LEGIBILITY NOTICE

A major purpose of the Technl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
~report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

had bl T AV VO R

LA-UR--90-2358 RPeniyn,. h
LTy e
DE9O 014926 i ngn
AUG 0 g 1990

| os Alamos Nanonal Ldboratory 13 operated by the Univermity of Calitorma for the United States Depariment of Energy under contrac! 'A-7405-FNG 16

-

TITLE RECURSIVE LEAST-SQUARFS LEARNING ALGORITHMS FOR NEURAL
NETWORKS

AUTHOR(S) P. S. Lewls, MEE-3
Joeng-Neg Hwang, U.of WA

SUBMITTED TO SPIE - Advanced Signal Processing Algorithms, Architectures &
Implementitions,
San Dieso, CA, July 10=12, 1990

DISCLAIMER

This report was prepared us an account of work sponsored by an agency of the United States
Government Neither the United States Gaovernment nor any agency thereof, nor any of their
emplovecs, makes uny war:anty, express or imphed, or assumes any legal hahlity of responsi-
hility for the accuracy, completeness, ur uselulness of any information, apparatus, product, or
provess disckwed, or represents that ity use would not infringe privately owned rnights Refer-
ence herein o any speaflic commercial product, pravess, of service by trade name, trademark,
manufacturer, ot olherwise doey nid necessanly constitute o smply its endorsement. recom-
mendation, or favoring by the United States CGiovernment or any agency thereol The views
and opimons of authurs cxpressed herein do not necewartly state of reflect thase of the
United Statea Government or any agency thereol

Hy acoptanc s of oy arte ie the pubilnhes recogrizes thal the 1) % Govarmment istany @ toioad isive royally res hcense (o pubhis of reproduce
e pabtshed e ol fas conlohahon or o allow othery o da sa jor Y Government purpoyes

The Loy Alamas Hatonal | abordliry reguests That the publisher ainntily s ante e gy werk performn under the auspecas of the U S Departmant ol | nergy

| Los Alamos National Laborat
_0S A0S issmesNatoratabericn
LM by R e " 'l. ! - ’.; e

“1 Ny mden By

A reame——a . .

)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Recursive least-squares learning algorithms for neural networks

Paul S. Lewis Jenq-Neng Hwang
Los Alamos National Laboratory*® University of Washington
Mechanical and Electronic Engincering Division Department of Electrical Engineering
MS J580, Los Alamos, NM K7545 FT-10, Seattle, WA 98195
ABSTRACT

This paper presents the development of a pa’. of recursive least squares (RLS) algorithmns for online training
of multilayer percevtrons, which are a class of feedforward artificial neural networks. These algorithius
incorporate second order information about the training error surface in order to achieve faster learning
rates than are possible using first order gradient descent aigorithms such as the genceralized delta rule. A
least squares formulation is derived from a iinearization of the training error function. Individual training
pattern crrors are lincarized about the network parameters that were in cffect when the pattern was
presented. This permits the recursive solution of the least squares approximation, either via conventional
RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the
update is O(N?). where N is the number of networl parameters. This is due to the estimation of the
N x N inverse Hessian matrix. Less computationally intensive approximnations of the RLS algorithms can
be casily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into
independent sets. A simulation example is presented in which a neural network is trained to approximate
a two dimensiona! Gaussian bump. In this example, RLS training required an order of magnitude fewe
iterations on average (H27) than did training with the generalized delta rule (6.331).

1 BACKGROUND

Artificial neural networss (ANNs) offer an interesting and potentially useful paradigm for nonlinear signal
processing and pattern recognition. The mijority of ANN applications employ the feed-forward, multilayer
perceptron (MLP) network architecture in whiteh network parameters are “trained™ by a supervised learning,
algorithim employing the generabzed delta rule (GDR) (1, 2). The GDR algonthm approximates i fixed
step steepest descent algorith mousing derivatives computed by error backpropagation. The GDR algorithm
is sometimes referred to as the backpropagation algorithm. However, in this paper we will nse the ten
backpropagation to refer only to the procecs of computing error defivatives.

