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ABSTRACT

This paper prcsmts the development of a pa;, ~f r~cursivc least squiircs ( N LS ) algorithms for onlillc t raiIliIlg
d MU]~i]aJW p(?rCCptrOIIS, W’hi Ch W(? a C]aSS d f(!CdfOW’ad iirtifiCia] 11(’llrh] I_ICIWOrkS. ‘rh(!S(’ ii]~l)ri~]lllls

incorporate second order information about the [raining error surface in order to achicvc fa.stm hwrllillg

rams than iirc possible using first order gradiwt dcsrwnt aigorithnls such as the gollcra]izcd dc][;i rulfm. :\

Imrst squares formulation is derived from a iino;lrizatioll of tho training error fullc[icm. lndivirluii] lr;iillillg

pattern errors arc linmrizcd about the nctwrk piiramctws that wrc in dr(ld wtwn the ]J~t!(’r Il lril-~

presented. This permits the rccursivo solution of tlI(* l(ast squares approxilllation, cit hur via collvvntioll;ll

~LS recursions or hy rccursivo QR d~’r(~rlll)ositit)ll. haswl t (~cllni(luw, ‘] ’]1(’ CIJiIlpUIAti(lllid COIIl])](’Nil~ (Jf ~]11’

update is (?(/$’2). whero ,4’ is [hc nunll~cr of networl; para]llvtors. ‘1’111si% du~ to lIIC mtimatioli of tlIII

.f’ x .V inverse ]Icssian matrix. 1,9ss c(~ll]~)[ltatiorlally intvllsivo al)l)r[~xilllatiolls of ttlo It14S algorithllls C;ttl
h,, {~asi]y derived hy using on]y block dia~(Jlla] (~]CIIIOIIIS (Jf this I[li+trix, thcrc~Jy partitioning t]lc ](%trlliilg i[lto

indcprndcnt SPIS. A simulation examp]v is prosmllc(! ill which a 1](’urii] n(!t\vork hi train {’d to ii])j)rf)~illliitf)

a twcr dinkvnsiotia! Gaussian bump. 1:1 this (IS;IIII]J!(I, ]{LS traihill~ r(’(lllir(’(! all Ordf’r of lllil~llitll(!(’ fll\{’4tl

it(’riitkIllS 011 aV{’ril~(’ ( ~J~~) th~n did [riIillill~ Wi[!l t]l(’ ~:(’ll(!rdi~(!d (](’!th rll]l’ ((;.:\:]] ).
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mininlizc the error for the cmnpklf lrailling s{’t fillt! aro ljiL..ml011III{’ al]ili[y 1(J Ovidua!(’ Ili(’ tf)till vrror ;III(I

its dcrivativos with rmpect to the network parameters at iirhitriuy valum of khc ]jarii!l]{~trrs. II: (’SSIIIIC(I.

the training set is rerun for each funclioll and dcriviitive cviiluiitioll. Assuming the numhcr of triiillillg

patterns is proportional to tile nulllbc’r 0[ ndwork param(lms, the COIIlp[ltillil)lld con)plcxity (If Colll])ulillg

the ovcra.11 training set crmr and its gradient is i“( i$’z), wherp A’ is t II(’ IIullllm of nrtwork l~ilr;llli{,t{~l>.

1 he proposed algorithms also havr romputat innzd cmllph’xity of 0( ,Yi ) pcr itotation and h(Incc ill”(’ w:ll

suited to block training.

In this work, wc address the .altcrnato case of rcrursivo or (mlillu network training. I{crllrsivc traillillt{

seeks to adjust the network pilramcters as training patt mm tire prwwt(d, rather than aft(’r ,a c(mI!\l IIl:I

pass through the training wt. This approacli is noccssary WIIUII tlI(I training sot is illfillit(’ or ikt I(I;Is[ ord(’r..

of magnitude larger than the number of network pariin)(’t(’rs, 111 principh’, P;I(II trilillillg I);ilt(’rl, is 5(VII

only onrcq as would I.m the case in a time series filturing Op?riltiol). III practir(~. rccursiv(! training II);IY INI

applied to finite training sets hy repeated application of tho sanle SC( of ;)attcrlis. (~ndorlyillg this iij)])roilrli

is [he assumption that the knowledge to be ~~trilrt(d from thr training sot is distributed and th;it no sillgh”

training pattern contains unique information.

