demonstrates the two sources of error in momentum analysis. At low
values of Prap’ dh is dominated by multiple scattering. As PLap
increases, the multiple scattering beccmes negligible. However, high
rigidity pions are bent less by our spectrometer, so that 2mm spatial
resolution of the MWPC's becomes important in determining the actual
trajectory. The total contribution of these two competing effects is

minimized for 250 MeV/c § Prap § 430 Mev/c, which is the interval

where the majority of our pions are found.
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More relevant to the two-pion analysis 1s the resolution for
relative momentum in the CM system. Various measures of this are
presented in Figs. 10 and 11, as a function of the relative momentum.

These results will be further discussed in the next chapter.

8.3, Final Event Selection

Several cuts are applied to each track found by the pruning pro=-
gram. First, the trajectory is projected to the AB~-counter plane,
and the expected AB-combination is predicted. The actual combination
that was hit is required to agree with this prediction to within %1
combination (to allow for finmite spatial resolution, multiple
scattering, measurement errors,etc.). The ADC for the A and B
counters, and the TDC for the combination must be consistent with the
signature of a pion in these counters. This eliminates protons (a
problem only for nt runs) and out-of=-time pions (a problem only at
the highest beam intensities). For the surviving tracks, a Chebyshev
fit is then made to the initial momentum ]? and the initial position
AN
TARG
three MWPC’s 1s used to predict the location of the hit for this tra=

at the target Additionally, the information in the first

jectory in MWPC4. Further cuts are then made as follows:
-
X

TARG
the beam spot on the target. 4 typical x and y distribution of

The initial production paoint must be within the limits of

TARG ig shown in Fig. 12. The distribution is roughly Gaussiam,

and congistent with the observed beam spot location and size for

that run. Thus, the mean value of X 1ARG reflects the fact that the

beam was known to be approximately 2-3cm nearer JANUS than the
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nominal beam-line axis. As an example, the cuts used for the distri-

butions of Fig. 12 were =l.2cm £ %ranc € 6.8cm and

AR

-3.0cm € € 3.0cm. Next, based on the fit to che initial angle

Y1aRG
of the pion, a cut is made to eliminate all pions that would have

passed through the lead collimator. Finally, the predicted value of
the MWPC4 hit is compared to the actual value, and a cut is made om

this quantity.

The above cuts are applied independently to each track in an

event. In addition, two cuts are made on the relativa orientation of

the two-picm events. The first such cut requires that the tracks be
geparated by some distance Rsep in all four MWPC’s. This cut insgures
that the cross-finding procedure described in Section A of this
chapter has not somehow created a decond track froa the wires of a
single particle event. Variation of Rsep thus provides some indica-
tion of the frequency of fake track generation. Normally, Rsep is
set to l.5cm. A second cu. is made on the separation at the target

- >
of the two tracks, i.e., on xse‘IJ - XTARGI - xTARGZ' Presumably, the

distribution of ?;ep will be narrower for two plons created in the
same nuclear collision than for two pions created in separate colli-
sions at different points in the target. We may test this hypothesis
by forming the ?;ep distribution for real two-pioo events, and com-

- -
paring it to the distribution generated by taking xTARG1 agd XpaRG

2

from different events. The effect 1s particularly dramatic for the
y~projection of this distribution, shown in Fig. 13. While not as

striking as the y-projection, the x-projection is also narrower for
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real events as compared to random events (a FWHM of 5.2cm as compared
to 6.3cm).
The events that pass all cuts are written to a disk file for

further processing. This forms our data base of good two-pion events

from which pion source parameters are extracted through a correlation

analysis-

GC. Third Pass: Generation of the Correlation Function

At this stage of the analysis, we have a file of correlated,
momentum~-analyzed, two-pion events. In this pass, the set of two=-
plon events is used to construct the correlation function (defined in
Chapter II). Since there 1s a variety of prescriptions for this com-
struction, and since there are some subtleties involved, we begin
this section with a more detailed examination of the correlation

function.

In general, a normalized two-particle correlation function is

defined as

(ag)" _ anjov;

(IV.6)
"(n"-l)) d3n gig

-
C (P 1apy) = a

=1+ AT
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where A\ = 0 for large values of l?l —-p)zl- In this expression, the

number densities are defined as

3n - i.d3
dp % ap
The presence of the factors involving the pion multiplicities insures

o,
Y

w
w

that the numerator and denominator have the same normalization. They
result from the definition of the one-particle inclusive and two-

particle inclusive distribution normalizations, i.e.,

[£87 - (a,)

dp
and
_d_e_n_d-’ d-> .( ( _1))
3, 3P 19P2 Bn'
dPIdPZ :

In principle, one could congtruct the correlation function by
directly measuring the two-~particle inclusive, one-particle
inclusive, and total cross sections, then computing the ratio defined
in Eqn. IV.6. In practice thia is unever done, for a variety of rea=-
sons. First, there is the purely practical matter of obtaining suf-
ficient scatistics in six~dimensional phase space. Second, it is
known that, Lif the pions are well described by plane waves, then
/\(-P)l.-P)z) = /\(40.7{)- lp(qo‘_q))lz, vhere p is the Fourier transform of
the source density and 9, and ? are defined in Eqn. II.22. (We will
use these symbols, along with q = I?l, for the remainder of this
thesin.) Finally, there are systematic uncertainties in a simultane-

ous determination of three different types of cross section. In
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fact, the mere requirement of one plon versus two pions leads to a
substantial trigger bias. The nature of this bias is discussed in
detail in Appendix D, where it is analyzed in terms of impact parame~
ter selection. The results of that analysis indicate that a one-pion
trigger for the JANUS spectrometer skews the mean impact parameter
only slightly from that of an imelastic trigger, whereas the two-pion
requirement (for Ar + KCl) ia equivalent to the Streamer Chamber cen-

8 & = 180 mb., or b £ 2fm. Thus, even in the

tral collision trigger7
limit of an infinite amount of data, a blind application of Eqn. IV.6

would lead to an improper averaging over different event cliasses.

Therefore, instead of direct application of Eqn. IV.6, we seek a
method for describing all features of a relative momentum spectrum
for a given re;ccion, except the Bose-Einstein correlations. The
resulting distribution B(qo,HB, called the background distributionm,

would then give the correlation function when compared to the actual

spectrum A(qo.?) :

Y Aqg,)
Cy(q5q) = (Iv.7)
2o Blqg,d)

There is a variety of prescriptions for gemerating B, each with
application in various regimes. Before describing the method we
chose to use in this work, it is illustrative to examine alternative
procedures.

The most direct approach to calculating B requires the presence
of a complete dynamical model for the system being studied. B(qoﬂﬁ

is then explicitly calculated by removing the like~particle
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symmetrization from the model. Not surprisingly, the only model
amenable to calculation is the statistical model (see, e.g., the
results of Refs 32 )» The obvious difficulty with this method is
the model-dependence. The features in a Cz(q0:35 go obtained meas-
ure the deviation of A(qo.?) from the model used for the phase space
population; ounly in the limit of a perfect model, i.e., 4 complete
theory, does the resulting C2 accurately reflect the Bose-Einstein

enhancement.

The remaining techniques for determining B all attempt to use
the data directly to obtain the expected phase space distributiomn for
like-particle pairs in the absence of Bose-Einstein correlations.

For instance, i pairs presumably reflect the same kinematic con-
gtraints as w mw_ pairs, but do not obey a symmetrization requirement.
Unfortunately, the production mechanism and final state interactions
of n+n- pairs are dominated by a series of resonances ( 3, ps Wheae )
not present in the like-pion channel. Nonetheless, provided the con-
tributior from these resonances may be removed

43,48,47-55 this approach 1s often very useful (see,

unambiguously,
however, Ref. 54). Implicit in the use of this background is aqual,
or at least well understood, detection efficiencies for nt*s and

n *s. This is certainly not the case for the JANUS spectrometer,
which is not capable of simultaneous measurement of opposite charged
pions. Furthermore, the utility of n+n- background generation for

heavy ion physics is questionable. First, present-day energies are

guch that "+-p separation is difficult over much of phase space.
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Secondly, the Coulomb effects of the residual nuclear charge are

opposite for n+ and m, leading to observable differences in their

momentum Spectra.

Yet another technique for generating B from the data uses fake
two plon events created by mixing individual pion tracks from dif=~
ferent events. Since the Bose-Einstein interference does not extend
from event to event, this approach should produce a background spec-
trum containing the actual single-particle detection efficiencies as
well as the relevant phase space factors. This i3 the method that we

chose for the analysis of our data.

While intuitively appealing, the use of pilons from different
events may be complicated by several possible effects. First is
energy-momentum conservation, or rather, lack of it. This is indeed
a valid objection for some high enmergy physics experiments, where the
small number of produced particles, leading particle effects, jet
phenomena, etc. can lead to strong kinematic conatraints. In some
cases, it is possible to circumvent this problem by creating a spec—
trum of "random" pions by the exchange of momentum components of dif=

40,564

ferent pions from the game event. For heavy ion physics, this is

not expected to be a serious problem, in that the energy contained by
the pions is a small fraction of the total available energy. To See
this, consider the collision of two nuclei of mass A in the CM sys=-
tem, where each nucleus has energy yCMA'HN' Assuming isospin sym=

metric matter, this ratio is
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<E > 3<n_>
fa W _Lon
g~y 24

For ceatral l.8A°GeV Ar + KCl collisions, <n > = 6, and <E"> H 2m",
n

(1V.8)

leading to £ & 17%. Thus, it is unlikely that any combination of two
plons in a given detector will make significant inrcads on this large
reservoir of energy. Similar considerations apply, of course, to

mementum.

The nature of the statistical errors for background events
represents a second effect in different-event mixing with sudbtle
cousequences. If we begin with N pion momentum vectors, we can gen-
erate from them VZN(N-I) = VZNZ pairs of background eveats. Say n
of these pairs fall into a given bin in qo-q space. MNaively, we
might assume the error omn n to be given by d; - V;; However, one is
always suspicious of getting something for nothing, which is just
what our background mixing has done. That is, the background mixing
has resulted in, for large N, a tremendous increase in the number of
background pairs, while starting from what may be a quite limited
statistical base. A more careful analysis shows that the actual

3/4.

error 18 given by ¢ = This effect has important consequences

for our data analysis, which are diacussed, along with a derivation

3/

of the n3/* rule, in Appendix E.

The third problem with different-event mixing arises when the
correlation factor A(?l;?}) shows little variation over the detector
acceptance region. To see this, consider the extreme limit of a very

narrow-band spectrometer, where all accepted pairs have small rela-
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tive momentum compared to the correlation function, i.e,

- - 1

|p1 - pzl S g for all accepted pairs. Then any mixed pair will
inevitably be made of pions associated with another close partner in
the real event. This leads to a "dilution" of the enhancement, in

that the background B also contains the effects of the correlation
factor A.

To see this mathematically, consider for convenience a discrete
model for a two-pion correlation experiment. Let qi denote the spec-

trometer acceptance for events with momentum ?i' i.e., oy = u(?i).

