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ABSTRACT

Some nonperturbative effects of fermions in the SU(2) sector of the standard model are

studied on the lattice. The results from both analytic studies and numerical simulations

with dynamical fermions are presented. Implications for the strongly coupled standard

model are discussed.
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There are two main reasons why one would like to study the standard electroweak

theory nonperturbatively. First, the theory is, in general, not asymptotically free. Al-

though perturbative calculations have proved to be adequate in describing the low-energy

phenomena up to about 100 GeV, it is possible that the theory becomes strongly coupled,

and, therefore, nonperturbative, at higher energy. Second, it is well known that certain

interesting phenomena can occur at weak couplings in a manner which is not evident in

any order of perturbation theory. It is desirable to see if any such phenomena occur in the

electroweak theory.

A full nonperturbative study of the electroweak theory is a formidable task. We

have first studied a simplified model, namely, the SU(2)L sector of the electroweak theory

with two generations and with no Yukawa couplings.1"5 (The case with non-zero Yukawa

couplings is discussed in Ref. 6.) This model can be regarded as an approximation to the

standard electroweak theory in the limit where the U(l) gauge coupling and the Yukawa

couplings are weak. In this limit, the right-handed fermions are free fields which decouple

from the rest of the theory and hence can be neglected. With two generations, there are

eight left-handed fermion doublets in the theory. Since the representations of SU(2) are

real, a chiral SU(2)L theory with eight fermion doublets can be written equivalently as a

vectorlike SU(2) theory with four doublets,8'9 which can be studied nonperturbatively in

a well-defined gauge-invariant manner with a lattice formulation.

The discretized Euclidean action of the model under consideration can be written in

usual notation1"5'11 as

S = 09 XI [1 - P] + 2
plaq.

£ t A # £ 4 * » ~ I)2 (1)

with 09 = 4/s2 , 0h = m2/2A, and P = (l/2)Tr{Uplaq.). (The lattice spacing a = 1.) We

use staggered fermions, which are advantageous for studies of chiral symmetry. The Vn,n

are factors from the Dirac matrices.

The purely bosonic part of the model has been studied extensively. The most notable

feature of its phase diagram12'13 is that the confinement region and the Higgs region are



analytically connected. This has inspired ideas such as complementarity14 and the Abbott-

Farbi model.15 The phase diagram in the (3a — fa plane for a large range of A is known to

be qualitatively similar to that for the limiting case A —» oo, on which we shall focus our

present discussions for simplicity. In this limit, the scalar fields satisfy (j>\<j>n = 1.

Knowing the properties of the model in the absence of fermions, one is led to ask:

what happens when fermions are present? This question was first addressed in Ref.

where a numerical simulation was performed using the quenched approximation. We chose

to work at j3g = 0.5 where all local observables are analytic functions of fa in the absence

of fermions. We measured the chiral condensate at several values of fa. The data show

evidence for the existence of a chiral transition at a finite fa. We also found that, in

the small-/?h region where the chiral condensate is nonzero, a massless Goldstone boson

appears in the spectrum, while in the large-/?;, region where the chiral condensate vanishes,

there exist massless fermions. Therefore, the simulation with the quenched approximation

suggests that there exists a new transition associated with the fermions.

This finding motivates one to look for a way to demonstrate the existence of the chiral

transition analytically. If we can show that, in the presence of fermions, a chiral transition

exists at 0g = 0, then the fact that a small-/?, expansion has a finite radius of convergence

implies that the critical point at (3g = 0 is the endpoint of a line of chiral phase transitions

which extends into the interior of the phase diagram at 0g > 0. However, as was noted

in Ref. 16, this line of chiral transitions cannot stop in the interior of the phase diagram,

since it separates a region where the chiral condensate is nonzero from another where the

condensate vanishes identically, and these two regions cannot be analytically connected to

each other. Therefore, if there is a chiral transition at 0a = 0, there must exist a line of

chiral transitions which completely separates the phase diagram into two disjoint regions.