In linoa adaptive Iiltcring. rccursivc lciLst S(llliLr(’S ( 111, S)illgoritllllls irllpl(*rnellt SCCOI:(I or(l(’r r(*cllrsiv(*

t raining, The b~ic approad) that undc’riics 1{1,S idgorithms for ]incar adaptivr fi]tc’rs nlay idso IJ(I iij,l)]itl(] 1(1

t Ilo training of fmd-forwar[i ~fXNs in gwmra,l and MLPs in Imrticu];w. llI,S-like algorithms for hl 1.1’s lI;IV(I

bvon dmivod in a variety of ways and usc different amounts of second ordor information, ‘1’]I(w (l(lr~~il! i(uls

include 11)0 application of t he cxtcndccl lialmau filtering @(lUiitiOlls to hll.1’ training [(;], m’uro’l-ltw~ll

linoitriziltions of thr sigmoid functions [?], and qlliidriiti~ !,ll.l) error ilI)])ri)xill)atiolls [N, !)],

In this piipcr WT prcsctlt a unifwd frfil~wwork ill whic]l [o dPw’lop and i~llid~~(~!ll.S-like algoritllll]s for

hll.1’ training. All appr(mimalc lf’iiSt squarm f[)rlllui:lti{]ll of t 110t rilillillg l~rohlcm is dcriv{’11 frolll a Iill.

oiirizalion of the rrror function. w’hicli yiulds a (lllil(lrilti C squiir(’(1-(’rror full~.tion. \\’@vxplirilty !iIlolv ~Vllill

ii s)])rO,X illliltiolls aro nccc’ssar~ hot h ff~r this h~asl S(lllilr(’!i forlllllliltioll :klltl {or its rvcursivc S(llllt it)l~, \\”lI

fllrthcr illustriitc how the form:llatw] Iriwt s(iui+rcs pr(d)hml ran I)v SOIV(VIh}’ ritllcr coll~(~lltiolli~l” 1{1,S rt’(llr-
siolls or by lh(I rnorc numcricidly slal]lc QR (](1~(1111])(iSilioll.l) iL%O(] II I(BI]III(IS pol)ll]iir itl litl(lilr I(l;lst MI II; II~IS

liltrring. \Vithin this fritmcwmrk, thv l~LS.lilw’ training algorithms pri)lj{wod to (lilt(* IISC u-mv(lll[io]l;ll 1! 1.s

rcrursi(ms and arc mainly difli’rmlliatod hy th{’ portions of thv 11(’!iSiilll Illill rix thiil t 11(’y IIt ilix(’,

2 MU LTILASEI{ PERCEPTRC)NS

( ):;-f ,’: } ~ II’:, ::- ‘ ,
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Output Layer 3

Hidden Layer 2

Input Layer 1
7P(

Layer I
Neuron I

= number 0( training paltcrns.

;= number of network pararnotc’rs (weights and (JffS(’[S).

d = vector of rw:work paranlctcrs .

L = number of network layers.

Lh! = numkr of IldWOr~ OUt]JUtS.

Fig. 1: Multilayr pcrcoptron: (a) Overall ll(~twork strurturo. (t)) Illdi~itlu;d IIouron strurturo.

u,:, and offsets # for d] of tho nwrons. “~htw’ can IJ(I tirriingwl as itn A’-dilllvnsi(mid paranlvlor v~wtor fl,

(In this papvr, voctorb arc colunln vectors atl(l ar(l dcnotwl by ul)d(*rliljos. \lilt ricwi arc (ILIII{JI(W] 1)~ l)ol(lfac(~

type, )

