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ABSTRACT 

The field reversed mirror is a toroidal, closed magnetic field 
line plasma confinement device in the compact torus class. It has 
no conductors linking the plasma as in other toroidal devices such 
as the tokamak. The Larmor radius in a typical field reversed 
mirror is 1/6 to 1/3 the plasma radius. In field reversed mirrors 
fueled and heated by neutral beams, the azimuthal current is 
principally diamagnetic. 

The transport and equilibrium in field reversed mirrors is 
described in this work by two distinct models. The main differences 
between the two models are the applicable collision frequency regime, 
the Larmor radius size and the allowed magnetic fields. In both 
models the aspect ratio is one and axisymmetry is assumed. 

*Work performed under the auspices of the U.S. Department of Energy 
by the Lawrence Livermore Laboratory under contract number 
W-7405-ENG-48. 
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The first model considers the plasma to have a large collision 
frequency, and small Larmor radius. The plasma is th?n modeled as 
an adiabatic hydromagneuic fluid and both toroidal and poloidal 
magnetic fields are allowed. The plasma evolves quasi-statically 
between equilibrium solutions as a result of transport processes or 
adiabatic external current changes. The computer code and 
computational methods used to solve the equilibrium and transport 
equations are described. The computer code results are discussed 
for several cases considering the effects of neutral beam injection 
and magnetic field shaping. 

The second model considers che plasma to have a small 
collision frequency and a large Larmor radius. The magnetic field 
in this model only has a poloidal component. The plasma consists of 
several ion species described by distribution functions which must 
be calculated and electrons modeled as an inertialess fluid. The 
ion distribution function for each species satisfies a kinetic 
equation formulated in terms of a Poisson bracket with the system 
Hamiltonian. The ion distribution function is expanded in terms of 
collision irequency and the kinetic equation then yields a hierarchy 
of equations. At second order a ..inetic equation for the time 
evolution of the zero order distribution function is obtained. This 
equation is the large Larmor radius analog of the small i^rmor 
radius drift kinetic equation which describes the tokamak 
neoclassical diffusion regime. 

The drift kinetic equation is derived by integrating 
appropriate equations over a gyro-orbit. In contrast the kinetic 
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equation derived in this work requires integration over the actual 
orbit. To emulate integration over exact orbits without requiring 
detailed trajectories an orbit average procedure is derived. The 
orbit average is equivalent to accumulating contributions from 
integration over exact orbits of an equilibrium distribution. The 
orbit averaged kinetic equation which is derived at second order in 
collision frequency then evolves on a slowing down time scale rather 
than a cyclotron period which is characteristic of standard 
trajectory following particle codes. 

The orbit average procedure is defined in terms of phase space 
and path integral formulas. Numerical equivalents of these formulas 
are derived and results of tests in two particle orbit computer 
codes are presented. The derivation of the orbit average procedure 
depends on the number of constants of the motion which exist. In 
axisymmetry with conservative forces there are two constants of the 
motion. In some circumstances a third constant of the motion may 
also exist. To explore the existence of a third constant of the 
motion, several classes of third constant of the motion are 
examined. Because the examined third constant of the .notion does 
not exist when an orbit is stochastic, consideration is also given 
to determining parameter regimes where stochastic orbit motion may 
manifest. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 
The field reversed mirror is a closed magnetic field line 

plasma confinement device studied in the magnetic fusion energy 
program. Preliminary analysis indicates it has several desirable 
features. In considering other fusion energy devices, the field 
reversed mirror offers the advantages of low total structure volume 
to plasma volume, high fusion power density, and efficient use of 
magnetic field. In addition, it has no conductors linking the 
plasma as in other toroidal configurations. In contrast to present 
commercial energy sources the field reversed mirror has the 
capability of providing a domestically produced, environmentally 
safe, inexhaustible energy supply. To motivate the study of the 
field reversed mirror, a brief review oT • -gy requirements is 
given followed by a discussion of energy sources, including 
alternate fusion energy concepts. 



1.1.1 Energy Requirements 
The pursuit of energy impacts ecology, economics and as a 

consequence of its international aspects world stability. As the 
standard of living increases there is a direct effect on the overall 
energy requirement. From the mid twenties to the mid seventies the 
United States energy usage increased at an average annual rate of 
2.5% and the gross national product increased at an average annual 
rate of 3.1%. Thus on the average the trend of increased 
economic activity implies increased energy usage. In addi'ion the 
United States population increased from 152.3 million to 216.8 

f2l million from 1950 to 1976. J This is an average annual 1.36% 
rate of increase. In the same period energy consumption went from 
30.9 quads to 69 quads,L3J where a quad is 1 0 1 5 B.T.U. and a 
B.T.U. is the amount of energy required to raise a pound of water 
one degree fahrenheit. Thus energy consumption underwent an average 
annual 3.1% rate of increase. In addition to the increased energy 
requirement in relation to economic activity, there is also a trend 
toward greater per capita energy usage. The global impact of this 
trend is of concern since of the 69 quads consumed in 1976 only 56.9 
were domestically produced. Based on conservative assumptions 
concerning population increase it is estimated United States energy 
demand could be reduced to a 1,8% per capita annual rate of 

T4l increase/ J However even with this scenario the projected energy 
consumption in the year 2000 is 170 quads. All of these factors 
point toward a continuing reliance on energy and a need to increase 
the energy supply. 



1.1.2 Energy Sources 
Present energy supplies may be considered in three categories; 

renewable, fossil and nuclear. 

• Renewable Energy Sources 
In the renewable category there are several energy sources 

directly or indirectly related to solar energy. Solar energy is 
derived from radiation emitted by the sun. The sun's radiation may 
be used for space heating or water heating. In addition focusing 
collectors may be used to concentrate the heating effect and 
generate steam from which electricity may be produced. This 
method requires collectors which track the position of the sun. 
Direct conversion of radiation to electricity may be achieved by 
photovoltaic cells. In this case radiation induced electron 
detachment in a semiconductor material is used to produce an 
electric current.'- •* The greatest utilization of photovoltaics 
has been for space applications. J The main drawback to this 
technology is the high cost relative to other forms of energy. 
Solar collection schemes are not as effective at varying latitudes 
and require expensive energy storage systems to deal with 
interrupted solar radiation caused by nightfall or weather 
conditions. Thus development and installation has not been wide 
spread. A side product of solar radiation is atmospheric pressure 
differences which cause wind. It has been estimated the potential 
possible wind energy which may be obtained in the U.S. is 15,000 
GW, ^ where the total electric generating capacity is 500 GW. 



Wind energy has successfully been used to pump water and generate 
electricity, however there are limited locations where siting is 
possible with reliable prevailing winds. Another form of sclar 
energy is the temperature difference of different layers in tne 
ocean. The systems which extract this energy are currently 
experimental and are constrained by the ideal heat engine efficiency 
which is 1 - Tp/T, where the temperature difference is T 2 - T.. 
The small anticipated efficiency requires relatively large heat 
exchangers. 

Energy from biomass is renewable since additional organic 
substances may be grown. Biomass may be used to obtain methane gas 
or methyl alcohol, both of which may be burned to yield useful 
heat. More simply wood, crop debris or municipal refuse may be 

("9] burned. It is estimated that approximately 2 quads of energy J 

could have been obtained in 1980 from municipal waste alone. All 
technology currently exists for biomass energy, its implementation 
depends on economics of scale, fuel cost due to transportation 
considerations and separation of unburnable debris in the case of 
municipal refuse. 

Geothennal energy is technically not renewable; however, it 
has been estimated a billion quads of energy exist in the first 5 
miles of the earth's crust. J This is adequate to supply world 
needs for a million years. An early exploitation of geothermal 
energy occurred at Larderello, Italy'- -• where steam was piped to low 
pressure turbines to produce electricity. A similar installation 
exists in California near Geyservilie. Unfortunately, these are 
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rare sites and the preponderance of potential geothermal energy 
exists as hot dry rocks or molten lava and magmas. Use of these 
resources requires developments in the area of drilling techniques, 
rock fracturing, and transporting heat to the surface. 

Hydroelectric power is a renewable energy source which relies 
on dammed water flowing through turbines to generate electricity. 
Most sites where this technology may be implemented have already 
been utilized. Expansion of existing duir;s and addition of small 
dams is estimated to add potentially a maximum of 50 GW L J or 10% 
of the total electric generating capacity. This increase would 
result in water level drawdown and possible unfavorable 
environ'., ital impacts as well as land use consequences. 

• Fossil Fuel Energy Sources 
The main fossil fuels presently used to produce energy are 

oil, gas, and coal. These three fuels dominate all other sources of 
energy used in the United States. In 1976 the percentage of total 
national energy consumption attributed to oil, gas, and coal was 
47.2%, 27.3%, and 18.6% respectively J 1 3 ^ All other sources of 
energy contributed 7% to the total. Eliminating the 4.1% 
contribution of hydroelectric, all remaining alternate energy 
sources contributed less than 3%. The importance of developing 
alternate energy sources is emphasized by the obvious reliance on 
oil, and the fact that 43% of oil used ir. 1976 was imported. This 
means 20% of the total domestic energy supply originated from 
sources that are not secure or reliable. To alleviate this problem 



consideration has been given tc expanding production of fossil 
fuels. Estimates of available recoverable reserves indicate the 
energy equivalent of oil, gas, and coal is 330, 421, and 19,000 
quads respectively. ~ J These estimates are conservative since 
they include only known reserves and extensions to known reserves. 
No account is made of resources thought to be in unexplored 
extensions of producing regions, which approximately doubles the 
stated estimates. I'hese figures show the central domestic fossil 
fuel energy source is coal. Sha'io. oil is estimated as amounting to 
a million quads of energyL J; however, economic extraction is a 
controversial issue. The method of heating shale to about 500° C to 
produce oil fraction, gases and residues has been known for years 
yet has not been commercially implemented. Coal then whether 
liquified, gasified, or simply burned is the frontrunner in domestic 
energy supplies. The drawback of the use of coal centers on the 
issue of air pollution. Burning coal releases sulfur dioxide, 
nitrogen oxides, carbon oxides, and poisonous trace elements such as 
mercury, lead, and arsenic. The overall effect is respiratory and 
cardiac illness.'- ^ In addition much debate has occurred over 
climate impact of increased levels of carbon dioxide, in reference 
to global heating and cooling. Another threat is the acid rain 
which has been increasing in the northeast United States. The 
consequence is ecosystem degradation resulting in aquatic life 
fatalities and soil nutrient leaching. 
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• Nuclear Energy Sources 
The ;;hird category of energy supplies is nuclear. The two 

approaches in this area are fission and fusion. Fissicr. energy is 
derived from heat obtained from the binding energy of atomic 
nuclei. Neutrons are used to break a heavy nucleus into several 
parts and the mass difference of the sum of the parts and original 
nucleus is made available as heat. In the same way fossil fuel 
derived heat is used, nuclear reaction heat is used to produce steam 
and power turbines that produce electricity. Presently there are 
many light water reactors in commercial operation and there are 
plans to implement breeder reactors which produce more fuel as they 
operate. The main disadvantage of fission is the severe safety 
requirements posed by meltdown and accidental release of radiation, 
questions of nuclear weapon proliferation, and radioactive waste 
disposal. Currently there is no long term policy dealing with 
disposal of radioactive waste which has a half life of hundreds of 
years. Public safety has become a promiment issue for nuclear 
fission in light of the accident at Three Mile Island. 

1.1.3 Fusion Energy 
Based on the need for increasing amounts of energy and the 

discussio.. of energy sources, it is clear a clean, inexhaustible 
energy source is highly desirable. Fusion has a radioactive waste 
disposal consideration which is insignificant compared to nuclear 
fission. It is thus regarded as a clean energy source. The basic 
fusion reaction consists of combining light nuclei to form a heavier 



rig"] nucleus such as the following reaction/ J involving the combination 
of deuterium (D) and tritium (T) to form a neutron and alpha particle. 

D + T * He 4 + n + 17.6 Mev (1-1) 

Tritium is not naturally occurring; however, fission of lithium 
yields tritium as a reaction product. 

Li 6 + n + He 4 + T + 4.8 Mev (1-2) 

Accessible surface sources of lithium represent thousands of years 
of tritium supply if all U.S. energy was derived from fusion. 
Deuterium is a naturally occurring nuclide, found in sea water at a 
concentration of .0153% of the hydrogen,'- ^ which is adequate to 
supply millions of years of fusion energy. Thus fusion energy is 
considered to be inexhaustible and clean, and it is thus a highly 
desirable energy source. 

The reaction described by Eq. (1-1) has a maximum rate at a 
r?i] temperature of approximately 60 keV. J The objective of fusion 

energy research is to design a system in which isotopes of hydrogen 
at these high temperatures react to yield more energy than required 
to create conditions in which the reaction can occur. This objective 

r??l is often stated in terms of the Lawson criteria,1- J which requires 
14 3 nx > 10 sec/cm for a D, T plasma at reaction temperatures, where 

n is density and T is confinement time. The basic idea is to confine 
a high temperature plasma long enough at sufficient density such that 
net energy is produced. A high temperature plasma can not be 
confined by material walls since either the walls would vaporize or 
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the plasma energy would be rapidly lost by contact with cool wall 
surfaces. To overcome this difficulty plasma containment is 
achieved by inertial confinement or magnetic confinement. 

• Inertial Confinement Fusion 
Inertia! confinement fusion relies on a driver such as a 

laser beam to cause hydrodynamic compression of a pellet to high 
T231 density.1- J The laser beam pulse is in the neighborhood of 

nanoseconds and thus the Lawson criteria requires densities greater 
23 22 r 241 

than 10 /cc. For comparison solid DT density is about 10 /cc. L J 

The hydrodynamic compression causes ignition and propagation of a 
burn wave resulting in fusion energy. Thi-. process depends on the 
driver beam pulse shape and the way the energy couples into the 
plasma. The time evolution of compression, burn, and energy release 
is complicated by such effects as ablation, Rayleigh-Taylor 
instability, temperature gradient instability, and several anomalous 
phenomena. The largest domestic inertial confinement experiment is 
the NOVA laser systenr J which is designed to produce as much 
energy as the laser delivers to the target pellet. Although this is 
an important step toward a reactor, the reactor goal is yet in the 
future since useful performance requires the production of 10 or 100 
times the delivered laser energy. This requirement is a consequence 
of laser light losses and the approximate 10% or less efficiency of 
converting a broad spectrum of light to the laser light frequency. 
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t Magnetic Confinement Fusion 
The magnetic fusion approach seeks to confine plasma by 

utilizing the properties of a magnetic field to innibit loss or wall 
contact. The basic motion of a single charged particle subject to a 
magnetic field is to spiral around the magnetic field line in 
response to the V x B force. The consequence is to inhibit motion 
perpendicular to field lines. In practice with a distribution of 
charged particles, the perpendicular motion is actually diffusive. 
Directly "long field lines particle motion is unencumbered. To deal 
with the lack of confinment in the direction of a homogeneous 
magnetic field there are two distinct magnetic field geometries. 

• Open Magnetic Field Line Geometry 
The first geometry is described as open since field lines 

within the plasma do not connect. This is the geometry of the 
magnetic mirror and the earliest efforts to prevent loss along field 
lines in these devices utilized the reflecting effect of ar 

increasing magnetic field along a field line. A schematic of a 
single mirror cell is shown ir* Fig. 1-1. The increasing magnetic 
field strength along a field line is produced by axisymmetric 
current coils in this case. The maximum magnetic field B 
occurs in the region near coils and the minimum magnetic field is at 
the device midplane. The basic motion of a single partite in this 
device is to bounce between mirror coils, gyrating or spiraling 
around field lines and more slowly drifting in the azimuthal 
symmetry direction. When the change of the magnetic field during a 
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Midplane Mirror coil-

Magnetic field line 

Figure 1-1. Cross section of a single mirror cell. 
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gyro-period is much less than the magnetic field magnitude 
conditions exist for adiabatic behavior and the magnetic moment H^/B 
is approximately constant. °^ In this case non-interacting 
single particle confinment occurs for particles with velocity pitch 

1/2 v. /v„ > (B . /(B - B . )) , where the velocities v., v„ 1 II v mm v max nun" ' -L' ll 
refer to directions perpendicular and parallel to a field line at 
the device midplane and B.„ and B„,„ are the minimum and maximum r m m max [271 magnetic field values along the field line. Particles at smaller 
pitch angles are in the loss cone and are typically lost in a bounce 

T28l time. In addition there may also be non-adiabatic particles. 
Early mirror experiments had lifetimes greater than predicted by 
hydromagnetic instability predictions;'- ^ however, it was not until 
experiments by Ioffe'- -1 that a minimum-B geometry was used to obtain 

T311 greatly enhanced stability.1 J The essential change from the 
device of Fig. 1-1 was to add current bars in the horizontal or z 
direction every sixty degrees with alternating current direction. 
Figure l-2a shows a schematic of the Ioffe experiment. Figure l-?b 

T32l is a variation known as the Baseball configuration. J Figure l-2c 
is another minimum B configuration produced with yin yang magnets, 

[331 representing the 2X11B experiment. J The two new features of this 
experiment were the microinstability suppression by axial warm plasma 
stream and sustaining the plasma with neutral beams. Theoretical 

[34 351 understanding of microinstabilitiesL ' J led to stream 
stabilization^- * of rf fluctuations associated with the drift 

[371 cyclotron loss cone mode. J The increased plasma lifetime 
ultimately culminated in a stream stabilized, high beta experiment 
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Figure 1-2. Minimum B configurations (a) loffe bars added to a 
simple mirror (b) Baseball geometry (c) Schematic of 2XIIB with 
yin-yang coils. 
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(2XIIB) heated and fueled by neutral beams.'- •* As is characteristic 
of single cell mirrors this experiment was limited by end loss 
processes. ' •* Particle confinement depends on adiabatic 
invariance; however, collisional velocity space scattering moves 
magnetically trapped particles into the loss cone. Because the 
scattering time goes like the square root of mass, the electrons are 
rapidly lost until an ambipolar field is generated which maintains 
approximate charge neutrality and equilibrates net electron and ion 
loss rates. The result is electrons are low temperature and 
electrostatically confined, and ions of low energy are lost. The 

details of this situation have been studied by solving a kinetic 
T411 equation with a Fokker-Planck collision term.1- J 

The inherent presence of an ambipolar field and the success 
of stream stabilization and neutral beam injection led to a new 

fa? 431 design designated the tandem mirror.1- ' J The basic idea is to 
use single cell mirrors as end plugs at both ends of a solenoid. 
High density end plugs confine the main fusion plasma in the 
solenoid by high magnetic field and large ambipolar potential. For 
technological considerations modifications to tl basic design 

[441 r45l 
consisting of thermal barriers'- J and A cells'- J are under 
investigation. These ideas and others are being examined 
experimentally in the TMX-lr device. 
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• Closed Magnetic Field Line Geometry 
The second basic type of magnetic field geometry used to 

deal with confinment along field lines is described as closed and is 
typified by a toroidal geometry. The fundamental configuration 
difference among toroidal confinement geometries is the presence or 
absence of material conductors linking the plasma. 

• Tokamak Geometry 

Representative of devices 'ith a conductor linking the 
F471 plasma is the tokamakL J illustrated in Fig. 1-3. A toroidal 

plasma is confined in a metallic shell wound with poloidal and 

toioidal field coils. The toroidal direction is e in Fig. 1-3 and 
the poloidal direction 6 , is parallel to the magnetic field 
direction around the plasma at a fixed 6 value. The plasma acts 
as the secondary winding of a transformer primary which links the 
plasma. Ohmic heating is obtained from the toroidal plasma current 
induced by the transformer. The toroidal plasma current causes a 
poloidal magnetic field which together with the external toroidal 
field coils results in helical magnetic field lines. The poloidal 
angular displacement of a field line after going 2TT in the 
toroidal angle is the rotational transform. If the rotational 
transform is not 2TT divided by an integer the field lines 

ergodically fill topological^ nested surfaces. For stability^- -1 

reasons, in the large aspect ratio (A = major radius/minor radius) 
limit, the safety factor q must be greater than one. The safety 
factor is related to the inverse of the rotational transform and for 
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1-3. Tokamak coil geometry with transformer linking pi 
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large A may be written in terms of poloidal field B and toroidal 
field B T as follows. 

q = B T ( B ^ f 1 (1-3) 

Typical values of A range from 3 L J to 8 L J and consequently for 
stability a tokainak has B T > B . The confinement of a tokamak pla 
is essentially due to the poloidal field and consequently the 
B = 8irp/(B + By) is typically a few percent. 

sma 

• Compact Torus Geometry 

The contrasting class of closed field line confinement 
devices whid, do not have plasma linking conductors are described as 
compact tori. These devices have the advantage of low total 
structure volume to plasma volume, efficient use of magnetic field, 
the possibility of high 3 ~ 1, and reduced wall surface area to 
plasma surface area. An added attraction is a higher volume 
averaged fusion power density compared to a tokamak. A calculation 
using an idealized compact torus equilibrium and assuming a B = .1 

tokamak yields a result of 700 times greater compact torus fusion 
T511 power density,1- J compared to the tokamak. 

Compact torus devices may be grouped into three classes 

mainly distinguished by the relative magnitude of poloidal and 
toroidal field and the size of the Larmor radius p, = v., mc/(eB), 
where v.. is thermal velocity, m is mass, c is the speed of light, e 
is charge and B is magnetic field. The three classes are particle 
ring devices, spheromaks ond field reversed mirrors or FRM. 
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• Particle Ring Devices 
In the class of large Larmor radius devices one of the 

earliest attempts to improve the confinement of a mirror device was 
[521 a particle ring confinement device known as Astron. J The idea 

was to stack axis encircling relativistic electron rings in a weak 
mirror field to heat and confine a space charge neutralizing 
background plasma. The goal was to obtain an intense enough high 
energy electron ring to cause a current sufficient to reverse the 
magnetic field inside the ring and result in a closed field line 

T53-551 region. Long plasma layers exhibited tearing instabilities1- J and 
field reversal was not reached due to saturation of current buildup 
during the stacking process. Although reactor designs were proposed 
assuming these difficulties could be overcome, technological 
restrictions led to the eventual abandonment of this concept. Later 
experiments such as RECE-BERTA"- ^ relied on a single intense burst 
of high energy relativistic electrons, and achieved field reversal. 
In this experiment a burst of electrons is perpendicularly injected 
into a vacuum chamber having an axial magnetic field. In other 
experiments'- 6 7 , 5 8-' (RECE-CHRISTA) an axial conductor is used to 
generate a coaxial toroidal field in addition to the axial magnetic 
field. Axial translation and compression have been achieved and 
plasma lifetimes up to 1 ms have been obtained. An alternate 
approach using magnetically insulated ion sources produces rotating 
diamagnetic proton layers by axial cusp injection of an annular beam 

T591 into a magnetic mirror. J Axial compression and reflection in a 
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magnetic mirror have been demonstrated ds well as propagation 
wit' , space charge disruption. 

• Spheromak Compact Torus 
The spheromak is a compact torus device with small Larmor 

radius and either vanishing poloidal field or poloidal field 
comparable to toroidal magnetic field in the plasma. External to 
the plasma the toroidal magnetic field is zero. The limit of an 
aspect ratio one tokamak, with plasma linking conductors removed, is 
considered to be a spheromak. The spheromak is an interesting 
device because force free states, where current is parallel to 
magnetic field, have been shown by Taylor1- J to be states of 
minimum energy with the constraint of constant helicity K, 

K = \ / A • B dv (1-4) 

where A is vector potential. The magnetic field for these devices 
satisfies V x B = aB where a is a constant. The PS-1 experiment1- J 

produces a spheromak using external currents in the z and 9 direction 
in cylindrical coordinates. A z directed current, as in a z-pinch 
discharge, causes a toroidal field in a plasma having an initial 
axial magnetic field. A 6 current is then initiated with a direction 
resulting in an axial magnetic field opposing the initial axial 
field. The result is radial compression and implosion heating with 
field line reconnection. The final plasma has an essentially force 
free magnetic field. Formation of a spheromak may also be 
accomplished on a timescale rapid compared to a resistive diffusion 
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2 2 -1 time, 4-rtL (c r\) but slow compared tr an Alfven wave transit time 
1/2 -1 L(47rp) B , where L, c, n, P. B ar:; a length scale, speed of 

light, resistivity, density and magnetic field respectively. The 
inductive scheme which achieves this slow formation has been 
implemented in the Proto-S-1 experiment. J In this experiment a 
supported ring inductively transfers poloidal and toroidal flux to a 
plasma. Following the formation process a spheromak is formed inside 
of the supported ring in equilibrium with an initial external field. 

• Field Reversed Mirror 
The field reversed mirror in contrast to the particle ring 

and spheromak device has a Larmor radius which is typically 1/6 to 
1/3 the plasma radius. Also in devices with neutral beam fueling 
and heating the azimuthal current is diamagnetic rather than being 
caused almost totally by an axis encircling species as in a particle 
ring device. The field reversed theta pinch is considered to be a 
field reversed mirror without toroidal field. The field reversed 
theta pinch experiments FRX-A, FRX-B1-0 -1 are axially elongated 
devices with about a 10 to 1 axial to radial plasma length. The 
plasma formation process begins with a reverse bias field in a 
preionized plasma. Rapid initiation of a theta current producing an 
axial magnetic field opposing the initial bias field results in 
shock heating and field line reconnection yielding a prolate 
equilibrium having only a poloidal magnetic field. 

Experiments in the 2X1 IB single mirror cell resulted in 
stream stabilized, neutral beam fueled and heated plasma of high 
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beta. On the basis of thv ' ~ess, J experiments were 
conducted with opposing tangential off axis neutral beam injection. 
Figure 1-4 is a schematic of the anticipated field reversed mirror. 
In the 2XIIB experiment field reversal was not achieved, however the 
on axis magnetic field was reduced by 90%. Lack of field reversal 
was attributed to electron currents which have the ability to cancel 
ion diamagnetic currents, and degradation of plasma currents caused 
by cooling due to external streaming plasma. J To avoid the necessity 
of a transition from open to closed field lines, the Beta II'- ^ plasma 
gun experiment was devised. In this experiment a plasma emerges from 
a Marshal gun*- •* and following field line reconnection forms a field 
reversed plasma in a flux conserver. The goal was to produce a 
plasma of sufficient lifetime such that neutral beam heating could 
be applied. It was found plasma lifetime was limited by carbon and 
oxygen impurity radiation. Approaches to overcome the impurity 
problem are being researched.'- -* 

1.2 Previous Work 
A plasma is subject to many different phenomena occurring on a 

variety of time scales. The goal is to confine a high temperature 
plasma at sufficient density for long enough time to produce net 
energy. Experiments applied to this effort have finite volumes and 
exterior surfaces that are at room temperature. The plasma 
environment is then one of temperature and density gradients, and 
possibly magnetic and electric field variations. By Boltzmann's H 
theorem- ^ binary collisions cause the plasma distribution function 
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Figure 1-4. Field reversed mirror result ing from tangential reutral 
beam in jec t ion. 
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tc become a maxwellian. Consequently the plasma evolves to relax 
gradients and field variations. When particle sources are present 
or inappropriate field variations are enforced, macroscopic 
configurational instability or microscopic velocity space 
instability may occur. In this work it is assumed such issues are 
benign. Beyond stability considerations, two other important issues 
are equilibrium and transport. Equilibrium is concerned with 
solving equations which arise from minimizing the plasma energy 
subject to constraints. The energy in this case is thermal and 
magnetic. Transport considers the slow time evolution of a plasma 
and the resulting particle and energy diffusion. 

1.2.1 Equilibrium 
The general topic of equilibrium has been reviewed by 

McNamara.'- In axisymmetry with scalar pressure, equilibria are 
determined by solving the magnetostatic equation, L -1 

•+ 

V • B = 0 (1-5) 

-1 7 x B = 4irc J r^gv 

J x B = cVp (1-7) 

where B is magnetic field, J is current density, and p is pressure. 
The first two equations are from Maxwell's equations with no 
displacement current and Eq. (1-7) io either a simplified momentum 
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equation or a result of minimizing the energy W. 

W = | H8TI)"1 B 2 + p(y - INdv (1-8) 

In Eq. (1-8), Y is the ratio of specific heats. Direct minimization 
of Eq. (1-8) leads to B = 0, p = 0 and thus Kruskal and Kulsrud'-71-' 
minimize W for function triples p, B, ip subject to six constraints. 

1. i|) has toroidal level surfaces, \|i = \U, at walls, 

MTlin " ' *max " TT 
2. V • B*= 0. 
3. T ' Vip = 0. 

5. S^T' (V* x V6)dv = h(c) 

'\|)<C 
6- L„ P 1 / Y dv = M(c) 

The value tk, is a constant and h(c) and M(c) are arbitrary functions 
defined for 0 <̂  c <_ ik,. A triple p, B, i|> subject to the six 
constraints makes W stationary if and only if Eq. (1-7) is satisfied 
and p is only a function of i|i. 

• Variational Derivation of Equilibrium 
Equilibrium can be determined using methods related to a 

variational procedure arising from Eq. (--8). These techniques are 
described as waterbag methods. L J The essential idea is to define a 
set of contours in two dimensions or a set of surfaces in three 
dimensions and then move them in a way that reduces energy. The 
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state where energy is minimized is then the desire^ equilibrium. 
Typically, surfaces are labelled with a function such as •[) or p. 
Numerically, a surface is represented by a number cf points having a 
constant function value such as p. The number of p surfaces 
determines a *jrid with varying p values. On a specific p surface 
there is an additional choice of the distribution of constant p 
value points, which may be made at any time during the search for an 

equilibrium. Choices such as equal sparing around a contour have 
[731 been made, J however, it is advantageous to choose a 

distribution of points so thr grid between surfaces is orthogonal. 
The orthogonal choice increases accuracy by minimizing distance 
between adjacent p surface points and also simplifies the 
representation of equations. ^ In non-orthogonal coordinates 
extra terms appear. A variational process used to obtain 
equilibrium in thr^e dimensions moves constant p surfaces with 

T75l displacements proportional to the force acting on a point.1- J 

This is a steepest descent technique since it guarantees the change 
in the potential energy is always negative definite. Each variation 
step moves closer to the equilibrium state or in some cases no 
equilibrium is found when an unstable situation results. 

• Elliptic Equation Derived Equilibrium 
The alternative method used to obtain equilibrium solutions 

is to solve an elliptic equation (the Grad-Shafranov equation 
discussed in Chapter 2) with a boundary value. •* Various 
numerical methods have been employed to invert the elliptic operator 
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such as alternating direction implicit, cyclic reduction, relaxation 
r 771 

and fast Fourier transforms.1- J The main concern in obtaining a 
numerical solution is the nonlinearity caused by the source term for 
the elliptic operator depending on the equilibrium solution. Two 
types of boundary conditions are usually used. The first is a 
conducting boundary and the second is an open boundary. In both of 
these cases the position of the plasma vacuum interface is not 
known. Part of the nonlinearity difficulty involved in finding a 
solution is the iterative change of the amount or spatial 
distribution of current resulting from a changing plasma vacuum 
interface position. The nonlinearity of the formulation 
necessitates iteration to obtain an equilibrium and iteration 
invokes questions about uniqueness of solution. In work by Marder T781 and Weitzner1- J a model problem exhibited bifurcation and it was 
found two solutions existed for the same boundary conditions. The 
solutions were distinguished by the amount of current present. The 
high current case designated, deep and the low current case 
designated shallow. It was found that a three level iteration 
scheme resulted in convergence to the shallow solution when a 
relaxation parameter was chosen in a specific range. Other workers 
have fixed physical quantities to obtain convergent solution 

T791 procedures. In solving for tokamak equilibria1- J the total 
current has been constrained to remain constant while iterating to a 
solution. Solutions of the doublet geometry have been obtained by 
fixing the position of one point on the contour defining the plasma 
vacuum interface. -1 
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• Elliptic Equation Boundary Conditions 
In the conducting boundary case the magnetic flux is known 

to be constant on the boundary and the value is simply applied. In 
the open boundary case the magnetic flux is not known on the boundary 
of a finite grid, but may be determined from the current using a 
Green's function. An alternative technique is to expand the elliptic 
equation source in terms of Jacobi polynomials and then express the 
equilibrium solution in spherical coordinates. * Callen and Dory L J 

solved for equilibrium using successive over-relaxation and applied 
guard cells of specified value around the computational grid 
boundary. When the equilibrium solution had small relative changes 
between iterations the guard cell values were updated by 
extrapolation. A converged solution was declared when interior 
values and guard cell values were unchanged by further iteration. 
Byrne and Klein'- ^ solve for equilibrium using the alternating 
direction implicit scheme. The elliptic operator is represented in 
flux coordinates " id thus it is necessary to generate metric 
differential coefficients. The required boundary condition is 
specified by setting the value of magnetic flux parametrically on 
the outermost flux surface. The actual constraint is to specify the 
total current and fix the location of the outermost flux surface. 
The relation between current and loop voltage is then used to obtain 
the boundary value. In other work at Princeton, •* double cyclic 
reduction'- J is used to solve the elliptic operator finite 
differenced on a rectangular grid. Boundary conditions in this case 
are computed by a Green's function technique in which an integral is 
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done over the boundary of the computational domain rather than over 
the plasma current, for the open boundary case. The constraint used 
to avoid the bifurcation problems is to fix total plasma current. In 
work by Holmes, Peng and Lynch1- J equilibrium is computed using 
successive over relaxation to solve the finite differenced elliptic 
operator on a rectangular domain. Similar to Callen and Dory flux 
values are fixed from boundary value considerations and then updated 
during iteration. Because Holmes, Peng, and Lynch were interested 
in studying flux-conserving tokamaks they computed equilibrium with 
fixed magnetic flux difference between the maximum and minimum. 

T871 Helton and Wang obtain equilibrium for doublet, droplet, and 
ellipse plasma cross sections. The solution procedure u-.es double 
cyclic reduction with a boundary condition obtained from a Green's 
function. A limiter is invoked in their case to restrict the free 
boundary position; however, the flux value at the limiter is allowed 
to change. The main effect of the limiter is to restrict positions 
where current is defined. To assure convergence the total current 
is normalized to enforce a constant value. Grad*- •* solves 
equilibrium using cyclic reduction and fixed flux value on a 
boundary, or periodic in the axial direction for some cases. 
Doublet and belt pinch equilibria have been computed in rectangular 
geometry.^ 8 9' 9 0! 

• Alternate Equilibrium Approaches 
An entirely different approach has been undertaken by 

T91 921 Lao. L ' J He obtains approximate solutions by Fourier expanding 
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flux surface coordinates in terms of poloidal angle and minor radius 
and then solving a set. of ordinary differential equations by a 
variational principle. The object is to compute Fourier amplitudes 
of trigonometric functions of the poloidal angle. The lowest 
harmonic amplitudes correspond to flux surface shift, minor radius 
and ellipticity. 

Equilibrium solutions have been obtained from steady state 
[931 results of the SUPERLAYERL magneto-inductive particle code. In 

this case fields are obtained by following the motion of 
representative plasma macro particles. 

1.2.2 Transport 
The general tendency of a plasma is to relax to a maxwellian. 

The presence of particle and energy sources or fields results in 
forces which cause fluxes. The forces are often given by gradients 
of quantities such as density and temperature. The associated 
fluxes are then particles and heat. Due to coupling and the 
electromagnetic interaction, fluxes of various quantities may depend 
on several gradients or forces. In the most general formulation 
geometric considerations must be taken into account. The overall 
goal of transport studies is to obtain the equations relating fluxes 
and forces, and the diffusion coefficients or proportionality 
factors between fluxes and forces taking into account geometry and 
electromagnetic interaction. An underlying transport consideration 
is the effect of collisions. The term collision has come to have a 
very broad meaning. When collisions due to particle-particle 
interactions are considered the transport is classical or 
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neoclassical. When plasma wave-particle interactions effect fluxes 
of particles, momentum, or energy, the transport is described as 
anomalous. Only classical or neoclassical transport will be 
considered so collisions in this work refer only to 
particle-particle interactions. 

• Magnetic Field Free Transport 
Diffusion processes in a magnetic field differ from those in 

a neutral gas since the magnetic field causes a helical particle 
path around field lines rather than a straight line path. In a 
neutral gas, collisions tend to prevent diffusion resulting from 
free streaming particles. In one dimension with a density gradient 
the flux r, is proportional to the gradient. 

r = " D n f "-') 
For collisions of neutral particles or charged particles with 
neutral particles the diffusion coefficient D % T / ( v m ) where T 

T941 is temperature and \> is collision frequency. J The flux 
decreases as the inverse of the collision frequency. When charged 
particles of different mass are diffusing such as ions and electrons, 
the lighter species is predicted to have a larger flux. However, 
electric fields which develop when charge imbalance results cause 
the ion and-electron flux to be equal. This effect is ambipolar 
diffusion and the overall diffusion coefficient is about tv:ice the 
ion diffusion coefficient for equal temperature ions and electrons. 



• Transport with a Magnetic Field 
[95] In the presence of a magnetic field1- J 

0 X = v 2v w ~ 2 % 3kT v mc 2 (ZeB)"2 (1-10) 

where w c = ZeB(mc)" and the flux perpendicular to the magnetic field 
direction increases proportional to the collision frequency. The 
reason collisions aid diffusion can be seen from the orbit in Fig. 
1-5 where a particle in a homogeneous magnetic field encounters a 
180 degree collision each cyclotron period. Without collisions the 
orbit would be a circle of radius r = mcv(ZeB)" , where r is the 
gyro-radius, m is mass, c is the speed of light, v is velocity, Ze 
is charge and B is magnetic field. With collisions the orbit is a 
cycloid and the particle moves a distance of r out of the plasma 
each cyclotron period in the worse case as shown in Fig. 1-5. The 
actual orbit has collisions anywhere around a circular orbit and 
thus a particle typically would not go a distance r toward the 
plasma boundary each collision. Bohnr J assumed the collision 
frequency is equal to the cyclotron frequency and obtained the 
following diffusion coefficient. 

D B o h m ^ 1 6 ^ " 1 Dx 
(1-11) 

%3ckT (16 Ze B)" 1 

The important difference between 0L and Dn h is the field 
-2 1 f 97 "i 

dependence, 0 ~ B and D R 0 u m ~ B ~ • I n w o r k Dy Chandrasekhar J 

the connection was made between diffusion and random walk processes. 

D r W = Ux) 2/6T r a n (1-12) 
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Figure 1-5. Homogeneous magnetic field particle orbit encountering 
180 degree deflection each cyclotron period. 
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In Eq. (1-12), Ax is the random walk step size and T is the time 
2 -1 between steps. Using Ax = r , v = 3kTm and T = 2TT/W the 

following random walk diffusion coefficient results. 

D r W = 3ckT(12 TT ZeB)" 1 (1-13) 

This is about .4 times the Bohm estimate. 

• Classical Non-Toroidal Transport 
The diffusion coefficient from a classical treatment by 

Kruskal and Kulsrud1- J depends on the p, F, J*solution of Eqs. 
(1-5), (1-6), and (1-7). They consider an isothermal steady state 
plasma with source density rate Q slowly diffusing to the walls of a 
perfectly conducting torus. Admissible p, B, J solutions must 
satisfy two auxiliary conditions. 

Jp=p dS Ivpl"1 B • J = 0 (1-14) 

/ dv Q = P a"1 J dS |Vp|-1 J • J (1-15) 
p>P p=P 

Given p, B, J which solve Eqs. (1-5), (1-6), (1-7) and satisfy Eqs. 
(1-14), (1-15) then two scalar functions a and <j> are obtained from 
the solution of two magnetic differential equations. The plasma 
velocity from which a flux can be constructed is then given below. 

v = |B| (V<j) - a J) x B + aB (1-16) 

This is a fluid equation treatment of the diffusion problem. 
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The fluid equations are derived from moments of the kinetic, 
equation. 

| ( + v • Vf + a • V vf = C(f,f) (1-17) 

In Eq. (1-17) f (Tv^tJdTdT is the number of particles in volume dT 
dv at position r~, 7"and time t, a*is acceleration and C(f,f) is the 
collision operator. Fluid equations for density, momentum and 
energy result by multiplying Eq. (1-17) by 1, mv, mv and 
integrating over velocity. The difficulty in applying these 
equations is that they are not closed and a complete set only 
results after taking an infinite number of velocity moments. To 
avoid this difficulty the true distribution function ffr",v"",t) is 
approximated as a maxwellian plus a perturbation. The maxwellian is 
given in terms of nfr,t), T(F,t), 7(T,t) the local density, 
temperature and velocity respectively. This approximation has been 
used by Braginskir to obtain transport coefficients relating 
fields, n, V, T and various gradients to the transfer of momentum 
force, heat flux, heat and the pressure tensor. The description of 
Braginskii is much more complete than that of Kruskal and Kulsrud. 

• Toroidal Geometry Transport Effects 
The orbital and confinement geometry have large effects on 

the classical results. The most fundamental effect results from 
toroidal geometry. This effect and others are typically analyzed in 
the literature using large aspect ratio and restricting consideration 
to various collisionality regimes. Pfirsch and Schluter*- •* in 
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the highly collisional, large aspect ratio limit obtained an 
approximately order of magnitude correction to the homogeneous 
plasma case. The magnetohydromagnetic equations modeled a 
quasineutral, equilibrium plasma. In addition to Eq. (1-7) they 
used, 

E + c ' v x B = n J (1-18) 

V • J = 0 (1-19) 

B = (0, B T, B(l - A; 1 cos e p)) (1-20) 

where n is resistivity and 6 is poloidal angle. They angle 
averaged the flux across a magnetic surface and obtained a safety 
factor squared correction to the previous cross field diffusion 
coefficient. 

D p s = q 2D x (1-21) 

• Trapped Particle Toroidal Geometry Transport Effects 
As the collisionality of the plasma decreases, orbit effects 

and the influence of trapped particles become important. The 
magnetic field in tokamaks is dominated by the toroidal field which 
falls off approximately as the inverse distance from the major 
axis. Particles orbiting along field lines that wind around a torus 
geometry encounter a magnetic field that increases on the inside of 
the torus. Assuming constant energy E and magnetic moment y, the 
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velocity along a field line is below. 

v.. = (2(E - p B ) / m ) 1 / 2 (1-22) 

The trapped class of particles has a small enough E that v goes 
to zero before they reach the irside of tne torus and they thus 
bounce back and forth on the outside of the torus. In addition to 
bouncing along field lines there is also a drift velocity across 
field lines resulting in excursions between flux surfaces. The 
general motion is shown in Fig. 1-6. The azimuthal drift motion is 
illustrated in Fig. l-6a. The projection of the orbit at constant 
azimuthal angle shows the banana orbit and banana width Au in 
Fig. l-6b. 

A b ~ A ^ 1 / 2 mv(eBp)- 1 (1-23) 

The fraction of trapped particles are in the region of velocity space 
-1/2 where v../v~A so the effective collision frequency for 

scattering into an untrapped orbit is v f f ~ A v. The bounce ti 
of a trapped orbit isL J f b ~ A r (Ze R/v), where R is the pi 
major radius. Define v* = x b \>eff» then, 

me 

v * ~ A ^ / 2 v Ze R/v t h (1-24) 

where v.. is the thermal velocity. Clearly for v^ » A ' th * r 
particles have collisions before a banana orbit is completed and the 

issue of trapped particles does not effect diffusion. 
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(b) 

Figure 1-6. Trapped particle motion, (a) Bounce and drift motion (b) 
Azimuthal angle projection showing banana orbit of width A5. 
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• Neoclassical Transport 
When v* « 1 trapped particle orbits occur and in the random 

walk model the step size changes from a gyroradi-js to the banana 
width. This is the neoclassical diffusion reg""<ne. An approximate 
diffusion coefficient can be written as follows. 

D n e o % A b V f A " r 1 / 2 H-25) 

The neoclassical diffusion regime connects to the plateau regime 
where che diffusion coefficient is nearly independent of collision 

3/2 frequency. In the plateau regime 1 < \>* « A~„ . The three 
diffusion regimes are shown in Fig. 1-7, where the diffusion 
coefficient normalized to P. is plotted 
frequency normalized to v..(qR)~ . ^ 
coefficient normalized to P. is plotted as a function of collision 

'thv 

• Drift Kinetic Equation 
A comprehensive review of toroidal plasma transport has been 

given by Hinton and Hazeltine.'- •* The earliest work that 
described neoclassical and plateau diffusion was Jone by Galeev and 
Sagdeev.*- J The essential transport solution procedure is to 
write the kinetic equation in the drift approximation"- J and 
then solve by assuming a perturbed maxwellian distribution 
function. The drift approximation is based on the gyroru'ius being 
small compared to a chare:teristic scale length and involves 
averaging over a Larmor orbit. The drift kinetic equation also has 
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Figure 1-7. Particle diffusion coefficient versus collision 
frequency. 
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an assumed small parameter of collision frequency divided by 
gyrofrequency used in its derivation. This assumption is related to 
tokamak ordering where a large toroidal magnetic field is present. 
The neoclassical, plateau and classical diffusion regimes are 
studied using the drift kinetic equation by choosing the relative 
size of two terms. The expansion parameter is collision frequency 
over transit frequency around a banana orbit. When this parameter 
is small a term is dropped and the solution of the drift kinetic 
equation yields neoclassical diffusion as given by Rosenbluth.L •* 
When the parameter is large, classical Pfirsch-Schluter diffusion 
results. When the collision frequency is comparable to the transit 
frequency the solution of the drift kinetic equation yields plateau 
regime diffusion. The neoclassical result of Rosenbluth differed 
from work of Rutherford1- J by including like particle collisions. 
Both of these results used large aspect ratio, small collision 
frequency and ignored inductive electric fields. Later the 
restriction of small collision frequency was removed, -" and 
this work was modified to be valid for arbitrary aspect ratio. •* 

1.3 Scope of the Present Work 
The investigation of transport and equilibrium in field 

reversed mirrors is approached from two viewpoints. First the 
plasma is considered to be described as a small Larmor radius, 
conducting, hydromagnetic fluid. Both toroidal and poloidal 
magnetic fields are allowed in this case. Timescales of interest 
and plasma temperatures of interest permit the plasma to be treated 
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as adiabatic. There is no restriction made on relative size of 
toroidal and poloidal magnetic field and the aspect ratio is 
approximately one. The collision frequency is large as in the 
Pfirsch-Schluter regime since classical coefficients are used for 
several transport phenomenon. The state of the plasma is described 
by the magnetic field structure and the specification of two 
profiles related to the pressure and toroidal magnetic field. The 
plasma is assumed to be quasi-static and thus evolves in time 
between equilibrium solutions as a result of profile changes caused 
by conduction, radiation, electron ion energy exchange, coulomb 
friction and neutral beam deposition. In this model the equilibrium 
is axisymmetric and thus solved in two dimensions. The transport is 
one dimensional between flux surfaces. 

From the second viewpoint the plasma is considered to consist 
of electrons and several species of ions. The electrons are modeled 
as an inertialess fluid and the ions are described by a distribution 
function that must be computed. The magnetic field in this case 
only has a poloidal component. The magnetic field is obtained 
solely from a vector potential and only one component of the vector 
potential is needed in axisymmetry when the magnetic field is 
poloidal. The vector potential is obtained from Ampere's law with a 
current which is the difference between the theta velocity moment of 
the ion distribution function and the density times the electron 
fluid velocity in the axisymmetry direction. This description 
includes ions which may have a large Larmor radius. Due to the 
complexity of this treatment the axisymmetric equilibrium is only 
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computed in one dimension. The ion distribution function is 
expressed as an expansion in collision frequency with the zero order 
teim depending only on constants of the motion. 

• Magnetohydrodynamic Adiabatic Small Larmor Radius Model 
Chapter 2 details the equations which are solved to obtain 

the small Larmor radius plasma model. The magnetostatic equations 
with the adiabatic assumption are deduced from the full set of 
magnetohydrodynamic equations. The flux surface average procedure 
is defined. The basic equilibrium equation, the Grad-Shafranov 
equation and its flux surface average are presented with the profile 
transport equations, and the neutral beam model. The computer code 
which solves these equations and the computational methods employed 
are described. The code output and diagnostics are discussed for 
several cases considering the effects of neutral beam deposition and 
magnetic field shaping. 

