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ABSTRACT

This report deals with the asymptotic behavior of certain solutions of partial
differential equations in one dependent and two independent variables (call them
¢, z, and t, respectively). The partial differential equations are invariant to one-
parameter families of one-parameter affine groups of the form

¢ =A%,
t' = M\t
2=z,

where A is the group parameter that labels the individual transformations and «
and 8 are parameters that label groups of the family. The parameters a and 8 are
connected by a linear relation,

Ma+NB=1L,

where M, N, and L are numbers determined by the structure of the partial
differential equation.

It is shown that when L/M and N/M are <0, certain solutions become
asymptotic to zL/M—N/M for large 2 or small t. Some practical apiications of
this result are discussed.



INTRODUCTION

In two earlier publications!? I studied the properties of certain partial
differential equations with one dependent and two independent variables (call them
¢ , z, and t, respectively). These partial differential equations are invariant to
one-parameter families of one-parameter affine groups of the form

d = \%
t' = M\ 0<A<oo, (1)
2= )Xz

where A is the group parameter that labels the individual transformations and o«
and B are parameters that label groups of the family. The parameters a and f are
connected by a linear relation,

Ma+NB =1L, (2)

where M, N, and L are numbers determined by the structure of the partial
differential equation. Because of relation (2), only one of the two parameters a
and 8 may be chosen freely.

Similarity solutions are solutions of the partial differential equation that are
invariant to one group of the family, say, that for which & = ap and 8 = fo. Such
solutions most generally have the form

c= tao/ﬂoy(z/tl/ﬂo) , (3)

where y is a function of the single variable z = z/t'/f, When substituted into
the partial differential equation, Eq. (3) yields an ordinary differential equation
for y called the principal ordinary differential equation. The form of the principal
ordinary differential equation depends on both the form of the partial differential
equation and the values of ap and Sp.

Much attention has been paid in refs. 1 and 2 to diffusion-like partial differential
equations such as ¢, = (c™c;), (the so-called porous medium equation), ce; = c,,
(which describes thermal expulsion of a compressible liquid from a long, slender,
heated tube), and ¢; = (ci/ %): [which describes heat transport in turbulent
superfluid helium (He-II)]. Among the interesting solutions of these equations are
those that obey the boundary and initial conditions

c(oo0, t) =10, (4a)
c(z, 0)=0. (4b)

To define a solution completely, an additional boundary condition is necessary. If
it takes the form

¢(0,t) = At" , (5)

where A and n are constants, then the solution is a similarity solution of the form
(3). Equations (4a) and (4b) then collapse to the single condition y(oco) = 0.
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Many detailed calculations of similarity solutions of the three partial differential
equations mentioned above for various ap and fFp sl.owed that quite often, when
L/M < 0, the function y approaches zero as z approaches co asymptotically to
uz’/M where u is a constant. When substituted into Eq. (3), this gives the
asymptotic form uzl/Mt=N/M for ¢, which would obey the conditions (4a) and (4b)
if L/M and N/M were both < 0. Demonstrating that ¢ has the asymptotic form
uzl/Mt=NIM ip the special cases studied was quite laborious, and it is the purpose
of this report to outline broad conditions under which this asymptotic form can be
verified if not at a glance, then at least with a minimum of computational effort.

FORM OF THE PARTIAL DIFFERENTIAL EQUATION

The partial derivative ¢, transforms under transformation (1) according to ¢}, =
Ao=B ¢, similarly, all other partial derivatives tran<form by multiplication by some
power of A. If a partial differential equation involving z, ¢, ¢, ¢, ¢z, €3z, ... is to be
invariant to all groups of the family (1), then it can only contain A-less combinations
of z, t, ¢, ¢4, ¢z, C;z, etc. Here the term “)A-less” is to be understood as the term
“dimensionless” is understood in ordinary dimensional analysis. Thus the partial
differential equation must have the form

c tey zC, tzcu 226"
F(ZL/Mt—N/M’ e ' ¢ P PRRRREE =0, (6)

where F' can be any function.

It is easy enough to see that Eq. (6) is invariant to Eq. (1): if we imagine Eq. (6)
to be written in terms of the primed variables and substitute for them from Eq. (1),
we obtain Eq. (6) again in the unprimed variables. It is proved in Appendix A that
only forms composed of A-less terms have this property.