While multilayer perceptrons provide a very powerful nonlinear modeling capability, GDR traininge <o
bhe very slow and ineflicient. In linear adaptive filtering, the analog of the GDR algorithin s the least
mean-squares (LMS) algorithi, Steepest descent bised algorithmes such as GDR or LMS are first ornder
because they use only first derivative or gradient information about the training ertor to be minimized,
To speed up the traaning process, seeond orderalgorithms may he emploved that take advantage of second
derivative or Hesqan matrix information,

Second order information can be incorporated into MLP teanne i diflerent ways, Tnomany appioa
tions, especially in the area of pattern recognition, the tridning set s finite, In these cases, block g e

can be spplied using standard nonlinear optimization techniques 5040 0 0 These techniques iterar oo

*Lov Alamos National Laboratory s operated by the Uiveraty of Cabifopnna for the & anted States Department of oo
nnder vontract W T30 NGO

minimize the error for the complete training set and are based on the ability to evaluate the total error and
its derivatives with respect to the network parameters at arbitrary velues of ihe parameters. I essence,
the training set is rerun for cach function and derivative evaluation. Assuming the number of training,
patterns is proportional to the number of network parameters, the computational complexity of computing,
the overall training sel crror and its gradient is O(N?), where N is the number of network parameters.
1he proposed algorithms also have computational complexity of O(N?) per iteration and hence are well
suited to block training.

In this work, we address the alternate case of recursive or online network teaining. Recursive training
secks to adjust the network parameters as training patterns are presented, rather than after a complets
pass through the training set. This approach is necessary when the training set is infinite or at least orders
of magnitude larger than the number of network parameters. In principle, each training pattern is seen
only once, as would be the case in a time series filtering operation. In practice. recursive training may be
applied to finite training sets by repeated application of the same set of patterus. Underlying this approach
is the assumption that the knowledge to be extracted from the training set is distributed and that no single
training pattern contains unique information.

In linear adaptive filtering, recursive least squares (RLS) algorithms implement second order recursive
training. The basic approach that underlies RLS algorithms for linear adaptive filters may also be applied to
the training of feed-forward ANNs in general and MLPs in particular. RLS-like algorithms for MLPs have
been derived in a variety of ways and use different amounts of second order information. These derivations
include the application of the extended Kalman filtering equations to MLP training [6], neuron-local
linearizations of the sigmoid functions [7], and quadratic MLI error approximations (8, 9).

In this paper we present a unified framework in which to develop and analyze RLS-like algorithms for
MLP training. An approximate least squares formuiation of the training problem is derived from a lin-
carization of the error function, which yields a quadratic squared-error function. We explicitly show whit
approximations are necessary both for this least squares formulation and for its recursive solution, We
further illustrate how the formulated least squares problem can be solved by cither conventional RLS recur-
sions or by the more numerically stable QR decompaosition-based methods popular in linear least squares
filtering. Within this framework, the RLS-like training algorithms proposed to date use conventional RIS
recursions and are mainly differentiated by the portions of the Hessian matrix that they wtilize.

2 MULTILAYER PERCEPTRONS

In this work. a multilayer perceptron (MLP)is defined to consist of successive layers of “nevrons™ intercon-
nected in a feedforward manner. The general structure is illustrated in Fig. 1. The outputs of the nearons
in the first layer are the MLP inputs, while the outputs of the neurcns in the final layver are the MLP
outputs. Neurons in the second and succeeding layvers receive the outputs of the previous Laver's neutone,
generate an afline combination of these values, and run the result through a differeptiable nonlinear sipmoid
function. Henee, the ontput of the jth neuron in the {th Lver is compated by

e /(.-; VYl ::—') . ()

W liere the woiphts u'f) and oflset ri represent the affive combination and /i) represents the sigmoid funetion,

Jir) ﬁJrT - ;‘I!{ Jle)y il fim) . i

Sinee this network has no feedback, the respobse to an illplll cah be tluh'l'lllillihlic';l“_\' (‘nmplllml with ¢V
computations, where Nois the number of parameters of the MLP These paraetors ave the set of weiehi

e

Output Layer 3
Layer |
Neuron |
Hidden Layer 2
Input Layer 1

number of training patterns.

number of network parameters (weights and offsets).
vector of network parameters .

number of network layers.

= number of network outputs.