3
similarly, let uy = d—-&, and C,, = C (T)’ ? ). (This analysis
1 4.3 19 2'P1,Py

P

i
assumes that C2 is a function of the two individual momenta. This is
for mathematical simplicity only. The use of q and 9 simply intro-
duces some additional sums and projection operators, while cbscuring
the physical origin of the effect.) The real one pilon counting rate

is then given by

R
P (D) = g (IV.9)

while, assuming nij - ninj, the two-pion rate 1is given by

Py (11) = gy o eC, (IV.10)

Clearly,

P3(13)
Rerebery Cyy
NENA(EN
This is jusct the discrete form of Eqn IV.6. Now consider the results

of generating a background apectrum by mixing individual pilon pairs
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from different two=pion events. The number of fake pions with momen-

tum 1 is given by summing over all unobserved "second" pions, thus

Pf(i) - "1‘“1'2 % (Iv.11)

The correlation function from mixing different events is then given

by
R
P, (1))
1£f l%—- (IV.12)
Y rman

where the fake two-pion distribution is given by

. F F
PE(13) = P(1)°P[(3) (1v.13)

= [gimignmmmcim] ’ [D juﬁ ;nnmncj n:l

Writing C, = 1 +A:Lm' we obtain

im

Sy w 2y w
diff m2% 00

n .
Gy " TR es,T g

(IV.14)

with

6 :nmmm Aim
[y (IV.15)
i :gmuxm

2N, A .
p- S
2N

Here Nm is the actual number of events measured with momentum ?m'
The numerator of Eqne IV.12 is an arbitrary normalization constant
whose magnitude depends on the number of pairs used to mix our back-

ground. Thus, C:;'ff will be proporticnal to (:1.1 only 1f the
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variation of 61 and Sj is negligible over the spectrometer accep-
tance. Such is not the case for the JANUS spectrometer, where the
influence of the correlations on the background spectra is substan-
tial. Monte Carlo studies for the JANUS spectrometer indicate that,
assuming an initial correlation function with “typlcal" source param-
eters, the Cgiff generated by different-event mixing is essentially
flat. The reason for this surprising result is that the 61'3 in

Eqn.and have a momentum variation similar to Cij’s.

Fortunately, Eqn. IV.12 also contains the solution to these dif=-
ficulties. If we had a priori knowledge of the 61'8, then we could
remove their influence by weighting each fake event by the factor

845 = T8I (08,7

i h|

In practice, of course, the 61’9 are dependent on just what we're
attempting to measure, i.e., the source parameters contained in A.
Therefore, a recursive approach is required: First some initial guess
for the source radius and lifetime is made. The 61 for each event
with momentum';; is then determined by evaluating the sum given in
the second line of Equ. IV.15. The correlation function is then cal=-
culated by weighting each of the background events with the gij's
given above. A fit is then made to th= correlation function to
extract the new source parameters (as described in the next section),
vhich are then used to close the loop by re~evaluating the 61'5.
Assuming a good guess 18 initially made, this process is rapidly con-
vergent, requiring 2-4 iterations to obtain values of the source

parameters stable with respect to further iteration. The values so
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obtained are independent of the starting values, as verified by both

actual data and by Monte Carlo simulation.

We close this section with a theoretical remark. The alert
reader will have noted that , even in the limit of 100% detection
efficilency over all 4m, the Si's do not vanish. This effect may be
traced back to the second line of Eqm. IV.6, which is derived on che
assumption of independent pion emission by the source. (Recall the
passage from Eqn. II.25 to Eqn., II.26.) The validity of this assump-
tion is measured by the size of the Si'a. One may show, either by
direct calculation using some parametrization of the Cij'a and u&'e.
or by the argument contained in Appendix A of Ref. 58, that these

3
<>
correction terms are the order of €« = g , where <A"> is the aver-~
R

age pton wavelength, and R 1s the source size. (The similarity of

this result to Eqn. II.4 18 not coincidental.) It is further shown in

1

Ref. 58 chat & ~ ry £ 5% for heavy ion collisions of atomic aumber A.

D. Fourth Pasg: Ficting the Correlation Function

The correlation functions calculated via the prescription of the

previous section are fit to a function of the form

Clagew = 8[ 1+ MGage0)] (1v.16)
where A 18 the squared Fourler transform of the assumed source dis-
tribution. Our canonical parametrization is a Gaussian ome, viz.,

- q%tzIZ - quZIZ
A(qO-q) - e
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The normalization constant ¥ is of no physical significance, since it
merely normalizes the total number of fake events over the acceptance
to the total number or real events. The parameter )\ is a phenomeno~
logical device introduced by Deutschmann et al.['8 to measure the
“serength" of the interference effect. While for a fully chaotic
source we must have )\ = 1, the presence of dynamical correlations,
exotic processes, final-state interactions, background contamination,
etc. can all lead to deviations of )\ from one. Thus, it is advanta=-
geous in the fitting procedure to leave A as a free parameter to

reflect the presence of such effects.

The method used to fit the data deserves further examination, in
that there does appear to be some confusion in the literature. It is
extremely dangerous to use a least~squares analysis to fit the corre-

lation function, i.e., to minimize the quantity F, where

e [Cytagra) - K(qo.q)]z ‘
qo.ql. ney .'

(Here K is the assumed form for the correlation function.) The prob-

lem with vhie approach results from those bins where Cz 1s determined

by the ratio of two small numbers. In this case, the real event

number A(qo,q) and the background number B(qo.q) are both Poisaon-

.

distributed variates, not Gauesian, and their ratio 1is zertainly not

79 This has two consequences. Firet,

a Gaussian~distributed vartable.
standard error—-propagation formulas for a(cz) no longer apply.
Second, chi-squared minimization, which assumes a Gaussian distribu-

tion of errors, is no longer a valid fitting procedure.
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The solution to these difficulties lies in the Principle of Max~-
imum Likelihood (PML). In this approach, we calculate the probabil-

ity that A,, real events are obtained in the ij~-th bin, given that

1]

the background for that bimn is Bij and the correlation function is

CiJ' That is, we seek P(Ailein:iJ-BiJ). This is clearly a Poisson

distribution; thus

A
B @)Y 3
P(A, |2 )-——1—-: — e o, (Iv.17)
1]

The PML formulation Simultaneously solves both problems discussed in
the previous paragraph: The ratio between A and B 18 not taken, and
the Poisson statistics of A are explicitly incl\;ded- Note, however,

that this method assumes that B has negligible error relative to A.
A fit is obtained by maximizing the total probability 3,

b= IIP(AUI iJ) (IV.18)

In practice, one mirimizes F, the negative log of 8,

F ™ -1n(®) (1V.19)

1171 J
The minimization routige used is MINUIT,

'z A’-J —A lnA +1n(A

80,81 a very general and

powerful program well-suited to multi-parameter minimization and

error analysis.

There are two reasons for minimizing the negative log of §,

rather than ~§ irself. First, since P(A IA ) < | always, the pro=-
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duct for § will become very small zs the number of 1j-bins becomes
large. Thus, to prevent machine round-off errors, and to "slow down"
the variation of ¥, we perform the usual trick of dealing with the
logarithm of P. The second reason 1s a more fundamental one: in the

limit of large A,,’s, the distribution of Aij about Z;j becomes Gaus~

1]
sian, and minimization of «ln(P) becomes equivalent to a comventional
least~-squares minimization. This 1§ most easily seen by simply writ-

ing

_2 —
1 e-(A - A)7/2a

lim P(A[A) =
Ao 20
in Eqn. IV.18, then taking the logarithm as in Eqn. IV.19. In the

following, we invert this procedure, i.e., the large 4 limit of the
second line of Eqn. IV.19 1is explicitly evaluated. By doing so we
will derive a goodness-of~fit parameter that is the analog of chi-

squared for distributions containing small numbers of events.

Using Stirling’s approximation, we have for a given term of the

sum for -1n($) (dropping temporarily the ij-subscripts)

A - AlnA + 1n(Al) = A - AloA + [AlnA -A+ by ln(ZnA)] (1v.20)

-a=-2) - Aln[ %} + Y5 10(zma)

- A-A A-A
= (A-3) =-a ra Yy, = + oo + Yy1n(2na)
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~_ .2
= -(-%A#-L + lYyln(2nay .

Our sum is thus

A 3

- 2

(A, = A )

F - é — ey Yy n2ma, ) (1v.21)
1]

= ]7’2 (chi-squared) + (comstant) .

This leads ua to suggest that the appropriate generalization of chi-

squared for Poisson distributed variables is lhe quantity

2
(%) ppy, ™ 2F - g ln(ZrIAij) » (Iv.22)

gince in the limit of large Aij's it reduces to the conventional
chi~squared. (Here F is =1n(P, as defined in Eqn. IV.19.) The
(empirically obaserved) properties of (X)ZPML will be discussed in the

next chapter.



CHAPTER V

RESULTS

In this chapter i he methods of Chapter IV are applied to an
analysis of the two-pion events. Hovever, before doing B0, We exam-—
ine the single-particle spectra from both our one and two-pion
triggers. By comparison to the results of other authors, we obtain
information regarding the detection efficiency of our spectrometer,
as well as testing our Monte Carlo calculations of the spectrometer
acceptance as a function of momentum. At this point we remind the
reader that all measurements reported are for a beam energy of
1.8 A*GeV. Two systems were studied: 4oAr + KC1 and ZONe + NaF. For

the mass 40 system both 2% and 2n+ data were taken; for the mass 20

system only 2n pairs were measured.

A. Single Particle Spectra

Since the correlation function as calculated by the preseription
of Eqn IV.7 is independent of the absolute normalization, measurement
of the actual magnitude of various cross sections 1is not required to
generate C?(qo,q). This fact, combined with the restricted time
available for experimental observation, argued against performing an
extengive series of efficiency measurements for each component of our
detection system. However, since the ion chamber output was
recorded, and its calibration known, we may invert the usual pro=-

cedure to obtain our overall detection efficiency. Furthermore,

60
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since (with one important exception to be noted below) our piom
detection efficiency is expected to be independent of momentum, we
may ext¢ract the shapes of invariant momentum spectra as a valuable

check on our understanding of the spectrometer’s acceptance.

In Figures 17 through 20 the invariant cross sections for one
and two pion triggers are presented. These data are presented in
terms of a cross section multiplied by an unknown efficiency factor
‘1. where 1 = 1(2) for one(two)=pion trigger requirements. The two~-
plon results are presented in terms of the invariant momentum distri-
bution for one of the pions, with the "second" pion anywhere in the
JANUS spectrometer acceptance. The spectrum is then also incremented
for the momentum corresponding to the "second" pion, thus, it is
incremented twice for each two-pion event. In all cases, the spectra
show the characteristic exponential decay characteristic of pion pro-

82

duction in RHIC. There are two notable deviations from this

exponential behavior. The firat occurs for E. 2 500 MeV and is par-

M
ticularly prominent for the n+ spectra. This is obviously an
unremoved proton contamination. The logarithmic invariant cross sec~
tion plot dramatizes the contribution of these events. To show this,
in Fig. 16-20 we also present the corresponding plot of dn/dPLAB'

For example, in Fig. 18, the arrow at EcM = 500 MeV corresponds to
the arrow at PLAB % 700 MeV/c. The proton contamination is barely

discernible in the laboratory spectrum; its contribution to the total

cross section is well under 1%.
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The aecond deviation from the exponential slope 1is present only
in the one-pion trigger data (Fig. 17) for Em1 $ 220 MeV. This is
the momentum-dependent efficiency alluded to above. Specifiecally,
the thresholds of the Sl and S2 trigger counters were set for the
passage of two minimum-ionizing particles. Therefore, these counters

became efficient for the detection of ome pion only for

LAB sere 8E > o[dE
1‘“ < 35 MeV, wisere ax > z[dx min® The enhancement 1s observed for

precisely those values of ECH corresponding to the above condition in
the laboratory.

