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ABSTRACT

The field reversed mirror is a toroidal, closed magnetic field
line plasma confinement device in the compact torus class. It has
no conductors linking the plasma as in other toroidal devices such
as the tokamak. The Larmor radius in a typical field reversed
mirror is 1/6 to 1/3 the plasma radius. In field reversed mirrors
fueled and heated by neutral beams, the azimuthal current is
principally diamagnetic.

The transport and equilibrium in field reversed mirrors is
described in this work by two distinct models. The main differences
between the two models are the applicable collision frequency regime,
the Larmor radius size and the allowed magnetic fields. 1In both

models the aspect ratio is one and axisymmetry is assumed.

*Work performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore Laboratory under contract number
W-7405-ENG-48.
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The first model considers the plasma to have a large collision
frequency, and small Larmor radius. The plasma is then modeled as
an adiabatic hydromagne.ic fluid and both toroidal and poloidal
magnetic fields are allowed. The plasma evolves quasi-statically
between equi‘ibrium solutions as a result of transport processes or
adiabatic external current changes. The computer code and
computational methods used to solve the equilibrium and transport
equations are described. The computer code results are discussed
for several cases considering the effects of neutral beam injection
and magnetic field shaping.

The second model considers che plasma to have a small
collision frequency and a large Larmor radius. The magnetic field
in this model only has a polnidal component. The plasma consists of
several ion species described by distribution functions which must
be calculated and electrons moueled as an inertialess fluid. The
ion distribution function for each species satisfies a kinetic
equation formulated in terms of a Poisson bracket with the system
Hamiltonian. The ion distributicn function is expanded in terms of
collision irequency and the kinetic equation then yields a hierarchy
of equations. At second order a ..inetic equation for the time
evolution of the zero order distribution function is obtained. This
equation is the large Larmor radius analog of the small { armor
radius drift kinetic equation which describes the tokamak
neoclassical diffusion regime.

The drift kinetic equation is derived by integrating

appropriate equations over a gyro-orbit. In contrast the kinetic

xvi ,



equation derived in this work requires integration over the actual
orbit. To emulate integration over exact orbits without requiring
detailed trajectories an orbit average procedure is derived. The
orbit average is equivalent to accumulating contributions from
integration over exact orbits of an equilibrium distribution. The
orbit averaged kinetic equation which is derived at second order in
collision frequency then evolves on a slowing down time scale rather
than a cyclotron period which is characteristic of standard
trajectory following particle codes.

The orbit average procedure is defined in terms of phase space
and path integral formulas. Numerical equivalents of these formulas
are derived and results of tests in two particle orbit computer
codes are presented. The derivation of the orbit average procedure
depends on the number of constants of the motion which exist. In
axisymmetry with conservative forces there are two constants of the
motion., In some circumstances a third constant ¢f the motion may
also exist. To explore the existence of a third constant of the
motion, several classes of third constant of the motion are
examined. Because the examined third constant of the wmotion does
not exist when an orbit is stochastic, consideration is also given
to determining parameter regimes where stochastic orbit motion may

manifest.
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CHAPTER 1

INTRODUCTION

1.1 Background

The field reversed mirror is a closed magnetiic field line
plasma confinement device studied in the magnetic fusion energy
program. Preliminary analysis indicates it has several desirable
features. In considering other fusion energy devices, the field
reversed mirror offers the advantages of low total structure volume
to plasma volume, high fusion power density, and efficient use of
magnetic field, In addition, it has no conductors linking the
plasma as in other toroidal configurations. In contrast to present
commercial energy sources the field reversed mirror has the
capability of providing a domestically produced, environmentally
safe, inexhaustible energy supply. To motivate the study of the
field reversed mirror, a brief review of . ‘gy requirements is
given followed by a discussion of energy sources, including

alternate fusion energy concepts.



1.1.1 Energy Requirements

The pursuit of energy impacts ecology, economics and as a
consequence of its international aspects world stability. As the
standard of 1iving increases there is a direct effect on the overall
energy requirement. From the mid twenties to the wnid seventies the
United States energy usage increased at an average annual rate of
2.5% and the gross national product increased at an average annual
rate of 3.1%.[]] Thus on the average the trend of increased
economic activity implies increased energy usage. In addi‘ion the
United States population increased from 152.3 million to 216.8
million from 1950 to ]976.[2] This is an average annual 1,36%
rate of increase. In the same period energy consumption went from

15 B.T.U. and a

30.9 quads to 69 quads,[3] where a quad is 10
B.T.U. is the amount of energy required to raise a pound of water
one degree fahrenheit. Thus energy consumption underwent an average
annual 3,1% rate of increase. In addition to the increased energy
requirement in relation to economic activity, there is also a trend
toward greater per capita energy usage. The global impact of this
trend is of concern since of the 69 quads consumed in 1976 only 56.9
were domestically produced. Based on conservative assumptions
concerning population increase it is estimated United States energy
demand could be reduced to a 1.8% per capita annual rate of
increase.[4] However even with this scenario the projected energy
consumption in the year 2000 is 170 gquads. A1l of these factors

point toward a continuing reliance on energy and a need to increase

the energy supply.



1.1.2 Energy Sources

Present energy supplies may be considered in three categories;

renewable, fossil and nuclear,

o Renewable Energy Sources

In the renewable category there are several energy sources
directly or indirectly related to solar energy. Solar energy is
derived from radiation emitted by the sun. The sun's radiation may
be used for space heating or water heating. In addition focusing
collectors may be used to concentrate the heating effect and
generate steam from which electricity may be produced.[5] This
method requires collectors which track the position of the sun.
Direct conversion of radiation to electricity may be achieved by
photovoltaic cells., In this case radiation induced electron
detachment in a semiconductor material is used to produce an
electric current.[6] The greatest utilization of photovoltaics
has been for space app]ications.[7] The main drawback to this
technology is the high cost relative to other forms of energy.
Solar collection schemes are not as erfective at varying latitudes
and regquire expensive energy storage systems to deal with
interrupted solar radiation caused by nightfall or weather
conditions. THus development and installation has not been wide
spread. A side product of solar radiation is atmospheric pressure
differences which cause wind. It has been estimated the potential
possible wind energy which may be obtained in the U.S. is 15,000

GN,[8] where the total electric generating capacity is 500 GW.

(2%}



Wind energy has successfully been used to pump water and generate
electricity, however there are limited locations where siting is
possible with reliable prevailing winds. Another form of sclar
energy is the temperature difference of different layers in the
ocean., The systems which extract this energy are currently
experimental and are constrained by the ideal heat engine efficiency
which is 1 - TZ/TI where the temperature difference is T2 - T].

The small anticipated efficiency requires relatively large heat
exchangers.

Energy from biomass is renewable since additional organic
substances may be grown. Biomass may be used to obtain methane gas
or methyl alcohol, both of which may be burned to yield useful
heat. More simply wood, crop debris or municipal refuse may be
burned. It is estimated that approximately 2 quads of energytg]
could have been obtained in 1980 from municipal waste alone. ATl
technology currentiy exists for biomass energy, its implementation
depends on economics of scale, fuel cost due to transportation
considerations and separation of unburnable debris in the case of
municipal refuse.

Geothermal energy is technically not renewable; however, it
has been estimated a billion quads of energy exist in the first 5
miles of the earth's crust.[]O] This is adequate to supply world
needs for a miilion years. An early exploitation of geothermal
energy occurred at Larderello, Ita]y[]]] where steam was piped to low
pressure turbines to produce electricity. A similar installation

exists in California near Geyservilie. Unfortunately, these are



rare sites and the preponderance of potential geothermal energy
exists as hot dry rocks or molten lava and magmas. Use of these
resources requires developments in the area of drilling techniques,
rock fracturing, and transporting heat to the surface.
Hydroelectric power is a renewable energy source which relies
on dammed water flowing through turbines to generate electricity.
Most sites where this technology may be implemented have already
been utilized. Expansion of existing dums and addition of small
\ dams is estimated to add potentially a maximum of 50 Gw[]ZJ or 10%
of the total electric gererating capacity. This increase would
result in water level drawdown and pcssible unfavorable

environr. 1tal impacts as well as land use consegquences.

e Fossil Fuel Energy Sources

The main fossil fuels presently used to produce energy are
0il, gas, and coal. These three fuels dominate all other sources of
energy used in the United States. In 1976 the percentage of total
national energy consumption attributed to oil, gas, and coal was
47.2%, 27.3%, and 18.6% respectively.L3) A11 other sources of
energy contributed 7% to the total. Eliminating the 4.1%
contribution of hydroelectric, all remaining alternate energy
sources contributed less than 3%. The importance of developing
alternate energy sources is emphasized by the obvious reliance on
0il, and the fact that 43% of oil used in 1976 was imported. This
means 20% of the total domestic energy supply originated from

sources that are not secure or reliable. To alleviate this problem



consideration has been given tc expanding production of fossil
fuels. Estimates of available recoverable reserves indicate the
energy equivalent of o0il, gas, and coal is 330, 421, and 19,000
quads respective]y.[]4']6] These estimates are conservative since
they include only known reserves and extensions to known reserves.
No account is made of resources thought to be in unexplored
extensions of producing regions, which approximately doubles the
stated estimates. rhese figures show the central domestic fossil
fuel energy source is coal. Shaiz oil is estimated as amounting to
a million quads of energy€]7]; however, economic extraction is a
controversial issue. The method of heating shale to about 500° C to
produce oil fraction, gases and residues has been known for years
yet has not been commercially implemented. Coal then whether
liquified, gasified, cr simply burned is the frontrunner in domestic
energy supplies. The drawback of the use of coal centers on the
issue of air pollution. Burning cod) releases sulfur dioxide,
nitrogen oxides, carbon oxides, and poisonous trace elements such as
mercury, lead, and arsenic. The overall effect is respiratory and

‘ cardiac il]ness.[]BJ In addition much debate has occurred over
climate impact of increased levels of carbon dioxide, in reference
to global heating and cooling. Another threat is the acid rain
which has been increasing in the northeast United States. The
consequence is ecosystem degradation resulting in aquatic life

fatalities and soil nutrient leaching.



e Nuclear Energy Sources

The ihird category of energy supplies is nuclear. The two
approaches in this area are fission and fusion. Fissicn energy is
derived from heat obtained from the binding energy of atomic
nuclei. Neutrons are used to break a heavy nucleus into several
parts and the mass difference of the sum of the parts and original
nucleus is made available as heat. In the same way fossil fuel
derived heat is used, nuclear reaction heat is used to produce steam
and power turbines that produce electricity. Presently there are
many light water reactors in commercial operation and there are
plans to implement breeder reactors which produce more fuel as they
operate. The main disadvantage of fission is the severe safety
requirements posed by meltdown and accidental release of radiation,
questions of nuclear weapon proliferation, and radioactive waste
disposal. Currently there is no Tong term policy dealing with
uisposal of radiocactive waste which has a half 1ife of hundreds of
years. Public safety has become a promiment issue for nuclear

fission in light of the accident at Three Mile Island.

1.1.3 Fusion Energy

Based on the need for increasing amounts of energy and the
discussio.. of energy sources, it is clear a clean, inexhaustible
energy source is highly desirable. Fusion has a radioactive waste
disposal consideration which is insignificant compared to nuclear
fission, It is thus regarded as a clean energy souice. The basic

fusion reaction consists of combining light nuclei to form a heavier



nucleus such as the following reaction,[m:I involving the combination

of deuterium (D) and tritium (T) to form a neutron and alpha particle.
D+T+He' +n+17.6 Mev (1-1)

Tritium is not naturally occurring; however, fission of 1ithium

yields tritium as a reaction product.
.6 4
Li" +n=+He + T+ 4,8 Mev (1-2)

Accessible surface sources of lTithium represent thousands of years
of tritium supply if all U.S. energy was derived from fusion.
Deuterium is a naturally occurring nuciide, found in sea water at a
[20]

concentration of .0153% of the hydrogen, which is adequate to

supply millions of years of fusion energy. Thus fusion energy is
considered to be inexhaustible and clean, and it is thus a highly
desirable energy source.

The reaction described by Eq. (1-1) has a maximum rate at a
temperature of approximately 60 keV.[2]] The objective of fusion
energy research is to design a system in which isotopes of hydrogen
at these high temperatures react to yield more energy than required
to create conditions in which the reaction can occur. This objective

[22]

is often stated in terms of the Lawson criteria, which requires

14 sec/cm3 for a D, T plasma at reaction temperatures, where

nt > 10
n is density and T is confinement time. The basic idea is to confine
a high temperature plasma long enough at sufficient density such that
net energy is produced. A high temperature plasma can not be

confined by material walls since either the walls would vaporize or



the plasma energy would be rapidly lost by contact with cool wall
surfaces. To overcome this difficulty plasma containment is

achieved by inertial confinement or magnetic confinement.

e Inertial Confinement Fusion

Inertial confinement fusion relies on a driver such as a
laser beam to cause hydrodynamic compression of a pellet to high
density.[23] The laser beam pulse is in the neighborhood of
nanoseconds and thus the Lawson criteria requires densities greater
than 1023/cc. For comparison solid DT density is about 1022/cc.[24]
The hydrodynamic compression causes ignition and propagation of a
burn wave resulting in fusion energy. This process depends on the
driver beam pulse shape and the way the energy couples into the
plasma. The time evolution of compression, burn, and energy release
is complicated by such effects as ablation, Rayleigh-Taylor
instability, temperature gradient instability, and several anomalous
phenomena, The largest domestic inertial confinement experiment is
the NOVA laser systenlzs] which is designed to produce as much
energy as the laser delivers to the target pellet. Although this is
an important step toward a reactor, the reactor goal is yet in the
future since useful performance requires the production of 10 or 100
times the delivered laser energy. This requirement is a consequence
of laser light josses and the approximate 10% or less efficiency of

converting a broad spectrum of Tight to the laser light frequency.
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o Magnetic Confinement Fusion

The magnetic fusion approach seeks to confine plasma by
utiiizing the properties of a magnetic field to innibit loss or wall
contact. The basic motion of a single charged particle subject to a
magnetic field is to spiral around the magnetic field line in
response to the V x B {orce. The consequence is to inhibit motion
perpendicular to fieid lines. In practice with a distribution of
charged particles, the perpendicular motion is actually diffusive.
Directly -long field lines particle motion is unencumbered. To deal
with the lack of confinment in the direction of a homogeneous

magnetic field there are two distinct magnetic field geometries.

e Open Magnetic Field Line Geometry

The first geometry is described as open since field lines
within the plasma do not connect. This is the geometry of the
magnetic mirror and the earliest efforts to prevent Toss along field
Tines in these devices utilized the reflecting effect of ar
increasing magnetic field along a field line. A schematic of a
single mirror cell is shown in Fig. 1-1. The increasing magnetic
field strength along a field line is produced by axisymmetric
current coils in this case. The maximum magnetic field Bmax
occurs in the region near coils and the minimum magnetic field is at
the device midplane. The basic motion of a single partic'e in this
device is to bounce between mirror coils, gyrating or spiraling
around field lines and more slowly drifting in the azimuthal

symmetry direction. When the change of the magnetic field during a



Midplane Mirror coil

Magnetic field line

Figure 1-1. Cross section of a single mirror cell.

I
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gyro-period is much less than the magnetic field magnitude

conditions exist for adiabatic behavior and the magnetic moment H /B

is approximately constant.[zoj In this case non-interacting

single particle confinment occurs for particles with velocity pitch
1/2

min’ Bmax = Bmin) "

refer to directions perpendicular and parallel to a field line at

yL/v” > (B ax ,» where the velocities vj, v

the device midplane and Bmin and Bmax are the minimum and maximum
magnetic field values along the field line.[27] Particles at smaller
pitch angles are in the loss cone and are typically lost in a bounce
time. In addition there may also be non-adiabatic partic]es.[zs]
Early mirror experiments had lifetimes greater than predicted by
hydromagnetic instability predictions;[zgj however, it was not until

[30] that a minimum-B geometry was used to obtain

experiments by Ioffe
greatly enhanced stabi]ity.[3]] The essential change from the

device of Fig. 1-1 was to add current bars in the horizontal or z
direction every sixty degreas with alternating current direction.
Figure 1-2a shows a schematic of the Ioffe experiment. Figure 1-25
is a variation known as the Baseball configuration.[32] Figure 1-2c
is another minimum B configuration produced with yin yang magnets,
representing the 2XIIB experiment.[33] The two new features of this
experiment were the microinstability suppression by axial warm plasma
stream and sustaining the plasma with neutral beams. Theoretical
understanding of m1'cr‘o1'nstabi11'ties[34'35:| led to stream
stabilizationl % of rf fluctuations associated with the drift
cyclotron loss cone mode.[37] The increased plasma lifetime

ultimately culminated in a stream stabilized, high beta experiment



(a)

(b)

(e}

\

Neutral beam

Pa
Stream -~

Figure 1-2. Minimum B configurations (a) loffe bars added to a
simple mirror (b) Baseball geometry (c) Schematic of 2XIIB with
yin-yang coils,
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(2XIIB) heated and fueled by neutral beams.[38] As is characteristic
of single cell mirrors this experiment was limited by end loss
processes.[3g’40] Particle confinement depends on adiabatic
invariance; however, collisional velocity space scattering moves
magnetically trapped particles into the loss cone. Because the
scattering time goes like the square root of mass, the electrons are
rapidly Tost until an ambipolar field is generated which maintains
approximate charge neutrality and equilibrates net electron and ion
loss rates. The result is electrons are Tow temperature and
electrostatically confined, and ions of low energy are lost. The
details of this situation have been studied by solving a kinetic
equation with a Fokker-Planck collision term.[4l]

The inherent presence of an ambipolar field and the success
of stream stabilization and neutral beam injection led to a new
design designated the tandem mirror.[42’43] The basic idea is to
use single cell mirrors as end plugs at both ends of a solenoid.
High density end plugs confine the main fusion plasma in the
solenoid by high magnetic field and large ambipolar patential. For
technological considerations modifications to tI basic design
consisting of thermal barriers[qq] and A ce]]s[45] are under
investigation. These ideas and others are being examined

[46]

experimentally in the TMX-U device.



e (losed Magnetic Field Line Geometry

The second basic type of magnetic field geometry used to
deal with cenfinment along field lines is described as closed and is
typified by a toroidal geometry. The fundamental configuration
difference among toroidal confinement geometries is the presence or

absence of material conductors linking the plasma.

e Tokamak Geometry

Representative of devices .'ith a conductor linking the
plasma is the tokamak[47] illustrated in Fig. 1-3. A toroidal
plasma is confined in a metallic shell wound with noloidal and
toioidal field coils. The toroidal direction is 6 in Fig. 1-3 and
the poloidal direction ep, is parallel to the magnetic field
direction around the plasma at a fixed & value. The plasma acts
as the secondary winding of a transformer primary which links the
plasma. Ohmic heating is obtained from the toroidal plasma current
induced by the transformer, The toroidal plasma current causes a
poloidal magnetic field which together with the external toroidal
field coils results in helical magnetic field lines. The poloidal
angular displacement of a field line after going 2w in the
toroidal angle is the rotational transform. If the rotational
transform is not 2m divided by an integer the field lines
ergodically fill topologically nested surfaces. For stabi]ity[48]
reasons, in the large aspect ratio (Ar = major radius/minor radius)

limit, the safety factor q must be greater than one. The safety

factor is related to the inverse of the rotational transform and for
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Primary winding
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Fiqure 1-3 Tokamak coil geometry with transformer linking plasma.



large Ar may be written in terms of poloidal field Bp and toroidal

fie1d"BT as follows.

a =8 (8A)7 (1-3)

Typical values of A, range froﬁ 3[49] to BLSO] and consequently for
stability a tokamak has BT > Bp' The confinement of a tokamak plasma
is essentially due to the poloidal vield and consequently the

B = 8'np/(Bp + BT)Z is typically a few percent.

o Compact Torus Geometry

The contrasting class of closed field 1ine confinement
devices which do not have plasma linking conductors are described as
compact tori. These devices have the advantage of low total
structure volume to plasma volume, efficient use of magnetic field,
the possibility of high B ~ 1, and reduced wall surface area to
plasma surface area. An added attraction is a higher volume
averaged fusion power density compared to a tokamak. A calculation
using an idealized compact torus equilibrium and assuming a B = .1
tokamak yields a result of 700 times greater compact torus fusion

[51]

power density, compared to the tokamak.