• Orbit Average 
Chapter 3 is a preliminary to the large Larrnor radius plasma 

model. The ion distribution function satisfies a kinetic equation. 
Expressing the ion distribution function as an expansion leads to a 
hierarchy of equations. Integrating over characteristics of these 
partial differential equations is one method of obtaining a 
solution. An alternate procedure to integrating over the exact 
orbit is to average contributions from the exact integration. 
Chapter 3 describes the orbit average procedure which is equivalent 
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to integration over an orbit but does not require a detailed 
knowledge of the exact orbit. The orbit average procedure is 
defined in terms of phase space integrals and path integrals. 
Numerical equivalents of these formulas are derived and tested in 
two orbit codes. In the first code the orbit is known analytically 
and many orbit average formulas are compared. The second code 
requires numerical integration and examines several orbit average 
formulas in a magnetic field resulting from a solution of the 
magnetostatic equations. The form of the orbit average integrals 
varies depending on the number of constants of the motion which 
exist. To explore the existence of constants of the motion several 
classes of constants of the motion are examined. Because the 
examined constants of the motion do not exist when an orbit is 
stochastic, consideration is also given to determining parameter 
regimes where stochastic motion is likely in the framework of 
resonance overlap theory. 

• Large Larmor Radius Kinetic Equation Model 
In Chapter 4 the large Larmor radius plasma model is 

presented. Only a poloidal magnetic field is permitted and quasi-
neutral ity is assumed. The electrons are considered to be an 
inertialess fluid and are described by a continuity equation and a 
momentum equation. The ions are described by a distribution 
function which satisfies a kinetic equation. The kinetic equation 
is formulated in terms of a Poisson bracket with the system 
Hamiltonian. Expressing the ion distribution function as an 
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expansion in collision frequency and also expressing the Hamiltonian 
as an expansion leads to a hierarchy of equations. These equations 
involve various orders of densities and field potentials. A 
solution method is implemented using the orbit average derived in 
Chapter 3. A kinetic equation for the time evolution of the zero 
order distribution function then results. This equation is 
analogous to the drift kinetic equation discussed for the small 
Larmor radius neoclassical diffusion regime. In contrast; however, 
in this case the actual orbit has been averaged rather than just 
averaging over a gyro-orbit. To provide an initial condition of 
self consistent electric and magnetic fields the full set of 
equations is solved for model ion distribution functions. 
Assumptions are made to allow a derivation yielding analytical 
electric potential and magnetic vector potential. Self-consistent 
electric and magnetic fields are presented for several parameter 
values. 
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CHAPTER 2 

ADIABATIC SMALL LARMOR RADIUS MODEL 

2.1 Introduction 
In this chapter the plasma is considered to be a small Larmor 

radius, conducting, hydromagnetic fluid. The plasma is assumed to 
be axisymmetric and equilibrium are obtained in cylindrical r, z 
coordinates. A single fluid model is used for the equilibrium 
calculation with the magnetic field and two arbitrary profiles 
determining the state of the plasma. Both poloidal and toroidal 
magnetic fields are allowed and the profiles are related to pressure 
and toroidal magnetic field. The profiles are only arbitrary as an 
initial condition. The plasma evolves between equilibrium states as 
a result of changes to the vacuum poloidal magnetic field or as a 
quasi-static evolution of the profiles caused by transport 
processes. The initial vacuum poloidal magnetic field is varied by 
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changes in the currents of external axisymmetric filamert coils of 
specified radius and axial position. When the plasma evolves in 
time due to transport processes the ions and electrons are 

considered separately. Classical transport coefficients are used 
for conduction, radiation, electron ion energy exchange and neutral 
beam deposition. Nonlinearities and the complexity of field shape 
preclude analytic solutions and thus the set of equilibrium and 
transport equations have been numerically implemented in the ADB 
computer code. The ADB equilibrium solver and neutral beam package 
have subsequently been used in conjunction with a more elaborate 
transport model .L 

Following a discussion of the equations to be solved, the 
numerical methods and ADB code initialization are presented. The 
ADB code output and diagnostics are discussed for several cases 
which investigate the effects of neutral beam deposition and 
magnetic field shaping. 

2.2 Equations to be Solved 
2.2.1 Magnetohydrodynamic Equations 
The single fluid magnetohydrodynamic plasma description is 

given by the following well known equations. J Temperature is 
in ergs and other units are cgs. 

§£ + V • (nu) = 0 (2-1) 

mn (|H + u • V u ) + Vp - c"1 J x B = 0 (2-2) 
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|£ + u • Vp + -ypV ' u = (Y-1)'7 • (KVT) + (y-l)n J 2 (2-3) 

In Eqs. (2-1) to (2-3) quasineutrality is assumed n Q = Z n. and 
e J J 

scalar heat conductivity K and resistivity n are used, p is pressure 
and m, n, IT are defined as follows, 

mn = ^ mj nj (2- 4' 
j 

0 % 'TO 
j 

u = (mn)" ^ mj nj uj ^ 2" 5' 

where m., n., u, are species j mass, density and velocity 
J J J 

respectively. The Eqs. (2-1) to (2-3) are supplemented with 

Maxwell's equations without displacement current and with e lec t r ic 
—» 

f i e l d E, eliminated by Ohm's law, 

• + -* • * •* 

E + c u x B = n J (2-6) 

which yields, 

-1 
J = c(4n) V x B (2-7) 

~ + V x (B x u) = - cVx (nJ) (2-8) 

V • B = 0 (2-9) 

The plasma description is then given by Eqs. (2-1) to (2-3) and Eqs. 
(2-7) to (2-9). There are several approximations of these equations 
which result in reduced models. The ideal magnetohydrodynamic model 
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is obtained by setting < and n to zero. The Pfirsch-Schluter 
model which led to the q diffusion coefficient correction results 
from setting 3B/3t and mn(3u?3t + IT • 7u") to zero. The Grad-Hogan'- ' -• 
model is obtained by only setting mn(3u/3t + u • Vu) to zero. If in 
addition dissipative terms are ignored (K = n = 0) the Grad-Hogan 
formulation becomes the adiabatic model. * The equations for 
the adiabatic model are below. 

3n 
3t + 7 • (nu) = 0 (2-10) 

J x B = cVp (2-11) 

J = C(47T) - 1 7 x B (2-12) 

|| = 7 x (u x B) (2-13) 

7 • B = 0 (2-14) 

The adiabatic model is used in this work. 
In cylindrical (r, 6, z) coordinates Eq. (2-14) is satisfied 

by using the following definition of B, 

-> 
B = Vi|» x 76 + f T76 (2-15) 

where i|i is related to magnetic flux, 70 = 1/r e„, where e f l is 
the unit vector in the 6 direction, and f-, is r times the toroidal 
magnetic field. The relation of i|) to flux is obtained from the 
flux definition with the area oriented perpendicular to the z axis. 
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flux = / B • dA 
(2-16) 

2TT r 

0 0 

= 2IT \|) 

2.2.2 Grad-Shafranov Equation 
The basic axisymmetric equilibrium equation, the Grad-Shafranov 

equation, is obtained from the theta component of Eq. (2-12) in 
combination with Eq. (2-11). Substituting Eq. (2-15) into Eq. (2-12) 
yields, 

- V6 A*ip + Vf T x Ve = 4uc ~] [J 3 ~] Vi() x V6 + r J T 76] (2-17) 

where subscript p denotes pjloidal, subscript T denotes toroidal and 
the Grad-Shafranov operator A* is defined as follows. 

A* = r 2 V • (r"2V (2-18) 

The poloidal component of Eq. (2-17) reveals fj is only a function of 
v|) and thus 

Vp1 = c^'] W < 2- 1 9> 
The dot product of B with Eq. (2-11) shows p is only a function of 
i|>. Substituting Eq. (2-15) into Eq. (2-11) and using Eq. (2-19) 
yields, 

r J r ^ c i j j U c W 1 f T 7 J J l (2-20) 
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The toroidal component of Eq. (2-17) combined with Eq. (2-20) yields 
the Grad-Shafranov equation. 

When the right side of Eq. (2-21) is specified along with boundary 
conditions a well posed elliptic operator problem results. 

The integral of Eq. (2-13) over an area, perpendicular to the 
z axis at position z = 0, from r = 0 to the magnetic axis gives, 

3__ 
at | / B • d M = »ds(u x B) (2-22) 

where Stokes1 theorem has been used. The magnetic axis is the 
position where B = 0. Using Eq. (2-16) in Eq. (2-22) and setting 
B = 0 yields, 

=y*ds U p B t f £ = 0 d s u A (2-23) 

Because u = 0 at the magnetic axis, Eq. (2-23) restricts the flux 
between the separatrix and the magnetic axis to be constant. This 
means the magnetic axis or 0-point value \|i = ip0 is constant in the 
adiabatic model. Since a single interior value I|JQ is specified, the 
adiabatic model solution of the Grad-Shafranov equation is 
non-standard. A technique of enforcing the i|>0 value while solving 
Eq. (2-21) as an elliptic problem has been developed by Grad.'- •• 
The method consists of iterating between the Grad-Shafranov equation 
and the flux surface average of the Grad-Shafranov equation. The 
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flux surface average equation is an ordinary differential equation 
which admits a boundary value at the magnetic axis and thus 
incorporates ip0 into its solution. The flux surface average of a 
function <G > is the normalized volume integral of G, over the a a 
infinitesimal volume neighboring a flux surface, in the limit as the 
volume goes to zero. 

vK^yVc6. (2-24) 

In Eq. (2-24), dJ, is the path in the poloidal plane along a constant 
i> contour, V is the volume inside the \|J contour and dV/di|i is defined 
as follows. 

IS f-2,*^ (2-25) 

The basic flux surface average definition with Eq. (2-25) may be used 
to obtain the following identity. 

(S <v **>) <V * V = W Kr. < ( V V*>) <2-26) 

Applying the flux surface average to Eq. (2-21) divider4 by r and 
using Eq. (2-26) yields the average Grad-Shafranov equation, 

d f T 

• ( « £ ) • M K $ ' - 4 " $ - W --> <«') 
where 

K = <!W| 2 r" 2> (2-28) 
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The flux surface average of trcsport equations without 
dissipation can be used to show profiles S(\|i) an̂ . q(ip) are constant 
in time. These profiles are related to p and K as follows, 

P(*J = S(*)(-aJrY (2-29) 

fT.J) = 4ir2 q(<|.) <r" 2>^f (2-30) 

where y is the ratio of specific heats. The profiles S(ip) and q(yji) 
are referred to as the entropy and safety factor profile 
respectively. The right side of Eq. (2-27) can be written in terms 
of Eqs. (2-29) to (2-30) and their derivatives. 

4 -2 "̂  
16 IT q <r > 

1 < r " 2 > K " <•""'>) (2-31) 

Similarly, Eq. (2-21) is rewritten below. 

.2, A*<|> = r 

- 16 

- 1 <r'2> 7$%T <r _ t >J (2-32) 
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2 2 To express d \|i/dV in terms of first derivatives Fq. (2-31) is 
2 ? expanded and used to solve for d ty/dV'. Let, 

D = K <• 4TIY S l ^ f ) + 16 Tt4 q 2 < r " 2 > fy] 
then, 

rl ,1, . 1 /r\V A,\, H<; / H I I I V V - ' 

' ^ ( f - - " 2 ' " ' ^ - 2 ' ) ) (2"33) 4 -? + 16 IT <r S 

The expression given by Eq. (2-33) is used in Eq. (2-32) so the 
right side only depends on first derivatives, which are more 

2 2 accurately obtained numerically than d ̂ r/dV . 

2.2.3 Boundary Condition for the Grad-Shafranov Equation 
The flux surface averaged Grad-Shafranov equation given by Eq. 

(2-31) is solved between the magnetic axis and the separatrix. The 
boundary conditions are then given by \|IQ and 4> s e D, which are 
known initial values. 

The two dimensional Grad-Shafranov equation given by Eq. (2-32) 
is solved on a rectangular r,z grid of finite extent. On the edge 
of the grid two types of boundary conditions are used. 

The first type is conducting. The ip function is decomposed 
into two parts; \|» = <|ivac + * p l a s m a. The first part, ̂ a c , is 
due to an externally impressed vacuum field. The I)I , par,, is 



54 

due to the presence of the plasma. For the conducting boundary 
condition •„•,„„„,, is set to zero. Tplasma 

The second type of boundary condition is for the open case 
where there are no conductors around the plasma. In this case the 
boundary condition is specified using a Green's function technique. 

•plasma ( r' z ) = 7 7 d r ' d z ' G< r'> z'> r' 2 > J T (2"34' 

In Eq. (2-34) J T is defined by Eq. (2-20) and G^ 1 1 6^ is the 
Green's function, 

G(r', z \ r, z) = 4 c - 1 (r'rk"2) 

where, 

((] - I k 2 W k ) - E(k)j (2-35) 

.. J( r. + r ) 2 + (Z . z.)2j k 2 = 4 rr' f(r' + r ) £ + (z - z'f] (2-36) 

and K(k) and E(k) in Eq. (2-35) are elliptic integrals of the firs'-
and second kind respectively. 

The change of I|I, caused by external coils is calculated from 
Eq. (2-34) to simulate adiabatic compression. In this case J T is 
replaced by a current corresponding to an axisymmetric infinitesimal 
filament coil. 

2.2.4 Transport Equations 
The transport equations are obtained from moments of the 

T981 kinetic equation as given by Braginskii.1 J The relevant equations 
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for this work are the continuity equation, 

3n. __ 
w~+ v ' ( n j u j ) = ° ( 2 " 3 7 ) 

and the heat balance equation, 

, 3n .T. ~ •*• •*• 

3_p + v. (3 n. T. u. ) + n. T. v . u . 

+ 7 • q. = Q. + S: (2-38) 
Hj v j beam v ' 

3 3 ne Te 3 
| _ p + 7 . (| neTeue) + n eT a 7 • u e 

+ * ' % = % - Srad (2"39> 

The continuity equation, Eq. (2-37), is different than Eq. (2-10) 
since it refers to species j rather than a single fluid. Although 
neutral beam deposition involves ionization which would appear as a 
particle source on the right side of Eq. (2-37) the dominant 
behavior in regimes of interest is charge exchange. Since only 
charge exchange is treated this is equivalent to equating the 
ionization rate to the particle loss rate. The effect of the 
neutral beam is to replace a plasma ion with a hot beam particle. 
Consequently the neutral beam appears as a source S' b in the heat 
balance equation for ions. In the temperature regime of interest 
only the electrons radiate so a radiation loss term S' d appears in 
Eq. (2-39). The off diagonal pressure tensor terms which are 
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related to viscosity effects are neglected in Eq. (2-38) and Eq. 
(2-39). The heat flux vector q. is defined as follows, 

q. = .5 m. J({V - U j ) • (V - U j))V fjdV (2-40) 

where f. is the distribution function describing species j. The 
heat generated due to collisions of other species with species j is 
given below, 

Q. = .5 nij / ( V - U j ) • (V - Uj) C(f,f)dV (2-41) 

where C(f,f) represents the collision operator. 
The adiabatic assumption resulted in dropping the du/dt 

acceleration term in the original momentum equation. This means 
centrifugal and Coriolis forces are insignificant and any 
accelerations due to transitory behavior results in sufficiently 
slow motion that the corresponding accelerations may be neglected. 
The consequence of these assumptions lead to f-, and p being flux 
surface functions only depending on \p. Changes of p and f j due to 
adiabatic compression or transport must then be slower than the time 
for flux surface equilibration. The equilibration time may be 
estimated as the sound speed divided by the field line connection 
length qR. The slowly changing nature of the adiabatic assumption 
implies transport is only important between flux surfaces. 
Consequently transport is one dimensional with coordinate ip rather 
than two dimensional in r and z. The appropriate one dimensional 
transport equations are then obtained by flux surface averaging Eq. 
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(2-37) to Eq. (2-39). This standard procedure has been carried out 
in other work. -1 Specializing results of Shumaker to the 
adiabatic case where the flow velocity is the same as the flux 
surface velocity yields the flux surface averaged continuity 
equation, 

and the flux surface averaged heat balance equations, 

d S e . %/»V 2 / 3d /«„, * 

-*,«*£(&)'"'ft «. '2-«' 
In Eq. (2-42) the density n, does not have a species designation 
since quasineutrality is assumed and there is only one type of ions. 
The heat generated and heat flux vectors have been calculated by 
Braginskii assuming a local maxwellian distribution. Before 
describing q and Q several definitions are required. The electron 
and ion collision frequencies are given below, 

T = 3.5 x 10 5 (XZn)"1 T3/2 (2-45) e 
-1 

lj ~ '" "" A '" VAi" "' \'"Y'"Ql ' e 
T.. = 2.12 x 10 7 (XZ3n) (m./mn)]/2 T 3 / 2 (2-46) 
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where nig is proton mass, Z is ion charge state and, 

23.4 - 1.15 Jln(n) + 3.45 Jin T g T e < 50 eV 
X = ( (2-47) 

25.3 - 1.15 Jln(n) + 2.3 Jin T g T g > 50 eV 

The cyclotron frequencies for the electrons and ions have the 
following definitions. 

u) = 1.76 x 10 7 B (2-48) 

(••. = 9.58 x 10 3 Z B m Q/m. (2-49) 

The ion and electron heat flux vectors are then, 

V - 2 n T j < T j T d ) " 1 ^ l v * ( 2 " 5 0 ) 

2 -1 d T e q e = - 4.66 n T g (nyu'-g -gf V* (2-51) 

where heat flow along the magnetic field or in the flux surface is 
ignored. The ion and electron heat generated terms are below. 

Qj • 3 n.ene O n ^ f 1 ( T e - T j ) (2-52) 

Q e = 3 m e n e ( n , ^ ) " 1 ( T j - T e) (2-53) 

2 In Eq. (2-53) the joule heating term nJ which normally appears is 
neglected due to the dominance of neutral beam heating and the 
-3/2 2 
T dependence of nJ . 
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The radiation term in Eq. (2-44) has the following form, 

W ! (̂ Ĵ  "' £ fkLk < V (2"54> 
where the L. (T ) profile for species k is obtained from corona 
equilibrium data. •* In Eq. (2-54) ffc is the fraction of the 
density consisting of a radiating species k. Because f. is typically 
a few percent there is no continuity or heat balance equation for 
the radiating species. 

The neutral beam charge exchange term S b in Eq. (2-43) is a 
flux surface averaged three dimensional deposition. A neutral beam 
footprint is modeled as a grid of individual beam pencils. The 
energy deposition is calculated by stepping each beam along a chord 
passing through the plasma. At each step the local temperature and 
reaction rate cross section1- J aV, are used to determine the 
deposition. To map the three dimensional deposition to axisymmetric 
flux surfaces the beam deposition is spread in theta by multiplying 
by a geometric factor V which is the ratio of a beam step 
volume to the volume of the axisymmetric ring intersecting the 
deposition location. The deposition is distributed in r and z by 
flux surface averaging. The attenuation with distance of the beam 
density n b e a m along the deposition path 0-beam is assumed to be 
proportional to the plasma density, aV and n. 

beam —n- .,-1 / 0 rc\ 
= - aV n nho, m

 V h o a m (2-55) d^h„, m beam beam beam 
where V. is the beam velocity. The deposition at path position 
I, is then below, beam 
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dn beam 
"dX beam 

, - n oV z. V" 1 

\/ ZJT „„ w"' -s beam beam 
Vgeo a l n n0beam Vbeam e 

"beam 
(2-56) 

where n Obeam is the initial beam density. The surface average of 
contributions represented by Eq. (2-56) is weighted with the plasma 
energy, E D i a s m a minus beam energy E, to account for charge 
exchange. 

beam 
4it 
T (C ̂ beam " plasma /

da dnbeam 
B - d F — 

p beam 
(2-57) 

The beam and radiation terms are now defined so the final form 
of the heat balance equations is obtained by substituting Eq. (2-50) 
to Eq. (2-53) into Eq. (2-43) and Eq. (2-44). 

dS, 1 f i 

-rr1 = 5.457 x 10'° dt 
dT, 

dip l n Tj dip (Z Tji^) m 

+ S. + 1.82 x 10 beam 
•27 [m.x ) (S - S.) (2-58) 

dS 
dF e 6.92 '21 x 10 1 3 / d i \ - 2 / 3 d _ / d T e -1 £u | V * | 2 \ 

x e l W d ^ n T e d F T e f * - p i r ) 

' S r a d - T e 2 S e + 1 -82 x 10" 2 7 ( m ^ f 1 (Sj - Se) (2-59) 

Two modifications have been made to Eq. (2-59). A constant T , 
divides the electron conduction term and thus allows conduction to 
be enhanced over the classical value. Also an empirical term 
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T"~ S has been added to model an electron profile decay rate with 
time constant T o-

2.3 Numerical Methods for the ADB Code 
The magnetic field structures of i :erest and the inherent non-

linearities of the formulation necessitate a numerical solution. The 
magnetic flux ijj is calculated as a function of volume within a flux 
surface from the averaged Grad-Shafranov equation and as a function 
of r and z from the two dimensional Grad-Shafranov equation. A 
numerical flux surface average is thus required. Numerical methods 
are required for the averaged Grad-Shafranov equation, the two 
dimensional Grad-Shafranov equation, the boundary condition and the 
solution of the transport equation. 

2.3.1 Flux Surface Average 

The flux surface average definition Eq. (2-24) may be written 
using Eq. (2-25) as follows, 

<G a> = [Ga]/[1] (2-60) 

where [G ] is the un-normalized integral, 

[6,3-tr 6a ( 2- 6" 

The flux surface average of G = is then determined once [G 1 has been 
a a 

calculated. The functions G(r.z), B (r,z) and v|j(r,z) are assumed 
a p 

to be known on a rectangular mesh which may be variable, and are 
assumed to be symmetric about z = 0. The computation of [G 1 

a 
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requires the integral of G B~ along a constant i|> contour. The 
most straightforward means of obtaining [ G ] is to solve an initial 
value problem for the following three ordinary differential 
equations. 

d[6 al _! 
- 3 1 — = G a B p 

d r - R R" 1 

M - Br Bp 

If " Bz Bp 1 (2"62) 

The r position of a specific ^ value at z = 0 is located and then the 
ib contour is followed in r and z while [GJ is computed. The system 

a 

of ordinary differential equations given by Eq. (2-62) is solved 
using the multistep method described in Chapter 3. Since G a, 

a 

B , B , B are only defined at grid points and a I|J contour is allowed 
to cross through a grid cell at any angle it is necessary to fit 
these functions inside a grid cell. Fitting functions in a grid 
cell up to third order in r and z provides for continuity of 
function value, first derivative and second derivative between grid 
cells. Only G, and i)i are fitted and fields are obtained from the 

a 
following relations. 

B = - - 1 ^ (2-63) 
r r 3z K ' 

B = - | ^ (2-64) 
z r 3z v ' 

(#Ht)7 -r^im*mT (2-65) 
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Fitting i|) to third order yields fields that have continuous first 
derivatives between grid cells and consequently the solution of Eq. 
(2-62) is free from discontinuities as a IJJ contour is followed 
between grid cells. Fitting the entire grid and following each 
desired ip contour many small steps is a computationally expensive 
procedure. As a result only a small number of grid cells (typically 
10 by 4) are fitted around the magnetic axis. Only in this small 
region of the grid near the magnetic axis are the differential 
equations of Eq. (2-62) rigorously solved. 

Away from the magnetic axis the actual curved I)J contour path 
is approximated as a number of straight line chords. Each grid 
cell, for which the ty value of interest lies between the minimum 
and maximum grid cell values, is considered to contribute to 
[G,]. The field line integral path within a grid cell is a a 
straight line segment between the i> intersections of the grid cell 
sides. The \b intersection and the value of G B~ at the intersection 

a p 
position are obtained by fitting a cubic polynomial using the two 
grid points from the intersected grid cell side and a grid point 
from the grid cell above and below or right and left depending on 
whether orientation is vertical or horizontal. It was found linear 
interpolation gave a poor v|t intersection position when <Kr,z) was 
relatively flat. The value of G B~ along the straight line path 

a p 
is taken to be the average of the two side intersection values. The 
contribution of a grid cell to [GJ is the distance between I|I 

a 
intersections multiplied by the sum of G„B at the two 

a p 
intersection positions. The factor of 1/2 is absent because i|) 
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contours are assumed to be symmetric about z = 0. The final value 
of [G 1 for a particular ib contour is obtained by summing the 

a 

contributions from all grid cells. This method of approximating the 
\p contour as a straight line chord in a grid cell works well away 
from the magnetic axis. Near the magnetic axis a i(> contour may 
intersect a grid cell side twice and the method breaks down 
completely. 

The difficulty of the straight line chord method near the 
magnetic axis is the reason, in this region, the i|» contour is 
determined by solving Eq. (2-62). A function such as K which is 2 -2 calculated from [ IVVI r ] has a sharp peak in dK/dV at the i|) contour 
which is the transition between the two methods of calculating 
[IVVI r ]. To resolve this problem the general field line integral 
[G a] is defined to be a weighted sum of the values calculated by the 
solution of Eq. (2-62), [ G . L c p and the values calculated by the 
chord method [ G a ] c h o r d , 

a a 2-62 a chord 
[GJ = e a [GJ + (1 - ea) [GJ (2-66) 

where, 

a = - ( ( * - i|)n) 5 \ | j n ((* - +0) 5 i^ - 1} 

and i|)» is the flux value at the magnetic axis. Using Eq. (2-66), 
[G ] is almost entirely [G,]p_ 6 2 near the magnetic axis. For 
i - i|i0 > .2 i|>0, [Gfl] is almost entirely [ G f l ] c h o r d . 
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2.3.2 Averaged Grad-Shafranov Equation 
The averaged Grad-Shafranov equation is given by Eq. (2-31). 

This equation is a second order ordinary differential equation for 
41 with volume, V as the independent variable. It is solved on a 
uniformly spaced volume grid from V = 0 to the separatrix volume 
V = V . At these two positions the boundary conditions sre 

\|> = i|)̂  and >|) = \|i which are given constant initial conditions. 
The transport equations are set up on a uniform ip grid because 

derivatives in those equations involve the d/dip operator. 
Consequently the profiles S(\p) and q{<\>) in Eq. (2-31) are 
interpolated to the uniform volume grid once the vp values 
corresponding to the volume grid positions are determined. The volume 
grid is calculated by numerically computing the volume v.ithin given 
uniform grid \\> values. Once i|>(V) is known \|i values an obtained on 
a uniform V grid by interpolation and the volumes are again computed. 

By a process of iteration i|i(V) on a uniform volume id is 
_2 established. The surface average functions K, and <r > are then 

computed at these \p(V) values. 
It is actually problem dependent whether it is more accurate 

to interpolate S(\|i), q(ty) to a uniform volume 'rid or alternately 
solve for i|i(V) on a non-uniform volume grid -nd use S(\p) and q(i)j) 
at the i|> values where they are defined. Consequently Eq. (2-31) is 
set up to be solved on a non-uniform volume grid if desired. The 
left side of Eq. (2-31) is central differenced in a conservative 
manner. 
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^(K^^M^VI 
• ( i 3 ) (A2

2 - A 2 ) . T ( 2 ) . T o ) H . 

+ (TJ.2) - 4 T i 3 ) ) v i ( 2 - 6 7 ) 

The volume grid position is designated with a subscript i and the 
local volume spacing between i|>. , and ip. is A, and the spacing 
between i|i. and \|i.+1 is A~. The T. functions are given below. 

T ^ = A 2 ( K i + 1 + K ^ (A 2(A 2A 2 + A ^ J (2-68) 

T ^ = A 2(K i + K._]t ( A 1 ( A 2 A 2 + A^A,)) (2-69) 

T < 3 ) = 2(A 2 - A 2) K. f A 2 A 2 + 4 A l ) ( 2" 7 0> 

The right hand side of Eq. (2-31) is written as follows, 

5 2 
R i = (" ̂ a . ~ A^v i)»|) i + 1 + (- A 2 o i + A2vi)i(Ji_1 

+ ((A ] + A 2 ) 0 i + (A2 - A2

2)V.)T\>. (2-71) 

where o, and v. are defined below. 

0 i = 2 ( A , A 2 + A 2A 2) UiryS ( ^ + 16 n 4 q 2 <r" 2 > J. (2-72) 

Y-2 A rin .9 - ] 

•, - (4s * *.*!)' <* § (Sf * '6 *' < d q <r"2> 

_2 
- 16TT4 q 2<r" 2> ^ <r~2>h (2-73) 
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Using Eq. (2-67) to Eq. (2-73) the differenced form of Eq. (2-31) is 
below, 

A.il).^, + B.<|>. + C.<|i. , = 0 (2-74) 
ri+1 l i ri-1 

where, 

A. = T p ) + T (. 3 ) A? + h,a. + A? v. (2-75) l I l 1 1 I 1 l 

B. .T(3) (J, _ ^ _ jW _ jO) 

- (A1 + A 2)o i + (^ + 4)vi (2-76) 

C i = T\2) - 4 TJ3> + A ^ - ^ v, (2-77) 

Given the boundary conditions I|J0, ip Eq. (2-74) is solved by the 
standard tridiagonal algorithm.'- -* 

\\>.^ = E.<|>. + F. (2-78) 
vi+l r I i v 

E i _ 1 = - C i/(A iE i + B.) (2-79) 

F.^ = - A 1F 1/(A iE i + B ^ (2-80) 

The solution of Eq. (2-74) must be iterated because di|)/dV changes 
and thus ?t iteration n the coefficients A., B,, C. actually depend 
on v " . Nonlinear terms such as (di|VdV)Y~ are treated as a 
product of two terms at different iteration levels. 

,n-l 

[(ff 'RC 2] [#]" (2-81) 
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The functior K has a logarithmic singularity at the separatrix. To 
avoid the infinity in the Tj ' function, one point from the 
separatrix, K. + 1 + K. is replaced by K i + 1 , 2 , obtained from a fit of 
interior K values assuming the functional form,1- J 

K = 3 ] V + a2V + (a3V + a^2) In (1 - V) 

I , 
+ V sin(JTiV) (c,V + d.r) (2-82) 

j = l 

where V is normalized to the volume enclosed by the separtrix and 
typically I = 4. The analytic derivative of this formula is used 
for dK/dV to obtain a smooth function that properly represents the 
(1-V)" singularity. 

2.3.3 Grad-Shafranov Equation 
The two dimensional Grad-Shafranov equation may be written in 

cylindrical coordinates as follows, 

where J is the right hand side of Eq. (2-32). Central differences 
are usea . r derivatives in Eq. (2-83) to yield, 

a. .ib.,, . + ib. . + B. . ib. , . + Y- •!!»• -,n + X. • tb. . , = S. .J. . i.JM+l.J vi,3 1,3 vi-l,J Ti,ri,J+l i,J vi,J-l i,3 i,J 

(2-84) 

where i,j designate r,z position and the coefficients are given below, 
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+ [ ( * > " / - ( A r 1 + ] ) 2 ] ( r ^ ) " 1 

- 2 [A2j + A z j + 1 ] M j ' ) (2-85) 

a i , j = 6 i , j ( 2 A r i R i ] " ( A r i ) 2 ( r i R i ) _ 1 ) ( 2 " 8 6 ) 

e i J = « . 5 i ; 2 A r . + 1 R - 1

 + ( A r . ) 2 ( r .R . ) " 1 ) (2-87) 

Y i J = 5 i J E A Z j M - 1 (2-88) 

\ j * 6i,j 2 A Z J + 1 "J' { 2- 8 9 ) 

R. = (Ar. + 1) 2 br. + (Ar.) 2 A r i + ] (2-90) 

M d = ( A z j + 1 ) 2 A Z j + (AZj) 2 A z j + ] (2-91) 

AZj = z. - zj., (2-92) 

Ar i = r. - r.., (2-93) 

Originally Eq. (2-33) was differenced on a uniform grid and Fourier 
techniques were used to obtain solutions. To consider boundaries 
that are not periodic the alternating direction implicit method was 
implemented. This method was abandoned due to convergence 
difficulties. The variable mesh was implemented to increase 
resolution around the magnetic axis for [G ] c n o r (j and also to 
explore the application of distant boundary conditions. 
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The solution of Eq. (2-84) with a variable mesh is equivalent 
to the inversion of a five band matrix with a diagonal band length 
equal to the number of r,z grid points. The solution is obtained 
using the Incomplete Cholesky Conjugate Gradient Method (ICCG). •* 
This method obtains a solution by expressing the answer in terms of 
orthonormal vectors. The original matrix problem is pre-conditioned 
by multiplying by an approximate inverse matrix which has the same 
sparsity pattern. In theory without roundoff the ICCG method 
produces an exact answer after equivalently constructing a number of 
orthonormal vectors equal to the diagonal band length. In practice 
only a few iterations of the algorithm, usually one thousandth of 
the theoretical value, are required to obtain an excellent solution. 

The difference Eq. (2-84) is written as a matrix problem below, 

A ̂ = 4 (2-94) 

where underbar denotes vector and double underbar denotes matrix. 
The matrix A and vector J are obtained from Eq. (2-84) and a. ., 
6, ,•» Yi -j> ̂ i ,•» <5,- ,•• T n e problem is to determine ip given A and 
J_. A lower, upper, decomposition of A is effected as follows, 

k £ i j i = J (2-95) 

where D is diagonal and the matrix bands have the definitions below. 

L 3 , i = A j , i - £ L J , k u k , i D

M (2-*>) 
k=l 

Ui,0 " \ j - E Li,k Uk,j °k,k ( 2^> 
k=l 
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D. . = (A. . - V L. , U. . D. .V' (2-98) 
i,i I i,i Z-f i>k k.i k,k' 

k=l 
In the case of applying ICCG to a five band matrix £ it is only 
necessary to compute L. .. Assuming an M by N grid the bands have 

1 9 1 

the following definitions. 
Li,i-1 = \i-l < 2-") 
Li,i-M= Ai,i-M (2-100> 
Li,i = Ai,i - \ i - l - Ai,i-M Ai-M,i Di-M,i-M (2"101> 

(2-102) 

(2-103) 

(2-104) 

U i , i + M
= A i , i + M < 2- 1 0 5> 

Equation (2-99) to Eq. (2-105) are used in the algorithm below. 
Superscript i designates iteration level. 

1° = i - A± (2-106) 

£° = (±gU)~] j>° (2-107) 

P° = £ (ggU)'1 c° (2-108) 

a1 = ( f V ) " 1 (c1. c1) (2-109) 

i
1 + 1 = ^ + a V (2-110) 

D i . . i = <L1 , i> ' 
•1 

u i , , i = L i , i 

u i , ,i+l = V i + 1 
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Si+] = S1 - a1 Af 1 (2-111) 

£ 1 + 1 = (il^)"1 1 1 + 1 (2-112) 

b 1 » ( c 1 , c V (c i + 1, c 1 + 1) (2-113) 

f.i+1 = A T (L DJJ)" T c 1 + 1 + b V (2-114) 

There are three initial vectors^ , £ , £ which are needed to begin 
the ICCG algorithm. The algorithm iterates from Eq. (2-109) to Eq. 
(2-114) until the magnitude of the S^ residual vector is sufficiently 
small. A superscript of -T indicates transpose of the inverse 
matrix. Brackets around vectors indicate scalar product. Operations 
such as Eq. (2-112) are performed using back substitution in three 
steps as follows. 

^ 2 < = _ S i + 1 (2-115) 

J}y_=x (2-116) 

U c i + 1 = y (2-117) 

The algorithm converges in only a few iterations when a close guess 
is used in Eq. (2-106) since the original equation is almost solved 
in this case. 

2.3.4 Boundary Condition for the Grad-Shafranov Equation 
The solution of Eq. (2-32) requires a boundry condition for 

the open case where the plasma is not surrounded by a conductor. A 
Green's function technique is used to obtain the boundary condition 
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by summing the flux due to axisymmetric plasma current rings. Each 
grid point where the current is non-zero is considered to be a 
current ring. The flux it an r,z boundary position results from the 
sum of all current rings which is an approximation to Eq. (2-34). 

il) , (r,z) = .25 T ^ [S. . + S- •, . + S. • •, + S. , . ,] '•'plasma1'' ' Z_* L i,j i-l,J i,J-l i-l,J-lJ 

ij 
(2-118) 

In Eq. (2-118) S ^ . = (Jy)^- (G(r.,Zj,r,z) + G(r., -Zj.r.z)) due 
to symmetry about z = 0 and J T and G are defined by Eq. (2-20) and 
Eq. (2-35) respectively. The Green's function must be computed for 
each grid point for all boundary condition positions. This 
operation is done once for a given specification of r,z dimensions 
and number of grid points and then G values for Eq. (2-118) are read 
from a disk file as required. The Green's function values for the 
boundary point at z = 0 are stored in computer memory. The z = 0 
boundary point is closest to the plasma and is thus sensitive to 
changes in current. The change of the flux boundary value at z = 0 
is computed before each two dimensional Grad-Shafranov solution, and 
all other boundary values are computed only if there is a significant 
change at z = 0. 

2.3.5 Transport Equations 
There are three transport equations, Eq. (2-42), Eq. (2-58) 

and Eq. (2-59). No numerical solution of Eq. (2-42) is required. 
It is used to determine the density and temperature. 
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"(*'t)= B (ft) t . 0 (ft)t (2-"9) 

T(+.t) - (nlj)"^ S(*.t) (U)^ / 3 (2-120) 

The two heat balance equations are wri t ten as a general 

equation. 

£ . S ( D d ( s (2 ) £ k \ + s ( 3 ) + s ( 4 ) s . + s ( 5 ) _ 1 2 1 j 
d t k d\Jj \ k dip / k e k j k v ' 

For the ions k = j corresponding to Eq. (2-58), 

-2/3 
s j " . 5.457 x l O , 6 ( * ) (2-122) 

f-vV-i/^ <2-'"» 
s( . 3 ) = 1.82 x 1 0 ' 2 7 (m. T ) _ 1 (2-124) 

J J " 

S ( . 4 ) = - 1.82 x IC f 2 7 (m. T ) " 1 (2-125) 
J J 6 

s ( - 5 ) = s h 

j beam 

and for the electrons k = e corresponding to Eq. (2-59), 

(2-126) 

S?) - 6.92 x 10 1 3 Te"J ( ^ ) " 2 / 3 (2-127) 

s ( 2 ) = n T e T - l ^ ^ . 2

 ( 2 . 1 2 8 ) 

S i 3 ) = " Te2 • 1 - 8 2 x 1 0 " 2 7 ( m j T e ) _ 1 ( 2 _ 1 2 9 ) 
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s i 4 ) = 1.82 x 1 0 - 2 7 (mn. T ) " 1 (2-130) 

S ( 5 ) = - S A (2-131) 
e rad 

In Eq. (2-122) to Eq. (2-131) T and T, are understood to be given 
*- J 

by Eq. (2-120) with the S or S- profile respectively. The general 
equation has several flux surface average quantities in coefficients 
S\ ', s\ ' and S*, , which are determined by the solution of the 
two dimensional Grad-Shafranov equation. Also dip/dV from the 
averaged Grad-Shafranov equation is effected by transport. Due to 
these dependenices, no gain was realized by treating terms on the 
right side of Eq. (2-121) implicitly. Consequently, a straight­
forward explicit time difference scheme is employed, 

cn+l _ cn . .+ S k - S k + At (M)~2 .S(((S[2) (*+ A*) + SJ2)(H;) 

• / y * + Ai>) - Tk(*)j - U 2 ) W + s k
2 )(* - A*n 

• (\W - Tk(* - A*)JJ 
(2-132) + 4 3 ) ( ^ S e + S k 4 ) s j + S k 5 : 

where AI|J is the transport grid spacing. The dominant term is 
neutral beam deposition and thus At is chosen so (S. - S'J) 
(S1!)" is no greater than 5% at any ty grid position. 

J 

2.4 Initial Conditions 
In Section 2.2 equations were presented which describe the 

evolution of quasi-static equilibria. To begin the calculation an 
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initial condition is required for <|j and the S(t|0, q(i^) profiles. 
Analytic ty have been obtained by assuming various models for 
p(i|<) and fx(^). The i|/ solution is then used to calculate diJ/dV 
and relations Eq. (2-29) and Eq. (2-30) are used to determine S(I|J) 

and q(tp). With p = nT known, assuming a ty dependence of either 
n(»J>) or T(\p) determines the ty dependence of the other function. The 
ion S-(40 and electron S (\|J) profiles sum to S(v|t) and thus initially 
it is assumed S. = S = .5 S(4i). 

2.4.1 Weitzner Magnetic Field Model 
I" 1221 The Weitzner J model assumes p(i|j) and fT(v|j) are proportional 

to ty. 

p(i|i) = (4H)" 1 b<J> (2-133) 

f T(*) = a* (2-134) 

The vp solution for a spherical plasma of radius p, inside the plasma 
is below. 

*< = r\(~] + K ^o'z^'z s i n f>z - c o s D2>) (2-135) 

p 2 = a(r 2 + z 2 ) (2-136) 

b = a" 2b n 

= - 1.5 B v (z - p 2 c ( 1 ) ) (2-137) 
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: ( 1 ) = (p" 2 cos(ap1) + sin (a P ]) (ap"1 - [ap^) ))/c ( 2 ) (2-1 38) 

c ( 2 ) = - cos (ap^ + (ap^" 1 sin (a P l) (2-139) 

K = p 2 / c ( 2 ) (2-140) 

The constants in Eq. (2-137) to Eq. (2-140) are expressed in terms 
of a, P-, and By. The uniform vacuum field far from the plasma is 
By. The boundary of the plasma is at the first zero of 

2 -2 -1 - 1 + K a p.j (p, sin p. - cos pj) (2-141) 

and thus a, p,, and By must be chosen such that there is only 
one zero within radius p,. In this model it is not possible to 
arbitrarily vary pressure and toroidal field. 

The external vacuum field which matches onto i|< with 
continuous value and first derivative is given below. 

*> * - 5 ?\ (• " P̂  a 3 P2 3) ( 2" 1 4 2) 

The magnetic field strength at r = 0, z = 0 is 1.5 By so the 
field is reversed by a factor of 1.5 times the vacuum field. The 
toroidal field is caused by plasma currents and thus the toroidal 
magnetic field is zero outside the plasma. Consequently there are 
two magnetic field nulls located at r = 0, z = ± p,. The 
toroidal current inside the plasma has the form below. 

J T = Kbc(4Trp2 j r I pg sin p 2 - cos p 2 ) (2-143) 
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2.4.2 Spherical Hill's Vortex 
The spherical Hill's vortex'- ^ is a field reversed plasma 

model with no toroidal field, fj = 0. The pressure is assumed to be 
proportional to i(i, 

p = - 15 B v (to p 2 ) i|> (2-144) 

The resultant radius p-, plasma solution with far field By is as 
follows, 

*< = - .75 B v r 2 (1 - (r 2 + z 2)p" 2) (2-145) 

j L - , J , .2 - 3 / 2 

*„ = .5 Bvr" (1 - p^r' + z') J (2-146) 

2.4.3 Elliptical Hill's Vortex 
The generalization of the spherical Hill's vortex is an 

elliptical shaped plasma region. For this case f-p = 0 as before and 
pressure is proportional to <JJ but with a different constant. 

2 \ - l p = - (12 + 3E) B v (8TT P, ) * (2-147) 

The interior plasma solution is easily generalized. 

^ = - .75 B vr 2( 1 - (r 2 + E z 2)p" 2 ) (2-148) 

The separatrix or ty = 0 position is at radial position p, for z = 0. 
-1 /2 At. r = ', the z position of ip = 0 is p, E ' . For E < 1 the plasma 

is prolate and for E > 1 the plasma is oblate. The magnetic field 
strength at r = 0, z = 0 is 1.5 By so as in the Weitzner model the 
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field is reversed by a factor of 1.5 times the vacuum field value. 

There are three magnetic field nulls located at r = 0, z = + p^ 
-1/2 -1/2 E ' and r = 2 ' p,, z = 0. The toroidal current is linear in r, 

J T = - c(12 + 3 E) B v (8TT p^J r . (2-149) 

The difficulty in inserting the E coefficient in the ty< formula 
is that a similar modification to i^ from Eq. (2-146) does not yield 
a vacuum solution A*I|J = 0. Consequently it is necessary to derive 
a i|i which matches v|) given by Eq. (2-148) in value and first 

? 2 ° derivative at r + Ez = p^ and satisfies &*\\>> = 0. 
The problem of matching exterior solutions nas been considered 

T1241 by Shafranov1 , however, the form of his solution is computationally 
cumbersome. At the inception of this work no closed form exterior 
solutions existec' so i|> was derived for the prolate and oblate case. 
Apparently . year later the prolate solution was independently 
derived by Kaneko. J-* The oblate solution is of interest since 
Rosenbluth and Bussac1- *" •' showed an oblate spheroidal plasma 
surrounded by a conducting wall is stable to tilting. 

Attempts to obtain i|> first centered around generalizing work 
by Strauss'- J in elliptical coordinates. Unfortunately as in the 
Shafranov work ^ could only be expressed in terms of an infinite 
series. To resolve this difficulty a transformation is made to 
prolate spheroidal coordinates E, n- Coordinate £ is constant on an 
ellipse and n. is an angle like coordinate analogous to e in 
standard spherical coordinates. Inserting prolate spheroidal metric 
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differential coefficients into Eq. (2-18) for gradient and divergence 
yields the Grad-Shafranov operator in prolate spheroidal coordinates, 

A** = (c 2( ?
2 - n2))"1 L? - 1) £$• • (1 - n2) ^ j (2-150) 

where 2c^ is the distance between foci. There are four consequences 
of the form of Eq. (2-150). First the homogeneous equation 
A*i|> = 0 is separable. Second, expressing I|J as a product of 
functions of £ and n the separated equations for both functions are 
identical in form. This means E, and n are represented by the same 
functions. Third, the following relationships exist, 

(2-151) 
A*/c2({;2 - l) (1 - n 2) P n(C) P£(n)j 

- (i - 1) (1 - n 2) (c 2 - n 2j f n(n - 1) - a(* - l)j P n ( U P^n) 

*U - DJQn 

a*(c 2(5 2 - l) (l - n 2) Q n(S) P^ 

(2-152) 

= (C2 - 1) (1 - n 2) [l2 - n 2 ) (n(n-l) - i(i - 1))Q^(C) P^n) 

where P is a Legendre polynomial and Q is a Legendre function of 
the second kind. The prime indicates derivative with respect to 
argument. Fourth, homogeneous solutions of A*ip = 0 are immediately 
obtained for n = & in Eq. (2-151) and Eq. (2-152). Since 
2 2 2 2 

c f(C - 1) (i - n ) = r a general exterior solution is given below. 
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*>= r 2 Z ( a n P n ^ + bn^O P>> (2"153) 

n 

If an elliptic boundary i>„ solution can be expressed in terms of 
2 polynomials in r and z multiplied by r , a matching exterior 

solution fy> is known once the i]^ r, z polynomial is expressed in 
terms of Legendre functions. The greatest subscript of P'(£) in 
I|J then determines the upper summation range of n in Eq. (2-153). 

The interior solution <|i may be written in terms of Legendre 

functions for the prolate Hill's vortex, 

* < = ^ > ( T 5 P 3 ^ 4 ) ^ 7 5 P 3 ^ ) 

+ ^(lSP3^+l)(l5P3^+l)-^) ' 2 " 1 5 4 > 
2 - 2 2 -1 where a = .75 By c f p, , 6 = PT c, . The exterior solution is 

below. 

% = r 2 ( 3 l + b 1 Q^(0 + (a3P^(5) + b3Q^(5)) P^(n)) (2-155) 

The a , b coefficients are determined by the two separatrix 
r = ? 0 = (1 - E) matching conditions. 