]n supcrvisrd h?arning, a Ml nf !lfLI’ inputs and d(’sird (JUt puts is providwl ;Ind t hr purposr of thl’

h’arllillg algorithm is t~ adJll~t th(? M1.I’ ~HLriMIWtPrS SO t]’at thi’ iWtUid (Jill pUtS IIK)St CI(X(’]J’ IllatC]l tll(’

dmirod ones. ‘1’he god of hlarning ran ho t’xprmwd mathmnatir; d!y iLsthe rniilirllizal.i(Jll of th(’ tot:l] squarm]

error ovor thr training SC1. I)vfiiIf~ ( k,(~ I as t]l(’ error of ttlc jt II i!!,]’ {Iull)ut , Ilsing notw(lrk I)ilr;itll{’t(lrs fl,

in rcwpon.sc to Iho kth training p;itt(~rn. ‘1’114’t(}td] h(llliLro(l (’rror ft~r tll(~ rollll)lolo tr;LillillK SIIl is (It,fi]l(,(lI(I



reflect the fact that the network parameters are updated for each additional [raining pattern. the nduurk

parameter vecicw is indexed to indicate the portion of the training set it is cspccted to match. 1)~-lillo

● (&+l u the para.meter ~~ctor to bc con~puted froln training paltcrn~ I 10 n, and

● ~klm = ck(Qm) as the squared error generated hy training pattern k usiflg pa.ramvtcr ~Jcctor f?,,,. aliil

● A as an exponential “forgetting” factor bctwccn O and 1.

The training goal for patterns I to n can then trc exprussml as

n

min En s x ~n-k~k,,,+, .
Ii”+, k=!

The gradient of the error function with respect to Qn+l is

hlinimizing (5) by a fhcd step stecpvs[ d~sccnt approach r(’quircs upd~tos of the form

d“+, = J?n-1111 :,, ,

(5)

(;)

7)

Exact computation of ~En is not possible as it rcquircui knowhdgc of tllv unknown pararrwtcrs f?,,+1.

in block learning schcmos, the currrnt gril(li(~[lt is approximatml I)y tllc gradi~’llt at the previous par;,ill[’t(i
Values.

n n
(s)

k=l k=l

‘l’tIi* still rcquirm that tlw current I;arall)ctors Q,, 1)(’ iipl)liml [0 ill] ])ilSt Irilillillg ]j;itl(’rms. 111 il rc(. ursiv(,

learning mlmno this is avoided by using a rvrursivv approxilllilt ion d ~},’,,,

(l-!1+1 = f?,, “- IJSL = f!,, -II (r:,,,,,+Js}.’,,-,)
= f!,, - /K:r,l!, + Nf!,, - d,,-, ) , (1(1,



3 LEAST SQUARES FORMULATION

To speed up convergence. scconr-! order information can t.w utilized to irlrlicalc the curvature of [ II(I orrt)r
surface. This is achieved by using a quadratic approximation of E,,. A quadratic approximiitiotl cull tie
derived by a linearization of the underlying individual errors that cul]ll)risc En.

-n = ; f~{ck,ln+, }’.F (ii)

k=l )

As in the case of approxim~ting the gradieni for stcwpest descent, it is desirable to avoid hiiving to

apply current parameters to past training samples, TCJachieve

using the paramctrrs Qn+l arc Iinrarly approximated by a two

mrors of sample k using paramotcrs @k.

ekjln+l * e~)lk + ~ekjlk “ (Qn+l - L) -

this, t}lc errors of past training S;III I])IV L-

tcrm Taylor’s series cxpansioll iil)~)lll 111(’

~~kjln+l = ~~kjlk P (1~)

The error Ckjl&is computed by forward evaluation of the hlL}’ for the training pattern k using ])~riil]]~t(!r~

@k. The gradient ~.e~jlk can be comijuted in a manrwr analogous to the Lackpropagation ccm)pu~ati(Jtl of

St. Details of the procedure arc proscntcd in the Appendix.
Applying the Taylor’s series approximation in ( 12) leads to

~En = hAn-kx’kl.+l=kA’-k~’k,ln+l~’hl.+1
k=l k=l 1

(1:))

(I f,,

(!:,

,’)



Defining block matrix Yt and block vector Dt as

Y: z [N9y, Hy2 d“y,l] (,%’x IIAf) , and
(1s)

= Y:Rn . (19)

rank. The solution is equivalent to the lc~t squares

permits (15) to be further rewritten as

Equation (1!3) cam be solved for &+l wbcn Ym is full
solution of

YnQ.+l = L2n . (20)

The Y#Yn correlation matrix on the left hand side of (19) can be intrrprotcd as an a]j])rf~xill]i~ti(jll

of the second derivative Hessian matrix of the error En with respect to the N networks parameters in @,,

[10, 11].