Tz
I

Fig. 1: Multilayer perceptron: (a) Overall network structure. (b) Individual neuron structure.

w,‘, and offsets t; for all of the neurons. These can be arranged as an N-dimensional parameter vector 8.
(In this paper, vectors are column vectors and are denoted by underlines. Matrices are denoted by boldface
type.)

In supervised learning, a set of MLP inputs and desired outputs is provided and the purpose of the
learning algorithm is te adjust the MLP parameters so that the actual outputs most closely match the
desired ones. The goal of learning can be expressed mathematically as the minimization of the total squared
crror over the training set. Define ¢4, (7 as the error of the jth MLP output, using network parameters 8,
in response Lo the kth training pattern. The total squared error for the complete training set is defined to

he
Ez oY S tn@) = Yel) . (3)
k k

where g4 is the total squared error for training patiern k. The gradient with respeet to g is

Y"-'=X$-‘a(ﬁ) - (1
k

In multilayer perceptrons with differentiable nonlinearities such as the sigmoid funetion, Nei(f) car be
efficiently computed by repeated application of the chain rule. The algotithm to do this requires (0N
camputations and is called backpropagation |1, 2].

In this paper. we consider recursive or online learning techniques in wlich parameter adjustpent- ane
made based on individual training patterns. The goal is to minimize the error for all tridning patterns seen,
updating the parameters as new training samples become available. This approach is necessary when the
training set is effectively infinite, as in the case of ltering operatioms. L *his case, it is also desrable to
weight the error fanction by an exponential widow to favor recent training sammples o o previons ones. To

reflect the fact that the network parameters are updated for each additional training pattern, the network
parameter vecior is indexed to indicate the portion of the training set it is expected to match. Define

e 0., as the paramecter vector to be computed from training patterns | to n, and
® £kim = £k(8,,) as the squared error generated by training pattern k using parameter vector 8,,. and
e) as an exponential “forgetting™ factor between 0 and 1.

The training goal for patterns 1 to n can then be expressed as

Y A" Fekugr - (5)
k=1

min E,
n+l

The gradient of the error function with respect to 8, ,, is
XEn = Z'\n_ksfﬂnn . (6)
k=1

Minimizing (5) by a fixed step steepest descent approach requires updates of the form

Bni1 =8, - nXL, . (7)

Exact computation of X E, is not possible as it requires knowledge of the unknown parameter: 8, .
In block learning schemes, the current gradient is approximated by the gradient at the previous paramoeter
values.

YE, = Z '\"-kifkln-ﬂ = Z ’\"-kzskln . (%)
k=1 k=1

This still requires that the current parameters @, be applied to all past training patterns. In a recursive
learning echeme this is avoided by using a recursive approximation of T F,,.

SEnxSFn= Y A" e = Segpn + A Eucy (9)
k="

‘This recursive approximation can be interpreted as making a local lincar assumption about the error surface

so that the gradients are constant Yegner = Xegp. Of course, this approximation breaks down as the

difference between n 4+ ! and k increases, but the exponential forgetting factor A compensates for this,
Using the recarsive gradient approximation in the eterpest descent update of (7) vields

ﬂvﬂl = Qu - “-tl"‘ll = en - N (:Enhn + AS.:l."'l-l)
ﬂn - “S:fnlu + ’\(.Qn - ﬂ"-l) . (10,

This is a vector expression for the GDR algorithim with momentum {120 where pois the step size and A
is the momentum constant, For X = 0 this reduces to the basic GDR algonthm where each step is b
on the instantaneous gradient, The GDR algotitho represents a first order approach to recursive training,
Parameter updates are based on first derivative information and the training of cach individual patimetor
is independent of the others. The approack is computationally efficient, requiting only (N} computations
per update, but can converge very slowly for complex error surfaces.

3 LEAST SQUARES FORMULATION

To speed up convergence. second order information can be utilized to indicate the curvature of the error
surface. This is achieved by using a quadratic approximation of E,. A quadratic approximatio. can be
derived by a lincarization of the underlying individual errors that comprise E,.

