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ABSTRACT

Some nonperturbative effects of fermions in the SU(2) sector of the standard model are
studied on the lattice. The results from both analytic studies and numerical simulations

with dynamical fermions are presented. Implications for the strongly coupled standard

model are discussed.
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There are two main reasons why one would like to study the standard electroweak
theory nonperturbatively. First, the theory is, in general, not asymptotically free. Al-
though perturbative calculations have proved to be adequate in describing the low-energy
phenomena up to about 100 GeV, it is possible that the theory becomes strongly coupled,
and, therefore, nonperturbative, at higher energy. Second, it is well known that certain
interesting phenomena can occur at weak couplings in a manner which is not evident in
any order of perturbation theory. It is desirable to see if any such phenomena occur in the
electroweak theory.

A full nonperturbative study of the electroweak theory is a formidable task. We
have first studied a simplified model, namely, the SU(2)z sector of the electroweak theory
with two generations and with no Yukawa couplings.)~3 (The case with non-zero Yukawa
couplings is discussed in Ref. 6.) This model can be regarded as an approximation to the
standard electroweak theory in the limit where the U(1) gauge coupling and the Yukawa
couplings are weak. In this limit, the right-handed fermions are free fields which decouple
from the rest of the theory and hence can be neglected. With two generations, there are
eight left-handed fermion doublets in the theory. Since the representations of SU(2) ace
real, a chiral SU(2); theory with eight fermion doublets can be written equivalently as a
vectorlike SU(2) theory with four doublets,®—® which can be studied nonperturbatively in
a well-defined gauge-invariant manner with a lattice formulation.

The discretized Euclidean action of the model under consideration can be written in

usual notation?—5:11 as

1
S = ﬂg Z [1 - P] + § Z Thl,p(f‘nUn,an+¢, - fn+¢, U;,“Xn)
plag. n,u

+261 Y Re(¢hdn — dhUnutnte,) + MR D (8100 — 1)? (1)

n,u n
with B, = 4/g%, Bn = m?/2), and P = (1/2)T*(Upiag.). (The lattice spacing a = 1.) We
use staggered fermions, which are advantageous for studies of chiral symmetry. The 7, ,

are factors from the Dirac matrices.

The purely bosonic part of the model has been studied extensively. The most notable

feature of its phase diagram!?:13 is that the confinement region and the Higgs region are
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analytically connected. This has inspired ideas such as complementarity’4 and the Abbott-
Farhi model.’® The phase diagram in the 8; — 85 plane for a large range of A is known to
be qualitatively similar to that for the limiting case A — co, on which we shall focus our
present discussions for simplicity. In this limit, the scalar fields satisfy ¢} én = 1.

Knowing the properties of the model in the absence of fermions, one is led to ask:
what happens when fermions are present? This question was first addressed in Ref. N.___
where a numerical simulation was performed using the quenched approximation. We chose
to work at By = 0.5 where all local observables are analytic functions of 85 in the absence
of fermions. We measured the chiral condensate at several values of 8). The data show
evidence for the existence of a chiral transition at a finite ﬂ;..' We also found that, in
the small-35 region where the chiral condensate is nonzere, a massless Goldstone boson
appears in the spectrum, while in the large-35 region where the chiral condensate vanishes,
there exist massless fermions. Therefore, the simulation with the quenched approximation
suggests that there exists a new transition associated with the fermions.

This finding motivates one to look for a way to demonstrate the existence of the chiral
transition analytically. If we can show that, in the presence of fermions, a chiral transition
exists at Gy = 0, then the fact that a small-3; expansion has a finite rad’us of convergence
implies that the critical point at ; = 0 is the endpoint of a line of chiral phase transitions
which extends into the interior of the phase diagram at 3; > 0. However, as was noted
in Ref. 16, this line of chiral transitions cannot stop in the interior of the phase diagram,
since it separates a region where the chiral condensate is nonzero from another where the
condensate vanishes identically, and these two regions cannot be analytically connected to
each other. Thersfore, if there is a chiral transition at 8, = 0, there must exist a line of
chiral transitions which completely separates the phase diagram into two disjoint regions.