Compact torus devices may be grouped into three classes
mainly distinguished by the relative magnitude of poloidal and
toroidal field and the size of the Larmor radius PL = Vin mc/(eB),

where v h is thermal velocity, m is mass, ¢ is the speed of light, e

t
is charge and B is magnetic field. The three classes are particle

ring devices, spheromaks ond field reversed mirrors or FRM,
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e Particle Ring Devices

In the class of large Larmor radius devices one of the
earliest attempts to improve the confinement of a mirror device was
a particle ring confinement device known as Astron.[sz] The idea
was to stack axis encircling relativistic electron rings in a weak
mirror field to heat and confine a space charge neutralizing
background plasma. The goal was to obtain an intense enough high
energy electron ring to cause a current sufficient to reverse the
magnetic field inside the ring and result in a closed field line
[63-55]

region. Long plasma layers exhibited tearing instabilities and

field reversal was not reached due to saturation of current buildup
during the stacking process. Although reactor designs were proposed
assuming these difficulties could be overcome, technological

restrictions led to the eventual abandoﬁment of this concept. Later

[56] relied on a single intense burst

experiments such as RECE-BERTA
of high energy relativistic electrons, and achieved field reversal.
In this experiment a burst of electrons is perpendicularly injected
into a vacuum chamber having an axial magnetic field. In other
experiments[57’58] (RECE-CHRISTA) an axial conductor is used to
generate a coaxial toroidal field in addition to the axial magnetic
field. Axial translation and compression have been achieved and
plasma lifetimes up to 1 ms have been obtained. An alternate
approach using magnetically insulated ion sources produces rotating

diamagnetic proton layers by axial cusp injection of an annular beam

into a magnetic mi\r'r'or'.[59:| Axial compression and reflection in a



magnetic mirror have been demonstrated «s well as propagation

wit' . space charge disruption.

e Spheromak Compact Torus

The spheromak is a compact torus device with small Larmor
radius and either vanishing poloidal field or poloidal field
comparable to toroidal magnetic field in the plasma. External to
the plasma the toroidal magnetic field is zero. The limit of an
aspect ratio one tokamak, with plasma linking conductors removed, is
considered to be a spheromak. The spheromak is an interesting
device because force free states, where current is parallel to
magnetic field, have been shown by Tay]or[so] to be states of

minimum energy with the constraint of constant helicity K,

1 > >
K = ?;lﬂA * B dv (1-8)

where Iy is vector potential. The magnetic field for these devices
satisfies ¢ xB = &§ where o is a constant. The PS-1 experiment[slj
produces a spheromak using external currents in the z and 8 direction
in cylindrical coordinates. A z directed current, as in a z-pinch
discharge, causes a toroidal field in a plasma having an initial
axial magnetic.field. A 6 current is then initiated with a direction
resulting in an axial magnetic field opposing the initial axial
field. The result is radial compression and implosion heating with
field line reconnection. The final plasma has an essentially force

free magnetic field. Formation of a spheromak may also be

accomplished on a timescale rapid compared to a resistive diffusion

19
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time, 4nL2(c2n)'] but slow compared tc an Alfven wave transit time
L(4np)]/2 B'], where L, ¢, n, p, B arz a length scale, speed of
light, resistivity, density and magnetic field respectively. The
inductive scheme which achieves this siow formation has been

(62] In this experiment a

implemented in the Proto-S-1 experiment.
supported ring inductively transfers poloidal and toroidal flux to a
piasma. Following the formation prucess a spheromak is formed inside

of the supported ring in equilibrium with an initial external field.

¢ Field Reversed Mirror

The field reversed mirror in contrast to the particle ring
and spheromak device has a Larmor radius which is typically 1/6 to
1/3 the plasma radius. Also in devices with neutral beam fueling
and heating the azimuthal current is diamagnetic rather than being
caused almost totally by an axis encircling species as in a particle
ring device. The field reversed theta pinch is considered to be a
field reversed mirror without toroidal field. The field reversed
theta pinch experiments FRX-A, FRX-B[63] are axially elongated
devices with about a 10 to 1 axial to radial plasma length. The
plasma formation process begins with a reverse bias field in a
preionized plasma. Rapid initiation of a theta current producing an
axial magnetic field opposing the initial bias field results in
shock heating and field 1ine reconnection yielding a prolate
equilibrium having only a poloidal magnetic field.

Experiments in the 2XIIB single mirror cell resulted in

stream stabilized, neutral beam fueled and heated plasma of high



beta. On the basis of thi- - tess,[64] experiments were

conducted with opposing tangential off axis neutral beam injection.
Figure 1-4 is a schematic of the anticipated field reversed mirror.

In the 2XI1IB experiment field reversal was not achieved, however the

on axis magnetic field was reduced by 90%. Lack of field reversal

was attributed to electron currents which have the ability to cancel

ion diamagnetic currents, and degradation of plasma currents caused

by cooling due to external streaming p]asma.[65] To avoid the necessity

(66] plasma

of a transition from open to closed field lines, the Beta II
gun experiment was devised. In this experiment a plasma emerges from
a Marshal gun[67] and following field 1ine reconnection forims a field
reversed plasma in a flux conserver. The goal was to produce a
plasma of sufficient lifetime such that neutral beam heating could

be applied. It was found plasma lifetime was limited by carbon and
oxygen impurity radiation. Approaches to overcome the impurity

problem are being researched.[68]

1.2 Previous Work

A plasma is subject to many different phenomena occurring on a
variety of time scales. The goal is to confine a high temperature
plasma at sufficient density for long enough time to produce net
energy. Experiments applied to this effort have finite volumes and
exterior surfaces that are at room temperature. The plasma
environment is then one of temperature and density gradients, and
possibly magnetic and electric field variations. By Boltzmann's H

theorenlﬁg] binary collisions cause the plasma distribution function
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Field reversed
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Figure 1-4. Field reversed mirror resulting from tangential neutral
beam injection.
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tc become a maxwellian. Consequently the plasma evolves to relax
gradients and field variations. When particle sources are present
or inappropriate field variations are enforced, macroscopic
configurational instability or microscopic velocity space
instability may occur. In this work it is assumed such issues are
benign. Beyond stability considerations, two other important issues
are equilibrium and transport. Equilibrium is concerned with
solving equations which arise from minimizing the plasma energy
subject to constraints. The energy in this case is thermal and
magnetic. Transport considers the slow time evolution of a plasma

and the resulting particle and energy diffusion.

1.2.1 Equilibrium
The general topic of equilibrium has been reviewed by
McNamara.[70] In axisymmetry with scalar pressure, equilibria are

determined by solving the magnetostatic equatiorg,L7]]

v-B=0 (1-5)
-+ .I -+

VxB=4dnc J (1-6)

- -

Jd x B=cWp (1-7)

where-g is magnetic field, T s current density, and p is pressure.
The first two equations are from Maxwells equations with no

displacement current and Eq. (1-7) i. either a simplified momentum
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equation or a result of minimizing the energy W.

W= f((&r)-] B2 + ply - ]))dv

(1-8

In Eg. (1-8), v is the ratio of specific heats. Direct minimization

of Eg. (1-8) leads to B = 0, p = 0 and thus Kruskal and Ku]srud[71]

minimize W for function triples p, EZ ¢ subject to six constraints.

1. ¢ has toroidal Tevel surfaces, Y = wﬁ at walls,

wmin =0, wmax = ¢W'
. VsB=0.

—

2
3. B+ W =0,
4 B« 96 dv

C.

o Ty

5. "B e (Vg x VO)}dv = h(c)

Joec
17y dv = M(c).

6. jw<c p

The value Yy is a constant and h(c) and M(c) are arbitrary functions

defined for 0 < ¢ < by A triple p, E: Y subject to the six

constraints makes W stativnary if and only if £q. (1-7} is satisfied

and p is only a function of .

o Varijaticnal Derivation of Equilibriun

Equilibrium can be determined using methods related to a

variational procedure arising from Eq. {(.-8). These techniques are

described as waterbag methods.L7¢

set of contours in two dimensions or a set of surfaces in three

dimensions and then move them in a way that reduces energy.

The

] The essential idea is to define a

’



state where energy is minimized is then the desireJ equilibrium.
Typically, surfaces are labelled with a function such as b oar p.
Numerically, a surface is represented by a number c¢f points having a
constant function value such as p. The number of p surfaces
determines a ¢rid with varying p values. On a specific p surface
there is an additional choice of the distribution of constant p
value points, which may be made at any time during the search for an
equilibrium. Choices such as equal sparing around a contour have
been made;[73] however, it is advantageous to choose a

distribution of points so the grid between surfaces is orthogonal.
The orthogonal choice increases accuracy by minimizing distance
between adjacent p surface peints and also simplifies the
representation of equations.[74] In non-orthogonal coordinates
extra terms appear. A variational process used to obtain
equilibrium in thr=e dimensions moves constant p surfaces with
displacements proportional to the force acting on a point.[75]

This is a steepest descent technique since it juarantees the change
in the potential energy is always negative definite. Each variation
step moves closer to the equilibrium state or in some cases no

equilibrium is found when an unstable situation results.

e Elliptic Equation Derived Equilibrium

The alternative method used to obtain equilibrium solutions
is to solve an elliptic cquation (the Grad-Shafranov equation
discussed in Chapter 2) with a boundary va1ue.[76] Various

numerical methods have been employed to invert the elliptic operator

25
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such as alternating direction implicit, cyclic reduction, relaxation
and fast Fourier transforms.[77] The main concern in obtaining a
numerical solution is the nonlinearity caused by the source term for
the elliptic operator depending on the equilibrium solution. Two
types of boundary conditions are usually used. The first is a
conducting boundary and the second is an open boundary. In both of
these cases the position of the plasma vacuum interface is not
known, Part of the nonlinearity difficulty involved in finding a
solution is the iterative change of the amount or spatial
distribution of current resulting from 2 changing plasma vacuum
interface position, The nonlinearity of the formulation
necessitates iteration to obtain an equilibrium and iteration
invokes questions about uniqueress of solution. In work by Marder
and Weitzner‘[m:l a model probiem exhibited bifurcation and it was
found two solutions existed for the same boundary conditions. The
solutions were distinguished by the amount of current present. The
high current case designated, deep and the low current case
designated shallow. It was found that a three level jteration
scheme resulted in convergence to the shallow solution when a
relaxation parameter was chosen in a specific range. Other workers
have fixed physical quantities to obtain convergent solution
procedures. In solving for tokamak equﬂibr‘ia[?g:I the total

current has heen constrained to remain constant while jterating to a
sulution. Solutions of the doublet geometry have been obtained by
fixing the position of one point on the contour defining the plasma

feo]

vacuum interface.
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e Elliptic Equation Boundary Conditions

In the conducting boundary case the magnetic flux is known
to be constant on the boundary and the value is simply applied. 1In
the open boundary case the magnetic flux is not known on the boundary
of a finite grid, but may be determined from the current using a
Green's function. An alternative technigue is to expand the elliptic
equation source in terms of Jacobi polynomials and then express the
equilibrium solution in spherical coordinates.[S]] Callen and Dory[82]
solved for equilibrium using successive over-relaxation and applied
guard cells of specified value around the computational grid
boundary. When the equilibrium solution had small relative changes
between iterations the guard cell values were updated by
extrapolation. A converged solution was declared when interior
values and guard cell values were unchanged by further iteration.

(83] solve for equilibrium using the alternating

Byrne and Klein
direction implicit scheme. The elliptic operator is represented in
flux coordinates -1d thus it is necessary to generate metric
differential coefficients. The required boundary condition is
specified by setting the value of magnetic flux parametrically on
the outermost flux surface. The actual constraint is to specify the
total current and fix the location of the outermost flux surface.
The relation between current and loop voltage is then used to obtain

[84]

the bcundary value. In other work at Princeton, double cyclic

reduction[85] is used to solve the elliptic operator finite
differenced on a rectangular grid. Boundary conditions in this case

are computed by a Green's function technique in which an integral is
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done ovel' the boundary of the computational domain rather than over
the plasma current, for the open boundary case. The constraint used
to avoid the bifurcation problems is to fix total plasma current. In
work by Holmes, Peng and Lynch[86] equilibrium is computed using
successive over relaxation to solve the finite differenced elliptic
operator on a rectangular domain. Similar to Callen and Dory flux
values are fixed from boundary value considerations and then updated
during iteration. Because Holmes, Peng, and Lynch were interested
in studying flux-conserving tokamaks they computed equilibrium with
fixed magnetic flux difference between the maximum and minimum.

He 1ton and wang[87] obtain equilibrium for doublet, droplet, and
ellipse plasma cross sections. The solution procedure u.es double
cyclic reduction with a boundary condition obtained from a Green's
function. A limiter is invoked in their case to restrict the free
boundary pasition; however, the flux value at the Timiter is allowed
to change. The main effect of the limiter is to restrict positions
where current is defined. To assure convergence the total current
is normalized to enforce a constant value. Grad[88] solves
equilibrium using cyclic reduction and fixed flux value on a
boundary, or periodic in the axial direction for some cases.

Doublet and belt pinch equilibria have been computed in rectangular

geometry.[89’90]

o Alternate Equilibrium Approache;

An entirely different approach has been undertaken by

Lao.[g]‘gzj He obtains approximate solutions by Fourier expanding



flux surface coordinates in terms of poloidal angle and minor radius
and then solving a set of ordinary differential equations by a
variational principle. The object is to compute Fourier amplitudes
of trigonometric functions of the poloidal angle. The lowest
harmonic amplitudes correspond to flux surface shift, minor radius
and ellipticity.

Equilibrium soluticns have been obtained from steady state
results of the SUPERLAYER[93] magneto-inductive particle code. In
this case fields are obtained by following the motion of

representative plasma macre particles.

1.2,2 Transport

The general tendency of a plasma is to relax to a maxwellian.
The presence of particie and energy sources or fields results in
forces which cause fluxes. The forces are often given by gradients
of quantities such as density and temperature. The associated
fluxes are then particles and heat. Duve to coupling and the
electromagnetic interaction, fluxes of various quantities may depend
on several gradients or forces. In the most general formulation
geometric considerations must be taken into account. The overall
goal of transport studies is to obtain the equations relating fluxes
and forces, and the diffusion coefficients or proportionality
factors between fluxes and forces taking into account geometry and
electromagnetic interaction. An underlying transport consideration
is the effect of collisions. The term collision has come to have a
very broad meaning. When collisions due to particle-particle

interactions are considered the transport is classical or

29



30

neoclassical. When plasma wave-particle interactions effect fluxes
of particles, momentum, or energy, the transport is described as
anomalous. Only classical or neoclassical transport will be
considered so collisions in this work refer only to

particle-particle interactions.

¢ Magnetic Field Free Transport

Diffusion processes in a magnetic field differ from those in
a neutral gas since the magnetic field causes a helical particla
path around field lines rather than a straight line path. In a
neutral gas, collisions tend to prevent diffusion resulting from
free streaming particles. In one dimension with a density gradient

the flux I'y is proportional to the gradient.

r=-p & (1-9)

Far collisions of neutral particles or charged particles with
neutral particles the diffusion coefficient Dr\a:T/(v m) where T

is temperature and v is collision frequency.[94] The flux

decreases as the inverse of the collision frequency. When charged
particles of different mass are diffusing such as ions and electrons,
the lighter species is pfedicted to have a larger flux. However,
electric fields which develop when charge imbalance results cause
the ion and-electron flux to be equal. This effect is ambipolar
diffusion and the overall diffusion coefficient is about twice the

ion diffusion coefficient for equal temperature jons and electrons.
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o Transport with a Magnetic Field

In the presence of a magnetic 1’1'e1d[95:|

2 2

o = vy PR 3T v mc? (ZeB)” (1-10)

ZeB(mc)'] and the flux perpendicular to the magnetic field

where W
direction increases proportional to the collision frequency. The
reason collisions aid diffusion can be seen from the orbit in Fig.
1-5 where a particle in a homogeneous magnetic field encounters a
180 degree collision each cyclotron period. Without collisions the
orbit would be a circle of radius rg = mcv(ZeB)'], where rg is the
gyro-radius, m is mass, ¢ is the speed of light, v is velocity, Ze
is charge and B is magnetic “ield. With collisions the orbit is a
cycloid and the particle moves a distance of rg out of the plasma
each cyclotron period in the worse case as shown in Fig. 1-5. The
actual orbit has collisions anywhere around a circular orbit and
thus a particle typically would not go a distance rg toward the
plasma boundary each collision. Bohm[ge] assumed the collision
frequency is equal to the cyclotron frequency and obcained the

following diffusion coefficient.

D 16 v)71 b,

Bohm = wc(
(1-11)

~ 3ckT (16 Ze B)"!

The important difference between D; and Dgonm 18 the field

- - A
dependence, D, ~8B 2 and Dgohm ™~ B 1. In work by Chandrasekhar[wJ

the connection was made between diffusion and random walk processes.

Dy = (Ax)2/6T (1-12)
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Magnetic
field

O

Figure 1-5. Homogeneous magnetic field particle orbit encountering
180 degree deflection each cyclotron period.



In Eq. (1-12), Ax is the random walk step size and Tran is the time

! and Tr = 2n/w the

between steps. Using Ax = rg, v2 = 3kTm~ an

following random walk diffusion coefficient results.

-1
Dy = 3ckT(12 w ZeB) (1-13)

This is about .4 times the Bohm estimate.

e (lassical Non-Toroidal Transport

The diffusion coefficient from a classical treatment by
Kruskal and Kulsrud[7]] depends on the p, E; J solution of Egs.
(1-5), (1-6), and (1-7). They consider an isothermal steady state
2lasma with source density rate Q slowly diffusing to the walis of a
perfectly conducting torus. Admissible p, E: J solutions must

satisfy two auxiliary conditions.

1 -+ -+
-/;=P ds |[op]” B +J =0 (1-14)

IR -1 3
dvQ="Pg ds|vp]™ J ¢ J (1-15)

Given p,ii S.which solve Eqs. {1-5), (1-6), (1-7) and satisfy Egs.
(1-14), (1-15) then two scalar functions a and ¢ are obtained from
the solution of two magnetic differential equations. The plasma

velocity from which a flux can be constructed is then given below.

> >

= 1oy-2 17
v=|B"(v¢ -0 J)xB+ aB (1-16)

This is a fluid equation treatment of the diffusion problem.
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The fluid equations are derived from moments of the kinetic

equation.
Bf <> <>
3 +veVF+ac va = C(f,f) (1-17)

In Eq. (1-17) f(¥,V,t)drdv is the number of particles in volume dr
dv at position ¥, V and time t, 3 is acceleration and C(f,f) is the
collision operator. Fluid equations for density, momentum and
energy result by multiplying Eq. (1-17) by 1, mv, mv2 and
integrating over velocity. The difficulty in applying these
equations is that they are not closed and a complete set only
results after taking an infinite number of velocity moments. To
avoid this difficulty the true distribution function f(¥,V,t) is
approximated as a maxwellian plus a perturbation. The maxwellian is
given in terms of n(¥,t), T(¥,t), V(¥,t) the local density,
temperature and velocity respectively. This approximation has been

(98] to obtain transport coefficients relating

used by Braginskii
fields, n, V: T and various gradients to the transfer of momentum
force, heat flux, heat and the pressure tensor. The description of

Braginskii is much more complete than that of Kruskal and Kulsrud.

o Toroidal Geometry Transport Effects

The orbital and confinement geometry have large effects on
the classical results. The most fundamental effect results from
toroidal geometry. This effect and others are typically analyzed in
the literature using large aspect ratio and restricting consideration

to various collisionality regimes. Pfirsch and Schluter[gg] in



the highly collisional, large aspect ratio limit obtained an
approximately order of magnitude correction to ihe homogeneous
plasma case. The magnetohydromagnetic equations modeled a

quasineutral, equilibrium plasma. In addition to Eq. (1-7) they

used,
- .I+ > >
E+c ' vxB=nJd {1-18)
>
Ved=0 (1-19)
- -
B = (0, BT, B(1 - Ar cos ep)) (1-20)

where n is resistivity and 6_ is poloidal angle. They angle

p
averaged the flux across a magnetic surface and obtained a safety

factor squared correction to the previous cross field diffusion

coefficient.