1 n
—Zz{ek1|n+l}2 . (1i)
2 k=1

As in the case of approximating the gradieni for stecpest descent, it is desirable to avoid having to
apply current parameters to past training samples. To achieve this, the errors of past training sample k
using the parameters §,,,, are lincarly approximated by a two term Taylor's series expansion about the
errors of sample k using parameters §,.

E.

Cipmer ek + X (Bnpy ~ &) = Yegner = Xegnn - (12)

The error €, is cornputed by forward evaluation of the MLP for the training pattern k using parameters
8;. The gradient Y e, can be computed in a manner analogous to the backpropagatior computation of
Y. Details of the procedure are prosented in the Appendix.

Applving the Taylor's series approximation in (12) leads to

n n

:En = Z'\"_szﬂn{’l = Z’\“-kzck_y[n-#l:‘knn-}l
k=1 k=1)
= Y -t Y Xeun {‘k,lk + X (Gugr — ﬂk)} : (1)
k=1)

In contrast, a block learning scheme would apply the approximations €y ny = €opn + X0 - (Buyr —)
and Y€y 041 = Xy, pn. This leads to the standard Gauss-Newton result for nonlinear least squares which

specifies the parameter update: £F, = TP, AnF 3, Xk {(,”I,, + X (B - Q,,)}.
Defiuing
Yo, =Son and di, =578 - i (11
where the superscript T denotes vector transpose, and setting F, = 0 in (13) leads to the following set

of ncrmal equations.
/

'\ZA"_kZ:Aj:Z.} ﬂn+l = ZA'I_‘ Z.‘:k‘,‘h; . (l'.”
k=1 J k=1)

To put this into matrix notation, denote the number of MLEP outputs by M and define the Jacobun matnix
Y. error vector ¢, and target vector d, .

Yo 7 (X Xa2-Xanl (N x My
g ['H:k VRSN (1% M) . (16
dl = Mado o dig] - gly, o axa

Uning these definitions, (15) can be rewnitten ..

(Y_:\ *)'A.V")L'...l SN Ay, (17
Al Aol

Defining block matrix Y, and block vector D; as

YyI = [An?y, ,\"'zﬂyz---/\"y" (N xnM) , and

- [(l\\l
DT = AT APl 2T (1xaM))

permits (15) to be further rewritten as
YiYoln4 =YD, . (19)

Equation (19) can be solved for §,,; when Y, is full rank. The solution is equivalent to the least squares
solution of

Yol = Ly - (20)

The YTY, correlation matrix on the left hand side of (19) can be interpreted as an approximation
of the second derivative Hessian matrix of the error E, with respect to the N networks parameters in g,
[10, 11).

2

Oey Be, 2 2=
. AR - BT:@TL i af"ﬁ“:

-k .
Ya¥a= LNk a3 3) : (21)

k=1 k=1 j=1 de. cx 3 c. e. F? IN .
33 znl T L'ianN 33nN N‘-:, nl 'lN

So the least squares formulation can be interperted in terms of several levels of approximation. First, as
in all second order nonlinear optimization approachs, the nonlincar error surface is approximated by a
quadratic (10, 11]. This leads to an expression for the minimum in terms of the gradient and Hessian,
Next, as in the Gauss-Newton nonlinear least squares approach, the Hessian matrix is approximated by a
sum of products of Jacobian matrices, each of which contains the gradients of the errors of the individual

training patterns. Finally, to permit recursive computation, cach individual training pattern gradient is
approximated by its value at the parameters in effect when the pattern was p.esented to the network.

4 CONVENTIONAL RLS ALGORITHMS

Fquation (19) may be solved recursively using the conventional recursive lecst squares (RLS) algorithm
[12, 13]. The RLS algorithm is based on a pair of recursions for computing 8, and Py, = (YI'Y,)7! These
fecursions are

P, = {P"_l — Py (y;’,'l’,._ly,. + AI)-l yZP,,._.} and (2
\

> | -

£n+l = @, +Pu_1yn (Y;’.‘Pln-l)'n + t\l)_l (d,, - y,"fﬂ,,) . (23)

These recursions may be simplified by defining the Kalman gain K,, = Py, (_\';','l’.._ 1Y 4 f\l)—l. the
intermediate quantity x, = P, 1y, and recaliing from (16) that ,, - y'8, = —¢,. The general form of
the conventional RLS algorithin for the training of MLPs is listed in Table 1.