*<(C0.n) = ^(CQ.TI) (2-156) 

-s?T" "~^~ ( 2" 1 5 7 ) 

The resulting coefficients for Eq. (2-155) follow. 
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differential coefficients into Eq. (2-18) for gradient and divergence 
yields the Grad-Shafranov operator in prolate spheroidal coordinates, 

A** = (c2

fU2 - n2)]"1 Li - 1) |%+ (1 - n2) ̂ f ) (2-150) 

where 2Cf is the distance between foci. There are four consequences 
of the form of Eq. (2-150). First the homogeneous equation 
A*I|J = 0 is separable. Second, expressing i|t as a product of 
functions of £ and n the separated equations for both functions are 
identical in form. This means £ and n. are represented by the same 
functions. Third, the following relationships exist, 

A*(c 2(£ 2 - 1) (1 - n 2) P ^ ) P^(n) 
(2-151) 

U 2 - D (l - n 2) U 2 - n 2j f n(n - 1) - l(z - l)j P^C) P;(n) 

A*[4(? 2 - l) (l - n2) Q n(0 P^n) 

(2-152) 

(52 - 1) (1 - n 2) (K2 - n 2 ) " ( n(n-l) - l(i- l)JQ n(£) P^(n) 

where P is a Legendre polynomial and Q is a Legendre function of 
the second kind. The prime indicates derivative with respect to 
argument. Fourth, homogeneous solutions of A*ip = 0 are immediately 
obtained for n = «, in Eq. (2-151) and Eq. (2-152). Since 
2 2 2 2 Cf(£ - 1) ( 1 - n ) = r a general exterior solution is given below. 
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*>^ 2E( a^' + bn^) P>) < 2' 1 5 3 ) 

If an elliptic boundary ty solution can be expressed in terms of 

2 

polynomials in r and z multiplied by r", a matching exterior-
solution ty> is known once the vp r, z polynomial is expressed in 
terms of Legendre functions. The greatest subscript of P'(i,) < 

ty then determines the upper summation range of n in Eq. (2-lbJ . 
The interior solution \|t, may be written in terms of Legend: 

functions for the prolate Hill's vortex, 

^ = r 

2 - 2 2 -1 
where a - .75 By c f Pi , 8 = p, c f . The exterior solution is 
below. 

^ = r 2 ^ + b1 Qj(s) + ( a 3 P ' ( 0 + b 3Q'(C)) Pj(n)) (2-155) 

The a , b coefficients are determined by the two separatrix 
112 

£ = £ Q = (1 - E) matching conditions. 

%(KQ,r\) = ^ ( C Q . H ) (2-156) 

The resulting coefficients for Eq. (2-155) follow. 
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b i = «(TF + H) ( 6 p3^o> " Va^oO ( Q i ( ^ - W ^ ) - 1 ( 2 - 1 5 8 ) 

a i = - a e 2 + (h -1)a + « (75 + T§) P 3 % > - bSW <2-1 5 9> 

b3 = <4r + 75") 0 " ^ o W (6P 3 M"') 

( w - w w(w)'1)"1 ( 2 - i 6 0 > 

In the oblate case E > 1 and the Grad-Shafranov equation 

changes form. The £,n coordinates now refer to oblate geometry. 

A**=(c 2(c 2 + n 2))" 1 ((£ 2 + l ) 6 u (1 - n 2) % ) (2-162) 

The ri product functions remain the same as in the prolate case; 
nowever, the E; functions have non-standard definitions. To 
distinguish from the previous standard Legendre functions they are 
given a subscript Ob. 

P = 1 ObO 

P 0 b l ^ • 5 

pob3fe) - 4 (c3 + I e) 

Q 0 b l(C) = 1 - C cot'1 c 

(2- •163) 

(2- •164) 

(2- •165) 

(2- •166) 

(2- 167) 
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Q 0 b 2(?) = | (*? + 1) cot - 1? - § £ (2-168) 

9 0b3^) " " ! (« 3 + | « cot"1
 C + | ( C

2
 + 4 ) - | 

Also because the ellipse foci have a vertical orientation 

r2 = c 2 ( 5
2 + 1) (1 - n

2 ) . (2-169) 

Similar to the conclusions of Eq. (2-151) and Eq. (2-152) 
r 2P' 0 b l,(O P 'n(n) and r 2Q' 0 b n(E) p' n(n) are homogeneous solutions. 
The interior and exterior solutions are written below for the oblate 
case. 

*<= r 2 ( a ( T 5 P 6 b 3 ^ ) + l ) ( l - T 5 P 3 ( ^ ) 

+ a Efe P6b3^ -1){^P3^ + D - <*2) < 2- 1 7°) 
*> = r 2( al + b l Q 6 b l ^ + ( a3 P0b3 ( ? ) + b3 Q0b3^> ) P3< n>) (2"171> 

Applying the matching conditions Eq. (2-156) and Eq. (2-157) at 
-1 /2 E = £Q = (E - 1) yields the oblate spheroidal a , b 

coefficients. 

b l = "(TS + T I ) ( 6 P0b3^0> " V o b s M (%bW " ^ O b W ) " 1 

(2-172) 

a l = - ^ + ( I " Is)" + a(T5 + f ) P6b3^0> - b l Q0bl<^0> 
(2-173) 
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b3 = - a(75 +7!) (] -?0 P6b3^ 0) ( 6 P0b3^ 0)) _ 1) 

(%b3^ * Q 0 b 3 ^ P0b3^ 0) (PobS^o')"1)"1 (2- 1 7 4! 

a3 = " W 7 F + 7F) + b3 %b3^0)) (Pdb3^0>)_1 + (E " D fe 
(2-175) 

2.4.4 Variable Coefficient Model 
The Weitzner, spherical, and elliptical Hill's vortex models 

all derive the S(\|i) and q(i|i) profiles from assumed forms of p(i|>) 
and f-r(<C) and the corresponding analytic \Ji(r,z). To provide 
flexibility in the form of S(ty) and q(ij>) this model represents these 
profiles as variable coefficient functions. 

6 < • • • >^3i-2 
q(*) = q, + £ q3i-4(fc" q3i-3)'' 

i = 2 

+ " l7«p(" l8 ( fe- " l9 ) % ° ) ( 2 " 1 7 6 ) 

s ' - - s + V s ^ - s ^ 3 i - 2 

S>'-' - S l 2 b3i-4 ^ Q

 b3i-3J 
i = 2 

- - 7 - p ( s i S f e - S 1 9 ) S 2 ° ) (2-177) 

In this model the vacuum flux is specified as follows, 

*vac = V - 2 5 < RM + 1 » r 2 + - 5 V " 1 ( R M " ]> 

r I b l ( i r r z ^ ) cos (nz" 1 (z b -z ) ) ) (2-178) 
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where R M = B (r = 0, z = z b) B"1 (r = 0, 2 = 0) and I b ] is the 
standard Bessel function of imaginary argument, and order one. In 
the variable coefficient model the analytic ijj(r,z) is not specified 
so a magnetic axis <i>Q value is chosen and an approximate plasma 
radius is assumed. The two dimensional Grad-Shafranov equation is 
then solved iteratively scaling the total toroidal current until a 
solution evolves with the specified \\>Q value. During this 
initialization phase the plasma configuration may evolve to a 
prolate or oblate shape. 

2.5 AD3 Code Results 

The results of the ADB code with adiabatic compression or 
transport given by Eq. (2-42), Eq. (2-58), Eq. (2-59), a constant 
magnetic axis i|u value, and fixed q(ip) profile are reasonable for a 
class of plasma scenarios. A more detailed calculation would yield 
approximately the same answer if the magnetic flux does not 
radically decay and neutral beam deposition dominates competing 
processes. 

r "J28 l?9l Recent experiments ' " have demonstrated stability of 
field reversed mirror plasmas on time scales long compared to an 
Alfven wave transit time. Theoretical investigations'- ' -* have 
also demonstrated stability for various plasma betas and surrounding 
conducting wall positions. The parameters of these studies are near 
those used in the results presented here. Consequently a minor 
configuration change which may be necessary to guarantee stability 
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during the time evolution of the plasma would not appreciably effect 
the results. 

The constant magnetic axis flux value is justified by assuming 
the toroidal electric field is small during the time of a calculation. 
For a radius 20 cm plasma at 1 keV the classical energy confinement 

T1321 time is 4 msec.L J Thus for the implemented model it is reasonable 
to calculate results out to several milliseconds. 

A number of neutral beam deposition simulation and adiabatic 
compression cases have been run with the ADB code.'- ^ These 

runs centered around the following issues. 
1. Radial versus axial plasma shape changes caused by neutral 

beam injection. 
2. Plasma shaping by adiabatic compression. 
3. The effect of different neutral beam energies, currents, 

and footprint sizes. 
4. The question of whether the plasma is heated when energy 

ir supplied by neutral beams and simultaneously lost by 
impurity radiation or an enforced electron energy decay 
rate. 

The ADB equilibrium solver and beam deposition routines have also 
been implemented in conjunction with Shumaker'- " using a 
more elaborate transport model. 

Two cases run with the ADB code are presented in this section. 
The first case considers the time evolution of a neutral beam 
injected plasma with radiation loss and an enforced electron energy 
decay rate. The q(ip) profile is held fixed and S(i);) is evolved in 
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accordance with Eq. (2-42), Eq. (2-58), and Eq. (2-59). The second 
case simulates the adiabatic compression of a prolate shaped plasma. 
In this case q(i|j) and S(ty) are both held fixed and the plasma changes 
as a result of modifications to the vacuum magnetic field. 

2.5.1 Simulation of a Neutral Beam Injected Plasma 
This example investigates the time evolution of a 

plasma subject to competing loss and buildup processes. The losses 
are bremsstrahlung,. line radiation and an enforced electron energy 
decay rate. The plasma buildup or heating is caused by neutral beam 
charge exchange. The replacement of plasma ions with hot neutral 
beam particles causes the ion temperature to increase. The energy 
exchange of ions with electrons which are loosing energy, drains 
away the energy coming from the neutral beam. The essential issue 
is whether or not a credible neutral beam current and energy can 
heat a plasma with a given radiation impurity level and a specified 
electron energy decay rate. 

An axisymmetric field reversed mirror plasma is simulated in 
cylindrical r,z coordinates on a computational grid of length 20 cm 
in the axial direction and 37.5 cm in the radial direction. The 
plasma is assumed to be symmetric about z - 0, and subject to a 
uniform z directed 1 kilogauss vacuum magnetic field. Impurity 
radiation is attributed to oxygen at a concentration of 2% of the 
local density. The neutral beam is modeled as a uniform current 
pencil beam grid impacting the plasma from z = -7 cm to z = 7 cm and 
20 cm radially above and below the z axis. The neutral beam current 



is 400 amps at an energy of 12 keV. The magnetic axis flux, VJJQ is 
held constant at -1 x 10 gauss-cm . The initial peak temperature 

14 -3 and density are 30 eV and 1.6 x 10 cm respectively. The flux 
1/2 variation of temperature and density is initially ty with the peak 

value at ty~. The S(\|i) and q(40 profiles are chosen to make a 
toroidal current having a single peak about the \\>Q position. By 
adjusting the profile coefficients in the model of Section 2.4.4 the 
total magnetic field at r = 0, z = 0 is set initially to 10 
kilogauss, the toroidal current is .4 meg amps and the poloidal 

current is .75 megamps. The non-ze.o coefficients for Eq. (2-176) 
and Eq. (2-177) are listed below. 

S 2 = 150. (2-179) 

s 4 = i. (2-180) 

q, = -2 (2-181) 

q 2 = 2.5 (2-182) 
q 3 = .7 (2-183) 
q 4 = 2 . (2-184) 
q 5 = -130. (2-185) 

q 6 - 1. (2-186) 

v = 4- (2-187) 

q 1 7 = -4 (2-188) 

q 1 8 = -5. (2-189) 

P-jg = -75 (2-190) 

q 2 0 = 2. (2-191) 
The vacuum field determined by Eq. (2-178) has parameters B = 1. x 10" 

and R = 1 . 
m 
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The case presented here is one of three with identical initial 
conditions except for T 2 of EQ> (2-59). To study the interaction 
of neutral beam buildup with energy loss by electrons, the electron 
energy decay time, T ~ was set to 50, 100, and 200 microseconds. 
The effect of a decreasing decay time is to reduce the increase of 
S (i|>) caused by energy exchange with the ions and also to hold down 
the ion temperature. The T 2

 = 50 results show the greatest change 
from the initial conditions. The corresponding results of the 100 
and 200 microsecond cases fall between the initial conditions and 
the 50 microsecond case so only graphs of the 50 microsecond case 
are shown. 

The computational grid boundary at a radial position of 37.5 cm 
and axial distance of plus and minus 20 cm is a conductor so the 
plasma flux at these positions is set to zero. This boundary 
condition has the effect of keeping flux surfaces approximately 
unchanged. Comparing the contour plot of ^(r,z) in Fig. 2-1 a at 
time zero with ii[r,z) at 2.8 msec in Fig. 2-lb a slight outward 
radial shift of the magnetic axis is apparent. The separatrix or 
\p = 0 position is at r = 32 cm, z = 0 and r = 0, z = 18.5 cm for 
time zero. At 2.8 msec as shown in Fig. 2-lb the separatrix is at 
r = 33.5 cm, z = 0 and r = 0, z = 18.5. The plasma remains oblate 
during the neutral beam buildup. The single minimum of 4i(r,0) is 
preserved as shown in Fig. 2-2. At r = 0, i> = 0 and at the 
conducting wall position ty = i|> which is a fixed value. Thus the 
4i(r,0) plots at time zero in Fig. 2-2a and 2.8 msec in Fig. 2-2b have 
the same endpoints. The difference between the two plots is mainly the 



magnetic axis position, which is located where 3ijj/br = 0. Comparing 
Fig. 2-2a with Fig. 2-2b it can be seen the magnetic axis has 
shifted from 20 to 22 cm. 

The toroidal current is shown at time zero in Fig. l'-3a and at 
2.8 msec in Fig. 2-3b. The initial JT(r,z) with basically elliptical 
contours develops the interior structure shown in Fig. 2-3b inside 
the 866 contour. The t = 2.8 msec structure is a result of Jy(r,0) 
changing from a single peak function to a double peak function as 
shown by Fig. 2-4. In Fig. 2-4a, Jj(r,0) at time zero has a single 
peak and in Fig. 2-4b Jy(r,0) at t = 2.8 msec has a double peak. The 

5 total toroidal current rises from an initial value of 3.94 x 10 amps 
to 4.33 x 10 amps at t = 2.8 msec. The initial peak value of 4TTC 
J T of 1400 diminishes to peak values of 1100 and 900, at 2.8 msec. 

The I (r,0) shown in Fig. 2-5a at time zero and Fig. 2-5b at 
time 2.8 msec is a plot of total z current flowing betwen zero and 
the r position where an ordinate value is plotted. The peak value 
at 20 cm in Fig. 2-5a indicates an initial total current of 7.5 x 
10 3 amps flowing between r = 0 and the magnetic axis. At 2.8 msec 
Fig. 2-5b shows the total z directed current between r = 0 and the 

5 magnetic axis is reduced to 6.2b x 10 amps. 
The z magnetic field is shown in Fig. 2-b. At the initial 

time R (r,0) is shown in Fig. 2-6a and B (0,z) in Fig. 2-6b. At 2.8 
msec B (r,0) is in Fig. 2-6c and B (0,z) is in Fig. 2-6d. Figure 

2-6c shows the imti'l field peak at 28 cm has shifted radially 
outward to 30 cm and the original peak magnitude of 4 Kilogauss 
becomes .5 kilogauss at 2.8 msec. Figure 2-6d shows B (0,z) 
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ranges from -9.5 kilogauss to 1 kilogauss. Initially ';he field at 
r = 0, z = 0 is -10 kilogauss. The toroidal field B T(r,0) is 
plotted in Fig. 2-7a at timo zero and 2.8 msec in Fig. 2-7c. The 
characteristic single peak of By is preserved from the initial 
condition; however, the maximum value diminishes from 8.5 kilogauss 
to 7 kilogauss. The to+al magnetic field magnitude, B(r,0) is shown 

in Fig. 2-7b at time zero and in M"g. ?-7d at time 2.8 msec. The 
4 initial peak value of 1.08 x 10 located at r = 8 is reduced 

moderately to .97 x 10 and shifts inward to r = fi at 2.8 msec. An 
additional small psv develops at 2.8 msec near r = 30 with 

magnitude 5 kilogauss. 
The density n(r,0) at the initial time is plotted in Fig. 2-8a 

and the density at 2.8 msec is plotted in Fig. 2-8b. These plots 
14 -3 14 -3 

show the density peak fell from 1.65 x 10 cm to 1.1 x 10 cm . 
The number of particles is held fixed so the density decrease is a 
consequence of the expansion of '"'•e plasma volume. The initial 
single density peak near the magnetic axis is maintained throughout 
the time evolution of the plasma. 

The pressure p(r,0) plotted in Fig. 2-9a at time zero and 2.8 
msec in Fig. 2-9b also maintains a single peak near the magnetic 
axis. Both density and pressure peaks shift outward slightly as the 
position of the magnetic axis moves from 20 to 22 cm between the 
initial time and 2.8 msec. The peak pressure goes from an initial 4 - 2 5 - 2 value of 1.2 x 10 dyne-c^ to 8 x 10 dyne-cm . Thus the relative 
beta for a fixed reference field increases by a factor of 67 and 

the initially nearly force free plasma evolves toward a finite beta 
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state. The toroidal current has a term proportional to dp/d\}j. As 
can be seen from Fig. 2-Sa and Fig. 2-9b, taking account of scale, 
the pressure gradient tends to steepen in the vicinity of r = 14 cm 
and r = 27 cm. In these regions the finite beta current dominates 
the force free current at î .8 msec. 

The ion temperature T(r,0) is shown in Fig. 2-10a at time zero 
and in Fig. 2-1 Ob at 2.8 msec. The temperature has a double peaked 
structure with an initial magnitude of .03 keV. After 2.8 msec the 
ptak temperature increses to 4.7 keV. The temperature across the 
plasma varies from 2.8 keV to 4.7 keV. 

The S(i|)) entropy profile function is plotted in Fig. 2-lla at 
time zero and in Fig. 2-1 lb at 2.8 msec. This is the only profile 
modified by the neutral beam deposition and transport; q(i)j) is held 
constant. Initially S(<|J) is a linear function of ty with a maximum 
value of 150, at the magnetic axis. After 2.8 msec the maximum value 

4 iheresies to 2.1 x 10 with the profile monatonically decreasing 
toward the separatrix. The monotonic behavior and the maximum value 
at the magnetic axis indicate the neutral beam is penetrating the 

plasma and there is substantial deposition in the interior. 
The energy input to the plasma diminishes as the plasma heats 

since the source term for the beam is attributed to charge exchange 
and is thus proportional to the difference between the plasma and 
beam energy. The plot of total kinetic energy in Fig. 2-12a shows 
the energy asymptotes to approximately 5 kilojoules. At 2.8 msec 
Fig. 2-12b shows the trapped beam power has fallen to 2200 kilowatts. 
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This is an approximate 54% decrease from the initial value of 4800 
kilowatts. 

The steady state that is eventually reached is mainly a 
balance between the enforced electron loss term proportional to 
Tgg. the radiation loss and the incoming trapped neutral beam 
power. The U(T ) radiation profile of Eq. (2-54) is plotted as a 
function of electron temperature in keV in Fig. 2-13b. The peaks in 
the radiation profile explain the behavior of the radiated power 
shown in Fig. 2-13a. Initially the electron temperature is at .03 

keV which corresponds to a radiation profile position on the right 
21 side of the largest peak in Fig. 2-13b with value 10 . There &re 

two possibilities. When the electron energy decay and impurity 
radiation loss dominate the energy obtained from beam heated ions, 
this causes a decrease in the electron temperature and enhances the 
radiation loss. When the energy from the beam dominates losses the 

electron temperature increases which diminishes the impurity 

radiation and allows for further heating. During the course of the 
run the initial radiated power was 420 kilowatts. The electron 
temperature initially decreased and the radiated power rose to a 
peak value of 700 kilowatts at .012 msec. At this time the beam 
begins to dominate, the electron temperature increases and the 

radiated power drops. From .2 msec to 2.8 msec the radiated pow"" 
remains near 10 kilowatts and the electron temperature has an 
average value across the plasma of .1 keV. This corresponds to the 

radiation profile position in Fig. 2-13b between the large and small 
peak. 



Depending on parameter values and the amount of expansion of 
the plasma it is possible for the beam deposition opacity to change 
during a run. Figure 2-14 shows initially the beam is almost 
completely absorbed with 99.9% attenuation. The attenuation falls 
to 98.7% by the end of the run. Thus throughout the run almost the 
entire beam current is absorbed and the diminution of trapped beam 
power is accounted for by the plasma, beam energy difference factor 
in Eq. (2-57). 
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Figure 2 -1 . Neutral beam injected plasma, i|)(r,z). (a) t = 0. 
(b) t = 2.8 milliseconds. 
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Figure 2-4. Neutral beam injected plasma, 4TTC"^ J-|-(r,0). (a) t = 0, 
(b) t = 2.8 milliseconds. 
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Figure 2-5. Neuiral beam injected plasma I z(r). (a) t = 0, (b) t = 2.8 milliseconds. 
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Figure 2-6. Neutral beam injected plasma, (a) Bz(r,0, t = 0), (b) Bz(0,z, t = 0), (c) Bz(r,0, t = 2.8 msec), (d) B2(0,z, t = 2.8 msec). 



101 

CO 

1 /' 1 1 
8000 

6000 - -

4000 - \ 
\ 
\ 

~ 

2000 

0 

— / 

1 , 1 

\ 
\ 
\ \ \ 

. \ 

-

ffl 

/• 1 1 i 
10,000 

8000 -

6000 -

4000 1 1 1 . 
10 20 30 

r (cm) 
(a) 

10 20 
r (cm) 
(b) 

30 

i-
00 

6000 

4000 

2000 

10 20 
r (cm) 
(c) 

9000 

to 7000 

5000 

30 

Figure 2-7. Neutral beam injected plasma, (a) BT(r,0, t = 0), b B r,0, t = 0), (c) B T(r,0, t = 2.8 msec), (d) B(r,0, t = 2.8 msec). 



102 

r (cm) 
(a) 

Figure 2-8. Neutral Beam injected plasma, n(r,0). (a) t = 0 
(b) t = 2.8 milliseconds 
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Figure 2-9. Neutral beam injected plasma, p(r,0). (a) t = 0 
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Figure 2-10. Neutral beam injected plasma, T(r,0). (a) t = 0, 
(b) t = 2.8 milliseconds. 
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Figure 2-14. Neutral beam injected plasma. Fraction of the neutral 
beam current attenuated by the plasma versus time. 
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2.5.2 Compressed Prolate Hill's Vortex 
The shape of a plasma is one factor which influences stability. 

The proximity of conducting walls also plays a role. It was found 
T1421 by Hammer1- ' a prolate plasma with an equitorial bulge, referred 

to as the problimak configuration, is stable to the tilting 
instability with walls more distant than an oblate shape. This 
particular geometry is also stable to axial and transvei se 
displacements. Because these properties are desirable a series of 
AOB runs were done to attempt to create a problimak by compressing a 
spherical Hill's vortex. The failure of this effort was one 

motivation for deriving the external vacuum field which matches an 

elliptic Hill's vortex plasma. The external vacuum solution for the 
elliptic Hill's vortex indicates a cusp field is necessary for the 

elliptic shape. Beginning with an elliptic Hill's vortex a 
problimak plasma has been successfully generated by the magnetic 

field caused by six axisymmetric current loops. 
The computational grid for this case has an axial length of 20 

cm and a radial extent of 10 cm. The three parameters of the 

elliptic model given by Eq. (2-148) are B y = 6000, E = .25, and 

p, = 8 cm. The plasma is initially bounded at r = 8 cm, z = 0 and 
r = 0, z = 16 cm. The magnetic axis flux, I|JQ is held constant at 

4 2 -7.2 x 10 gauss-cm . The toroidal magnetic field is zero so q(i)j) = 0. 
The S(vp) profile is determined from the dty/dV obtained from the 

initial analytic \|>(r,z) and rearranging Eq. (2-29). 

-1 -5/3 
S(*) = - (12 + 3E) B v (8np2) * (jjjf) (2-192) 



no 
The six external current loops all have a radius of 11.28 cm. The 

axial positions, initial I., and final I f currents are in Table 2-1. 

z(cm) ^(amps) If(amps) 
2 -100 -3.1 x 10 4 

6 100 2.3 x 10 4 

8 100 5.8 x 10 4 

11 -100 -3.5 x 10 4 

16 -100 -4.7 x 10 4 

22 100 6.0 x 10 4 

Table 2-1 Compressed Prolate Hill's Vortex 1^, If 
Currents and Positions 

Positive currents increase the initial magnetic field and negative 
currents dimir.ish the initial magnetic field. Due to symmetry about 
z = 0 there are also six external coils at reflected z positions 
with the same initial and final currents. The equilibrium is 
evolved from the initial state to the final state in 20 steps. 

The plasma has open boundary conditions so a plasma flu:: value 
along the grid edge is computed by the Green's function method 
presented in Section 2.2.3 using Eq. (2-34). The same formulation 
is also used to compute the flux caused by the external coils. 
Comparing the contour plot of 4)(r,z) at I. in Fig. 2-15a with \Kr,z) 
at I- in Fig. 2-15b shows a pronounced change in the flux shape. 
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The initial elliptic shape has evolved into a problimak with a flux 
surface bulge at z = 0. The plasma boundary has become r = 9.2, 
z = 0 and r = 0, z = 15.5. Outward expansion has occurred at z = 0 
and the plasma has contracted axially along the z axis. The new 
position of the magnetic axis can be seen in Fig. 2-16. The flux 
^(r,0) at I. is shown in Fig. 2-16a and at I f in Fig. ?-16b. The 
magnetic axis has shifted from 5.7 cm to 6.5 cm. 

The toroidal current Jy(r,z) is shown at I. in Fig. ?-17a and 
at I, in Fig. 2-17b. The initial current is almost proportional to 
r since the initial external coil currents are small. The final 
state shown in Fig. 2-17b is approximately proportional to r between 
r = 0 and r = 30 cm. For r > 3 cm a considerable deviation from 
linear r behavior is apparent. A peak in current develops along the 
outer radial edge of the plasma, however the total toroidal current 
is slightly diminished. Initially the area integral of J T is 
32,400 amps and in the final state it is 31,500 amps. The radial 
scan of J T(r,0) at I. in Fig. 2-18a and at I f in Fig. 2-18b shows 
the near constancy of total current is a result of a diminution of 
current between r = 4 and r = 6 and an increase for r > 6. A 
relatively flat region of J T is evident in Fig. 2-18b and the .nitial 
peak value of 4800 increases to 7000. 

The z magnetic field is shown in Fig. 2-19 with B (r,0; in 
Fig. 2-19a at I.., B z(0,z) in Fig. 2-19b at I ., B (r,0) in Fig. 2-19c 
at I f and B (0,z) in Fig. 2-19d at I f. Comparing Fig. 2-19a with 
Fig. 2-19c, the initial B (r,0, field maximum of 9000 at 8.2 cm 
decreases to 8000 and shifts radially outward to 9.2 cm. Comparing 
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Fig. 2-19b with Fig. 2-19d the initial Bz(0,z) field maximum of 
1000 at 18 cm increases to 2000 and shifts axially to 20 cm. The 
value of B (0,0) remains almost constant at the initial value of 
9000. 

The magnitude of the magnetic field B(r,z) is shown in Fig. 
2-20a at 1^ and in Fig. 2-20b at I f. Initially at I . the following 
formula applies inside the plasma. 

P *. 1 /p 
B(r,z) = .75 B v p f ( (2p2 - 4r 2 - 2Ez 2) + (2Ezr)2) (2-193) 

At r = p 12" 1 /' 2, z = 0 and at r = 0, z = p ^ " 1 ' 2 , B(r,z) is zero 
initially. The elliptic envelope boundary between the interior and 
exterior solution is clearly visible in Fig. 2-20a. In Fig. 2-20b 
the effect of the full current I- in the external coils is to 
eliminate the axial field null on the plasma boundary. Also the 
contours are seen to turn up around r = 10, and z between 6 and 8 
where two coils have large positive currents. An island contour 
forms at r = 9, z = 16 as a result of the opposite directed current 
coils at z = 11, 16 and z = 2.2. The movement of the field null at 

1 /2 r = p,2 , z = 0 can be easily discerned in the B(r,0) plot at 
I f in Fig. 2-2lb. Comparing with Fig. 2-21a at I. the field null 
moves from r = 5.7 to r = 6.3. This is the same as the position of 
the magnetic axis. The initial peak in B at r = 8, z = 0 of 
magnitude 8900, moves radially outward to r = 9.1 and decreases to a 
value of 8000. 

The \p derivative of pressure dp/di|j as a function of ty is 

plotted in F ig . 2-22a at ^ and in Fig. 2-22b at I f . The i n i t i a l 
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dp/di)j is almost a constant at -47.6 and the effect of the small 
initial c 3nt in the external coils is to slightly change the 
magnetic axis value of dp/dip to -50. In the final state shown in 
Fig. 2-22b, dp/dip is reduced by approximately a factor of two near 

the magnetic axis and increased in absolute magnitude 50% at 
4 ijj - -2.5 x 10 . This means the plasma current which is proportional 

to dp/dii is diminished near the magnetic axis compared to the initial 

value. 

The pressure p(r) is shown in Fig. 2-23a at I. and in Fig. 
2-23b at I f. The single peak structure in Fig. 2-23a persists in 
Fig. 2-23b, however the peak in Fig. 2-23b is broader. It is also 
flatter around the magnetic axis position in correspondence with the 
diminished dp/dip value evidenced in Fig. 2-22b. The initial p(r) 
peak value of 3.4 x 10 increases to 3.7 x 10 . 

The plasma kinetic energy is plotted as a function of time in 
Fig. 2-24a. Time is an arbitrary unit which satisfies the adiabatic 
assumptions. The initial 1.01 kilojoule energy increases to 1.09 
kilojoule after the problimak shape is generated. This is 
approximately an 8% increase. The magnetic energy in the volume 
bounded by the computational grid is shown in Fig. 2-24b as a 
function of time. The initial 14.05 kilojoule magnetic energy 
increases to 18.5 kilojoule in the final state. This is a 32% 
increase. Most of the magnetic energy change occurs outside of the 
plasma region. The poloidal magnetic field energy inside the plasma 
region is plotted as a function of time in Fig. 2-25a. The initial 
value of 2.55 kilojoules decreases to 3.05 kilojoules. The poloidal 
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magnetic field energy outside the plasma region is shown in Fig. 
2-25b as a function of time. The initial value of 10.5 kilojoules 
increases to 15.5 kilojoules. The majority of the magnetic field 
energy is exterior to the plasma region. In the plasma region the 
kinetic energy in the final state is approximately one third the 
magnetic field energy. 
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Figure 2-19. Compressed prolate Hill's vortex, (a) Initial external 
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Figure 2-21. Compressed prolate Hill's vortex B(r,0). (a) Initial 
external current, (b) Final external current. 
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CHAPTER 3 

THE ORBIT AVERAGE 

3. I Introduction 

The approach used to incorporate finite Larmor radius effects 
into kinetic theory results in a hierarchy of equations. The method 
of solving these equations by integrating over characteristics of 
partial differential equations is equivalent to integrating over an 
appropriate orbit. The purpose of the orbit average is to provide a 
procedure by which integration over an orbit is achieved without a 
detailed knowledge of the orbit. 

In this chapter, the orbit average is defined in terms of 
phase space integrals and path integrals. Numerical equivalents of 
these formulas are derived and tested in two orbit codes, which 
follow trajectories in one and two dimensions. The first code, AV, 
is used to compare orbit average formulas for orbits determined by 
forces linear in the coordinates. In this case, uncoupled harmonic 
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motion results, and the precise orbit is known analytically. The 
second code, NEO, in which orbit average formulas are investigated, 
follows trajectories in a Hill's vortex magnetic field. The orbit 
in this case is obtained by numerical integration. 

The form of the orbit average integrals changes when constants 
of the motion exist. In axisymmetry with conservative forces two 
constants of the motion exist and this information is used to derive 
appropriate orbit average formulas. In some circumstances a third 
constant of the motion may be found to exist. To explore the 
possibility of the existence of a third constant of the motion 
several classes of constants of the motion are examined in the 
Hill's vortex model. Because no constant of the motion exist when 
an orbit is stochastic consideration is also given to conditions 
likely to result in stochastic motion. 

3.2 Orbit Average Integrals 

The orbit average is related to the solution of the kinetic 
equation obtained by integrating over the orbit. The orbit which is 
integrated over is the trajectory of a particle representative of an 
equilibrium distribution function. The kinetic equation solution 
obtained by integrating over the orbit arises from the convective 
form of the kinetic equation given below. 

|J=C(f,f) (3-1) 

In Eq. (3-1), f is the distribution function and C(f,f) is the 
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collision operator. The derivative in Eq. (3-1) represents the time 
rate of change of f along the orbit and the orbit solution is then 
obtained by integrating Eq. (3-1). 

.til) 
r(t ) (3-2) 

;<V ° 

Ml) 
f(t) = / C(f,f)dt + f( 

In Eq. (3-2) I is the trajectory given by the equations of 
motion and the distribution function at time t, f(t) is then obtained 
by integrating along il and adding the value of f at time t... This 
solution is an example of solving a partial differential equation 
using the method of characteristics. 

Later a hierarchy of ordered equations is derived from Eq . 
(3-1). The orbit average process has its origin in constraint 
equations arising from this hierarchy of equation,. At each order 

T 1431 there is an equation having the form L , 

Lu = v (3-3) 

where L is an operator. The operator L is assumed to have an 
+ adjoint L and an inner product such that, 

( u r L u 2 ) = ( L f u r u 2 ) (3-4) 

The existence of the adjoint operator, the property Eq. (3-4), and a 
t homogeneous solution h, L h = 0 are used to derive the constraint 

equations. In general if a solution -j exists for Eq. (3-3), then the 
inner product of h and v must be zero. This can be demonstrated by 
taking the inner product of h with the right hand side of Eq. (3-3). 
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(h,v) = (h,Lu) 

= (Lfh,u) (3-5) 
= 0 

The constraint equation is then the inner product of the right side 
of an equation obtained from an ordering of Eq. (3-1) with the 
homogeneous solution of the adjoint operator. The inner product 
applicable to the hierarchy of equations resulting from Eq. (3-1) is 
the starting point from which the orbit average is derived. 

The object of the orbit average process is to approximate the 
applicable inner product. The inner product is defined by 
considering the left side of Eq. (3-1). 

£-&+[f.H] (3-6) 

In Eq. (3-6) H is the Hamiltonian and [f,H] is the Poisson bracket, 

where p and q are phase space coordinates. Equation (3-6) shows 
Df/Dt is an exact differential when p = - 9H/3q and q = 3H/3p, 
or in other words when the phase space coordinates p and q satisfy 
the equations of motion. Under this condition the solution given by 
Eq. (3-2) is immediate. Because later derived constraint equations 
involve Poisson brackets which are the steady state form of Eq. 
(3-6), the inner product is taken to be integrating over the orbit. 
The orbit average must then be in some sense equivalent to 
integrating over the orbit. It is also necessary to obtain the 
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adjoint of the operation of integrating over the orbit since its 
homogeneous solution is needed. 

The adjoint of the Poisson bracket operator is found by 
applying the inner product to g[f,H]. At the limits of integration 
f and g are assumed to be zero. The integration over the orbit is 
assumed to be analogous to integration over the phase space 
coordinates, which appear in the Poisson bracket. The inner product 
operation is manipulated using integration by parts, to obtain 
(L+g,f) from (g.Lf). 

( 9 , L f ) " ? / ( 9 ^ % " 9 % % ) d P k d q k U"8) 

Integration by parts with respect to q, is applied to the first term 
of Eq. (3-8) and integration by parts with respect to p, is 
applied to the second term of the integrand of Eq. (3-8). 

From Eq. (3-9) the adjoint of [f,H] is seen to be [H,f]. The adjoint 
operator of the Poisson bracket with respect to the inner product of 
integrating over the orbit also has a solution given by integrating 
over the orbit. The required homogeneous solution of the adjoint 
operator may then be taken to be any constant of the motion. The 
orbit average process then reduces to multiplying by a constant and 
integrating over the orbit, or simply integrating over the orbit. 
The definition of the orbit average of a general function x is 
below. 



132 

X ( 0 ) = limy f Xdt (3-10) 

The time integration in Eq. (3-10) corresponds to 3 trajectory given 
-fOi by the equations of motion. The value of x m u s t not depend on the 

initial position of the trajectory used to solve the eauations of 
motion. This will be true when any particular trajectory encounters 
all points allowed within the framework of conserved quantities. 
Under thi condition >;' ' has a unique value independent of any 
specific orbit and may be computed without having a detailed 
knowledge if the actual orbit. The only restriction is the x 

values used to compute Eq. (3-10) may only be those allowed by any 

conserved uantities. It is assumed forces are time independent and 
thus the Hamiltonian H is conserved. In addition the system under 

consideraton is cylindrical and axisymmetric and consequently the 
theta canonical momentum p is conserved. This result follows from 
the definition, 

i = _ 3!l (3-1 n 
3t 39 ( "' 

and the fact H does not depend on theta. If J ' is independent 
of starting position, the integration path or orbit encounters ali 
positions consistent with conservation of H and p.. To satisfy this 
requirement it is assumed to be sufficient for the orbit to be 
ergodic. in other words, the orbit approaches arbitrarily close to 
each allowed point. The problem of determining ;he orbit average is 
then related to the fundamental basis of statistical mechanics. The 
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basis of statistical mechanics rests on the equivalency of time 
averages and quantities derived from ensemble theory. The object of 
the ensemble theory is to obtain time averages by knowing the 
probability of allowable configurations, but not -aving precise 
knowledge of any particular system trajectory. A configuration 
refers to -.oordinates describing a system which nay include, but is 
not limited to spatial position and momentum. The goal of the orbit 
average is to obtain x without solving the equations of motion 
and determining the precise orbit. The determination of the crL't 
may be avoided in two ways. First, using reasoning similar to 
statistical mechanics the time integral over the orbit in Eq. (3-10) 
may be considered to be an integral over the allowed phase space 
volume. Second the basic orbit averaie definition Eq. (3-10) may be 
converted from a time integral to a path integral and the path 
integral may be converted to an integral over coordinates. In what 
follows the orbit average formulas corresponding to derivations 
based on the first method are superscripted with ps and a number. 
The orbit average formulas derived from path integrals are 
superscripted only with a number. 

The basic phase space orbit average formula is a normalized 
integral over phase space coordinates allowed by the conservation of 
H and p„. 

-(psO) = / xW dp ( 3 

In Eq. (3-12) dfi is the differential phase space volume element and W 
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is a weighting function. Without additional information all 
allowable phase space points may be assumed to be equally likely and 
W can be set to one. An additional condition of time invariance of 
the total allowed phase space volume must be imposed so 'x yields 
the same result independent of when it is evaluated during a 
particular system trajectory. The action of a trajectory of points 
within a phase space volume is such that the volume distorts or 
appears to flow in phase space with time. From Liouville's 

r 144] thr>orenr J the phase space density is incompressible or the phase 
space volume is preseved providing there are no collisions. The 
orbit average of Eq. (3-12) is then applicable only in the case of no 
collisions. This is also a condition required to keep H and p. 

constant. 
In general, motion in phase spe^a for one particle is described 

by specifying the ti.ve history of six coordinates. In three 

dimensions there are three spacial coordinates and three velocity 
coordinates. If a relationship exist between coordinates, it is 
possible to reduce the number of coordinates by one and introduce a 
parameter resulting from the relationship. An example is a system 
in which the Hamiltonian is conserved. A velocity may then be 
expressed in terms of H and the remaining velocities. In this case, 
it is desirable to change phase space variables and replace the 
eliminated velocity by H. alternatively a system may be independent 
of a coordinate. The conjugate momentum is then a constant as in 
the axisymmetric case where theta is ignorable and p„ is constant. 
The motion is then essentially two dimensional, and with H conserved 
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only one additional constant of motion may exist under certain 
circumstances. The effect on W in Eq. (3-12) in either case is to 
introduce delta functions which restrict phase space in accordance 
with constant H and p Q. To simplfy the integration of Eq. 
(3-12), it is then best to use variables contained within the deltd 
functions as integration variables. More specifically for constant 
values H Q and p „, the weighting function W is set to one for allotvuri 
phase space points by letting W equal 6(H - H„) 6(p - P Q Q ) -
The phase space volume multiplied by W is then given below for 
cylindrical coordinates, axisymmetry and conserved H. 

W dfi = 6(H - H 0)6(p Q - p Q 0)r dr d6 d2 dv rdv e dv ? (3-13) 

For ease of integration it is advantageous to convert from v , v f i > 

v to H, p., p coordinates. The new coordinates alio* immediate 2 y z 
integration of H and p.. In terms of the new coordinates the phase 

space volume multiplied by W is given below. 

W dfi = 6(H - H Q)6(p p - p Jeo' 
8(H,pe) r dr d6 dz dH dp^lp 2 

(3-14) 

In Eq. (3-14. the Jacobian is obtained from the three definitions 
below. 

1 "2 -1 mq - eZ<{> + eZc A • q 

p i = 3L/3qi 

= 12 p<q i"i " L 

(3-15) 

(3-16) 

(3-17) 
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In Eqs, (3-15) through (3-17) m is mass, q is a coordinate, eZ is 
the chrt >e, <|> is electric potential, c is the speed of light, A is 
the magnetic vector potential, q is velocity, p- is canonical 
momentum, L is the Lagrangian and H is the Hamiltonian. In 
axisymmetry with cylindrical coordinates, 

mv„ (3-18) 

_L eZ , mrv e + — 4-

mv_ 

(3-

(3-

19) 

20) 

-1 2 
H = (2m) _ 1 (p2 + p 2) + (2mr2) (p e - f- ^ + eZ* (3-

where i|; is rA„ and only poloidal field is allowed. Using Eqs. (3-
to (3-21) the Jacobian can he written as follows. 

21) 

8) 

3(H,p %' 
^r 'V m rv (3-22) 

In Eq. (3-22) mv may be expressed in terms of H , p , p f l , \p and 

<j> using Eq. (3 -21) . 

1/2 
mv r = ^2m(H - eZ*) - r" 2 ( p Q - f- 4A2 - p 2 ) 

Equations (3-22) and (3-23) are used in Eq. (3-14) to g i v e , 

6(H - H 0 ) 6 ( p e - p Q 0 ) d r d9 dz dH dp Q dp z 

(3-23) 

W dft 

m2(2m(H - eZ<j>) - r " 2 ( p Q - c " 1 el^)2 - p 2 
17? [3-24) 
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Formula 3-24 is substituted into Eq. (3-12) to yield the axisymmetric, 
cylindrical coordinate, version of x assuming equally likely 
allowed phase space points and conserved H and p g. 

X ( P S l ) =/Yx«(H - H 0)6(P e- P 90' 

;2m(H - eZ4>) - r"2 (Pg - c"1 eZ^) 2 - p 2) 
•l/2> 

dr dz dH dp_dp, 

[/(' 6(H - H 0)6(p e - p 9 0 ) 

I2m(H - eZ(J>) - r"2 (p e - c"1 eZ*) 2 - p 2 
-1/2N 

(3-25; 

dr dz dH dp„dp •1 

The above formula for x is applicable to a two dimensional r,z 

case. 
For a situation which is one dimensional and radial, x has no 

z variation and H depends only on r. Thus, 

p = - 3H/3Z z 

= 0 
(3-26) 

and p is therefore constant. In this case the allowable phase space 
is further restricted by the one dimensional weighting function 
below. 

w = 6(H - H 0)6(p e - P e 0)6(p z - p z Q ) (3-27) 
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Substituting Eq. (3-27) into the x formula produces the one 
dimensional analog of Eq. (3-25). 

X ( P S 2 ) =/(x6(H - H o)«(p 0 - p e 0)6(p 2 - p 2 Q ) 

-l/2\ 
(2m(H - eZ4>) - r'2 (pfl - c"1 eZ*) 2 - p 2) ) 

dr dH dp.dp, (3-28) 

W 6(H - H n)6(p f l - p n n)6(p, - p, '0' U k | Je H90' u^z yzQ' 

-1/2^ 
(2m(H - eZ<(>) - r"2 (p - c"1 eZt),)2 - p 2 

dr dH dpgdpj" 1 

To aid the comparison of Eqs. (3-25) and (3-28), with orbit average 
formulas obtained from the time integration orbit average definition 
X , the above formulas are rewritten in terms of v . 

-< Ps3) __ J * ( r , z , Ho»PeO» P z
) vr" d r d z d p z ( 3 _ 2 g ) 

f v r" dr dz dp z 

In Eq. (3-29) integration is understood to refer to phase space 
coordinate values allowed within the restriction of constant H Q, and 
p f i 0 and thus the delta functions are suppressed. The v formula for 
Eq. (3-29) follows. 

( ' 

1 /2 \ 
v„ = m"1 f2m(H 0 - eZ<t») - r"2 (p e Q - c"1 eZ*) 2 - p 2 ) ( 3_ 3 ( ) ) 
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The analogous formula for x is belt 

^ P S 4 ) = f X ( r ' H 0 ' P60' P z O ) v r " ] d r
 ( 3 . 3 1 ) 

/ v r" dr 

Similar to Eq. (3-29) the integration in Eq. (3-31) refers to phase 
space coordinate values allowed within the restriction of constant 
HQ, P „ 0 , and p ~ and the delta functions are again suppressed. The 
v formula for Eq. (3-31) follows. 

v r = m"1 [2m(H 0 - eZ<t>) - r"2 (p Q 0 - c"1 elty)2 - p A (3-32) 

Equation (3-32) shows that p Q is a p?rameter in the x ' formula 
in contrast to the~x^p formula where x is integrated over D . A 
simplification results in Eq. (3-29) when x is not a function of 
p . In this case, integration over p yields the following 
result. 

Jv/ 1 dpz = 2* (3-33) 

Equation (3-33) may be used to obtain an orbit average formula for 
X independent of p . 

r(ps5) . ! x ( r ' Z / V P 6 Q ) d r d Z
 ( 3 3 4 , 

The use of the phase space derived orbit average formulas 
X > X » a r |d x is guided by the comparison with formulas 
derived from the basic time integral orbit average x' . The 
procedure used to derive these formulas is to convert x from a 
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time integral to a path integral and then convert the path integral 
to an integral over coordinates. 

A change of variables is used to convert y ' to a path 
integral with I representing distance along the orbit. 

^> = l i mW_l* (3.35) 
*~4 fi d* 

The incremental path length dH is expressed in terms of cylindrical 

coordinates below. 

1/2 
d«, = (dr2 + r 2de 2 + dz 2) (3-36) 

The definition of the Hamiltonian, Eq. (3-17), is used with Eq. 
(3-36) to express the change of variatles Jacobian in terms of a 
function of spatial coordinates. 

1 | =(2/m)- 1 / 2 ( H - eZ<t,)"1/2 (3-37) 

The path integral orbit average x given by Eq. (3-35) may be 

rewritten using Eq. (3-37). 

-(2) .. /Sx(H-eZ*)- 1 / 2dl 
X = l l m o T7T~ (3-38) 

J.H-00 / Q (H - eZ<t>) ' dH 

From Eq. (3-38) it can be seen, with H constant, x becomes an 
average along the path if there is no electric potential. A form of 
Eq. (3-38) more appropriate to axisymmetry is obtained by projecting 
the three dimensional orbit onto a poloidal plane. The result of 
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projecting onto a poloidal plane is to make the following 
substitution, 

HO d i r . 
— = — E (3-39) 
v V p 

where dS, is incremental path length in a poloidal plane and v 1 is 
the poloidal velocity. 

1/2 
v = m"1 (2m(H - eZ<t>) - r'2 ( p g - c" 1 eZvli)2) (3-40) 

The axisymmetric form of Eq. (3-38) is then below. 

-1 -1/2 
m 'n X(H - eZ<(> - (2mr2) (p - c"1 eZ*) 2) di 

X ( 3 ) = Tim - ITT- 1 1- (3-41) 
* ~ / J ( H - e Z » - (Zmr 2)" 1 (p e - c'1 eZ*) 2) d*p 

Equation (3-41) has been derived without making any assumption about 
phase space probability. It also shows the orbit average emphasizes 

-(31 values of x w n e n v becomes small. The orbit average, x applies 
to the axisymmetric two dimensional case. When x has no z variation 
a further simplification results. The orbit path becomes radial and 
the relevant velocity is v . This is due to a change of variables 
Jacobian defined as follows. 

(dt/dl)d£ = (dt/dr)dr 

= v r

_ 1 dr (3-42) 

1/2 / - 2 - 1 2 ? Y ' 2 

f 2m(H - eZ<tO - r (p Q - c eZtyf - 9\ J dr 
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The one dimensional path integral orbit average is th,.n below. 