Can this partial differential equation have solutions of the form

c=uz"t"? (7

Direct substitution into Eq. (6) shows that Eq. (7) can only be a solution when
a=L/M,b=—N/M, and u satisfies the equation

N L N /N L /L
F = =2 (1), Z(=-1), ... |=o0.
If Eq. (8) has real solutions for u, then the partial differential equation has real
solutions of the form Eq. (7); if not, it has none. If L/M < 0 and N/M < 0,
then Eq. (7) is capable of representing the asymptotic limit of solutions obeying

the boundary and initial conditions (4a) and (4b). But under what conditions must
Eq. (7) represent this limit?

ORDERED SOLUTIONS

For the superfluid diffusion equation and the thermal expulsion equation, it can
be shown that for solutions ¢,(z,t) and c;(2,t) that obey the boundary and initial
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conditions (4a) and (4b), if ¢1(0,¢) > c2(0,¢t), then ¢1(z,t) > c2(2,t) for all z. Such
solutions are thus ordered according to their values at z = 0.

One consequence of such ordering is that for any similarity solutions, the
function y obeys the inequalities

0 < y(z) < uat/™ (9)

as long as y(0) is finite. Here u is the smallest real solution of Eq. (8). Let us now
consider the functions y(z) belonging to the values ap and B¢ of o and 8. These
functions are a one-parameter family ordered according to their intercepts y(0) on
the y-axis. In refs. 1 and 2, it is shown that the principal ordinary differential
equation for the functions y(z) is invariant to the affine group*

y' = uk/My
O<pu<oo. (10)

' = pz

So each of the curves y(z) is the image of any other because y'(0) = u“/My(0) can
be given any value by the appropriate choice of u while y'(c0) = u%/My(c0) remains
zero. Thus, the entire family of these similarity solutions y(z) is transformed into
itself.

Because of Eq. (10),

y(") _ piMy) _ y(z)
uz' LM~ y(puz)LTM ~ 3z L/

so that the limits as z and z' approach infinity of the left- and right-hand sides are
the same. Suppose this limit < 1. The infinitude of curves y(z), being bounded
from above, has an upper limit yo(z). This limit, too, is a solution of the principal
ordinary differential equation. Furthermore, because the entire family is invariant
to Eq. (10), its upper limit yoo(z) must also be invariant to Eq. (10). Curves
invariant to Eq. (10) must have the form y = vzZ/M  where v is a constant. Since
this invariant curve also satisfies the principal ordinary differential equation, it must
correspond to a solution ¢ = vzL/M{=N/M of the partial differential equation. But
then v must be a root of Eq. (8). Since v < u, and u is the smallest root of Eq. (8),
we have a contradiction. Therefore, the limit of both sides of Eq. (11) as z and z’
approach infinity must be 1. This means that all the similarity solutions have the
asymptotic form uzl/Mt—N/M

Because of the ordering of the solutions of the partial differential equations, this
conclusion holds as well for any solution ¢(z,t) that obeys the boundary and initial
conditions (4a) and (4b) and whose value at the origin ¢(0,1) is bounded above and
below by powers of .

(11)

THE SUPERFLUID DIFFUSION EQUATON

We now investigate the ordering of the solutions of the superfluid diffusion
equation,

1
ce = (c}/?), . (12)
*A different proof from that given in refs. 1 and 2 can be found in Appendix B.
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To do so, we consider the infinitesimal differerice §¢ between two neighboring
solutions. It obeys the linear partial differcntial equation obtained by taking the
first variation of Eq. (12), namely,

1 _
(6c)e = [3 ; 2/3(56):] , (13a)
2
which can be rearranged as
2 Iz
3¢ u, = —3 %—u, +us, (13b)

after setting dc = u. The difference u obeys the boundary and initial conditions

u(0,t) >0, (14a)
u(oo,t) =0, (14b)
u(z,0) =0 . (14c)

The conditions (14b) and (14c) follow from the fact that both neighboring solutions
obey the boundary and initial conditions (4a) and (4b). To prove the ordering of
the two solutions, we must prove that u(z,t) > 0 for all z and t.
To avo'd difficulties created by semi-infinite domains, let us begin by replacing
Eq. (14b) by
u(L,t) =0 (14d)

and restricting ourselves to the rectangle R of length L along the z-axis and length
T along the t-axis. We propose to prove that v > 0 in R by proving that the
smallest value of u must lie on one of the sides S1: (z =0, 0 <t <T), Sy
(t=0,0<z2<L)orS3: (z=L0<Lt<T). On S, S, and S;, the smallest
value of u is zero.