To eliminate the influence of these two effects, fits were made
to exponential distributions in the region 240 MeV < Ecm < 540 MeV.

The results are presented below in Table 3.

Table 3
3 -E. /B
Results of Fits to E—d—%.- Ae Qo
dp
System | Trigger A 2 E «+do/dn
(mb/ar-Gev") (M&) (mb/sr)
Ar+KClL in~ 42.5 771 20.9 x10°
Ar+RCL 1t 24.9 got3 | 10.8 x103
Ar+KCl 2 183 732 113
Ar+KC1 on' 117 7742 58.3
NetNaF |  in” 7.43 7921 | 3.38 x103
Ne+NaF n .083 811 35.0
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While there is some variation over the various data sets, the
exponential slopes Eo are all consistent with 77 MeV, in reasonable
agreement with the value of 80 MeV derived from streamer chamber
measurements by the GSI g,mup.83 For the Ar+KCl system, Eo for n+'a
is greater than for the corresponding n trigger, in accord with sim-
ple models des~ribing the effect of the Coulomb interaction between
the nucleons and pions-84 The value of Eo for the NetNaF oystem is
slightly greater than that for the analogous Ar+KCl trigger condi-
tion.

Also given in Table 3 are the integrated effective cross sec-

tions, i.e.,

@©
do JE‘E/Eo plap _ K12 o
E

where Kl(z) i3 a modified Bessel fumction. The cross sectiom is

de
an

To determine the Gi's. we use the extrapolation of Nagamiya et al.82

of their 2.1 A°GeV Net+NaF data to 1.8 A°GeV, thereby obtaining

given in terms of an efficiency ‘i times for pions at Oy T 90°.

[fﬁf je S 85 mb/sr. For the Ar+KCl data, we use the data of Ref. 78,

which gives a total pion production cross section of 4.4b. Allowing

for the observed angular d:l.ait:ribution85 of 1 + cuazecu, this gives,

for GCH = 900, [gﬁ]A: & 263 mb/sr. We note that the value so
5/3

obtained 18 consistent with an A scaling law between the Ne and Ar
systems, although the overall accuracy of these arguments is probably
insufficient to exclude an Az behavior. The ratio of n+ ton yield

for the ARHKCL system is taken as l.46, the value obtained in Ref. 82
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for this system at a beam energy of 800 A°MeV. While use of this
ratio at l.8 A*GeV has no strong theoretical basis, in light of the
approximate equality of the corresponding slope parameters (/6 MeV
ve. 77 MeV) and the very rough nature of our efficiency calculations,

we feel that the assumption ia adequate.

To model the detection efficiencies, we assume that there are
three types: “g» which accounts for the threshold bias 1in the S
counters for singles runs; <., which is the efficiency for obtaining
a plon after S has fired, thus it reflecta the performance of the
MWPC’s, the probability of track recognition, and the likelihood of
passing the various cuts applied to a trajectory; and finally ‘P’
which accounts for any additional inefficiencies for finding a pair
of pions in a two pion event. Writing for convenience %ﬁ - &, we
can express our measured crogs sections ai in terms of the actual

cross sections al as

“In " %" ln

and

m ™ 2 D" D % -
We assume that the true two plon cross section 32" can be described
in terms of the mean number of pion pairs Vz<n“(n"-l)>. the JANUS

acceptance AJAN' and the mean value of the correlation function in

JANUS <c2>, as
e
T = <n_(n ~1)>°<C>*A, =il
2n nn 2 JAN <n">
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The last term in the sbove product merely represents the geometric
probability of a pion~producing reaction. There is no factor of
one=half on the RHS of this equation due to the definition of the

two-pion cross sections given above.

For any given system, there are three unknown <«’s and only two
known quantities, 01" and dh“' However, we may estimate 65 from the
low ECH behavior of the invariant cross section, where the S counters
become efficient for single particles. Thus, for the Ar runs, we
obtain ‘S 2 702, and for the Ne rums ‘S & 40%Z. (These runs were
separated in time by 7 months, and the operating voltages and thres~
holde for the counters were not necessarily the same.) For ail data

sets we then obtain « = 20%. This value, while low, is attributed

b
to the large number of elements in our detection system, along with
unfavorable operating conditions for the small MWPC’s. A perfect
one-pion trajectory in our spectrometer must fire three counters and
12 planes of MWPC read-out. While the cross-finding ability of the
tracking program reduces the requirement on MWPC performance, it is
clear that any major inefficiencies in more than one read-out plane
quickly becomes a major problem. The high intensities required for
sufficienc event rate ( 108-109 incident fons/second) produce a high
background of heavily ionizing particles in the small MWPC’s, a comn=
dition known to lead to substantial impairments in detection effi-

ciency for minimum ionlzing tracks.

Finally, the values of €, obtainud are best left expressed im

P
terme of the pion multiplicity. This is done to make explicit the
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stacistical assumptions of this model for the detection process. For

the Ar 7 and w+ two~pion runs we obtain

- 7<n"> + 8-5<n">
€, (2n ) 27— and G(Zn):——-—_—'? .
P <n"(n" 1)> P <n"(n" 1)

With <n"> = 4, and <n"(n"-1)> H 62, quite :?asonuble numbers aie
obtained for the nailr detection efficiencics. (Here we have used the
known multiplicity bicses for the one and two-pion trigger require-
ments obtained in Appendix D.) Such is not the case for the Ne data,

where we obtain

1 0<n">

GP(ZI'I-) = E—n‘ﬁ:l—); .
Thua, for any reasonable values for the pion multiplicities involved,
a detection efficiency ol greater than 100X is obtained. This could
indicate some change in detector performance between the one and
two-pion data taking (the one-pion data are the results of only ome
run), or could indicate a breakdown of this model for efficiencies in

the presence of large trigger-dependent multiplicity biases (see

Appendix D).
B. Two Pion Data

B.l. Orientation

At this point we remind the reader of the variables used in our
correlation analysis. The relevant quantities are the magnitude of
relative momentum g @ l-p)l --p)zl, and relative energy 9, = II:-:2 - Ell'

The correlation function is f£it assuming
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-a%%z2 - q:"Z/Z (v.1)
Cpla, @) = 1+ Je >
wvhich corresponds to a source density of the form
plr,t) ~ e-rz/Rz - tzﬁtz . (V.2)
We defer until later the interpretation of R, ¢, and A.

In Fig. 21 profiles of an ideal correlation function are shown,
taking account of the JANUS spectrometer acceptance. The contours
are separated by 10 MeV, and R and "t are given typical nuclear dimen-
gions. It 1is apparent that only a narrow slice of the total (rela-
tive) phase space 18 measured. However, Flg. 21 is somewhat mislead-
ing in that only half of the 1,74 plane is kinematically accessible.
To see this, consider the relative four-momentum
t = (p2 - pl)z - qg - qz- This quantity is of course invariant, so

we may evaluate it in any frame. Calculating it in the two-pion

center~of-mass frame, where P1(2) L ,|Qz+m:,, ﬁ'], we find

2

t = '4Q2- Thus, q2 - q2 + 4Q2 > q, for all non-zero Q. This implies

0
that only the region to the right of the line q =~ 1, in Fig. 21 is

allowed.

Nonetheless, the fact remains that q = 1, for wost of our two
pion events. This presents a problem regarding visual presentation
of the correlation function. Clearly, it mahes no sense to define a
slice of constant q or qo. then present (say) Cz( q,qo-constant).
For our acceptance, this produces only a few points, as is readily

seen from Fig. 21. Instead, we definre the spectrometer-dependent
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projections
b3 A(qO-QJ
qO
(e@) = 550 .3
qO
and
2 A(QO-QJ
a
(cy0q,)) =8 a0 (V.4
q

huAhyﬂiameumunmurﬁenmsumanqwam
B(qo.q) 18 the corresponding background. We emphasize that these are
not true correlation functions; it is only a curious fact of the
JANUS acceptance that the resemblance is & close one. For instance,
1f the kinematically allowed region in the 9,-4 plane were completely
occupied out to some large value of q and 9, (Cz(q)) would appear
much more sharply peaked than the actual correlation function, while
<C2(q°)) would be flat. On the other hand, for our spectrometer,
these projected cz'a provide some notion of the actual variation of
the data, along with an indication of the accuracy of the resulting

fics.

Be2. Results of The Fitting Procedure The data of momentum-

analyzed twc-pion events that have passed all cuts consists of
approximately 6700 2n  pairs and 5500 2nt pairs from the Ar+KCl ays-
tem, along with a subset from our Ne+NaF data-base consisting of
~10,000 2n~ pairs. In each case, the background spectrum was calcu-
lated using every possible combination of pions from different

events, in accord with the requirements discussed in Appendix E. The
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results of fits to Eqn. Vil are presented on the next page in Table

4.
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TABLE &
Systea Fit A R cr (x%) /xoF chizaquarel
conditions (fm) (fm)
+1. 1 -4
No Gamow 0. 40%0. 05 0-0_0 0 4.58 .0 101.4/105 57.2/80
Gamow 0.63¢.06 | 2.88%0°3 | 329718 | 17677147 | 98.2/89
corrected y :
Gamow +0.6
Ar+iCl | corrected, 0.64%.04 - 2.70 3.54 0.10 176.8/148 98.2/90
2"‘ R fixed —
Gamow .37
corrected, 0.64%.04 3.53 '35 - 1,91 178.0/149 98.6/90
T £ixed *
Geaow and 6 1.1
Coulomb 0.63%.04 2.77 '9 3-64_1'5 211.2/158 80.3/96
corrected * *
No Gamow 0.48%.07 2.26%1.4 ba 12:;.3 98.7/105 52.4/81
Camow 444 42,4
corrected 0.73%.07 b 20_.6 1.54 1.54 | 160.6/147 67.1/88
Gamow +0.9
Ar+¥Cl | corrected, 0.65+.09 = 2,70 'Y 10_1 8 161.7/148 67.1/88
Z||+ R fixed
Gamow
corrected, 0.72%.06 4.10%.54 = 1.91 160.4/148 67.2/89
T fixed
Gamow and +2.10
Coulomb 0.73%.07 4.10%0. 4 l. 76-1.76 180.5/145 78.5/83
corracted b
No Gamow | 0.46£.09 | 0.0%3'% | 2.98%1.0 [ 122.6/105 | 76.5/82
Gamow +.8 +.90
corrscted 0.59+.08 1.83_i.6 2. 96_1.0 219.3/148 125.7/91
NetNaF
- Gamow +.25
2n corrfec:ad. 0.59%.06 m 2,14 2. 72_'31 219.5/149 126.1/92
R fixed *
Gamow
corrected, 0.60%.06 2.80%,30 - 1.52 220.9/149 126.6/92

T fixed
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We begin our discuasion of the data in Table 4 by directing the
reader’s attention to the firast entry for each system, labeled "No
Gamow". These are the results from fits to correlation functions
with no additional assumptiona regarding the final-state interactions
of the pions (to be clarified below). The corresponding projected

C,’s are shown in Figures 22-24. For all three systems, the values

2
of A are significantly less than one, on the order of 0.4-0.5. Even
more striking are the values of the radius R. In two cases (the two
20 data sets) the fitted values for R are zero, perhape leading one

to question the validity of our entire model for the two-pion corre-

lation function.

