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A B S T R A C T 

This report deals with the asymptotic behavior of certain solutions of partial 
differential equations in one dependent and two independent variables (call them 
c, z, and i, respectively). The partial differential equations are invariant to one-
parameter families of one-parameter affine groups of the form 

c' = \ac , 

t' = , 

z' = Xz , 

where A is the group parameter that labels the individual transformations and a 
and /3 are parameters that label groups of the family. The parameters a and /3 are 
connected by a linear relation, 

Ma + N/3 = L , 

where M , N , and L are numbers determined by the structure of the partial 
differential equation. 

It is shown that when L/M and N/M are <0 , certain solutions become 
asymptotic to z

L l M t ~ N l M for large z or small t. Some practical applications of 
this result are discussed. 
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INTRODUCTION 

In two earlier publications1'2 I studied the properties of certain partial 
differential equations with one dependent and two independent variables (call them 
c , z, and respectively). These partial differential equations are invariant to 
one-parameter families of one-parameter affine groups of the form 

c' = Aac \ 

t' = \f>t > 0 < A < oo , (1) 

z' = Xz J 
where A is the group parameter that labels the individual transformations and a 
and j3 are parameters that label groups of the family. The parameters a and (3 are 
connected by a linear relation, 

Ma + N/3 — L , (2) 

where M, N, and L are numbers determined by the structure of the partial 
differential equation. Because of relation (2), only one of the two parameters a 
and 0 may be chosen freely. 

Similarity solutions axe solutions of the partial differential equation that are 
invariant to one group of the family, say, that for which a = ao and /? = /?o- Such 
solutions most generally have the form 

c = tao^°y(z/t1/fio) , (3) 

where y is a function of the single variable i = z / t W h e n substituted into 
the partial differential equation, Eq. (3) yields an ordinary differential equation 
for y called the principal ordinary differential equation. The form of the principal 
ordinary differential equation depends on both the form of the partial differential 
equation and the values of «o and (3q. 

Much attention has been paid in refs. 1 and 2 to diffusion-like partial differential 
equations such as ct = (cmcz)z (the so-called porous medium equation), cct — czz 
(which describes thermal expulsion of a compressible liquid from a long, slender, 
heated tube), and Ct = {cj3)z [which describes heat transport in turbulent 
superfluid helium (He-II)]. Among the interesting solutions of these equations are 
those that obey the boundary and initial conditions 

c(oo, t) = 0 , (4a) 

c(z, 0) = 0 . (4b) 

To define a solution completely, an additional boundary condition is necessary. If 
it takes the form 

c(0, t) = Atn , (5) 

where A and n are constants, then the solution is a similarity solution of the form 
(3). Equations (4a) and (4b) then collapse to the single condition y(oo) = 0. 
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Many detailed calculations of similarity solutions of the three partial differential 
equations mentioned above for various ao and (3a showed that quite often, when 
L/M < 0, the function y approaches zero as x approaches oo asymptotically to 
uxL/M, where u is a constant. When substituted into Eq. (3), this gives the 
asymptotic form uzL^Mt~N^M for c, which would obey the conditions (4a) and (4b) 
if L/M and N/M were both < 0. Demonstrating that c has the asymptotic form 
uz in the special cases studied was quite laborious, and it is the purpose 
of this report to outline broad conditions under which this asymptotic form can be 
verified if not at a glance, then at least with a minimum of computational effort. 

F O R M OF T H E P A R T I A L D I F F E R E N T I A L E Q U A T I O N 

The partial derivative ct transforms under transformation (1) according to c\, — 
Aa~&ct\ similarly, all other partial derivatives tran^orm by multiplication by some 
power of A. If a partial differential equation involving z, t, c, ct, cz, czz, . . . is to be 
invariant to all groups of the family (1), then it can only contain A-less combinations 
of z, t, c, c(, cz, czz, etc. Here the term "A-less" is to be understood as the term 
"dimensionless" is understood in ordinary dimensional analysis. Thus the partial 
differential equation must have the form 

( C t_Ct_ ZCj_ t2cu z2cxz \ _ „ 
yzL/\lt-N/M ' c> c> c ' c '•••j U ' (6) 

where F can be any function. 
It is easy enough to see thai Eq. (6) is invariant to Eq. (1): if we imagine Eq. (6) 

to be written in terms of the primed variables and substitute for them from Eq. (1), 
we obtain Eq. (6) again in the unprimed variables. It is proved in Appendix A that 
only forms composed of A-less terms have this property. 