R
D s = 4 D

b ) (1-21)

e Trapped Particle Toroidal Geometry Transport Effects

As the collisionality of the plasma decreases, orbit effects
and the influence of trapped particles become important. The
magnetic field in tokamaks is dominated by the toroidal field which
falls of f approximately as the inverse distance from the major
axis. Particles orbiting along field Tines that wind around a torus
geometry encounter a magnetic field that increases on the inside of

the torus. Assuming constant energy E and magnetic moment u, the
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velocity along a field line is below.

v, = (2(E - ug)/m) /2 (1-22)

The trapped class of particles has a small encugh E that v goes

to zero before they reach the irside of the torus and they thus
bounce back and forth on the outside of the torus. In addition to
bouncing along field 1ines there is also a drift velocity across
field lines resulting in excursions between flux surfaces. The
general motion is shown in Fig. 1-6. The azimuthal drift motion is

illustrated in Fig. 1-6a. The projection of the orbit at constant

azimuthal angle shows the banana orbit and banana width AE]OOJ in
Fig. 1-6b.
b~ A2 mv(eBp)'] (1-23)

The fraction of trapped particles are in the region of velocity space
where v"/v ~vA;]/2 so the effective collision frequency for
scattering into an untrapped orbit is Vag g™ Arv. The bounce time
of a trapped orbit is[]O]J T, Al/z (Ze R/v), where R is the plasma

major radius. Define v, = 7, Vefss then,

3/2
Uy~ Ar/ v Ze R/vth (1-24)

3/2

is the thermal velocity. Clearly for v, >> Ar

where vth

particles have collisions before a banana orbit is completed and the

issue of trapped particles does not effect diffusion.



{b)

Figure 1-6. Trapped particle motion. (a) Bouncz and drift motion (b)
Azimuthal angle projection showing banana orbit of width Ap.
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o Neoclassical Transport

When v, << 1 trapped particle orbits occur and in the random
walk model the <tep size changes from a gyroradius to the hanana
width, This is the neoclassical diffusion regime. An approximate

diffusion coefficient can be written as follows.

2 -1/2 )
Dneo = Bp Verr Ar (1-25)

- A3/2 q2 D,
The neoclassical diffusion regime connects to the plateau regime
where the diffusion coefficient is nearly independent of collision
frequency. In the plateau regime 1 < v, << Ailz. The three
diffus on regimes are shown in Fig. 1-7, where the diffusion
coefficient normalized to o s plotted as a function of collision

frequercy normalized to vth(qR)'].[]02]

o Drift Kinetic Equation

A comprehensive review of toroidal plasma transport has been
given by Hinton and Haze]tine.[]03] The earliest work that
described neoclassical and plateau diffusion was Jone by Galeev and
Sagdeev.[]04] The essential transport solution procedure is to

[105-107]

write the kinetic equation in the drift approximation and

then solve by assuming a perturbed maxwellian distribution
function. The drift approximation is based on the gyroraCius being
small compared to a charesteristic scale length and involves

averaging over a Larmor orbit. The drift kinetic equation also has
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Figure 1-7. Particle diffusion coefficient versus collision
frequency.
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an assumed small parameter of collision frequency divided by
gyrofrequency used in its derivation. This assumption is related to
tokamak ordering where a large toroidal magnetic field is present.
The neoclassical, plateau and classical diffusion regimes are
studied using the drift kinetic equation by choosing the relative
size of two terms. The expansion parameter is collision frequency
over transit frequency around a banana orbit. When this parameter
is small a term is dropped and the solution of the drift kinetic
equation yields neoclassical diffusion as given by Rosenb]uth.[]og]
When the parameter is large, classical Pfirsch-Schluter diffusion
results. When the collision frequency is comparable to the transit
frequency the solution of the drift kinetic equation yields plateau
regime diffusion. The neoc'assical result of Rosenbluth differed
from work of Rutherford[]og] by including like particle collisions.
Both of these results used large aspect ratio, small collision
frequency and ignored inductiva electric fields. Later the
restricticn of small collision frequency was removed,[]lol and

this work was modified to be valid for arbitrary aspect ratio.[]]]]

1.3 Scope of the Present Work

The investigation of transport and equilibrium in field
reversed mirrors is approached from two viewpoints. First the
plasma is considered to be described as a small Larmor radius,
conducting, hydromagnetic fluid. Both toroidal and poloidal
magnetic fields are allowed in this case. Timescales of interest

and plasma temperatures of interest permit the plasma to be treated
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as adiabatic. There is no restriction made on relative size of
toroidal and poloidal magnetic field and the aspect ratio is
approximately one. The collision frequency is large as in the
Pfirsch-Schluter regime since classical coefficients are used for
several transport phenomenon. The state of the plasma is des<ribed
by the magnetic field structure and the specification of two
profiles related to the pressure and toroidal magnetic field. The
plasma is assumed to be quasi-static and thus evolves in time
between equilibrium solutions as a result of profile changes caused
by conduction, radiation, electron ion energy axchange, coulomb
friction and neutral beam deposition., In this model the equilibrium
is axisymmetric and thus solved in two dimensions. The transport is
one dimensional between flux surfaces.

From the second viewpoint the plasma is considered to consist
of electrons and several species of ions. The electrons are modeled
as an inertialess fluid and the ions are described by a distribution
function that must be computed. The magnetic field in this case
only has a poloidal component. The magnetic field is obtained
solely from a vector potential and only one component of the vector
potential is needed in axisymmetry when the magnetic field is
poloidal. The vector potential is obtained from Ampere's law with a
current which is the difference between the theta velocity moment of
the ion distribution function and the density times the electron
fluid velocity in the axisymmetry direction. This description
includes ions which may have a large Larmor radius. Due to the

complexity of this treatment the axisymmetric equilibrium is only
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computed in one dimension. The jon distribution function is
expressed as an expansion in collision frequency with the zero order

term depending only on constants of the motion.

e Magnetohydrodynamic Adiabatic Small Larmor Radius Model

Chapter 2 details the equations which are solved to obtain
the small Larmor radius plasma model. The magnetostatic equations
with the adiabatic assumption are deduced from the full set of
magnetohydrodynamic equations. The flux surface average procedure
is defined. The basic equilibrium equation, the Grad-Shafranov
equation and its flux surface average are presented with the pr.file
transport equations, and the neutral beam model. The computer code
which solves these equations and the computational methods employed
are described, The code output and diagnostics are discussed for
several cases considering the effects of neutral beam deposition and

magnetic field shaping.

o Orbit Average

Chapter 3 is a preliminary to the large Larmor radius plasma
model. The ion distribution function satisfies a kinetic equation.
Expressing the ion distribution function as an expansion leads to a
hierarchy of equations. Integrating over characteristics of these
partial differential equations is one method of obtaining a
solution. An alternate procedure to integrating over the exact
orbit is to average contributions from the exact integration.

Chapter 3 describes the orbit average procedure which is equivalent
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to integration over an orbit but does not require a detailed
knowledge of the exact orbit. The orbit average procedure is
defined in terms of phase space integrals and path integrals.
Numerical equivalents of these formulas are derived and tested in
two orbit codes. In the first code the orbit is known analytically
and many orbit average formulas are compared. The second code
requires numerical integration and examines several orbit average
formulas in a magnetic field resulting from a solution of the
magnetostatic equations. The form of the orbit average integrals
varies depending on the number of constants of the motion which
exist. To explore the existence of constants of the motion several
classes of constants of the motion are examined. Because the
examined constants of the motion do not exist when an orbit is
stochastic, consideration is also given to determining parameter
regimes where stochastic motion is likely in the framework of

resonance overlap theory.

e Large Larmor Radius Kinetic Equation Model

In Chapter 4 the large Larmor radius plasma model is
presented. Only a poloidal magnetic field is permitted and quasi-
neutrality is assumed. The electrons are considered to be an
inertialess fluid and are described by a continuity equation and a
momentum equation. The ijons are described by a distribution
function which satisfies a kinetic equation. The kinetic equation
is formulated in terms of a Poisson bracket with the system

Hamiltonian. Expressing the ion distribution function as an
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expansion in collision frequency and also expressing the Hamiltonian
as an expansion leads to a hierarchy of eguations. These eguations
involve various orders of densities and field potentials. A
solution method is implemented using the orbit average derived in
Chapter 3. A kinetic equation for the time evolution of the zero
order distribution function then results. This equation is
analogous to the drift kinetic equation discussed for the small
Larmor radius neoclassical diffusion regime. In contrast; however,
in this case the actuai orbit has been averaged rather than just
averaging over a gyro-orbit. To provide an initial condition of
self consistent electric and magnetic fields the full set of
equations is solved for model ion distribution functions.
Assumptions are made to allow a derivation yielding analytical
electric potential and magnetic vector potential. Self-consistent
electric and magnetic fields are presented for several parameter

values.
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CHAPTER 2

ADIABATIC SMALL LARMOR RADIUS MODEL

2.1 Introduction

In this chapter the plasma is considered to be a small Larmor
radius, conducting, hydromagnetic fluid. The plasma is assumed to
be axisymmetric and equilibrium are obtained in cylindrical r, 2
coordinates. A single fluid model is used for the equilibrium
calculation with the magnetic field and two arbitrary profiles
determining the state of the plasma. Both poloidal and toroidal
magnetic fields are allowed and the profiles are related to pressure
and toroidal magnetic field. The profiles are only arbitrary as an
initial condition. The plasma evolves between equilibrium states as
a result of changes to the vacuum poloidal magnetic field or as a
quasi-static evolution of the profiles caused by transport

processes. The initial vacuum poloidal magnetic field is varied by
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changes in the currents of external axisymmetric filamert coils of
specified radius and axial position. When the plasma evolves in
time due to transport processes the ions and electrons are
considered separately. Classical transport coefficients are used
for conduction, radiation, electron ion energy exchange and neutral
beam deposition. Nonlinearities and the complexity of field shape
preclude analytic solutions and thus the set of equilibrium and
transport equations have been numerically implemented in the ADB
computer code. The ADB equilibrium solver and neutral beam package
have subsequently been used in conjunction with a more elaborate

transport mode1.[1]2]

Following a discussion of the equations to be solved, the
numerical methods and ADB code initialization are presented. The
ADB code output and diagnostics are discussed for several cases
which investigate the effects of neutral beam deposition and

magnetic field shaping.

2.2 Equations to be Solved

2.2.1 Magnetohydrodynamic Equations

The single fluid magnetohydrodynamic plasma description is
given by the following well known equations.[gg] Temperature is

in ergs and other units are cgs.

>

Mave (=0 (2-1)

a+ > -1 > >
S+ yusvuf+ VWw-¢ JxB=20 (2-2)
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-

R R AR (x-1)7 + (kW) + (y-1)n 42 (2-3)

In Eqs. (2-1) to (2-3) quasineutrality is assumed ng = 2 and

n.
jd
scalar heat conductivity k and resistivity n are used, p is pressure

and m, n, U are defined as follows,

mn = E mj"j (2-4)
J

S 4
]

= (mn)'] Z msnu (2-5)
J

where mJ., "j' Gt] are species j mass, density and velocity
respectively. The Eqs. (2-1) to (2-3) are supplemented with
Maxwell's equations without displacement current and with electric
field E, eliminated by Ohm's law,

> -+
u

1 + -+
E+c” xB=nd (2-6)

which yields,

-> -1 ->

Jd=c(dn) VvV «xB (2-7)

-

3B > -+ -

FIIARS (B x u) =~ c¥x (nd) (2-8)
>

VeB=0 (2-9)

The plasma description is then given by Eqs. (2-1) to (2-3) and Egs.
(2-7) to (2-9). There are several approximations of these equations

which result in reduced models. The ideal magnetohydrodynamic model
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is obtained by setting k and n to zero. The Pfirsch-Schluter
model which led to the q2 diffusion coefficient correction results
from setting QEVat and mn(aﬂ7at + U . 65) to zero. The Grad-Hogan[]]3]
model is obtained by only setting mn(du/at + u ° Vu) to zero. If in
addition dissipative terms are ignored (k = n = 0) the Grad-Hogan

formulation becomes the adiabatic mode].[]]4] The equations for

the adiabatic model are below.

an >

3T +9 ¢ (nu) =0 (2-10)

S S

Jx B =cVp (2-11)
-> 1 -
Jd=c(4n) ¢ x8B (2-12)
+ > S
B-vx(uxs) (2-13)
>

VeB=20 (2-14)

The adiabatic model is used in this work.
In cylindrical (r, 8, z) coordinates Eq. (2-14) is satisfied

by using the following definition of E:

>
B =Wy x Ve + f.Vo (2-15)

T

where ¢ is related to magnetic flux, Vo = 1/r @e, where Qé is
the unit vector in the 8 direction, and fT is r times the toroidal
magnetic field. The relation of ¢ to flux is obtained from the

flux definition with the area oriented perpendicular to the z axis.



> ->
flux =J/~B « dA
2r .r
=f f rdrde (l 3_41)
r ar
0 0

=21 Y

(2-16)

2.2.2 Grad-Shafranov Fguation

The basic axisymmetric equilibrium equation, the Grad-Shafranov
equation, is obtained from the theta component of Eq. (2-12) in
combinatien with Eq. (2-11). Substituting Eq. (2-15) into Eq. (2-12)

yields,

- VO A%y + VF x V6 = dnc T [Jpzp“ Vo x 6+ Jo ve]l (2-17)

where subscript p denotes puloidal, subscript T denotes toroidal and

the Grad-Shafrancv operator A* is defined as follows.
N -2
ax = r° Ve (r ¥ (2-18)

The poloidal component of Eq. (2-17) reveals fT is only a function of

¢ and thus

df

J 87 = c(am)”! -ﬂl (2-19)

PP

The dot product of B with Eq. (2-11) shows p is only a function of
¥. Substituting Eq. (2-15) into Eq. (2-11) and using Eq. (2-19)

yields,

df
=1
ri; = e %3 +c(am) £y —‘TJI (2-20)

49
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The toroidal component of Eq. (2-17) combined with Eq. (2-20) yields

the Grad-Shafranov equation.

df
RRRCE R (2-21)

When the right side of Eq. (2-21) is specified along with boundary
conditions a well posed elliptic operator probiem results.
The integral of Eq. (2-13} over an area, perpendicular to the

z axis at position z = 0, fromr = 0 to the magnetic axis gives,

g—t-(fE . <§7A>=fds(: ‘ 8) (2-22)

where Stokes' theorem has been used. The magnetic axis is the
position where Bp = 0. Using Eq. {2-16) in Eg. (2-22) and setting

Bp = 0 yields,
ﬂ: -
ot ds uth (2-23)

Because Uy = 0 at the magnetic axis, Eq. (2-23) restricts the flux
between the separatrix and the magnetic axis to be constant. This
means the magnetic axis or O-point value = ¢b is constant in the
adiabatic model. Since a single interior value ¥ is specified, the
adiabatic model solution of the Grad-Shafranov equation is
non-standard. A technique of enforcing the ¥ value while solving
Eq. (2-21) as an elliptic problem has been developed by Grad.[]]5]
The method consists of iterating between the Grad-Shafranov equation

and the flux surface average of the Grad-Shafranov equation. The



flux surface average equation is an ordinary differential equation
which admits a boundary value at the magnetic axis and thus
incorporates Yo into its solution. The flux surface average o/ A
function <Ga> is the normalized volume integral of Ga over the
infinitesimal volume neighboring a flux surface, in the limit as the
volume goes to zero.

-1
_ o fdV dg
<6,> = 2n(m-) fE; G, (2-24)

In Eq. (2-24), d& is the path in the poloidal plane along a constant
¥ contour, V is the volume inside the ¢ contour and dV/dy is definad

as follows.

v ZNfgg (2-25)

€<

The basic flux surface average definition with Eq. (2-25) may be used

to obtain the following identity.

> -+
<V - G> = %V (% <Gy * w») (2-26)

Applying the flux surface average to Eq. (2-21) divided by r2 and

using Eq. (2-26) yields the average Grad-Shafranov eQua.ian,

d dy . dp T _-2
H\T(Kd—%lli)"“"ﬁ'fT'd'q;—q > (2-27)

where

K = <iw|? r 2 (2-28)
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The flux surface average of tro-sport equations without
dissipation can be used to show protiles S(¢) anc q(y) are constant

in time. These profiles are related to p and fT as follows,

Y
p(y) = 3() (g—{,k) (2-29)
frob) = 41° q(y) <r'2>§;‘}5 (2-30)

where y is the ratio of specific heats. The profiles S{¥) and q(y)
are referred to as the entropy and safety factor profile
respectively. The right side of Eq. (2-27) can he written in terms
of Eqs. (2-29) to (2-30) and their derivatives.

2

o ) (a) - ome () 2

-1 2
4 -2 de dy d
- 16m1mq<r > s + q%
(dV dv dv
2% apd -2
-q<r “> H*HV < >) (2-31)

Similarly, Eq. (2-21) is rewritten below.

3 )Y y-2 2
rZ(_ 4 4y (gﬁ) - 4nyS g-* :—Vik)

Ay

-g a2 g@l}gv <r'2>) (2-32)



To exprass dZ\p/dV2 in terms of first derivatives Fg. (2-31) s

bl
expanded and used to solve for dzquv“. Let,

-2

Y -1
D =K+ dmy s(%{,k) 16 1 @ <« s

then,

2 v-1
d _ -1 fdK d dsS {d
oo (Fae e 5 ()
s 270 dyfd 2 Md -2
+ 1671 <r "> q v a%—- <r T> g o<r > (2-33)
The expression given by Eq. (2-33) is used in Eq. (2-32) so the
right side only depends on first derivatives, which are more

accurately obtained numerically than dzqydvz.

2.2.3 Boundary Condition for the Grad-Shafranov Equation

The flux surface averaged Grad-Shafranov equation given by Eq.
(2-31) is solved between the magnetic axis and the separatrix. The

boundary conditions are then given by Yo and ¢ which are

sep?
known initial values.

The two dimensional Grad-Shafranov equation given by Eg. (2-32)
is solved on a rectangular r,z grid of finite extent. On the edge
of the grid two types of boundary conditions are used.

The first type is conducting. The ¢ function is decomposed

into two parts; ¢ = wvac + Y

blasma The first part, Wac> is

due to an externally impressed vacuum field. The wp]asma pary is
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due to the presence of the plasma. For the conducting boundary

condition ¢ is set to zero.

plasma
The second type of boundary condition is for the open case

where there are no conductors around the plasma. In this case the

boundary condition is specified using a Green's function technique.

Wp'lasma (r‘,z) =j:[dr'd2' G(r', z'y 1, Z)JT (2_34)

In Eq. (2-34) JT is defined by Eg. (2-20) and G[1]6] is the

Green's function,

1/2
G(r', 2', r, 2) = 4 ¢ (rrkTd) ((1 - % k2) K(K) - E(k)) (2-35)

where,

-1
K =4 ppe ((r' rr)l s (z - z')2) (2-36)
and K(k) and E(k) in Eq. (2-35) are ~1liptic integrals of the firs*
and second kind respectively.

The change of .. caused by externil coils is calculated from

C
Eq. (2-34) to simulate adiabatic compression. In this case JT is
replaced by a current corresponding to an axisymmetric infinitesimal

filament coil.

2.2.4 Transport Equations

The transport equations are obtained from moments of the

kinetic equation as given by Braginskii.[98] The relevant equations



for this work are the continuity equation,

an .
- . = -
=tV (njuj) 0 (2-37)

and the heat balance equation,

an.T. > >
3733, 9.3 .
> 3% Ve (3 anjuj) + anj v us
>
+ V. qj = Qj + Sﬁeam (2-38)
oan T -+
3 ee <« (3 .
2ttt (T ngTele) *ngTy Vot ug
>
"0 = O - Sy (2-39)

The continuity equation, Eq. (2-37), is different than Eq. (2-10)
since it refers to species j rather than a single fluid. Although
neutral beam deposition involves ionization which would appear as a
particle source on the right side of £q. (2-37) the dominant
behavior in regimes of interest is charge exchange. Since only
charge exchange is treated this is equivalent to equating the
jonization rate to the particle loss rate. The effect of the
neutral beam is to replace a plasma ion with a hot beam particle.
Consequently the neutral beam appears as a source S'beam in the heat
balance equation for ions. In the temperature regime of interest

only the electrons radiate so a radiation loss term S' appears in

rad
Eq. (2-39). The off diagonal pressure tensor terms which are
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related to viscosity effects are neglected in Eq. (2-38) and Eq.
(2-39). The heat flux vector aj is defined as follows,

> > > > > >
q; = .5 m; f((v - ug) e (V= ug) )V Fdv (2-40)

where fj is the distribution function describing species j. The
heat generated due to collisions of other species with species j is
given below,

0, = .5 m, f{; - :J.) . (; - :J.) C(f,f)dv (2-41)

where C(f,f) represents the collision operator.