Computation of the error vector ¢, is accomplished by forward evaluation of the MLP and requires
O(N) computations. Computation of the A x M Jacobian derivative mateix y, is accomplished by o
backpropagation sweep for cach individual output error and requires €N M) computations. The matrix
inversion in cach step is M x A and requires O(AM?) computations. For he case of single output networks
(A = 1), the matrix inversion reduces to scalar division and only a single backpropagation sweep is

G

TasLE I: ANN RLS ALGORITHM

Initialize:

P, = 671, (6 = small positive constant)

8, = vector of small random initial weights/offsets
For n=1,2,---

Compute ¢, via MLP forward evaluation.
Coumnpute y, via MLP backpropagation.

Xn = Pao1¥n

Ko = xu(yTxa+)7
P. = }(Puyi-KaxI)
bty = 8. -Kqe,

required. The remainder of the update operations require O(M N?) computations, so overall complexity
of the update is O(M N? + A3).

In cases where there is a large number of outputs, the necessity of performing rank M block updates
can be avoided by using a scalar root-mean-square (RMS) error in place of the A -dimensional error vector
¢n- This approach permits the use of morc computationally efficient rank one updates at the expense of a
poorer approximation provided by the leist squares formulation. To use this approach, replace the error
row vector ¢, with its scalar RMS value ¢, = |g,| = v/2¢.. Error minimization now reduces to the single
output case and Ye, = e;'Ye, can be computed by a single backpropagation sweep. The computational
complexity of the update in this approach is O(N?).

5 QR-BASED ALGORITHMS

The conventional RLS algorithm presented above recursively solves the normal equatious of (19).
-1_ .
Y ¥uloo1 = Yol = by = (YIV.) YID, . (21)
As noted earlier, this is the least squares solution to (20).

Y-..Q..H = Qn . (25

In the numerical solution of least squares problems, direct solution of the normal equations, as in (21). i
rarely used because of the numerical conditioning of the Y'Y, matrix [14]). Instead, the most common
approach is to work with the QR decomposition of the data matrix Y,, in (25). To outline the basic idea,
the QR decomposition of the n M x N matrix Y, is

Y. =Q] [l;"] . (26)

where Q[is an n M x nM orthogonal matrix and R, is an N x N upper tiangular matrix. Using this
decompasition, the least squares solution of (25) can be derived as follows.

QnYquHI = in.l.. . (27

TasLE II: ANN QR-RLS ALGORITHM

Initialize:
Ro = 0
é: = vector of small random initial weights/offsets

For n=1,2,---
Compute g, via MLP forward evaluation.
Compute y, via MLP backpropagation.

-du = yzﬂn — £&n
\/:\-;?_1 \/X;:-l (i:{ RO" 1_"] (update via Givens rotations)

8..1 = Rz, (via back substitution)

[’:;‘]ﬂm = [:] - (28)

8.s1 = R7'z, . (29)

Here z,, denotes the first N rows of the product Q, D,.. Since R,, is upper triangular, (29) may be computed
by backsubstitation, which has computational complexity of O(N?).
The quantities Y, and [0, can be expressed recursively as

Y, = ‘/"—:'T"-‘] and D, [ﬁfﬂ-‘] . (30)

As 2 consequence, the QR decomposition which produces R, and z,, may be computed recursively by

(12, 14]

~ \/:\-Rn—l ﬁzn—] = R’ﬂ 2 (3 l)

"lowr dn 0 o |
where Q, is an orthogonal matrix that nullifies the elements of ¥T by rotating them into the clements of
\/XR.,.-l. The matrix Q,, is not computed explicitly, but instead represents a series of Givens rotations
(14, 12] that zero the rows containing y7. The form of Q, is Q. = [1M, ;V=| Q' where each matrix
Q') represents the Givens rotation that zeros the ijth element of yT by rotation with the jth row of
VAR,_;. The QR-based algorithm for MLP training is listed in Table 1I. The computational complexity
g & p i

of the update in this approach is O(MN?2).