Before taking such a drastic measure, we note that one known
iateraction between two like pions has been neglected to this point.
That is the relative Coulomb repulsion between the two pilons, which
leads to a suppression of events with small relative momentum. In
conventional quantum mechanics (see also Appendix F), this effect is

well understood in terms of the Gamow factor,

2
G(Q)-_ZT'%JE_I .q'%z— » (v.5)
e -

which gives the ratio of the probability density at the origin to the
asymptotic value for two-like charged particles of relative momeatum
q and wass m. Weighting the background events to account for this
suppression (note that G(y) must also be included in the 81 back-~
ground correction factors described in Section C of Chapter 1IV), we

obtain the results labeled "Gamow corrected" in Table 4. These data
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are also presented in Figures 25~27. At this point we simply note
that the parameters obtained from these fits are more in accord with
our intuitive expectations based on known nuclear dimensions. How-
ever, before further discussion of these results, we pause to deal

with potential objections to the ugse of the Gamow correction.

First there is the question of remolution. The characteristic
rtange of the Gamow suppression is for those relative velocities
prel H T%?‘ To see structure on this scale requires very good rela-
tive momentum resolution. However, there is a subtlety to this
requirement, in that prel is the relative velocity in the center-of-
maes frame of the two pions, not the nucleon-nucleon center-of-mass.
An extension of the arguments presented in Section B.l of this

chapter shows that the invariant form for Prel is

I 2
4m" -t (V.6)

prel = -t ’
where t & qz - qz. Thus, the large Gamow correction extends along

the diagonzl of the (qo-q) plane, not just for those events satisfy-~

m
ing q = Té%' At any rate, we have made Monte Carlo studies which

show that our resolution is indeed capable of observing the Gamow
suppressjion, and that no systematic bilases are introduced by correct-
ing for the same.

A second objection lies in the precise space-time picture used

to describe the pion source. If the pions are emitted by an extended

gource in space and time, the Gamow suppression must be reduced, 1in

that the pilon wove-packets never fully overlap. In Appendix F it 1s
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shown that this is a small effect for RHIC, on the order of a 2-3%

correction to G(p) as calculated via Eqn. V.5.

The final Aource of error in performing the Gamow correction
arises not from the correction itself, but from its interaction with
a known two-particle track-finding bias in our analysis programs.
Since the tracking program considers two-wire crosses as well as
three-wire triangles as valid wire chamber hits, it is pussible that
it will accept a cross formed from the vertical wire of the second
hit and the horizontal wire (recall that this plane of wires extends

completely across the face of the small MWPC’s) from the first hit.

This of course always acts to reduce the relative momentum between
the two pions, by eliminating the vertical component of :?. For-
tunately, the JANUS acceptance in the vertical direction is quite
limicted, so that this 1s a small effect relative to our resolution
except for those pairs with 9 = 0. Resolving the relative momentum
into components transverse and parallel to the average momentum of

the two pions, we have for this change

2
gq %% _ % Ba
q 2 2,2 4 °
q q  +taq, t

Even in the worsc case, where all of qt is in the vertical direction,
the change in q is small for all except the first two bins of 9y

since <qt> 13 small for our acceptance. In teality, those events

8q
with large :;E-are rare, so that average error in Bq is negligible
4

for all but the first 9, bin.
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Nonetheless, this poses a problem for the Gamow correction on
the lowest bin in 9, in that the the value of q used in the G(p) is
undereatimated, precisely where the Gamow functicm is ao0st rapidly
varying. This leads to a dramatic over-correction om the first bin
of (cz(q)) for the Ar+KCl data, e.g., (cz(q-S MeV/c)) = 3.3 for the
2n~ data. The effect is smaller but still present for the 2|'l+
events. It i3 inastructive to note that correspouding (Cz(qo)) ‘g are
quite well behaved, in that the first few bins in q have been
included by this projection. Further note that the over-correction
15 missing from the NetNaF data, due to improved wire chamber effi-
ciency, and thus improved track identification, for that ruaning

period.

To eliminate the bias due to this effect, the first bin has beem
excluded from all fits reported here. Exclusion of additional low 9,
bins does not substantially affect the extracted fit parameters, in

accord with our understanding of the origim of this tracking bias.

B.3. Discussion of Source Sizes

At this point the reader is referred to Appendix G, where the
basic tools necessary for Gaussian parametrizatioun of sources are
presented. In particular, it i1s shown that l.) A radius R defined
for a Gaussian source as in Eqn. V.2 is equivalent to a source with

uniform density of radius Ru = 1.52R, 2.) A schematic model for pion

production predicts t > » where B and ch are the velocity

\zp

and Loreutz gamma factor for the incident ioms in the nucleon=-nucleon

cem’ cm
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center-of=mass, and 3.) More realistic Monte Carlo cascade calcula-
tions give values of *t 2~3 times larger than the above prediction.

1/3

Assuming R“ » 1.2A"""fm, and using the value of “t calculated from the

model mentioned in Point 2 above, we would have
R = 2.70fnm , > 1.91fm/c for Ar; . (V.7)

= 2.14fm , > 1.52fm/c for Ne .

Examining the entries in Table &4 labeled "Gamow corrected”, we
find values of R and Tt more or less consistent with the above
geometric results. (The least consistent value is the R value for the
Ar+KCl, which 1is 4. 20'::2“.\11.) However, in some cases, particularly the
lifetimes, this consistency 1s obtained at least as much through the
large errors as through the fitted values. The nature of these
errors 1s shown graphically in Figures 29-31, which give the 68% and
95% confidence levels for the determination of R va. . 1t is
apparent that our maxlmum sensitivity 1s to some combination such as
RZ + 'tz; the orthogonal combination (the variable ¢ = tan-l(;-:) ) 1s

only weakly determined. This 1s a direct result of our narrow accep-

tance in q, versus q 1llustrated in Figure 2l.

By fixing either R or ¢ to some assumed value the errors in the
extraction of the conjugate parameter are significantly reduced. For
instance, the entries in Table 4 labeled "R fixed" have the radius
fixed to the geometric values given above. We note that both the PML

quality of fit indicator (Xz) defined in the last section of

PML’
Chapter IV, and the traditional chi~squared show no significant vari-
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ation when R or "t are so restricted, verifying the qualitative infor-
mation provided by the likelihood contours. (The chi-squared entries
of Table 4 are calculated by a restricted sum over only those bius

with at least 5 real events, in accord with the usual preacription86

for the validity of this statistic.)

In general, the NeitNaF size parameters are smaller than the
corresponding ones for the Ar+KCl system. The ratio of sizes is

/3 scaling. A good estimate

roughly consistent with the expected A
of the magnitude and significance of this effect may be obtained by

comparing Fig. 31 to Fig. 29. The lifetimes for the 2n data are

intermediate between the minimum value of R . and the Monte
chycm
Carlo prediction of 5.55 fm/c (for Ar+KCl}. The value of < for the

2n+ data is swaller than one would expect from geometric considera-

tions, although the errors on this quantity are large:

+2.4

.1.54 fm/c.

T =1.5

Finally, we briefly discuss the external Coulomb corrections.
Until now we have neglected the interaction of the pions with the
nuclear charge of the pion source. This is clearly an approximation,
albeit a good one for relative momentum. While the existence of
strong Coulomb effects in single-particle momentum spectra may be
quite Etrikiﬂs»z to first order both pions receive the same momentum
impulse from the Coulomb interaction with the nuclzar charge (partic-
ularly for q = 0). Thus, the change in relative momentum should be
quite small. Nonetheless, in an attempt to increase the consistency

between our 2m  and 2n+ resul-s, we have corrected each individual
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pion momentum vector for the momentum shift produced by the residual
nuclear charge. We do this using tha formalism of Ref. 84 to calcu-
late the change in the p-:h component of four-momentum SPP as a func-

tion of the final momentum Pg:

£
(e ui)Reff

&p (p)--—'zi [Pf-(pfu)u ]
£ 137 1 £ 2 21,2
b k 4w fefep® - el

In this expression z1 is the charge of the i-th nuclear fragment,

(v.8)

which 18 assumed to be moving with four-velocity u, in the frame in
which we are calculating SpP- The notation (pfui) denotes the four-
product between Ps and ui- The effective radius Reff is the recipro=-

cal of the mean inverse radius of the source. i.e.,

1\=1
Regg ™ (r) .
This may be evaluated for our Gaussian source density to obtain

Rpe = x.

eff 2

We -ssume the nuclear charges consists of three fragments, a
fraction f of the initial charge 22 at rest in the center-of-mass,
and two fragments VZ(L-f)Z moving with the target and projectile
velocities. Guided by the considerations of Appendix D, we choose
f = 0.80. Calculating the correlation function with momenta
corrected according to this prescription produces the results 1n
Table 4 labeled “Gamow and Coulomb corrected". The changes in the
radii and lifetimes are small, ( £ 0.2fm ), especially with respect
to the statistical errors on these quantities. This confirms our

intuitive arguments that the so-called external Coulomb correction
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has a small effect on relative momentum determinations. In the

interest of completeness, we note that this i1s at best a crude method
for handling the very complicated three-body final state interaction
problem between the two pions and the nuclear charges. The reader is

referred to Ref. 84 for further details.

We close this section by examining the data of other authors for
this energy. No direct comparison is available, in that the results
reported elsewhere in the literature are streamer chamber measure-
ments for the reactions Ar+BaIz-> 2n"+X and Ar+Pb30 4-> 2n +X. The
authors of Ref.59 find R = 3.05 % l.1fm for the BaI2 target, and
B = 3.3 % .9fm for the Pb3°1. target, both fits being performed with
ot ™ 1,5fm. Allowing ¢ to vary for the Pb target, they find
R = 3.98 % .78fm and c¢ = o.6f(1):§fm. In Ref.6l , the multiplicity
dependence of R for the Ar+1’b304—> 2n +X system 1s studied, again
with 't = 1.5fm. For N" = 2-4 they obtain R = 3.12 & l.1fm, while
for N" = 5~8 R = 4.00 & .72fm. These numbers are quite compatible
with ours for the Ar+KCl system, especlally when it 1is recalled that
<n“> = 6 for the JANUS two-pion trigger. This reinforces our view,

as expresged in Appendix D, that the mean pion multiplicicty is pro~

portional to the number of participants ir a reactionm.