Can this partial differential equation have solutions of the form 

c = uzatb ? (7) 

Direct substitution into Eq. (6) shows that Eq. (7) can only be a solution when 
a = L/M, b = —N/M, and u satisfies the equation 

' M ' M ' M\M^ ) ' M\M ) ' 
= 0 . (8) 

If Eq. (8) has real solutions for u, then the partial differential equation has real 
solutions of the form Eq. (7); if not, it has none. If L/M < 0 and N/M < 0, 
then Eq. (7) is capable of representing the asymptotic limit of solutions obeying 
the boundary and initial conditions (4a) and (4b). But under what conditions must 
Eq. (7) represent this limit? 

O R D E R E D S O L U T I O N S 

For the superfluid diffusion equation and the thermal expulsion equation, it can 
be shown that for solutions c\{z,<) and c2(z,t) that obey the boundary and initial 
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conditions (4a) and (4b), if ci(0, t ) > c2(0, tf), then c \ ( z , t ) > for all 2. Such 
solutions are thus ordered according to their values at z — 0. 

One consequence of such ordering is that for any similarity solutions, the 
function y obeys the inequalities 

0 < y ( x ) < u x L ! M ( 9 ) 

as long as y(0) is finite. Here u is the smallest real solution of Eq. (8). Let us now 
consider the functions y(x) belonging to the values cvo and j30 of a and /3. These 
functions are a one-parameter family ordered according to their intercepts y(0) on 
t^e y-axis. In refs. 1 and 2, it is shown that the principal ordinary differential 
equation for the functions y(x) is invariant to the affine group* 

y' = f*L/My 

x' = (XX 

> 0 < n < 00 . (10) 

So each of the curves y ( x ) is the image of any other because y'(0) = f i L / M y ( 0 ) can 
be given any value by the appropriate choice of fi while y'(oo) = f i L ! M y ( o o ) remains 
zero. Thus, the entire family of these similarity solutions y(x) is transformed into 
itself. 

Because of Eq. (10), 

y ' ( x ' ) n L ' M y ( x ) y { x ) 

u x ' L / M u(/jlx)l/m uxl!m ' 1 ; 

so that the limits as x and x' approach infinity of the left- and right-hand sides are 
the same. Suppose this limit < 1. The infinitude of curves y(x), being bounded 
from above, has an upper limit 2/00(2)* This limit, too, is a solution of the principal 
ordinary differential equation. Furthermore, because the entire family is invariant 
to Eq. (10), its upper limit t/oo(z) must also be invariant to Eq. (10). Curves 
invariant to Eq. (10) must have the form y = v x L / M , where v is a constant. Since 
this invariant curve also satisfies the principal ordinary differential equation, it must 
correspond to a solution c = v z L / M t ~ N / M of the partial differential equation. But 
then v must be a root of Eq. (8). Since v < u, and u is the smallest root of Eq. (8), 
we have a contradiction. Therefore, the limit of both sides of Eq. (11) as a; and x' 
approach infinity must be 1. This means that all the similarity solutions have the 
asymptotic form u z L l M t ~ N l M . 

Because of the ordering of the solutions of the partial differential equations, this 
conclusion holds as well for any solution c(z, t) that obeys the boundary and initial 
conditions (4a) and (4b) and whose value at the origin c ( 0 , t ) is bounded above and 
below by powers of t. 

THE SUPERFLUID DIFFUSION EQUATON 

We now investigate the ordering of the solutions of the superfluid diffusion 
equation, 

ci = ( c l ' % . (12) 
*A different proof from that given in refs. 1 and 2 can be found in Appendix B. 
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To do so, we consider the infinitesimal difference 6c between two neighboring 
solutions. It obeys the linear partial differential equation obtained by taking the 
first variation of Eq. (12), namely, 

(13a) 

which can be rearranged as 

3c\ l*ut = - \ (13b) 
o cz 

after setting Sc = u. The difference u obeys the boundary and initial conditions 

u{0,t)>0, (14a) 

u(oo,t) = 0 , (14b) 

u ( z , 0 ) = 0 . (14c) 

The conditions (14b) and (14c) follow from the fact that both neighboring solutions 
obey the boundary and initial conditions (4a) and (4b). To prove the ordering of 
the two solutions, we must prove that u(z,t) > 0 for all z and t. 