So the least squares formulation can be interpcrtml in tcrrns of scvorid ICVCISof approxinlatioll. First, as

in all second order nonlinc~ optimization approachs, (ho nonlinr;ir error surfaco is approximated hy a

quadratic [10, 11]. This hds to an cxprrssion for tllc nlillinlulll in trrms (Jr the gradient atld 11(’ssiilll,

Next, as in the Gauss-Newton ncmlirmar lvast srluaros approach, thu IIcssian matrix is apl)roxil]l;~tvd hy ;I
sum of products of Jarobiam matrices, each of which contains the gradients of the errors of tile individual

training patterns. Finally, to permit recursive conlputiltion, each indi~”iduid training pa[tcrll grii(]i(~lit is
approximated by its value at t hc parameters in rffvct whcII the pattern WAS;;, cscntecl to tlw nctwwrli.

4 CONVENTIONAL RLS ALGORITHMS

Equation ( 19) may be solvt*d rccursivcl.y using tho mmvrntion;d rm-ursivc lv...;t squarvs (1{1,S) idgorit hIII

[12, 13]. The RLS al~orithm is bum! orI a pair of recursions for cmnputillg ~,, iind Pn s (Y~’Y,, )- 1, ‘1’II(Iw

recursions arc

4.+1 = t!”+ p?l-lYrl (Yh?,-,Y?l + M)-’(L - Y;”d,,) ~ (?;I)

(i



TABLE I: AN?X RLS ALGORITIl!tl

Initialize:

P() = A-11, (4 = small positive constant)

Q, = vector of small random initial weights/offsets

For n=l,2,...
Compute gn via hfLP forward evaluation.

Cornpuhi y. via hfLP backpropagation.

x“ = Pn_, ym

K. = x“ (y:x. + AI) “

P“ = ~ (P.., .- K.x;)

fln+l = ~n - K.~.

required. ‘I’he remainder of the update opwations require 0( ~fiV2) computations, so ovma]l comp]cxity

of the update is 0( A#A’2 + Af3),

In cwm where there is a large number of outputs, the necessity of performing rank hf block Ul)(lilt(’s
can be avoidrd by using a scalar root.mcall.square ( R\l S ) error in place of t hc M-dimensional error vcc[or

s.. This approach permits the usc of mor{ computationally efficient rank onc updates at the expense of a

poorer approximation provided by the h;Lst squares formulation. To usc this approach, rcplacc the error
row vector in with its scalar R\l S value cm s l~nl = @. Error minimization now reduces to the singlr
output case and ~cn = e~’~tn CMI ~C coll~putcd @ a single bacltpropagation SWLWIp, The colllputatiolia]
complexity of the update in this approach is Cl(.N2).

5 QR-BASED ALGORITHMS

The conventional RLS algorithm prm.cntcd above recursively solves the normal cquatiolls of ( 1!)).

(21)

As notrd earlier, this is ttm lrast squares scduticm to (20).

YJ,Q,, + I = L,, , (2?,,

111 the nllnlf’rical s(dlllion of lw+st h(~uarcs ]Jr(J])](tlllS, (Iirwt dUtkJll of tllv Ilorll)id (’(jll;ltiollh, :Is ill (2 I j. i.

rm’ly usml Lorausc of the nullloririil collditi(Jnillg of lbII Y;~Y,, Illalrix [1.1]. II Is Iv;L(I, thll Ill(J%t (“0111111011”

appr(JiKh is to work with 1)10~1{ (lf~crllril~(~~itirjllnf t]lr data nl;itrix 1’ ‘
. .

,, Ill (’2:)). 10 oullillo 1110 I)ii.%i(’ idlw.
thv Q]{ {if!ron~l~(]siti(]ll or t 11~1n.~1 x .Y 111:11rix Y,, i~

[1RY,, = Q;’ ~“ , (xi j



TABLE 11:ANN QR-RLS ALGORITHM

Initialize:

%=0
& = vector of small random initial weights/offsets

For n=l,2,. ”.

Compute g. via hlLP forward evaluation.