B.4. Implications for Coherence

A nuwber of authors have suggested that value of A may be

ctelated to the degree of coherence of the pion source-58'67 For exam-

ple, in both of the references cited, the result
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2

Neoh
=1 = __-_E%__- (Ve9)
%eoh nch

is derived, which expresses A in terms of the number of cohereat and

chaotic pion emitters n and LI respectively. Taking A = 0.64,

coh
ncoh
ch

we obtain - %5 This is a surprisingly large resu’  but not

inconsistent with some ) values as measured in hadron-hadron reac~

tions.

The determination of the coherent component is complicated by
several systematic effects. First, and perhaps most obvious, is the
interaction between ) and the Gamow correction. These are clearly
closely coupled, so that any small error in performing the Gamow

ncoh
ch

correction may lead to a large change in the value obtained for

A second, more devious effect, results from tue role played by ) in
the background correction sums given in Eqn. IV.15. The errors in X
feed back into the process, which tends to increase the error on )\ to
roughly twice the statistical values given in Table 4. Finally, we
should mention that recent work by Gyulassy71 shows that averaging
over unobserved dynamical variables can lead to large deviatione of )
from 1, even in the absence of a coherent component to the pion
source. Therefore, we feel that any strong statement concerning the

significance of our value for A would be unwarranted.



CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

In this chapter we briefly summarize the important points of
this thesis, then discuss future directions for the use of intensity

interferometry in RHIC.

We have demounstrated in this work that the Bose~Einstein corre-
lation betwecn identical pions leads to an an enhancement for such
pairs at low relative momentum. A simple model for the production
process, i.e., independent particle emission over some region distri-
buted in space and time, allows us to interpret this enhancement in
terms of the source size. The sizes so obtained are consistent with
normal nuclear dimensions. This is already an interesting result, in
that it indicates that the pions we see are created more or less at
normal nuclear density, not some very compressed phase. The measured
lifetimes are intermediate between the minimum values allowed (in a
geometric model consistent with the extracted sizes) and the predic-

tions of a Monte Carlo cascade code.

These results are complicated by the existence of several
effects. Firat, the influence of the correlation on the background
spectrum is large, and must be included. Second, there are subtle
agspects to the fluctuations in the background spectrum, with impor-
tant consequencesd for data analysis. Thirdly, the two-pion mutual

Coulomb interaction requires that a Gamow correction must be made to
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the low relative momentum events. Finally, the data may indicate the
presence of a substantial degree of coherence for the pion source,

thereby obscuring direct geometric interpretation of the source size.

Nonetheless, we feel that there is reason for cautious optimism
regarding future experiments. A spectrometer configuration with
greatly increased acceptance is currently being planned. This will
open a much larger region of relative momentum phase space, with two
important consequences. First, as the phase space increases, the
correction to the background spectrum due to the correlation funciicn
decreases. This fact means that analysis will be more atraightfor-
ward, leading to greater reliability for our estimates of the source
paremeters, and in particular, the degree of coherence. Secondly, an
increase in the relative momentum phase space decouples q from 9,°
In addition to decoupling the radius from the lifetime in the fitting
procedure, this may allow separate extraction of transverse and long-
itudinal dimensions of the source, thereby providing further tests of
the geometric picture of the collision process as determined by Monte
Carlo calculations. Such comparisons can only increase our under-
standing of this developing field.

This work was supported by the Director, Office of Energy Research,
Division of Nuclear Physics of the Office of High Energy and Nuclear

Physics of the U.5. Department of Energy under Contract DE-AC03-76SF00098.



APPENDIX A

IONIZATION CHAMBER CALIBRATION

The ilonization chamber mentioned in Chapter III has been used by
our group and others for several years. In that time, the calibra-
tion constants for a wide variety of incident beams and energies have
been obtained. (See the labeled points on Fige. 5.) The usual pro-
cedure for calibrating the ion chamber consists of comparing the
current measured at low beam intensities to the number of counts
registered by scintillators counting the beam-particles pasaing
through the chamber. Dark current corrections were sometimes made,
although they were found to have virtually no effect on the calibra-
tion obtained. The end result of such & procedure is a number giving
the charge collected per incident ion. Fig. 5 shows that the ion

chamber response 1s well described by
(dE/dx)
16
3 x 10" "{ons/coul
where (dE/dx)ion ig the dE/dx of the beam particle (in Mev/gm en2 )

Rege ®

in Argon.

One may also calculate the theoretical ion chamber responee,
knowing that the chamber uses a 80X Ar -~ 202 CO2 gas mixture at 800mm
Hg, with an active area betweecn the collection plates LIC = 3.18cm.
To an excellent degree of approximation, one msy consider the chamber
to centain pure Ar. Using the ionization constant of 26 eV/ion pair

for Ar.a7 and writing PA: for the density of the Ar gas, we obtain
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R = 26eV/ion pair
PAr'LIC‘l.G X 10-19 coul/ion pair
- l-Ol'Rfit.

in complete agreement with the experimentally derived value.
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APPENDIX B

TRACKING METHODS

1. Track Recognition

Track recognition is performed using a simple geometric model
for orbits in the msgnetic field. The relevant geametry is given in
in Fig. 6, which is a schematic illustration of the JANUS spectrome-
ter configuration. An incoming ray, defined by ﬁ, intersects the
beginning of the effective field region at the point xm. Similarly,
the outgoing ray CD intersects the end of the effective field at the
point xou.r. Since the effective field is constant by definition, the
trajectory in the f£ield region is a segment of a circle. Therefore,
the perpendiculars to AB a¢ xm and to CD at xom. both lie along
radii of this circle, and their intersection point O is the center of
the circle. This of course means that RIN - ﬁ?iﬂ - ﬁﬂ and
Rour = l_fom. - @) are the same length.

The tracking program calculates R for each pair of

IN and ROUT

ingoing rays, then examines the ratio

6 Rour ~ Bin

-
{2 (ROUT + Rm)

Monte Carlo results indicate that Br is a sharply peaked quantity for

real tracks, with an rms width of 3%. The tracking program makes the

loose requirement that |Brf £ 10%f, which selects real tracka from the

uniform distribution in 6r created by random association of unrelated
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incoming and cutgoing rays.

2. Momentum Determination for Planar Orbits

Consider a particle of momentum p and charge e traversing a mag-
netic field. Assume the motion 18 confin.d to the x~y plane, 1i.e.,
1? - (0.0.Bz(x,y) ) and ; = 0. The trajectory in space is then
described by some function y = y(x), as shown in Fig. 7. The Loreatz
force law tells us that the inverse local curvature is proportional
to the value of Bz at that point, 1i.e,

1 eBz(x,y)

R(x,.y) cp
Using the standard result for geometric curvature, we have

eBz(x.Y) 1y’l

cp
[ L+ y.z]:a/z

where y* = dy/dx, ete. If y’’ > 0 everywhere, we may integrate this

expression immediately, thus

X x

2 2
-3 o | ——xlldx
pe B (x,y)dx J = 272
1 L1+yr

y () 7" (xy)

J 1+ y'(xl)2 J 1+ y'(x2)2

- sine1N - sinOOUT .

Taking account of the signed quantities, this may be written as
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*2

J Bz (x,y)dx
1
c ls:l.nOI

p= = .
N s:i.neom.l

This is a gcaeral expression for any planar orbit. If the fileld

region is essentially contained between x and LI and 1f the effec-

tive edge approximation is valid, we may write for the integral

%
l[Bz(::,y)el:: - Bo.xeff ,
1

vwhere Bo is the central value »f the field. Alternatively, we may
use this expression to define the effective edge for a set of trajec—
tories, thereby obtaining Eqn. 1 of Chapter IV, with

X = 2(L+1L1

e ££ eff )

3. Vertical Focusing

The motion in the vertical plane of the spectrometer (i.e., per-
pendicular to the pole tips) 1s well described by first-order
geometrical optice. 1In this approximation, the ¢ffect of non~normal
entry to a maguetic field on the vertical motion is equivalent to

R

that of a thin lens of focal length £ = Tond? where R is the radius

of curvature in the bend plane, and © 18 defined as in Fig. 7.

To describe the focusing forces quantitatively, consider the
schematic cross-section of the JANUS spectrometer system shown in

Fig. B. Defining the usual vertical motion vector
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?- ” :

vhere z° = dz/dx, the effect of a thin lens of focal length f 1s

given by the transfer matrix

]

Similarly, the matrix for a drift-space of length L 1is given by

L

D-O

Thus, given the vector ?} at MWPC2, the vector at MWPC4 1s given by

EARR TR NG I A

Written out explicitly,

z, 114 1 012L1011212
z, o 1 —llfout o 1 -l/fin 1{jo 1 z;

Monte Carlec studies indicate that the value of z, predicted by this
algorithm has an rms distribution of approximately 2cm about the

actual z, value. Roughly 75% of thig deviation comes from multiple-~
scattering in the target, counters, chambers and air; the remainde.

is attributable to the intrinsic accuracy of this approach.



APPENDIX C

Monte Carloc Methods

This appendix describes some of the assumptions and features of
a Monte Carlo program written to simulate the performance of the
JANUS gpectrometer system. This program was used to study the momen-
tum acceptance and resolution of the system, as well as to provide

ideal trajectories used in the Chebyshev parametrization.

1. The Field Map
The magnetic field of the JANUS spectrometer was measured using
a conventional appaiatus provided by the LBL Magnetic Measurements
Group. This device measures the field compoments by digitizing the
voltage induced on three orthogonal search coils as they are moved
through the field region. The measurements were made on a grid of

1.0032in, 1.00in, and 1.00in in the x,y, end z directions, respec-
tively. (The coordinate system is that of Fig. 3) Because the physi-
cal travel of the mapper was limited to 30 inches in the z~direction,
it was necessary to map the JANUS volume in three seperate pagses,
requiring a mechanical realignment and magnetic recalibration of the
apparatus. The digitized voltages are written to magnetic tape by a

PDP-8 computer.

These tapas are analyzed off-line to provide files of magnetic
field data. Before using this data as a field map in a Monte Carlo,

every effort must be made to remove systematic errors from the
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measurement process. For instance, we know that (to within the
aligoment errors of the coils and pole tips) the Bz component must be
gnti-symmetric about the midplane of JaNUS. 1In particular, we must
have Bz(x,y-o,z) = 0. 1f, due to some normalization error, this is
not the case for the field map data, net drifts in the y-direction
will be produced by the Monte Carlo program in tracking particles
through the field, even if the initial conditioms are ; = y= 0. An
artificial motion such as this can produce pathological problems in
performing the Chebyshev parametrizations. Additfonal sources of
aystematic error result from the relative normalization of the three

geparate map regions, the precise alignment of the search coils, etc.