To avo;d difficulties created by semi-infinite domains, let us begin by replacing 
Eq. (14b) by 

u(L,t) = 0 (14d) 

and restricting ourselves to the rectangle R of length L along the 2-axis and length 
T along the tf-axis. We propose to prove that u > 0 in R by proving that the 
smallest value of u must lie on one of the sides S\: (z = 0, 0 < t < T), 5*2: 
(t = 0, 0 < z < L), or S 3 : (z = L,0 < t < T). On Si, S2, and S3, the smallest 
value of u is zero. 

If Eq. (13b) were replaced by the strict differential inequality 

3c 2 J 3 u t > - \ — uz + uzt , (15) 
O Cj 

we could easily prove that the smallest value of u could not be attained either in 
the interior of R or at an interior point of side S4: (t = T, 0 < z < L). Suppose, 
for example, that the smallest value of u were attained at a point P in the interior 
of R. The point P would then be a relative minimum at which uz(P) = ut(P) = 0 
and u„(P) > 0. But these stipulations contradict Eq. (15). Suppose, instead, that 
the smallest value of u were attained at an interior point P of S4. Then the point 
P would be a relative minimum along S4 so that at P , uz(P) = 0 and ugg(P) > 0. 
Since <?JZ is always positive no matter what the sign of c2, Eq. (15) then implies 
that ut > 0; this means that yet smaller values of u lie inside R directly under point 
P, again a contradiction. Since the smallest value of u cannot be attained either in 
R or on S4, it must lie on Si, S2, or S3. 

We can convert Eq. (13b) into the strict inequality (15) by adding a small, 
positive source term t to the right-hand side of Eq. (13b). If we assume that 6c is 

{Sc)t = \ c72/3(<5C); 
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a continuous function of e, then l imf_o 5c > 0 in R. It is worth noting that this 
limiting process dilutes the strict inequality 8c > 0 in R, which is what we have 
actually proved when e > 0, to the weaker inequality 6c > 0 in R, but the latter is 
sufficient for our purposes. 

Finally, we let L approach infinity and so return from the boundary condition 
(I4d) to the boundary condition (14b). 

T H E T H E R M A L E X P U L S I O N E Q U A T I O N 

The thermal expulsion equation 

cct = czz (16) 

has as its first variation the following equation for u = 6c: 

uct + cut = uzz , (17) 

which we again consider in the rectangle R with the boundary and initial conditions 
(14a), (14c), and (14d). As before, we can convert Eq. (17) to a strict inequality by 
adding an infinitesimal positive source term e to its right-hand side. We cannot be 
sure of the sign of ct, and the standard trick for dealing with such uncertainty is to 
set 

u=vext, (18) 

in which case Eq. (17) becomes 

(ct +\c)v +cvt =vzz +ee~Xt , (19) 

where v, too, obeys the boundary and initial conditions (14a), (14c), and (14d). If 
c > 6 > 0 in R, we can choose A large enough so that ct + Ac > 0 in R. Then if 
the minimum of v were attained at a point P in R, P would be a relative minimum 
at which v(P) < 0, vt(P) = 0, and vzz(P) > 0. But these stipulations contradict 
Eq. (19). If the minimum of v were attained at an interior point P of 54, then 
vzz{P) > o, v{P) < 0, so that from Eq. (19) we find that vt(P) > 0. Thus, yet 
smaller values of v lie inside R, again a contradiction. Since the smallest value of v 
must then lie on Si, 52, or S3, v > 0 in R. In the limit as e approaches zero, this 
strict inequality weakens to v > 0 in R. In view of Eq. (18), this is equivalent to 
u > 0 in R, which was to be proved. 

All of this depends on showing that c > 6 in the interior of R and on S4. This 
will be so if c(0, <) > 6. As before, we add a small, positive source term e to Eq. (16) 
and also replace the right-hand sides of Eqs. (14a), (14c), and (14d) written for c 
with a small, positive quantity 8. Later, we shall let e and 6 approach 0. 

The smallest value of c cannot occur in the interior of R. If it did, say at a point 
P, then P would be a relative minimum and ct(P) = 0 and czz(P) > 0. These two 
requirements contradict Eq. (16) augmented by the source term e. 

The smallest value of c cannot occur at an interior point of 54 either. But now, 
owing to the factor c (of uncertain sign on 54) on the left-hand side of Eq. (16), we 
cannot prove this with the argument of the previous section. But let us consider 
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the rectangle R'\ (0 < z < L, 0 <t < T'), where T » T, and let c(0, i) take the 
fixed value c(0,T) for T < t < T'. If T is large enough, then on S\ 

C ( 2 ,T' ) = | 5 + ^ C ( 0 , T ) , (20) 

which is the steady solution that c(z,t) approaches when c(0,t) is constant. The 
smallest value of c cannot occur in R\ as just shown, and surely does not o^cur 
along the interior of S'4, where c is given by Eq. (20). Hence, it must occur on SJ, 
S'2, or S'3, which means that c > 6 in R' and thus in R. In the limit as t approaches 
zero, we find c > 6 in R. 