Compute y. via M LP baclipropagation.

~. = YfQn - G

[

-Rn-I fizn, - GR

d = [:2’1(update via Givens rotations)
Y:

Qn+l = ~-lZn (via back substitution)

[~lQn+l=[$1~ (28)

(’29)

Here Zn denotes the first lV rows of the product Q&. Since& is upper triangular, (29) may be computed

by backs ~bstit tition, which has computational complex.ity of 0( lV7).

The quantities Y. and ~. can be expressed recursively as

Y. = [1/IYn_, [1/IRn-,
and

Y:
R. ~ .

n

(30)

As a consequence, the QR decomposition which produces R. and Z. may be computed recursively by
[12, 14]

[

an dk., &
Y: J’l=[w

T by rotating them into the CICIIWIIIS ofwhere & is an orthogonal matrix that nullifies the elements of yn

fiR”-,. The matrix Q. is not computed explicitly, but instead reprmwnt.s a wrim of Givcns mtati(,i]s

[14, 1’2] that zero the rows containing y:. The form of ~n is Q,, = Il!l* 11~1 Q$j’)l wlwrc each ,lli)l~i.!

T hv rotation with the jth rmv ofQfij) represents the Giwns rotation that zeros the ijth clcnlcnt of y,,

filln_l. The QR-based algorithm for hlLl) training is listed in l’at)le 11, ‘The computational ~omi)l~~it~

of tnc update in this approach is 0( MA’2).

6 BLOCK DIAGONAL APPROXIMATIONS

Ccmplctc l{LS-lmsed hlI. P training algoritlllns re~ursiwly SOIVC t}w complctc ,4’ x N s,!t of nortllal quilt il)lls

in ( 19). For networks with a large numlwr pararrwters, tho 0( A12) update r(quir(~d for tho conll)lctv sollltif)ll

can bcconlc quitr cost]y. In addition, the update computations ar(l global in nature, conlhinillg ill forll); l[i(lll

from all pair% of paramctms. 1’o red urr both t hc complexity and glohality of t hc roquirvd COIIIl)II[:II i~)lls.

appros; ma[c Rl,s algorithms llilVC I)w’11 propowd [F!, 9, ~]. ‘[’hew algorithms rqll:wr the y~y~ Ill;ilriu’s



in (17) with an approximation in which only block diagonal elements of the matrix are rctaillwl ~vllilc

the ot iwr parts are set to zero. The diagonaf blocks rettilwd may correspond to parameters in distinct

layers, to the parameters of individual neurons, or even to individual parameters for a straigilt (liilg(~ll:ll

approximation.
To develop this interpretation, we rewrite the normal equations (17) that serve as a basis for tlie 1{1.S

algorithms.—

l+~n-kyky:) :,t?.+1= ~ ~n-kyky:f?, - ~ ~n-k)’’,~,. (x!)

k=]

From this it is obvious that using a block diagonal approximation for the y&y~ matrices on both sides

of the equality will decouple the equations into independent sets, Each block set may then he solved

independently with either of the RLS or QR-RLS algorithms prcscntcd above,

For example, if each block corresponds to the parameters of an individual neuron, then the rietlvorli
parameter vector may be expressed in block form as

where Q(y) represents

the same block form

Q=[... QT(~]T,.]T, (XI)

the parameters (weights and oflsets) of the 7 neuron, The gradients will also hiivc

~e,J,, = [ . . . ~T(7)~kjlk ‘m” IT . (31)

FoUowing the notation of ( 14 ), define

~(~)k, = ~(~)~kjlk and d(7)k, =~=(y)~jf?(?)k - ~~jl~ .

This leacis tc the set of normal equations for fl(~) analogous to ( 15).

( )~An-k~x(~)kj~T(7)kj Q(T).+, =~~n-k~~(?)k,d(,)~,. (:1(;)
k= 1 J k=l 1

may be solved recursively by either the convcntiona] ltLS algorithm of Tiihle I or thu (_/I{These recursions

algorithm of Table II. In this example, there would be a separate set of recursions (or Path neuron ill tlI(’

network.