To circumvent these problems, each component was processed as
follows: Obviously bad points and normalization errors were removad,
so that the field profiles were continuous across the three map
regions. Next, the field was explicitly symmetrized across the three
orthogonal planes passing through the center of the JANUS magnet.
For example, Bx is requirad to be symmetric in x and z, and anti=-
symmetric in y. Since it each compounent of the field satisfies
‘7281 = 0, a iterative Laplacian smoothing algorithm was used to cal-
culate the interior regions of the field-89 This algorithm 1is based
on the observation that the discrete version of Laplace’s equation
gives the value of the field at any point according to the weighted

average of the neighboring pcints, thus
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B(1,1,k) = —]-'2-[3(1+1.j,k) + B(i-lpJ,k)J

3
=+
2
+ —12-[3(1,_1+1,k) + B(i,J-l.k)]
b

" Lz[au,j,kﬂ) + B(i.J.k-l)]
c

Here a,b, and c are the lattice spacings in the X,y, and z direc-
tions, and B i8 any (rectangular) component of the field. The
appropriate boundary conditions require specifying the field ou the
boundary of the mapped region, them using the above expression to
propagate the boundary values to the interior region. This process
i3 iterated until the desired degree of stability against further
computation is reached. The properties of Laplace’s equation assure
us that the method is indeed convergent, and that the effect of meas-
urement errors is maximal on tiiz boundary. Thus, any iuterior point
is better determined by this smoothing process than by actually mak-

ing a measurement of the field at that poiat.

The smoothed fiela is stored on disk for use by the Monte Carlo
program. When the field value is requested at some point 3?, linear
interpolation across the lattice cell containing 3? is used to obtain
the field. The only exception to the rule is when the lattice cell
bordera a plane of (positive) symmetry for that component. In this
case, of course, the local variation must be quadratic. Since the
physical size of the mapper does not allow us to come closer than
1.5¢n from the pole-~tips, some trajectories pass cutside the region

of the map. The B-field for |y| > 3in is obtained by using linear
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extrapolation based on Maxwell’s equations, i.e.,

3B asx
=%
d

s, -bsx ¥,
¥ - T =t

-1:} bnz
%2 C ¥y
Thus, the cowputation of derivatives that would require points out=~

side the lattice 18 replaced by derivatives of ocher field components

on the face of the lattice.

2. Trackiog Methods

The motion of charged particles through the magnetic field is

governed by the Lorentz force law

-
E._ (2«7,
d¥ -

where v is the proper time and -p> - ﬂ%‘ Introducing the differen-—

—_
tial arc~length of the trajectory, ds = |dx|, we can convert the

Lorentz law to a form contalning only gpatial quantities:

2 e &, 7
2 cl ds :
ds e

Here we have written I?I = p, which we know to be a conserved quan-

tity in the absence of electric fields.

However, a straightforward first-order integration of the above
form does rot lead to momentum conservation. Consider the naw momenu~

-
tum p’ obtained by first-order integration over a step size 6s:
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-
BTG =T+ e
2>
-, .df dx - d_x
P ¥ gglPas)® TPt F pfe

->, 2 > 2  ~ dp{2, 2
P 1% = Ipl +p'53)+[§‘§"] s

r 2
- p2 1+ {Qi_f] 652 .
ds

One can easily show that, in describing a circle of radius R in a

constant field, this produces am error of order

2
5(p°) ~ , B8
) e e

which would be on the order of a few percent for Hs = lcm and typical

JANUS pilons.

This error clearly results from ignoring second-order and higher

-
terms in our expanaion for ?’. Defining Tx) = -% and £ = pic (note

- ->, - g
that p = pu), we can write a second-order expansion for both X amd u

as
- 2>
Fsrbe) = F(o) + $26s + Y 3%6s + ... (c.1
ds

—> 2>
T(s+68) -?(a) “ %62 + 1/2d—';-652 + eae
ds
' -
In this notation, the Lorentz law is % - gLu x ?] This may be

uged to expand thc second derivative in the equation for ?(s+65):
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2>
d7u d - 1? .2
d?'%—'aa[“* ] e

o [Ee7] o [7:4]

Se[[ex7] ] s [2x L]

Our final form for the equations of motion 1s then
T(s+bs) = w(s) + u(s)bs + 1/21;[?: T ]552 + e (C.3)
T(s+ba) = T(a) + g[?X?]ss

e [?x (?'\7)?] + ;[[?X?] x?] o2+ ...

One may show that step~by-step integration of this system around a

circle of radius R leads to a relative error in squared momentum of

3
R] , a substantial improvement over first-order integra-

tion. Typical step sizes of lcm then lead to negligible tracking

order 2n[§§

errors in propagating ?? and E? through the field.

3. Energy Loss and Multiple Scattering

The Monte Carln calculatea the energy loss and multiple scatter-
ing in the target, the air, and all detectors. The detectors are
assumed sufficiently thick so that the effect of interactions within
them are well described by an integrated distribution (as opposed to
a probability distribution for different types of interactions that
create the cumulative distribution). Thus, the energy loss distribu-~

tion is assumed to be given by Landau :heory,87 i.e.,
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-y, [A+ ')‘]
L " ¢ da (c.4)
\(zm)

Here, A 1s a reduced energy loss variable,

P(Ad) =

L

x 1a the thickness, B i3 a constant for a given material, Aﬁp is the
most probable energy loss, and AE is the actual energy loss. In the
limit of very large x, most AE values lead to A < 1, and it easy to
show that Eqn. C.4 becomes a Gaussian centered un[LEp. This condi-
tion 45 seldom mct in practice, thus neceasitating use of the com—~
plete theory. This leads to a broader distribution in energy loss,
with a characteristic high energy loss tail. For the sake of com-
pleteneas, we give the detailed forms of the parameters used: The
most probable energy loss for a projectile of charge Zinc and velo-

city §, incident on a material of atomic number Z, atomic mass A, and

density p, is given by

2,2

AR = x SlogBS-BBX | g2, 037 % (C.5)

P 1¢01-p%

where

& 0.154MeV/gm e 2 .
The ilonization potential I is well-approximated by I & 16'(Z)O'q eV.

Multiple scatteriang is included through a Gaussian approxima-

Liongo to the actual Moliere distributioa. Thus, the probability of
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scattering into a solid-angle element dQ in traversing a thickness L

of material is given by

, 0%l
P(Q)EQ » - a0 (C.6)
"eo

where I..R is the radiation length of the material and

’L L
20 MeV/c, 1 —
60 - 2B € zinC LR[ 1+ 910510 LR] :I .

This approximation is good to 10% or better. The effects of nuclear
single scattering, either through the strong or the Coulomb interac-
tion, are reglected. In magnitude, these effects are the order of
1-2%. They are further reduced in the data analysis through the
imposition of cuts such as the " Br-cut " and target traceback

requirements.

b Muon Decay

The Monte Carlo allows us to estimate what percentage of our
pions are actually muons coming from the decay m —» P- + qu, and
what the effect of these muons are on our momentum resolution.
Approximately 10% of the plons accepted after all cuts are in actual-
ity muons. However, those cuts, in particular the Br-cut, are such
that only those muons are accepted which come from a decay om the
exit side of the spectrometer, and which have & direction essentially
in that of the original pion. Thus, the momentum resolution is not
substantially degraded. All resolutions quoted in Chapter IV and

preseated in Figures 9=11 include the effects of these decay muons.



APPENDIX D

MEAN MULTIPLYCITY DISTRIBUTIONS

In this appendix we show that our two-pion trigger requirement
13 equivalent to a cantral collision trigger. We do so by first
egtablishing the correlation between pion multiplicities and total
charge multiplicities, then show that our requirement of two pioms in
the JANUS spectrometer biases the event selection strongly towards
those events containing a high pion multiplicicty, and thus a high
total charge wultiplieity. The total charge multiplicity is then
converted to a mean impact parameter via a geometrical model for the

colligion process.

a8 shown in Figure l4, the results of Ref. 78 demonstrate that
<M">, the mean negative pion multiplicity, 1s linearly proportional
to Q, the total number of participant protons. (Incidentally, this

40Ar + KCl, indicates that plon reabsorptisn is

result, for 1.8 A*GeV
not a significant effect for this reaction.) Due to the hundreds of
contributing partial waves, geometric concepts for total cross-
gections are expected to apply in this energy regime-3 We may there-~
fore interpret the total proton multiplicity in terms of impact
parameter by using an analytic result due to Swiatecki (as presented

in Ref. 91 } for the number of participant protons Q in a collision

at impact parameter b between two equal-mass ions of charge Z:
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Q(b) & 2zZ(1 - 5)2[1 +[\lii- 1 ﬁ] (D.1)
where § m b/bm, and b|n is the maximum impact parameter, i.e.,
bm = 2R. Here the normaljzation 1is such that Q(b=0)=2Z.

In light of the very rough nature of theese arguments, and in the
interests of simplicity, we propose to further approximate Eqn. D.l

as

Q(b) & (1 - p)z[ 1+ 1.125]

(1 -p-a -

(1 -p for B << 1. . (1. 2)
This approximation is good to (at worst) 20% for P < 0.5. Since we
will be largely concerned with central collisioms, this linear form

for Q(b) will be adequate for our purposes.

To estimate the mean pion multiplicity for our trigger, we use
the data of the UCR streamer chamber group-92 This data consists of

OAr + KC1 events taken in the imelastic

approximately 3000 1.8 A-Gev *
trigger mode, which corresponds to roughly 85% of the total reaction
crnss section. All negative tracks in each event have been scanned
and momentum-analyzed. We may therefore selectively examine those
events that satisfy a one or two pion trigger in the JANUS spectrome-
ter. From those events we may also obtain the total negative pion
multiplicity, and thereby determine the wmean multiplicity for the two

triggers. The JANUS trigger requirement is defined as all pions

satiafying 35° < 9" < 55° and 200 MeV/c < P, < 1000 MeV/c, where both
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quantities are measured in the lab.

The results of such an analysis are shown in Figure 15, along
with fits to a Poisson distribution. Figure l5a shows that the pion
multiplicity distribution associated with the one-pion trigger for
JANUS. The distribution is approximately Poisson, with a mean of
4+30 £ 0.05. This already represents a bias away from peripheral
collisions, in that the unbiased pion multiplicity for this reaction
i3 only slightly greater than 3. The results for a two-pion trigger
"in" JANUS is are shown in Figure 15b. This is actuglly the multi-
plicity for all events with two pions satisfying the above trigger
cuta, regardless of the azimuthal angle between the two pions.
Therefore, the conclusions drawn from Figure 15b depend on the
assumption of statistical independence of the pion momentum spectrum
as a fuuction of azimuthal angle between the pions. While this
independence is not strictly the case, (fortunately, for the author
of this thesis), the net effect on trigger bias considerations should
be small. At any rate, the mean pion multiplicity for the JANUS

two~pion trigger is 6.14 % Q.18.

Now that our pion multiplicity bias is established, we may use
Eqn. D.2 in conjunction with Fig. 14 to relate the mean pion multi-
plicity as a function of Q, <M"(Q)>, to Q(b). In our approximation,

the relation is linear, thus

> = (1 - .
<M"(Q) nmax_l -} (D.3)
with N ax # 7.2 for this data. We have taken the liberty of placing

the impact parameter scale so derived on the upper horizontal axis of
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Fig. l4. This allows us to tramslate a given pion multiplicity

directly into impact parameter. For example, for the two-pion

crigger, <M"> = 6.14 implies Q = 29, which gives ﬁL = % » Assuming
m

bm = 2:0A1/3, we get, with r, = l.2fm, <b> = l.2fm. Similariy, a
one-pion trigger gives <b> = 3,3fm, while an unbiased trigger would

2 -
give <b> = gbm 5.5fm.