The adiabatic assumption resulted in dropping the &Eth
acceleration term in the original momentum equation. This means
centrifugal and Coriolis forces are insignificant and any
accelerations due to transitory behavior results in sufficiently
slow motion that the corresponding accelerations may be neglected.
The consequence of these assumptions lead to fT and p beiné flux
surface functions only depending on ¢. Changes of p and fT due to
adiabatic compression or transport must then be slower than the time
for flux surface equilibration. The equilibration time may be
estimated as the sound speed divided by the field 1ine connection
length gR. The slowly changing nature of the adiabatic assumption
jmplies transport is only important between flux surfaces.
Consequently transport is one dimensional with coordinate ¢ rather
than two dimensional in r and z. The appropriate one dimensional

transport equations are then obtained by flux surface averaging Eq.



(2-37) to Eq. (2-39). This standard procedure has been carried out
in other work.[]]z] Specializing results of Shumaker to the
adiabatic case where the flow velocity is the same as the flux
surface velocity yields the flux surface averaged continuity

equation,

and the flux surface averaged heat balance equations,

y 2/3
d_tSJ='—'<dV) d\l) ’_V‘l"q
-2/3
4 {d dg
* Speam * T (ﬁ) fﬁ; 0 (2-43)

ds 2/3 >
e _dnfoN¥a for o
at T(dv) 0o fep Vo . q,

-2/3
47 fd de
~ Sead * T(ﬁ) fB Qe (2-44)

p

In Eq. (2-42) the density n, does not have a species designation
since quasineutrality is assumed and there is only one type of ions.
The heat generated and heat flux vectors have been calculated by
Braginskii assuming a local maxwellian distribution. Before
describing E'and Q several definitions are required. The electron

and ion collision frequencies are given below,

= 3.5 x 10° (Azn)™] Ti/z (2-45)

A
1]

-1
2.12 x 107 (az%n) (mj/mo)”2 13/2 (2-46)

A
i
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where g is proton mass, Z is ion charge state and,

23.4 - 1.15 gn(n) + 3.45 gn Te Te < 50 eV
x = (2-47)

25.3 - 1.15 #n(n) + 2.3 &n Te Te > 50 eV

The cyclotron frequencies for the electrons and ions have the

following definitions.

1.76 x 10’ B (2-48)

£
]

-
n

, 3
j 9,58 x 10° 2 B mo/mj (2-49)

The ion and electron heat flux vectors are then,

q 2 T 2,41 2 2-50
By 7y gty gy T (2-50)
> 2 . 97,

g = - 4,66 n Te (meweTe) W v (2-51)

where heat flow along the magnetic field or in the flux surface is

ignored. The ion and electron heat generated terms are below.

Q. = 3 mn, (ije)'1 (T, - 7)) (2-52)

T.) (2-53)

-1
Qe 3 Mg N (ﬂﬁTe) (Tj - Ta

In Eq. (2-53) the joule heating term ng which normally appears is

neglected due to the dominance of neutral beam heating and the

T;3/2 dependence of nJZ.
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The radiation term in Eq. (2-44) has the following form,
5/3
_ 2 fdv 2 z:: -
Srad = 3 (%E) n . fili (Te) (2-54)

where the Lk(Te) profile for species k is obtained from corona
equilibrium data.[]]7] In Eq. (2-54) fk is the fraction of the
density consisting of a radiating species k. Because fk is typically
a few percent there is no continuity or heat balance equation for

the radiating species.

The neutral beam charge exchange term Sbeam in Eq. (2-43) s a
flux surface averaged three dimensional deposition, A neutral beam
footprint is modeled as a grid of individual beam pencils. The
energy deposition is calculated by stepping each beam along a chord
passing through the plasma. At each step the local temperature and

[118] GV, are used to determine the

reaction rate cross section
deposition. To map the three dimensional deposition to axisymmetric
flux surfaces the beam deposition is spread in theta by mﬁ]tiplying
by a geometric factor Vgeo which is the ratio of a beam step

volume to the volume of the axisymmetric ring intersecting the
deposition location. The deposition is distributed in r and z by
flux surface averaging. The attenuation with distance of the beam

density Dbeam along the deposition path Ebeam is assumed to be

proportional to the plasma density, oV and Nbeam’

dn

beam — -1
———= -0V nn v (2-55)
dlbeam beam "beam

where Vbeam is the beam velocity. The deposition at path position

L is then below,

beam
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— -1

e- n oV & cam’ bean

d -1

n
beam - . -
B vgeo % "Mgpeam Vbeam

beam
2beam

(2-56)

where ngp o am is the initial beam density. The surface average of

contributions represented by Eq. (2-56) is weighted with the plasma

energy, Ep]asma minus beam energy Ebeam to account for charge
exchange.
Spoam = - I~ (ﬂ)m (.. ~-E )fﬂ Thean (2-57)
beam dy beam plasma Bp dzbeam

The beam and radiation terms are now defined so the final form
of the heat balance equations is obtained by substituting Eq. (2-50)
to Eq. (2-53) into Eq. (2-43) and Eq. (2-44).

ds, -2/3 g 2
;. 16 (au\ 2% I NG B CTARL Y
e 5.457 x 10 (dV v nT\j W (Z Tj"b) m Bp _E;T‘—
5, +1.82 x 102 (mr )V (s -5 (2-58)
beam : J'e e J
e _6.921x 10" (6?20 (= Te 1 [ap jvyl?
dt ol av av edy e B, 2
p B
s -1ds 182 %1027 (mr )7V (ss - 5) (2-59)
rad e2 “e : Jje "3 e

Two modifications have been made to Eq. (2-59). A constant Ta
divides the electron conduction term and thus allows conduction to

be enhanced over the classical value. Also an empirical term
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T;; Se has been added to model an electron profile decay rate with

t ime constant T2+

2.3 Numerical Methods for the ADB Code

The magnetic field structures of i :erest and the irherent non-
linearities of the formulation necessitate a numerical solution. The
magnetic flux ¢ is calculated as a function of volume within a flux
surface from the averaged Grad-Shafranov equation and as a function
of r and z from the two dimensional Grad-Shafranov equation., A
numerical flux surface average is thus required. Numerical methods
are required for the averaged Grad-Shafranov equation, the two
dimensional Grad-Shafranov equation, the boundary condition and the

solution of the transport equation.

2.3.1 Flux Surface Average

The flux surface average definition Eg. (2-24) may be written

using Eq. (2-25) as follows,

<G> = [Ga]/[l] {2-60)

where [Ga] is the un-normalized integral,

ds
(6] =f§; G, (2-61)

The flux surface average of G, is then determined once [Ga] has been
calculated. The functions Ga(r,z), Bp(r,z) and ¥(r,z) are assumed
to be known on a rectangular mesh which may be variable, and are

assumed to be symmetric about z = 0. The computation of [Ga]
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requires the integral of GaB;] along a constant ¢ contour. The
most straightforward means of obtaining [Ga] is to solve an initial
value problem for the following three ordinary differential
equations.

d[Ga] -1
T ° GaB
d p

dr _ -1
ar Ber

9= 5,8 (2-62)
The r position of a specific ¢ value at z = 0 is Tocated and then the
¢ contour is followed in r and z while [Ga] is computed. The system
of ordinary differential equations given by Eq. {2-62) is solved
using the multistep method described in Chapter 3. Since Ga,
B

B_, B_are only defined at grid points and a ¢ contour is allowed

z2* p
to cross through a grid cell at any angle it is necessary to fit

r’

these functions inside a grid cell. Fitting functions in a grid
cell up to third order in r and z provides for continuity of
function value, first derivative and second derivative between grid
cells. Only Ga and ¢ are fitted and fields are obtained from the

following relations.

_ 19

B, = - 7% 5¥ (2-63)
_ 123

B, =% 5% (2-64)

2 2\1/2
B, = w1 ((%‘rl’-) + (%)) (2-65)
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Fitting ¢ to third order yields fields that have continuous first
derivatives between grid cells and consequently the solution of Eq.
{2-62) is free from discontinuities as a { contour is followed
between grid cells. Fitting the entire grid and following each
desired y contour many small steps is a computationally expensive
procedure. As a result only a small number of grid cells {typically
10 by 4) are fitted around the magnetic axis. Only in this small
region of the grid near the magnetic axis are the differential
equations of Eq. {2-62) rigorously solved.

Away from the magnetic axis the actual curved ¢ cuntour path
is approximated as a number of straight line chords. Each grid
cell, for which the ¥ value of interest lies between the minimum
and maximum grid cell values, is considered to contribute to
[Ga]. The field line integral path within a grid cell is a
straight line segment between the ¢ intersections of the grid cell

1 at the intersection

sides. The y intersection and the value of GaB;
position are obtained by fitting a cubic polynomial using the two
grid points from the intersected grid cell side and a grid point
from the grid cell above and below ar right and left depending on
whether orientation is vertical or horizontal. It was found linear
interpolation gave a poor  intersection position when Y{r,z) was
relatively flat. The value of GaB;] along the straight line path

is taken to be the average of the two side intersection values. The
contribution of a grid cell to [Ga] is the distance between y

1

intersections multiplied by the sum of GaB; at the two

intersection positions. The factor of 1/2 is absent because ¥
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contours are assumed to be symmetric about z = 0. The final value
of [Ga] for a particular Y contour is obtained by summing the
contributions from all grid cells. This method of approximating the
Y contour as a straight Tline chord in a grid celi works well away
from the magnetic axis. Near the magnetic axic a ¢ contour may
intersect a grid cell side twice and the method breaks down
completely.

The difficulty of the straight line chord method near the
magnetic axis is the reason, in this region, the { contour is
determined by solving Eq. (2-62). A function such as K which is
calculated from [IVVI%’ZJ has a sharp peak in dK/dV at the ¥ contour
which is the transition between the two methods of calculating
[IVVIzr'Z]. To resolve this problem the general field line integral
[Ga] is defined to be a weighted sum of the values calculated by the
solution of Eq. (2-62), [Ga]2-62 and the values calculated hy the

chord method [Ga]chord'

+(1-e%[6,] (2-66)

[6.7=¢e"[6]
a a%. chord

62

where,

a\e
a=- (b= 5,

and wo is the flux value at the magnetic axis. Using Eq. {2-66),
[Ga] is almost entirely [Ga]2-62 near the magnetic axis. For

¥ -y > .2 Vp» [Ga] is almost entirely [Ga]chord°
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2.3.2 Averaged Grad-Shafranov Equation

The averaged Grad-Shafranov equation is given by Eq. (2-31).
This equation is a second order ordinary differential equation for
Y with volume, V as the independent variable. It is solved on a
uniformly spaced volume grid from V = O to the separatrix volume

V=YV At these two positions the boundary conditions are

sep”
V=Yg and } = wsep which are given constant initial conditions.

The transport equations are set up on a uniform ¢ grid because
derivatives in those equations involve the d/dy operator.
Consequently the profiles S(y) and q(¥) in Fq. (2-31) are
interpolated to the uniform volume grid once the ¢ values
corresponding to the volume grid positions are determined. The volume
grid is calculated by numerically computing the volume . ithin given
uniform grid ¢ values. Once Y{V) is known y values ar: obtained on
a uniform V grid by interpolation and the volumes are again computed.
By a process of iteration Y(V) on a uniform volume ‘id is
established. The surface average functions K, and <r'2> are then
computed at these (V) values.

It is actually problem dependent whether it is more accurate
to interpolate S(V), aq{%; to a uniform volume (rid or alternately
solve for Y(V) on a non-uniform volume grid ~-nd use S(¢) and q(y)
at the ¥ values where they are defined. Consequently Eq. (2-31) is
set up to be solved on a non-uniform volume grid if desired. The

teft side of Eq. (2-31) is central differenced in a conservative

manner.
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fr g - @1 Dy

+

T 0 - -7y

+

(rl2) o2 3y (2-67)

The volume grid position is designated with a subscript i and the
Tocal volume spacing between ¢1-1 and ¥, is A] and the spacing

is 4,. The ng) functions are given below.

between b, and ¢1+1

-1
T(i]) = A (K1+] + K1) (AZ &858, + A2A )) (2-68)
(2) -1
e = Az (Ky + Ky A](A by + AZA ) (2-69)
(3) -
T3 = 2(A2 - A]) K, 2 85 + AZA (2-70)

The right hand side of Eg. (2-31) is written as follows,
- 2 2
Ry = (0 0900 = Bpuidbyyg + (= 850 + 8wy 4

+ (8 + Bydoy + (85 - B, (2-71)

where o, and v; are defined below.
-1 y
_ 2 2 d
%'2@ﬁ2+%%) G”SG&
- (a2 +AA2)'] 4 35 9$Y‘2+]6 4. dq -2,
i 1927 M1 T \d ) T aqv

-2
4 2 -2 d -2
- 16 g <r "> < >)i (2-73)

<
[
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Using Eq. (2-67) to Eq. (2-73) the differenced form of Eq. (2-31) is
below,
= -74
Apbigy * By + Gy, = 0 (2-74)
where,
= 70 (3) 2 2 e
Ay =T+ T AT Ao, ¢ AT Y, (2-75)

i

- (3) (A2 2 (2) (1)
B, = Ti (A2 - A1) - Ti - Ti

2 2
- (A1 + Az)oi + (A2 + A])vi (2-76)
o o(2) _ 2 1(3) 2 i
Ci Ti AZ Ti + AZGi - A2 v; (2-77)

Given the boundary conditions wo, v Eg. (2-74) is solved by the

standard tridiagonal a]gorithm.[ngiep
wi+1 = Ei¢i + Fi (2-78)
Eioy = - Ci/(AE; + 8;) (2-79)
Fiy = - AiFi/(AiEi + B;) o (2-80)

The solution of Eq. (2-74) must be iterated because dy/dV changes

C. actually depend

and thus at iteration n the coefficients Ai’ Bi’ ;

on "1, Nonlinear terms such as (dp/dv)¥"' are treated as a

product of two terms at different iteration levels.

CRECENE]
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The functior K has a logarithmic singularity at the separatrix. To
) . .
avoid the infinity in the TS]' function, one point from the
]

separatrix, Ki+1 + Ki is replaced by Ki+1/2’ obtained from a fit of

r
interior K values assuming the functional form,L]zOJ
K= apV + a,V + (agV + av%) an (1 - V)
% 2
+ in(jnV Vo+ d., -
:E: sin(jnV) (ch de ) (2-82)

3=

where V is normalized to the volume enclosed by the separtrix and
typically & = 4. The analytic derivative of this formula is used
for dK/dV to obtain a smooth function that properly represents the

(]-V)'] singularity.

2.3.3 Grad-Shafranov Equation

The two dimensional Grad-Shafranov equation may be written in
cylindrical coordinates as follows,
2

j{%?

ar

2
12y, 3%y,
roar 2 J (2-83)

where J is the right hand side of Eq. (2-32). Central differences

are useu . > derivatives in f£gq. (2-83) to yield,

TR L+ U, -+ B LU, oty W s A W o= 8. d.

°1,J¢1+1,J ¢1,J 81,J lIJ1-1,3 YI,J¢1,J+1 A1,J ¥i,4-1 61,JJIsJ
(2-84)

where i,j designate r,z position and the coefficients are given below,



-1
Gi,j = [-Z(Ari + Ar1+1)]R1

s Ler? - (ry? ey

-1

-1
-2 [Azj + Azj+]]Mj ) (2-85)
) -1 2 -1 )
o ;" 61,3-(2 ar R - (o) (P Ry) (2-86)
B. . =6, (2 ar.. R+ (ar ) (rR)T (2-87)
i,5 7 84,0 20 Ry il PRy
-1
A M 2-88
Y'I,J 51’3 2 AZJ MJ ( )
-1
R M 2-89
A, 7 84,5 2 82n M (2-89)
R, = (ar,, )% ar. + (ar)2 ar (2-90)
i 1) Ary i) A
M, = (2., )0 Az, + (82.)% Az (2-91)
g = Bagn) dzg s (a2)” bz
Azj =75 24 (2-92)
Ar. = r. - r (2-93)

Originally Eq. (2-83) was differenced on a uniform grid and Fourier
techniques were used to obtain solutions. To consider boundaries
that are not periodic the alternating direction implicit method was
implemented. This method was abandoned due to convergence
difficulties. The variable mesh was implemented to increase

resolution around the magnetic axis for [Ga] and also to

chord
explore the application of distant boundary conditions.

69
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The solution of Eq. (2-84) with a varijable mesh is equivalent
to the inversion of a five band matrix with a diagonal band length
equal to the number of r,z grid points. The solution is obtained
using the Incomplete Cholesky Conjugate Gradient Method (ICCG).[]ZIJ
This method obtains a solution by expressing the answer in terms of
orthonormal vectors. The original matrix problem is pre-conditioned
by multiplying by an approximate inverse matrix which has the same
sparsity pattern. In theory without roundoff the ICCG method
produces an exact answer after equivalently constructing a number of
orthonormal vectors equal to the diagonal band length. In practice
only a few iterations of the algorithm, usually one thousandth of
the theoretical value, are required to obtain an excellent sclution.

The difference Eq. (2-84) is written as a matrix problem below,
Abv=Jd (2-94)

where underbar denotes vector and double underbar denotes matrix.
The matrix A and vector J are obtained from Eq. (2-84) and IR
- L]

S The problem is to determine ¥ given A and

Bi,5 Vi, Moy Sis
J. A lower, upper, decomposition of A is effected as follows,

g=d (2-95)

=
1=
lic

where D is diagonal and the matrix bands have the definitions below.

-1
et T AT 2 bk Yt Bk
1

o

(2-96)

=
n

—.
[}
—_—

Lk Y Ok (2-97)

| am)
-
:
[ &=}
n
X
)
:
.
)
-~
™
7



i-1
i 1
Dii* (Ai,i - 2 Lik Y Dk,%) (2-98)

In the case of applying ICCG to a five band matrix A it is only

necessary to compute Li Assuming an M by N grid the bands have

i
the following definitions.

Lisie1 7 AL (2-99)
Liyi-M = A i-m (2-100)
Lo TRy T AL T AL A Biew,iem (2-101)
Di,i = (Li,i)-] (2-102)
Uiy =Ly (2-103)
U, ie1 = A, i (2-104)
Us,iem = A5 iom (2-105)
Equation (2-99) to Eq. (2-105) are used in the algorithm below.
Superscript i designates iteration level.
L=d-ay (2-106)
Sewpw’ s (2-107)
L AN YT (2-108)
al = (Ei,Eﬁ)-] (Ei’ Ei) (2-109)

) =E+JM (2-110)
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§”=§i-ggﬂi (2-111)
- (ggg)"] s (2-112)

bl = (cf, ¢y (T, ) (2-113)
f+]=£(égngCH]+b%1 (2-114)

There are three initial vectors §9, Ep’ Bp which are needed to begin

the ICCG algorithm. The algorithm iterates from Eq. (2-109) to Eq.
(2-114) until the magnitude of the §j residual vector is sufficiently
small. A superscript of -T indicates transpose of the inverse
matrix. Brackets around vectors indicate scalar product. Operations
such as Eq. (2-112) are performed using back substitution in three

steps as follows.

Lx=s (2-115)
Dy=x (2-116)
i+ _

uc ey (2-117)

The algorithm converges in only a few iterations when a close guess
is used in Eq. (2-106) since the original equation is almost solved

in this case,

2.3.4 Boundary Condition for the Grad-Shafranov Equation

The solution of Eq. (2-32) requires a boundry condition for
the open case where the plasma is not surrounded by a conductor. A

Green's function technique is used to obtain the boundary condition
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by summing the flux due to axisymmetric plasma current rings. Each
grid point where the current is non-zero is considered to be a
current ring. The flux it an r,z boundary position results from the

sum of all current rings which is an approximation to Eq. (2-34).