We have carried out a series of analytic studies2'4"7'18"20 of various models in the

strong gauge coupling limit (i.e. 0g = 0), using a mean-field type of approximation. One

of the main results of these studies is that the existence of chiral transition is a very general

feature of lattice gauge theories with scalar and fermion fields. Some of these works are

discussed in R. Shrock's contribution at this meeting. I will only mention the results for

the model which we are considering here, namely, the SU(2) gauge theory with a scalar



field and a staggered fermion field, both in the fundamental representation. With the

mean field approximation, we found that2 the chiral condensate decreases monotonically

and continuously as /?/» increases from zero to /?& ss 2.76, beyond which the condensate

vanishes identically. Thus there is a second-order chiral transition at @g = 0, and the

critical point is at J3h,e « 2.76.

For comparison, we performed a quenched simulation2, and the data suggests that a

chiral transition occurs at approximately j3h,c ~ 2.7. This is in good agreement with the

analytic result.

Although our analytic studies were carried out at the strong gauge coupling limit, the

result is actually more general. The chiral transition found at 0g = 0 extends into the

interior of the phase diagram all the way until it reaches one of the two boundaries, /?/, = 0

or Ps = oo. Furthermore, it is worth noting that the chiral transition is determined to be

of second-order at flg — 0. One expects from a small-/?9 expansion that the transition will

remain second-order for at least a finite range of (3a.

To get a better feeling of how fermions affect the bosonic system, especially for nonzero

fig, we performed a simulation with dynamical fermions, using a Langevin algorithm.3 The

results of this simulation are summarized as follows. At f3g = 0, the data shows that the

chiral condensate decreases as /?& increases, and vanishes for sufficiently large /?/,. The

critical point of the chiral transition is estimated to be /?& = 2.5 ± 0.3, which is close to the

results from the analytic study and the quenched simulation. As was mentioned earlier,

it is expected that the qualitative features established at ftg = 0 remain the same for a

finite strip adjacent to /3g = 0. This expectation is borne out by our data at fig = 0.5.

According to our data, the chiral transitions at 0g = 0 and 0.5 are both consistent with

being of second-order, in agreement with the result of our analytic study. At /3g = 1.9,

all three quantities that are measured, namely, the chiral condensate < XX >> the average

plaquette < P > and < L > = < ^2nt/tRe(^nUn>fi4>n+etl)/Nt > (Nt is the number of links

in the lattice), indicate a transition, at /?/, « 0.4, and no other transition was found. This

result suggests that the chiral transition coincides with the confinemsnt-Higgs transition,

which, in the absence of fermions, exists for21 ftg > 1.6. The data provides some suggestion

that the transition at /3g = 1.9 is weakly first-order.



From our simulation with dynamical fexmions, we obtain the phase diagram in the

presence of fermions, which is shown in fig. 6ofRef. 3. Our dynamical fermion simulation

is exploratory in nature. While the quantitative details of the phase diagram can be

improved by performing a larger scale simulation with an exact algorithm, the qualitative

features are expected to be unchanged. Due to the increasingly severe finite size effect as

(3g increases, it is difficult to determine where the chiral phase boundary ends by numerical

simulations. We do know, however, that (a) the endpoint cannot be in the interior of the

phase diagram, and (b) the region with small {3g and small fih (customarily labeled as

the "confinement phase") is no longer analytically connected to the region with large f3g

and large /?/, (the "Higgs phase") when fermions are included. The chiral phase boundary

completely separates the phase diagram into two disjoint regions characterized by whether

or not chiral symmetry is spontaneously broken.

Thus, we have shown that fermions affect the phase diagram of a theory in a funda-

mental way. In particular, for the SU(2) sector of the standard model, the existence of the

chiral phase boundary in the phase diagram implies that it is necessary to approach the

continuum limit of the lattice model from within the chirally symmetric phase in order to

obtain a spectrum with light fermions. The fact that the chiral transition is continuous

for at least a finite range of 0g opens up new possibilities for the continuum limit of the

lattice theory to be taken. It will be interesting to examine the properties of the continuum

theories defined along the second-order chiral transition phase boundary.

The above discussions apply to the SU(2) sector of the strongly coupled standard

model10 (SCSM) also, since its Lagrangian has the same form as the usual standard model.

It remains to be seen whether a continuum limit of the above lattice model exists which (a)

can be approached from within the chirally symmetric phase, and (b) yields a spectrum of

strongly coupled bound states and resonances at the weak scale in addition to the usual

low-energy spectrum, as suggested by SCSM. It is worth noting that the natural place

for stronly coupled bound state structure to occur is in the region which is analytically

connected to the corner with small j3g and small fik, where chiral symmetry, however, is

spontaneously broken.
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