As a consistency check on Eqn D.3, we note that it gives a
definite prediction for <n">, the average pion multiplicity over all

impact parameters:

Ja%s <M, (b)>

<o > = > (D.4)
" Ja%s
szb 1-—
m
-n -
max I 2
d”b
. <b>
noax [1- bm:I
L,
3 “max

This gives <n“> = 2.4, as opposed to the observed v-lue of 3. How-
ever, given the schematic features of this model, we tcel that this
i3 an acceptable degree of consistency, particularly in iight of the
experimental difficulties in obtaining bias~free multiplicity distri-
butions. (The trigger requirement is usually such that the mosc

peripheral collisions are missed).
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Lest one regard these conclusions as completely model dependent,
we present an alternative approach. The GSI streamer chamber central
collision trigger corresponds to a reaction cross section of approwi-—
mately 180mb-93 Assuming O = nbz, this is equivalent to a maximum
impact parameter of 2.4fm. The observed pion multiplicity distribu-
tion for this trigger is Poisson, with <n“> = 5.8l« The mean impact
parameter is 2/3 this value, or l.6fm. Thus, a mean pion multipli-~
city of roughly 6 is indeed consistent with a mean impact parameter

of about 1.5fm, as determined by actual cross section measurements.



APPENDIX E

BACKGROUND FLUCTUATIONS

In this appendix, we address the question of statistical errors
in the background spectrum generated by the mixing of pions from dif-
ferent events. What we wish to determine is "Given n background
events in scme bin, what is the expected error a'n?" In the following
we show that: l.) A simple model for background generation shows that
o =x n3/4. not \E:-; 2.) The fluctuations irn the actral background

n
3/4

events 3upport the n model; and 3.) This has non-trivial conse-

quences for the generation and analysis of correlatiom functions.

1. A Model for Backgroumd Errors

To understand the origin of the n3/4

94

rule, consider the follow-
ing thought experiment:” Assume we wish to calculate the area of the
region Q in Fig. 16 using a Monte Carlo techmique. For simplicity,

we assume { is rectangular, with sides of lemgth 1x and ly, contained
within a square region of linear extent L. The most straightforward

integration method consists of picking M random poimts in the large

square region. The expected number in Q 1g of course then given by

11

mn = sz, with fluctuations about this value of order a‘m = \E This
L

13 precisely in accord with our usual noctions of the statistical

behavior of large numbers.
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Now suppose we try to circumvent the requirement of generating M
random points in the plane by instead picking only M random numbers
T, » 1 = 1N, then generating Y2 N(N-1) "random" points in the plane

-
via %

ij ]

dom numbers, we could obtain the same statistical accuracy in deter-

- ( t:l.l" r,L ). It would appear that for omly N = \[zﬁ’ ran-
mining Q as by generating all M random points. Certainly this

approach will produce the correct mean value for Q: The mean number

1
of random numbers along the x-axis will be o= TXN' similarly
1
n, = =¥N. The mean number of points in Q i3 then n, = n_n_, and thus
y L Q X'y

n
the average value obtained for Q is O = —%-1,2 - lxly' However, being
N

properly suspicious of getting something for nothing, we now use

standard error propagation methods to calculate how accurately this

method determines L. Assuming for now that o, and ny are statisti-
cally independent, and that their individual errors go as \E, we have

°2("n) (E.1)

bnn 262 Bnn 202

rnx (o) + rny (ny)
2 2

= non, + n,ny

- (nynx).[nx + ny]

N |1l/2
nﬂ[(lx + ly)L] .

Specializing to the case where 1x - ly' we immediately obtain from

the above o‘(nn) - \E'ngla. Thus, the errors due to this method are
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much larger than those from the usual Monte Carlo estimate of area.
It should come as no surprise that to get the gsame relative accuracy

as from M truly random points requires N = Mz.

In the above derivation, we have assumed that Q is located far

from the diagonal line given by x=y. If this 18 not the case, as in
the case of Q" 1in Fig. 16, we cannot regard o, and ny asg statisti-
cally independent, and the above result becomes OTnkR - 293/4. It is

easy to show that in d dimensious, the fluctuations in g, the mean

number in a sub-volume V, are given by d(nv) = dng, with pm 1 - 7%'

2. Numerical Studies

While the derivation of the previous section ig Jquite straight-
forward, it is by no means clear that it applies directly to
different-event mixing in the analysis of two-pion correlaticn data.
There certainly are suggestive similarities: The N random numbers
correspoud to N plon momenta, the region Q then 1g analogous to a
given bin in ?3433, etc. However, a typlcal correlation analysis
projects the difference of 3-dimensional momentum vectors into some
complicated sub-space of relative momentum and energy. We now show
that it is at least plausible that the background fluctuations are

3/4

consistent with an n rule.

We investigate the background errors using the variable rz,

where
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(E.2)

!

and the sum over i and ] represents a summation over the q and 9y

ACEEAN

bins of the relative momentum spectrum. Here Bij is the number of
background events in that bin, and Ai is some other distribution

3
that should be identical to B,, in the limit of infinite statistics.

1]

We assert without proof that, provided the o“s are properly chosen,
l.) The mean value of ['Z 1s n, and 2.) [ should be distributed as a
chi-squared distribution for o, degrees of freedom, Iwhere o, is the
number of bins in our sum over 1 and j. To support these assumptions
we note that a.) The expectation value of I"Z is Bp, since 1if A and B
are independent quantities with the same mean value,

(cay, - B:Lj)2> - a'z(Aij) + oz(Bij); and b.) [ 1s indead distributed
as chi-squared for o, 1f A and B are from Gaussian distributions with

the same mean and dispersion for a given bin.

As our known distribution, we take the real events for
|'an > 150 MeV/c, where we have every expectation of no correlation.
(The advantage of this choice is that the G'A’s are known.) .Ju test
this against a scaled background distribution over the same interval.
By varying the functional form of O‘B(B), we can find what form for G’B

produces Pz = npe As our functional form for a'B we take the general

d-dimensional result, i.e., Og = d'B 2 gy two different data

sets we find p = 0.73%.02 and p = 0.77+.02, where p = 1 - %- The

errors are assigned by invoking Assumption #2 detailed above, then

varying d until the change in I"Z corresponds to a 68% confidence
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level for a chi-squared variate of ry degrees of freedom.

It would thus eppear that statistical errors of the background

/4

support the n3 result from the first section. We note that the
value of p derived above depends only on Assumption #1. Assumption
#2 is required to assign errors to the value of p 8o obtained, but

its validity does not affect the value of p.

3. Implications for Correlation Analyses

3/4 form of the background

In this section we show that the n
errors has non-trivial consequences for the analysis of two-pion
data. More specifically, we obtain two simple rules governing the

nunber of events required in the generation of background gpectra via

mixing momenta from differeat events.

Suppose we wish to create a background spectrum with negligible
fluctuations relative to those in the corresponding bin for the real
events. We assume that the background is being created from the same
data set as the real events. Let the number of real events be N, and
let f denote the fraction of these events that fall into some bin i,

i.e., o, = fN. Say we take some fraction of real events M = gN to

i
2
generate a background containing a total of 32-'N(N-1) combinations.
£ 2 2
The expected number in the i-~th bin 1s then m = T 52— * N°. Here
2

02 is the value of the correlation function for this bin. The corre-
lation function is of course proportional to %, with errors propor-

tional tec
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2 2
-4 [+ 4
2 ~ {n}2 n m
o (c2) [m] 21 tim . (E.3)

We desire & background such that the error on C2 is determined almost

entirely by the real events. This implies that

el? [o]?
wmm— << —n .

Substituting the above values for m and n, and assuming oh = 2n3/4,
we obtain the condition

1 1

= - . E.

3 2C,f << ¢ (E.4)

This result is independent of the original number of events N, but it
does depend on both the fraction g used in the background generation
and £, the bin size. The requirement that g should be as large as
possible certainly is in accord ' ith our intuition. The surprising
result 15 the bin-size dependence. Setting g = 1, the above condi-

tion becomes

c f < = 32 (E.5)

L
2 32
This inequality is saticfied for most, but not all, of the bins used
in our correlation analysis. Since the Principle of Maximum Likeli-
hood fitting procedure requires that the background fluctuations be
negligible compared to the those of the real events, one might object
to inclusion of these bins in the fit. However, by explicitly minim-
izing a quantity that includes the background errors (the PZ defined

in the previous secticn), we have shown that in all cases the fitted

parameters are substantially the same as those obtained by PML
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methods.

To summarize the results of this section, it has been shown that
1.) The bin sizes in this form of correlation analysis must be kept
as gmall as possible (keeping in mind the requirements of resolution
and reasonable statistics per bin) and 2.) Point 1 usually means" that
all, rather than some subset, of the real events must be used to

create the background spectrum.



APPENDIX F

GAMOW COULOMB CORRECTIONS

In this appendix we discuss in further detail the Gamow correc-
tion for the two-pion relative Coulomb interaction. In particular,
we are interested in the effects of emisaion by a pion source distri-
buted in space and time over typical nuclear dimensions. We btegir by
briefly reviewing the usual derivation of the Gamow factor. The

95

approach is that of Davydov, although the notation has bsen some-

what altered. We use unite such that "t appears explicitly.

The Schrodinger equation for the relative motion of two like-

charged particles in their mutual Coulomb field is

2 2 2k2
N2, R | > (F.1)
-fz—rl{??k(r)+?{-k(r) —ZP—{'k(r) ,
wt.ere
12
F -m - llzm“
1
and

w,P) = W P;
- 271 172 - - -
K = -—EI—;-;;——'- Vz(Pl -pPy) = T .

In che above, the expressions for p and T have been specialized to

the case m,=m We note in passing that the relativistically

1702
correct equation for the relative motion of two pions is the Klein-
Gordon equation. However, as we shall see, the Gamow correction is

important only for relative velocities v = T%7’ go that the non-

rel
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relativiastic approximation is expected to be valid. Also neglected
here is the symmetrization requirement on the two-pion wave functionm.
This may be imposed at a later stage of the calculation with no loss

of information.

The solution to Eqn. F.l corresponding to initial motion along
the z-axis 18 moat easily obtained in parabolic coordinates defined

by (u,v) = (r-z,r+z). Writing

&( v=u)

XGRS fw)

one may show that ¢ must solve the equation

ug’* + (l-iku)p’ - gk¢ = 0 (F.2)

2
with g =M%, The solution to the above equation is given by the
k]

confluent hypergeometric function F, thus g(c) = CF(-ip,l,iku), where

C 18 a normalization constant.