H Eq. (13b) were replaced by the strict differential inequality

3¢23y, > _2en U + sz, (15)
3 e,

we could easily prove that the smallest value of u could not be attained either in
the interior of R or at an interior point of side Sy: (¢ = T, 0 < z £ L). Suppose,
for example, that the smallest value of u wers attained at a point P in the interior
of R. The point P would then be a relative minimum at which u.(P) = uy(P) =10
and u..(P) 2 0. But these stipulations contradict Eq. (15). Suppose. instead, that
the smallest value of u were attained at an interior point P of Ss4. Then the point
P would be a relative minimum along S; so that at P, u,(P) = 0 and u.,(P) > 0.
Since ¢2/® is always positive no matter what the sign of ¢,, Eq. (15) then implies
that u, > 0; this means that yet smaller values of u lie inside R directly under point
P, again a contradiction. Since the smallest value of u cannot be attained either in

R or on 54, it must lie on Sj, S, or Ss.
We can convert Eq. (13b) into the strict inequality (15) by adding a small,
positive source term € to the right-hand side of Eq. (13b). If we assume that éc is
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a continuous function of e, then lim,—p6c > 0 in R. It is worth noting that this
limiting process dilutes the strict inequality éc¢ > 0 in R, which is what we have
actually proved when € > 0, to the weaker inequality §c = 0 in R, but the latter is
sufficient for our purposes.

Finally, we let L approach infinity and so return from the boundary condition
(14d) to the boundary condition (14b).

THE THERMAL EXPULSION EQUATION
The thermal expulsion equation
CCL = Czz (16)
has as its first variation the following equation for u = éc:
uc, + cuy = u,; , (17)

which we again consider in the rectangle R with the boundary and initial conditions
(14a), (14c), and (14d). As before, we can convert Eq. (17) to a strict inequality by
adding an infinitesimal positive source term e to its right-hand side. We cannot be
sure of the sign of ¢, and the standard trick for dealing with such uncertainty is to
set

u =vet | (18)

in which case Eq. (17) becomes
(ce + Ae)v + cvy =v,, + e~ (19)

where v, too, obeys the boundary and initial conditions (14a), (14c), and (14d). If
¢ 2 6> 0in R, we can choose ) large enough so that ¢; + Ac > 0 in R. Then if
the minimum of v were attained at a point P in R, P would be a relative minimum
at which v»(P) < 0, v((P) =0, and v;,(P) > 0. But these stipulations contradict
Eq. (19). If the minimum of v were attained at an interior point P of Sy, then
v.:(P) = 0, v(P) < 0, so that from Eq. (19) we find that v,(P) > 0. Thus, yet
smaller values of v lie inside R, again a contradiction. Since the smallest value of v
must then lie on S, S2, or S3, v > 0 in R. In the limit as ¢ approaches zero, this
strict inequality weakens to v > 0 in R. In view of Eq. (18), this is equivalent to
u 2 0in R, which was to be proved.

All of this depends on showing that ¢ > § in the interior of R and on S4. This
will be so if ¢(0,t) > 8. As before, we add a small, positive source term ¢ to Eq. (16)
and also replace the right-hand sides of Eqgs. (14a), (14c), and (14d) written for ¢
with a small, positive quantity §. Later, we shall let ¢ and § approach 0.

The smallest value of ¢ cannot occur in the interior of R. If it did, say at a point
P, then P would be a relative minimum and ¢,(P) = 0 and ¢;,(P) > 0. These two
requirements contradict Eq. (16) augmented by the source term e.

The smallest value of ¢ cannot occur at an interior point of 54 either. But now,
owing to the factor ¢ (of uncertain sign on S;) on the left-hand side of Eq. (16), we
cannot prove this with the argument of the previous section. But let us consider

5



the rectangle R': (0 < 2 < L,0 <t <T'), where T' > T, and let ¢(0,t) take the
fixed value ¢(0,T) for T <t <T'. If T' is large enough, then on S}

oz, T')=——6+L c(0,7), (20)

which is the steady solution that ¢(z,t) approaches when ¢(0,¢) is constant. The
smallest value of ¢ cannot occur in R', as just shown, and surely does not occur
along the interior of Sj, where c is given by Eq. (20). Hence, it must occur on Sj,
S, or S3, which means that ¢ > § in R’ and thus in R. In the limit as ¢ approaches
zero, we find ¢ > 6 in R.