-(4) m

 S xtr.Hp, Pep, P z 0)v r- 1 dr ^ ^ 
/ v r"' dr 

In the formula for x the velocity v r is the same as before and 
the same assumptions of constant H, p., and p apply. Consequently, 
the one dimensional path integral x ' is identical to the one 
dimensional phase space orbit average x • T n i s means a change 
of variables is sufficient to transform the time integration over 
space. Also for one dimension there is no need to make any 
assumption about the probability of phase space points, the W 
weighting function, to obtain the orbit average. As before the 
range of integration lies within the H and p. determined orbit 
turning points for Eq. (3-43). If the orbit potential well is 
double valued in r and there are two turning points at r, and r,., 

then the integration is from r, to r~. For a magnetic flux double 
valued in r, at small values of p Q the potential in r has two 
disconnected regions each having two turning points. In this case 
-( ; o r ^IPS J m u s t b e broken into two parts and the integration 
proceeds between turning points for each region. 

r 1451 
In previous work by LovelaceL , the orbit average is 

formulated in terms of an integral over a four dimensional space. 
The function to be averaged is multiplied by a probability function 
which is one where the orbit is allowed, within the constraint of 
constant H and p f i, and zero otherwise. A formula similar to x J' 
results if the limits of integration are restricted by conservation 
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of H and p„. The orbit is assumed to be ergodic and the probability 
function is below. 

W„ = C 0 r _ 1 6((2mf 1 (p 2 + p\) + (2mr 2) ( P f l 0 - c"1 eZi|,)2 - H Q ) (3-44; '«. «.' 

In Eq. (3-44), C. is a constant. The orbit average formula given by 
Lovelace is then, 

-I!) f *V d r d z d p r d p ? 
x 7 W r dr dz dp dp [ 0 ' 

The stability work of Lovelace only requires an orbit average of a 
function that depends on spatial coordinates. He thus uses 
—(a) 
X in the following form, 

where the region of integration is restricted by allowed values of H 
and p.. This orbit average is identical to "j< ' derived from 
phase space considerations. It is thus possible to interpret W. as 
the previous integrand weighting function after a change of variable 
from vfl to p f l and an integration over a delta function in p . The 
difficulty in applying the probability function viewpoint is in the 
generalization to one dimension. The case of x independent of z 
in Eq. (3-46) yields the following orbit average. 

/Xdr 
jTdr 
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Thus, in considering a function x with no z dependence the 
previously derived formulas are not recovered and a factor of v r 

is absent. 

3.3 Harmonic Oscillator Orbit Code 

In this section, the AV harmonic oscillator code is described 
and the orbit average related to the harmonic oscillator Hamiltonian 
is derived. The objective of the AV code is to examine the orbit 
average without any coupling terms in the Hamiltonian so the orbit 
can be determined analytically. To achieve this goal, the orbits in 
AV are produced by forces proportional to displacement in r and z 
and the motion is then harmonic oscillation in r and z. In the 
Hamiltonian framework, there is no magnetic field and the electric 
potential is, 

$ = -1 (co2z2 + u,2(r - r 0) 2-r" 2 p 2
0 ) (3-47) 

where eZ and m are set to one. In one dimension the electric 
potential is, 

* = \ (co2 (r - r Q ) 2 - r" 2 p 2
Q 0) (3-48) 

As discussed previously theta is ignorable and p„ is constant. 
The value of p„ is taken to be p f i Q and then the following Hamiltonian 
results. 

H = \ (P 2 + P 2 + u> 2z 2 + to2 (r - r Q) 2) (3-49) 
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H = \ (pj + P2

Z + 4 (r - r Q) 2) (3-5u, 

The equations of motion in two dimensions are then, 

8H 
dr 

- ur (r - r 0) (3-51) 

9H 

2 V 
and the poloidal orbit is given below, 

r = rQ + r 1 sin(wrt + cpr) 

z = z, s i n ( w t + c p ) 1 z Y z 

(3-52) 

(3-53) 

Equations (3-52) and (3-53) describe harmonic oscillation about 
r = rn and z = 0. The initial position and velocities follow. 

r = >"0 + r ] sin(cpr) 

z = z ] sin(tpz) 

/ = r,ui cos(u) ) r 1 r , N V 

v z = z 1u 2 cos(<pz) 

I n s e r t i n g the i n i t i a l values of r, z , v , and v i n to Eq. (3-49) 

gives the two dimensional energy constant of the mot ion . 
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n0 " 2 
( 2 2 
( rl wr + Z-,0) 

2 2\ 
i<V 

(3-54) 

Substituting the intial values of r, v , and p Q; into Eq. (3-50) 
gives the one dimensional energy constant. 

n0 " 7 (*5 * &) (3-55) 

The orbit in theta is obtained from v„ = r6 and a rearrangement of 

the definition of p 0 in Eq. (3-19). 

e = '90 (3-56) 

Taking the initial angle to be zero, substituting Eq. (3-52) for r, 
Eq. (3-55) may be integrated to give the following formula for theta. 

peo f 
w t+cp r T r dx 

(1 + r Q- 1r 1 sln(x)) 2 
(3-57) 

The integral in Eq. (3-57) may be put in standard form and theta is 
then given below. 

Jeo 
1 cos(x) 

i(-0)(*H 
wrt+cpr 

tan . 5 T/o L d " < 

tan(x/2) + 
[3-58) 
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The tan" branch on which tan(x/2) lies must be used in Eq. (3-58). 
-(4) The velocity used for the one dimensional formulas x o r 

X ^ p s ' is obtained by rearranging Eq. (3-50) and substituting 
the one dimensional constant energy from Eq. (3-55). 

vl/2 • tf vr = ur( rl • ( r " r 0 ) 2 ) ( 3 " 5 9 ) 

Similarly the velocity used in the path integral orbit average x 
arises from rearranging Eq. (3-49) and inserting the two dimensional 
constant energy from Eq. (3-54). 

v p = (<o*(r* - (r - r Q) 2) + J^z] - z ' ) ) 1 / 2 (3-60) 

In the AV code the Hamiltonian consists of the kinetic energy 
plus two functions that depend on r or z. As a consequence the right 
side of the equation of motion, Eq. (3-51), for p only depends on r 
and the right side of the equation for p_ only depends on z. 

Multiplying both sides of the p equation by p and the p equation 
by p , shows the following two quantities are constant in time. 

H r = Pr + \ { r - r(/ 

H, = Pz + V 

(3-61) 

In other words in addition to H being a constant of the motion, the 
two constituent parts of H related to r and z motion are also 
constants of the motion. The orbit average which takes this 
si*jation into account is a specialization of previous phase space 
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formulas. The weighting function in this case consists of three 

delta functions. 

W dft = 6(Hr- H r Q)6(H 2 - H z 0)6(p Q - P Q 0 ] 

r dr d9 dz dH rdH zdpe 

3(H r,H z,p e 

3(v r,v z,v ( 

(3-62) 

The Jacobian in Eq. (3-62) is calculated using Eq. (3-21) specialized 
to the hermonic oscillator. 

3(H r,H 2P e) 

atWV = 4rv rv z (3-63) 

The orbit average obtained from Eq. (3-12) with the phase space 
volume of Eq. (3-62) and ;< independent of H r, H , is below. 

7(ps6) 
/ X dr dz v v r z 

dr dz 
vr vz 

(3-o4) 

The integration in Eq. (3-64) is over the r,z values allowed by 
conservation of H , H and p f l. The analytic orbit formulas for r 
a.id z show a specific set of values of u , ui , r-,, and z, result 
in a trajectory confined to a rectangular box of height 2r, and 
width 2z,. The x ' orbit average then consist of two successive 
one dimensional orbit averages in a specific rectangular box. In 
this case the consequence of having three conserved quantities 
rather than two is to eliminate an integration over rectangular 
boxes. In this example referring back to Eq. (3-49), it can be seen 
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that constant H restricts an orbit to an elliptical region in r and 
2. There is no particular orbit which can move everywhere in the 
ellipse as evidenced by the analytic orbit equations. Thus, the 
X ' orbit average formula, which does integrate over the ellipse, 
is an equal weighted average over all rectangular boxes, about which 
the constant H ellipse may be transcribed. This is demonstrated 
explictly by integrating the integrand of the numerator and 
denominator of x over all possible values of H ~. To do this 
v is expressed in terms of H „, 

v r = ( H r Q - u?r(r - r Q ) 2 ) 1 / 2 (3-65) 

and v is expressed in terms of H,, and H „, 

v z = (H Q - H r Q - U
2 z 2 ) 1 / 2 (3-66) 

Interpreting x to depend on H rather than H r and H z and restricting 
the integration to r z values allowed by constant H, the averaged 
x ' p s 6 ' becomes, 

2 2 

^ ^ ° (x-u^r-r/) (H 0-x-^z 2) 
X = 5-5 

H--"z 2 dx fdr dzA 775-
w 2

r(r-r 0) 2 (x - u
2 ( r - r Q) 2) (H Q - x - u

2 z 2 ) 

(3-67) 
The integral over x in Eq. (3-67) is equal to a constant IT, and as a 

result, 



150 

-(ps6) = -(ps5) 

The effect of constant H and H on the x formula is to 
change the allowed r,z integration area from an ellipse to a 
rectangle with weighting function (vrv )" . For the harmonic 
oscillator Hamiltonian there are analytic formulas for v and v in 
terms of r and z. In a more complex case with coupling terms in the 
Hamiltonian the analytic orbit is unknown and there are in general 
no formulas for v and v . It is also frequently the case that the 
third conserved quantity in addition to H and p. is unknown. Due to 
these considerations, it is advantageous to approximate the v rv 
weighting function. One choice is to assume all allowed values of 
v and v are equally likely and use as a weighting function the 
average of v v . Expressing v in terms of v and v which is a 
function of H and <)> and integrating over allowed v values yields, 

- i r V p , 2 2 , 1 / 2 

/ 
v v = v I v (v - v") dv 
r z p I r v p r ' r 

0 
(3-68) 

'I 
The approximate orbit average is then below. 

X<P'7> - ' X \ ^ ^ (3-69) / v ~c drdz P 
o The importance of Eq. (3-69) is that the v weighting function 

only depends on r and z and is thus known when the Hamiltonian is 
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given. Equation (3-69) applies to a general Hamiltonian and does 
not require an analytic orbit. 

3.4 Numerical Orbit Average Formulas 

The orbit average formulas are implemented in the AV code 
using several numerical approximations. The one dimensional 
integrals, such as x ', x a n d X > a r e computed using a 
trapezoidal integration formula. 

/ ' 

, N-l 
F dx = £ Ax £ (F. + F 1 + l ) (3-70) 

i = l 

In Eq. (3-70) there are N grid points spanning the allowed orbit 
region. The integrand F represents x °r x / v

r
 a n d Ax i s the time 

duration or the length of the orbit region divided by N - 1. 
The two-dimensional orbit-average integrals are approximated 

by discretizinq the allowed orbit region into rectangles and then 
summing integrals over grid cells of fitted approximations to the 
integrand. This procedure integrates over a globally continuous 
function which has discontinuous first derivatives between grid 
cells. For several numerical formulas the general case of a 
non-rectangular orbit region is considered. Rectangular grid cells 
are also used (in this case) in the interior away from the edge 
boundary. At the edge, where a curved boundary passes through an 
otherwise rectangular interior grid cell, the curved boundary is 
approximated as a straight line chord. The contribution of the cell 
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is then a sum of smaller, triangular and rectangular regions. 
Various formulas which represent numerical orbit averages are 
expressed in terms of functions designated I , T , N , U , and 
Z . The definitions of these functions are given in Appendix A. 

There are several different methods used to represent the 
/ 3 \ 

X v ' path integral orbit average in a grid cell. In each 
approximation the orbit is assumed to pass through the grid cell at 
all points along the boundary and at all angles. The numerator and 

-(31 denominator integrals of x are considered separately and each 
integral is broken into six parts. The six parts consist of the 
orbit entering the bottom and exiting to the right, entering the 
bottom and exiting to the left, entering the bottom and exiting the 
top, entering the top and exiting to the right, entering the top and 
exiting to the left, and entering on the right and exiting to the 
left. The six orbit contributions are denoted by subscripts BR, BL, 
BT, TR, TL and RL respectively. Trajectories which go in the 
reverse direction of those just mentioned are not considered since 
they cause a factor of two to appear in the numerator and denominator 
and thus have no effect on the value of the orbit average. Figures 
3-1 a, b, c, d, e, and f show the path and local integration 
coordinates for the BR, BL, BT, TR, TL, and RL contributions 
respectively. The grid cell is Az in width and Ar in height. The 
four corner values F,, Fp, F,, and F. represent the integrand at the 
discretized grid points. The local integration coordinates x,y have 
different origin and meaning for each of the six cases as 
illustrated in Fig. 3-1. 



153 

Figure 3-1. Local coordinates and grid cell integration path inter­
sections, (a) Bottom to right (b) Bottom to left (c) Bottom to top 
(ri) TOD to right (e) Top to left (f) Right to left. 
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-(31 The first approximation to x i s to assume the integral is a 
straight line path length between grid-cell side intersections 
multiplied by tne average of the integrand along the path. The 
average integrand value is taken to be one half the sum of the 
integrand values at the grid-cell side intersections. A linear 
variation of the integrand is assumed along the grid cell sides. 

F(x) = F 4 + (F 1 - F4)x/Az 
(3-7i; 

F(y) = F 4
 + (F 3 - F4)y/Ar 

To account for all possible paths, x is integrated from zero to Az 
and y is integrated from zero to Ar. The general formula is below. 

f " / 
J 0 •'O 

Xge,! = -? f Z d x /" " d*( F(x) + F(y))(x 2
 + y 2 ) 1 / 2 ( 3- 7 2: 

Substituting Eq. (3-71) into Eq. (3-72) yields the BR contribution 

• Az /-Ar 
dx / 

0 •'O 

1/2 

_lr] i /-Az /-Ar 
AR = 7 / d x / d y ( 2 F 4 + ( Fi " F 4 ) x / A z 

F 3 - F 4)y/Ar)(x 2 + y 2) (3-73) 

2 (2F 4T 1 + T 2(F ] - F4)/Az + (F3 - F 4)T 3/Ar) 

For paths from the bottom to the left, the following linear 
relations for the integrand apply. 
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F(x) = F 1 + (F 4 - F^x/Az 

(3-74) 
F(y) = F 1 + (F 2 - F^y/Ar 

Substituting Eq. (3-74) into Eq. (3-72) the BL contribution is 

obtained. 

• Az f Ar 
dx / 

-o o 

1/2 

4 L U 7 /"** / A r ^ 2 F l + < F 4 - F •|)x/Az 

(F 2 - F^y /ArMx 2 + y 2 ) (3-75) 

1 (2F ]T 1 + T 2 (F 4 - F^/Az + T 3 (F 2 - F^/Ar) 

For paths from the bottom to the top, the following relat ions are 

used. 

F(top) = F2+ (F 3 - F2;y/Az 

(3-76) 
F(bottom) = F 1 + (F 4 - F^x/Az 

Substituting Eq. (3-76) in Eq. (3-72) yields the BT contr ibut ion. 

.Az -Ar 
dx / 

o J o 

1/2 

XBT 7 J d x j dy(F1 + F2 + (F4 - F^x/Az 

+ (F 3 - F 2)y/Az)((y - x ) 2 + Ar 2) (3-77) 

\ (Ar 2 (F 1 + F 2 )T 4 + T s (F 3 - F 2 + F 4 - F^Ar^Az 

+ V F 3 " F 2 > / A z ) 
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For paths from the top to the right, the TR contribution is below. 

.Az 

'0 

(3-78) 

X J R ) = I f dx((2F2 + (F3 - Fz)x/hz)x2l](lr/x) 

3,-, + (F] - F2)(I2(x,Ar) - xJ/3)/Ar) 

1 ( 2 F 2 T 1 + ( F 3 " F 2 ' T
2

/ A z + (Fl " F
2 > y A r > 

For paths from the top to the left, the TL contribution is below. 

.Az 

0 
X J I ] = "J f dx((2F3 + (F 2 - F3)x/Az)x2l1(Ar/x) 

+ (F4 - F 3)(I 2(x,Ar) - x"/3)/Ar) (3-79) 

= ~ (2F 3T ] + (F? - F 3)T 2/Az + (F4 - F 3)T 3/Ar) 

For paths from the right to the left, the RL contribution is below. 

77(5) 
. Ar „ A r 

XR[' =J f " f d ' < F 2 + F3 + <F1 - F 2 > * / A r 

0 u 

+ ( F 4 - F 3 ) y / A r ) ( ( y - x ) 2 + Az 2) 
1/2 

(3-80) 

= \ ( A z 2 ( F 2 + F 3 ) T ? + A z 2 ( F 4 - F 3 + F ] - F 2 )Tg/Ar 

+ ( F ] - F 2 ) T g / A r ) 
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The final form of x is below, 

-(5) 
-(5) xnum 

xdeno 
(3-81) 

where the numerator consists of six contributions, 

-(5) s -(b) + -(5) + -(5) + -(5) + -(5) + -(5) ( 3. 8 2 ) 
xnum XBR XBL XBT XTL XTR XRL l J B ° 

-1 -(5) 
with F = xv . The denominator, XAeno is a sum of the same six 

-(5) -1 
contributions as in xn' however, in this case, F = v . -(5) The x formulation assumes function values along a path 
through the grid cell are the average of side intersection values. 
The second approximation to x , denoted x , obtains a more 
accurate orbit average by assuming the integrand function has a 
bilinear variation in a grid cell. 

F(r,z) = F ] + (F2 - F,)r/Ar + (F4 - F^z/Az 

(3-83) 
+ (F1 - F 2 + F 3 - F4)rz/(ArAz) 

The trajectory through a grid cell is approximated by a straight 
line. The grid cell path coordinates for the BR, BL, and BT 
contribution are shown in Figs. 3-2abc, respectively. 

The general x ' formula is an integral over all paths of 
the bilinear integrand formula. 

_,fi* -Az -Ar r 

4en / dzl J drl JM^,*,) (3-84) 
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Figure 3-?. Grid cell inteqration path coordinates for the x{ ^' orhit 
average, (a) BR contribution (b) BL contribution (c) BT contribution. 
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Along the bottom right path 

z = Zj + (Az - z^r/r, 

and the path integral integration over l may be expressed in terms 

of an integration over r. 

1/2 
fdSL = f(] + (Az - z 1) 2r 1" 2) dr (3-Mb) 

Using Eq. (3-85) in the general formula, Eq. (3-84) y i e l d s th 

c o n t r i b u t i o n . 

r 

xff = / ^ d z , / ^ d r , / " d r ( l + (AZ - z / r , " 2 ! 
.-Az Ar r 1 
/ dz, / dr, J dr( 
0 0 0 

[ F , + ( F 2 - F , ) r /A r 

+ ( z 1 / A z + (Az - z 1 ) r ) / ( r 1 A z ) ( F 4 - F, 

+ r(Z] + (Az - z])r/r])(?] - ?2

 + F3 ~ F 4 } / ArAz)] 

= F 4 T 1 " < F4 " F ! )T 2 / (2Az) + (F3 - F 4 ) T 3 / ( 2 A r ) 

( F 1 " F 2 + F 3 " F

4 ) T i [ / ( 6 A r A z ) 

Along the bottom l e f t path shown in F i g . 3-2b, 

z = z}{] - r / r , ) 

Substituting this relation into Eq. (3-84) yields the BL 
contribution. 

(3-86' 
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X<°» = r dz, f dr, r 1 d r ( l + ( 2 , / r , ) 2 ) 
• / 0 ^0 ^0 

[F 1 + (F 2 - F^r/Ar + (1 - r / r ] ) ( F 4 - F^z^Az 

+ r z ^ l - r / r ] ) ( F 1 - F, + F3 - F 4)/(ArAz)]dr 

= F ^ , + (F 4 - F 1)T 2/(2flz) + (F 2 - F 1 )T 3 / (2Ar) 

+ (F,- F 2 + F 3 - F 4)T 1 ( /(6ArAz) 

Along the bottom-to-top path i l lus t ra ted in F ig. 3-2c, 

z = z 1 + (z 2 - z ^ r /A r 

(3-87) 

The BT contribution is obtained by using th is relat ion in Eq. (3-84). 

, , . rbx ~bz r T , 1 / 2 
Xff - J d Z ] J dz 2 J d r ( l + ( ( z 2 - zj/tsr)') 

0 0 0 

[F 1 + (F ? - F^r /Ar + (z^Az + r ( z ? - z^ / fArAz)) 

(F 4 - F^ + (rz, + r 2 ( z 2 - z ^ /A r ) 

(F ] - F 2 + F 3 - F 4) /(ArAz)] 

= \ (F 1 + F 2 )Ar 2 T 4 + T 5 (F3 + F 4 - F, - F,,)Ar2/Az 

+ (F 4 - F 1 - 2F 2 + 2F3)T6/(6AZ) (3-88) 

In the same mat.ner that the BR, BL, and BT contributions have been 

derived, th„ TL, TR and RL contributions are also derived. The 
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top-to-left path formula is below. 

XTL 1 = F 3 T 1 - ( F 3 " F 2
) T 2 / ( 2 A z ) + ( F 4 " F 3 ) V ( 2 A r ) 

- (F 2 - F 1 + F 4 - F 3)T 1 (/(6ArAz) (3-89) 

The top-to-right path formula follows. 

X|R' = F 2T, + (F 3 - F 2)T 2/(2Az) + (F, - F 2)T 3/(2Ar) 

+ (F 2 - F 1 + F 4 - F 3)T 1 0/(6ArAz) 

The right-to-left path formula is below. 

[3-90! 

XJL ' = 7 <F2 + F 3 ) A z 2 j 7 + ( F 4 + F l " F 3 " F

2 ) T

8 A z 2 / ^ 

(3-91 

+ (F 1 - F 2 - 2F 3 + 2F 4)T g/(6Ar) 

The~x* ' orbit average is a ratio of a numerator and denomindtor 
term, each consisting of six contributions, 

-(6) 
X ( 6 ) = ^ (3-92) 

xdeno 

where the numerator is below, 

y(6) = ̂ 6 ) + -<6) + -(6) + -<6) + -46) -(6) { 3. g 3 ) 
xnum XBR XBL XBT XTL XTR XRL w * > 

with F = xv~ • The formula <r°r"Xfjeno i s t h e s a m e e x c e P t F = vn • 



162 

The"xl and y} ' orbit averages have singular integrands when 
v is zero. The actul orbit average is well behaved so an 
alternate formula is used in a grid cell where v goes to zero. In 
the singular grid cell the general formulas for x and x ' 
are approximated b' multiplying the grid cell area by the average 
value of xv" in the numerator formula and the average value of 
v" in the denominator formula. This approximation resolves the 
singularity difficulty; however, a consistent formula is not used 
over the entire mesh. It is desirable to have a consistent formula; 
thus, a third numerical approximation, x ' is derived for x • 
The disadvantage of a consistent treatment is the increased 
complexity of the numerical orbit average formula. 

The reason the x and x formulas were singular is because 
the poloidal velocity in the r,z plane goes to zero at a turning 
point. To account for this effect, formulas are derived for the 
squire root singularity displayed below. 

2 -2 V Z 

(2H - 24>(r,z) - p'r c) (3-94) 

The x\pn formula is used with F now representing x- Also, F is 
taken out " the inner path integral as a constant as the midpoint 
value given by the bilinear formula as follows, 

-m rhz rLr -1 2 2 1 / 2 

*6R = / d z l / dr-,F(r1/2, (Az - z ^ / 2 ) ^ '(r, + (Az - z-,) ) 
0 0 

(3-95) 
r rl „ _2 -1/2 

J dr(2H. - 2<t,(r',z1) + (Az - z^r/r^ - pj-' c) 
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where r' is the grid radial position plus r,. The innermost 

integral of Eq. (3-95) is done with a trigonometric substitution. 

1/2 
sin(6) = ( 2 H ) ' 1 / 2 (2<|, + p 2

0r' - 2] (3-96) 

The substitution given by Eq. (3-96) is inserted in Eq. (3-95) by 
using the following relation. 

v" 1 dr = ( 8 H ) 1 / 2 sin(f 
9(2* + p 2r" 2; 

3r 

-1 
(3-97) 

The derivative in Eq. (3-97) is approximated by the difference of 
2 -2 2<j> + p~r at the endpoints, divided by the path length. Using Eq. 

(3-97) in Eq. (3-95), and expressing in terms of v where the 1 and 2 
subscripts on v refer to the path endpoints, yields the following 
result. 

Az Ar 

4R ] = 2 J d zi J d 
F(r]/2,(Az - Z ])(r 2 + (Az - Z ] ) 2 ) 

v + v„ 

1/2 

(3-98) 

The averaged function x is assumed to be linear along grid cell 
sides, and consequently, v is assumed to have a linear variation 
along grid cell sides. In the formulas below, v is written as v 
and the subscripts refer to grid cell corners consistent with the 
way F is subscripted. 

XBR = 2 
/-Az .Ar ? ? 1/2 
/ d 2 ] J d r ^ r * * (to - z,r) (FT + (F 2 - F 1)r 1/(2Ar) 

•'O •'O 
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+ (F 4 - F,)(Az + Zl)/(2Az) 

+ (F^ F 2 + F 3 - F^r^Az + z^/^AzAr)) 

( V ] + v 4 + (v4 - v^z^Az + (v 3 - v^r/ar)" 1 (3-99) 

= (FT + F 4 ) T n + (F4 - F^T^/Az 

+ (F? - F1 + F 3 - F4)T13/(2Ar) 

+ (F] - F 2 + F 3 - F4)T14/(2ArAz) 

The bottom-to-left, top-to-right, top-to-left, bottom-to-top, right-
to-left path integrals are obtained in a manner similar to the 
procedure used for the bottom-to-right case. 

^ L = < F1 + Ws + <F1 " " W 4 2 

+ (F 3 - F 4 + F 2 - F 1)T 1 ?/(2Ar) (3-100) 

+ (F4 - F 3 + F 2 - F1)T]8/(2ArAz) 

*$ - <F2 + F3) T19 + <F3 " F 2 > W A z 

+ (F, - F 2 + F 4 - F3)T2]/(2Ar) (3-101) 

+ (F2 - F ] + F 4 -F3)T22/(2ArAz) 
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XTL* = ( F 3 + F2> T23 + < F2 " F 3 ^ T 2 4 ^ Z 

+ <F4 " F3 + Fl " F
2 > T 2 5 / ( 2 A r ) 

+ ( F 3 " F 4 + Fl " F 2)T 2 6/(2Arto) 

4 T } = (F1 + F2> T27 + < F4 " Fl + F3 " F 2 > T 2 8 / A z 

+ (F 4 - F 1 + F 3 - F 2)T 2 g/(2Az) 

*KL = (F3 + F2> T30 + (Fl " F 2 + F 4 " F 3 > T 3 1 / A r 

(3-102) 

(3-103] 

(3-104) 
+ (F 1 " F 2 + F 4 - F 3)T 3 2/(2Ar) 

-f 31 The numerical orbit-average approximation to x > which consistently 
accounts for the velocity singularity, is then given below. 

,(7, ,-ff*ff'*ff'*ff'*ffi^' 
X - j T TT +~T +~T +~T +~T (3-105) c 'll "l5 ' IS '23 '27 '30 

In addition to the three numerical formulas, x^ ', x^ ', 

and x ' for the path integral x > there are also three numerical 
phase-space formulas. The first formula, x 1 S a numerical 
implementation of x • I n deriving ~x . knowledge'of the 
analytic orbits is used to obtain explicit integration formulas for 
a grid cell. In two dimensions, the test function which is to be 
averaged is given below. 
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2 ((r-r )/r ) 2 

X(r,z) = ẑ e U ' (3-106) 

Using the x formula, substituting the analytic velocities and 
Eq. (3-106), the following grid cell formulas result. 

4 P n f " ( V * ) ' 1 (sm-ViB/z,) - sin'1 ( z ^ ) ) 
(3-1071 

(sin"1((rB - rQ)/r1) - sin-1 ((rA - i^)/^)) 

~4lf • ̂ V/ 1 VV W B > 
(3-108) 

[sin- (Zg/z^ - sin" (zft/z1) 

+ (sin(2sin"1(zA/z1)) - sin(2 sin~'l(ztfz})))/Z)/Z 

In Eq. (3-107) and Eq. (3-108), the grid cell extends radially from 
r. to rR and axially from z. to z„. The numerical orbit-average is 
then the ratio of contributions from all grid cells. 

-(ps8) 
-(ps8) =

 Xnum ( 3 _ 1 0 9 ) 

7(ps8) 
Adeno 

The numerator and denominator of "x*" ' both depend on oscillation 

frequencies; however x itself is independent of the u and 
to frequencies. The x ' formula is particular to the harmonic 
oscillator potential and the chosen test function of Eq. (3-106) used 
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in the AV code. The main utility of x ' is to compare results 
with the other numerical orbit-average formulas. The frequency 
independence of the x ' orbit average means the other, more 
general, orbit-average formulas are not at a disadvantage even though 
they do not account for this aspect of the precise orbit. 

The numerical x orbit average, denoted x , ' s 

implemented in a grid cell as an average x value times the grid 
cell area. The x denominator is the grid cell area as shown 
beloi'. 

X d e P n o ) = J* d r d z < 3 - , 1 0 ) 

= ArAz 

The x numerator is calculated by assuming a bilinear x 
variation in a grid cell. 

xJSm 9' = / ( xl + (X 2-X,)r/Ar + [^ - X])z/to 

(3-111) 
+ (X] " X 2

 + X 3 - X4)r2/(ArAz))drdz 

= (X] + X 2
 + X 3

 + X4)ArAz/4 

The final fcrm o;- x iri a rectangular grid is then a ratio of 
the sum of numerator and denominator contributions as indicated 
below. 
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-(ps9) = Y, / V p s 9 / y ( p s 9 ) \ *-r* I A num/ Adeno / . 

= X-i ((*} + X 2

 + X 3

 + X4)/4j 

(3-112) 

For the case of a potential well, which is not rectangular, the 
boundary of the allowed orbit region passes through a grid cell. 
Figures 3-3a to h show the case of the boundary intersecting the 
bottom and right, the bottom and left, the bottom and top to the 
right, the bottom and top to the left, the top and right, the top 
and left, the right and left downward, and the right and left upward 
grid-cell sides respectively. In assessing the grid cell 
contribution it must be determined which of the four regions are in 
the allowed orbit region. Thus, for each grid cell having a 
boundary intersection, only some of the formulas below are used. 
The formulas for contributions from regions one-to-four are written 
in terms of functions Z and U , with appropriate arguments. The 
subscript n denotes region one-to-four. In what follows, the x 
subscript indicates either a numerator (num) or a denominator (deno) 
contribution on ti e left side of the equal sign, or the usual 
grid-cell corner values in the arguments of Z and U . The boundary 
intersection is contained in the argument with a region designation. 

X n C m 9 ) { B R n ) = V*1> (X2 " * 1 ) / A r ' '*4 " ^/hz> 
(3-113) 

( xl " x 2 + x 3 " X 4)/UrAz)) 
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(0,0) 

(r2.Az) 

1 

4 

3 l 2 
1 

(r 2, 

— * • 

(0,0) 
(0,zJ 

(0,Zl) 

(0,0) (0,zn) 
(c) 

(0,0) 
(d) 

(0,zJ 

(r2,Az) 

(0,0) 

1 (b) 
(A r,z2) 

2 / 
1 4 

/ 3 

—*~ 

(r2,Az) 

(0,0) 

(0,0) 

(r vAz) 

(r2,Az) 

(9) 
(Ar,z2) 

\ 3 
1 \ 

2 
\ | 

4 

(0,0) 

(r vAz) 

(r2,Az) 

(h) 

Fiqure 3-3. The four regions and coordinate orientations for 
potential boundary grid cell intersections, (a) BR intersection (b) 
BL intersection (c) BT intersection to the right (d) BT intersection 
to the left (e) TR intersection (f) TL intersection (g) RL inter­
section downward (h) RL intersection upward. 
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Zn(X4>(x3 " X4)/Ar, (Xi - X4)/Az, 
(3-114) 

(X 4 " X 3
 + X 2 " X^/UrAz)) 

Zn(X2»(Xi - X2)/Ar, (x3 - X2)/Az> 
(3-115) 

(X 2 - X! + X 4 " X 3)/UrAz)) 

Z n(x 3.(x 4 " X3)/Ar, (x2 - X3)/Az. 
(3-116) 

(X3 - X 4
 + X! - X2)/(ArAz)) 

The denominator contributions for BR , BL , TR and TL are all 
n n n n 

identical. 

-(ps9), R n . -(ps9), . n . -(ps9), n _ -(ps9),T. ,. Xdeno l B R , ) " Xdeno ( B U ) " X d eno ( T R 1 ) " Xdeno (' L 1 > 
(3-117) 

= r2(Az - Z ])/2 

T:(ps9) ( B R ? ) = y ( p s 9 ) ( B L 2 ) = ^ P s 9 ) f T R 2 ) = ^ P s 9 ) f T L 2 ) xdeno ( a ' X d e n o (OL^) x d e n o l 1^) X d e n o l"-^; 
(3-118) 

= r2(Az - z^/2 

7 ( p s 9 )(BR3) = ̂ p s 9 , ( B L 3 ) = ̂ p s 9 ) ( T R 3 1 = ^ p s 9 ) ( T L 3 ) xdeno ^ B K J ; X d e n o IBLJ; x d e n o U^Jj x d e n 0 l"-j; 
(3-119) 

X^Vn) 

X ^ 9 , ( T R n , 

= V l 
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S )(B R4) = xS )(BL4,=xSW) = xSS)(TU, 
(3-120) 

= Az(Ar - r ?) 

For the potential boundary intersections from the bottom-to-the-top 
or the right-to-the-left, the following formulas apply. 

x i u ^ W ) = Un(XT(x 2 - Xi)/Ar,(x4 - X,)/Az, 
(3-121) 

( xl " X 2
 + X 3 - X 4)/(ArAz) )z 1,z 2, Ar) 

XnSm 9 )< R L n) = Un(x 2»(x 3 -X 2)/Az,(x, - X2)/Ar, 
(3-122) 

(X 2 " X 3
 + X 4 - X1)/(ArAz),r1,r2Az) 

The denominators are defined as follows. 

X d e n o ) ( B T 1 ) = A r m i n ( z l ' z
2 > 

(3-123) 

X d e n o ) ( R L 1 ) = A r min<rl'r2> 

X ^ n o ^ ^ A r ^ - z , , 
(3-124) 

XdePno9)(RL2) = A z | r 2 - r,| 

x S ^ B T S ) = Ar|z 2 - z l ( 

(3-125) 
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X d e n o } ( R L 3 ) = * 2 | r 2 - r , | 

x i » n ^ ( B T 4 ) = Ar(Az " m a x ( z 1 ) Z ^deno V ' 2 ' 

(3-126) 

xi.lViRU) = Az(Ar - m a x ^ . r - ) ) *deno ]''2> 

In previous d iscuss ion , x was der ived as an approximation 

t o x . The d i f f e rence between these formulas is a replacement 

of v" f o r v v . The numerical approximation to Y , denoted 
p r z A > 

"x , i s obtained by ar-uming a b i l i n e a r v a r i a t i o n of x a r | d v 

in a rectangular g r i d c e l l . 

Ar Az 

*num 
f f 91 9 2 r 

J J h i + y + 

-Ar ( - / g 1 + g 2 r 

9 1 + 9 2 r + 9 3 z + 9 4 r z 

tuz + h. rz drdz 

• a 
[ h ] + h 2 r ) ( g 3 + g 4 r 

h 3 + h 4 r ( h 3 + h 4 r ) ' 

^ \ + h 1 + h 2 r A z j 

(3-127' 

g 3

 + g 4 r 
+ , a. h - AZ 

h 3 + h 4 r 
dr 

- IPSIO) = 
x deno 

/ * A r dr . / . +

 h 3 + h 4 r

 A \ J h-Ty log (1 + T — ^ - Azj (3-128) 
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In En. (3-127) and Eq. (3-128), the subscripted g and h parameters 

are related to x a n d v as follows. 

9l = *1 

9 2= (X2 - X^/Ar 

g 3 = (x4 - x^/Az 

9 4 = (X} - X 2
 + X 3 " X4)/(ArAz) 

h. = v^ (3-129) 

h2= (vp2- fy'to 

h 3 = ( v 2
p 4 - v 2

p i ) M Z 

4 v p-, P 2 P 3 P 4' 

The orbit average is then a ratio of a sum of numerator and 
denominator contributions from all grid cells. 

-(pslO) 
-(pslO) _ xnum ,, ,,n. 

xdeno 

For the case of an orbit potential passing through a grid 
cell, formulas are derived with four individual contributions per 
cell. Figures 3-3a to h depict the various possibilities as 
discussed for the x ' orbit average. The same rotation is used 
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f o r x as f o r x , and the formulas are expressed in terms 

of func t ions K n u m , K d e n o , N n u m and N d e n o , which are def ined i n n n n n 

Appendix A. 

- ( p s l O ) ( B R n ) = K n U m ( x i ) ( x 2 . X i ) / A r ) ( x 4 . X i ) / A Z 5 

( x l " x 2 + x 3 " X 4 ) / ( A r A z ) , 

v n , ( v - v ) / A t \ ( v - v ) / A z , 
P] P2 P] P4 Pi 

( v 2 - v 2 + v 2 - v 2 ) / (ArAz) ) 
P] P 2 P3 P4 

X ^ 1 0 ) ( S L n ) = K n x 4 ) ( X 3 - X 4 ) / A r > ( x 1 - X 4 ) / A z , 

( X 4 " X 3

 + X 2 - X , ) / ( A r A z ) , 

% < ( V D " \ > / A r ' ( v p ' i ) / A 2 ' P4 P3 P4 P] P4 

' v 2 - v 2 + v 2 - v 2 ) / ( A r A z ) ) 
' P 4 P3 p 2 p l 

J ( T R n ) = K n

n

U r a ( x 2 j ( x 1 - X 2 ) / A r , ( x 3 " X 2 ) / A z , 

( X 2 " XT + X 4 - X 3 ) / ( A r A z ) , 

v 2 , ( v 2 - v 2 ) / A r , ( v 2 - v 2 ) / A z , 
P 2 P] P 2 P3 P2 

: V D * % + v o " V D ) / ( A r A z ) P 2 Pi P4 P3 

( 3 - 1 3 1 ) 

( 3 - 1 3 2 ; 

( 3 - 1 3 3 ; 
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xSSfV") = C V ^ -X 3)^,(x 2 - X3>/*. 

( x 3 - x 4

 + x-| - x 2)/UrAz), 

V n » ( V n " V n ' ' ^ » ( V n ' V n ) / A -

( 3 - 1 3 4 ) 

P3 P4 P3 P 2 P 3 

P 2 P-| P4 P3 

X ^ W n ) = K r V 2

p i , ( v 2

p 2 - ^ ) / A r , ( ^ - V

2

p ) / A z , 

( V p , " V P 2

 + VP3 " fy'l*"" 

4 ps oW)^r o(vS 4.(v^-v^.(v^.vj 4,/ t o. 
> 2 - v 2 + v

2 - v

2 )/(ArAz)) 
P 4 P 3 P 2 P , y 

X ^ o ^ ^ . K ^ v ^ . f v ^ - v ^ . t v ^ v ^ , 

(3-135) 

(3-136) 

P2 ?i P2 

P 2 P] P4 Pi 

( 3 - 1 3 7 ) 

j eno 
. ^ ( T L n J - K j ^ v ^ . t v ^ - v ^ . t v ^ . v ^ , 

<vp ' \ + i ' vp V^tx)) P 2 P, P 4 P 3 

( 3 - 1 3 8 ) 
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The K" U functions are defined in Appendix A with eight consecutive 
arguments which are g,, g 2, g 3, g^, h,, hp, ho, and h* 
respectively. The K e ° functions are defined in Appendix A with 
four consecutive arguments which are h,, h 2, h,, and h 4, 

2 respectively. To avoid the zero of v at the orbit boundary, an 
additional parameter a is introduced as the exponent of the bilinear 
2 v fit. For orbit potential boundary intersections from the bottom-
to-the-top or from the right-to-the-left, the following formulas are 
used. 

x i S m 1 0 ) ( B T n ) = O x i , ^ ? " X 1)Mr,(x 4 - X l)/to. 

(X] " X 2
 + X 3 " x 4)/(^Az), 

v 2 p 1 ' ( v 5 2 - w 5 1

, / A r - { w 5 4 - v p 1

, / t o ' 

< V
P ] - V P 2

 + V P 3 - vp4)/(Ar/lz)),2l,z2,/lr 

-(pslO) / Q T . „deno, 2 , 2 2 w . , 2 2 . ,, 
Xdeno ( B T n > " Nn ( v

P l ' ( v p 2 " V ( \ " V 

^ " v p 2
 + v p 3 " v p 4)/(ArA Z),z | 5z 2,Ar) 

X n
P
u m

1 0 )(RLn) . C ( X 2 , ( X 3 - x 2)/to.( X l " X2)/Ar, 

(X2 " X 3 + X 4 - x1)/(ArAz), 

(3-139) 

(3-140) 

(3-141) 
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V P 2 ' < V P 3 - V V / A Z ' ( V P ! " V P 2

, M r ' 

< v p 2 • V p 3

 + V p 4 - v j ^ / U r A z h r ^ . A z ) 

-(pslO),_. , Mdeno, 2 , 2 2 w . , 2 2 w . 
*deno ( R L n > = N n ( v p 2 ' ( v P 3 " v p 2

) / A z ' ( v

P l " V P 2 ' 

2 2 , 2 
(3-142) 

( P2 " V \ " V p 1

) / ( A r A z ) ' r l ' r 2 ' A z ; 

The N n u m functions are defined in Appendix A with eleven consecutive 
arguments, g ^ g 2, g 3, g 4, h ^ h 2, h 3, h 4, z ], z,,, and z 3, 
respectively. The N ° functions are defined in Appendix A with 
seven consecutive arguments h,, h 2, h 3, h^, Z p z^, and z 3, 
respectively. 

3.5 AV Code Results 

The orbit average formulas are compared numerically against the 
orbit average definition x , computed using the trapezoidal 
integration method. A seven-point integration scheme was checked 
against the trapezoidal method and it was found ~jc did not change 
up to three decimal places. Thus, in the discussion of results to 
follow, the x orbit average value obtained by the trapezoidal 
method is taken to be the proper orbit average value. 

In one dimension, an exponential x( r) i s chosen as the function 
to be averaged. 
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X(r) = e ° ] (3-143) 

The objective in choosing x(i") is to select a smooth function having 
a reasonable variation between r Q - r, and r Q + r.. The AV code was 
run with the following parameter values: r Q = 5, r, = 1, u>r = .198, 
At = .005, <p = 0. The r grid had 2000 points and the orbit was 
followed 6348 steps. The frequency w and the number of steps 
multiplied by At were chosen so the sine argument of the analytic 
orbit, r(t), went from zero to 2TT. The oscillation amplitude 
bounds the orbit between 4 and 6, and over this range x( r) varies 
from .37 to 2.72. The results are x (°^ = 1.2661, and x ( 4 ^ = 1.2637. 
As verification of the x* ' value the following trigonometric 
substitution, 

cos(e) = (r - rQ)/r] (3-144) 

_(4) is made in x to yield, 

f » . \ /-"ecos(e)de ( 3 . „ S ) 

•' n 

The formula 3-145 is the integral definition of the imaginary Bessel 
function of order zero and argument one, I0(1) = 1.2661. The 

-(4) orbit average formula, x > is thus well-approximated by the 
numerical integration formula. 

In two dimensions the averaged function x(r>z)> given by 
formula 3-106, is exponential in r and quadratic in z. Due to these 
symmetries it is only necessary to integrate over one-fourth of the 
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allowed orbit region. As in the one dimensional case x , computed 
using the trapezoidal integration approximation, is compared with 
numerical orbit average formulas. As a brief review, the two-
dimensional numerical orbit-averaged formulas are x , X > 
X ( 7 ) , x ( P S 8 ) . X ( P S 9 ) and x ( p S l 0 ) - The path integral formulas, 
X > X a n d X » integrate along a straight-line path in a grid 

cell and then integrate over all possible straight-line paths. The 
-(5) path integral formula x integrates over a grid cell, assuming a 

linear variation along grid-cell sides of x v
D f ° r t n e numerator 

and v" for the denominator. The integration over the path is the 
path length multiplied by half the sum of x vI for the numerator 
and v~ for the denominator. The integration over the path is the 

path length multiplied by half the sum of x v
D
 o r v „ a t t n e 9 r i d 

cell side intersections. The path integral formula, "x* , integrates 
over a grid cell assuming a bilinear variation of xv~ for the 
numerator and v" for the denominator. The integral along the path 

is obtained by using the equation of the path line to convert / dJ, 
to /(d«,/dr)dr. The"x' ' path integral assumes x has a bilinear 
variation in a grid cell, but may be taken to be a constant along the 
path line at the midpoint path value given by the bilinear formula. 
The path integral in the numerator and denominator contribution is 
then an integral only over v~ . The path integral is calculated 
using a trigonometric substitution resulting in the reciprocal of 
the sum of the path endpoint v values. The final form of the 

~JC ' formula is then obtained by assuming v varies linearly along 
the path for the integrals over all paths. The phase-space derived 
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formulas are "x ' and x • The "x p s ' formula is a numerical 
orbit average of the ~x*p approximation to x • The "x 
formula, except for the I,- integral, is essentially analytic in a 
grid cell. The x( r>z) function to be averaged has been incorporated 
into "x ' as well as the analytic orbits. The x formula is 
an area average of x(r,z) normalized to the total area. Assuming a 
bilinear x( r> z) variation in a grid cell results in a numerator 
formula which is one-fourth the sum of the four grid-cell corner 

values. The "x i p s ' formula is an integral over the grid cell area, 
p assuming x( r» z) i s bilinear and v is bilinear. 

All of these numerical orbit-average formulas are generally 
applicable except "x , which is particular to the harmonic 
oscillator potential. In examining the results of a two-dimensional 
AV-code run, it is not expected ~x'p would provide a good orbit 
average value since it assumes a larger orbit region is available. 
The •)( ' formula is derived assuming only two constants of the 
motion exist when, for the uncoupled two-dimensional oscillator there 
are, including p., three. The object in considering x is to 
gauge the amount of error in applying this formula when a third 
constant of the motior -*ists but is not taken into account. The 
"x*p formula is an approximation to >j ' which does not require 
the analytic orbits. In a case of basically harmonic motion, where 
the Hamiltonian has weak coupling or anharmonicity, x ' may be a 
better approximation than x ( p s 8 ) . The x ( p s 5 ) , " x ( p s 6 ) and x ( p s 7 ) 

orbit average are evaluated to measure the agreement of ~y} ' with 
the path integral formulas, which do not include knowledge of the 
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exact constants of the motion. In other words, these formulas are 

the same whether or not there are two or three constants of the 
motion. All of the numerical orbit-average formulas assume the 
actual orbit encounters all allowed space at every angle. In the AV 
code, for a particular orbit, the analytic r, and z formulas show 
the orbit is actually a lissajous figure. This is because, 
numerically, the frequencies to and u are rational numbers. 
Consequently, a orbit is periodic and as a result there are always 
areas that are not encountered. In addition, the analytic positions 
and velocities may be used to express the velocity ratio in terms of 
position. 