We have carried out a series of analytic studies?4—7:18—20 of various models in the
strong gauge coupling limit (i.e. By = 0), using a mean-field type of approximation. One
of the main results of these studies is that the existence of chiral transition is a very general
feature of lattice gauge theories with scalar and fermion fields. Some of these works are
discussed in R. Shrock’s contribution at this meeting. I will only mention the results for

the model which we are considering here, namely, the SU(2) gauge theory with a scalar
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field and a staggered fermion field, both in the fundamental representation. With the
mean field approximation, we found that? the chiral condensate decreases monotonically
and continuously as f, increases from zero to O, =~ 2.76, beyond which the condensate
vanishes identically. Thus there is a second-order chiral transition at §; = 0, and the
critical point is at G, = 2.76.

For comparison, we performed a quenched simulation?, and the data suggests that a
chiral transition occurs at approximately B, = 2.7. This is in good agreement with the
analytic result.

Although our analytic studies were carried out at the strong gauge coupling limit, the
result is actually more general. The chiral transition found at §; = 0 extends into the
interior of the phase diagram all the way until it reaches one of the two boundaries, G, = 0
or B; = co. Furthermore, it is worth noting that the chiral transition is determined to be
of second-order at Gy = 0. One expects from a small-3; expansion that the transition will
remain second-order for at least a finite range of 3,.

To get a better feeling of how fermions affect the bosonic system, especially for nonzero
B¢, we performed a simulation with dynamical fermions, using a Langevin algorithm.? The
results of this simulation are summarized as follows. At 3, = 0, the data shows that the
chiral condensate decreases as G increases, and vanishes for sufficiently large 8. The
critical point of the chiral transition is estimated to be G, = 2.5+ 0.3, which is close to the
results from the analytic study and the quenched simulation. As was mentioned earlier,
it is expected that the qualitative features established at 5, = 0 remain the same for a
finite strip adjacent to B; = 0. This expectation is borne out by our data at 8, = 0.5.
According to our data, the chiral transitions at 3, = 0 and 0.5 are both consistent with
being of second-order, in agreement with the result of our analytic study. At 8, = 1.9,
all three quantities that are measured, namely, the chiral condensate < yx >, the average
plaquette < P>and<L>=<3,, Re(¢LUn,ubn+te,)/Ne > (Ng is the number of links
in the lattice), indicate a transition, at 8, = 0.4, and no other transition was found. This
result suggests that the chiral transition coincides with the confinemsnt-Higgs transition,
which, in the absence of fermions, exists for?? g, > 1.6. The data provides some suggestion

that the transition at Gy = 1.9 is weakly first-order.
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From our simulation with dynamical fermions, we obtain the phase diagram in the
presence of fermions, which is shown in fig. 6 of Ref. 3. Our dynamical fermion simulation
is exploratory in nature. While the quantitative details of the phase diagram can be
improved by performing a larger scale simulation with an exact algorithm, the qualitative
features are expected to be unchanged. Due to the increasingly severe finite size effect as
B4 increases, it is difficult to determine where the chiral phase boundary ends by numerical
simulations. We do know, however, that (a) the endpoint cannot be in the interior of the
phase diagram, and (b) the region with small 8, and small 85 (customarily labeled as
the “confinement phase”) is no longer analytically connected to the region with large G,
and large G5 (the “Higgs phase”) when fermions are included. The chiral phase boundary
completely separates the phase diagram into two disjoint regions characterized by whether

or not chiral symmetry is spontaneously broken.

Thus, we have shown that fermions affect the phase diagram of a theory in a funda-
mental way. In particular, for the SU(2) sector of the standard model, the existence of the
chiral phase boundary in the phase diagram implies that it is necessary to approach the
continuum limit of the lattice model from within the chirally symmetric phase in order to
obtain a spectrum with light fermions. The fact that the chiral transition is continuous
for at least a fini'e range of 3, opens up new possibilities for the continuum limit of the
lattice theory to be taken. It will be interesting to examine the properties of the continuum

theories defined along the second-order chiral transition phase boundary.

The above discussions apply to the SU(2) sector of the strongly coupled standard
model!? (SCSM) also, since its Lagrangian has the same form as the usual standard model.
It remains to be seen whether a continuum limit of the above lattice model exists which (a)
can be approached from within the chirally symmetric phase, and (b) yields a spectrum of
strongly coupled bound states and resonances at the weai: scale in addition to the usual
low-energy spectrum, as suggested by SCSM. It is worth noting that the nat'ura.l place
for stronly coupled bound state structure to occur is in the region which is analytically

connected to the corner with small 8, and small (5, where chiral symmetry, however, is

spontaneously broken.
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