Yolasma (M2) = +25 E [Si,5% Si-1,3 % Si,4-1 % i1, 30
3

(2-118)

In Eq. (2-118) Si,j (JT)i,j (G(ri,z.,r,z) + G(ri, -zj,r,z)) due

J
to symmetry about z = 0 and JT and G are defined by Eg. (2-20) and

Eg. (2-35) respectively. The Green's functjon must be computed for
each grid point for all boundary condition positions. This
operation is done once for a given specification of r,z dimensions
and number of grid points and then G values for Eq. (2-118) are read
from a disk file as required. The Green's function values for the
boundary point at z = 0 are stored in computer memory. The z =0
boundary point is closest to the plasma and is thus sensitive to
changes in current. The change of the flux boundary value at z = 0
is computed before each two dimensional Grad-Shafranov solution, and

all other boundary values are computed only if there is a significant

change at z = 0.

2.3.5 Transport Equations
There are three transport equations, Eq. (2-42), Eq. (2-58)
and Eq. (2-59). No numerical solution of Eq. (2-42) is required.

It is used to determine the density and temperature.



n(p,t) = n(:’%)ho (g;,l’-)t (2-119)

-1 2/3
T0.t) = (0 ) seut) (94 (2-120)
¥/i=0 ),

The two heat balance equations are written as a general

equation.,
ds, dT
k (1) d (<(2) k) (3) (4) (5) }
D 7 (Sk TS Se S Sy Sy (2-121)

For the jons k = j corresponding to Eq. (2-58),

-2/3

(M. 16 (dy

s;0 = 6.457 x 107 (& (2-122)
s@) o1 (Brm) T m ££_‘21’_'V 12 (2-123)
] it fE Ty

(3) - -27 -1 3

55 1.82 x 107 (m; 1) (2-124)
(4) _ _ -27 -1 _

Sj =-1.82x 10 (mj re) (2-125)
(5) .

537 = Syeam (2-126)

and for the electrors k = e corresponding to Eq. (2-59),
-2/3

(. 13 _-1(d

siV = 6,02 x 1073 ] (ae/k) (2-127)
NN T Tk 2-128)
e "~ NleTe Bp —E?— (e-

-1 =27 -

s{3) < - <) - 182 x 10 (m; 7g) ! (2-129)
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]

(4) -27 -1 i
Se ! = 1.82 x 107 (m; ) (2-130)

5) _
s = -5 (2-131)

In Eq. (2-122) to Eq. (2-131) Te and Tj are understood to be given
by Eq. (2-120) with the Se or Sj profile respectively. The general
equation has several flux surface average quantities in coefficients
ng), S§5) and ng), which are determined by the solution of the
two dimensional Grad-Shafranov equation. Also dy/dV from the
averaged Grad-Shafranov equation is effected by transport. Due to
these dependenices, no gain was realized by treating terms on the
right side of Eq. (2-121) implicitly. Consequently, a straight-

forward explicit time difference scheme is employed,

SL‘” SE + At[(my)'z .5(((5,22) (¥ + &) + s,ﬁz)(q;))
: (Tk(w + ) - Tk(w)> - <S£2)(w) + 52y - mv)>

S,(<3)(w) Se * S,£4)sj * 3,55)]" (2-132)

n

+

where Ay is the transport grid spacing. The dominant term is
neutral beam deposition and thus At is chosen so (Sg+] - S;)

(Sg.)".I is no greater than 5% at any ¢ grid position.

2.4 Initial Conditions

In Section 2.2 equations were presented which describe the

evolution of quasi-static equilibria. To begin the calculation an
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initial condition is required for ¢ and the S(¢), q(y) profiles.
Analytic ¢ have been obtained by assuming various models for

p(y) and fT(w). The ¢ solution is then used to calculate dy/dV

and relations Eq. (2-29) and Eq. (2-30) are used to determine S(y)
and g{y). With p = nT known, assuming a Y dependence of either

n(Y) or T(Y) determines the y deperdence of the other function, The
jon Sj(w) and electron Se(w) profiles sum to S(y) and thus initially

it is assumed Sj = Se = ,5 S(¢).

2.4.1 Weitzner Magnetic Field Model

The Neitzner[122] model assumes p(y) and fT(w) are proportional
to ¥.

p(v) = (4m)7" by (2-133)

fr(b) = ap (2-134)

The ¢ solution for a spherical plasma of radius py inside the plasma

is below.
b = rzbn(-l + K azpéz(péT sin p, - coOS 02)) (2-135)
Py = a(rz + 22)]/2 (2-136)
b = a %

-1
- sy (2= 8 c(M) (2-137)
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(2]
_—
—_—
~—

i}

(o']z cos(apy) + sin (ap;) (ao']] - (ao%>_]>>/c(2) (2-138)

- cos (ap;) + (ap])'] sin (ap;) (2-139)
c = p5/ct?) (2-140)

The constants in Eq. (2-137) to Eq. (2-140) are expressed in terms
of a, P and Bv. The uniform vacuum field far from the plasma is

B The boundary of the plasma is at the first zero of

Ve
- 1+x azp;g (p;] sin p; - cos 0y) (2-141)

and thus a, Py and BV must be chosen such that there is only

one zero within radius P1e In this model it is not possible to

arbitrarily vary pressure and toroidal field.

The external vacuum field which matches onto v, with

continuous value and first derivative is given below.
. 2 5 3 3 -3 _
1IJ>—.5r‘Bv<--p]a 92) (2-142)

The magnetic field strength at r = 0, z = 0 is 1.5 By so the
field is reversed by a factor of 1.5 times the vacuum field. The
toroidal field is caused by plasma currents and thus the toroidal
magnetic field is zero outside the plasma. Consequently there are
two magnetic field nulls located at + = 0, z = # Pq- The

toroidal current inside the plasma has the form below.

-1
JT = Kbc(“lnp§> r (pél sin P, - COS p2> (2-143)
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2.4.2 Spherical Hill's Vortex
[123]

The spherical Hill's vortex is a field reversed plasma

model with no toroidal field, fr = 0. The pressure is assumed to be

proportional to ¢,
2\
p=- 158y (8n 91) v (2-144)

The resultant radius Py plasma solution with far field By is as

follows,
Ve = - 75 B (1= (rF + F)erd) (2-145)
-3/2
Uy = 5 Byr <1 - 030 + 28 > (2-146)

2.4.3 Elliptical Hill's Vortex

The generalization of the spherical Hill's vortex is an
elliptical shaped plasma region. For this case fT = 0 as before and

pressure is proportional to ¢ but with a different constant.

-1
p = - (12 +3E) B, <8n pﬁ > " (2-147)

The interior plasma solution is easily generalized.

7

2 2 -
b= - 75 8% - (P E H)0?) (2-148)

The separatrix or ¢ = 0 position is at radial position 0 for z = 0,
At r = ., the z position of ¢ = 0 is 9 E']/z. For E < 1 the plasma
is prolate and for E > 1 the plasma is oblate. The magnetic field

strength at r = 0, z = 0 is 1.5 By so as in the Weitzner model the



79

field is reversed by a factor of 1.5 times the vacuum field value.

There are three magnetic field nulls located at r = 0, z = 2 P

E-]/Z 172

and r = 27 P> Z = 0. The toroidal current is linear in r,

-1
Jp=-c(12+ 3€) B, <81r pz]) roo. (2-149)

The difficulty in inserting the E coefficient in the ¢ formula
is that a similar modification to ¢, from Eq. (2-146) does not yield
a vacuum solution A%y = 0. Consequently it is necessary to derive
a Y, which matches b given by Eq. (2-148) in value and first
derivative at r2 + Ez2 = p% and satisfies p*y, = 0.

The problem of matching exterior solutions nas been considered
by Shafranov[]24]; however, the form of his solution is computationally
cumbersome. At the inception of this work no closed form exterior
solutions existec so y, was derived for the prolate and oblate case.
Apparently . sear later the prolate solutijon was independently

C
[125] The oblate solution is of interest since

derived by Kaneko.
Rosenbluth and Bussac[]26] showed an oblate spheroidal plasma
surrounded by a conducting wall is stable to tilting.

Attempts to obtain ¢, first centered around generalizing work

[127] in elliptical coordinates. Unfortunately as in the

b Strauss
Shafranov work ¥, could only be expressed in terms of an inJinite
series. To resolve this difficulty a transformation is made to
prolate spheroidal coordinates £, n. Coordinate £ is constant on an
ellipse and n is an angle like coordinate analogous to € in

standard spherical coordinates. Inserting pirolate spheroidal metric
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differential coefficients into Eq. (2-18) for gradient and divergence
yields the Grad-Shafranov operator in prolate spheroidal coordinates,

-1 2 2
A% = (CE(EZ - nz)) <(€2 - 1) 3—5‘- + (1 - 1) 2—%—) (2-150)
n

13

where 2cf is the distance between foci. There are four consequences
of the form of Eq. (2-150). First the homogeneous equation

oy = 0 is separable. Second, expressing ¢> as a product of
functions of £ and n the separated equations for both functions are
identical in form. This means & and n are represented by the same

functions. Third, the following relationships exist,

A*<c$(r,2 - 1) (1= ) P Pi(n)>
(2-151)

-1
= («‘:'2 -0 (- nz)(E.2 - n2) (n(n - 1) - (8 - 1)> PAE) Py(n)

\

A*<C]2¢(E_'.2 - -0 Qp () Pi(n))
(2-152)

-1
=% - 1) (1-nd) (sz - n2> (n(n-n - %(8 - 1))0;,(&) Pa(m)

where Pn is a Legendre polynomial and Qn is a Legendre function of
the second kind. The prime indicates derivative with respect to
argument. Fourth, homogeneous solutions of A*¢> = (0 are immediately
obtained for n = & in Eq. (2-151) and Eq. (2-152). Since

c?(&2 -1) (- n2) = r2 a general exterior solution is given below.



b=ty (anp;,(é;) + b Q;,(a)) Pi(n) (2-153)
n

If an elliptic boundary .. solution can be expressed in terms of
polynomials in r and z multiplied by r2, a matching exterior
solution y, is known once the ¢ r, z polynomial is e«pressed in
terms of Legendre functions. The greatest subscript of P'(E) in
v, then determines the upper summation range of n in Eq. (2-153).
The interior solution ¥, may be written in terms of Legendre

functions for the prolate Hill's vortex,

N ag(ﬁ_ Py (€) + g)(.]_. Py (n) + Js-) - QB’) 12-154)

where o = .75 B c? 032, gl = Py c;]. The exterior solution is

below.

b = rolag + by Q18D + (ayP4(E) + bQ4(E)) P3(m))  (2-155)

The aps bn coefficients are determined by the two separatrix
E=ky s (1 - E)']/Z matching conditions.

‘j’((gO’n) = \P>(50,'1) (2-150)

W (Eg.n) 3w, (Eq.n)
3, 3t

The resulting coefficients for Eq. (2-155) follow.

81
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differential coefficients into Eq. (2-18) for gradient and divergence
yields the Grad-Shafranov operator in prolate spheroidal coordinates,

2 2
A%y = (c?(a2 - nz)) <(£ ¥+ (1 nz —§£> (2-150)

BE on

where 2cf is the distance between foci. There are four consequences
of the form of Eq. (2-150). First the homogeneous equation

ary, = 0 is separable. Second, expressing w> as a product of
functions of & and n the separated equations for hoth functions are
identical in form. This means £ and n are represented by the same

functions. Third, the following relationships exist,

A*<c§(z;2 - 1) (1 - ) PE) P;p))
(2-151)

o -1
=5 -) (=) (zz - n2> (n(n - 1) - (s - 1)) Pa(E) Pi(n)

A*(cf,(az - 1) (1= ) Q8 P;L(n)>
(2-152)

. -1
= (-1 (1-nd) (52 - n2> (n(n-l) - 2(8 - 1))0,;(;) Pyn)

where Pn is a Legendre polynomial and Qn is a Legendre function of
the second kind, The prime indicates derivative with respect to
argument. Fourth, homogeneous solutions of axy, = 0 are immediately

obtained for n = & in Eq. (2-151) and Eq. (2-152). Since

ci(g2 -1 (1 - nz) = r2 a general exterior solution is given below.



b=y (anpa(g) b Q;(E)) P! (n) (2-153)
n

If an elliptic boundary ¥, solution can be expressed in terms of
polynomials in r and z multiplied by r2, a matching exterior
salution ¢, is known once the y_r, 2 polynomial is expressed in
terms of Legendre functions. The greatest subscript of P'(5)
b, then determines the upper summation range of n in Fq. (Z2-155 .
The interiaor solution b, may be written in terms of Leyend:

functions for the prolate Hill's vortex,

v o(frs @ -§)(5 -5

4 :
$-5F )

2, AYZ e
+ of (73-P3 (£) + g) (TB-PB (n) + %) - aBZ) (2-154
. 2 -z 2 A .
where o = .75 BV Ce Py s B~ = 0y Cg o The exterior solution is
belaow.
v, = r¥lay by Q5(E) + (aPylE) * b303(E)) Pi(n)) (2-155)

The a, bn coefficients are determined by the two separatrix

-1/2

g = £0 = (1 -E) matching conditions.

v (Egan) = v (Eg4m) (2-156)

3l|J<( ann) _ 3¢>(£0,n)

g " (2-157)

The resulting coefficients for Eq. (2-155) follow.
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8 -1

b] . a(ﬁ‘" %-E-) (6 PB(EO) - Eopé(go)) (Q](Eo) - EOQi(EO)) (2-158)
ay = - o8 (55 - 38) o+ o (55 + 55) Pyeg) - by04(5y) (2-159)
b3 = affg + 55) (1 - &psig) (6 P3060)")

(05(5g) - 055y Pyl (P3<50))‘])'] (2-160)
ay = (o(Fs + 5 - 030305)) (Pytg) )" + (6 - 1) 335 (2-161)

In the oblate case E > 1 and the Grad-Shafranov equation

changes form. The &,n coordinates now refer to oblate geometry.

-1 2 2
o= (g8 + ad)) () :7;’}* (1- 1) ) (2-162)
n

The n product functions remain the same as in the prolate case;
nawever, the & functions have non-standard definitions. To
zistinguish from the previous standard Legendre functions they are

given a subscript Ob.

PObO =] (2-163)
Pop(8) = (2-164)
Pov2(E) = 3 (67 + ) (2-165)
Pop3le) =3 (E2+2¢) (2-166)

Qppy (&) = 1 - gcot™ £ (2-167)



Qgp2(E) % (£ + 1) cot” 'k - % £ (2-168)

Qppa(8) = -3 (2 + 20 cot™ g+ 3 (£ + ) - ¢

Also because the ellipse foci have a vertical orientation

@0 . (2-169)

Similar to the conclusions of £g. (2-151) and Eq. (2-152)

2 ] 2 ) ! - 3 o
rP Obn(g) P'n(n) and v Q Obn(E;) P n(n) are homogeneous solutions.

The interior and exterior solutions are written below for the oblate

case.
v = (alfs Phpa(e) + 5) (5 - 75 P3(m)

v ot (G5 Phate) - 3) (Fs23in) + 4) - o) (2-170)
b = 7 (3 + 0y051(8) * (agPgps(E) + by Qgus(E) JP3im)  (2-17D)

Applying the matching conditions Eq. (2-156) and Eg. (2-157) at

£=¢gp= (E- 1)']/2 yields the oblate spheroidal a , b,

coefficients.

o8 2 , . -1
by = %5 + 55) (6 Ponatee) - & Poaleo)) (Ggpilto) - Eolou1tE0))
(2-172)
R AVAEN: 8 2\ ., ,
ay = - a8’ + (35 - Sg)a+ oF5 + 55) Paalin) - by Gohy(eg)

(2-173)
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b3 = - a(% * %%) (] - & P6b3(€0) (6 P0b3(€0))-])
(0653(80) - QpalEy) Php3(Ey) (PObB(EO))_])-] (2-174)
a3 = - ("(%* %) + by de3(€0)) (Po'b3(£0)>'] +(E-1) ;Lg-g
(2-175)

2.4.4 Variable Coefficient Model

The Weitzner, spherical, and elliptical Hill's vortex models
all derive the S(y) and q(w) profiles from assumed forms of p(y)
and fT(w) and the corresponding analytic ¢(r,z). To provide
flexibility in the form of S{y) and q(¥) this model represents these

profiles as variable coefficient functions.

6 [\
N 3i-2
AW = ot 3 Gy (%6 - q31-3)
i=2
+ ( v g )20 (2-176)
fi7 #Plg \yy ~ N9
6. S

v 3i-2
33i-4 (LDO 33i-3

s
- 619(518(%’6 - Sig) 20 ) (2-177)

In this model the vacuum flux is specified as follows,

2 -
by = By(:25 (R + Nl 5 207 (Ry - 1)

r Ib](nrz;]) cos (ﬂZg] (z,-2))) (2-178)
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-1

2 (r =0, z=0) and Ib1 is the

where RM =B (r=20, z = zb) B

2
standard Bessel function of imaginary argument, and order one. In
the variable coefficient medel the analytic Y(r,z) is not specified
so a magnetic axis mo value is chosen and an approximate plasma
radius is assumed. The two dimensional Grad-Shafranov equation is
then solved iteratively scaling the total toroidal current until a
solution evolves with the specified Yo value. During this

initialization phase the plasma configuration may evolve to a

prolate or oblate shape.

2.5 AD3 Code Results

The results of the ADB code with adiabatic compression or
transport given by €q. (2-42), Eq. (2-58), Eq. (2-59), a constant
magnetic axis wo value, and fixed q(y) profile are reasonable for a
class of plasma scenarios. A more detailed calculation would yield
approximately the same answer if the magnetic flux does not
radically decay and neutral beam deposition dominates competing
processes.

Recent experiments[]zg’]zgj have demonstrated stability of
field reversed mirror plasmas on time scales long compared to an
Alfven wave transit time. Theoretical investigations[]30’13]] have
also demonstrated stability for various plasma betas and surrounding
conducting wall positions. The parameters of these studies are near

those used in the results presented here. Conseguently a minor

configuration change which may be necessary to guarantee stability
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during the time evolution of the plasma would not appreciably effect
the results,

The constant magnetic axis flux value is justified by assuming
the toroidal electric field is small during the time of a calculation.
For a radius 20 cm plasma at 1 keV the classical eneigy confinement
time is 4 msec.[]32] Thus for the implemented model it is reasonable
to calculate results out to several milliseconds.

A number of neutral beam deposition simulation and adiabatic
compression cases have been run with the ADB cnde.[]33']36] These
runs centered around the following issues.

1. Radial versus axial plasma shape changes caused by neutral

beam injection.

2. Plasma shaping by adiabatic compression.

3. The effect of different neutral beam energies, currents,

and footprint sizes.

4, The question of whether the plasma is heated when energy

jc supplied by neutral beams and simultaneously lost by
impurity radiation or an enforced electron energy decay
rate.

The ADB equilibrium solver and beam depasition routines have also

been implemented in conjunction with Shumaker[]37']4]]

using a
more elaborate transport model.

Two cases run with the ADB code are presented in this section.
The first case considers the time evolution of a neutral beam
injected plasma with radiation loss and an enforced electron energy

decay rate. The q(y) profile is held fixed and S(y) is evolved in



accordance with Eq. (2-42), Eq. (2-58), and Eq. (2-59). The second
case simulates the adiabatic compression of a prolate shaped plasma.
In this case q{y) and S{¢) are both held fixed and the plasma changes

as a result of modifications to the vacuum magnetic field.

2.5.1 3Simulation of a Neutral Beam Injected Plasma

This example investigates the time evolution of a
plasma subject to competing loss and buildup processes. The losses
are bremsstrahlung, lire radiation and an enforced electron energy
decay rate. The plasma buildup or heating is caused by neutral beam
charge exchange, The replacement of plasma ions with hot neutral
beam particles causes the ion temperature to increase. The energy
exchange of ions with electrons which are loosing energy, drains
away the energy coming from the neutral beam. The essential issue
is whether or not a credible neutral beam current and energy can
heat a plasma with a given radiation impurity level and a specified
electron energy decay rate.