By the argument previously given, v > 0 in R for any value of S > 0. In the 
limit as 6 approaches zero, v > 0 in R. Thus it > 0 in R, which proves the ordering 
of the solutions. Finally, as before, we let L approach infinity. 

T H E P O R O U S M E D I U M E Q U A T I O N 

Both of the two partial differential equations just discussed have L/M and 
N/M < 0 as required for the solution (7) to fulfill the boundary and initial 
conditions (4a) and (4b). For the porous medium equation 

ct = (cmct)g, (21) 

L/M = 2/m and N/M = 1 /m, so that these two ratios can only be negative if 
m < 0. In many applications, m > 0, so that solutions obeying the boundary and 
initial conditions (4a) and (4b) cannot have asymptotic limits of the form (7). At 
least some of the similarity solutions of Eq. (21) for m > 0 are known to vanish at 
and beyond certain finite, time-dependent values of z (Refs. 3-5). 

D I S C U S S I O N 

The limiting processes used in demonstrating the ordering of the solutions of 
the superfluid diffusion equation and the thermal expulsion equation are based on 
unproven assumptions of continuity. For certain linear partial differential equations 
related to the ordinary heat diffusion equation, rigorous proofs exist that do not 
depend on such assumptions.6 These proofs are quite lengthy and involved; what is 
more, they are not always easy to generalize for use with nonlinear partial differential 
equations. Therefore, I prefer the heuristic approach given here, even though it does 
not conform to a high standard of rigor. 

The importance of the results proved here rests on the fact that the asymptotic 
form c is simple and independent of the boundary value c(0,i). 
This form cam therefore be used without paying an exorbitant cost in computation; 
furthermore, it can be relied on even when the boundary value c(0,<) is uncertain. 
An excellent example of such an application is the protection of superconducting 
magnets wound with cable-in-conduit conductors.7 A local normal zone in such a 
conductor induces flow in the helium, the velocity of which can be modeled by 
the thermal expulsion equation.8 Since such conductors Eire typically very long 
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compared with their hydraulic diameters ( L / D ~ 105), the induced velocity in 
tt • helium at the end of a hydraulic path can be estimated using the asymptotic 
form given above. Two data of great practical utility that can be obtained in 
this way are the velocity of expulsion from the ends of the tube and the time at 
which thermal hydraulic quenchback9 is complete. The expulsion velocity is large 
enough in many practical situations to be used as a nonelectrical means of quench 
detection.10 The phenomenon of thermal hydraulic quenchback strongly affects the 
maximum quench pressure in the conductor as well as the hot-spot temperature. 
Both thermal expulsion and thermal hydraulic quenchback have been studied by 
means of detailed calculations based on simple models that give plausible values 
of c(0, t) (refs. 10 and 11). From the conclusions reached here, we can see that 
those results of the detailed calculations that are founded on the asymptotic form 
uz L/Mt-N/M 

are model independent and could have been obtained after only a few 
lines of calculation. 

A similar conclusion applies to the experimental temperature distributions 
in superfluid He-II measured by van Sciver12 and by van Sciver and Lottin.13 

Although these two sets of measurements differ markedly in their boundary and 
initial conditions (van Sciver introduced a constant heat flux into a half-space; 
van Sciver and Lottin delivered an instantaneous heat pulse to an infinite medium), 
in both cases the temperature at short times and large distances is described 
by the asymptotic form as detailed calculations show.14'15 With 
the theorems of this paper, a partial but convincing comparison of theory and 
experiment can be carried out with a minimum of computation. 
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APPENDIX A 
MOST GENERAL FORM OF THE PARTIAL 

DIFFERENTIAL EQUATION 

As we have seen in the main text, the partial derivative ct transforms under 
the family of groups (1) by multiplication by c't, = Xa~0ct. In view of the 
linear constraint (2), we can eliminate from the exponent in favor of a; thus 
a — (3 = (M/N + l ) a — L/N. So ct transforms by multiplication by a power of 
A, the power being a linear function of a. The same is true of all other partial 
derivatives of c. Thus, in finding the most general form of a partial differential 
equation involving z, t, c, and its derivatives, we are led to consider functions F of 
N arguments art- that transform according to the one-parameter family of groups 

x'i = X a i a + b i x i , 0 < A < oo . (Al ) 