6 BLOCK DIAGONAL APPROXIMATIONS

Complete RLS-based MLP training algorithins recursively solve the complete N x N st of normal equations
in (19). For networks with a large number parameters, the O(N?) update required for the complete solution
can become quite costly. In addition, the update computations are global in nature, combining information
from all pairs of parameters. To reduce both the complexity and globality of the required computations,
approximate RLS algorithms have been proposed [R, 9, 7]. These algorithms replace the ykyzl matrices

R

in (17) with an approximation in which only block diagonal elements of the matrix are retained while
the other parts are sel to zero. The diagonal blocks retained may correspond to parameters in distiuct
layers, to the parameters of individual neurons, or even to individual parameters for a straight diagoual
approximation.
To develop this interpretation, we rewrite the normal equations (17) that serve as a basis for tlie RLS
algorithms.
n n n
14z (Z A""‘ykyf) Ori1 = 2 anky vlo, - Z A yvie . (32)
k=1 k=1 k=1
From this it is obvious that using a block diagonal approximation for the ykyz matrices on both sides
of the equality will decouple the equations into independent sets. Each block set may then be solved
independently with either of the RLS or QR-RLS algorithms presented above.
For example, if each block corresponds to the parameters of an individual neuron, then the network
parameter vector may be expressed in block form as

g=[-- 87 -7, (33)

where 8(v) represents the parameters (weights and offsets) of the ¥ neuron. The gradients will also have
the same block form
Rewje = ST(Vewjp 17 . (34)

Following the notation of (14), define
Tk =X(Vee and d(1)e; = X700k 807k — €xype - (35)

This leads te the set of normal equations for §(v) analogous to (15).

(z A h SR () S:T(m,-) B(7ngr = AN TNy A0, - (36)

k=1 2 k=1 J

These recursions may be solved recursively by either the conventional RLS algorithm of Table I or the QR
algorithm of Table II. In this example, there would be a separate set of recursions for each neuron in the
network.

7 SIMULATION EXAMPLE

In this example, a three-layer MLP was used to approximate a two dimensional Gaussian with a standard
deviation of one half. (Zero mean, covariance matrix = .251.) The network had two input neurons,
corresponding to the z and y input values, four hidden neurons in the middle laver, and a single ueuron
in the output layer. To generate a nonrepeating training set, sequential x-y training samples were drawn
randomly from the interval -2 to +2. Network weights were injtialized to random values between -1 and
+1. The network was trained using both the GDR algorithm and the RLS algorithm of Table 1. An
cxponential window of A = .98 was used for both algorithms and a step size of g0 = .1 was used in the GDR
algorithm. Both algorithms were run until either the total squared error (£,) was less than .1 or until the
number of training samples (n) exceeded 25,000.

Fig. 2(a) illustrates a typical result achieved when the error converged to less than .1, Here the for vard
transfer function of the trained network in plotted for x-v between -2 and 2, ‘The result is easily recognizable
as an approximation of a Gaussian. Fig. 2(b) documents the training results for ten different sets of random

9

Set RLS GDR

1 495 3,437

2 557 6,847

3 505 12,464

4 556 -

5 562 8,811

6 780 -

7T 354 2,517

B8 474 -

9 4718 3,907

10 471 -

mean 527 6,331

standard 105 3484
deviation

(a) (b)

Fig. 2: Two dimensional Gaussian approximation simulation. (a) Typical Gaussian approximation. (b)
Iterations (training samples) needed to reach an error of .1 for ten different sets of random initial weights.

initial weights. Using the RLS algorithm, training averaged 527 iterations with a standard deviation of 105
iterations. Using the GDR algorithm, training only converged for 6 out of the 10 starting values. In the
cases in which training was successful, the average number of iterations required was 6331, with a standard
deviation of 3484. In this case, RLS training proved to be more robust tl.an GDR trairing and on average
required an order of magnitude fewer training iterations (samples).

APPENDIX

The least squares algorithms desc:ibed in this paper use the Jacebian matrices which specify the derivatives
of the individual output er1ors with respect to the network parameters. This is in contrast to more general
methods of nonlinear optimization, such as the GDR algorithm, which require only the derivatives of the
overall squared error sum with respect to the network parameters. In this appendix we expand on this
difference and illustrate how the Jacobian matrices y defined in (16) can be computed in a backpropagation-
like manner. Figure 3 illustrates the basic network terminology for an L-layer MLP.