? ? 1 / 2 

' S M 2 2 < 3- 1 4 6) 
z \ z, - z / 

V 
V 

From Eq. (3-146), it can be seen that a particular orbit can pass 
through a fixed position at only two specific angles. Figure 3-4 
illustrates an orbit with co = 1, u = 4, r Q = 5, r-, = 1, z, = 1, 
cp = 0, and <p = 0. This shows the orbit periodicity and the 
occurrence of only two angles at the crossings. The numerical orbit-
average formulas, in assuming the available area is covered, are 
actually dealing with a distribution of initial phases cp and cp and 
thus, a range of periodic orbits or equivalently as will be shown 
later, a nearby orbit having irrational frequency ratio u /u , which 
would then cover the entire area. Figure 3-5 shows an orbit which 
has the same parameters as that in Fig. 3-4, except cp = .3 and 
cp = .1. Comparing Figs. 3-4 and 3-5, it is clear each closed-orbit 
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Figure 3-4. Orbit with ay = 1, a>2 = 4, <pr = 0, <p2 = 0. 
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Figure 3-5. Orbit with u r = 1, u>z = 4, yr = .3, <p2 = . 1 . 
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having the same to and w encounters very different spatial regions 
as a consequence of different initial phases. In order to make a 
comparison of x with numerical orbit average formulas, orbit 
parameters are chosen to cause a dense covering of the allowed orbit 
region. The objective is to choose oscillation frequencies u r and 
u z such that the orbit requires many oscillations before it begins 
to repeat. The complete ̂ T value is known after only one orbit 
period is obtained since the limit of large path length makes the 
contribution from any partial orbit insignificant. 

-(0) . JX dfc V d t 

x / dS, + «/n n / dS, + I (3-147) 

As can be seen from Eq. (3-147), as n becomes large the second term 
is unimportant. Using oscillation frequencies u = .198 and u = 
1.218, the orbit completes after 33 radial oscillations and 203 
axial oscillations. Figure 3-6 shows the allowed orbit region is 
well-covered for this choice of frequencies. The values of orbit 
average formulas for 41888 orbit steps at At = .025 used to calculate 
7 ' and a 40x40 point grid used to calculate all other orbit average 
formulas are in Table 3-1. 

-(O) 
x̂  x ( 5 ) -(6) X x ( 7 ) -(PS8) ~(ps9) -(oslO) 

.8767 .7147 .7264 .6954 .8767 .4874 .6899 

Table 3-1. Orbit Average Values for the AV Code 
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Figure 3-6. Orbit with w r = .198, w z = 1.218, ^ = .3, <p2 = . 1 . 
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Changing the grid to 80x80 results in only a few percent change in 
X ( 5 )» X ( 6 ) , X ( 7 ) » X ( P S 9 ) and x ( p s l 0 ) . From the table of values it 
can be seen there is good agreement between x and x . The 
path integral formulas x^\ x ' 6 \ X ^ a r e l o w °y 18^> 1 7^ a n d 2 0 % > 
respectively. It appears, for this example, there is no gain 
obtained from the more elaborate x formula. The best path 
integral result in this case is x > however, this may not always 
be true for orbit averages of other x( r> z) functions. The x 
result demonstrates the hazard of applying a phase-space derived 
formula without knowledge of the actual constants of the motion. The 
X p s ' result differs f rom x by 44%, wnich is about twice the 
error of the other numerical formulas. The x* p ' formula, which 
is related to x > n a s a value of .6899, which is in line with the 
path integral results. 

The numerical orbit-average formulas x , X » X > 
x' p s 8', x ^ P S 9 ^ a n d X ^ P S l ° ^ all assume the allowed orbit region is 
covered by the trajectory used with the basic orbit-average 
definition x • A s w a s shown by Figs. 3-4 and 3-5, the effect of a 
distribution of initial phases is to result in ? covering of the 
allowed orbit region. To determine when a single periodic orbit, 
such as that used to compare the numerical orbit-averaged formulas, 
represents the or 
analytic orbits. 
represents the orbit average definition, x is examined using the 
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2 
X ( 0 ) = lira 4 / 2 e ° ' dt (3-148) 

J n ~ ' 0 

2 2 

*" yo ] z ^ 

The half angle formula is used in Eq. (3-148) and the osc i l la t ion 

amplitudes are set to ore to y i e l d , 

yiO) = ' e , / 2 Tim 1 ( (1 - cos(2a> t + 2 , ) ) e-l/2cos(2<o rt+2,p r) d t 

(3-149) 

The formula 3-149 is examined by expanding the exponential in a 
Taylor series and splitting into two parts. The first part is one 
times the expanded exponential. 

-in) l 1/2 rT X~> (- 7 cos(2a> t + 2cp )) 
xi 0 ) • i e'/2 11" / L, — KT " ( 3- 1 5 0> 

1 + 0 0 •'O r, 0 
For n-odd, the termt vanish in Eq. (3-150) because the integrand is 
odd over a period. Interchanging the order of integration and 
summation in Eq. (3-150) and using, 

1 f2* ™c 2 n a HO 1 ' 3 • 5 ••• (2n - 1) ,,,,„ 
7? / c o s e d e = 2 • 4 . 6«.. 2n ( o - 1 5 1 ) 

yields the following formula. 
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-(0) 1 1/2/.. V ^ 1 1 « 3 • 5 »•• (2n - 1)\ ,, 1 r „ , 

Formula 3-152 shows the first contribution to x ' is independent of 
phase and frequency. The sum of the first few terms of Eq. (3-152) 
is below. 

Xl(0) = i e V 2 (l + "fe + 7m + 1W5F + I 7 T W ) = - 8 7 6 6 9 

(3-153) 

To understand why x\ is essentially equal to x* , the second 
contribution to jj ' must be examined to determine under what 
conditions it is small. The second contribution to to "j^ is 
cos(2w t + 2cp ) times the expanded exponential. 

X 2 0 ) = - 7 e 1 / 2 lim j f cos(2u>zt + 2cpz) 
-*" Jo 

(3-154) 

<A - i cos(2u rt+2tpJ) n 

2^ ^ !- L dt 
n=l nl 

The n = 0 term vanishes. Expressing cosine as a sum of exponentials, and 
expanding cosine to the n in a binomial series, and using, 

^ r e i a tdt=«(a) 
Jn 

yields the following formula. 

n=0 k=0 V * 2 ? *- ^ * 2 2 n(n - k)Jk; 
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cos((2n - 4k)cpr - 2cp2) (3-155) 

6((n - 2k W . 

^0) 

V) 
From Eq. (3-155) it can be seen that x? = 0 when u> /w is not 
rational. Thus, for wz/ior equal to an irrational number "x ' = 
"x̂  • Also, when a>z/u)r is equal to m, a rational number, the first 
non-vanishing term of Eq. (3-155) is bounded by 2" m/m'. This means 
that a periodic repeating orbit yields essentially the ergodic orbit 
average as soon as m = 6. At m = 6, "j(L ' is down by a factor of 3 
x 10" . When m is large there are many axial oscillations for each 
radial oscillation and the averaged function appears to only have a 
z variation along the orbit. The same conclusion can be shown to be 
true for a general function x(r,z). To do, this the 3c ' formula is 
written with x(r*z*! represented by a Taylor expansion in r and z 
expanded about r Q and z„. 

7(0) = l l m _i 3 n + mX M r V" (*-'0)m 

a nr smz , d r Q O zQ, 
dt 

(3-156) 

Substituting sinusoids for r(t) and z(t), integrating and expanding the 
exponential representation of sine in a b.nomial expansion yields the 
following formula. 

OO CO -«0, . J, J, 
n=0 m=0 

3 n + m x \ " m 

^\*\/ k=o a=o 
2-(n+m) 

ZJ Z2 (n - k).'k.'(m - i)H> 

i(<p (n-2k) +cp (m-25.) ., , 0, , , - „,, e V N V ' Y z v ' 6(ur(n - 2k) + (̂ (m - 2%)) 

(3-157) 
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Equation (3-157) shows there are two types of contributions to Eq. 
(3-156). The first kind consists of all terms with n = 2k and m = 21. 

These terms are independent of phase and oscillation frequency. 
Furthermore, if " r/w is an irrational number, all other terms 
vanish. Eecause the condition of irrational w Ao is the condition 
for an ergodic orbit, the sum of terms with n = 2k and m = 2S, is the 
ergodic contribution to the orbit average. The second kind of 
contribution to the orbit average has w„/w equal to a rational 
number. For widely different frequencies these terms are down by a 
factor 2"^ n m', and can then be considered only a small correction 
to the ergodic contribution to the orbit average. A periodic orbit 
with widely different radial and axial frequencies is then equivalent 
to the ergodic orbit average. This conclusion is also valid when the 
potential is anharmonic, but the orbit is essentially oscillatory. 
For this case, the expansion analogous to Eq. (3-157) has summations 
of sinusoids in r and summations of sinusoids in z. As before, the 
ergodic orbit-average contribution consists of terms with irrational 
frequency ratios, and for widely different frequency ratios, the 
ergodic orbit average is the dominant contribution. 

3.6 Hi'll's Vortex Orbit Code 

3.6.1 Investigation Issues 
There are essentially three issues in considering the orbit 

average with the NEO code. First, the application of formulas 
validated with the AV harmonic oscillator code are examined in 
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appropriate H, p. regimes. Second, a procedure is applied to 
determine the existence of the third constant of the motion,^". The 
existence of«^ implies a distribution function depending on .^is 
possible and thus an orbit average taking into account .9 would be 
useful. In the case of low energy with no sharp field gradients or 
rapid time variations the magnetic moment is a suitable adiabatic 
constant of the motion. Such a system may then be described in this 
regime with a distribution function which depends on H, p„ and the 
magnetic moment. Third, the question of stochasticity is briefly 
considered to determine if conditions occur where no constant of the 
motion exist. 

3.6.2 Equations of Motion and Method of Solution 
The NEO code solves the equations of motion in cylindrical r, 

8, z coordinates using magnetic fields derived from the spherical 
Hill's vortex. The resulting orbits are used to investigate a 
realistic application of the previously derived numerical orbit 
averages and to explore the existence of invariants of the motion. 
As demonstrated in the case of the harmonic oscillator, knowledge of 
the invariants of the motion lead to specialized forms of the orbit 
average. Experimentally, it may be possible to design magnetic 
fields with invariants of the motion that produce beneficial transport 
properties. The magnetic moment, H^/2B which is only an adiabatic 
invariant1- ' J has been employed to enhance particle confinement 
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T148 1491 in magnetic mirror devices. ' J Thus the construction of an 
approximate constant of the motion is also useful. 

The equations solved by the NEO code are obtained from the 
following dimensionless Hamiltonian, 

2 
H = \ (P2

r + p\) + \ (P 6r _ 1 - r"1^) (3-158) 

where \|) is defined below. 

I r 2 ( r 2 + z 2 - 1) r 2 + z 2 < 1 
* = { / _ , / J K (3-159) 

f <^V3'2) ^ r 2 ( l - < r 2 * z 2 ) \ r

2 * z 2 > l 

Lengths are normalized to the Hill's vortex plasma radius, time is 
normalized by the uniform field cyclotron frequency eZB/mc, mass and 
charge are normalized to proton mass and charge, and p„ is 
normalized by the product of the proton mass, cyclotron frequency, 
and plasma radius squared. Since p Q is a conserved quantity in 

w 
axisymmetry, it is used to obtain the time derivative of theta. The 
equations solved by the NEO code are then below. 

r = p r (3-160) 

6 = r" 2(p a - D) (3-161) 

z = P z (3-162) 

* 
Pr = - (r _ 1 p e - r" 1) (P er" 2 + Jp (r" 1)) (3-163) 

P z = - (r" 2p e - *r" 2) |f (3-164) 
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A dot denotes derivative with respect to time. The numerical 
solution of the system of five first order ordinary differential 
equations is obtained by the GEAR"- * multistep method employing 
variable time step and order to guarantee a specified local error 
criteria is satisfied. For a general first order ordinary 
differential equation for variable y, 

$ = y(y.t) (3-165) 

the solution method is as follows, 

kl 
*n = «1 Vl + At E Vn-J (3'166) 

where the subscript n represents the time step level. The values of 
k-,, a, and the &. constants have well known values depending on the 
order of the method.'- •* The formula 3-166 is commonly known as 
a k-, + 1 order implicit Adams method. It is important from the 
viewpoint of considering constants of the motion that the orbit 
position and velocity are accurately known. The formula 3-166 used 
to solve the set of Eqs. (3-160) through (3-164) has p. as a constant 
since this is enforced in the formulation; however there is no 
guarantee the energy is numerically constant. There are algorithms, 
such as the leap frog scheme, •* which conserve energy exactly. 
The trouble in using a scheme like leap frog is understood by taking 
the dot product of both sides of the velocity advance equation, 

>3/ 2 = ;„+i/2 + &t ( ; n + 3 / 2 + > i / 2 ) x ; n + i ( 3 . 1 6 7 ) 



The result is, 

( v n + 3 / 2 }
2
 = ( v n + l / 2 )

2
 ( 3_ 1 6 8 

and consequently the total velocity magnitude is prp-,?-\-ed to within 
round off error. The difficulty is each velocity component is not 
known this accurately and also p. is no longer a constant. To 
resolve such difficulties, the multistep method is used with an 

-15 error criteria of 10 . To invoke an error criteria as small as 
IS 10 , it is necessary to use double precision arithmetic. In 

monitoring the error criteria, it was found the time step must be 
adjusted in accordance with the local anticipated error rather than 
the greatest error encountered along an orbit. This consideration 
arises due to the orbit turning points where the velocities in the r 
or z direction decrease to zero and then change sign. In general, 
near a turning point, much smaller time steps are required than 
during other parts of an orbit. In the most recent ordinary 
differential equation solver, (LSOOE) it is possible to independently 
set the error criteria for each unknown variable. In the problems 
of interest here, the theta location is not important so the error 

-15 criteria for r, z, p r, p is 10 and the error criteria for 
9 is set to one. In practice this means the predicted error 
caused by the theta equation does not cause the time step to be 
reduced. 
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3.6.3 Axisymmetric Orbit Considerations 
The reason 6 is not accurately calculated is because only 

axisymmetry is considered. As discussed previously p„ is then 
conserved. The consequence of constant p e is that the orbit may be 
considered to be two dimensional and v Q is then replaced by a 
function of r, z, and p 9. The Hamiltonian then appears two 
dimensional with v Q serving as a potential, V(r, z |p0) having a 
parameter p Q. 

V(r,z|p e) = £ (p er _ l - * r _ l ) (3-169) 

Substituting Eq. (3-169) into £q. (3-158) recasts the Hamiltonian as 
follows. 

H = I ( (V + p z ' + V(r' 2 ' p e ) (3"170) 

From Eq. (3-170) an orbit having H < V is confined to a region of 
space provided V has closed contour surfaces. For the Hill's vortex 
in a range of p Q values, V does have closed surfaces and thus 
there is confinement. Physically at the boundary of a confining 
surface all the particle energy is in the theta direction. Thus in 
two dimensions at the bounding curve p and p are zero. The 
confinement of orbits to regions of space as a consequence of the 
potential V makes it natural to consider transport properties 
averaged over these regions. It is then necessary to consider under 
what conditions V has closed surfaces and potential confinement 
results. The ty function is positive outside the plasma region and 
thus from considering Eq. (3-169) a potential barrier exists when 
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P e < 0. There are two distinctive types of orbits that occur for 
P e < 0. Examination of Eq. (3-159) shows the maximum value -\|i has 
inside the plasma is 3/16. Consequently for p. < - 3/16, v„ is 
always less than zero or in other words the orbit is axis encircling 
and always moves in the negative e direction. The consequence for 
spatial confinement is obtained from the first derivative of V with 
respect to r inside the plasma. 

(3-171) 

At positive r, Eq. (3-171) shows there are three positions where 
3V/3r = 0. 

^ - ^ ( i - ^ - m - z 2 ) 2 ^ o e ) 1 / 2 ) 1 / 2 (3-172) 

r 2 = 2 - 1 / 2 ( l - z 2

+ ( ( l - z 2 ) 2

+ £ p Q ) 1 / 2 ) 1 / 2 (3-173) 

r 0 = 6 - l / 2 ( l - z 2

+ ( ( l - z 2 ) 2 - 1 6 p 9 ) ^ ) 1 / 2 (3-174) 

When P 6 < - 3/16 r. and r, are both imaginary. This situation is 
illustrated qualitatively in Fig. 3-7(a). In this case V has a 
minimum at r Q. When -3/16 < p. < 0 r., r„, and r n are all real with 
r, and r„ being local minima and r Q being a position of local 
maximum. This case is illustratred qualitatively in Fig. 3-7(b). 
The basic difference between orbits in these two p„ regions is for 
- 3/16 < p e < 0 and H < V(r Q, z|p Q). As shown by Fig. 3-7(b), the 
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(a) 

H<V(r 0,z,p e) 

•o 
(b) 

Figure 3-7. Potential at z = 0 versus r. (a) Pa < - 3/16 
(b) - 3/16 < p e < 0. 
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orbit in this case has an excluded region around r = r Q. In the r, z 
plane the orbit is then ring like in contrast to H > V(r Q, z|p e) 
for which r-,<r<r~ orbit values are allowed. For H %V(r,, z|p.) 
the orbit degenerates to a curve in the r, z plane. If in addition 
Pgft; 0 the curve becomes a constant I|J contour and this class of 
particles is confined to flux surfaces. 

The second parameter which determines when an orbit has 
potential confinement is H. In the radial direction at z = 0 and 

2 large r, V ~ 1/8 r . Thus, at large enough r an orbit of any H is 
confined radially. Typically in practice, a radial wall exists and 
confinement ceases when the energy is large enough to cause the 
orbit tc intersect the wall. A sufficient but not necessary 

2 condition for radial confmern^nt when r n < 1 is H < p.. In 
this case the orbit only encounters closed field line. For confined 
orbits which encounter open field lines, loss may occur by 
intersecting a radial wall or by having an energy large enough so 
axial loss occurs. The energy threshold for axial loss is derived 
by considering the r and z derivative of the potential V in the 
region outside the plasma. 

£ • i < p e - » > ( - p / 2 - i * i n > * * " O T - ! ^ < ^ A " 5 " ) 

(3-175) 

| | = - f (P e - *) z(r 2 + z 2) (3-176) 

Outside the plasme. i(i is positive and p. has been chosen negative 
so the quantity p„ - i|i is always negative. From Eq. (3-176), dV/dz 

-4 is then always positive, diminishing as z as z increases with r 
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fixed. This means the potential becomes constant asymptotically in 
the axial direction. From Eq. (3-175), the second factor on the 

2 right indicates at large z, V has a radial minimum at r = - 2p Q. 
2 The energy threshold for axial loss then occurs at r = - 2p„ and 

z + °°. Using these values in Eq. (3-169), the energy threshold for 
axial loss occurs at H l o s s = - p Q. The orbits to be discussed are 
all energetically confined and thus p Q < 0 and H < - p g. In 
addition, to limit the discussion to a potential with a single 
minimum p„ is further restricted to be less than - 3/16. 

3.6.4 NEO Orbit Average Results 
The~p , "x » and "x* ' path integrals are not implemented in 

the NEO coJe. These formulas were derived to be applied to regions 
determined by a third invariant of the motion,,*''. The low energy 
formula derived for Hill's vortex is not readily amenable to this 
application and consequently only results for ">fPS and "x ! are 
presented. The orbits are characterized by the initial positior and 
velocity. The theta velocity is always selected by specifying 
p 0. The remaining velocities may be specified in three ways: 

1. H, y 
2. P r. P z 

3. v, Y 
where cos y ="p*"«*B**(pB)_ , v = (H - V 0)/V Q 5 and V Q is the value of 
the minimum of the potential. 

As verified by earlier work^ -' when the NEO code is run with 
p„ = - 1.19 and v = .5 a stochastic orbit results. The stochastic 
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nature of the orbit is evidenced in three ways. First, Fig. 3-8 
shows points sampled along the orbit fill, the energetically allowed 
region in r and z. Second, Fig. 3-9 shows the velocity direction at 
each point is irregular. Third, Fig. 3-10 shows the surface of 
section is random. The surface of section is the locus of r, p r 

points at z = 0. This oroit satisfies the assumptions which were 
used to derive'x '. Using the x( r>z) function given by 
Eq. (3-106) the orbit was followed 14,000 steps to yield x* ' = 
526.2. An additional run which followed the orbit 28,000 steps 
changed this result by only ,06%. Calculating "x^ s 9) a , \ ^ p ! l ° ) 
on a 30 x 30 mesh yields ' x ( p s 9 ) = 470.6, and ̂ p s 1 0 ) = 1019. The 
value of ̂ p s 9^ differs from ^ ° ' by 11% and the value of ^ p s 1 0 ) 

by 94%. Reasonable agreement is obtained for 7 '; however, 
~X ' appears to be inappropriate for this case. Apparently the 
argument used to derive the orbit average x* • using analytic orbits 
is not valid for the case of a stochastic orbit. This is because 
non-linearities preclude the determination of an analytic orbit and 
the motion can not be considered to be in any approximation 
oscillatory. In the same way the x orbit average ignored the 
constants of the motion in the oscillator case and did not agree 
with"x^ ', here~x ' anticipates oscillatory motion when it is 
absent and thus does not agree with "x ' when the orbit is 
stochastic. These comparisons point to the desirability of knowing 
when a third constant of the motion exist. 
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Figure 3-8. 0-bit positions sampled along a trajectory with 
P6 = - 1.19, v = .5. Contours are constant energy values. 
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Figure 3-9. Velocity direction arrows at orbit positions for 
Pe ' - 1.19, v = .5. 
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Figure 3-10. Surface of section for p e = - 1.19, v = .5. 
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3.6.5 Existence of Third Invariants 
An early consideration of the conditions for the existence of 

r 1541 

a third constant of the motion was undertaken by Whittaker.L He 
determined the conditions for the existence of a constant of the 
motion which is at most second order in the velocities, but his [1551 methodology was incomplete. Hall L J corrected this work by noting 
velocities are related by conservation of energy, and derived the 
conditions for the existence of an invariant of N order in the 

velocity. 

//N(z, r\ z, r) = Y, Y, I n m ( z ' r ^ m l"n"m ( 3 " 1 7 7 ) 

n=0 m=0 

Necessary and sufficient conditions for the existence of./., were 
derived from the expression for./., formed by substituting the 
equations of motion for 'z and r and using the relationship between z 
and r implied by conservation of energy. The existence conditions 
arise from requiring coefficients of velocity in./, to vanish. For 
this work z and r in Eq. (3-177) may alternatively refer to z and 
r - r„, where r„ is the radial position of the pot tial minimum 
defined by Eq. (3-175). In the following discussion attention is 
restricted to the invariants •/, and •'/. which are third and fourth 
order in the velocity respectively. 

The application of Hall's theory, for./, and./, with the 
Hill's vortex Hamiltonian reduces to finding a function of space, 
<t> which satisfies a Poisson equation subject to a constraint 
condition. The Poisson equation is below. 
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2 2 

L± + i|= T 
3 ^ 3z 

(3-178) 

In Eq. (3-178), T is twice the kinetic energy 2(E-V), which is only 
a function of space. For./, the constraint equation is as follows. 

.2, .2. 3_ 
3z \3z 3 r / 

2 9_ 
3r 

T 92<t> 
3z3r = 0 

The formula for./, in terms of velocity and $ is below. 

" ^ * 2'sir • T ? - " 2 

For./, the constraint equation is as follows. 

5*fr-y)"& JLA. . 3 f i t 
3r33z 3z 3r3z3 

') 

3 ([> 3 j> 3 <j) 
3r23z 3T 3r3zV 

0 

The formula fo r . / ^ in terras of veloci ty and <j> is below. 

,2 . „2 a 

./„ 2 0 Uz 2 3r2/ 
, '2 - 2 , t . S"* 

3z3r 

(3-179) 

(3-180) 

[3-181) 

(3-182) 

*2"2 - 8 z V 

In Eq. (3-182), F„ has the following de f in i t ion , 
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F O = - 2 / d z i ^ i F - 2 y d - w S • A & F " 2 / d 

(3-183) 

+ ^ ( r ) + f 2 ( z ) 

where, 

f 2(z)-f 1(r)= 41^0- ^ - 4 / d r f ^ 3T 
3r 

(3-184) 

• / 4 / dz 3 $ 
3z3r 

Both./, and .'/. require the solution of the Poisson equation given by 
Eq. (3-178). Because it is only necessary to obtain a solution § 

which satisfies Eq. (3-178) without regard to boundary conditions, any 
homogeneous solution may be added to <J>. It is then the homogeneous 
solutions which allow the flexibility needed to satisfy a constraint 
such as Eq. (3-179) or Eq. (3-131). Since V(r,z) is a polynomial in r 
and z it is represented as follows. 

V(r,z) = r - V g + J t C
2n-2m, 2m ^ ^ ^ ^ 

n=0 m=0 

From Eq. (3-175) it can be shown the minimum of the potential V moves 
outride the plasma, r n > 1 when p < - 3/2. Consequently it is u y 
necessary to obtain coefficients for Eq. (3-185) using the Hill's 
vortex formula for the region inside and outside the plasma. Because 
the exterior solution ib consist of inverse powers of r and z, the 
expansion in terms of r and z is designed to be accurate near the 
separatrix. Inside the plasma V(r,z) is exact. To obtain the 
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approximate exterior V(r,z) a change of variables is made, 

r = (p + 1 ) 1 / 2 sin 9 

z = (p + 1 ) 1 / 2 cos 6 

r 2
 + z 2 - 1 

(3-186) 

From Eq. (3-186) the expression for p shows p = 0 is the location of 
the separatrix and thus p serves as an expansion parameter near 
the separatrix. The Hill's vortex model is written in terms of p 
and 9 below. 

(3-187) 
iiK = | sin 29 (p 2 <• p) p < 0 

^ = \ sin29 (p + l)(l - (p + l)" 3 / 2j p > 0 

The objective in obtaining the C coefficients for Eq. (3-185) is to 
maintain continuity of value and first derivative across the 
separatrix. Since it is desired for V(r,z) to be exact for p < 0, 

it is necessary to expand (p„ - ty ) in powers of p to the same 
2 2 

order as (p Q - tyj . The expression below indicates (p. - tyy) 
must be expanded to at least fourth order in p. 

( p 9 - *<) 2 = P e ' 4 P 6
 s i r , E e ( p 2 + p ) + 15 s i n 4 e ( p 4 + 2 p 3 + p 2 ) 

[3-188) 

To aid in converting from p, 8 back to r,z coordinates ty is expanded 
p in powers of p up to fifth order. The quantity (p. - ty) then has 

9 > 
• 2 5 4 

sin 8 times powers of p up to p and sin 9 times powers of p up to 
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p . The p sin 9 term is replaced by an arbitrary constant times 
5 2 5 4 6 4 p sin 6 and the p sin 9 and p sin 9 terms are replaced by 

5 4 6 4 arbitrary constants times p sin 6 and p sin 6. The substitution is 
then made that p = p 1 - I, and the arbitrary coefficients are chosen 

2 so the polynomial in p multiplying sin 6 divided by p' is a constant 
plus a polynomial in p' and the polynomial in p multiplying 

4 2 
sin 9 divided by (p 1) is a constant plus a polynomial in p'. The 

2 - 1 2 2 2 
substitution is then made, sin 9 = (p 1) r , p' = r + z and 
sin 6 = (p 1)" r . The resulting C coefficients for the V(r,z) 
expression Eq. (3-185) are listed in Appendix B. Given the expansion 
formula for V(r,z) then T = 2 (E-V) is known and a polynomial 
solution for <t> can be constructed. 

* = p2
6 log r + ^ 2 V * ̂  ^ ( 3" 1 8 9 ) 

n=l m=0 

The A coefficients used in Eq. (3-189) are listed in Appendix C. 
Additional homogeneous solutions may be added to <j) using the 
following coefficient recursion formula. 

An,m+1 = " An,m ( n " m ) ( 2 n " 2 m " ] ) {m + 1 ) _ 1 ( 2 m + 1 ) _ 1 ( 3 " 1 9 0 ) 

However, the upper limit of n = 6 in Eq. (3-189) is compatible with 
the upper limit of n = 5 in the V(r,z) expression given by Eq. 
(3-185). 

As a preliminary step in constructing./, and -2. for the 
Hill's vortex the following potential has been investigated. 

VH(r,z) = - I A Z 2 + JB(r - r Q ) 2 + Cz 2 (r - r Q) + j D(r - r Q ) 3 (3-191) 
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From other work , formulas for approximate constants of the 
motion h been derived for V,, with arbitrary A,B,C,D values and 
exact L .nstants of the motion for several special choices. The 
Hill's vortex, Taylor expanded about >" = r„ and z = 0 to third 
order yields the following coefficient values. 

A = | (- 4 p 0 + 3 rj - 3 rj) (3-192) 

B = - L j (16 pj; - 8 p rj + 45 r§ - 36 r6

Q + 3 rj) (3-193) 
8 r Q 

C = I r Q (2 r2

0 - 1) (3-194) 

- - 3 j (- 16 p2

Q + 45 rj - 18 r$) (3-195) 
4 r b 

The special coefficient values for constants of the motion are A = B, 
C = D for exact -'A, C = 0 for exact .s^, 6C = D for exact •'/.,, 16A = B, 
!6C = D for exact •'/, and A = B, C = - D for approximate •/,. From 
Eq. (3-194) and Eq. (3-175) it can be shown C = 0 for p Q = - 3/16. 
Thus, the approximate third order fit to the Hill's vortex has an 
exact constant of the motion when p = - 3/16. In general, for 
- 3/2 < p. < - 3/16 the ratio B/A varies from 4 to 5, D/C varies 
from -5 x 10" 5 to -3 and 6C/D varies from -1.2 x 10 5 to -2. There 
is then no apparent exact invariant and approximate invariant 
formulas have been implemented for ./~ and •>'-. The main result of 
the approximate •#, and ./. invariant formulas for the V H potential 
having coefficients given by Eq. (3-192) is that -rA is not 
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appropriate for the Hill's vortex. This is illustrated by Figs. 
3-ll(a) and 3-11(b). For an orbit with p g = - .2 and H « V Q , Fig. 
3-ll(a) shows./, changes by 100% varying in sign and magnitude. 
Figure 3-11(b) shows./- has a .6% variation and thus demonstrates 
reasonable constancy. Furthermore, the surface of section plot in 
Fig. 3-12 is superpojP'' a contour plot of -^(r, z = 0, v , 
v z(v r)) and good a.j.-eement is apparent. The reason behind the 
constancy of -7. is understood by examining an alternate form of 
the Eq. (3-181) constraint equation. 

3_ (? 3T <£*> _ £ jb \ _ 4,8T> i±_ 
a*v 3 z U ? i? / a J a*a' 3i" I ' 3z \ ^ 2 3 r< Ij ^ a r ' 3r3z 

,2 , „2 A\ ,3 
•'fc (h.m. ZT J\) 

\dz 3rV 3z3r/ 

fc(»e($-&)*4,s>& 

Equation (3-196) shows when T is the sum of a function of r and a 
function of z then the constraint becomes, 

0=|I14-|I14 (3-197) 
9 2 3r J a r 3zJ 

= 0 

and thus the constraint equation for &. is satisfied identically. 
This means a small coupling coefficient for terms involving powers 
of both r and z in V(r,z) causes the constraint equation to be 
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closer to being satisfied. In the case of //, there is no automatic 
solution of the Eq. (3-179) constraint equation. 

For the complete Hill's vortex potential only5', has been 
implemented as a consequence of experience gained with the 
approximate V H potential. Additional motivation for the 
appropriateness of ./» is provided by arrow plots of particla orbits. 
Along an orbit at chosen time intervals the particle velocities may 
be recorded and an arrow of fixed length plotted with direction 
tan (v v" ) at the corresponding coordinate position. An example 
is shown in Fig. 3-13. This is an orbit with \> = 391 and p = - .208. 
The arrows in this plot indicate at orbit crossings there are four 
directions of the motion. Consequently the constant of the motion 
must be at least fourth order in the velocity. This fact is related 
to the invariance of v n e i n for n different values of 6 from zero to 

2TT. For n = 4 there are then four different directions allowed which 
4 leave (v + i v ) invariant. 

The previously derived <j> formula given by Eq. (3-189) can be 
seen to have six arbitrary coefficients A, •,, A~ ?, A, o, A* «, Ac 5, 
k, g. Because all other coefficients have been selected so the 
Poisson equation is satisfied, these six coefficients may be chosen 
to satisfy the constraint equation for •/.. A substitution of <t> into 
the //„ constraint equation yields a polynomial in r and z which has 

more than six terms. It is not then possible to satisfy the 
constraint equation with only six arbitrary coefficients. Adding 

more homogeneous solutions to <j> does not .lp since additional 
homogeneous solutions are of higher order and thus add more terms 
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than can be eliminated. The approach that has been implemented to 

achieve the best. / , invariant is to expand the constraint equation 
o p p p 

polynomial, written in terms of r1" and z , about r = r(, and 
z = 0 . It is then possible to use the six arbitrary coefficients to 
eliminate the constant, linear and quadratic terms in the expansion. 
This procedure has been accomplished using th^ REDUCE algebraic 
manipulation program. REDUCE generates subroutines which compute 
the coefficients of a system of six equations that are linear in the 
six arbitrary coefficients. A standard decomposition of a 6 by 6 
matrix into the usual LU product then yields the unknown coefficients. 
The result is a formula for//, for which <j> satisfies the Poisson 
equation and the constraint equation is satisfied to second order 2 2 near r - r~ and z = 0. The constraint equation may be guaranteed 
to higher order by adding more homogeneous solutions. In general, 
to go from satisfying the cons'raint equation at n order to n + 1 
order requires adding n + 1 homogeneous solutions to <j>. The actual 
./» formula with the constraint equation satisfied to second order 
is many pages long and thus not written here. It is however known 
and is available to be used to calculate a change of variables 
Jacobian which could be implemented to produce an orbit average 
formula particular to -7*. Such a formula would however only apply 
to low energy. Using the-?', formula with the constraint equation 
guaranteed to second order for this purpose is better than using the 
/J* formula based on the V,, potential with fitted Hill's vortex 

coefficients. Low energy H ̂ V,, orbits show the former formula is 
superior. An orbit with p„ = - .2, v = .01 had a variation of less 
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than a percent for the former formula, but a variation greater than 
5% in the latter case. 

Adding in more homogeneous solutions better satisfies the 
constraint equation, however this process is at best asymptotic. 
Otherwise in the case of a potential having stochastic orbits it 
would be possible to construct an invariant. The term stochastic 
here refers to an orbit for which correlations diminish in time and 
neighboring orbits diverge exponentially. 

3.6.6 Investigation of Conditions for Stochasticity 
Complementary to the effort directed at constructing constants 

of the motion a consideration has been given to the conditions under 
which an orbit is stochastic. One means of examining stochasticity 
is to transform to canonical variables'- J and express the Hamiltonian 
in terms of a function only of momenta and a perturbing function 
which may depend on all coordinates. ' -1 The reason for this 
approach is the resulting form of the equations of motion. 

H = G , ^ ) + e G g f Q ^ ) (3-198) 

9G„ 
P i = - e 3 Q T < 3- 1 9 9> 

3G, 
Q 1 = ̂  (3-200) 

Since e is a small parameter Eq. (3-199) implies P. is almost 
constant. If e = 0 then the particle orbit is a point in P. 
momenta space. For non-zero e the orbit tends to fluctuate near the 
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e = 0 point. When the small part of the Hamiltonian G 2 can be 
written as follows, 

G 2 = S Gkfi. ( P i > s i n ( k Q l + fi'Q2) (3-201) 
ks, 

then the fluctuations can be large if the argument of the sine is 
slowly varying, or when the resonance condition kQj + <tQ~ = 0 is 
satisfied. The magnitude of the fluctuation near the resonance is 
limited because Q depends on P and thus the resonance condition is 
detuned as P changes. The fluctuation magnitude or resonance width 

T1591 is approximated by ChirikovL J from a pendulum Hamiltonian obtained 
by expanding H about a resonance and then only keeping the resonant 
term in G«. The resonance width is then taken to be the momentum 
range between the separatrix which separates oscillating and 
circulating orbits. 

A P ^ ( c G k J l ) 1 / 2 (3-202) 

The momenta and hence the particle orbit behaves stochastically when 
the widths of two resonances overlap. In other work'- " J the 
Hamiltonian given by Eq. (3-198) has an e independent of P and Q 
and may therefore be used to determine a stochasticity threshold. 
For example in the work of Cohen,L ^ the basic motion is axial 
and radial bouncing and the perturbation is the effect of a 
quadrupole field. The parameter e then measures th? strength of 
the quadrupole field and indicates when this effect leads to 
stochasticity. In the case of Hill's vortex there is no independent 
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e parameter. The origin of stochastic behavior for Hill's vortex is 
understood by examining a canonical transformation of a separable 
Hamiltonian. In a separable two dimensional Hamiltonian the 
potential consist of two functions which each only depend on one 
coordinate, 

H = | (pf, + P2

Z + G 3(r) + G 4(2)) (3-203) 

In principle the solution of the equations of motion corresponding 
to Eq. (3-203) can be written as a quadrature by introducing the 
following generating function.'- ^ 

F(q,P) = /dr (2P1 - G 3 ( r ) ) 1 / 2 

(3-204) 
+ /dz (2P2 - G 4 ( z ) ) 1 / 2 

The generating function in Eq. (3-204) consist of old coordinates 
and new momenta and the following relations thus obtain. 

^ F 

pr = 3? 

= (2P1 - G 3 ( r ) ) 1 / 2 (3-205) 

3 F 
pz " 17 

= (2P2 - G 4 ( z ) ) 1 / 2 (3-206) 

Qi -aFj-

= /dr (ZP - G 3 ( r ) ) " 1 / 2 (3-207) 
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Q. aF_ 
'2 ' 3P 2 

= /dz (2P2 - G 4 ( z ) ) _ 1 / 2 (3-208) 

Substituting Eqs. (3-205) and (3-206) into Eq. (3-203) yields, 

H = P 1 + P 2 (3-209) 

and the new Hamiltonian does not depend on coordinates. Thus, P̂  and 
2 2 P„ are constants and p + G, and p r + G 3 are also constant. 

As usual Q = 3H/3P so Q 1 = t + C, and Q, = t + C 2, and r(t) and z(t) 
are implicitly defined by Eqs. (3-207) and (3-208). In the case of 

Hill's vortex there are terms in Eq. (3-185) which are products of 
powers of r and z, and the Hamiltonian can not be written as Eq. 

(3-203). It is then these coupling terms which prevent an obvious 
canonical transformation resulting in a Hamiltonian depending only 
on momenta, which would then be constant. In general, methods exist 

to transform a Hamiltonian to normal form. In this case the 
2 2 Hamiltonian is only a function of actions which are TT(P, + Q.). 

Birkhoff- ^ has derived a procedure which cast a Hamiltonian into 

normal form to a given order in the new canonical variables. As the 
order goes to infinity the normal form is obtained; however, there 
are questions of convergence of the procedure. Also Birkhoff 
requires the frequencies of the linearized motion to be 
incommensurate. In more recent work1- •* a normalization method 
has been derived which allows commensurate frequencies, including 
zero frequency, but even obtaining normal form at small order can 
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require an immense amount of algebra. Typically, algebraic 
operations are done on a computer. 

An alternative approach is to seek a generating function which 
transforms the Hamiltonian to the form of Eq. (3-198), with G~ 
similar to that of Eq. (3-201). The Hamiltonian valid for both y 

and i))<: with the appropriate C n m coefficients is as follows. 

H = ? (p2, + p 2) + ? r " 2 (p 9 - 4-)2 

(3-210) 

1 , 2 ^ 2 . ^ 1 - 2 2 ^ 1 v ^ - A r 2n-2m 2m 
2 (Pr + P z) + 7 r P 6

 + 7 Z, Z C2n-2m,2m r 

n=l m=0 

The goal of the canonical transformation is to obtain new momenta or 
actions which account for the zero order particle motion. Thus H is 

2 2 2 considered in an expansion about r = rQ and z = 0. From Eq. (3-210) 
-2 2 it can oe seen the r p term, which is present for all magnetic 

fields, causes the expansion to have an infinite number of terms. 
2 ? 2 The lowest order terms in the expansion are 4a (r" - r„) and 

46 z where, 

- 2-i(fjr) (3-2111 
o 

/3H_\ V), 'z =0 
A generating function is then constructed similar to Eq. (3-204) 

-2 2 taking account of all contributions from r p and considering 
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only 4a 2(r 2 - r 2) and 40 2 z 2, 

F(q,P) = /dr (8a2?, - 4a 2r" 2 p Q - 4a 2r 2) 
1/2 

1/2 
+ /dz (8B2P, - 4e 2z 2) (3-213) 

where, 

P 1 = a"1 P, (3-214) 

P 2 = B"1 P 2 (3-215) 

p e = p 2/(4a 2) (3-216) 

The canonical variables are P, and P 2, and the barred variables 
P,, Pp are convenient normalizations. The following definitions were 
obtained similar to the manner in which Eqs. (3-205) to (3-208) were 
derived. 

Q1 = sin-1 Ur2 - P^ (P2 - P 9)" V 2j (3-217) 

P 1 = (p2 + 4a 2r" 2 p e + 4a 2r 2)/(8a) (3-218) 

Q2 = 2 sin-1 (z (2?Z)~]/Z\ (3-219) 

P 2 = (P2 + 4B2z2)/(8B) (3-220) 

r 2 = ^ + (P 2 - p e ) 1 / 2 sin Q 1 (3-221) 
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z 2 = P 2 (1 - cos Q 2) (3-222) 

The Hamiltonian which results from substituting Eq. (3-217) to Eq. 
2 2 (3-222) for p r, p , r and z is in Appendix D. Considering as 

before the resonance condition kQ, + JtQ2 = 0 the relevant (k, i) 

values are (1,1), (1, -1), (2,1), (2, -1), (1,2), (1, -2), (1,0), 
and (0,1). The zero order Hamiltoniar, HQ. is assumed to consist 
of terms that only depend on momenta and are no higher power than 

cubic. Inside the plasma region this is exact; however, outside the 
plasma this is an approximation. The resulting coordinate time 
derivatives are below. 

' 1 9 H 0 

3 P 1 

"k (c2,o + 4 a 2 + F" cio,o pe • 1 c6,o p e ) 

+ a (2 C4,0 -T C8,0 P 6 ) P 1 

(C, ? - 7 Cfi ? Pfi'̂ P < 3 " 2 2 3 ) 7a" vlj2,2 " 7 u6,2 " V r 2 

3 ' 5 r 3 5 - — >-p-2 
2a 2̂ L6,0 " T~ L10,0 V 1 

+ 2a *2 C2,4 " 4 C6,4 P0^ P2 
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+ ^l\2-TrC8,2^f2 

3P2 

k ( C 0,2 + 4 g 2 + I C 8 , 2 Pe - ? C 4 , 2 pe> 

+ 1 {7 C0,4 _ ? C4,4 p e ) T 2 

+ fe ( C2,2 ' 1 C6,2 pe> Pl < 3 - 2 2 4 ) 

+ 73 ( ? C0,6 " 7 f4,G P 9 ) P 2 

+ 21 (2 C4,2 " T C8,2 P 9 ) P 1 

+ 6 (2" C2,4 ' 1 C6,4 P 6 ) P 1 P 2 

The resonance condition determines the resonance curves in momentum 
space. The excursions about the resonance curves are obtained by 
expanding HQ about a harmonic oscillator at position P-,Q, P^Q. 
The resonance condition and h,, h~, h,, h 4, h,- are written out in 
Appendix E. The expanded H„ is then below. 

H 0 = W P20> + MP1 "V + h 2 ( P 2 " P 2 0 > 
(3-225) 

+ K 3 ( p l ~ P 10> < P 2 - P 20> + V P 1 - P l < / + h5< P2 " P 2 ( / 
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Each resonance is examined separately by considering the Hamiltonian 
to consist of H Q and one trigonometric term. A canonical 
transformation is made to make the argument of the trigonometric 
function a single variable. The momentum conjugate to the cyclic 
angle is then constant. The resonance width is then given by the 
separatrix in the pendulum Hamiltonian. For the general sin (kQ, + 
JIQ2) term the resonance condition is =»s previously mentioned kQ, + 
JlQ2 - 0 and the following generating function is used to make Q 2 

cyclic. 

F(q,ir) = (kq1 + «}2)it1 + Q-,P 1 0 + q 2 ( * 2 + P 2 0 ) (3-226) 

The transformed coordinates are below, 

Q^ = kQ ] + JIQ2 

% = Q 2 

i., = (P, - P 1 0)/k 

TT2 = P, - P 2 0 - A(P 1 - P 1 Q)/k (3-227) 

Considering H„ expanded about P,Q, P 2 Q , neglecting constants and 
other trigonometric terms the Hamiltonian is as follows. 

H = ( kh ] + SJI 2)TI 1 + (h3kS. + h 4 k 2 + h 5 « , 2 ) ^ 

+ G k J l s i n Q ^ (3-228) 

The coefficient GkJ, is the coefficient of sin (kQ1 + £Q 2) written in 
Appendix D, expressed in terms of the expansion position variables 
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P10' P?0* T h e r e s o n a n c e width is then obtained from the following 
relations. 

.1/2 , 2 2, P 1 = P 1 Q ± k(26 k a)'"- (h3kS, + h4k + h 5 n 

(3-229) 
1/2 , 2 . 2 . ^ 2 

1 •' c / u 1. n j. u 1/ i. u ft*- \ P 2 = P 2 0 ± A(2G k t) ' (h3kA + h4k t h 5H 

The above formulas and the relevant resonance conditions for the 

Hill's vortex have been plotted as a function of pfi. For -.202 <. 

p„ < 0 there are three resonance conditions which are satisfied, y 

(1, -1), (2,1) and (1, -2). For -.325 < p Q < -.202 there are two 
resonance conditions satisfied, (1, -1) and (1, -2). For p < -.325 
there is one resonance condition satisfied, (1, -2). The plots of 
resonance conditions show ranges of P, and P„ which correspond to 
overlap and thus an orbit which has these values would be predicted 
to exhibit stochastic behavior. The resonance condition predictions 
have been explored with corresponding orbits in the NEO code. It 
was found orbits that exhibited excurions between three resonances 
appeared to be regular. Also, no stochastic behavior was evident in 
surface of section plots. These results occurred for P, > 1, P 2 

> 1 and consequently in this range the underlying assumption that 
G^. is small compared to H Q is violated. An alternate symptom that 
an assumption has been violated is that the resonance widths are of 
the same order as P.0, P„ 0. The difficulty stems from the non-
constancy of P, and ?y which indicate? these variables are not 
adequately describing the zero order motion. In a different regime 
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where P, < .11 and P~ < .1, the resonance widths are smaller than 
P, Q, Pp Q. The resonance curves for p. = -.196 and p. = -.202 ^re 
shown in Figs. 3-14 and 3-15 respectively. At p Q = -.196, there 
are three resonances and for P„ w 0, P-j « .1 the (1, -1) and (2, -1) 
branches are nearby. At p„ = -.202, the (2, -1) resonance condition 
is not satisfied and for P ? « 0, P1 « .1 there is only the (1, -1) 
resonance. To investigate the effect of the resonances two orbits 
were followed. The first at p„ = -.196 and the second at p„ = -.202. 
In each case the energy was chosen as 6% of the axial loss value. 
For p Q = -.196, .098 < P, < .1, .01 < ?2 < .045. For p Q = -.202, 
.1 < P, < .11, .01 < P ? < .037. In both cases it can be seen P, 
is nearly a constant. The surface of section v r versus r at z = 0 is 
qualitatively different for the two orbits. The p Q = -.196 surface 
of section shown in Fig. 3-16 exhibits rippling and begins to show 
the breakup of a smooth structure. This is the case where the orbit 
has P,, ?2 values that intersect two resonance curves. In Fig. 3-17 
for p„ = -.202, the orbit is only under the influence of one 
resonance and the surface of section is regular and very smooth. A 
change of only 3% in the value of p. results in an irregular surface 
of section. The small p change brings in another resonance curve 
and this is responsible for the irregular surface of section. At 
small values of P-,, P~ the interaction of several resonances with an 
orbit causes surface of section irregularity; however, the total 
lack of structure characteristic of stochasticity has not been 
observed. At large values of P,, P ? where the orbits are stochastic, 
this implementation of resonance overlap theory does not apply since as 
discussed previously the coordinates are inappropriate in this regime. 
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CHAPTER 4 

LARGE LARMOR RADIUS KINETIC EQUATION MODEL 

4.1 Introduction 
The large Larmor radius effects are incorporated in the plasma 

description by considering the electrons as an inertialess fluid and 
modeling the ions with a distribution function. The electrons are 
governed by a continuity and momentum equation, and quasineutrality 
is assumed. The ion distribution function is required to satisfy a 
kinetic equation. Due to the complexity of the problem axisymmetry 
is assumed and only a radial spatial variation is allowed. The 
formulation is thus one dimensional. 