An axisymmetric field reversed mirror plasma is simulated in
cylindrical r,z coordinates on a computational grid of length 20 cm
in the axial direction and 37.5 cm in the radial direction. The
plasma is assumed to be symmetric about z = 0, and subject to a
uniform z directed 1 kilogauss vacuum magnetic field. Impurity
radiation is attributed to oxygen at a concentration of 2% of the
local density. The neutral beam is modeled as a uniform current
pencil beam grid impacting the plasma from z = -7 cm to z = 7 ¢m and

20 cm radially above and below the z axis. The neutral beam current



is 400 amps at an energy of 12 keV. The magnetic axis flux, g is

held constant at -1 x 106 gauss-an. The initial peak temperature

18 3 respectively. The flux

/2

and density are 30 eV and 1.6 x 10
variation of temperature and density is initially w] with the peak
value at wO. The S(V) and q(¥) profiles are chosen to make a
toroidal current having a single peak about the vy positinn. By
adjusting the profile coefficients in the model of Section 2.4.4 the
total magnetic field at r = G, z = 0 is set initially to 10
kilogauss, the toroidal current is .4 megamps and the poloidal

current is .75 megamps. The nan-zei'o coefficients for £q. (2-176)

and Eq. {2-177) are listed below.

5, = 150. (2-179)
Sg = 1. {2-180)
q = .2 (2-181)
q =2.5 (2-182)
43 = .7 (2-183)
4 = 2. (2-184)
45 = -130. (2-185)
g4 =T (2-186)
o= (2-187)
dy7 = -4 {(2-188)
dyg = -5 (2-189)
dyg = -75 (2-190)
9og = 2. (2-191)

2
The vacuum field determined by Eq. (2-178) has parameters BV =7, x 107

and Rm =1,
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The case presented here is one of three with identical initial
conditions except for Tap of Eq. (2-59). To study the interaction
of neutral beam buildup with energy 1oss by electrons, the electron
energy decay time, T,, was set to 50, 100, and 200 microseconds.
The erfect of a decreasing decay time is to reduce the increase of
Se(m) caused by energy exchange with the jons and also to hold down
the ion temperature. The Ta2 = 50 results show the greatest change
from the initial conditions. The corresponding results of the 100
and 200 microsecond cases fall between the initial conditions and
the 80 microsecond case so only graphs of the 50 microsecond case
are shown,

The computational grid boundary at a radial position of 37.5 cm
and axial distance of plus and minus 20 cm is a conductor so the
plasma flux at these positions is set to zero. This boundary
condition has the effect of keeping flux surfaces approximately
unchanged. Comparing thie contour plot of y(r,z) in Fig. 2-1a at
time zero with ¢(r,z) at 2.8 msec in Fig. 2-1b a sTight outward
radial shift of the magnetic axis is apparent. The separatrix or
$ = 0 position isatr =32 cm, z=0and r = 0, z = 18,5 cm for
time zero. At 2.8 msec as shown in Fig. 2-1b the separatrix is at
r=33.5¢cm, z=0and r =0, z = 18.5. The plasma remains oblate
during the neutral beam buildup. The single minimum of ¥({r,0) is
preserved as shown in Fig. 2-2. At r =0, ¢ = 0 and at the
conducting wall position ¢ = by ac which is a fixed value. Thus the
¢(r,0) plots at time zero in Fig. 2-2a and 2.8 msec in Fig. 2-2b have

the same endpoints. The difference between the two plots is mainly the
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magnetic axis position, which is Tocated where ay/ s = 0., Comparing
Fig., 2-2a with Fig. 2-2b it can be seen the magnetic axis has
shifted from 20 to 22 cm.

The toroidal current is shown at time zero in Fig. ?-3a and at
2.8 msec in Fig. 2-3b. The initial JT(r,z) with basicaily elliptical
contours develops the interior structure shown in Fig. 2-3b inside
the 866 contour, The t = 2.8 msec structure is a result of JT(r,U)
changing from a single peak function to a double peak function as
shown by Fig. 2-4. In Fig. 2-4a, J;(r,0) at time zero has a single
peak and in Fig. 2-4b JT(r,O) at t = 2.8 msec has a double peak., The
total toroidal current rises from an initial value of 3.94 x 105 amp's
to 4.33 x 10° amps at t = 2.8 msec. The initial peak value of anc”!
JT of 1400 diminishes to peak values of 1100 and 900, at 2.8 msec.

The Iz(r,O) shown in Fig. 2-5a at time zero and Fig. 2-5b at
time 2.8 msec is a plot of total z current flowing betwen zero and
the r position where an ordinate value is plotted. The peak value
at 20 c¢m in Fig. 2-5a indicates an initial total current of 7.5 x
105 amps flowing between r = 0 and the magnetic axis. At 2.8 msec
Fig. 2-5b shows the total z directed current between r = 0 and the
magnetic axis is reduced to 6.25 x 105 amps .

The z magnetic field is shown in Fig. 2-5. At the initial
time Rz(r,O) is shawn in Fig. 2-6a and BZ(O,z) in Fig. 2-6b, At 2.8
msec BZ(r,O) is in Fig. 2-6¢ and BZ(O,z) is in Fig, 2-6d. Figure
2+-6c shows the initi~1 field peak at 28 cm has shifted radially
outward to 30 cm and the original peak magnitide of 4 «<ilogauss

becomes .5 kilogauss at 2.8 msec. Figure 2-6d shows BZ(O,z)



ranges from -9.5 kilogauss to 1 kilogauss. Initially the field at
r =0, z=0 1is -10 kilogauss. The toroidal field BT(r,O) is
plotted in Fig. 2-7a at time zero and 2.8 msec in Fig. 2-7c. The
characteristic single peak of BT is preserved from the initial
zondition; however, the maximum value diminishes from 8.5 kilogauss
to 7 kilogauss. The total magnetic fivld wagnitude, B(r,0) is shown
in Fig. 2-7b at tima zero and in rig, 2-7d at time 2.8 msec. The
initial peak value of 1,08 x 104 Tocated at r = 8 is reduced
moderately to .97 x 104 and shifts inward to r = 6 at 2.8 msec. An
additional small pese develops at 2.8 msec near r = 30 with
mignitude 5 kilogauss.

The density n{r,0) at the initial time is plotted in Fig. 2-8a
and the density at 2.8 msec is plotted in Fig. 2-8b. These plots
show the density peak fell from 1.65 x 10" en™3 to 1.1 x 10" en”3.
The number of particles is held fixed so the density decrease is a
consequence of the expansion of *“e plasma volume. The initial
single density peak near the magnetic axis is maintained throughout
the time evolution of the plasma.

The pressure p(r,0) plotted in Fig. 2-9a at time zero and 2.8
msec in Fig. 2-9b also maintains a single peak near the magnetic
axis. Both density and pressure peaks shift outward slightly as the
positian of the magnetic axis moves from 20 to 22 cm between the
initial time and 2.8 msec. The peak pressure goes from an initial

2 to 8 x 10° dyne-cm'z. Thus the reiative

value of 1.2 x 10° dyne-cm
beta for a fixed reference field increases by a factor of 67 and

the initially nearly force free plasma evolves toward a finite beta

91
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state. The torsoidal current has a term proportional to dp/dy. As

can be seen froh Fig. 2-5a and Fig. 2-8b, taking account of scale,

the pressure gradient tends to steepen in the vicinity of r = 14 cm
and r = 27 c¢cm. In these regions the finite beta current dominates

the force free current at ¢,8 msec.

The ion temperature T(r,0) is shown in Fig. 2-10a at time zero
and in Fig. 2-10b at 2.8 msec. The temperature has a double peaked
structure with an initial magnitude of .03 keV. After 2.8 msec the
ptak temperature increses to 4.7 keV. The temperature across the
plasma varies from 2.8 keV to 4.7 keV.

ihe S(W) entropy profile function is plotted in Fig. 2-11a at
time zero and in Fig. 2-11b at 2.8 msec. This is the only profile
modified by the neutral beam deposition and transport; q{y) is held
constant. Initially S(y) is a linear function of ¢ with a maximum
value of 150, at the magnetic axis. After 2.8 msec the maximum value
increcses to 2.1 x 104 with the profile monatonically decreasing
toward the separatrix. The monotonic behavior and the maximum value
at the magnetic axis indicate the neutral beam is penetrating the
plasma and there is substantial deposition in the interior.

The energy input to the plasma diminishes as the plasma heats
since the source term for the beam is attributed to charge exchange
and is thus proportional to the difference between the plasma and
beam energy. The plot of total kinetic energy in Fig. 2-12a shows
the energy asymptotes to approximately 5 kilojoules. At 2.8 msec

Fig. 2-12b shows the trapped beam power has fallen to 2200 kilowatts.
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This is an approximate 54% decrease from the initial value of 4800
kilowatts.

The steady state that is eventually reached is mainly a
balance between the enforced electron loss term proportional to
T;;, the radiation loss and the incoming trapped neutral beam
power, The Lk(Te) radiation profile of Eq. (2-54) is plotted as a
, function of electron temperature in keV in Fig. 2-13b. The peaks in
the radiation profile explain the behavior of the radiated power
shown in Fig, 2-13a. Initially the electron temperature is at .03
keV which corresponds to a radiation profile position on the right
side of the largest peak in Fig. 2-13b with value 102]. There are
two possibilities. When the electron energy decay and impurity
radiation loss dominate the energy obtained from beam heated ions,
this causes a decrease in the electron temperature and enhances the
radiation loss. When the energy from the beam dominates losses the
electron temperature increases which diminishes the impurity
radiation and allows for further heating., During the course of the
run the initial radiated power was 420 kilowatts. The electron
temperature initially decreased and the radiated power rose to a
peak value of 700 kilowatts at .012 msec, At this time the beam
begins to dominate, the electron temperature increases and the
radiated power drops. From .2 msec to 2.8 msec the radiated pow~r
remains near 10 kilowatts and the electron temperature has an
average value across the plasma of .1 keV. This corresponds to the
radiation profile position in Fig. 2-13b betweer the large and small

peak.
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Depending on parameter values and the amount of expansion of
the plasma it is possible for the beam deposition cpacity to change
during a run. Figure 2-14 shows initially the beam is almost
completely absorbed with 99.9% attenuation. The attenuation falls
to 98.7% by the end of the run. Thus throughout the run almost the
entire beam current is absorbed and the diminution of trapped beam
power is accounted for by the plasma, beam energy difference factor

in Eq. (2-57).
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Figure 2-14. Neutral beam injected plasma. Fraction of the neutral
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2.5.2 Compressed Prolate Hill's Vortex

The shape of a plasma is one factor which influences stability.
The proximity of conducting walls also plays a role. It was found

[142] a prolate plasma with an equitorial bulge, referred

by Hammer
to as the problimak configuration, is stable to the tilting
instability with walls more distant than an oblate shape. This
particular geometry is also stable to axial and transveise
displacements. Because these properties are desirable a series of
ADB runs were done to attempt to create a problimak by compressing a
spherical Hill's vortex. The failure of this effort was one
motivation for deriving the external vacuum field which matches an
elliptic Hi1l's vortex plasma. The external vacuum solution for the
elliptic Hill's vortex indicates a cusp field is necessary for the
elliptic shape. Beginning with an elliptic Hill's vortex a
problimak plasma has been successfully generated by the magnetic
field caused by six axisymmetric current loops.

The computaticnal grid for this case has an axial length of 20
c¢cm and a radial extent of 10 cm. The three parameters of the
elliptic model given by Eq. (2-148) are BV = 6000, £ = .25, and
oy = 8 cm. The plasma is initially bounded at r = 8 cm, z = 0 and
r =0, 2z =16 cm. The magnetic axis flux, Uy is held constant at
-7.2 x 10 gauss-cn?. The toroidal magnetic field is zero so g(y) = Q.
The S{¥) profile is determined from the dy/dV obtained 7rom the

initial analytic ¢(r,z) and rearranging Eq. (2-29).

S(¥) = - (12 + 3€) B, (81Tp§)-] " (%)-5/3 (2-192)
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The six external current lToops all have a radius of 11.28 cm.

axial positions, initial Ii’ and final If currents are in Table 2-1.

z{cm) Ii(amps) If(amps)
2 -100 3.1 x 10%
4

6 100 2.3 x 10
4

8 100 5.8 x 10
4

11 -100 -3.5 x 10
4

16 -100 -4,7 x 10
a

22 100 6.0 x 10

Table 2-1 Compressed Prolate Hill's Vortex I, I¢
Currents and Positions
Positive currents increase the initial magnetic field and negative
currents diminish the initial magnetic field. Due to symmetry about
z = 0 there are also six external coils at reflected z positions
with the same initial and final currents. The equilibrium is
evolved from the initial state to the final state in 20 steps.

The plasma has open boundary conditions so a plasma flux value
along the grid edge is computed by the Green's function method
presented in Section 2.2.3 using Eq. {2-34). The same formulation
is also used to compute the flux caused by the external coils.
Comparing the contour plot of Y(r,z) at I, in Fig. 2-15a with y(r,z)

at I, in Fig. 2-15b shows a pronounced change in the flux shape.

The



The initial elliptic shape has evolved into a problimak with a flux
surface bulge at z = 0. The plasma boundary has bccome r = 9.2,
z=0andr =0, z=15.5. Outward expansion has occurred at z = 0
and the plasma has contracted axially along the z axis. The new
pos{tion of the magnetic axis can be seen in Fig. 2-16. The flux
y(r,0) at Ii is shown in Fig., 2-16a and at If in Fig, 2-16b. The
magnetic axis has shifted from 5.7 cm to 6.5 cm.

The toroidal current JT(r,z) is shown at Ii in Fig. 2-17a and

at I, in Fig. 2-17b. The initial current is almost proportional to

f
r since the initial external coil currents are small., The final
state shown in Fig. 2-17H is approximately proportional to r between
r=0and r =30cm Forr >3 cma considerable deviation from
linear r behavior is apparent. A peak in current develops along the
outer radial edge of the plasma, however rhe total toroidal current
is slightly diminished. Initially the area integral of JT is
32,400 amps and in the final state it is 31,500 amps. The radial
scan of JT(r,O) at Ii in Fig. 2-18a and at If in Fig. 2-18b shows
the near constancy of total current is a result of a diminution of
current between r = 4 and r = 6 and an increase for r > 6. A
relatively flat region of JT is evident in Fig. 2-18b and the .nitial
peak value of 4800 increases to 7000.

The z magnetic field is shown in Fig. 2-19 with Bz(r,u; in
Fig. 2-19a at Ii’ BZ(O,z) in Fig. 2-19b at Ii’ Bz(r,O) in Fig. 2-1%¢
at If and BZ(O,z) in Fig., 2-19d at If. Comparing Fig. 2-19a with
Fig. 2-19¢c, the initial Bz(r,O, field maximum of 9000 at 8.2 cm

decreases to 8000 and shifts radially outward to 9.2 cm. Comparing
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Fig. 2-19b with Fig. 2-19d the initial Bz(O,z) field maximum of
1000 at 18 cm increases to 2000 and shifts axially to 20 cm. The
value of BZ(O,O) remains almost constant at the initial value of
9000.

The magnitude of the magnetic field B(r,z) is shown in Fig.
2-20a at Ii and in Fig. 2-20b at If. Initially at Ii the faollowing

formula applies inside the plasma.

2 172
B(r,2) = .75 8, 0-12( d - 4 - 2e) + (2Ezr‘)2) (2-193)

At r = 012-1/2’ z=0andatr=0, z = p]E']/Z, B(r,z) is zero
initially. The elliptic envelope boundary between the interior and
exterior solution is clearly visible in Fig. 2-20a. In Fig. 2-20b
the effect of the full current If in the external coils is to
eliminate the axial field null on the plasma boundary. Also the
contours are seen to turn up around r = 10, and z between 6 and 8

where two coils have large positive currents. An island contour

n

forms at r = 9, z = 16 as a result of the opposite directed current
coils at z = 11, 16 and z = 22. The movement of the field null at

r = p]Z-]/Z, z = 0 can be easily discerned in the 8(r,0) plot at

If in Fig., 2-21b. Comparing with Fig. 2-21a at Ii the field null
moves fromr = 5,7 to r = 6.3. This is the same as the position of
the magnetic axis. The initial peak in B at r = 8, z = 0 of
magnitude 8900, moves radially outward to r = 9.1 and decreases to a
value of 8000.

The ¢ derivative of pressure dp/dy as a function of ¢ is

plotted in Fig. 2-22a at I; and in Fig. 2-22b at Ie. The initial
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dp/dy is almost a constant at -47.6 and the effect of the small
initial ¢ ant in the external coils is to slightly change the
magnetic axis valuz of dp/dy to -50. In the final state shown in
Fig. 2-22b, dp/dy is reduced by approximately a tactor of two near
the magnetic axis and increased in absolute magnitude 50% at
V= -2.5 x 104. This means the plasma current which is proportional
to dp/dy is diminished near the magnetic axis compared to the initial
value.

The pressure p(r) is shown in Fig. 2-23a at [i and in Fig.,
2-23b at If. The single peak structure in Fig. 2-23a persists i
Fig. 2-23b, huwever the peak in Fig. 2-23b is broader. It is also
flatter around the magnetic axis position in correspondence with the
diminished dp/dy value evidenced in Fig. 2-22b. The initial p(r)
peak value of 3.4 x 106 increases to 3.7 x 106.

The plasma kinetic energy is plotted as a function of time in
Fig. 2-24a. Time is an arbitrary unit which satisfies the adiabatic
assumptions. The initial 1.01 kilojoule energy increases to 1.09
kilojoule after the problimak shape is generated. This is
approximately an 8% increase. The magnetic energy in the volume
bounded by the computational grid is shown in Fig. 2-24b as a
function of time. The initial 14.05 kilojoule magnetic energy
increases to 18.5 kilojoule in the final state. This is a 32%
increase. Most of the magnetic energy change occurs outside of the
plasma region. The poloidal magnetic field energy inside the plasma
region is plotted as a function of time in Fig. 2-25a. The initial

value of 2.55 kilojoules decreases to 3.05 kilojoules. The poloidal
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magnetic field energy outside the plasma region is shown in Fig.
2-25b as a function of time. The initial value of 10.5 kilojoules
increases to 15.5 kilojoules. The majority of the magnetic field
energy is exterior to the plasma region. In the plasma region the
kinetic energy in the final state is approximately one third the

magnetic field energy.
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CHAPTER 3

THE ORBIT AVERAGE

3.1 Introduction

The approach used to incorporate finite Larmor radius effects
into kinetic theory results in a hierarchy of equations. The method
of solving these equations by integrating over characteristics of
partial differential equations is equivalent to integrating over an
appropriate orbit., The purpose of the orbit average is to provide a
procedure by which integration over an orbit is achieved without a
detailed knowledge of the orbit.

In this chapter, the orbit average is defined in terms of
phase space integrals and path integrals. Numerical equivalents of
these formulas are derived and tested in two orbit codes, which
follow trajectories in one and two dimensions. The first code, AV,
is used to compare orbit average formulas for orbits determined by

forces linear in the coordinates. In this case, uncoupled harmonic
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motion results, and the precise orbit is known analytically. The
second code, NEO, in which orbit average formulas are investigated,
follows trajectories in a Hill's vortex magnetic field. The orbit
in this case is obtained by numerical integration.

The form of the orbit average integrals changes when constants
of the motion exist, In axisymmetry with conservative forces two
constants of the motion exist and this information is used to derive
appropriate orbit average formulas. In some circumstances a third
constant of the motion may be found to exist. To explore the
possibility of the existence of a third constant of the motion
several classes of constants of the motion are examined in the
Hill's vortex model. Because no constant of the motion exist when
an orbit is stochastic consideration is also given to conditions

likely to result in stochastic motion.

3.2 0Orbit Average Integrals

The orbic average is related to the solution of the kinetic
equation obtained by integrating over the orbit. The orbit which is
integrated over is the trajectory of a particle representative of an
equilibrium distribution function. The kinetic equation solution
obtained by integrating over the orbit arises from the convective

form of the kinetic equation given below.

Df _
o = C(Ff) (3-1)

In Eg. (3-1), f is the distribution function and C(f,f) is the



collision operator. The derivative in Eq. {3-1) represents the time
rate of change of f along the orbit and the orbit solution is then

obtained by integrating Eq. (3-1).

F(t) f ) C(F,F)dt + F(t ) (3-2)
t 0

In Eq. (3-2) L is the trajectory given by the equations of
motion and the distribution function at time t, f(t) is then obtained
by integrating along % and adding the value of f at time ty This
solution is an example of solving a partial differential equatio!
using the method of characteristics.