The parameters of this network are the weights and offsets, denoted by wfj. The vector containing
these parameters is § = -+« w!, ---]T . For a given training pattern, the relatiorship between the overall

1
squared error ¢ and the individual output errors ey, is

€= % %(c,.,) and Ye= Zn:e,,.Ecm . (37)

T
The derivatives that compaose the gradient of the overall error, Xe = 0¢/08 = [v 85/011{,] can
be found by repeated application of the chain rule [1] where 6; = —05/04.

10

d¢

—_— = _5' -1 qa
Bwf,-) 2 and (38)
l e,-z}-'(l-zf‘) for I=1L

(Tedi'wif') 1= 2l) for 1# L

A similar approach can be used to compute the derivatives that compose the gradients of the individual
T
errors Ye,, = de, /08 = [aem/auvfj] . Defining 65,,_1- = —(')e,,,/(')ag, the result is

g:;"," = -—65,,,,- z,'-" and (-10)
7]
c_,-z_,"(l-:}‘) for I=L,im=j
t - -
8., = 0 for I=Lm#j (41)
():k 6::1 u'::') 1=z for 1#£ 1
The Jacobian matrix y = [Xe; --- Yeas] has one column for cach of the Af MLP outputs. Hence Af

distinct backpropagation sweeps are necessarv for its computation.

REFERENCES

1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representation by error proppa-
tion. In D). E. Rumelliart and J. L. McClelland, editors, Parallel Distributed Processing: Erplorations
in the Microstructure of Cognition: Volume 1: Foundations, chapter 8. MIT Press, Cambridge, MA,
1956.

(2] R. P. Lippmann. An introduction to computing with neural nets, 1EEE ASSP Magazine, 1(2):4 22,
April 1957,

(3] R. L. Watrous. Learning algorithms for connectionist networks: Applied gradient methods of nonlinear
optimization. In Proc. 1957 IEEE Int. Conf. Nouml Networks: Vol. 1, pages 619 627, San Diego,
CA, June 1ORT,

(4] 1. F. Shepanski. Fast learniug in artifical neural systems: Multilayer perceptron training using optimal
estimation. In Proc. 1988 IEEE int. Conf. Neural Networks: Vol. I, pages 465-472, Sau Diego, CA,
July 1988.

(5] A. J. Owens and D. L. Filkin. Efficient training of the back propgation network by solving a system
of stiff ordinary differential equations. In Proc. 1989 Int. Joint Corf. Ncurul Networks: Vol. 11, pages
381-386, Washington D.C., June 1989.

(6] S. Singhal and L. Wu. Training multilayer perceptrons with the extended Kalman algorithm. In D. S.
Touretzky, editor, Advances in Neural Information Processing Systems I, pages 133-140. Morgan
Kaufmann, San Matco, CA, 1989.

[7] M. R. Azimi-Sadjadi, S. Citrin, and S. Sheedvash. Supervised learning process of multi-layer percep-
tron neural networks using fast least squares. In Proc. 1990 Int. Conf. Acoustics, Speech and Sign.-!
Processing, pages 1381-1384, Albuquerque, NM, April 1990. IEEE.

(8] S. Kollias and D. Anastassiou. Adaptive training of multilayer neural networks using a least squares
estimation technique. In Proc. 1988 IEEE Int. Conf. Neural Nctworks: Vol I, pages 3K3- 389, San
Diego, CA, July 1988.

[9] S. Koliias and). Anastassiou. An adaptive least squares algorithm for the efficient training of artificial
neural networks. JEEE Trans. Circuits and Systems, CAS-36(%):1092- 1101, August 19%9.

(10} W. H. Press. B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Reeipes: The Art of
Scientific Computing. Cambridge University Press, New York, NY, 1986.

(11] P. E. Gill, W. Murray. and M. H. Wright. Practical Optimization. Academic Press, New York, NY,
1981,

[12] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 1956,
(131 J. M. Mendel. Lessons in Digital Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987,

[14]) G. H. Golub and C. F. Van Loan. Matrir Computations. The Juhus Hopkins University Press,
Baitimore. MD, 1953,