The plasma is subject to a magnetic field obtained from the 
cylindrical coordinate theta component of the vector potential. This 
restricts the magnetic field to be poloidal and in one dimension 
there is only a 8 magnetic field. The vector potential is 
obtained by solving Ampere's law with a current which is the 
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difference between the theta velocity moment of the ion distribution 
function and the density times the theta electron fluid velocity. 

The kinetic equation is formulated in terms of a Poisson 
bracket with the system Hamiltonian. The Hamiltoman and the ion 
distribution function are expanded using collision frequency as an 
expansion parameter. By applying the orbit average to the hierarchy 
of resulting equations a kinetic equation for the zero order ion 
distribution function is obtained. This procedure is similar to the 
method used to derive neoclassical diffusion however, the actual 
orbit has been averaged rather than just the gyro-orbit. 

The time evolution of the zero order ion distribution function 
requires an initial condition. To generate self-consistent electric 
and magnetic fields, the electron equations have been solved in 
conjunction with an idealized ion distribution function. Assumptions 
have been made to generate completely analytic self-consistent 
electric and magnetic fields. More realism is possible by relaxing 
assumptions and proceeding with a numerical solution however, the 
analytic solution shows the effect of the radial electron velocity 
and the resulting electric and magnetic fields. 

4.2 Analytic Electric and Magnetic Fields 
The off axis tangential neutral beam injection experiments in 

2X11B did not achieve field reversal as discussed in Chapter 1. It 
was proposed that electron dynamics were responsible for this result. 
The hypothesis was the electrons cancelled the intended dominant ion 
current by electron ion drag and drifts caused by radial electric 
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fields. A model to study the electron effects was proposed by 
Baldwin and RensinkL •* and forms the basis of the electron model 
in this analysis. Their electron model consists of quasinautrality, 

0 = £ n.Z. - n (4-1 ] 
j J J e 

and the electron momentum equation, 

0 = - e (E + c"1 v e x B) - n; 1 V n j e 

+ V e i ^ 1 S n j Z j

2 (»j - ve) (4-2) 

where j is the ion species subscript, e is the magnitude of the 
ch=rge of the electron, subscript e refers to electrons, Z, is the 
ion charge state and the electron ion collision frequency is defined 
below. 

v e i - 4 n e 2 1 ' 2 , e 4 X ( 3 m|/ 2 i f 2 ) " 1 (4-3) 

In Eq, (4-3), X is the coulomb logarithm given by Eq. (2-47). The 
collision term in Eq. (4-2) is treated as linear in the velocity 
difference. This approximation has been derived by Braginskir -1 

by expanding relative electron ion velocity in terms of ion velocity 
in the collision operator, neglecting terms of order m m". , and 
approximating the electron distribution as a perturbed maxwellian. 
The other feature of Eq. (4-2) is the absence of the m d v /dt inertia 
term, which implies the electron mass is assumed small or the 
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electron response time is instantaneous. This is the inertialess 
fluid approximation. 

An additional equation beyond the Baldwin, Rensink model which 
applies to the electrons is the continuity equation. 

JT*V' V e 1 = S ( 4 _ 4 ) 

I a) 
In Eq. (4-4) S 1 ' is the electron source function. 

Maxwell's equations without displacement current are used to 
-> -+ 

solve for E and B. The magnetic field only has a poloidal component. 

->• 

B = Vifj x V6 (4-5) 

B =-I|4 (4-6) 
r r 9z v ' 

B = i | ^ (4-7) 
z r 3r v ' 

In Eq. (4-5) as before i> = rA„ where A„ is the theta component of 
the vector potential. Ampere's law neglecting displacement current 
then yields the equation below. 

Vx (7v}> x V6) = 4nc - 1 J (4-8) 

Faraday's law yields an electric field of the following form, 

E = - c"1 V9 || - V* (4-9) 

where <)> is the electric field scalar potential. The electron 
momentum equation, Eq. (4-2) is written in terms of resistivity n and 
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current using Eq. (4-9) for E. 

0 = c" 1 | | TO + V* - c _ 1 v e x B - (en e ) _ 1 vn jg 

+ n ( J . jOhkawaj ( 4 . 1 0 ) 

In Eq. (4-10) the following definitions are used, 

J = e 2-r n,-v4Z. - en v j J J J e e (4-11) 

"Ohkawa = e £ n ^ Z j ( 1 . Z j < z > - 1 } ( 4 . 1 2 ) 

n = V e i < Z > ( e 2 n

e ) _ 1 ( 4 " 1 3 > 

<Z> = n;1 Yi r y * (4-14) 

In a steady state, axisymmetric, one dimensional system the 
electrons are modeled by six equations, with six unknowns n 
(el S v , ip, <)>, v , v. . The electron temperature T is actually 

specified by a heat or energy equation, however for the purposes of 
this model T is given an assumed functional form or used as a free e 3 

parameter. Introducing another equation would bring in the heat 
flux which would then have to have some assumed form. The ion 
quantities in the six equations, such as n., v ., v.. are assumed to 
be obtained from moments of a known ion distribution function. The 
electron density is defined in terms of ion densities and charge 
states by the quasineutrality condition, Eq. (4-1). 
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n = X ) n Z (4-15) 

The continuity equation, Eq. (4-4) in steady state is used as a 
(e) means of determininq S after n v is known. This is actually a 3 e re 

[ P) consistency condition because usually S*'' is defined initially and 
ne vre i s d e t e r n n n e c l ' T n e equation below defines a source function 
which must have existed to generate! the n gv r e which is really 
constrained by the choice of ion distribution function. 

S( e> = 1L. (rn v ) (4-16) 
r 3r l e re' 

The theta component of Ampere's law in Eq. (4-8) is used to determine 

JL (1 M\ 
dr \ r 3r/ - 4TTC"1 J 0 (4-17) 

The radial component of the electron momentum equation, Eq. (4-10) 

provides an equation for <j>. 

2 i = ( re ) " 1 v i i + (en ) _ 1 i (n T ) 3r {rc> v6e 3r [eue> 3r l " e V 

- n ( J r - J ? h k a w a ) (4-18) 

The radial electron velocity v is obtained from a rearrangement of 

the radial component of Ampere's law, Eq. (4-19). 

J r = 0 (4-19) 

v = n _ 1 £ n.v .1. (4-20) 
re e •y"' j rj j ' 
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The theta electron velocity results from the theta component of the 
electron momentum equation, 

3VJJ L 3v|) ,, ,0hkawa> ,. „,. 

at + v r e # = " rcri ( Je - J e > ( 4 " 2 1 > 
written in steady state. 

V " V e < r c * > " 1 S ? + J 8 h k M ' a ( 4" 2 Z ) 

The first term on the right side of Eq. (4-22) is analogous to the 
bootstrap current*- J in tokamak theory. The second term is the 
Ohkawa current1- -1 which was first studied in an application 
related to neutral beam injection of tokamaks. The Ohkawa current 
is relevant in this application since Eq. (4-22) shows near the field 
null (3i|t/3r = 0) J. vanishes without an Ohkawa current. From Eq. y 
(4-12) it can be seen j ° h k a w a is zero if all ion species have the y 

same average velocity or charge state. Thus, it is necessary to 
have ion species of different charge states or average velocities to 
maintain a current at the field null. Baldwin and Rensink argue 
that an assumed field variation of B = p a, gives J„ = p 
from Ampere's law where p is distance from the field null and Eq. 
(4-22) then implies v r e = p" 1 if j O h k a w a = o. It is then necessary 
to have an Ohkawa current to avoid a singular electron velcoity at 
the field null. They further conclude from the diffusion character 
of Eq. (4-21) an initially nonreversed field can not become field 
reversed without an Ohkawa current. Substituting Eq. (4-11) and Eq. 
(4-12) into Eq. (4-22) yields the equation for v„ . 
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V = ^ e ) " 1 ( W e n ) " 1 j * + e E ^ . l 2 . <Z>"1) (4-23) 

It can be seen from Eq. (4-23) that near the field null v. is almost 
totally determined by the second term on the right side. From Eq. 
(4-22) this is a statement that the current Jfl is essentially equal 
to jj 

9 
n0!iKawa 

4.2.1 Zero Radial Electron Velocity 
The condition J Q = j ° h k a w a j S satisfied at the field null. 

Assuming v . = 0 then from Eq. (4-20), v r e = 0 and J Q = j O h k a w a 

everywhere. Any function of the constants of the motion satisfies 
the Vlasov equation and as shown in a later section it is thus 
reasonable to assume the ion distribution function depends on H, 
p„ and p . The Hamiltonian H is even in p so the p velocity 
moment of the ion distribution function is zero and v . = 0. The 
radial electron velocity is thus set to zero and v Q is obtained from 
Eq. (4-23), substituting the definition of <Z> from Eq. (4-14). 

v Q„ = ( Z n.Z^) 2 n,vn,Z? (4-24) 

The condition v . - 0 also changes Eq. (4-18) as follows. 

^-(rO-S^gLMen^lp^V (4-25) 

Solving Eq. (4-25) requires the ion distribution f • to obtain 
n,.v„.. It is then possible to calculate J a and solve for TJJ by Eq. 
(4-17). In general J„ depends on $ and I|J, and Eq. (4-25) must be 
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solved simultaneously with Eq. (4-17). The coupling between these 

equations is avoided using a formulation by Marx L as extended by 

Post.1- J The distribution function is assumed to be a delta 

function in H and p f l and constant in p , 

f. = R 0n 0. Orm.)-' 6(H - H Q j ) 6 (p Q - p Q j ) (4-26) 

In Eq. (4-26) R n is the position where density n n- occurs. The Oj 
density is obtained from a velocity space integration over f. 

n J = / f J d p r d p 9 d P z 

In Eq. (4-27), 

Pe = m v e 

r"1 (p6 - eZj.c"1^) 

(4-27) 

(4-28) 

where p Q is the usual canonical momentum. To integrate f. which is 

a function of H, p Q, p^ a change of variables Jacobian is used. 

3(n, P o ; 
3(P r, P^) = m. r p r 

(4-29) 

Expressing p r in terms of H, p Q, p 2 using Eq. (3-21), and 
substituting in Eq. (4-27) yields the following equation. 

n. = r~ m J f . d H d p e d p 2 

(2 m j(H - eZj(|,) - r"2 (p e - eZf-\) - v\ ) 

(4-30) 
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Let, 

« j = (2 nij ( H 0 j - e Z ^ ) ) 1 7 2 (4-31) 

and substi tut ing Eg. (4-26) in Eq. (4-30) y ie lds , 

-1/2 
n j = "Oj h ^ ' ] f d P 2 ( a j " r * <P0J " e Z j c _ 1 ^ " Pz) 

= n 0 j R0 r" 1 (4-32) 

In Eq. (4-32) the l imi ts of integration are 

± ( a j " r " 2 ( p0j " e V - V ) 1 / 2 . 
The current for species j is obtained from a veloci ty space 

integration over v . f . . o j 

J 9 j = S Z j / V j d p r ^ d p z < 4 " 3 3 > 

Changing variables to H, p g , p y ie lds , 

J 9 . = eZ..r 
? f (PQ-eZ jC- 1 ^ ) f j d H d p 6 d p z 

J ^ (2m (H - eZj(),) - r^ (p 6 - eZ^c V - p^) 

v - i 
• e ZJnOjRo ( v T ( p o j " e Z j c _ 1 *) <4-34> 

From J e = j ° n k a w a

 and Eq. (4-12) with Eq. (4-34) the current is 

below. 

J e = 2 e Z ^ R ^ m y 2 ) ( p Q j - eZjC - 1 *) (1 - Zj<Z>) (4-35) 
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The Post1- J result solved for ty with no electric field $ = 0. 
Comparing the current in the work of Post with Eq. (4-35) it can be 
seen the functional dependence is identical and only constant 
factors differ. Thus, the previous $ = 0 solutions obtained for i< 

by Post are still applicable with modified constants for this case 
which includes an electric field. Because Eq. (4-35) does not 
depend on 4>, Eq. (4-17) used to solve for \J/ is uncoupled from 
Eq. (4-25) used to solve for $. Thus, v|i may be assumed to be a known 
function of r and Eq. (4-25) may be integrated after obtaining an 
expression for v„ , 

S n j z j = V"1 s ( 2 ) { 4~ 3 6 ) 

= r" 2 ( c R 0 S ( 0 ) - c R 0 S ( 5 ) ^ S ( 2 ) (4-37) 

( r e ) ' 1 v Q e = r ' 2 ( S ( 0 ) - S(5)<1-) (4-38) 

The def in i t ion of the s ' 1 ^ constants fol low. 

» ' " - ? ^ (4-40) 

s ( 2 ) " 2 noj z j < 4 - 4 1 ) 

S ( 3 ) = e _ 1 2 n 0 j H 0 j Z j 
(4-42) 
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S<4> = S<3>/S<2> (4-43) 

-1 
S(5l=fA2) Ezj V:' (4-44) 
S { 6 ) = .5n T, n 0 j H o j (l - Zj. <Z> _ 1) (4-45) 

<Z> * S ( 2 ) / S ( 1 ) (4-46) 

Substituting £q. (4-38) and Eq. (4-32) into Eq. (4-25) yields the 
following equation. 

& = * ( 0 ) ( I F e - 2 *> + ^ ) - s ( 5 ) ( I F < • * r Z h + r"V) 

^"A^-^e) < 4" 4 7> 
Integrating Eq. (4-47) gives an expression for <j>. 

• - S ^ r " Z
+ - .5 S<5> r"V + e"1 T e 

+ 2 S < 0 > / r - ^ d r - S < 5 > / V V d r 

- e ^ / r " 1 Te dr (4-48) 

Assuming a radial variation of T and using the Post formulas for \p 
it is possible to calculate $. A numerical solution is possible, 
however analytic progress is inhibited since i|> is expressed in terms 
of modified Bessel functions and it is thus necessary to integrate 
products of modified Bessel functions. It is however possible to 
gain information from Eq. (4-48) concerning the cross field variation 
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of density. Assume T is constant and rewrite Eq. (4-48). 

. T-1 .. c(0), -2 T-l c .-(5),2 -2 T-l ed> T = Jin n + eS v 'ty r T - .5ebv > r T 
T g g r g T g 

+ 2S ( 0 ) T~ 1 e /<|> r" 3 dr - S * 5 ^ 1 / ei|>2 r" 3 dr (4-49) 

The magnitude of the various terms can be estimated for typical 
parameters. The first ter.n on the right side of Eq. (4-49) is of 
the Boltzmann form and leads to the relationship n = n Q ee<^ e. 
The scaling of the first term is approximately 10. The other four 
terms on the right side of Eq. (4-49) are a consequence of the v x B 
term in the momentum equation. The second and fourth terms scale as 

2 1 2 2 
epgip (L m.c T ) . Approximating ty as BL , T g as m.v /3 (Tg/T.) 2 and p Q as m.v L + eBL /c yields the following result, 

epgipfrVjC Tg)" 1 = (L + l A " 1 ) 3 aT 1 ( T ^ ) (4-50) 

where a. is ion gyroradius and L is a scale length. Usually a- is 
half or a third L so the second and fourth terms are about 20 
T./T. For ions one to ten times hotter than electrons these terms 

are ZJ to 200 times larger than the Boltzmann term. The third and 
2 2 2 2 1 fifth term scale as e i|i (mc L T ) . Using the previous assumptions 

yields the following result. 

e V (mc 2L 2T e) = 3 L 2aT 2 T^T, (4-51) 

The scaling in Eq. (4-51) is the same as Eq. (4-50) so again the 
third and fifth terms are 20 to 200 times larger than the Boltzmann 
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term. Thus, it is inappropriate to assume the Boltzmann relationship 
for density across the magnetic field. 

The formula in Eq. (4-48) is not tractable analytically using 
the \\> from the Post solution. Also as can be seen from Eq. (4-32) 
the density has a singularity at r = 0. To resolve these difficulties 
an alternate ion distribution function has been devised. 

fj = c n Q J (eir(i|»0 + V ' j V " ' 6 ( P Z ) 6 ( H " H 0 j ) ( p 9 + e Z j c " 1 , | j c ) 

(4-52) 

In Eq. (4-52), n f i. is the density at i|> = i|u which is the magnetic 
axis position. It follows from the definition of B, that i|)Q < 0 and 
ty is a constant chosen less than zero so i|>0 + \p < 0. Consequently 

to maintain a positive f . it is necessary to require p. + 
J o eZ-c~ ip < 0. This restricts the class of particles mainly to those J c 

which are absolutely confined or confined by the orbit potential as 
explained in Chapter three. Using formulas given by Eq. (4-28), Eq. 
(4-30), and Eq. (4-31) yields the following formula for the density. 

n j = c n 0 j *<*o + V e Zj r ~]f-*—/ \ , _,\W 
}f ( mjV 6r + eZjc" (I|I + i>c)) rd (m^Vg) 

-1 

4 - W)' 
n 0 j (* + +c) (*0 + * c f (4-53) 

In Chapter 2 in the magnetohydrodynamic limit of small Larmor radius 
it was found pressure and density were functions of ty. In the ion 
distribution function description which allows large Larmor radius 
particles it is unusual to obtain a result like Eq. (4-53). The 
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current for species j is obtained in a manner similar to the 
derivation of Eq. (4-34), 

V- = ^mi^n + lUm,-r) i r m j V m j v e r + e Z j c " ^ + ^^T d ^ m j v e y O j * " ^ 0 T V m j " / 7 , o _9\l/2 
a.(l - * 2 V | a"2) 

cn 0 j (*0 + ^ f 1 ( H 0 j - eZj<D)r (4-54) 

In contrast to Eq. (4-34), J „ . in Eq. (4-54) depends on $ which 

has the potential of coupling the equations used to solve for \|> and 

<t>. From J f l = j ° n k a w a and Eq. (4-12) with Eq. (4-54) the expression 

for Jg is derived, 

J Q = c r U 0 + * c ) - ' Z-r ( H Q j - eZj*) (1 - Z . <Z>"') 

= 2 c S ( 6 ) ( i r (* 0 + i>c))-] r (4-55) 

+ t j - l 2 > - * . * " . -.--!• 

As a result of the following relationship there is no coupling. 

? nojzj ( 1 " zj < z > _ 1 ) = ° ( 4" 5 6 ) 

Using Eq. (4-53) and Eq. (4-54) the relationships below are derived. 

S ry* = S { 2 > (4-0 + \ ) ' ] (* + * c) (4-57) 

= re U Q + * c ) - ' ( S ( 3 ) - S ( 2 )4) (4-58) 

(re)"1 v 9 e = (* + ̂ J " 1 ( S ( 4 ) - $) (4-59) 
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Substituting Eq. (4-59) and Eq. (4-53) into Eq. (4-25) yields the 
following equation. 

f- = ( * + * c ) _ 1 ( S f 4 ) - O O ^ + e - 1 (++ ^ T 1 | r ( * + ^ c)T e (4-60) 

From the form of Eq. (4-60) if T e is assumed to be a function of \|> 
then <(> may be assumed to be a function of \|i and the r derivatives are 
changed to ty derivatives. 

f j = (* + * c ) _ 1 ( S ( 4 ) - *) + e_1(i|.+ % ) ' ] f ^ U * iPc)Te (4-61] 

Using ip + \p as an integrating factor and then integrating Eq. (4-61) 
yields an expression for $. 

4, = S(4)i|> (* + Hc)-] + e"1 T e (4-62) 

The solution in Eq. (4-62) is for the plasma region r < R s e D» inside 
of the separatrix. Outside the plasma $ satisfies Laplace's 
equation. 

7 W (r f) = ° < 4 - 6 3 > 
The general solution of Eq. (4-63) has two constants c-,, c ~. 

*< r > Rsep> = cpl + °P2 *n r ( 4" 6 4 ) 

The constants c ,, c ~ a r e chosen for continuity of $ and 3<j>/3 
at r = R or if the plasma is in a conductor the constants c 
chosen for the potential value at the conductor and at r = R sep 
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The magnetic field and \\i are obtained from Eq. (4-17) with 
J„ given by Eq. (4-55). 

The solution of Eq. (4-65) introduces an arbitrary constant BQ. 

ip = - .5 B Qr 2 - S ( 6 ) (<Po + * c ) - 1 r 4 (4-66) 

For consistency it is necessary that ty have the value ipg at the 
magnetic axis r Q. For S* ' > 0 and <|>Q + <|>„ < 0 the following 
formula is obtained. 

r Q = (-BQ (*Q + * c)/(4 S ( 6 ) ) ) 1 / 2 (4-67) 

The constant B Q is then determined, 

B0 = 4 ( s ( 6 ) *0 % + V / ( 4" 6 8 ) 

Substituting Eq. (4-68) into Eq. (4-66) gives the v(i solution. 

* = -2 (s ( 6 )r|i 0(+ 0 + 4>c)"]) r 2 - S < 6 ) (*0+ \ ) A r 4 (4-69) 

The exterior or vacuum solution satisfies 

which has a solution with two constants. 

*vac= cl + c 2 r 2 ( 4" 7 1) 



248 

Requiring continuity of ip and 9V3»" at r = R determines c-| and 
Cp • 

J/2 

From Eq. (4-69) and «l>(Rsep) = 0, and Eq. (4-67) and Eq. (4-68) the 
following relations are obtained 

r o = (*o(,"o + Ws{6)) (4_73) 

Rsep = 2 l / 2 '0 ( 4" 7 4 ) 

The total current per unit length in amps is obtained by multiplying 
the right side of Eq. (4-65) by -10(4TT)~ and integrating from 0 to 

= R sep 

2 0 I' ^ (4-75) total -n \4>0 + \|> 

4.2.2 Finite Radial Electron Velocity 
The self consistent $ and i|i solutions in Eq. (4-62) and Eq. 

(4-69) were derived assuming J Q = J^ a w a. To examine the region 
of validity of this assumption it is necessary to estimate the 
deviation of J„ from J Q

 a w a. An approximate formula for v has 
been derived in other work1- -1 related to the 2X1 IB experiment. 

v r e = 300 (r - r 0) (4-76) 

The speed of light times resistivity is below with T in eV. 
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en = 4.2 x 10" 3 r 3 / 2 cm-statohm (4-77) 

The current difference is obtained from Eq. (4-22), using Eq. (4-77) 
for cri, and Eq. (4-76) for v . 

,0hkawa , , 1r,4 , > „ T 3/2 ,, 7 D > 
J Q - J Q = 7 x 10 (r - r Q) B z T e (4-78) 

The right side of Eq. (4-65) multiplied by c(4n)~ gives an estimate 
of j ° n k a w a i n terrno of density and energy in eV. 

jOhkawa = 4 > 8 x 1 Q-6 n H ( 4 . 7 g ) 

Assuming a magnetic field of 2 kilogauss, a product of nH of 10 and 

r - r Q = 10 gives the following relationship. 

(J e- j0hkaw a ) / J0hkawa a Q ] 5 ^3/2 ( 4 . 8 C ) 

Thus the J D = jOnkawa r e s u ^ t s apply when the electron temperature 
is small. At 5 eV, Eq. (4-80) gives a value of .17 and at 100 eV, a 
value of 15. 

Allowing a finite v requires the ion distribution function 
to have a nonzero radial velocity moment. This means f. in Eq. 
(4-52) must have a correction added to it which yields a finite 
v .. This correction is small and it is assumed Eq. (4-20) is 
satisfied, but the v . = 0 formula is used for n.. 

The theta electron velocity is obtained from Eq. (4-23) which 
now includes the v term. The equation for <(> is obtained by 
substituting Eq. (4-23) into Eq. (4-18). 
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| f = B z (cn e r 1 ( v ^ c n e ) " 1 • <Z>"] E n . v ^ ) 

+ "e1 I? < neV 

+ ne <Z>- ] Z r»jZj (v.. e - v r J ) (4-81) 
J 

The previous equation for i|>, Eq. (4-65) is modified by a term linear 

i n v r e " 

38 
IF i = - 8 S ( 6 ) «.„ + i ^ ) " 1 r + 4 w r e B z ( n c 2 ) (4-82) 

Assuming v is a known function of r, the solution to Eq. (4-82) may 

be wri t ten as two quadratures. 

2»-l ,_ - ft_. ,_-2x-1 /4nv r e(ncV dr r -/4*v ( n c V dr ,fi\ , » re1 I ^ r e 

- 8 S W (i|)Q + ijJc)" e | r e dr / 

/4irv (nc2)'1 dr 2i-l 
, nr 

rev 

- 8,0 e (4-83) 

Further progress toward an analytic solution requires a model for 
T (r) and v

r e ( r ) - The electron temperature is assumed to be 
constant. The equilibration around a flux surface is much more 
rapid than across a flux surface so the electrons are lost by moving 
away from the magnetic axis, A step model is the first approximation 
to this behavior and thus the radial electron velocity is v = v Q 

when B > 0 and v r e = - v Q when B 2 < 0. 
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In the remainder of this section subscript - denotes below and 
subscript + denotes above the magnetic axis or field null. The 
exponent integral in Eq. (4-83) has two formulas, 

-1 ("ar r < r0 
Airv (nc2) dr - J (4-84) 

J r e V ' lar - 2 a r 0 r > r Q 

2 - 1 where a is the absolute value of 4irVg(nc ) . Substituting Eq. 

(4-84) into Eq. (4-83) gives the magnetic field solution. 

B, = - 8S 
ffî  -1 -1 -? a ( r n " r ' _2 -1 
[ ' (*0+ \ ) (ra - a + e (a - r Qa ')) 

(4-85) 

[ b > (*„ + *J ' (e ° (a l + r na ') - r« ' - a ') 

(4-86) 

B z + = - 8 S V U / (n»0 + * c) (e (a + rQa') 

It is necessary that B (r Q) = 0 and this condition expresses the 
arbitrary B g constant in Eq. (4-33) in terms of S l , ita, i|i , 
a, and r Q. 

B z 0 = 8 S ( 6 ) (4<0 + ig" 1 (r 0o _ 1 + a - 2 ( e ^ 0 - l ) ^ 0 " " 0 (4-87) 

The formulas for \p are obtained by mult iplying Eq. (4-85) and Eq. 

(4-86) by r and integrating with respect to r. 

i|>_ = - 8 S ( 6 ) (i|i0 + i^)" 1 r 3 ( 3 a f 1 - r 2 a" 2 / 2 

- ( r e V 1 + a " 2 (e " a r - 1)) (a" 2 - r ^ ' V °) (4-88) 
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j , + = ̂  - 8S ( 6 )(* Q + ̂ r 1 ((r3 - r 3 ) ^ ) - 1 + (rj - r2)(2a2) 

+ (a S + r Q a £) (re U - r Q + a ' (l - e U ))) (4-89) 

The ty and B solutions are used in Eq. (4-81) to solve for $. 

Using Eq. (4-59), Eq. (4-82), and Eq. (4-53) for n. , in Eq. (4-81) 

y ie lds, 

! £ a ( * 0 + * c ) ( e 4 u S ( 1 ) ( * + * c ) ) _ 1 B i - g ^ + 8 S ( 6 ) r ( ^ + ^ f 1 

+ (¥ + \ ) ' ] §£• ( S ( 4 ) - <D) + e _ 1 y * + ^ T 1 | , U + ^ J 

± S (ll) + \Li ) (4-90) 

where +S is used for r > r „ and -S for r < r Q . 

^ • ^ ( s ^ ^ * ^ ) ) - 1 S n 0 j Z 2 ( Z n, Ok z k ( v rk ~ w n ] 

(4-9 i ; 

Mult iplying Eq. (4-90) by y + v|i., and integrating gives the 

following solut ion. 

= e ' l e + 5' ' + ^S^-'(S^ 'etrj + c p h ( ( * + v|»c) 
• 1 T + S ( 4 ) + 2 S ( 6 ) ( l ) e T t ) + 

B2 ( *0 + *C ) ( ( * + *C} S ( 1 ) e 8 l T ) " (4-92) 

+ W* + *c) V r - r o> L V " n - V - ' o W p i 
k=2 ' 

• 
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In Eq. (4-92), c . . is a constant and H is the step funct 
0 

ion. 
jl x > 
10 x > S In .. . Q 

The I . functions are related to the integral of flux squared. 

I n 1 - / (*< + % ) 2 dr (4-93) 

S Jpk = / (*> + *c ) 2 d r + / ° (^< + V* d r (4"94) 

0 

The formulas for I k are in Appendix F. In Eq. (4-92) the i|> function 
is understood to be ty_ for r < rg and ty+ for r > r„. 

4.2.3 Results for Finite Radial Electron Velocity 
The formulas for <t>, E , i|>, and B derived in Section 4.2.2 are 

plotted for two cases to illustrate the effect of the magnitude of 
v . For the step model the variable that is changed between the 
two cases is v Q. In the first case v Q = 10 cm/sec and in the second 
case v„ = 100 cm/sec. The complete set of parameters for the two 
cases are listed in Table 4-1. A charge state two, impurity at 5% 
the main density and one sixth the main species energy yields an 
effective charge state of 1.09. 

The total current per length of -457 amps for Case I and -470 
amps for Case II is almost the same. As a result the plot of t|̂ r) 
in Fig. 4-la, for Case I and in Fig. 4-1b for Case II are nearly 
identical. The magnetic axis position is at r = 10 cm and the 
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Figure 4-1. One dimensional equilibrium i|j(r) (a) v r e = 10, 
(b) v r e = 100. 
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I I I 

n l 
13 -3 1 x 10 I J cm J 1 x 10 1 3 cm"3 

n 2 5 x 10 1 1 cm"3 11 -3 
5 x 10 cm J 

z l 1 1 

z 2 2 2 

H01 3 keV 3 keV 

H02 .5 keV .5 keV 

v r l 10.05 cm/sec 10.05 cm/sec 

v r 2 9.502 cm/sec 99.95 cm/?..: 

<2 > 1.09 1.09 
I -457 amps -470 amps 
T e .1 keV .1 keV 

v r e 10 cm/sec 100 cm/sec 

a 9.13 x 1U" 4 9.13 x '0 " ° 

Table 4 -1 . One Dimensional E, B Result Parameters 
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separatrix is at r = 14 cm for both cases. The I|J0 magnetic axis value 
2 ? 

for Case I is -7214 gauss-cm and -7298 gauss-cm for Case II. The 
2 edge flux 41 is -800 gauss-cm for both cases. 

The magnetic field is shown in Fig. 4-2a for Cass I and in 
Fig. 4-2b for Case II. For both cases the general behavior is 
positive B z for r > r Q and negative B z for r < r Q. The field goes 
to zero at the r 0 magnetic axis position in both cases. As in the 
\|J plots the B plots are nearly the same. The magnetic field at 
r = 0 is -290 gauss for Case I and -302 gauss for Case II. The 
magnetic field at the separatrix is 289 gauss for Case I and 292 for 
Case II. 

The plots of e<Hr) in Fin, 4-3a for Case I and in Fig. 4-3b 
for Case II indicate the change of v has a more pronounced effect 
on <|> than I|J. For v = 10 cm/sec Fig. 4-3a shows e<t> is nearly 
constant at 2.64 keV. For v = 100 cm/sec Fig. 4-3b shows e(j> ranges 
from 2.63 to 2.74 keV. The larger variation of $ then appears as an 
increased electric field. 

The electric field for Case I is plotted in Fig. 4-4a and for 
Case II in Fig. 4-4b, The Case I result in Fig. 4-4a shows E (r) has 
a minimum of -.5 volt/cm and a maximum of 3.5 volt/cm. The effect 
of increased v is shown in Fig. 4-4b as a peaking of the electric 
field near r = 0 and the s^paratrix. A change of v from 10 to 
100 cm/sec results in an increase in the maximum electric field from 
3.5 to 50 volts/cm. 
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Figure 4-2. One dimensional equilibrium B z(r) (a) v r e = 10, 
(b) v r p = 100. •re 
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Figure 4-3. One dimensional equilibrium e«t>(r) (a) v r e = 10. 
(b) v r e = 100. 
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Figure 4-4. One dimensional equilibrium E (r) (a) v = 10, 



4.3 Kinetic Equation with Large Larmor Radius Effects 
The generation of energetic fusion products or the injection 

of high energy neutral beams in a plasma creates a population of 
large Larmor radius ions. These ions cause modifications to the 
results obtained in Chapter 2 which relied on the magnetohydrodynamic 
theory. Technically the magnetohydrodynamic theory of Chapter 2 is 
applicable to zero Larmor radius and is considered to be a limit for 
the desired small Larmor radius plasma. One of the earliest 
treatments where finite Larmor radius corrections are incorporated 
into the magnetohydrodynamic theory was work by Roberts and 
T a y l o r ; 1 7 3 ! 

Finite Larmor radius corrections for transport effects were 
considered by Nocentini and Engelman.L J In the collision 
dominated regime they obtained results indicating a much reduced ion 
heat flux compared to the Pfirsch-Schluter zero Larmor radius 
magnetohydrodynamic theory. The heat flux reduction is attributed 
to poloidal variation of density and ion temperature. This is in 
direct contrast to the Chapter 2 model where transport occurs 
between flux surfaces. The Nocentini results are not directly 
applicable to field reversed mirrors since he assumed low beta, 
concentric circular flux surfaces and large aspect ratio. It is 
however true the consideration of ion orbits restricted by H and 
P e in a field reversed mirror does lead to transport variation around 
flux surfaces. 

Another method of accounting for large Larmor radius effects, 
without magnetohydrodynamic theory, has been -implemented by Haldy 
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and Ligou. They consider the problem of energetic ions caused 
by fusion products or beams, interacting with a plasma in thermal 
equilibrium. The energetic ion population is described by a 
distribution function which obeys a kinetic equation. The 
distribution function is approximately constructed from its first 
few moments.'- •* The results of this formulation are obtained only 
for an infinite homogeneous plasma without electromagnetic fields, 
which permits a tractable solution. 

The inclusion of geometry or restricting the plasma to a 
finite size leads to the necessity of averaging over orbits. The 
usual procedure is to average the distribution function kinetic 
equation over the gyro-orbit to obtain neoclassical theory. The 
drift kinetic equation derived in this case is accurate to first 
order in the ratio of Larmor radius to gradient scale length. J 

Retaining extra terms can lead to a second order accurate drift 
kinetic equation.[178-180] 

In the field reversed mirror the orbit is not adequately 
described by a drift and a rapid gyration about a field line. It is 
then necessary to integrate over the exact orbit. Boffi and 
Molinari'- •" derive an integral transport theory which formally 
includes this orbit integration, uses a separable isotropic 
scattering kernal, but finally only allows a constant magnetic field. 

In the derivation in this section the magnetic field is a 
function of the radius. The ions are described by a distribution 
function expressed as an expansion in collision frequency and the 
electrons are modeled as an inertialess fluid. At zero order this 
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is similar to the Vlasov fluid model used for stability 
T182-1841 studies.1 J In the Vlasov fluid model the ions are treated 

as collisionless and the electrons are an inertialess fluid. In 
this section the kinetic equation collision operator is considered 
to be first order in collision frequency which yields a zero order 
equation with no collision operator contribution. The zero order 
distribution function equation is then solved by any function of the 
constants of the motion. 

A one dimensional kinetic ion model for a neutral beam 
injected field reversed mirror has been developed by Hai 11. •• 
This model has been used in conjunction with a fluid model for 
electrons and low energy ions by Stark.L J A multigroup kinetic 
treatment1- J of high energy ions is used to account for large 
Larmor radius. The energetic ions are described by groups in energy 
and p. constants of the motion. Electron collisions and the 
inductive electric field move particles to adjacent groups. The 
energy loss, ion current and density are obtained from profiles 
derived from the average of the ion orbit over a radial bounce. 

The same physics issues and geometry are considered in the 
large Larmor radius model derived in this work. There are however 
three major contrasts with the Stark model. First the orbit average 
obtained from discussions in Chapter 'i is used rather than a 
weighted bounce average. Second, the electron fluid equations are 
based on the Ohkawa current model previously discussed. Third, the 
ion distribution function is expressed as an expansion in collision 
frequency and an orbit averaged kinetic equation analogous to the 
neoclassical drift kinetic equation is derived. 
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4.3.1 The Orbit Averaged Kinetic Equation 
The kinetic equation for the ion distribution function is 

written in terms of a Poisson bracket. 

• |f + [f.H] = C(f,f) + S (4-95) 

The collision operator is represented by C(f,f) and S accounts for 
sources or losses. The distribution function f, the Hamiltonian H, 
the collision operator C and sources S are expanded in terms of 
collision frequency v which is considered to be a small parameter. 

f = IJ vV 1* (4-96) 
i 

H = X) vV 1) (4-97) 
i 

C = Z l A ( i ) (4-98) 
i 

S = ]C v i S ( l ) (4-99) 
i 

2 The time scale for change of f is assumed to be v . Substituting 
Eq. (4-96) to Eq. (4-99) into Eq. (4-95) yields the results below to 
second order. 

v2 | f W + [ f(0) H ( 0 ) 3 + v [ f ( D s H ( 0 ) 3 + v2 [ f(2) H ( 0 ) ] 

(4-100) 
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A hierarchy of equations results from Eq. (4-100) by requiring that 
the coefficient of each power of v vanishes. The zero, first and 
second order equations are below. 

[f<°\ H<°>] = C ( ° ) + S ( 0 ) (4-101) 

[ f ( D > „(o) ] a C(i) + S ( D . [ f(0) s H m ] ( 4. 1 0 2 ) 

[ f ( 2 ) ) H ( 0 ) ] = c ( 2 ) + s ( 2 ) . | f ^ l 
3t 

-tf ( 1 ) , H ( 1 ) ] - [ f ( ° ) , »{2)1 (4-1031 

As explained in Chapter 3 and shown in Eq. (3-5) a constraint 
equation results from each of Eq. (4-101) to Eq. (4-103). The inner 
product of the rights sides of these equations with the homogeneous 
adjoint operator solution yields the constraint equation. The inner 
product is the Chapter 3 orbit average and the homogeneous solution 
is a constant of the motion. The constraint equations are then the 
orbit averages of the right sides of Eq. (4-101) to Eq. (4-103). 

C~^" + I ^ = 0 (4-104) 

jrj + ^ r y . r7rrriTTy ] = 0 ( 4_ 1 0 5 ) 

7 ^ + ^ l . |pT_ [f(D, HH)] . [f(°\ H^] - 0 (4-106) 

'he orbit averaged kinetic equation is derived from Eq. (4-106) 
.sing several assumptions and an operator which integrates the 
r".s:uating part of a function along the orbit. This operator is 
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designated with a caret and is defined below for a general function 
X-

X = / (X " X)dt (4-107) 

An expression enclosed in parenthesis super-scripted by • indicates 
the caret operator is to be applied to the entire expression. From 
the Eq. (4-107) and Eq. (3-10) definitions, the following relations 
are obtained for a function of the constants of the motion F and a 

ri 88i 
general function G. J 

( [F , G]) N = [F, G] (4-108) 

TFTGT= [F, G] (4-109) 

The caret operator is an indefinite integral along the orbit. 
Since integration along the orbit inverts the Poisson bracket of a 
function with H, then the caret operator plus any function of the 
constants of the motion solves the expressions in Eq. (4-101) to Eq. 
(4-103). This is true because Eq. (3-5) can be written for a 
general function G which may be the n order distribution function. 

[G, H l 0 ) ] = 0 (4-110) 

The solution for r ' and r ' are then written in terms of 
the caret operator. 

f(°) • £(0) + S<°> + F Q (4-111) 
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fO> .£0> +$(U . ([fW.H^f+F, (4-112) 

In Eq. (4-111) and Eq. (4-112) F Q and F, are functions of the 
constants of the motion. Substituting Eq. (4-111) and Eq. (4-112) 
into Eq. (4-106) yields the orbit average kinetic equation in terms 
of f<°>. 

gi!Lc(2> + s<2>-[cAn), H ^ h - i s { ] \ ^ h 

•[{C^.H^lf.H^)]-^.^)] 

[c(0),H(2h-[s(°),H(2)]-[Fn)H<2)] (4-113) 

Equation (4-113) provides the orbit average of the time derivative 
of f' '. To obtain a kinetic equation for f* ' it is necessary to 
derive an equation for 3P V3t. This is possible using Eq. (4-113) 
if, 

C ^ + S ^ = 0 (4-114) 

In this case v ' is only a function of the constants of the motion 
and the following identity results. 

a f ( 0 ) 3 f ( 0 ) 

g—= |f- (4-115) 
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Because f* ' is now considered to be a function of the constants of 
the motion F, is absorbed into the definition of f ( '. The following 
orbit averaged kinetic equation for f^ ' then results from Eq. (4-113), 

+ [[fl°\ H(])], H<»] - [f< 0 ), H< 1 }] (4-116) 

Equation (4-116) has been derived assuming only that r ' is a 
function of the constants of the motion, which is implied by Eq. 
(4-114). Further modifications occur to Eq. (4-116) when 
axisymmetry is invoked. A general function FfK, ly, I,) where 
IT, Ip, I 3 are constants of the motion has the following Poisson 
bracket with function G. 

[F, G ] - |f- [I,, G] + | { - [I 2, G] + |f- [I 3, G] (4-117) 

In axisymmetry I, is h, I ? is p„ and there may be a third invariant 
I, depending on the fields. Thus Eq. (4-117) in axisymmetry becomes, 

[F, G] =!£ [H, G] + !f-[I 3, G] (4-118) 

The orbi t average of Eq. (4-118) is obtained using Eq. (4-109) and 

Eq. (4-110). 

UTGI = [F, G] 

= | f - [ I 3 , G ] (4-119) 
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A similar relation applies to the caret operator. 

([F, G]) = [F, G] 

Ir^'Si (4-120) 

The axisymmetric version of Eq. (4-116) is obtained using Eq. 
(4-119) and Eq. (4-120). 

^1 3t c < 2 > * s < 2 l - [ c | , ) , H " ) ] - [ S ( " . H < " ] 

• [IF "3. *"].«'" 
:(0) 
[3 

| f ^ [ I 3 , H ( 1 ) ] (4-121) 

In the one dimensional c isymmetric case the second term of 
Eq. (4-118) becomes, 

3F_ r , 3F 3G 
31, L 1 3 ' U J " 3p 7 3z 

(4-122) 

since there is no z dependence. In the two dimensional axisymmetric 
case with no third constant of the motion 3F/3I-, is zero. In both 
of these cases Eq. (4-118) becomes, 

[F, G] =|J [H, G] (4-123) 

Equation (4-12J) with Eq. (4-110) yields the following result, 

[f<°\ G] = 0 (4-124) 
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The following tr>î  conditions, 
1. f* ' only a function of the constants of motion, 
2. axisymmetry, 
3. two dimensional with no third invariant or one dimensional, 

,v:?'J the three constraint equations from Eq. (4-101) to Eq. (4-103). 

c(°) + s'(O) = o (4-125) 

C ( 1 ) + " S ( 1 ) = 0 (4-126) 

r(2) + 5(2).|f^l. [ f(l) ) H ( l ) ] = 0 ( 4. 1 2 7 ) 

The first order distribution function becomes, 

f(D = c(i) + s(i).|f^l H(i) ( 4. 1 2 8 ) 

on 

and the orbit av^.aged kinetic equation is then below. 

f ^ . t f Z J + s W - C C n J . H ^ l - C s n J . H t 1 ) ] (4-129) 

Equation (4-129) is a kinetic equation in H, p., p . 

4.3.2 Poisson Bracket Solution by Eigenfunctions 
The orbit average kinetic equation in Eq. (4-129) applies to 

one and two dimensions in axisymmetry. The primary reason only the 
one dimensional radial geometry is considered in this chapter is a 
consequence of the formula for f l ' in Eq. (4-128). Thp orbit 
average has been derived for one dimension, r or two dimensions, r, z 
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in Chapter 3; however, the x operation of Eq. ;4-107) is difficult 
to obtain in two dimensions. The integrals C* ' and S^ ' are 
integrals of the variable part of C* ' and S^ ' along the orbit from 
a starting position to the orbit position at which P ' is to be 
evaluated. An integral of tin's type requires a detailed knowledge 
of the orbit and is thus impractical. The function which is 
actually needed is f ' and the particular solution technique of 
integrating along the orbit necessitated calculating C and 
S . An alternate approach due to Lewis and Symon'- ^ is to 
obtain f̂  ' by setting it equal to HT ' 9f • V3H plus an expansion 
of eigenfunctions of the Poisson bracket. This method may ultimately 
be a means of resolvi.ig the r, z orbit following problem. In this 
section the method is presented for the one dimensional case. 

The first order distribution function f* ' previously given by 
Eq . (4-128) is represented by eigenfunctions W below. 

F ( ' ) . H ( l ) | f ^ + ^ Y W (4-130) 
3H '—' 'a a 

P 

The W satisfy the relation below, 

rw , H] = i y W (4-131) 
- a H a a 

where u is the eigenvalue. To obtain W the orbit is a a 
projected into the nonignorable region of phase space, r, p . An 
orbit is determined by setting the zero order Hamiltonian equal to a 
constant e. 

H(r, p r, Pg, p z) = E (4-132) 
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The orbit label implied by Eq. (4-132) is e, p„, P z > a where a 
distinguishes between orbits in r, p space that are discontinuous. 
A discontinuous orbit corresponds to the p e > - 3/16 case discussed 
in the axisymmetnc orbit considerations section of Chapter 3. Let 
T be the time measured along the orbit, then Hamilton's equation 
along the orbit is given below. 

3r _ 3H 
3T " 3p 

Pr=Pr(i",a,e,pe,p2) 

Using the definition of H, Eq. (4-133) becomes, 

I/? 

(4-133) 

9 r - „"! (2m(e - eZ*) - p \ - r'2 (pQ - eZc" V ) (4-134) 

where Eq. (4-134) refers to an orbit labelled a. The time along the 
orbit is 
(4-134), 

T = mfdr \ZmU - eZ*) - p2, - r"2 (p Q - ezc" 1*) 2) (4-135) 

orbit is then obtained in terms of r, a, e, P 6, p by solving Eq 

•1/? 

with the integration range given by the e, p„ determined accessible 
orbit region. The Poisson bracket is now written in terms of T, e 
instead of r, p . 

r . > - 3 J. 3H 3 3H 3 ,. ,,,| 
[- J - 3T + W;^ 3PQ se ( 4 " 1 3 6 ) 

In Eq. (4-136) the ignorable coordinates 0, z appear because 3/3T 

is at constant e, 6, z, p Q, p z and along the orbit 9 and z vary. 
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The derivatives 3H/3p and 3H/3p„ in Eq. (4-136) are computed 
Z D 

taking H to be a function of r, p , p„, p and then expressing the 
result in terms cf T, a, e, p Q, p . Equation (4-136) is then, 

[. HJ = if + m"1 p 2 y + (mr 2)" 1 (Pfl - eZc"1^) fj (4-137) 

where r, <|> must be eliminated in favor of T, e, a using Eq. (4-132) 
and Eq. (4-135). In the form of Eq. (4-137), [, H] commutes with H, 
P Q, p , 3/3z and 3/36. Consequently, eigenfunctions may be 
chosen that are simultaneously eigenfunctions of all the commuting 
operators. This means W is a product of eigenfunctions of e, p Q ) 

ot o 
p , 3/36, 3/3z multiplied by a function of T. The eigenfunction of 
a coordinate such as momentum in momentum space is obtained by 
considering the quantum analogy of conjugate coordinates. For the 
case of position and momentum, in position space the momentum 
operator is -i(2ir)~ h 3/3x. The projection of the operator into 
momentum space is the Fourier integral of e n x which is the 
eigenfunction of -i(2ir)~ h 3/3x. The momentum space eigenfunction 
is (2TT)"1 h 6(k - k'). 

By similar reasoning W is a product of delta functions for 
H, p e, P z. 