Later a hierarchy of ordered egquations is derived from £q.
{3-1). The orbit average process has its origin in constraint
equations arising from this hierarchy of equation.. At each order

there is an equation having the form[]43l

Lu = v (3-3)

where L is an operator. The operator L is assumed to have an

adjoint L* and an inner product such that,
(uty) = (LT ,u) (3-4)
1°772 1*72 )

The existence of the adjoint operator, the property Eg. (3-4), and a
homogeneous solution h, LTh = 0 are used to derive the constraint
equations. In general if a solution v exists for Eq. (3-3), then the
inner product of h and v must be zeroc. This can be demonstrated by

taking the inner product of h with the right hand side of Eg. (3-3).
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(h,v) = (h,Lu)

(LTh,u) (3-5)
=0

The constraint equation is then the inner product of the right side
of an equation obtained from an ordering of Eq. (3-1) with the
homogeneous solution of the adjoint operator. The inner product
applicable to the hierarchy of equations resulting from Eq. (3-1) is
the starting point from which the orbit average is derived.

The object of the orbit average process is to approximate the
applicable inner product. The inner product is defined by

considering the left side of Eg. (3-1).

Df _ of
__E. =%t-+ [f,H] (3'6)

In Eq. (3-6) H is the Hamiltonian and [f,H] is the Poisson bracket,

where p and q are phase space coordinates. Equation (3-6) shows
Df/Dt is an exact differential when p = - 3H/3q and q = 3H/dp,

or in other words when the phasz space coordinates p and q satisfy
the eguations of motion. Under this condition the solution given by
Eq. (3-2) is immediate. Because later derived constraint equations
involve Poisson brackets which are the steady state form of Eq.
(3-6), the inner product is taken to be integrating over the orbit.
The orbit average must then be in some sense equivalent to

integrating over the orbit. It is also necessary to obtain the
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adjoint of the operation of integrating over the orbit since its
homogeneous solution is needed.

The adjoint of the Paisson bracket operator is found by
applying the inner product to g{f,H]. At the 1imits of integration
f and g are assumed to be zero. The integration over the orbit is
assumed to be analogous to integration over the phase space
coordinates, which appear in the Poisson bracket. The inner product
operation is manipulated using integration by parts, to obtain

(Lfg,f) from {g,Lf).
~ af M g af aH 2l
(g,Lf)~Zkf (9 50, %, " % W, aqk)dpk da, (2-8)

Integration by parts with respect to 9 is applied to the first term
of Eq. (3-8) and integration by parts with respect to Py is

applied to the second term of the integrand of Eq. {3-8).
3H
z ; v £ 29 dp, d 3-9
f< aqk apk W, aqk) P %% (3-9)

From Eq. (3-9) the adjoint of [f,H] is seen to be [H,f]. The adjoint
operator of the Poisson bracket with respect to the inner product of
integrating over the orbit also has a solution given by integrating
over the orbit. The required homogeneous solution of the adjoint
operator may then be taken to be any constant of the motion. The
orbit average process then reduces to multiplying by a constant and
integrating over the orbit, or simply integrating over the orbit.

The definition of the orbit average of a general function yx is

below.
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T
i(o) = 1im

i f xdt {3-10)
T 0

The time integration in Eq. {3-10) corresponds to a trajectory given

——

by the equations of motion. The value of Q(O) must not depend on the
initial position of the trajectory used to solve the eauations of
motion. This will be true when any particular trajectory encounters
all points allowed within the framework of conserved quantities,
Under thi condition ;(0) has a unique value independent of any
specific orbit and may be computed without having a detailed
knowledge »f the actual orbit. The only restriction is the x

values used to compute Eq. (3-10) may only be those allowed by any
conserved uantities. It is5 assumed forces are time independent and
thus the Hamiltonian H is conserved. In addition the system under
considerat-on is cylindrical and axisvimetric and cons:quently the
theta canonical momentum Py is conserved, This result follows from

the definition,

ap
8 M (3-11)

3 36

and the fact H does not depend on theta. If Y(O) is independent

of starting position, the integration path or orbit encounters ali
positions consistent with conservation of H and Nge To satisfy this
requirement it is assumed to be sufficient for the orbit *o be
ergodic. In ather words, the orbit approac-es arbitrarily close to
each allowed point., The problem of determining he orbit average is

then related to the fundamental basis of statistical mechanics. The
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basis of statistical mechanics rests on the eguivalency of time
averages and quantities derived from ensemble theory. The ohiect of
the ensemble theory is to obtain time averages by knowing the
probability of allowable configurations, but not raving precise
knowledge of any particular system trajectory. A configuration
refers to coordinates describing a system which may include, but is
not limited to spatial position and momentum. The goal of the orbit
average > to obtain i(o) without solving the equations of motion
and determining the precise orbit. The determination of the criit
may be avoided in two ways. First, using reasoning similar to
statistical mechanics the time intagral over the orbit in Eg. {3-10)
may be cunsidered to be an integral over the allowed phase space
volume. Second the basic orbit averaje definition Eq. (3-10) may te
converted from a time integrai to a path integral and the path
integral may be converted to an integral over coordinates. In what
follows the orbit average formulas corresponding to derivations
based on the first method are superscripted with ps and a number.
The orbit average formulas derived from path integrals are
superscripted only with a number.

The basic phase space orbit average formula is a normalized
integral over phase space coordinates allowed by the conservation of

H and pe.

x(PS0) < Lyt 40 (3-12)

In Eg. (3-12) dQ is the differential phase space volume element and W
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is a weighting function. Without additional information all
allowable phase space point§ may be assumed to be equally likely and
W can be set to one. An additional condition of time invariance of
the total allowed phase space volume must be imposed so Y(psO) yields
the same result independent of when it is evaluated during a
particular system trajectory. The action of a trajectory of points
within a phase space volume is such that the valume distorts or
appears to flow in phase space with time, From Liouville's
thnorem[]44] the phase space density is incompressibie or the phase
space volume is prese-ved providing there are no collisions. The
orbit average of Eq. (3-12) is then applicable only in the case of no
collisions. This is also a condition required to keep H and Py
constant.

In general, motion in phase spi.2 for one particle is described
by specifying the ti.e history of six coordinates. In three
dimensions there are threa spacial coordinates and three velocity
coordinates. If a relationship exist between coordinates, it is
possibie to reduce the number of coordinates by one and introduce a
parameter resulting from the relationship. An example is a system
in which the Hamiltonian is conserved. A velocity may then be
expressed in terms of H and the remaining velocities. In this case,
it is desirable to change phase space variables and replace the
eliminated velocity by H. Alternatively a system may be independent
of a coordinate. The conjugate momentum is then a constant as in
the axisymmeiric case where theta is ignorable and Py is constant.

The motion is then essentially two dimensional, and with H conserved



only one additional constant of mation may exist under certain
circumstances. The effect on W in Eg. (3-12) in either case is to
introduce delta functions which restrict phase space in accordance
with constant H and Pg* To simplfy the integration of Eq.

(3-12), it is then best to use variables contained within the deltu
functions as integration variables, More specifically for constant
values HO and Pgo> the weighting function W is set to one for allowed
phase space points by letting W equal &(H - HO) G(pe - peo).

The phase space volume multiplied by W is then given helow for

cylindrical coordinates, axisymmetry and conserved H.

W dQ = §(H - HO)G(pe - peo)r dr d8 dz dvrdv dvZ (3-13)

6

For ease of integration it is advantageous to convert from v, Vgs

v, to H, Pgs P, coordinates. The new coordinates allow jmmediate

integration of H and Pg- In terms of the new coordinates the phase

space volume multiplied by W is given below.

-1
a(H,pg)

Wdg = 8(H - Hy)d(py - pgy) M 55—

- e) r dr d6 dz dH dpedpZ

{3-14)
In Eq. {3-14  the Jacobian is obtained from the three definitions

below.

>

17
A q (3-15)

—
Ul

% md2 - elo + elc”

aL/aci]. (3-16)

=3
n

o= 2 pia; - L (3-17)

135



36

In Egs. (3-15) through (3-17) m is mass, g is a coordinate, eZ is
the cher e, ¢ is electric potential, ¢ is the spead of light, T is
the magnetic vector potential, q is velocity, P; is canonical
momentum, L is the Lagrangian and H is the Hamiltonian. In

axisymmetry with cylindrical coordinates,

P =mv, (3-18)
el
pe = ere + 'c_ LY (3-]9)
p, = my, (3-20)
a2 2 2,71 e
R o N I (e L. (3-21)

where ¢ is rAe and only poloidal field is allowed. Using Eqs. (3-18)
to (3-21) the Jacobian can be written as follows.

3(H,py)
9 = mzrv
BiV.,Vei r

¥

(3-22)

In Eq. (3-22) mv,. may be expressed in terms of H , Pys Pgs y and

¢ using Eq. (3-21).
mv, = (Zm(H - ely) - r2 (pe - %Z-¢>2 - pi ) (3-23)

Equations (3-22) and (3-23) are used in Eq. {3-14) to give,

8(H - HO)G(pe - peo)dr do dz dH dpedpZ

W dQ =
172
m2(2m(H - el¢) - r'2(pe - ezw)2 - Di)

(3-24)




Formula 3-24 is substituted into Eq. (3-12) to yield the axisymmetric,

(ps0)

cylindrical coordinate, version of ¥ assuming equally likely

allowed phase space points and conserved H and Pg-

')Z(DS]) :f (xG(H - HO)G(De - peo)
] 2 2

) -1/2
(2m(H - eZ¢) - e (Pg - ¢ " ely)” - p,) )

dr dz dH dpedpZ (3-25)

172
. - 2 2
(2n( - e29) - r'2 (py - ¢ e20)” - 1) )
dr dz dH dpedpz]-]

The above formula for Q(DS]) is applicable to a two dimensional r,z

case.
For a situation which is one dimensional and radial, x has na

Zz variation and H depends only on r. Thus,

= - gH/3z

-
1

(3-26)

and P, is therefore constant. In this case the allowable phase space
is further restricted by the one dimensional weighting function

below.

W= 8(H - Hy)dlpy - Pag)sp, - p,p) (3-27)
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Substituting Eq. (3-27) into the ;(psO) formula produces the one

dimensional analog of Eq. (3-25).

?(952) =/(X6(H - HO)G(DG - peg)‘s(pz - pZO)

3 3 -1/2
(2m(H - e20) - 12 (p, - ¢ ezy)® - p2) >

dr dH dpedpZ (3-28)

[f(B(H - Ho)cs(pe - peo)ﬁ(pZ - Dzo)

-1/2
(2n(H - e20) - 1% (pg - ¢ ezw)® - pl) )

dr oH dpedsz']

To aid the comparicon of Eqs. (3-25) and (3-28), with orbit average
formulas obtained from the time integration orbit average definition

i(o), the abcve formulas are rewritten in terms of Ve

-1
J X(razs Ho’peos PZ)V dr dz dpz

)—((ps3) - u r (3-29)

J Ve dr dz dpZ
In Eg. (3-29) integration is understood to refer to phase space
coordinate values allowed within the restriction of constant HO, and

Pgo and thus the delta functions are suppressed. The V. formula for

Eq. (3-29) follows.

2

1/2
.2 2
(Pgg = ¢ elb)” - p, ) (3-30)

v, = ! <2m(HO - elp) - r



The analogous formula for Y(psZ) is below.

-1 "
<tpsa) _ L X(rs Hos Pggs PolV.  d¥ (3-31)
f v;:Tid

r

Similar to £q. (3-29) the integration in Eq. {3-31) refers to phase
space coordinate values allowed within the restriction of constant
HO’ Pgg» and Py and the delta functions are again suppressed. The

Yy formula for Eq. (3-31) follows.

1/2
" ) -
Vo= 1 (Zm(HO -~ elp) -r°© (p60 -c ! eZw)2 - pzoz) (3-32)

Equation (3-32) shows that P,0 is a parameter in the i(p54) formula
in contrast to the'i(p53) formula where x is integrated over p,- A
simplification results in Eq. (3-29) when y is not a function of
Py- In this case, integration over P, yields the following

result.

-1 _
fvr dp, = 2n (3-33)

Equation (3-33) may be used to obtain an orbit average formula for

x independent of P,

_ S x(r,z,H,, punldr dz
Ko - rarar (3-34)

The use of the phase space derived orbit average formulas

TPs3), xPs4) | ang 3(PSS)

is guided by the comparison with formulas
derived from the basic time integral orbit average i(o). The

procedure used to derive these formulas is to convert i(o) from a
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time integral to a path integral and then convert the path integral
to an integral over coordinates.
A change of variables is used to convert Y(O) to a path

integral with £ representing distance along the orbit.

a

L dt
i(]) = lim IO X -
g fg —-(am ds

de
(3-35)

rrc.l
b

The incremental path length df is expressed in terms of cylindrical

coordinates below.

1/2
ae = (dr2 + rzde2 + dzz) (3-36)

The definition of the Hamiltonian, Eq. (3-17), is used with Eq.
(3-36) to express the change of variatles Jacobian in terms of a

function of spatial coordinates.

<(2/myM2 - ezgy 2 (3-37)

ala

1

The path integral orbit average i(]) given by Eg. (3-35) may be

rewritten using Eq. (3-37).

—]/zdl
172

g
o x(H - eld)
%) = qin 20

. . (3-38)
b [ (H - e7d)

de

From £g. {3-38) it can be seen, with H constant, Y(Z) becomes an
average along the path if there is no electric potential. A form of
Eq. (3-38) more appropriate to axisymmetry is obtained by projecting

the three dimensional orbit onto a poloidal plane. The result of
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projecting onto a poloidal plane is to make the following

substitution,
de

da_ " (3-39)
v vp

where dzp is incremental path length in a poloidal plane and Y is

the poloidal velocity.

-1 -2 a2 172
vp =m - (2m(H - eZ4) - r (pe -c  ely)) {3-40)
The axisymmetric form of Eq. (3-38) is then below.
-1 -1/2
v - ez - (2 (e, - ¢l ezw)d) s
—(3) _ ,. "0 8 P
X = lim =172 (3-41)
frve fg {H - el¢ - (Zmrz)'] (pe - c'] ezw)z) dEp

Equation (3-41; has been derived without making any assumption about
phase space probability. It also shows the orbit average emphasizes
values of yx when Vo becomes small. The orbit average, 2(3) applies
to the axisymmetric two dimensional case. When x has no z variation
a further simplification results. The orbit path becomes radial and
the relevant velocity is Vs This is due to a change of variables

Jacobian defined as follows.

(dt/de)de = (dt/dr)dr

-1
= v, dr (3-42)

1/2
m (Zm(H - ez9) - r? (Pgy - ! ezy)? - pi) dr
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The one dimensional path integral orbit average is th..n below.

-1
I x(riHy, Pags Poglv,.  dr
§(4) . 0> Peo> P20’V (3-43)

s vr'] dr

In the formula for §(4) the velocity v, is the same as before and
the same assumptions of constant H, Py and P, apply. Consequently,
the one dimensional path integral §(4) is identical to the one
dimensional phase space orbit average i(p54). This means a nhange
of variables is sufficient to transform the time integration over
space. Also for one dimension there is no need to make any
assumption about the probability of phase space points, the W
weighting function, to obtain the orbit average. As before the
range of integration lies within the H and Pg determined orbit
turning points for Eq. (3-43). If the orbit potential well is
double valued in r and there are two turning points at " and ros
then the integration is from ry to roe For a magnetic flux double
valued in r, at small values of Py the potential in r has two
disconnected regions each having two turning points. In this case
2(4) or i(pSA) must be broken into two parts and the integration
proceeds between turning points for each region.

[]45], the orbit average is

In previous work by Lovelace
formulated in terms of an integral over a four dimensional space.
The function to be averaged is multiplied by a probability function
which is one where the orbit is allowed, within the constraint of
constant H and Pg and zero otherwise, A formula similar to i(p53)

results if the timits of integration are restricted by conservation



of H and Pg- The orbit is assumed to be ergodic and the probability

function is below.

-1
- -1, 2 2 2 - 2
wl = Clr ! 6((2m) (pr + pz) + (2mr™) (peO -c ! ely)” - HO) (3-44)
In Eq. (3-44), Cl is a constant. The orbit average formula given by
Lovelace is then,

) J xwlr dr dz dp,. dpZ

= (3-45)
-7 wlr dr dz dpr dpZ

;(1)

The stability work of Loveiace only requires an orbit average of a
function that depends on spatial coordinates. He thus uses

i(l) in the following form,

R (3-45)

where the region of integration is restricted by allowed values of H

and py. This orbit average is identical to i(pSS)

derived from
phase space considerations. It is thus possible to interpret wl as
the previous integrand weighting function after a change of variable

from v, to Pg and an integration over a delta function in Por The

3}
difficulty in applying the probability function viewpoint is in the
generalization to one dimension. The case of x independent of z

in Eq. {3-46) yields the following orbit average.

G5
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Thus, in considering a function y with no z dependence the
previously derived formulas are not recovered and a factor of v;

is absent.

3.3 Harmonic Oscillator Orbit Code

In this section, the AV harmonic oscillator code is described
and the orbit average related to the harmonic oscillator Hamiltonian
is derived., The objective of the AV code is to examine the orbit
average without any coupling terms in the Hamiltonian so the orbit
can be determined analytically. To achieve this goal, the orbits in
AV are produced by forces proportional to displacement in r and z
and the motion is then harmonic oscillation in r and z. In the
Hamiltonian framework, there is no magnetic field and the electric

potential is,
1( 22 2 2 -2 2
¢ =5 (wzz *w(r - ro) ~r p90> (3-47)

where eZ and m are set to one. In one dimension the electric

potential is,

1 -
¢ =5 (wi (r- r0)2 -l pgo) (3-48)

As discussed previously theta is ignorable and Pg is constant.
The value of Pg is taken to be Pgo and then the following Hamiltonian

results.

2 2 2
(p2+ o2+ 22w u? (r - r)?) (3-49)



In one dimension the Hamiltonian is,

: 2
H =-]2- (pi + pi + wf_ (Y‘ - Y‘O) ) (3-—5U,

The equations of motion in two dimensions are then,

= - uf (r -y (3-51)

and the poloidal orbit is given below.

rErgtory sin(mrt + @r) (3-52)

z =z, sin(mzt + wz) (3-53)

Equations (3-52) and (3-53) describe harmanic asciltlation ahout

r=rg and z = 0. The initial position and velocities follow.

ro=rgtr sin{p,)
z =2 sin(wz)

Ve = cos(wr)

v, = 2, cos(wz)

Insertinc the initial values of r, z, Vs and v, into Eq. (3-49;

gives the two dimensional energy constant of the motion.
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H, = ] r2w2 + zsz\ (3-54)
1 1%z

Substituting the intial values of r, Vs and P20 into Eq. (3-50)

gives the one dimensional energy constant.
_1{.22 2
Ho = 7 (rl“’r * on> (3-33)

The orbit in theta is obtained from Vg = ré and a rearrangement of

the definition of py in Eq. {3-19).

P
r

Taking the initial angle to be zero, substituting tq. (3-52) for r,

Eq. {3-56) may be integrated to give the following formula for theta.

w_ t+e
e-EgQ_f T dx (3-57)
- 3 - Z -
roe,. 7 o, (1 + o M sin(x))

The integral in Eq. (3-57) may be put in standard form and theta is

then given below.

r
— €0s(x)
o - 160 "o
- Z
row r r
0°r 1 - Fl 1 +-Fl sin(x)
0 0
u)rt+(pr
"
tan(x/2) + —
. 2 tan) —— O . (3-58)

r



The tan'] branch on which tan(x/2) lies must be used in £q. (3-58).
(4)

The velocity used for the one dimensional formulas 7 or
Y(psQ) is obtained by rearranging Eq. {3-50) and substitutinng

the one dimensional constant energy from Eq. {3-55).

1/2
vV = mi(;% - (r - ro)z) (3-59)

Similarly the velocity used in the path integral orbit average §(3)
arises from rearranging Eg. (3-49) and inserting the two dimensional

constant energy from Eq. (3-54).

v = (wi(r? - (r - ro)z) + mi(z? - zé.))v2 (3-60)

In the AV code the Hamiltonian consists of the kinetic energy
plus two functions that depend on r or z. As a consequence the right
side of the equation of motion, Eq. (3-51), for br only depends on r
and the right side of the equation for bz only depends on z.
Multiplying both sides of the br equation by p_ and the bZ equation

by Py shows the following two quantities are constant in time.