By the argument previously given, v > 0 in R for any value of § > 0. In the
limit as 6 approaches zero, v > 0 in R. Thus u > 0 in R, which proves the ordering
of the solutions. Finally, as before, we let L approach infinity.

THE POROUS MEDIUM EQUATION

Both of the two partial differential equations just discussed have L/M and
N/M < 0 as required for the solution (7) to fulfill the boundary and initial
conditions (4a) and (4b). For the porous medium equation

e =(c™cy)x (21)

L/M = 2/m and N/M = 1/m, so that these two ratios can only be negative if
m < 0. In many applications, m > 0, so that solutions obeying the boundary and
initial conditions (4a) and (4b) cannot have asymptotic limits of the form (7). At
least some of the similarity solutions of Eq. (21) for m > 0 are known to vanish at
and beyond certain finite, time-dependent values of z (Refs. 3-5).

DISCUSSION

The limiting processes used in demonstrating the ordering of the solutions of
the superfluid diffusion equation and the thermal expulsion equation are based on
unproven assumptions of continuity. For certain linear partial differential equations
related to the ordinary heat diffusion equation, rigorous proofs exist that do not
depend on such assumptions.® These proofs are quite lengthy and involved; what is
more, they are not always easy to generalize for use with nonlinear partial differential
equations. Therefore, I prefer the heuristic approach given here, even though it does
not conform to a high standard of rigor.

The importance of the results proved here rests on the fact that the asymptotic
form ¢ ~ uzl/M=N/M i5 simple and independent of the boundary value c(0,1).
This form can therefore be used without paying an exorbitant cost in computation;
furthermore, it can be relied on even when the boundary value ¢(0,?) is uncertain.
An excellent example of such an application is the protection of superconducting
magnets wound with cable-in-conduit conductors.” A local normal zone in such a
conductor induces flow in the helium, the velocity of which can be modeled by
the thermal expulsion equation.® Since such conductors are typically very long
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compared with their hydraulic diameters (L/D ~ 10%), the induced velocity in
tk . helium at the end of a hydraulic path can be estimated using the asymptotic
form given above. Two data of great practical utility that can be obtained in
this way are the velocity of expulsion from the ends of the tube and the time at
which thermal hydraulic quenchback?® is complete. The expulsion velocity is large
enough in many practical situations to be used as a nonelectrical means of quench
detection.!® The phenomenon of thermal hydraulic quenchback strongly affects the
maximum quench pressure in the conductor as well as the hot-spot temperature.
Both thermal expulsion and thermal hydraulic quenchback have been studied by
means of detailed calculations based on simple models that give plausible values
of ¢(0,t) (refs. 10 and 11). From the conclusions reached here, we can see that
those results of the detailed calculations that are founded on the asymptotic form
uzL/Mt=N/M are model independent and could have been obtained after only a few
lines of calculation.

A similar conclusion applies to the experimental temperature distribuiions
in superfluid He-II measured by van Sciver!? and by van Sciver and Lottin.!3
Although these two sets of measurements differ markedly in their boundary and
initial conditions (van Sciver introduced a constant heat flux into a half-space;
van Sciver and Lottin delivered an instantaneous heat pulse to an infinite medium),
in both cases the temperature at short times and large distances is described
by the asymptotic form uzL/Mi=N/M a5 detailed calculations show.!*1% With
the theorems of this paper, a partial but convincing comparison of theory and
experiment can be carried out with a minimum of computation.
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APPENDIX A

MOST GENERAL FORM OF THE PARTIAL
DIFFERENTIAL EQUATION

As we have seen in the main text, the partial derivative ¢; transforms under
the family of groups (1) by multiplication by A*~?: ¢}, = A*~P¢;. In view of the
linear constraint (2), we can eliminate § from the exponent in favor of a; thus
a—-f = (M/N+1)a -~ L/N. So ¢ transforms by multiplication by a power of
A, the power being a linear function of a. The same is true of all other partial
derivatives of c. Thus, in finding the most general form of a partial differential
equation involving z, t, ¢, and its derivatives, we are led to consider functions F of
N arguments z; that transform according to the one-parameter family of groups

o) = A", 0<A<oc. (A1)