W a = 5 a a , 6 (e- e') 6 ( p e - p ' ) 6 (pz - p') 

e 1 ^ e ^ ^ u (T, ^ 

The function u a(x) is found by substituting Eq. (4-138) into Eq. 
(4-131), using Eq. (4-137) for [, H]. Note in Eq. (4-138) kfl is 



273 

an integer to ensure 9 periodicity. 

du , , , -1 
^ + i [m - 1p zk 2 + kQ(mr2) (p6 - eZc"1*) - u a)u a = 0 (4-139) 

The solution of Eq. (4-139) with d as a normalization constant is, 

1(M„T - G (T)) 
u = d e a a (4-140) a a 

where, 

(1-141) G a = J (m"1P2kz + k Q (mr2) (pQ - elc'\))dx 

T b = m ^ p ; 1 dr (4-142) 

B a = V / ke(mr2) <?e " e Z c ~ W + '"'Vz (4-14 ) 

U = B + tl1 2nk (4-144) 
a a b T 

with k an integer and u chosen to guarantee periodicity. The 
eigenfunction label a is a', e 1, pi, p', kQ, k , u and the 
orthnormality condition requires d = (2n) . The eigenfunction 
Id is then, 

W a = (2ir)"2 6 g a, 6 (e - e') 6 (pe - p£) 6 (pz - p z) 

ik 6 ik z i(ux - G (T)) 
e e e z e a a (4-145) 

The method of expanding P ' in terms of W means it is 

necessary to express Ĉ  ' and s' • in terms of the W eigenfunctions. 
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This procedure is an alternative to the integral along an orbit which 
is used in Section 4.3.4 to compute quancities needed in the Eq. 
(4-128) f ( 1* definition. 

4.3.3 Perturbed Fluid Electron Model 
The solution of Eq. (4-129) requires the perturbed Hamiltonian. 

The perturbed potentials which occur in the perturbed Hamiltonian 

are obtained from the fluid electron model which includes Ampere's 

and Faraday's law. 

The perturbed Hamiltonian results from substituting collision 

frequency expansions of <)> and ty into Eq. (3-21). 

H = (2m)" 1 (p 2 + p 2) + (2mr2)"1 L - eZc-1 E v V ^ 2 

+ eZ 2-t vV 
i 

(4-146) 

To second order the Eq. (4-146) Hamiltonian is below. 

H = (2m)" 1 (p 2 + p 2) + (2mr 2) (p 2 - 26ZC - 1 ( p ^ ( 0 ) 

+ 2 v / V ^ 2 v V ° V 2 > + v V 1 ) 2 ) ) 

+ eZ ( 4 . ( 0 ) + v<() (1 ) + v 2c|> ( 2 )) (4-147) 

As a consequence of Eq. (4-147) the following def in i t ions resu l t . 
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H ( 0 ) = (2m)" 1 ( P
2 • P2

2) + (z-r 2)" (p e - eZc-V°>) + eZ*(°) 

(4-148) 

H* 1* = (mr 2)" 1 eZc-1 (-pe*(1) + eZc"1 * < % < <>) + eZ*< ]> (4-149) 

H< 2> - (mr 2)' 1 eZc"1 (-p/ 2» + eZc"1 (2*(°V 2> + *™)) 

+ eZ<l)'2^ (4-150) 

The solution of Eq. (4-129) requires H^ ' and implicitly 
H' 0'. From Eq. (4-148) and Eq. (4-149) it is then necessary to 
derive equations which determine <|r ', 4/ ', <y ', and <p '. 

The equations used in Section 4.2 are written below with v as an 
order parameter which will later be set to one. The quasineutrality 
condition came from the divergence equation below. 

V • E' = 4TTe ( X ) n.Z. - n ] (4-151) 
\ i J J / 

On the basis of a Boltzmann distribution the density has an 
exponential dependence, with exponent -e<j>T" . Assuming this 
quantity is small the exponential can be expanded and Eq. (4-151) is 
below, 

?Sr < r ! £ > - £ * • < 4- 1 5 2> 
where XQ is the Debye length. The content of Eq. (4-152) is that 
the rib>t side of Eq. (4-151) scales like X n . Since X„ is small 
compared to a system scale length this means tremendous electric 
fields result from small density differences. This is then the 
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motivation for the quasineutrality assumption. Consistent with this 
assumption and in recognition of the presence of a low energy ion 
background e<J> is assumed to be comparable to temperature. As a 
consequence <t>̂  ' is assumed to be zero. The electron model equations 
with v inserted are then below. 

n e = E n. Z j (4-153) 

v v r e = n;1 v E n.vr .Z. (4-154) 

ven en v Q e = ( r c ) - 1 v v r e f - + v e n<Z> _ 1 £ y ^ . 

+ v 2 ( re ) " 1 | f . (4-155) 

vS-^^fM^^-^^-f"4) 
(4-156) 

^ ( r f t j - . c - U ™ ( Z n . W . - n e v Q e ) (4-157) 

The quasineutrality condition gives Eq. (4-153). The radial 
component of Ampere's r gives Eq. (4-154). Since f* ' is a 
function of H, p , p the radial ion velocity is zero in zero order 
and Eq. (4-154) is order v. In Eq. (4-155) n is a collision 
frequency quantity and it is thus given a v coefficient. The time 
evolution of \|> is assumed to be caused by the change of f' ' and it 
is thus order v . As discussed, <|>' ' is zero so dfy/dr in Eq. (4-156) 
is order v. The five functions n e, v r e , v e e , $, ip are obtained from 
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Eq. (4-153) to Eq. (4-157) at each order by substituting the 
following expansions in those equations. 

n e = E 
i 

i 
V ^ 

vre = i 
v1 vfi } 

v6e = E 
i 

v1 
v ( 1 ) 
v6e 

<t> = i 
i 

V » ( i ) 

* = E v1 *<') 

(4-158) 

(4-159) 

(4-160) 

(4-161) 

(4-162) 

At order zero the following equations apply. 

n<°> = E n<°) Z j (4-163) 

v ^ = 0 (4-164) 

v ( o » . . „ (en<°) j ^ i y ' |_ ( n io) v ( 4., 6 5 ) 

<t>(0) = 0 (4-166) 

3 /I a*«°> 
3r I r 3r *.ec-] (T, nj 0 ) »g) - n<°> M (4-167) 

Near the field null 3'b/3r goes to zero and a singularity develops in 
the coefficient on the right side of Eq. (4-165). The singularity 
is resolved by solving for r as a function of ty near the field null 
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and then changing the r derivative to a f derivative. 

•£' • • «• K 0 1 ) " ' h <»!0) v «-'68» 
In Eq. (4-168) n£ ' T is considered to be a function of \|). 

At first order the following equations are obtained. 

n£ 1 } = 2 n( ] ) Z. (4-169) 

V 
re . . , j 

3 » ( 1 ) , 
— = f re 

3r l L 

8 / l 3 ^ ( 1 ) 

3r \ r 3r 

. („<») ) - ' E n < ° > , < J > Z j (4-.70, 
J 

+ <Z>"1 en Z n f Z j

2 v ^ ) (4-171) 

lv9e 3r 6e 3r J 

KT'tciS"'.' ,4- ,72) 

- n O ' v l ' l - . I ' M O ) ) (4-1731 
e 9e e 9e 

The ion quantities in Eq. (4-153) to Eq. (4-173) are obtained 
from moments of the ion distribution function as follows. 

r _ 1 m j / f j 1 ) pr_ 1 d H d p e d p z ( 4 _ 1 7 4 ) n ( D = . - 1

 m fAV «-l 
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In Eq. (4-174) superscript (i) refers to 0 or 1. 

n f ) C = r - 2 / f ( . 0 ) p ; 1 ( p 6 - e Z j c - 1 ^ d H d p 6 d p 2 

(1) n\" v.i;.' = r'J fj 1' dHdpe dpz 
,(0) V(D = J rj 

(4-175] 

(4-176) 

n j 0 ) C + " J 1 1 V f f = r'2ff\]) ^ <Pe - e 2 J c _ 1 *J d H % d P z 
(4-177) 

4.3.4 Collision Operator for the Orbit Averaged Kinetic 
Equation 

The solution of Eq. (4-129) requires C^ ' anr' "A '. The usual 
approximation is made that large angle scattering due to collisions 
results from many small angle scatters. The collision operator 
C(f,f) is then taken to be the Fokker-Planck collision operator, -• 

C(f,f) = X ) fj 3 
u 

/ ah \ 
? 3v 3v 

p y 
If * 9 * ) } 3 

u 

/ ah \ 
? 3v 3v 

p y \ j 3% 3 VJ 
(4-178) 

where Eq. (4-178) models collisions of species j with all species 
a and the following definitions are used. 

r. = UK 2 4n Z 2 Z 2 

J J J ct 

h~ = * ^ K- + m ) ff (V) v - v'"1 d3v' 

9™ = *~ / f (v') v " V dV 

(4-179) 

(4-180) 

(4-181) 
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The expression in Eq. (4-178) is in terms of cartesian veloci t ies 

which may be v f , v „ , v . Equation (4-178) is wri t ten in terms of 

V V vz b e 1 o w -

(") - - J _ / f ( " ) i ! ! a \ (4-183) fii " " avr I'd avr 

> ) = _ JL f f(") _-a^ (4-184) 
3v« VJ av. 

(") = _-L./f( n>iHs) (4-185) 
% " " 3v z l ' j Dv2 

.2 
X = . J _ (4-186 
1 1 2 
1 , 1 3v r 

X - 3 2 (4-187) 
*1,2 3v r 3v e 

v - 3 (4-188) 
X l , 3 3v r3v z 

X = X (4-189) 
A 2 , l X1,2 

X = - ! - _ . (4-190) 
2 2 I 

*£ 3v D 

v - 3 (4-191) 
*2,3 3v 9 3v z 

X = X (4-192) 
X 3 , l *1,3 
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X 0 0 = Xr v 3 , 2 = * 2 , 3 ( 4 " l g j , 

a 2 

X3,3 = T ~ ? (4-194) 
3 v z 

v ( n ) - tin) v 

The orbi t averaged kinetic equation, Eq. (4-129) is in 

coordinates H, p., p . To put the co l l i s ion operator in the same 

variables the relations below are used. 

H 9 1 = ? m j ( H " { 2 m / ' ] (p9 _ e Z j c " M " ( ? ' " i r l Pz " p Z i *) 

(4 -196) 

H - ( 2 H , . ) " 1 H e l + ^ . r ^ ^ - e l f - \ j 

•1 _2 + (2m.)" Pz + eZ. $ (4-197) 

3 \ _ 3H \ 3 
3 v J 3v / 3R, 

r / v e , v z ^ v e , v z 'Pe."z 

" H61 W (4-198) 
p e > p z 

8 . 3H \ 3 \ 3 P 
3 v f J 3 v<J 3H/ + "Svfi I T , 

e / \ . v z

 e / v ^ / P 6 . P 2 e / v ? V z

 3 p e / H , D z 

r'] (P6- eZjC"1*) f ^ • • y - j j f - ) (4-199) 
pe-pz " ^ / H , P 

z 



282 

J \ . 3H \ 3 J +

 3 p z \ 3 
3v / 3v / 3H/ n 3v / 3p, 

z / v v z v v p 6 ' P z z / v v Z 'H p 
V 6 r e r ' v 9 ' p ( 

pz hi p

 + m j ^ ; ( 4 - 2 o o > 
pe pz Z / H , P P 

Using Eq. (4-198) to Eq. (4-200) in Eq. (4-182) to Eq. (4-194) 

yields Eq. (4-182) terms in H, p„ , p, coordinates. 
o z 

0 ( n ) . „ l / 2 3_ / . (n) J / 2 \ \ .. ? m , 
a] - ' Hei W Vj Hei IT' ( 4 - 2 0 1 ' 

4"» • - r-* ,pe - , Z j « V fe (f<"> > ) 

3 / , , - l n , (n) 3 h a 
" m j 9PT ( p e - e Z j c *> f j l F T 

. 2 2 3 / f(n) ! M ( 4 . 2 0 2 ) 

J 3Pe \ J 3P Q / 

o(n) - n 2 3 L[n) 3 h a \ m n 3 / . (n ) 3 h a \ 
"3 - - P z i 1̂ j uir) - m j p

z w \j w;) 

± / p f ( " ) ^ U 2 ± / f ' n ) ^ (4-203) 
j 3PZ y V j 3H y m j 3pz p 3pJ ( 4 d t " ; 

i , i = n e i W ( H 6 1 2 ! H ( 4 " 2 0 4 ) 

- m. 

Xn , = H 1 / 2 3 

2 , / 0 .2 
P« " eZ.c" 1^) 1 ^ . + H ! { 2 m,r X - (4-205 x i , 2 = Hei r ^e " e ^ v> -^ T nei m j r W^Q 
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X l , 3 " Hel Pz 7 7 + H61 "j WW-

X 2 , l = X l , 2 

(4-206) 

(4-207) 

x2,2 " r ' 2 f e " e Z j c _ 1 * ) ^ + mo ( p e - e Z j c _ 1 + ) lkrQ 

+ " j ^ < P e - e Z j c ' ^ i T + ^ ~ T (4-208) 

2 2 
x2,3 = r ' ] (Pe - ^ J 0 " 1 * ) pz 7 7 + m J r _ 1 ( p e " e Z J c " 1 * ) a f e ; 

9 2 3 
+ m. r p_ „-• „ u + m^r 

8hf 

2 

T K z 3 P f l3H " ' j ' 3p_3p7 

(4-209) 

X 3 , l = X l , 3 

X 3 , 2 = X 2 ,3 

(4-210) 

(4-211) 

2 H 3 3 3 2 3 
3,3 KZ 3 H 2 j K z 3H3pz J 3p z

 FZ 3H J g p ^ 
(4-212) 

The d' ' term requires c''' which from Eq. (3-31) and Eq. 
(3-32) is defined below. 

' '= J d r P r J d r ? r E \ r • / r • a 
\ mm / mm 

j y-ri i 2 P,Y P,Y/ V 
(4-213J 
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In Eq. (4-213) the r - , r integral limits are determined 
implicitly for specific H, p Q, p values from the relation below. 

-1 2 
H = (Zmj) - 1 p\ + (2nKr2) /p 0 - e Z j C ~ M + el.* (4-214) 

The allowed orbit region determined by Eq. (4-21^) may lead to 
multiple disconnected regions. In this case the integrals in Eq. 
(4-213) are understood to be the sum of integrations between the 
rmin a n d rmax o f e a c h rflsconnected region. 

There are two simplicities that result in the evaluation of 
tens in Eq. (4-213). The first is that f\ ' commutes with the 
orbit average and caret operator. The second is the orbit average and 
caret rperator commute with 3/3H, 3/3p„ and 8/9p,. It appears the 

y z 

orbit average and caret operator do not commute with these 
derivatives since the integral limits depend on H, p., and p . 
The basic definitions with time parameterizing a trajectory and 
integrating over many bounce periods do commute with the orbit 
average and caret operator. Thus an interchange may be made between 
the basic definition and a derivative and then the orbit average or 
caret operator may be converted to its equivalent single bounce 
period definition. 

The C^ 1' term is similar to Eq. (4-213), 

c^-m. i I ^ P" S FJ i = l 
n1 
(0) 

+ ix Y ^ 2 U,Y u.-y. *(U (4-215) 
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As for Eq. (4-213) the r m i n in Eq. (4-215) is determined by Eq. 
(4-214). In the case of multiple disconnected regions the integral 
in Eq. (4-215) is a sum of integrations over regions bounded by r 
values less than the minimum of the region containing the r position 

<\(1\ 

where Cv ' is to be evaluated plus the integral from r . to r in 
the region of interest. 

The orbit average or caret of terms on the right side of Eq. 
(4-213) and Eq. (4-215) are obtained using the commuting properties 
and the operator relation below. 

^ M ' - ^ M 9 0 0 (4-2l6) 

The relation in Eq. (4-216) is used to express the terms as 
derivatives of orbit averaged or careted quantities. The terms in 
Eq. (4-213) are similar to those of Eq. (4-215) and thus only the 
terms in Eq. (4-215) are presented. 

The Eq. (4-201) definition is written using Eq. (4-216) as 
follows. 

.(0)./ 3 Hei \/ f(0).,1/2 a hg\ 3 / f ( 0 ) H ^ V \ 

= m f ( 0 ) ^ « + 3 ( 2 . f ( o ) n _ f ( 0 ) a ( H h ) \ ( 4 . 2 1 7 ) 

J J 3H 3H \ j j a J 3H v 91 ay ' 

The caret of Eq. (4-217) is then below. 

A \ 

fil m / , j U r + 3 H \ Z m j f j h a f j 3 H ( H 9 l V / ( 4 " 2 1 8 / 

The other terms in Eq. (4-215) are evaluated in a similar manner. 
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# ° ) - JL / f ( ° ) 3 (D

2 (r-2h f - 2eZ D c" 1 ( r _ 2 uh )A 

+ (eZj-c-1) ( r ' V h J 

. m2 J _ ( f ( 0 ) _ L { r 2 h Vs 

j 8P f i I J 8P f l

 [ <* 

•(0) 2 3 J JO) 3 h a \ m n 3 / f ( 0 ) ^ a 
fi3 " " Pz 3H f j W J " m j Pz 3iT ( f j IpT 

" m j 3pJ \|>zf j 1FT/ " m j Wz \3 9P7/ 

„ Y ( 0 ) _ H l / 2 3 / H l / 2 3 _ / f ( 0 ) 1/2 3 _ / H l / 2 V \ \ 

x M Y i , i - H e i 3H y Hei SH y j H e i SH yyei SH // y 

<«,. , ' !?}) ' •- I i r ( ' j 0 , - J ^"r4 r l^- fel l , " 

(4-219) 

(4-220; 

(4-221) 

3H -2m.f. J J 
(0) 

m j ^ + i ( - 2 m A + w(9a

Hei> 

* wr (- 3 m

J r i ° > (" 2 m j 9 « * i r « ^ . " o i >" 

+ f< 0 ) W-4 f f l , (gH f l l ) A • I T U . H 2 ^ j 3H l " , m j ^ a " e T 3H v V e l < 
(4-222) 
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h,A°,l - (He(2 r _ 1 (pe " e Z j c _ 1 * ) y - + m j H J ( 2 r aT^) 
4-223 ) 

2 

M ^ P e - j . c ^ _ ^ _ mjtj H e l r 3 H 3 p j 

In the formulas that follow V Q = r " ( p Q - e Z . c " <|J) 

< x i . 2 Y i ° 2 > v " - m j f j 0 ) ( 8 m j (P 2 o(» - " 2 H e iV - 2 e Z j c _ 1 P e ^ H"ei % > 

• l V , . -2„ -3 ,2 
+ ^ e Z j c j <r Hei * 9a) ) 

+ 4 m j IH (Pe( r"2H9i 9a)' - 2 e Z j c _ 1 p e< r ' 2 Hei%> 

+ (eZjC-V (r" 2 H-2 / g j 

+ f 7 < P e V 2 H ; J g a ) - - 2SZJC-1 pQ (r- 2H;)« a)-

+ l ^ i C ' 1 ) 2 ( r - 2 H - ; / g a ) ) ) 

2 * j IH f ' ^2 <Vme 9a)" 

+ i 7 ( f J 0 ) ( " 4 mJ ^ ( v™ 9 9 « r 

+ 1 7 ( v » e 9 « ) A ) 



" m j f j ° } (" 8 m j lie H"ei9 a) A- 2 mo (H"ei «> / 

+ 2 m j We <He1 r vme 9 / 

+ h '- 2 <»* ie *J- <H~e! g a ) A + W, (H"el r vme s / > 

• *5 ir ( f l lr (- i + fee cv-e •.)')) 

+ mJ J f i 0 ) ( 2 mJ Aa " 2mo Wd < r v .e * / 

+ W { 2 ^ _ 1 vme 9 a ) A - «Hei 9 a ) % ^ ( r V*e ^ g « f ) ) 

+ -j fa (f ) & <£ tf) 

+ "j ^ ( f 1 <- 4 mJ W{r V«e 9 a ) A + ^ (r Vm 9 H@1 g / ) 

+ m M 0 ) (" 8 m j C" 1 v ,e Hei 9«)A- ^ (Tef 9 / 



+ 2 m j WQ

 ( r v . e H"ei 9 a ' A 

+ l l T ( - M V m

2

e H - 2

g a , - - ( H - ; g a r + 3 ( H - J r V ^ g j ' , ) 
o 

+-J at (fi0) 4 ( r V) 

+ ffljat(fJ°,(-2mJ^<'-V-2lr('-USa)' 

+ 3p~ ( H 61 9 a ) n (4-224) 

X Y ( ° ) - / u l / 2 n 3 2 + u l / 2 3 2 \L(0) ( 1/2 ^ a 
x i . 3 Y i . 3 " ^ Hei P Z ̂ 2 + '»j"ei m-J[fi lPzHe( ^ T 

+ mjHei ^ j 

= (- m . n i - H " 1 / 2 + m 3 2 H 1 / 2 + n 3 2 J / 2 
\ m j p z 3H H ei m j 3H3?7 H ei + P Z ^ 2 - H e i 

- „ 2 _ L H - 1 / 2 \ / f ( ° ) L H 1 / 2 ^ • -.1/2 ^ ^ •- , , 



m2 3 (0 f (0) f**\ . m3 _J_ (fW IJSL) (4-226) 

( X 2 , l Y 2 , l ) - l X l , 2 Y l , 2 ' 

* „ 2 r 2 ^ C-2») 

( K v(0)r - j l . /f(l» £_ ,«" , f\ * „2 4 /f <°> /r2 V2 ^S\) 

•.j4([!",w(-"!"-'. |*"',4(r,-,«"*)) 



( ff (v, ̂ r * v- 4^ * v. r ^ * '* "«k)) 
(4-230) 

1*2 A^' = £r ( f '(PZ2 ^2 ^ W + "j PZ aTOJ Vle'j 

+ m/z(r\e^) + m j P z ( r V m e ^ j ) ) 

+ mJ imr ( f j 0 ) (pz ^T < W > / + m j 3H1JT ( V m 6 ^ 

+ " j "z [r Vme ^ ) + m j f V m e ^ z ) ) ) 

+ fj4 + mJ p* 4 * ) ( f J 0 ) ( P z 37 { r ^ 
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2 2 2 . 
+ m j mfz

 ( r V m e 9 a ) A + m j P 2 3p^3H ^ V + m j I p ^ ( r V 

(4-231) 

^3 ,1^ !^ = ihy\°,if < 4 - 2 3 2 > 

lhAW* ( X2,3Y2, (3 0 ))A ( 4 - 2 3 3 ) 

(4-234) 

Using terms defined in Eq. (4-218) to Eq. (4-234) C^ ] ' is 

constructed from the following formula. 

C(1> = Z r . ft, fii0)

+j(X Y<CV) (4-235) 

(2) The orbit average of C v ' is defined below. 

C(2)=Er- fi; S^UTI™) (4-236) 
^ J \ ̂  l Z U,Y u, Y/ v 

The bar orbit average operator in Eq. (4-236) refers to the integral 
operation discussed in relation to Eq. (4-213). The terms in Eq. 
(4-236) require integrals of more complicated functions than C* ' 
because C* ' involves f\ ' rather than f\ ' which is a function 
only of the constants of motion. From Eq. (4-128) which defines f\ K 
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it is clear f\ ; depends on H, p„, p , and r. Consequently, in the 
terms derived below for Eq. (4-236) f\ ' is included in the orbit 
average evaluation. 

TpT. _ f{D^St + l_(Zm f(D h . f(D3 f H h ) ) (4-237) 

-•^('.^^j'rwf) !4-239) 

•£r(- 3 ' 'i(- ivj' ) 'c,*'j , ,lr<vw) 



-ef^^frwffe) 
+ m H

1 / 2 r - i — ( f < 1 } H 1 / 2 V — ^ 
m j h e i r 3H3pQ y j "ei me 3 H2 / 

+ m 2 H l / 2 2 j i _ / ( l ) l / 2 ^ J a \ 
m j 91 r 3H3p6 V J 91 9H3p e / 1«»<MIJ 

Y T H T - m n2 3 L ( l ) 3 9a 2 3 L ( l ) 3 g g ) 
X l , 3 Y l , 3 - - m j P z 3 H \ f j - ^ 2 - / • V z W\fj !F?3p7/ 

+ m j 3H3p" \Pz f j H e i -^T/+ mi m^z\f3 H e i WWj 

' 'I &('!"".-&)• v. £(<i"".A) 



) .£_[ , ( ' ) JL,»« i-lzW' b « w * ^ t 7 \ ' " ' 3H 3H 

—r \ 
2 3C ( . ( 1 ) .2 2 f j o 

me ,_ 2 3H- 3P0 

+ mj ^2 I" ̂  IH (%^) + f j ] ) Vfn9 3 ^ ( r W, 

+ "J H _ f J ( 1 )

3 f ( r ̂  + ap? ( fJ 1 1 1? l r V »e g « : 

^M^ir^-^^^W 

+ m !aS3pr(- f j 1 ) l r^ v me^ + f j 1 , , ' v n . e W 
r V

m a9„ 3p„ v m O b a 

^y-^^irV)^'^ 1 1 - 3 " J 3 H \ ' J , 2 * V 3 p e V J 'me 2 f V r V 

^^f^^L^-S^^AcV J 3 p * \ ' J 3H1" 3p f t \ J 3P C 

••^"ir^V^w)) (4-244) 
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2 2 
, . f O ) _ 3 (V 2 q ) + m p f l ' l r » 3 9 a + m 2 f ( D r v

 9 a 
J j 3H3pz

 v mesa' j K z j me 9pg3ri j j me 3pQ3Pz 
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A 3,2 y 3,2 A 2,3 r 2,3 (4-247) 

' o „2 
v ( l ) / 2 3 _,_ 3 _,_ 3 3 ^ 2 3 

3,3Y3,3 = (j>2 ^ + mjPz 3R3p7 + m j Wz

 Pz 3H + m j ^ 

l P z f j ^ - + m j P z f j ' 3H3p; 

39, a •vS".^^-!'!'^ 
=29 

(4-248) 



297 

4.3.5 One Dimensional Orbit Average Kinetic Equation 
The orbit averaged kinetic equetion in Eq. (4-129) can be 

solved given C^ 1', "c^ 2', S ' ^ , l ( 2 ^ . The sources S ^ and S^ 2' 
are obtained from physical processes in a particular problem. The 
constraint equation, Eq. (4-126) which involves the orbit average of 
s' ' and c' ' may be interpreted in two ways. The C ' col lis'on 
operator involves n ' and correspondingly the constraint equation 
may be interpreted as a restriction on the functional dependence of 
f̂. '. This viewpoint considers the zero order distribution to be 
constrained by the sources. Alternatively an initial f\u/ is chosen 
and che sources required for f \ ' to exist and for the time 
evolution to be described by Eq. (4-129) are determined from 
V - - c' . in this interpretation an assumed f\ ' evolving in 
accordance with Eq. (4-129) defines sources which are required to 
make the model consistent. 

Assuming sources &re known the one dimensional orbit averaged 
kinetic equation is constructed using the Eq. 1,4-149), Eq. (4-235), 
Eq. (4-236) definitions of H ^ , C ^ , and C ^ respectively. In 
the derivation of the orbit average and caret of SI- and X Y , 
p was assumed to be a constant of the motion and thus the derived 
formulas only apply to the one dimensional radial rase. 

The Poisson bracket reduces to derivatives with respect to r 
and p . The first order Hamiltonian does not depend on p and thus 
the first Poisson bracket on the right side of Eq. (4-129) reduces 
to the expression below. 

[ d n ) ^ ) ] . . ^ ^ ^ ^ (4-249) 
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Similarly the second Poisson bracket is as follows, 

[ S ( l ) . H n ) ] - . B - l ( « ^ H ^ ^ (4-250) 

Using Eq. (4-249) and Eq. (4-250) in Eq. (4-129) and substituting 
—12) AM1 Ml expressions for Cv ', Cv ', and Hv ' yields the one dimensional 

orbit averaged kinetic equation. 

af(0) /3 \ 
9 t a J \£l 1 2 U'Y p» V 

* nu2 eZ, Hi' 2| F(r- 2c- 1(-^ 1) +eZ lc"V 0V 1 )) + * ( 1 ) ) i ( 1 1 '"j c"j "61 3r *' "• * •'e4' • «j*. -H v / • * > gF|-

a 'j \'"j "j "61 3r 

T^P) E 3H 
i = l 

, . ( . j f a ^ 
(4-251) 

In Eq. (4-251) the i|/°), ̂ ^ , and ̂ ^ potentials are obtained 
from the electron model equations in Section 4.3.3. The \Sn '), flj ', 
(X Y^°M, and (x J^A functions have been defined in Section 
4.3.4. 
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The field reversed mirror scenario discussed earlier consisted 
of sustaining an already field reversed plasma with neutral beams. 
In this case the neutral beam injection is considered to be the 
source which causes a large Larmor radius ion population. These 
ions are modeled by the orbit averaged kinetic equation in Eq. 
(4-251). The large Larmor radius ions could also be considered to 
be fusion products such as alpha particles. The cooler ions are 
modeled by the classical Braginskii equations discussed in Chapter 2. 
A small population of large Larmor radius ions is then considered to 
be immersed in a background of cool ions described by a raaxwellian. 
The orbit averaged kinetic equation gives the cool ion heating rate 
caused by the large Larmor radius ions. The plasma evolution can 
then be calculated on a slowing down time rather than on a cyclotron 
period time which is characteristic of standard particle codes. The 
Eq. (4-125) constraint is satisfied since C ( ' - 0 and there is no 
zero order S source required. If the majority of ions are 
non-maxwellian S ( ' is necessary because C* ' is not zero. In the 
case under discussion the large Larmor radius ion source enters the 
formulation at first order as S^ ' and represents a replacement of 
diffusion losses. To include the large Larmor radius ions in the 
cool ion transport equations the H, p. coordinates in Eq. (4-251) 
must be viewed as an r, v , v„, v dependence using the definition 
of the Hamiltonian, p , p Q, and p in terms of v , vfi, and v . It 
is then possible to take moments following the standard procedure 
used by Braginskii to derive the cool ion transport equations. The 
flux surface average of transport equations derived in this fashion 
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from Eq. (4-251) provides terms accounting for large Larmor radius 
effects on the right side of the continuity, momentum and energy 
transport equations. 

The moment or integral over velocity of the one dimensional 
orbit averaged kinetic equation, Eq. (4-251) is below. 

3M 

The partial derivative with respect to t is at constant ty in Eq. 
(4-252) rather than constant position as in Eq. (4-251). The M., 
N. functions have the following definitions. 

\ = f f ( 0 ) (v - v ) S l dv dvQdv (4-253) 
J j m' r 6 z 

• / i f " <v - V d v r d V v z (4-254) 
In Eq. (4-253) and Eq. (4-254) I is zero for the continuity equation 
and two for the energy equation. The velocity moment is taken with 
respect to the random velocity v - v , where v is the average 
velocity. The M- moment is density or pressure and N . is the moment 
of the right side of Eq. (4-251). The general time rate of change of 
a flux surface average quantity G is below, ^ 

d / < G > dv \ = J V dV + 3 < G * . 5 5 ) 

dt V a dij)/ 3t d\|j 3I|J a i|) 

where v. is the velocity of a flux surface. Substituting Eq. (4-25 2) 
into Eq. (4-255) gives the large Larmor radius correction to the 
Chapter 2 flux surface averaged transport equations. 
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The flux surface average in Eq. (4-256) has the same definition as 
in Chapter 2; however, because density and other functions are one 
dimensional the flux surface average reduces to the expression below. 

<Ga> = (G.fr^V,) • Ga(r2)B-zV2)) (!»>,) • B ; V 2 ) ) 

(4-257) 

In Eq. (4-257) \\i is assumed to be only double valued in r and 
i>(r-,) = * H r ? ) , where <G > is evaluted at i|>. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

F.l Summary 
Two plasma models relevant to compact torus research have been 

developed to study transport and equilibrium in field reversed 
mirrors. In the first model for small Lannor radius and large 
collision frequency, the plasma is described as an adiabatic 
hydromagnetic fluid. In the second model for 1<- ge Larmor radius 
and small collision frequency, a kinetic theory description has been 
developed. Various aspects of the two models have been studied in 
five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes 
two dimensional equilibrium and one dimensional transport in a flux 
coordinate. The AV code calculates orbit average integrals in a 
harmonic oscillator potential. The NEO code follows particle 
trajectories in a Hill's vortex magnetic field to study 
stochasticity, invariants of the motion, and orbit average 



formulas. The OHK code displays analytic tRr), B (r), <j>(r), E r(r) 
formulas developed for the kinetic theory description. The RES code 
calculates resonance curves to consider overlap regions relevant to 
stochastic orbit behavior. 

In the first model both poloidal and toroidal magnetic fields 
are allowed and the plasma evolves quasi-statically between 
equilibrium solutions as a result of transport processes or 
adiabatic external current changes. The equilibrium plasma solution 
is described by the magnetic field structure and the specification 
of two profiles related to pressure and toroidal magnetic field. 
When the plasma evolves due to adiabatic external current changes 
the two profiles are held constant and the plasma evolution occurs 
as a result of modifications to the vacuum magnetic field. When the 
plasma is subject to transport processes changes result due to 
alterations of the pressure related profile. 

The adiabatic fluid model is deduced from the full set of 
magnetohydrodynamic equations by neglecting dissipation. The 
resulting force balance equation and Ampere's law without 
displacement current yield the Grad-Shafranov equation which 
determines the two dimensional equilibrium. Because the Eq. (2-18) 
A* operator is elliptic a boundary condition in addition to the 
J T, right side of the equilibrium equation, specifies an 
equilibrium solution. The adiabatic assumption fixes a flux value 
at the magnetic axis, which in general can not be guaranteed by the 
two dimensional equilibrium solution. Consequently, it is also 
necessary to solve the flux surface averaged Grad-Shafranov equation. 
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The equilibration time in a flux surface is much shorter th^n 
between ix surfaces. Consequently, the braginskii classical 
transpo. t equations are flux surface averaged. The transport is 
then one dimensional with coordinate V|J. The transport processes 
considered are conduction, radiation, electron ion energy exchanne, 
coulomb friction, and neutral beam deposition. The neutral beam 
deposition is modeled in three dimensions and then mapped to the I(J 
transport coordinate by a geometric volume ratio and a flux surface 
average. 

The computation of transport and equilibrium begins from a 
given initial condition. The initial condition is determined by 
specifying \p(r,z) and the S(i|i), q(ty) profiles. These functions are 

det°rmined in the ADB code by four models. The first model is the 
Weitzner field which assumes p(i|i), f-p(i|i) are proportional to ip. 
The second model is the spherical Hill's vortex which assumes p(vp) is 
proportional to ty and fT(i|>) = 0. The third model is the elliptical 
Hill's vortex. This model is similar to spherical Hill's vortex 
except the separatrix is oblate or prolate. For this model exterior 
vacuum region solutions were derived. The fourth model represents 
the S(i|>) and q(iji) profiles as variable coefficient functions. 

Many neutral beam deposition simulation and adiabatic compression 
cases have been run with the ADB code. The focus of these 
investigations has been in the areas of radial versus axial plasma shape 
change caused by neutral beam injection, plasma shaping by adiabatic 
compression, the effect of varying neutral beam energies 



and currents, and the energy balance between neutral beam heating and 
radiation energy loss. 

In the second field reversed mirror model, the magnetic field is 
restricted to a poloidal component. The large Larmor radius effects are 
incorporated in the plasma description by considering the electrons as 
an inertialess fluid and modeling the ions with a distribution 
function. This model only allows a radial spatial variation and is thus 
one dimensional. 

The electrons are governed by fluid continuity and momentum 
equations and quasineutrality is assumed. This electron description 
with Ampere's law without displacement current has been solved 
analytically to obtain an initial condition for a diffusion problem. 
The analytic model provides self consistent electric and magnetic fields 
based on an idealized ion distribution function. 

A more realistic ion distribution function satisfies a kinetic 
equation which accounts for large Larmor radius effects. The ion 
distribution function and Hamiltonian are expanded in terms of collision 
frequency and the kinetic equation then yields a hierarchy of 
equations. At second order a kinetic equation for the zero order ion 
distribution i. -ion is obtained. This equation is the large Larmor 
radius analog of th>. =»11 Larmor radius drift kinetic equation of 
standard neoclassical theory. At first order a constraint equation 
determines the first order ion distribution function in terms of the 
first order source, collision operator and Hamiltonian. 

The expression for the first order Hamiltonian is obtained by 
substituting collision frequency expansions of <|J and $ into the 
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definition of the Hamiltonian. The potentials which occur in the first 
order Hamiltonian are obtained from the perturbation expansion of the 
electron fluid equations. The ion quantities required for the perturbed 
electron fluid equations are obtained from velocity moments of the zero 
and first order ion distribution function. 

The orbit averaged kinetic equation involves the collision 
operator acting on the zero and first order distribution function. In 
this work, collisions are represented by the Fokkfr-Planck operator. 
Since the orbit averaged kinetic equation is in H, 
p f i, p coordinates the standard Fokker-Planck operator has also 
been converted to H, p„, p . Orbit average or caret operator 
expressions have been derived for required collision operator terms. 

The neoclassical drift kinetic equation is derived by 
integrating appropriate equations over a gyro-orbit. The orbit 
averaged kinetic equation requires integration over the complete 
orbit. The orbit average operation provides a procedure by which 
integration over an orbit is performed without a detailed knowledge 
of the orbit. The orbit average operation is the method used to 
derive the orbit averaged kinetic equation. The orbit average has 
been derived in terms of phase space integrals and path integrals. 

The orbit averaged kinetic equation is derived up to a point 
assuming V ' is a function of the constants of the motion, 
axisymmetry, and one dimensional or two dimensional with only two 
constants of the motion. Further progress has been made by 
specializing to one dimension. The benefit of the one dimensional 
assumption is that p is then a constant of the motion. As a 
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direct result the orbit average formula is simpler and also some 
complexity is removed from the collision operator expressions. 

5.2 Conclusions 
The field reversed mirror has been modeled in the large 

collision frequency, small Larmor radius limit using a reduced set 
of magnetohydrodynamic equations. The adiabatic assumption is 
appropriate for time evolution of a plasma in parameter regions of 
interest. The central issues investigated were adiabatic compression 
and neutral beam heating. 

In this model equations are solved in r, z to obtain \p(r,z) 
and in a volume coordinate to obtain ip(V). The Grad methodology of 
iterating between the flux surface averaged Grad-Shafranov equation 
and the two dimensional Grad-Shafranov equation was found to be 
successful except in one case. When large currents devel.n near the 
separatrix a numerical instability can be driven if the boundary 
condition is updated during the iteration. This difficulty can occur 
during strong auiabatic compression. The numerical instability is 
avoided in the case of a conductor around the plasma where the 
boundary condition is fixed at UJ n =0. 

J Tplasma 
The implementation of the ICCG method to solve the two 

dimensional Grad-Shafranov equation was prompted by the desire to 
allow the flexibility of a variable mesh spacing. The initial 
motivation was twofold. First it was desirable to cluster grid 
cells near the magnetic axis to improve the accuracy of the chord 
--.\'-,o<i flux surface average. Second distant homogeneous boundary 
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conditions were an alternative means of dealing with a plasma having 
no surrounding conductor. The Green's function method of specifying 
boundary conditions proved to be a viable alternative to using 
variable grid spacinc as a means of applying the known ^Diasina = ° 
at infinity boundary condition. To economically implement the 
Oreen's function technique it is necessary to only update boundary 
grid points in the event a monitored boundary point undergoes a 
significant change of value. 

The chord method of computing the flux surface average near 
the magnetic axis ultimately proved unsatisfactory even with 
increased grid resolution using a variable mesh. This difficulty 
was rosolved by following constant i|> contours by solving the 
governing ordinary differential equations using an error controlled 
multistep method. This method necessitated the cubic spline fitting 
of the ty(r,z) function near the magnetic axis. 

In addition to the equilibrium solution, the large collision 
frequency, small Larmor radius model also requires numerical 
solution of transport equations. The transport equations have 
coefficients which contain flux surface average functions which are 
determined by solution of the two dimensional Grad-Shafranov 
equation. Consequently, no gain was realized by treating terms 
implicitly and thus a straightforward explicit time difference 
scheme has been used. 

The equilibrium transport solution begins from a given initial 
condition. The most commonly used initial ""nditions in this work 
are the Hill's vortex or variable coefficient profile model. The 
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Weitzner magnetic field is useful since it incluues poloidal and 
toroidal magnetic fields in contrast 10 Hill's vortex which only has 
poloidal field. Unfortunately, it is restricted since in the 
Weitzner model it is not possible to arbitrarily vary pressure and 
toroidal field and also maintain a flux function that is at most 
double valued. The greatest flexibility for tailoring the initial 
condition is realized with the variable coefficient model in terms 
of shaping profiles. When it is crucial to have a specific shape 
such as oblate or prolate the Hill's vortex may be used. 

Two ADB code results have been presented. The first case 
considers neutral beam deposition with an enforced • lectron energy 
decay rate and radiation loss. The second case simulates adiabatic 
compression of a prolate plasma. 

The first case addressed the issue of whether or not a 
realisable neutral beam current and energy could heat a plasma with 
radiation and supplemental electron energy loss, .t is clear from 
this example that a density which allows the neutrel beam to 
penetrate into the plasma interior is important in the eventual time 
evolution. The character of the beam penetration is evidenced in 
the flux dependence of the S(if) profile. Another factor which is 
influential is that the neutral beam energy input is proportional to 
the difference between the plasma energy and beam energy. This is a 
consequence of charge exchange. As the plasma heats, the neutral 
beam becomes less effective at adding additional energy. The 
radiation loss was attributed to oxygen which has a power loss as a 
function of electron temperature which has two peaks. The main 
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conclusion to be drawn from this example is that beginning from an 
initial state with temperature chosen to cause large radiation loss 
the neutral beam is able to dominate and the plasma heats. It 
should be noted that in this example a conducting boundary condition 
was used and consequently the amount of possible plasma expansion 
was limited. This fact contributes to the large amount of neutral 
beam absorption which at t m end of 2.8 msec was 98.7%. 

The second ADB code result investigated a particular plasma 
shaping consideration. The proximitv of conducting walls influences 
plasma stability. It was found b} other workers olasma stability is 
enhanced with distant walls by causing an equatorial bulge in a 
prolate plasma. The ADB code successfully generated the appropriate 
-•nape after a judicious choice of currents in six external coils. 
The initial condition used in this result was a prolate Hill's 
vortex. The final shape is must expediently obtained beqinning with 
a prolate qeometry; however, a spherical qeometry may be used as 
well. To change a spherical geometry to prolate geometry coils must 
be added to generate a cusp field. The final currents that were 
used in conjunction with the irolate Hill's vortex to obtain the 
desired shape were positive and negative. This means the plasma was 
compressed at some axial positions and expanded at others. The 
overall effect seems to be a near constancy of bulk properties. It 
is reasonable to conclude the desired final state was more of a 
rearrangement than an alter?ticn of the plasma. The toroidal 
current went from 32,400 amps to 31,500 amps. Also the kinetic 
energy only increased by 8%. 
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The second basic model of the field reversed mirror involves 
large Larmor radius and small collision frequency. Since the ions 
in this model are described by a. distribution function the principle 
problem is to derive a kinetic equation for the ion distribution 
function which incorporates large Larmor radius effects. Fundamental 
to deriving the kinetic equation is the issue of generating a 
procedure that is equivalent to following orbits but which does not 
require a detailed knowledge of trajectories. The procedure that 
has been derived to satisfy this need is the orbit average. 
Beginning from the definition of the orbit average, which actually 
amounts to integrating along a known trajectory, equivalent phase 
space and path integral formulas have been derived. In one 
dimension the path integral and phase space formula are the same. 
Also the caret operator which is a partial integral along an orbit 
has been derived. Consequently, equations for the one dimensional 
case have been written down for the orbit averaged kinetic equation. 
Also analytic solutions have been derived for an initial condition 
using an idealized ion distribution function. For the scenario of a 
large Larmor radius population of hot ions in a cooler background 
the means by which the usual transport equations are modified has 
been indicated. 

In two dimensions the orbit averaged kinetic equation is more 
difficult to derive for two reasons. First no equivalent form of 
the caret operator has been derived in which a detailed knowledge of 
a trajectory is not required. Second the existence of a third 
constant of the motion changes the form of the orbit average. The 
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advantage of the one dimensional treatment is that p is known to 
be the third constant of the motion. In two dimensions only the 
governing equation and constraint equation are known for various 
classes of constants of the motion. Thus it is not known for a 
general potential, especially when it is only defined numerically, 
whether or not a third constant of the motion even exists. The 
existence of a third invariant alters the WdH formula in Eq. (--14) 
by adding another delta function in the third invariant variable and 
also changes the coordinate transformation Jacobian. The effect in 
the phase space formulas is to change the integration weighting 
function. Depending on the form of the invariant the accessible 
orbit average volume may also be changed. Since this change affects 
transport a third invariant which is fourth order in the velocity 
has been constructed for the Hill's vortex in the low transverse 
energy limit. The functional form of this invariant determines the 
orbit average formula near the orbit potential well minimum. 

In the case of the AV harmonic oscillator code the third 
invariant is known. The radial and axial energies are conserved. 
The resulting orbit average formula is given by Eq. (3-64). It was 
shown that the conditions for a comparison of a single orbit and 
this formula are an axial to radial oscillation frequency ratio of 
six. With this restriction excellent agreement is obtained. It has 
been shown the integral over H values yields the orbit average 
formula which is derived assuming only H and p Q are constants of the 
motion. The conclusion is that if a third constant of the motion 
exists and the particle distribution is a function of the third 
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constant of the motion the orbit average accessible volume and 
change of variables Jdcobian should take this into account. If 
however the third constant o" the motion does not exist or the 
distribution function does not depend on it, the orbit average is 
the same as the formula with only H and p„ as constants. 

Implementing the orbit average which assumes only H and p„ are 
constant: gave good agreement with a stochastic orbit generated using 
the NEO code. In the stochastic orbit regime there is no third 
constant of the motion and the orbit average is then known. It is 
thus important to find parameter rsnges where stochastic motion 
occurs. In this work stochasticity has been examined by expressing 
the Hamiltonian in transformed canonical variables which separate 
into a function of momenta and a function of momenta and coordinates. 
Ideally the function of momenta and coordinates is a perturbation 
and resonance overlap in momenta space indicates stochasticity. The 
check of predicted stochastic orbits in the NEO code showed for the 
selected canonical coordinates the resonance overlap theory can only 
be applied at low energy. For small change of p„ near p f t = - .2 an 
irregular surface of section results; however, the total lack of 
surface of section structure characteristic of stochasticity has not 
been observed. 

5.3 Future Work 

The equilibrium solver which forms the basis of the ADB code 
has been merged with a mor.- elaborate transport model in the Shumaker 
FRT code. Improvements to better simulate field reversed mirrors 
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assuming small Larmor radius should thus be addressed to upgrading 
the FRT code. It would be useful to implement an additional initial 
condition which allows a selection of geometry and flexibility in 
the determination of the S(ty) and q(i|j) profiles. Originally the 
ICCG method was implemented to allow the use of a variable mesh. In 
computer calculations in which the mesh is uniform, it would be desirable 
to have an option to solve the two dimensional Grad-Shafranov equation 
using cyclic reduction. The advantage in using cyclic reduction is that 
the iteration necessary in the ICCG method is avoided. 

The fundamental requirement necessary to calculate a two 
dimensional orbit averaged kinetic equation is a practical definition 
of the caret operator in two dimensions. The precise type of averaging 
of orbits leading to a given r,z point which yields the caret operator 
of a quantity at that point is not understood at this time. The Poisson 
bracket eigenfunction expansion may lead to a resolution of this problem. 

The orbit average procedure is well defined in one dimension. In 
two dimensions a formula exists for constant H and p . The 
specialization required in the event of the occurrence of a third 
invariant dependent distribution function has been discussed. The 
search for third invariants of various orders appears to be a fruitful 
area of research. The ultimate goal is to understand which potentials 
may be beneficial to transport considerations. The asymptotic 
polynomial approximation procedure may be extended to higher order or 
other techniques may be employed to solve the relevant equations. A 
least squares fit or application of the Rayleigh-Ritz principle may 
generate useful approximate invariants. 
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The numerical implementation of various orbit averages in this 
work has relied largely on bilinear fits. Improved accuracy could be 
realized with bicubic b-splines or more elaborate quadrature methods. 
The issue of integrating near the boundary of the accessible orbit 
region has been handled by a chord approximation to the curved 
boundary. Increased accuracy at the cost of added complexity is 
possible by integrating along low order curve fits to the actual 
boundary. 