Here ai and 6; are constants [(M/N + 1) and —L/N in the case of ct]. 
If the function F is invariant to all the groups of the family (Al) , then 

F(xi, x2, s/v) = F(xi, x'2, . . . , ff'jy) (A2) 

or 

F(xu x3, xpr) = F(Xaia+bixi , , \*»a+h«xN) . (A3) 

Equation (A3) is an identity true for all values of a and A. If we differentiate with 
respect to A and then set A = 1, we find 

N QF 
]T(a.-a + b i ) x i — = 0 . (A4) 
•=l O X i 

Since Eq. (A4) is also an identity true for all values of o r , it is equivalent to the pair 
of first-order, linear partial differential equations 

T : = 0 , (A5a) 
i = l 

N 

dx{ 

dF 
dxi 
3F 

E b*** = ( A 5 b ) 

The characteristic equations of these two partial differential equations are 

dx i dx2 dxfif 
a\Xi 0,2X2 apjXpf ' 

dx 1 dx2 dxs 
h\X\ b2X2 bflfXN 

The most general solution of Eq. (A5a) is an arbitrary function of the N — 1 
integrals of Eq. (A6a), and similarly the most general solution of Eq. (A5b) is 

(A6a) 

(A6b) 
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an arbitrary function of the N — 1 integrals of Eq. (A6b). The integrals of either 
set of characteristic equations are products of powers of the x,-, that is, functions 
u(a:i, . . . , a;at) of the form 

N 
u = U . (A7) 

i=1 
Since du — 0 in the direction given by Eq. (A6a), if we take the logarithm of 
Eq. (A7) and then differentiate in that direction we find 

N \ 

£ CiCiiJ , (A8) 

so that the constants c,- must obey the constraint 
N 

Y , Cfdj = 0 . (A8a) 
i=i 

Similarly, the powers c, in the integrals of Eq. (A6b) must obey the constraint 
N 

abi = 0 . (A8b) 
i=1 

If we look at Eqs. (A8a) and (A8b) as expressing the orthogonality of an N-
dimensional vector c to two other vectors a and b, then we see at once that 
the admissible vectors span a subspace of dimension N — 2. Hence there are 
N — 2 independent mutual integrals of Eqs. (A6a) and (A6b). The most general 
simultaneous solution of Eqs. (A5a) and (A5b) is an arbitrary function of these 
N — 2 independent mutual integrals. 

Now let us consider invariants of the entire family of groups of the form 
N 

« = n *v • (A9) 
1=1 

Invariance means that 
N N N 

JI X? = J ] x'f* = J ] xfX(•'«+*')« (A10) 
i= 1 i=l i=l 

for any choice of Xi, a, and A. Taking logarithms, we find that 
N 

In A ^ (a ,a + 6,)ct- = 0 , ( A l l ) 
i=l 

which leads as before to the constraints (A8a) and (A8b) on the c,-. Thus there are 
N — 2 independent invariants v of the entire family of groups, and th^r exponent 
vectors c span the same subspace as the exponent vectors of the mutual integrals of 
Eqs. (A6a) and (A6b). So the most general function F is then an arbitrary function 
of the N — 2 invariants v. Because of the first equality in Eq. (A10), these invariants 
are "A-less" combinations of the x,\ 
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APPENDIX B 
I N V A R I A N C E O F T H E P R I N C I P A L O R D I N A R Y 

D I F F E R E N T I A L E Q U A T I O N 

We start by writing the "A-less" equation (6) in the more convenient form 

c 
K t J X * 1 — ^ — 

C 

tct zc^ t(tct)t z(zcz)t 
ZL/Mt-N/M ' c ' = 0 . 

c c 

In view of the definition x = zt~x^, we can write the operator equations 

4 = ~\xTx (z held fixed)' 

(B l ) 

d_ 
dz 

z— = x— (t held fixed) . 
ux 

(B2a) 

(B2b) 

Furthermore, we can write Eq. (3) in either of the following alternate forms: 

c = taIPy(x) = zax~ay(x) . (B3) 

If we substitute Eq. (B3) into Eq. (Bl) , we find with the help of Eq. (B2) that 
Eq. (B l ) takes the form 

G y(x) _1 vfx{*-ay) xdy l_ x£ [x£(x~°y)] 
xL/M 1 /? x~ay ' y dx ' /?2 x~ay 

y 
, ... J =o, (B4) 

which one can immediately see is invariant to the group (10). 
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