7 SIMULATION EXAMPLE

In this example, a three-!aycr MLP was usd to approxirntit~ a two dillwnsiotlal (:aussi;ln with a sI;III(l;IrIl

deviation of onc half. (ho mean, covarianrc matrix = .2.51 .) ‘1.IIc wtwrk IIad t\vo input II UIIIXJIIS.

corresponding to the r and y input vafues, four hiddml twurolls in the middle la?wr , iilld ii siuglv 111’llrt)ll

in the output layer. To gcllcrat(~ a nollropviiting tritinillg sot . s~vluolltial x-y tr:lillitlg salliljl(ts Jvur(l (Ir;livll

random]~ from the illt(?r~a] ‘~ to +2. s(’~~ork \~(’i~]llS W(’W illitiiifiz(’(! to rd]l(loll] l’iduo~ lJ(’l\\”()(’ll -1 ;111(]

+1. The network War, trained using both th(h (:111{ algorithm iiIId tlIu It 1.S idgori[llll] of ‘I”ill)l(’1. :\ II
exponential window of A = .W wzs uswl for both alg{~ritllnls aII(l a sl(Ip size r)f If = .1 was USW1ill tllv (:IJI{

algorithm. Iloth algorithms wcrv run until vit hvr thr t~)~i~l ~(luiir(’d error ( }.”,, ) \v;Ls IOSS ttlan .1 (Jr Illltil 111~

numbrr of training samplm ( n ) QXWWIMI25,000.”

Fig. 2(a) illustrate a typical rvsu]t arhivvcd WlIVII [Ilv orr~)r c(mvcrgod [[I I(IM thAII ,1. ]Iero III(I foI ,r;lr(l

transfer function of the trainwf nrtwrk itl plo Itcd for x-y Iwtwwll -’J and 2, ‘1’11(1rvsu]t is {’il!iil~ r{w)gtli4illJ11’
M an apprOXilll~ti[Jll Of a (:iill SSiiill. Fig. 2(1)) Il(Icum{’lIts t IIV Ir;lining rusl]lts for t(’11 difr~lr~)llt w’ls of rilll,llllll



Set RLS GDR
1 495 3,437
2 5;7 6,847
3 505 12,464
4 556 -
5 562 8,811
6 780 -
7 354 2,517
8 474 -
9 478 3,907

10 471 -
mean 527 6,331

standard 105 3484
deviation

(a) (b)

Fig. 2: Twodimensional Gausaian approximation simulation. (a) Typical Gaussian approximation. (b)

Iterations (training samples) needed to reach an error of.1 for ten different sets of random initial weights.

initial weights. Using the RLS algorithm, training averaged 527 iterations with a standard deviation of 105
iterations, Using the GDR algorithm, training only converged for 6 out of the 10 starting values. II-Itho
cases in which training w= successful, the average numbm of iterations required was 6331, with a standard
deviation of 3484. In this cue, RLS training proved to be more robust than GIJR training and on average
requ!red an order of magnitude fewer trtining iterations (samples).

APPENDIX

The Icast squares algorithms desc:~bed in this paper use the Jacobian matrices which specify the derivatives
of the individual output erlors with respect to the network parameters, This is in contrast to more general
methods of nonlinear optimization, such as the GDR algorithm, which require only the derivatives of dlc
overall squared error sum with respect to the network param~ters. In this appendix we expand on this
difference and illustrate how the Jacobian matrices y defined in (16) can be computed in a backpropagation-
like manner, Figure 3 illustrates the basic network terminology for an L-layer MLP.

The parameters of this network are the weights and oflsets, dmiotcd by u’~j. ‘Nc vector colltaillillg

these parameters is f z [ ‘ “ ~ ~~j *”. ]T . For a given training pattern, the relationship between the overall
squared error t and the individual output errors Cn, is

(37)
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(3s)

(WJ

A similar approach can be used to compute the derivatives that compose the gradmnts of the individuii]

errors ~c~ = ~~~/OQ = [ . . . O~~/~W:J . . . ]T. I)cfining fi~,j - -~~~/oti~, t],~ result is

(do)

(41)

The Jacobian matrix y = [~rl . . . ~fAf] haA OIIC column for each of thr M Ml,l) outputs. 11(-Nw .41

distinct hack propagation swcops iuc nmxxsar!’ for its computation.
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