The question of how to delineate parameter regimes where 
stochasticity occurs is unanswered globally. In a case where a third 
invariant does exist there is a possibility it may break down for some 
parameter ranges. It is then desirable to determine the phase space 
boundary between regions where the third invariant determined orbit 
average is applied and the stochastic orbit average is applied. 

The one dimensional orbit averaged kinetic equation has been 
derived and terms have been formulated in H, p„, p space for the 
Fokker-Planck collision operator. The next step is to describe the 
sources for a particular problem and numerically implement the 
electron fluid equation and the orbit averaged kinetic equation. 
Reasonable initial conditions can be obtained from the analytic 
model to begin the one dimensional calculation. A more realistic 
choice of distribution function and electron radial velocity would 
be advantageous. Using the same distribution function the electron 
radial velocity may be modeled as linear in radius and error function 
expressions may be derived for the initial \\> and 4>. Beyond this 
approximation a full numerical treatment is required. 
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APPENDIX A 

Definition of Functions Used for Orbit Average Formulas 

The I functions 

/ ' 

9 1/2 
I, = / (1 + x') dx 

(A-l) 
1/2 

| x(l + x 2) + j log(x + (1 + x 2) 

1/2 
/ 

I2(x,y) = / y(x2 + y 2) dy 
A-2) 

1 , 2 + 2 3 / 2 

= 3 (x + y ) 

a,b,c,x) = / ( I,(a,b,c,x) = / dx(x 2 + c)(ax + b ) " 1 

a _ 1((x 2 + c ) 1 / 2 - (b/a)log(2((x2 + c ) 1 / 2 + x)/a; 

(A-3) 

2 1 / 2 p ] / 2 ? i/5 
(c + (b/ar) log((2(c + (b/aT) (x 2 + c ) 1 / 2 

2bx/a + 2c)(ax + b)"1)) 

In the case when c = 0 in A-3, a different formula is required. 

I3(a,b,0,x) = x/a - ba"2 log(x + b/a) (A-4) 

/ « I4(a,b,c,x) = / x(x 2 + c ) 1 / 2 (ax + b ) " 1 dx 
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/ 
1 / / 2 ^ ,1/2 .2 . _ J / i = a" 1 / (x* + c ) l / < : dx - (b/a) (* + c T ^ a x + b)dx 

= ( c / a j l ^ x / c 1 7 2 ) - (b/a)T 3 (a,b,c,x) 

In the case when c = 0 in A-5, the following formula applies. 

I 4 (a ,b ,0 ,x ) = x 2 / (2a) - (b /a) I 3 (a ,b,0,x) 

•> a VVWV 
2 2 J2 r t sin 9 

e ' de 

where, 

e ] = s i n " 1 ( ( r A - rQ)/r}) 

32 = sin" ( ( r B - r g ) / ^ ) 

(A-5, 

(A-6) 

(A-7) 

(A-8) 

The Kn functions 

,num 
h 2 + h 4 z g, + g 2 r + g3z + g 4rz 

Jz JQ (h 1 + h 2 r + h3z + h 4 r z ) a 

r A z [ (9T + g 3 z ) (h 1 + 
J d Z | " (1 - a ) ( h 2 + h 4 

h 3z) 
(A-9) 

(g 2

 + g 4 z) (h 1 + h 3z) 2-a 

(1 - a)(2 - a) (h 2 + h 4 z r 
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f A z (h. + h , z ) ] - a 

Kdeno B / . # ; 1 w 3 [ ^ ^ d z 

1̂ = J ' (1 - a)(h2+ f y ) :A - IO> 

•1 

.num 
- Az . Ar 

1 "J. v z l " " h 2+h 4z 

9] + g 2

r + g 3

z + %rz 

h3f_ (h, + h 2r + h3z + h 4 r z ) a 
dr 

/ , 

AZ 

dz 
(9! + 9 3 z)(h 1 + h3z + (h 2 + h 4z)Ar) 

r r r ^ ) ( h 2 + h 4z) 

1-a 

(A- l l ) 
rAr(h.+ h3z + (h 2 + h^z)Ar ,1-a 

' 9 2 + 9 4 z ) (1 - a ) (h ,+ h.z 2 4 

(h 1 + h3z + (h 2 + h4z)Ar 

(1 - a)(2 - a ) (h 2 + h 4 z) 2 

,2-a 

A; 

^ z l 

, . (h. + h,z + (h 0 + h.z)Ar) 
..deno _ / . 1 3 2 4 
K 2 " I d z (1 - o) (h , + h.z) 

(A-12) 
'2 "4 ' 

J0 J0 

2 9] + 9 2r + 93z + 94t"Z 
dr 

(h ] + h 2r + h3z + h 4 r z ) a 

• / " 
J n 

dz 
(h, + h3z + (h 2 + h 4 z ) r 2 ) 

( 9 1 + 9 3 2 ' 1 (1 - a) (h ? + h-z) 

1-a 

"2 "4 ' 

(h, + h 3 z ) 1 _ a 

(1 - a)(h 2+ h 4z) 
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(A-13) 

r ^ h , + h3z + (h 2 + h 4 z ) r 0 ) 
+ ( 9 2 + g 4 z ) ( (1 - a ) ( h 0 + h 4 z) 

1-a 

( ^ + h 3 z) 2-o 

(1 - a ) (2 - a ) (h 0 + h 4 z ) ' 

(h 1 + h 3z + { h 2 + h 4 z ) r 2 ) 

(1 - a) (2 - a ) ( h 2 + h 4 z ) ; 

2 - a ' 

K 
•'O 

(1 - a ) ( h 2 + h 4 z) dz 

(A-14) 
«Az ,.Ar 

,num 

•>0 • ' r , ( h l + h 2 r + h 3 z + 

g 4rz 

h„rz) 

/•Az i ̂  
• 'n 

(l-lilM^z) (<hl + h 3 Z + < h2 + V ) ^ ) 1 " 0 

'2 ' " 4 ' 

(h 1 + h 3z + ( h 2 + h 4 z ) r 2 ) 1-ctl 

+ ( l- 9«)(h 2

4

+

Zh 4zT ( A r ( h l + h 3 Z + ( h2 + V ) * - ) 1 " 0 

- r2(\\} + h3z + (h 2 + h 4 z ) r 2 ) 1 _ a 

+ T 2 - a ) ( h 2 + h 4 z ) K + h 3 z + < h2 + V ) r 2 ) 2 " a 

- (h- + h3z + (h 2 + h 4 z ) i r ) 2 _ a ) 

(A-15) 
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i,deno _ / 
K4 " / 

Az 
dz|(h 1 + h3z + (h 2 + h4z)Ar ,1-a 

(A-16) 
1-otl 1 (h, + h3z * (h 2 + V ) r 2 ) | - " l n . a ) ( ' h 2 + h 4 2 

The N p functions 

,,num 
,min(z, ,Zp i ^ i 3 g, <• g 2i" + g3z + g 4 rz 

0 (h 1 + h 2r + h3z + h 4 r z ) a 

/ . 

min(z 1 ,z 2 ) 
dz 

9] + % z 

; i - a ) (h 2 + h^zj 

^(h1 + h3z + (h 2 + h 4 z)z 3 ) 1-a 

( i - g ^hA Z h,»r ( z 3 ( h i + h 3 2 + ( h 2 + v^1'" '2 "4 

+ (2 - a ) (h , + h,z) ( ( h 1 + h 3 z ) 
2-a 

'2 "4 

- (h 1 + h3z + (h 2 + h 4 z ) z 3 ) 2 _ a ) ) (A-17) 

K,deno 
minfz^Zg) 

dzffhj + h3z + (h 2 + h 4 z)z 3 ) 

- < h l + h 3 z ) 1 " 7 ( l - a ) ( n 2 + h 4z) 

1-a 

(A-18) 
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Regions two and three have different formulas depending on the 
relative size of z-, and z ?. For z„ > z, the following 
formulas apply. 

,,num 
• z 2 r z 3 

/ > / 
h,+h,z 

1 " " h2+h4z 

g 1 + g 2 r + g3z + g 4rz 

l + h 3 z " (h ] + h 2r + h3z + h 4 r z ) a 
dr 

fzZ 
I dz 

gn + g,z , 
1 3 (h, + h,z + (h, + h , z ) z , ) ' - a 

(1 - a) (h 2 + h 4z) *" l T "3* T '"2 x V * 3 ' 

(A-19) 
9 2 g 4 z / 

1 - a ) ( h 2 + h 4 z ) ( z 3< h l + h 3 z + <h2 + h. . 4 z;z 3 

,1-a 

(h 1 + h3z + (h 2 + h 4 z)z 3 

(2 - a ) (h 9 + h.z) 

>2-a 

r z 2 

J z i 

Mdeno | " 2

 H (", + " 3

Z + <h2 + h 4 z ) z 3 > 
N2 = l . d Z (1 - a ) ( h 2 + h4z) 

2 "4 ' 

1-a 
(A-20) 

r z 2 r 
N3 - j d z / 

2 r h 2 + h 4 2

 g i + g 2 r + g3z + g 4 rz 

z l ° 
(h 1 + h 2r + h3z + h 4 r z ) a 

• / 2 d z ( ( i - 9 a) + (hf^ 4 z) (-< hi + y ) 1 " " ) < A - 2 1 ] 

9 2

 + V 
(1 - a)(2 - a) (h 2 + h 4z) 7 < h l + h 3 z ) 2 ^ 
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, z2 - (h. + h-z) 1 

/eno _ / H , 1 3 
3̂ ~ / dzVr- a)(h2+ h4z) 

(A-22) 

For z 2 < z, the following formulas apply for regions two and three. 

,,n urn JZ] J g l + 9 3 z 

V 0

 Z V 1 - a ) (h 2 + hTiT ( " ( h l + h 3 z ) 

g 2 + g 4 

(1 - a ) (2 - o ) ( h 2 + h 4 z) 2 < h l + h 3 z I 2 " 0 ) (A-23) 

i '1 - ( h T + h,z) 
.deno . / , 1 3 ' 
"2 J d Z (1 - a) (h 2 + t y j 

(A-24) 

. N™"1 = | dz 
/ (1 - X^y) ( H l + h 3 Z + ("2 + h 4 Z ) 2 3 ^ " a 

(1 - a ) ( h 2 + h 4 z) ^ z z 3 ( h 1 + h 3z + ( h 2 + h 4 z ) z 3 

,1-a 

[i.] + h 3z + ( h 2 + h 4 z ) z 3 ) 
(2 - a ) ( h 2 + h 4 z) 

2-a, 
(A-251 

. 4 - z l (h , + h,z + (h , + h . z j z , } 1 " 0 1 

..deno | , v 1 3 l 2 4 ' 3 ' 
N 3 = I, d Z (1 - a ) ( h 2 + h 4 z) 

».J (A-26) 
2 

ArAz/z, 
„num 

3 9T + 9 2 r + 9 3 z + 9 4 r z 

•/max(z,,z?) 0 * 1 2 3 
dr 

h 4rz) 



• / 

ArAz/z. 
dz 

9 1 + 9 3z 
(1 - o ) (h 2 + h 4z) 

max{z 1 >z 2) 

H h ^ h 3z + (h 2 + h 4 z)z 3 ) 

(1 - 9 a H h ° 4 ! h 4z) ( z 3< h l + h 3 z + ( h 2 + V ^ 1 " " 

>«- (hl + h ,z ) 1 -« ) '1 T "3 ' 

+ _ .] ... . ((h, + h , z ) 2 " a 

(2 - aJThj + h^z) 1 3 '2 T " 4 ' 

(h, + h3z + (h 2 + h 4 z)z 3 ) 2 1) 
deno / ^ ^ , 'h1 ^ ^ ' ^ V ' / ^ ' V V 
4 = / d z (1 - a ) (h 3 + h dz) 

^max(z-|,Zp) 

A-27) 

1-a 

„ 2 • „ 4 , 

(A-28) 

The T functions 
n 

T ] = / x'l^Ar/xJdx 
• 'o 

/ " A z 3 T 2 = I x°I 1 (Ar/x)dx 
• 'o 

/ * A * A 
T 3 = / I 2 (x,Ar)dx - ta712 

• 'o 

/•AZ 
T 4 • / d x d ^ A z - x)/Ar) - I ^ - x /A r ) ) 

(A-29) 

(A-30) 

(A-31] 

(A-32) 
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T5 = / *U]( (Az - x)/Ar) - I , ( -x/Ar))dx 
JQ 

f Az 
T6 = / dx(I 2(Ar,Az - x) - I (Ar, - x)) 

J 0 

/

Ar 
d x f l ^ A r - x)/Az) - I , (-x/Az)) 

v 

T 8 = / d x ( I , ( ( & r - z ) /Az) - I , ( - x / A z ) ) x 
• 'O 

/•Ar 
T 9 = / dx(I 2(Az,Ar - x) - I (Az, x)) 

/• Az 
T 1 0 = / dxI 2 (x,Ar)x - Az /15 

T l l = y d x ( I 3 ( ( v 3 - v 4 ) / A r , V l + V z ) 

+ (v 4 - v ^x /Az jAz - x ) 2 , Ar 

(A-33) 

(A-34) 

(A-35) 

(A-36) 

(A-37) 

(A-38) 

(A-39) 

- I 3 ( ( v 3 - v 4 ) / A r , V l + v 4 + ( v 4 - v^x/Az.tAz - x ) 2 , 0 ) ) 

f&Z 

T12 = J d x ( I 3 ( ( v 3 . v 4 ) / A r , V l + v 4 
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+ ( v 4 - v ^ x / A z . f A z - xf,&r) 

(A-40) 

- I 3 ( ( v 3 - v 4 ) / A r , v 1 + v 4 + ( v 4 - v ^ x / A z . f A z - x ) £ , 0 ) ) x 

.Az 

0 

T 1 3 = / d x ( I 4 ( ( v 3 - v 4 ) / A r , v 1 + v 4 

+ ( v 4 - v ^ x / A z . U z - x ) ^ ,A r ) 

(A-41) 

• / . 

I 4 ( ( v 3 - v 4 ) / A r , v , + v 4 + ( v 4 - v ^ x / A z . t A z - x ^ . O ) ) 

Az 

'14 - / d x ( I 4 ( ( v 3 - v 4 ) / A r , v 1 + v 4 

0 

+ ( v 4 - v ^ x / A z ^ A z - x ) Z , A r ) 

(A-42) 

I 4 ( ( v 3 - v 4 ) / A r , v 1 + v 4 + ( v 4 - v ^ x / A z . f A Z - x ) £ , 0 ) ) x 

Az 

T 15 = / d x ( ! 3 ( < v 2 - V i ) / A r ' v l + v 4 

+ ( v 1 - v 4 ) x / A z , ( A z - x) ,Ar ) 

(A-43) 

I 3 ( ( v 2 - v 1 ) / A r , v 1 + v 4 + ( v 1 - v 4 )x /Az , (AZ - xf,0)) 
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-r 16 " / dx(I 3 ((v 2 - v])/&r,v] + v 4 

+ (v 1 -v 4)x/Az,(Az - x) ,Ar) 

(A-44) 

«•[ 

I 3 ( ( v 2 - v 1 ) /A r , v 1 + v 4 + ( v ] - v 4)x/Az,(Az - x ) \ 0 ) ) x 

Az 
T 1 ? = / d x ( I 4 ( { v ? - v 1 ) /A r , v 1 + v 4 

+ (v, -v 4)x/Az,(Az - x) ,Ar) 

(A-45) 

I 4 ( ( v 2 - v 1 ) /A r , v 1 + v 4 + ( V ] - v 4)x/Az,(Az - xT.O)) 

AZ 
f18 = / d x ( J 4 ( ( v 2 " V ] ) / A r ' v l + v 4 

+ (v ] -v 4)x/Az,(Az - x) ,Ar) 

(A-46) 

- I 4 ( ( v 2 - v ] ) / A r , v 1 + v 4 + ( v ] - V 4 ) X / A Z , ( A Z - x ) \ 0 ) ) x 

Az 

/ , 
i 1 9 - i d x ( I 3 ( ( v 4 - v 3 ) /A r , v 2 + v 3 

0 

+ (v 3 -v 2)x/Az,(Az - x) ,Ar) 
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(A-47) 

•'O 

I 3 ( ( v 4 - v 3 )/Ar,v 2 + v 3 + (v 3 - v2)x/Az,(Az - x) ,0) 

Az 
T20 = / l j x ( I 3 ( ( v 4 - V

3 ) /Ar ,v 2 + v 3 

(v, -v2)x/Az,(Az - x) ,Ar) 

(A-48) 

- I-j((v a - v,)/Ar,v 9 + v, + (v, - V ?)X/AZ,(AZ - x ) \0 ) )x 

•'0 

3 U V 4 V 3 , / U , , V 2 - V 3 -r ^ j - V g ; 

AZ 
T 2 1 = I cix(I 4((v 4 " v 3)/Ar,v 2 + v 3 

+ (v 3 -v2)x/Az,(Az - x) \Ar) 

- I 4 ( ( v 4 - v 3 ) /Ar,v 2 + v 3 + (v 3 - v2)x/Az,(Az - x) 2 ,0 ) ) 

AZ 
T 2 2 = f d x n 4 ( ( v 4 - v 3 ) / A r , v 2 + v 3 

•'0 

(A-49) 

+ (v 3 -v2)x/Az,(Az - x) ,Ar) 

(A-50) 

^ ( ( v 4 " v 3 ) /Ar,v 2 + v 3 + (v 3 - v2)x/AZ,(Az - x ) \ 0 ) ) x 
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•r T 2 3 = / d x ( I 3 ( ( v 1 - v 2 ) /A r , v 2 + v 3 

+ (v„ -v,)x/Az,(Az - x) ,Ar) 

- ^ ( ( v , - v 2 ) /AT,v 2 + v 3 + ( v ? - v3)x/AZ,(Az - x ) \ 0 ) 

AZ 
T , 4 = I d x ( I 3 ( ( v 1 - v 2 ) /A r , v 2 + v 3 

•'0 

(A-5i: 

+ (v ? -v 3)x/Az,(Az - x) ,Ar) 

(A-52) 

- ^ ( ( v , - v 2 ) / A r , v 2 + v 3 + ( v 2 - v 3)x/Az,(Az - x) ,0))x 

• Az 

I, T 25 = I d x ( I 4 ( ( v ] - v 2 ) /A r , ^ 2 + v 3 

+ (v 2 -v 3)x/Az,(Az - x) ,Ar) 

(A-53) 

V ^ - v 2 ) / A r , v 2 + v 3 + ( v 2 - v 3)x/Az,(Az - x) ,0) ) 

/„ 
AZ 

T 26 = / d * ( V ( v 1 " v 2 ) / A r , v 2 + v 3 

+ (v 2 -v 3)x/Az,(Az - x) ,Ar) 



(A-54) 

- I 4 ( ( v 1 - v 2 ) / A r , v ? + v 3 + ( v 2 - v 3)x/Az,(Az - x) ,0))x 

rAz 
T 2 ? = / d x ( I 3 ( ( v 3 - v 2 ) /Az ,v ] + v 2 

JO 

+ (v. - v, + v 3 - v 2)x/Az,Ar ,Az - x) 

- I 3 ( ( v 3 - v 2 ) /Az ,v 1 + v 2 

+ (v 4 - v i + v3 - v 2)x/Az,Ar , - x)) 

l 2 8 - f d x ( I 3 ( ( v 3 - v 2 ) /Az,v, + v 2 

(A-55) 

+ ( v 4 " v] + v 3 " v 2)x/Az,Ar ,Az - x) 

- I 3 ( ( v 3 - v 2 ) /A2,v 1 + v 2 

2 
+ (v^ - v1 + v 3 - v 2)x/Az,Ar , - x))x 

'29 r d x ( I 4 ( ( v 3 - v 2 ) /Az,v 1 + v 2 

+ (v« - v, + v 3 - v 2)x/Az,Ar ,Az - x) 

- I 4 ( ( v 3 - v 2 ) / A z , V l + v 2 

(A-56) 

(A-57) 



+ ( v 4 - v ] + v 3 - v 2 ) x /Az ,Ar , - x) 

T 3 0 = / d x ( I 3 ( ( v 4 - V 3 ) / A r , v 3 + v 2 

+ (v , - Vp + v. - v 3 ) x /A r ,Az ,Ar - x) 

I 3 ( ( v 4 - v 3 ) / A r , v 3 + v 2 

+ ( v 1 " v 2 + v 4 " v 3 ) x / A r > A z , - x) 

-Ar 
3 1 = / d x ( I 3 ( ( v 4 - v 3 ) / A r , v 3 + v 2 

+ ( v , - v ? + v . - v 3 ) x /A r ,Az ,Ar - x) 

" J 3 ( ( v 4 * V 3 ) / A r " 3 + V 2 

2 
+ ( v 1 - v 2 + v 4 - v 3 ) x /A r ,Az , - x ) )x 

T 32 = / d x ( I 4 ( ( v 4 " v 3 ' ' ' A r ' v 3 + v 2 
0 

2 
+ ( v 1 " v 2 + v 4 " v 3 ) x /A r ,Az ,Ar - x) 

" ! 4 ( ( v 4 " V 3 ) / A r » v 3 + v 2 

+ (v^ " v 2 + v 4 " v 3 ) x /A r ,Az , - x) 
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The I) functions 

min(f.g) h 
U-,(a,b,c,d,f,g,h) = / dz ( (a + br + cz + drz)dr 

J0 0 

= (ah + bh 2 /2)min(f,g) (A-61] 

+ (ch + dh 2 /2 ) (min( f ,g) ) 2 /2 
h _f+(g-f)r /h 

U 2 (a,b,c,d, f ,g,h) = / dr / (a + br + cz + drz)dz 
0 min(f,g) 

= a(f - min(f,g))h + a(g - f )h /2 

+ b(f - min( f ,g ; )h 2 /2 + b(g - f ) h 2 / 3 

+ ( g 3 - f 3 )hc / (6 (g - f ) ) - ch(min( f ,g)) 2 /2 

+ dh 2 (g 3 / (6(g - f ) ) - ( g 4 - f 4 ) / (24 (g - f ) 2 ) 

+ (min( f ,g) ) 2 /4 ) (A-62) 

For f > g U-, has the def in i t ion given below. 

U 3 (a,b,c,d,f ,g, : . ) = / dz f (a + br + cz + drz)dr 
Jg • , { 2 - f ) h / (g - f ) 

= ah(f - g)/2 + ch(2f 2 - fg - g 2 ) /6 

bh 2(g - f ) / 3 + dh 2 (5 f 2 - 3g 2 - 2fg)/24 

(A-63) 
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The IU func t i on i s def ined below f o r the case of f < g. 

Q / . h ( z - f ) / ( g - f } 
U n ( a , b , c , d , f , g , h ) = / dz / (a + br + cz + d rz )d r 

J f 0 

= ah(g - f ) / 2 + c h ( 2 g 2 - rg - f 2 ) / 6 

+ bh 2 ( g - f ) / 6 + dh 2 ( g (g - f ) - (g - f ) 2 / 4 ) / 6 

(A-64) 

.ArAz/h __h 
U 4 ( a , b , c , d , f , g , h ) = j ' dz f ( a + b r + c z + 

max(f ,g) 0 

drz )d r 

(ah + bh 2 / 2 " , ' r / W h - m a x ( f , g , ) ) (A-65) 

+ (ch + d h 2 / 2 ) ( ( A r A z / h ) 2 - (max(f , g , ) ) 2 ) / 2 

The Z func t ions n 

• A z /yz-^HAz-z^-1 f AZ ft- I " - " I ' 

dz / d r (a + br + cz + d rz ) z} *0 

ar 2 (Az - z ^ / 2 + c r 2 ( 2 A z 2 - z ^ - z 2 ) / 6 

+ b r 2 (Az - z ^ / 6 

+ dr 2 (Az(Az - 2 ] ) - (Az - z ] ) 2 / 4 ) / 6 

(A-66) 
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r 2 zfr{iz-z])/rz 

Z 2(a,b,c,d) - / Hrf ( a + b r + cz + drz)dz 
z l 

= (Az - z})(*rz + brg/3 + cr2(Az + 22^/6 (A-67) 

+ dr |(5z ] + 3Az)/24) 

Z 3{a,b,c,d) = / d z j (a + br + cz + drz)dr 

= (ar 2 + br\/2)z^ + (cr 2 + dr 2 /2 )z 2 /2 

/

Az AZ 

dz /* (a + br + cz + d r z ) d r 
0 r 2 

= (a(Ar - r 2 ) + b{Ar2 - r 2)/2)Az 

+ (c(Ar - r 2 ) + d(ArZ - r |)/2)Az 2/2 

(A-68) 

(A-69) 
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APPENDIX B 

Coefficients for the Hill's Vortex Potential 

Inside the separatrix the following coefficients are non-zero: 

co,o " 3 ? e / 2 

co,2 • " 3 V 2 

C2,0 • " 3 V 2 + 9 / 1 6 

C2,2 = " m 

C 2 > 4 = 9/16 

u4,0 9/8 

C 4 > 2 = 9/8 

C6,0 " 9 / 1 5 

Outside the separatrix the following coefficients are non-zero: 

co,o = 1 0 2 7 P e / 1 2 8 

C Q 2 = - 693 pe/32 

C Q ^ = 1485 p0/64 

C0,6 = " 3 8 5 P 6
/ 3 2 

C0,8 = 3 1 5 P e / 1 2 8 

C 2 0 = - 693 pe/32 + 1149/256 

(B-l) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

(B-l7) 

(B-12) 

(B-13) 

(8-14) 
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C 2 2 = 1485 pe/32 - 987/64 (B-15) 

C 2 4 = 1155 pe/32 + 2547/128 (B-16) 

C2 6 = 3 1 5 P e / 1 2 8 " 7 3 5/ 6 4 (B"17) 

C 2 8 = 645/256 (B-18) 

C 4 Q = 1485 pe/64 - 987/64 (B-19) 

C 4 2 = - 2310 pe/64 + 2547/64 (B-20) 

c
4 4 = 9 4 5 P e/ 6 4 " 2205/64 (B-21) 

C 4 6 = 645/64 (8-22) 

C 6 0 = - 385 p6/32 + 2547/128 (B-23) 

C 6 2 = 315 p6/32 - 2205/64 (B-24) 

C 6 j 4 = 1935/128 (B-25) 

C8,0 = 3 1 5 p e / 1 2 8 " 1 4 7 ° / 1 2 8 (B-26) 

Cg 2 = 645/64 (B-27) 

C ] 0 0 = 645/256 (B-28) 
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APPENDIX C 

Invariant Poisson Constraint Equation Coefficients 

Coefficients for the solution of the poisson equation are as 
follows: 

A i , o = - A i , i + E " F C O , O (C- 1) 

A2,l = " 2" C0,2 " 6 A2,2 ( C" 2 ) 

A2,0 = " "12' C2,0 " 6 A2,l < C ~ 3 ) 

A3,2 = -7C0,4 - 1 5 A 3 , 3 (C"4> 

A3,l = "T2" C2,2 " A3,2 ( C" 5 ) 

A3,0 = " 30" C4,0 " T5" A3,l (C~6) 

A4,3 s'iC0,6 - 2 8 A 4 , 4 (C-7) 
1 5 

A4,2 = "W C2,4 " ? A4,3 (C"8) 

A4,l = "30 C4,2 " 5 A4,2 ( C _ 9 ) 

\,0 = "56" C6,0 " 28" A4,l 

A4.0 = " Rfi"C6.0 " WA4.1 (C-10) 

A5,4 = " 7 C0,8 ' 4 5 A5,5 (C-ll) 

A5,3 " -T2" C2,6 " ^ A 5 , 4 • (C-12) 



A 5,2 = ~ W C4,4 " A5,3 (C-13) 

1 3 
A = - — r - — A "5,1 56 u6,2 14 "5,2 

(C-14) 

A = - — r - —— A 
"5,0 90 U8,0 45 "5,1 

(C-15) 

A6,5 = " 2" C0,10 " 6 6 A6,6 (C-16) 

1 15 
"6,4 12 °2,8 2 "6,5 (C-17) 

A 1 r 28 « 
"6,3 " 31T u4,6 T5" "6,4 (C-18) 

1 15 
A 6,2 = " 5F C6,4 ~7S A6,3 (C-19) 

1 2 
A = r . — A 
6,1 90 L 8,2 15 "6,2 

(C-20) 

A 6,0 = " T3T C10,0 " F6~ A 6 , l (C-21) 

A 7,6 = " 9 1 A7,7 (C-22) 

A7,5 = - 1 1 A 7 , 6 (C-23) 

A7,4 = " 3 A7,5 (C-24) 

A7,3 = " A7,4 (C-25) 

A 7,2 = " I A7,3 (C-26) 

A = . J A 
"7,1 11 "7,2 

(C-27) 
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A = _ J A 
M 7 , 0 91 rt7,l 

A 8 , 7 - " 1 2 0 A 8 

A = - H A H 8 , 6 6 H 8 ,7 

A - - 2 2 A A 8 , 5 F " A 8 ,6 

H 8 , 4 28 H 8,5 

A = - 1 § A 8,3 45 H 8 , 4 

A = - — . A 
8,2 22 M 8 ,3 

(C-28) 

(C-29) 

(C-30) 

(C-31) 

(C-32) 

(C-33) 

(C-34) 

A = - — A 
8,1 91 H 8 , 2 (C-3b) 

A = - A 
8,0 120 M 8 , l 

A 9 , 8 " " 1 5 3 A 9 ,9 

A 9 , 7 " - 2 0 A 9 , 8 

9,6 15 H 9,7 

\ = - — A 
9,5 14 *9,6 

A 9 , 4 = " A o ,5 

A = - J ! A 9,3 33 M 9 ,4 

fC-36) 

(C-37) 

(C-38) 

(C-39) 

(C-40) 

(C-41) 

(C-42) 



A = - ^ A H 9 , 2 91 9,3 

A 9 , l " 70 \ 2 

M 9 , 0 153 M 9 , l 

A 10,9 = " 1 9 0 A 1 0 , 1 0 

A = - I I A 

M 10,8 2 10,9 

A 10,7 = " 8 A 10,8 

A - 9 1 A 
A 10,6 " " 78 A 10,7 
A - T l A 
A 10 ,5 " " T5 A 10,6 
A = - 1 5 A 

10,4 2 2 A 1 0 , 5 

O Q 

A 1 0 , 3 = " T l " A 10,4 

A = - — A 
10,2 8 rt10,3 

A = - - — A 
10,1 s i n o , 2 

A 1 0 , 0 = " W A 1 0 , l 



APPENDIX D 

Canonical Transformation Hamiltonian 

1 3 — 2 1 — 
* = ? ^C0,0 + 5 C8,0 p 6 " 7 C4,0 p e 

+ ( c 2,o + 4 a 2 + ^ c i o , o ^ e - ! c 6 , o % ) F i 

+ ( co,2 + 4 e + l c s , 2 P e - - r P S ) F 2 

+ ( 7 C 0,4 " 7 C4,4 Po ) F2 + ( 7 C 4,0 " T~ C 8,0 ^ 6 ^ 1 

+ ( C 2,2 " ! C6,2 P 6

) F 1 P2 

+ (2 C6,0 " ~ C10,0 P"e)Fl + (2~ C0,6 " 4 C4,6 Pe)P~2 

+ ( 7 C2,4 " V C6,4 P"e)Fl P2 + ( 7 C4,2 " 3~ C8,2 P"e)Pl F 2 

35 -4 5 - 3 - 5 - -3 
8 L 8,0 1 2 u6,2 r l K2 2 u2,6 1 " 2 

+ 9 r -2 «2 35 - p4 
+ 4" C4,4 P l P 2 + "T C 0,8 P 2 

b3 r -p5 35 r H- p 4 + 35 r p4 p-
F" u0,10 K2 8~~ L 2,8 1 vl B~~ u8,2 K l V 

4 L4,6 *1 K2 4 L 6,4 v^v^ % L10,0 M 



+ sin (Q, + Q2) I ((6 C 6 > 4 P 2

 + (12 C g ^ + 3 C^JP^P 2 - pQ) ] 

+ ( " 2 8 C 2,8 1 + ( - 3 0 C4,6 F l " 1 5 C 2 , 6 ^ 

+ (-30 C 6 > 4 P2 - 16 C 4 ) 4 ^ - 8 C 2 ) 4 )P 2

2 

+ ( " 2 8 C8,2 Pi " 1 5 C6,2 A - 8 C4,2 F l " 4 C2,2) F2> ^ " * / 

+ sin (Q^ Q2) (coeff as for sin (Q] + Q 2)) 

+ c o s < 2 V V 16 < 4 C8,2 F 2 ^9 + ( " 1 5 C4,6 F 2 

+ ( " 2 4 C6,4 F l - 8 C 4 , 4 > 1 + ( " 3 2 C8,2 P? - 1 2 C6,2 F l 

- 4 C 4 ) 2 ) P 2 ) ? 6 + 1 5 C 4 ) 6 P ^ p 3 

+ (24 C 6 > 4 F 3 + 8 C 4 > 4 F ^ F 2 

+ ( 2 8 C 8 J 2 F ] + 1 2 C 6 J 2 P 3

 + 4 C 4 J 2 ^ ) P 2 ) 

+ cos (2Q1 - Q2) (same coeff as cos (2Q1 + Q2) 

+ sin (Q, + 2Q2) (- ]g ) (P2 - p Q ) 1 / 2 (3 C 6 > 4 P2. (P 2 - p Q ) 1 / 2 pQ 

+ ( " 2 8 C 2,8 ^ + < " 2 4 C4,6 F l - 1 2 C 2 , 6 » F 2 

+ ( - 1 5 r M F 2 - 8 C 4 > 4 F 1 - 4 C 2 > 4 ) F 2 ) ) 



+ sin (Q.j- 2Q2) (same coeff as sin (Q ] + 2Q 2)) 

+ s i n Q l ( 5 C 1 0 i 0 ( P ^ - p 9 ) p 2 + ( - 9 C 6 > 4 p 2 

+ < - 2 4 C 8 . 2 , r i - 6 C 6 . 2 ) , r 2 - 7 0 C 1 0 . 0 P 1 

- 2 4 c a ,o F i " 6 c6,o> ( P ? - P 9 ) 1 / 2 P 9 

+ < 3 5 C 2 , 8 1 + < 4 0 C 4 ,6 F l + 2 0 ^ , 6 ^ 

+ < 4 5 C 6 ,4 *? + 2 4 C 4,4 ^ + 1 2 C 2 , 4 > F 2 

+ (56 C g 2 "P3 + 30 C 6 2 P 2 + 16 C 4 2 ^ + 8 C 2 2 )P~ 2 

+ 1 0 S C10,0 *1 + 5 6 C 8,0 *1 + 3 0 C 6,0 ^ + 8 <C2,0 

+ 1 6 r 4 , 0 ? l ) ( P l - V 1 / 2 ^ 

+ c o s 2 Q l ( - J ) ( ( 2 C 8 ) 2 P 2 + 1 0 C 1 0 j 0 P} + 2 C 8 > 0 ) p 2 

+ < - 5 C 4 ,6 Vt + (" 9 C 6,4 F l " 3 C 4 , 4 ) 1 

• (-16 C 8 > 2 F 2. - 6 C 6 > 2 F, - 2 C 4 > 2 ) F 2 

- 40 C 1 0 ) 0 P 3 - 16 C 8 j Q F 2 - 6 C 6 j 0 ^ - 2 C 4 > 0 ) p 9 



+ 5 C 4,6 ? 1 F 2 + < 9 C6,4 F l + 3 C 4,4 i ' 1 

+ ( 1 4 C 8 ) 2 P ^ + 6 C 6 > 2 ^ + 2 C 4 > 2 p 2 ) P 2 

+ 3 0 C 1 0 j 0 p 5 + 1 4 C 8 > 0 ^ + 6 C 6 ) 0 p 3 + 2 C 4 ) 0 p 2 ) 

+ s i n 3 Q l ( - ^ ) ( 5 C 1 0 i 0 ( P ; - p 6 ) 1 / 2 ? 2

e + ( - 6 C 6 5 / 2 

+ ( - 1 6 C 8 , 2 F l - 4 C 6 , 2 ) P ' 2 - 5 0 C 1 0 , 0 F 1 - 1 6 C 8 ) 0 F l 

- 4 C 6 , o ) ( P i - P 6 ) 1 / 2 P e T < 6 C 6 , 4 p i 1 

+ (16 C 8 > 2p3 + 4 C 6 j ? P̂ > P2 + 45 C 1 Q > 0 P̂  

+ 1 6 C 8 , 0 P l + 4 C 6 , O ^ ' ^ - V 1 / 2 > 

+ cos4 Q l ( ^ ( ( C g / ^ S C ^ P , + C 8 j 0 ) p 2 

+ ( • 2 ^ , 2 1 1 P 2 - 1 0 C 1 0 , 0 F 1 - 2 C 8 , 0 ^ F e 

+ C8,2 ^ ^2 + 5 C10,0 ^ + C8,0 ^ > 

• sin 5 0 ^ ) (P2 - p 6 ) 1 / 2 ( C ] 0 > 0 pg - 2 C 1 0 ) Q P ^ p 9 + C 1 0 j 0 P t 

+ cos Q2 (- I ) (3 C 8 > 2 P2 fQ + (-15 C 4 > 6 ?\ + (-24 C 5 > 4 ^ 



- 8 C v ) P f + ("30 C 8 > 2 Pf - 12 C 6 j 2 P l - 4 C 4 > 2 ) P 2 ) p e 

+ 1 0 5 ^ > 1 0 ^ + ( 5 6 < ^ 8 F 1 + 5 6 ^ 8 ) l 3 

+ < 4 5 C 4 , 6 A + 30 C 2 ! g F, + 30 C Q > 6 ) P | + 8 ( C Q > 2 - 4 ( } 2 )F 2 

+ (40 C 6 > 4 P 3

 + 24 C 4 > 4 P 2

 + 16 C ^ P, • 16 C ( M ) P 2 

+ < 3 5 C 8 , 2 ^ + 2 0 C 6 , 2 ^ 1 2 V Fl + 8 C2,2 W 

+ C 0 S 2 Q 2 (' i ) « 3 C 4,6 i + ( 3 C 6 , 4 F l + \^~PQ 

- 3 0 ^ > 1 0 P f + ( - 1 4 ^ ^ ^ - 14 C 0 > 8 ) ^ 

+ < " 9 C 4 . . ^ " 6 C 2 , 6 F l - 6 C 0 , 6 ^ 2 

+ < - 5 C 6 , 4 F l - 3 C 4 , 4 ^ - 2 C 2 , 1 F ! - 2 C 0 , 4 ) F 2 

+ c o s 3 0* (TB-) ( 2 C 4 , 6 ¥ l Pe - 4 5 C 0 ,10 1 + ( " 1 6 C 2 , 8 F l 

- 16 C 0 > 8 ) T ^ + (-6 C 4 > 6 F 2 - 4 C 2 j 6 ^ - 4 C 0 > 6 ) F 3 ) 

+ c o s 4 Q 2 ( 5 C 0 > 1 0 F 5 + ( 0 , ^ + C 0 > 8 ) P ; ) ^ 
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•*5 
, n / C0,10 P2 \ + cos 5Q 2 [- — ^ ; 

+ resonances not included on the insidej 



367 

APPENDIX L" 

Resonance Condition for the Canonical Transformation 

kQ 1 + JIQ2 = 0 

1.2a {7 C6,0 " 4~ C10,0 Pe] + h [2 C4,2- 4~ CZ,2fQ]\ F l ( E _ 1 ) 

+ [I (2 C4,0 " r" C8,0 h] + h <C2,2 - I C6,2 P9>] F l 

+ Ok { c2,o + 4 ° 2 + IT cio,o ^e " I c6,o P 9 ' 

+ le ^ o ) 2

+ 4 e 2 + ! c 8 , 2 Pe- - rPe) ] 

fk ,3 - £ r - , , 3 1 , 5 . 5 r - {] p2 
|_2a '2 L 2,4 " 4 L 6,4 V 26 '2 L 0,6 " 4 u4,6 P 6 ; J 2 

+ [ L (C2,2 " ! C6,2 Pe1 + f ( l C0,4 * I C4,4 PV ] F 2 

+ La ( 2 C4,2 " 4~ C8,2 p 8* + 6 (2 C2,4 " 4 C6,4 Pe^T 1 

2 

P2 = 0 

h l = 2a" ( C 2 ,0 + 4 a + 8 - C 10 ,0 Pe " l C 6 , ^ Pe ( E - 2 ) 

+ a T '4,0 ~T~ c 8,0 P 6 J P 10 

3 ( C 2,2 " 7 C6,2 p e } P2G + T " ( F C6,0 " 4~ C10,0 P 6 ) P 10 
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1 3 9 — 2 
+ 72 ( I C2,4 " 4 C 6,4 P 6 ) P 2 0 

+ aB (2 C4,2 " T " C8,2 p e ) P 1 0 P20 ' 

1 2 3 — 2 42 — 
h 2 =7$ <C0,2 + 4 B + S C 8 , 2 p 6 -~T p 9 (E-3) 

+ I ( ? C0,4 " T C4,4 P 6 ) P 20 + a ( C 2,2 " ? C6,2 Pe ) P10 

+

 fi2 ( 2 C 0,6 " 4 C4,6 P 6 ) P 20 

+ oB h C2,4 " ? C6,4 P 6 ) P 10 P20 + 2 *2 C4,2 " 4 C8,2 P6^ P10 

1 
" 7 C f i 9 Pfi + R (9 C ? P«) P

? 3 ~ 2 a 3 ^2 ,2 " 2" °6,2 ^6 g v2 °2,4 4 "6,4 >V 20 (E-4) 

+ I <f C4,2 " T^ C8,2 Pe) P

1 0 ) 

h 4 = 2 (^2 C0,0~~4~ C 8,0P6^ (E-5) 

+ a (2~ C6,0 - T * C 1 0 , 0 P 9 ) P 10 

I (2~ C4,2 " T " C8,2 P 9 ) P 20) 

1 /3 (K 1 r n 4 " 4 u 4,4 Pe (E-6) 



3 ,5 
+ I ( 2 C 0 , 6 " 4 C 4 , 6 P 6 ) P 2 0 

+ Z ( 1 C 2 , 4 " 4 C 6 , 4 Pe ) P 10) 
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APPENDIX F 

The I k functions 
In this appendix the following definitions are >ised for 

a 2, B, C. 

a2 - (a'3 - r 0a- 2)e a r° (F-U 

B - 8S< 6 ) (^ + ^ ) - ] (F-Z) 

C = a" 3 + r 0 a - 2 (F-3) 

I , = (20B 2r 7a" 2 - 70B 2r 6a" 3 + 63B 2r 5a" 4 

pi 

2 4 - 2 2 3 - 3 + 21OB r a 2a - 420B V a a? 

+ 1260B 2r a 2 a ~ 2 - 2 1 0 B r V ^ 

+ 420Br 3a" 2i | ; - 2520Bra 2 a" 1 <|> 

+ 1260nJ;2 + e " a r ^ O B ^ a ^ c f 2 

? •? -3 ? ? -3 - 420B r a a 2 - 1260B r a a 2 

2 2-2 2 2 - 3 
+ 2520B ra2a + 2520B': a 2 a 

2520Bra 2i(i ca" 1 - 2520B a 2 c f 2 <|>c 

+ 3360B 2 r 3 a 0 a " 3 - 1260B 2 r 2 a , a " 4 
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2520B2r a 2 c f 5 + 2520B2o|of3 

•2520B a„a"2i|j + 10080B2rZ a,of 4 

2 c I 

+ 17640B2r a 2 a" 5 + 15120B2 a 2a~ 6) 

+ e " 2 a r (- 630B2r2 c^cf1 - 1890B2r c |a" 2 

1575B2 a 2 cf 3 ) ) /1260 

I 2 = e ° a" 2 (- 12e a r aBCr ( ^ + ^ ) + 24e a r BC(i^ + i|»c) 

+ 12e U a BCr(rQ - a ) + 12e a B C r r ^ 

a r n a r 0 4 
12e aBCn^ + e aBr ( ^ + i>c) 

a r 0 3 a r 0 3 
+ 2e BrJ(4)0+ «|>c) - 4e aBrr^ ^ 

a r 0 2 a r 0 3 
6e Brrn4)n - 4e aBrr A 

a r 0 2 a r 0 2 ib2 

6e u B r r > + 12e a r v 0 
U C 

+ 24e a r ^ + 12e a n|£)/12 (F 

I = . Be " ° a" 6 (168e a r a 4 BCr3 (r - a" 1) - 1686°°" a 4BCr 3(r - a"1 

- 672e a r o 3 BCr3 + 504e a r a2BCr2 



+ 168e a r a3BCr3 + 2016e a r a2BCr2 

1008ea r aBCr - 4032e a r ctBCr 
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ar 
+ 5040e BC - 42e a BCr r, 0 

ar 0 _4„ „4 ar, 0 5 n „ 4 + 42e a BCr + 168e a BCrr, 

a r 0 4 3 a r n 4 7 
- 168e U cfBCrrjJ - 8e Q a 4 Br 7 

Me"" 0 a 3 Br 6

 + 286̂ ° a V r 3 

ar + 21e ° a 3Br 4r 2 + 28e ° a 3Br 3r 3 

- 56e ° a4Brrg - 84e ° a V r ^ 

ar r ar n - 42e ° a 5 r 4 ( i | i 0 + ^ ) + 168 e

U ' ° a 5 r 3 r U 0 + ^ c))/504 (F-6! 

-ar r 

I p 4 = - Be ° a " 6 (180e a r a 3BCr 2(r - a" 1) - 180e a r a 3BCr 2(r - a" 1 ] 

540e a r a 2 BCr2 + 360e a r aBCr 

+ 180e a r a2BCr2 + 1080ea r aBCr 

ar r - 1440earBC - 60e ° a4BCr3r, 

ar 0 3„„ 3 ar, 
+ 60e u a JBCr J + 180e a BCrr 0 4„„ 3 
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180e u a BCrr-Q - lOe u a Br° 

,„ a r 0 2D 5 ^ , c

 a r 0 3 D 4 2 18e a Br + 15e a Br r Q 

+ 20e u a V ^ + 60e u a Br>o 

- 60e u a Brrg - 90e u a Crr* 

ar 
60e 0 4 3 ar. 0 4 2 

° r (*0 + ^ + 1 8 0 e arr0{% + * c ) ) / 3 6 0 ( F " 7 ; 

-ar 
lp5 BCe ° a - 4 ( - 4 e a r aBr3 - 6 e a r Br 2 + 4 e a r cfir3 

+ 6earBrQ - 12e a r a 2 ^ + i|»c) + 12e a rBr 2 

+ 12e a r Bra _ 1 - 2 4 e a V 1 B r - 12e°"Y2E 

+ 24e a r Ba- 2 - e"" 0 a 3 Br 4 r 0 + e"" 0 a 2Br 4 

ar„ „ , ar„ , a r Q , « 
- 2e a Br r Q + 2e aBr + 4e a Brr* 

a r n 2 3 a r 0 2 3 
+ 6e a BrrjJ - 4e a BrrjJ 

a r 0 „ 2 , ° r 0 4 ar. 0 3„ 6e aBrrg - 12e a rrQ\\>Q + 12e a n|>0 

ar, 0 4 ar 0 3 12e V r r 0 * c + 12e Vn |> c ) /12 (F-8) 



^ 6 = B C e c x - ^ e ^ V 2 + 4e 0' a (r Q - a ) 

2arQ . 2ar 
+ 2e ari-Q - 4e urrQ 
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2 a r 0 -1 + 2e a V)/2 (F-9) 

I p 7 - B V ^ V C 2 (- 2re«- • a " 1 ^ - Ae"0*^ 

+ 4re u + 4rQe u - 4a" 'e ° ) /2 (F-10) 

I_o = - BCe ° a" 5 (2a 3 Br 4 + 3a 2Br 3 - 2a 3Brr 3 

p8 0 

3a 2Brr 2 + 6a4r(i|)0 + ^ 

8a 2Br 3 + 16aBr2 + 2a 2Br 3 

+ 3aBr2 - 6a 3(^ 0 + ̂ ) 

- 30Br - 66Ba_1)/6 

2 2 2a(r-r„) „ 
I p 9 = B^CS ° (2a 2r 2 - 2ar + 1)/(4a3) 

(F-ll) 

(F-I2) 