Here a; and b; are constants (M /N + 1) and —L/N in the case of ¢
If the function F is invariant to all the groups of the family (A1), then

F(zl» T2y ov ey $N)=F($;, $I2a ceey mﬁV) (Az)
or
F(zy, z3, ..., zN) = F(/\““’““ml , Aszatbag, cery /\“""’"'b“':cN). (A3)

Equation (A3) is an identity true for all values of @ and A. If we differentiate with
respect to A and then set A = 1, we find

N
> (aia + b;):c,-%f—: =0. (A4)

i=1

Since Eq. (A4) is also an identity true for all values of a, it is equivalent to the pair
of first-order, linear partial differential equations

N
OF
; a;z; B, =0, (Aba)
N
oF
.-; bizi 5—=0. (A5b)
The characteristic equations of these two partial differential equations are
d&!l _ d:l:z = = dZN ’ (A6a.)
a)r; a2 ANTN
gz _ Az _ 9N (A6b)

~ byzn
The most general solution of Eq. (A5a) is an arbitrary function of the N — 1
integrals of Eq. (A6a), and similarly the most general solution of Eq. (A5b) is

biz;  beze
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an arbitrary function of the N — 1 integrals of Eq. (A6b). The integrals of either
set of characteristic equations are products of powers of the z;, that is, functions
u(zy, ..., zn) of the form

N
u= ][] =5 . (AT)

Since du = 0 in the direction givea by Eq. (A6a), if we take the logarithm of
Eq. (A7) and then differentiate in that direction we find

dml
(5w s
so that the constants ¢; must obey the constraint

N

Y ciai=0. (A8a)

i=]

Similarly, the powers ¢; in the integrals of Eq. (A6b) must obey the constraint
N

> eibi=0. (A8b)
i=1
If we look at Eqs. (A8a) and (A8b) as expressing the orthogonality of an N-
dimensional vector ¢ to two other vectors a and b, then we see at once that
the admissible vectors span a subspace of dimension N — 2. Hence there are
N — 2 independent mutual integrals of Eqs. (A6a) and (A6b). The most general
simultaneous solution of Eqs. (A5a) and (A5b) is an a.rb:trary function of these
N -2 independent mutual integrals.
Now let us consider invariants of the entire family of groups of the form

v= H z{t . (A9)

Invariance means that

N N
H z§ H T = H a:f‘/\(“"""”’")"" (A10)

i=1 i=1 i=1

for any choice of z;, @, and A. Taking logarithms, we find that

N
In A D) (aia+bi)ei=0, (A11)
i=1
which leads as before to the constraints (A8a) and (A8b) on the ¢;. Thus there are
N — 2 independent invariants v of the entire family of groups, and their exponent
vectors c span the same subspace as the exponerit vectors of the mutual integrals of
Egs. (A6a) and (A6b). So the most general function F is then an arbitrary function
of the N —2 invariants v. Because of the first equality in Eq. (A10), these invariants
are “A-less” combinations of the z;.
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APPENDIX B

INVARIANCE OF THE PRINCIPAL ORDINARY
DIFFERENTIAL EQUATION

We start by writing the “A-less” equation (6) in the more convenient form

c tc, zC; t(tce)s z(z¢;); _
ZLIMi-N/M* ¢ ' ¢ ' ¢ ! — =0. (B1)

In view of the definition ¢ = 2¢t~!/#, we can write the operator equations

0 1 9
tat ﬂmaz: (z held fixed) , (B2a)
d 3}
2g- =I5 (t held fixed) . (B2b)

Furthermore, we can write Eq. (3) in either of the following alternate forms:
e = t*Py(z) = 2%z~ %Y(z) . (B3)

If we substitute Eq. (B3) into Eq. (B1), we find with the help of Eq. (B2) that
Eq. (B1) takes the form

cly=@ 1 zi(z™%) zdy 1 zf [zE(z7y)]
B z—ey O ydz’® pB? oy '

(B4)

d d
IE(.’BE%)
L VAN e

which one can immediately see is invariant to the group (10).
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