The Gamow factor Go' defined as the ratio of the density at the
origin to the asymptotic density,
—_
1%, @ = 0312
-— (F.3)
° ¢, ?
may then be calculated using tne known asymptotic properties of the

confluent hypergeometric function. It 18 thus straightforward to

show that

2
G JAgu=0))  2mp (F.4)

° lﬁ(u—-mo)l2 e?™

This is the usual Gamow factor.
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The above derivation suggests that the effect of a distributed
source may be incorporated by smearing the density at the origin over

the scurce size, that is,

15, @0)1% = I 15D 1D (F.5)
) where p(?) gives the distribution of relative separations between
the two pions. The above equat_ion has been derived more rigorously
by Koonin,s along with an explicit form for p(?) that tncludes the
effects of temporal separation between the two plons. Taking Gaus-
sians for the space and time distributions for the individual pionm

emission points (l‘.1 .?1) ’

2

2
-ri/Ro

pt(_r)i) T e
and
-ci/‘!:2
Pt(ti) e »

he obtains

p(™) - Idi’dtldcz p EH Yy Te )p ®- Yy THe Dp (£)p, (£,) (F.6)

=S
1 -1[ 2 W-: ]2]
- exp T - —r .
(2n)3/29R§ ZRCZ) 8

Here the frame is assumed such that the individual pion sources are
at rest, Ve G)z + ?2)/2111", and 32 - V"'"!:2 + Rg. The normalization

is such that J'P(?)d? = 1.

Before proceeding with explicit evaluation of the integral in

Eqn F.f, we must now incorporate the symmetrization requirement into
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the relative motion wave function p. Using the small u expansion for

F(-ig,1,1ku), we have for the unsymmetrized ¢

p(u) = c[1 + (=1g) (1ku) + #‘—i‘lli'z—ii—”“—ll(iku)z . ]

Since u = r-z, the symmetrization is accowplished via z = -z, s0 the

symmetrized form with the same value as u—»0 is given by

g (u) = c[ 1+ kpu + -j-‘ﬁz(rzﬂz) + ]

so that
2
PRI |c|2[ 1+ 2kpr + YokZp2(r2e2d) + ] . (F.7)
The modified Gamow factor Gmod is then given by
Gmod = Jd?p(?)]ps(u)lz (F.8)

n

cojd'r’p(?)[ 1 + 2kgr + O(kgr) 2 + ]

@

Go[ 1 + 2kp<r> + ...] .
(This result has been obtained by a somewhat different argument by

the authors of Ref. 84 )

This form {s in accord with our intuitive expectations. The
suppression for low relative momentum due to the Gamow function 1s
reduced due to the spatial extent of the source. Before evaluating
the integral for <r>, we may estimate the size of the correction to

G
[

2
2kg<r> = 2k P <> (F.9)
n%
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m_<r>
)

137 e

& lYy7 per fermi of <r> .
Therefore, we anticipate that so long as c* ~ Ro’ this correction
will be small for nuclear dimensions. Explicit evaluation of <r>

using p(?) gives

R
2 8 o 8 + Ve
< = \E RO[RO * 2vr1°3[s - v't]:l :
Substitution of realistic nuclear parameters shows that <r> is not

drastically different from Ro or %, leading to the conclusion that

the effect of the distributed source in indeed small for RHIC.



APPENDIX G

THE INTEF.PRETATION OF GAUSSIAN SOURCE PARAMETERS

In this appendix, we relate the use of Gaussian source density
distributions to more conventional descriptions of nuclear demsity
profiles. We also explore the relation between the R and ¢ parame-
ters, and examine the time-development of pioms in Monte Carlo cas-

cade calculations.

1. Gsussian Spatial Distributions

The normalized Gaussian source distribution used in this

analysis is given by

2,,2
-, 1 ~r“/R
() =—>—7 " e . (G. 1)
P 23723

We wish to find the value of R such that this distribution best
describes a uniform distribution of radius Ku. Equating the first

moments of these two distributions, we obtain

R
Ry o _u

8 "u "~ 1.50

Similarly, equating second moments, the result is

2 Ru
R'\Eau=1.5a .

More generally, in Ref. 27 it is shown that for R = Ru/1.52, *he

squared Fourier transform of the Gaussian distribution differs from
the corresponding transform of the uniform distribution everywhere by

less than 2Z. Since the squared Fourier transform is the actual

113
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observable of interest in a correlation analysis, the use of the
Gaussian parametrization is quite adequate. Furthermore, we note
that while nuclear matter in its ground state is to first order
described by a uniform distribution, a Gaussiazn ensemble of produc-
tions sites may indeed be a better approximation of the pion source

in a heavy iom collision.

2. The Time Dependence of the Pion Source

In this section we motivate the use of a Gaussian to describe
the temporal distribucion of pion sources based on a heurietic model
for the collision process. Consider the collision of two equal-mass
nuclei in the center-of~mass frame. Assume that each nucleus is
described in this frame by a Lorentz-contracted Gaussian spatial dis-
tribution, moving with velocities *ch. Thus,

2, .2 2 2] ,.2
- +
- I_x +3° + ch(z pcmt) ]/R
pi(r) = e .
The pion production rate at some point T 1s then gilven by
—
) A e
dt potsip, rel
1f we ignore the velocity dependence of &°v and pion reabsorption,
the total pilon production rate is given by
2,2 2,2
dn =287 ¥ t°/R
n. |~ — > . cm’ cm . (G. 2)
rre Jdr p_(r)p+(:) e [a spatial 1ntegral] .
We have therefore obtained the not too surprising result that the

collision of two Gaussian spatial distributions gives a collisiom

_tzl,tz R
rate that 1s Gaussian in time, p(t) ~ e , with ¢ = ——=———, In
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reality, this should be viewed as a lower limit for N, as we have
ignored effects such as reabsorption and deceleration of the collid-

ing nuclei, which will tend to increase "t.

3. Gomparison to Monte Carlo Calculations

The cascade code of Cugnon et al.96 prcvides a quantitative ple-
ture for the space=time evolution of a heavy ion collision. Their
results for the collision of QOCa + 4°Ca ions are presented in Fig.
28. Two curves are shown, the solid one giving the production of
free pions plus delta resonances, while the dotted curve gives the
just the number of free picnz as a function of time. Maximum overlap
occurs for t = 5.1 fm/c. The circular and triangle points are the
results of integrating

&y e-tzlﬂcz
dt o

for appropriately chosen values of . Thus, e.g., for the N" + %ﬂ

curve we have for t > 5.1 fm/c

N(t) = 1/2"0,[1 + erf[t_i' 1] :l ,

with t = 2.31 fm/c. A similar expression 1is obtained for the free

pion production curve, with t = 5.55 fm/ec.

These expressions fit the observed time dependences quite well,
particularly for the total production rate (the closed circles). The
value of * required, 2.31 fm/c, 1s reasonably close to that predicted
by the method cf the previous section, which gives > 1.91fm/c. The

code predicts a much slower production rate of free pions than one
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would expect from the simple overlap of the nuclear densities. This
18 due to the reabsorption, energy dependent production cross secw-
tions and finite delta lifetimes. Nonetheless, the time development

corresponds roughly to that predicted by a Gausaian model.

We close by noting that the initial spatial distribution of
nucleons in this cascade code 1s assumed to be a spherical, not Gaus-
sian region. However, the results of Fig. 28 are obtained by averag-
ing over a number of "runs", with one rum per collision. Presumably
the approach to a Gaussian temporal development of the cascade 1s a

consequence of the Central Limit theorem.
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FIGURE CAPTIONS

Schematic diagram of a stellar interferometer using the
Hanbury-Brown-~Twiss technique. Two pointg Pl and P2 on a star
of radius R are assumed to emit chaotic light. The light is
detected at points A and B with the apparaktus shown.

X,
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-
at Xye The pions are assumed to originate from an extended

Alternate paths for the detection of piorne with ?2 at and.?;

- -
source encompassing r, and T,
Plan view of the JANUS spectrometer system.

Block diagram of the fast electronics used im conjunction with

the JANUS spectrometer.

Ion chamber calibrations for a variety of projectiles and beam

energles.

Schematic plan view of the JANUS spectrometer, along with the

geometric method used in track recognition.

Definition of angles used in determining momentum via the effec-

tive prescription.

Vertical trajectories through the JANUS spectrometer, illustrat-

ing the effect of focusing by fringe fields.

Momenium resolution for plons as a function of the laboratory

momentume
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(10) Resolution for relative momentum and energy in the center-of-

(11)

(12)

(13)

(14)

(15)

(16)

an

mass, as a function of the same quantities, again in the

center—-of-mass.

a.) Fractional relative momentum resolution as a function of
relative momentum and b.) Resolution for invaridot relative
momentum (used in the Gamow correction) as a function of rela-

tive momentum in the center—of-mass.

Distribution in y and x of accepted events at the target as

determined by traceback. Horizontal scale is in centimeters.

Histogram of mean separation in y between two pion pairs at the
target for real events and random (mixed) events, as determined

by target traceback. Horizontal scale is in centimeters.

Relation between total charge multiplicity Q and mean pion mul-
tiplicity <M“(Q)>, as given in Ref. 78. Also shown isg

schematic impact parameter scale.

Pion multiplicity distributions from Ref. 92 for 1.8 A*GeV

Ar+KCl events, for the JANUS 1 and Z pion trigger requirements.

Sc” wmatic illustration of area calculations by Monte Carlo tech-
niques similar to two~pion background event gemerat.un. See

Appendix E for further details.

Invariant cross sections for lw events as a function of
center-of-mass (total) energy. The cross sections are scaled by

an efficlency factor <,- The errors are statistical oaly.
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Invariant cross section for 2m events from Ar+KCl collisions as
a function of total energy in the center-of-mass. The croas
section is scaled by an efficlency factor 62. The errors are
statistical only. Also shown is the corresponding laboratory
momentum spectrum. This 13 the raw spectrum of events observed
in JANUS, thus it has not been corrected for the acceptance.

The arrow at Ecm = 500 MeV transforms to the arrow at

Piap ™ 700 MeV/c.
As in Fig. 18, for NetNaF collisiomns.
As in Fig. 18, for AT+KCL—>2n' +X.

Profiles of a theoretical Cz(qo,q) with typical nuclear dimen=
aions evaluated over the JANUS acceptance for relative momentum.
The region on the left-hand-side of the ridge is kinematically

forbidden.

Projected correlation functions in q and q, for Ar+KCl—»2m +X,

with no Gamow correction applied.
As in Fig. 22, for 2n+ events.
As in Fig. 22, for Ne+NaF—»2n~ +X.

Projected correlation functions in q and 9% for Ar+KUl-»2n  +%,

with the Gamow correction applied.
As 1n Fig. 25, for 2n+ events.

As in Fig. 25, for NetNaF-»>2n~ +X.
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Monte Carlo calculations from Ref. 96 for production rates for

4oCa + 400& collisfons. Points

plons and deltae for 1.8 A+GeV
are predictions assuming a Gaussifan source in time. See Appendix

G for further details.

Confidence contours for fits to

-a’&%/2 - ¢¥x?/2
Cylq,,q) =~ 1+ e for the reaction

Ar+KCl=~»2n~ +X. The inner contour represents the 68% likelihood
contour; the outer band is the 95% likelihood cortour.

As 1in Fig. 29, for znt events.

As 1n Fig. 29, for NetNaF-»2n +X.
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