H. = pi + wi(r - ro)2
{3-61)
2 2.2
HZ =B, + w,Z

In other words in addition to H being a constant of the motion, the
two constituent parts of H related to v and z motion are also
constants of the motion. The orbit average which takes this

sitiation into account is a specialization of previous phase space
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formulas. The weighting function in this case consists of three

delta functions.

. a(Hr’Hz’pe) -1
W dQ = G(Hr_ HrO)G(HZ - Hzo)é(pe - peo) —_— (3-62)
AV Y, vg)

r dr do dz dHrdHdee

The Jacobian in Eq. (3-62) is calculated using Eq. (3-21) specialized

to the hermonic osciliator.

3(H.H,pg)

v,V

= 4rvrv (3-63)
r*'z?

v z

)

The orbit average obtained from Eq. (3-12) with the phase space

volume of £q. (3-62) and y independent of Hr’ Hz’ is below.

Iy dr dz

—(ps6) _ Yr V2
P (3-04)

v, Vv
r 2z

The integration in Eq. (3-64) is over the r,2z values allowed by
conservation of Hr’ Hz’ and Pgr The analytic orbit formulas for r
and z show a specific set of values of Was Wy Iy and 2 result

in a trajectory confined to a rectangular box of height 2r, and
width 2z,. The i(psG) orbit average then consist of two successive
one dimensional orbit averages in a specific rectangular box. In
this case the consequence of having three conserved quantities

rather than two is to eliminate an integration over rectangular

boxes. In this example referring back to Eg. (3-49), it can be seen



that constant H restricts an orbit to an elliptical region in r and
z. There is no particular orbit which can move everywhere in the
ellipse as evidenced by the analytic orbit equations. Thus, the
E(DS5) orbit average formula, which does integrate over the ellipse,
is an equal weighted average over all rectangular boxes, about which
the constant H ellipse may be transcribed. This is demonstrated
explictly by integrating the integrand of the numerator and
denominator of Y(p56) over all possible values of H.y. To do this

V. is expressed in terms of HrO’

v = (Hg - Wl(r - rO)Z)]/Z (3-65)

and v, 1s expressed in terms of H0 and HrO’

2
v, = (Hy - H g - wi2?)? (3-66)

Interpreting x to depend an H rather than H. and HZ and restricting
the integration tao r z values allowed by constant H, the averaged

Y(DSS) becomes,

2.2
Hna-w_2
wdrdz 0™z dx
wz(r-r )2 2 2 2.2 172
r 0 (x - u%(r - rO) ) (H0 - X - Wz )

—{ps6) _
X 77
H—wzz dx
Soraz 172
2(r-r)? (x - wl(r = rg)?) (Hy - x - W22
Wy 0 c Wl =Ty 0~ X"
(3-67)

The integral over x in Eq. (3-67) is equal to a constant 7, and as a

result,
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;(psB) - Y(p55)

The effect of constant H. and H, on the i(pSS) formula is to

change the allowed r,z integration area from an ellipse to a

rectanigle with weighting function (v v )']. For the harmonic

rz
oscillator Hamiltonian there are analytic formulas for Vi and v, in
terms of r and z. In a more complex case with coupling terms in the
Hamiltonian the analytic orbit is unknown and there are in general
no formulas for V. and Ve It is also frequently the case that the
third coriserved quantity in addition to H and Po is unknown. Due to
these considerations, it is advantageous to approximate the VeV,
weighting function. One choice is to assume all allowed values of
Ve and v, are equally 1ikely and use as a weighting function the
average of VY, . Expressing v, in terms of Vi and vp which is a

function of H and ¢ and integrating over allowed Ve values yields,

(3-68)
L2
’p
The approximate orbit average is then below.
—(ps7) _ I X 2 drdz
XP e P (3-69)
! vp drdz

The importance of Eq. (3-69) is that the V;Z weighting function

only depends on r and z and is thus known when the Hamiltonian is
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given. Equation (3-69) applies to a general Hamiltonian and does

not require an analytic orbit.

3.4 Numerical Orbit Average Formulas

The orbit average formulas are implemented in the AV code
using several numerical approximations, The one dimensional
integrals, such as 2(0), i(p54) and §(4), are computed using a

trapezoidal integration formula.
1
fF dx = » Ax 37 (F; + Fi+]) (3-70)

In Eq. (3-70) there are N grid points spanning the allowed orbit
region. The integrand F represents y or X/Vr and Ax is the time
duration or the length of the orbit region divided by N - 1.

The two-dimensional orbit-average integrals are approximated
by discretizing the allowed orbit region inta rectangies and then
sumining integrals over grid cells of fitted approximations to the
integrand. This procedure integrates over a globally continuous
function which has discontinuous first derivatives between grid
cells. For several numerical formulas the general case of a
non-rectangular orbit region is considered. Rectangular grid cells
are also used (in this case) in the interior away from the edge
boundary. At the edge, where a curved boundary passes through an
otherwise rectangular interior grid cell, the curved boundary is

approximated as a straight line chord. The contribution of the cell
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is then a sum of smaller, triangular and rectangular regions.
Various formulas which represent numerical orbit averages are

expressed in terms of functions designated In’ Tn, Nn, Un’ and

Zn. The definitions of these functions are given in Appendix A.

There are several different methods used to represent the

§(3> path integral orbit average in a grid cell. In each

approximation the orbit is assumed to pass through the grid cell at
all points along the boundary and at all angles., The numerator and
denominator integrals of }‘3) are considered separately and each
integral is broken into six parts. The six parts consist of the
orbit entering the bottom and exiting to the right, entering the
bottom and exiting to the left, entering the bottem and exiting the
top, entering the top and exiting to the right, entering the top and
exiting to the left, and entering on the right and exiting to the
left. The six orbit contributions are denoted by subscripts BR, BL,
BT, TR, TL and RL respectively. Trajectories which go in the
reverse direction of those just mentioned are not considered since
they cause a factor of two to appear in the numerator and denominator
and thus have no effect on the value of the orbit average. Figures
3-la, b, ¢, d, e, and f show the path and Tocal integration
coordinates for the BR, BiL, BT, TR, TL, and RL contributions
respectively. The grid cell is Az in width and Ar in height. The
four corner values F], FZ’ F3, and F4 represent the integrand at the
discretized grid points. The local integration coordinates x,y have
different origin and meaning for each of the six cases as

illustrated in Fig. 3-1.



(a)

{c}

(e)

Figure 3-1. Local coordinates and grid cell integration path inter-
sections. (a) Bottom to right (b) Bottom to left {c) Bottom to top

(b)

{d)

T~

—~

{f)

(d) Top to right {e) Top to left (f) Riqght to left.
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The first approximation to i(s) is to assume the integral is a
straight line path length between grid-cell side intersections
multiplied by tne average of the integrand along the path., The
average integrand value is taken to be one half the sum of the
integrand values at the grid-cell side intersections. A linear
variation of the integrand is assumed along the grid cell sides.

F{x) = Fy + (F] - F4)x/Az

(3-71)

Fly) = Fg + (F3 - Faly/ar

To account for all possible paths, x is integrated from zero to Az

and y is integrated from zero to Ar. The general formula is below.

[aY4 ar
;‘(;231’} f > f ay(Fx) + F{y))(x% + y&) 172 (3-72)
0 0

Substituting Eq. (3-71) into Eq. (3-72) yields the BR contribution.

—(5) 1 Az ar
XBR =~2f dxf dy (2F4+ (F] -F4)X/Az
0 0

. 2 2 1/2
(F3 - F4)y/Ar)(x + y7) (3-73)

_ 1
=5 (P + To(F) - Fp)/az + (Fy - F4)T3/Ar)

For paths from the bottom to the left, the following linear

relations for the integrand apply.
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F(x) = Fy+ (Fy - Fydx/az
(3-74)

Fly) = Fyt (F2 - F])y/Ar
Substituting Eq. (3-74) into Eq. (3-72) the BL contribution is
obtained.

—(5) _ 1 Az Ar

X3 - 5 f dx f dy(2F ) + (Fy - Fp)x/te

0 0
2 2 1/2

1
= (ZF]T + TZ(F4 - F])/Az + T3(F2 - F])/Ar)

1

N

For paths from the bottom to the top, the following relations are

used.

F(top) = F+ (F3 - Fyyy/hz

(3-76)

F(bottom) F] + (F4 - F])x/Az

Substituting Eq. (3-76) in Eq. (3-72) yields the BT contribution.

—(5) 1 Az Ar
X1 <z f ax f dy(Fy v £y v (Fy - Fywaz
0 0
, 102
v (Fy - Fply/tz)((y - x)? + or?) (3-77)

=y (a8 (F 4 F )Ty + T (Fy - Fy + By = Far¥/ae

+ To(Fy - F,)/02)
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For paths from the top to the right, the TR contribution is below.

Az
719 ) [ axtizr, v 7y - Fx/adln )

TR 2
0
*(F) = Fp)(L,(x,00) = x°/3)/ar) (3-73)

i
z

(ZFZT] + (f-'3 - FZ)TZ/AZ + (F] - FZ)T3/AF)

For paths from the top to the left, the TL contribution is below.

Az
;;E) =_;_ f dx((2F3 + (f-‘Z - F3)x/Az)x211(Ar/x)
0
+ (Fy - F3)(I,(x,00) = x7/3)/6r) (3-79)
= % (2F3T] + (FZ - F3)T2/Az + (F4 - F3)T3/Ar)

For paths from the right to the left, the RL contribution is below.

—(5) 1 aAr ar
Xpl' =3 f ¢ f d/{FZ + F3 + (F] - Fz)x/Ar
0 U

2. 2,172
*(Fym Faly/an)(ly = x)%+ a2%) (3-80)

2 2
(Az (F2 + F3)T7 + Az (F4 - F3 + F] - F2)T8/Ar

~op —

+ (F] - FZ)TQ/Ar)
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The final form of i(s) is below,
(5) ;(5)
- num
X' ==y (3-81)
Xdeno

where the numerator consists of six contributions,

S(5) L 2(5) 4 5(5) 4 5(5) 4 5(5)

~(5) , <(5) _
Xnum = Xgr * XL * XgT t Xpl t Xp {3-82)

R OXRL
with F = v'] The denominator 7(9) is a sum of the same six
Xp' * Xdeno
-1
D
The 2(5) formulation assumes function values along a path

contributions as in x&i% however, in this case, F = v

through the grid cell are the average of side intersection values.

(3) (6)

The second approximation to X'/, denoted X' ', obtains a more
accurate orbit average by assuming the integrand function has a

bilinear variation in a grid cell.
Flryz) = Fy + (Fy - Fy)r/ar + (Fy - Fp)z/az

(3-83)

+(Fy - Fy v Fo- Flrz/(ariz)

The trajectory through a grid cell is approximated by a straight
line. The grid cell path coordinates for the BR, BL, and BT
contribution are shown in Figs. 3-2abc, respectively.

The general §(6) formula is an integral over all paths of

the bilinear integrand formula.

—-(6) Az ar
Xgen ~ f dzy f dry fdﬂ: F(Y‘],Z]) (3-84)
0 0



158

Fa Fy
r
F
LI Fq
(a)
F2 F,
I
F z, Fq
{b)
Fz 2 F3
. :
7 Z, A
{c)

Fiqure 3-?2, Grid cell inteqgration path cocrdinates for thp'i(ﬁ) thit
average. (a) BR contribution {(b) BL contribution (c} BT contribution.



Along the bottom right path

z =14 + (az - zl)r/rl

and the path integral integration over f may be expressed in terws

of an integration over r.

172

fdl = f(] + {az - z])zr]'z) dr {3-85)

Using Eq. (3-85) in the general formula, Eq. (3-84) yields the R

contribution.

Az Ar 1 . )
—(6) _ f _ 2. -2
XpR' ~ f dz; f dry dr(1 + (a2 = z9)7ry o)
0

0 0

[Fy + (Fy - Fy)r/or
*{zy/8, + (b2 - zy)r)/(ry02)(Fy - F))

+r(z, + (az - z])r/r])(F] -F, +F, - Fq)/ araz)]

1 2 3

= FuTy - (Fy = FOT,/(202) + (Fy = F )T/ (207)

- (F = Fy 4 Fy = F T,/ (60raz) (3-86)

Along the bottom left path shown in Fig. 3-2b,

z = z](l - r/r])

Substituting this relation into Eq. (3-84) yields the BL

contribution.
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Az Ar r 1/2

i6) - 1 2
XgL = dz, dry dr(l + (z4/74) )
foomdon
[F] + (F, - Fo)r/ar + (1 - r/ry)(Fy - Filzy/az
(3-87)
+rzy(1 - r/r)(Fy = Fy + F3 = Fg)/(araz)ldr

FiTq + (Fgq - FT/(282) + (F, - F)To/(24r)

+

(F]- F2 + F3 - F4)T]0/(6AFAZ)

Along the bottom-to-top path illustrated in Fig., 3-2c,

z =27+ (25 - zy)v/or

The BT contribution is obtained by using this relation in £q. (3-84).

Az Az Ar 1/2
}é?’ = “/r dz, “/r dz2 dr{1 + ((z2 - z])/Ar)Z)
0 0 0
[Fy + (F, - Fo)e/ar + (zy/82 + r(z, - z))/(braz))
(Fg - F1) + (rzy + r2(z, - z,)/4r)
4 ° N 1 2™ 7
= (o Fo)arlT, + T (Fa+ Fy = Fy- F)ar%/a
7 TR I L LY T z
+(Fg = Fy = 25, + 2F )T/ (602) (3-88)

In the same marner that the BR, BL, and BT contributions have been

derived, th. TL, TR and RL contributions are also derived. The



top-to-left path formula is below.

=(6)

X! = FaTy = (Fy = F)Tp/(282) + (Fy - F3)T5/(20r)

- (F2 - F] +Fy- F3)T]O/(6ArAZ)

The top-to-right path formula follows.

[}

Y%S) F T, + (Fy - F)To/(282) + (F) - F,)Ts/(20r)

+ (F, - F] + F4 - F3)T]O/(6ArAz)

2
The right-to-left path formula is below.

—(6) 1. L o.2 L 2
XpLo =g (Fp # F3)a2"T, + (Fy + Fyw Fa- Fo)Tylz"/r

+ (F] - F2 - 2F3 + 2F4)T9/{6Ar)

{3-89)

(3-90)

(3-91)

The'§(6) orbit average is a ratio of a numerator and denominetor

term, each consisting of six contributions,

where the numerator is helow,

—(6) _ <6) 6). (6) 6 6) —(6)
Xgum = Xpgp * iéL * YET * Y%L) * ?ﬁa) YﬁL

(6)

. _ ) —
with F = XVp - The formula for x,,..

(3-92)

(3-93)

is the same except F = v;].
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The'i(s) and Y(G) orbit averages have singular integrands when
v_ is zero. The actu:1 orbit average is well behaved so an

alternate formula is used in a grid cell where v_ goes to zero. In
. —~(5 —]

the singular grid cell the general formulas for X(J) and X(G)

are approximated b multiplying the grid cell area by the average

-1

p

v'1 in the denominator formula. This approximation resolves the

value of xv_ in the numerator formula and the average value of

singularity difficulty; nowever, a consistent formula is not used
ovar the entire mesh, It is desirable to have a censistent formula;
thus, a third numerical approximation, §(7) is derived for §(3).
The disadvantage of a consistent treatment is the increased
complexity of the iumerical orbit average formula.

The reason the i(s) and 7(6) formulas were singular is because
the poloidal velocity in the r,z plane goes to zero at a turning
point. To account for this effect, formulas are derived for the

square root singularity displayed below.

172

(24 - 2¢(r,2) - p%r'z) (3-94)

(R
The Xégn formula is used with F now representing y. Also, F is

taken ou. ~ the inner path integrai as a constant as the midpoint

value given by the bilinear formula as follows,

Az Ar 2 172

ié;) = f dz, f driF(ry/2, (s - z])/Z)r]'](rﬁ + {8z - 27)°)
0 0

(3-95)

-1/2
)

"

J/. dr(2H - 2¢(r',zq) + (&2 - z4)r/ry) - pzer"2
0
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where r' is the grid radial position plus ry The innermost

integral of Eq. (3-95) is done with a trigonometric substitution.

172
sin(e) = (2H)" /2 (24 + p%r'-z) (3-96)

The substitution given by Eq. (3-96) is inserted in Eq. (3-95) by

using the following relation.

2.-2.7"
-1 172 a2¢ * pgr )
Vo dr = (8H) sin(e) (3-97)

ar

The derivative in Eq. (3-97) is approximated by the difference of
2¢ + p%r'z at the endpoints, divided by the path length, Using Eq.
{3-97) in Eq. (3-95), and expressing in terms of vp where the 1 and 2

subscripts on vp refer to the path endpoints, yields the following

result.
1/2
_7) 8z B Rr2 (e - ) (2 - )))
Xgr' = 2 dz, dry K
0 0 Pp P
(3-98)

The averaged function y is assumed to be linear along grid cell

sides, and consequently, vp is assumed to have a linear variation
along grid cell sides. In the formulas below, vp is written as v
and the subscripts refer to grid cell corners consistent with the

way F is subscripted.

—(7) Az ar 2 o 172
Xg' = 2 / dz, f dro{ry + {8z - 2)7)  (Fy + (F, - F)ry/{22r)
0 0
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+(Fy = Fp)(az + 2,)/(28)

+ (F]- F2 *Fy - F4)r](Az + z])/(4AzAr))

] (3-99)

(vq+ v+ (v = vydz /b2 + (vg - v4)r]/Ar)-
= (Fy+ FTqy + (Fy - Fy)T /02
+ (Fy = Fy + Fy = F)T 5/(28r)

+ (Fy = Fy + Fy = F4)T,,/(28r02)

The bottom-to-left, top-to-right, top-to-left, bottom-to-top, right-
to-left path integrals are obtained in a manner similar to the

procedure used for the bottom-to-right case.

(7
XéL) = (Fy + FgiTyg + (Fy - Fy)Tyg/02

+(Fy - Fg + Fy = F)Tq7/(200) (3-100)

+ (Fy = Fy + Fp = F )T,/ (20r02)

W) = (Fy + F)Tyg + (Fy - Fp)Tyo/a2

+(Fy = Fy 4 Fy = Fo)Ty/(200) (3-101)

+
—
-n

5 - F] + F4 -F3)T22/(2ArAz)
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¥

+ FT

2 + (Fy - F3)Tya/0z

3 23

* (Fy - F3 + Fy - Fy)Tog/(28r)

(3-102)
+(Fy= Fy s Fq= F)T,0/(20002)
=(7) .
Xpr = (Fy * FolTyy + (Fy = Fy + Fy - FplTpg/tz
(3-103)
* (Fy= Fy+ Fy= Fp)Tyo/(202)
(7). .
XpL' = (F3 % FalTaq * (Fy = Fp + Fy - F3)Tgy/ar
(3-104)

+(Fy = Fy + Fy = F3lTao/(26r)

The numerical orbit-average approximation to §(3), which consistently

accounts for the velocity singularity, is then given below.

=(7) (7}, (7) 7} L =(7) 4 (7)
<(7) 2 1 Xer " Xp T Xgr” T X1 T XaL (3-105)
LTI 19” *To7 * T

(5) -(6)

In addition to the three numerical formulas, x'°/, X' /,
and x(7) for the path integral §(3), there are also three numerical
phase-space fermulas., The first formula, (p58) is a numerical
implementation of x(pSG). In deriving X(psB) knowledge’ of the
analytic orbits is used to obtain explicit integration formulas for
a grid cell. 1In two dimensions, the test function which is to be

averaged is given below.
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2
((r=ry)/
x(r,z) = e "ro)/my) (3-106)

Using the'i(pss) formula, substituting the analytic velocities and

Eq. (3-106), the following grid cell formulas result.

Y(pSB) = (ww )-.| (S'in-](ZB/Z-I) - S'in-.| (ZA/Z]))

deno r-z
(3-107)
(sin™!((rg = rg)iry) = sin™! ((ry = v)/r)))
— 2 -1
X§5$8’ = zy{ww,) I5lrgarysry,rg)
(3-108)

(sin-](zB/z]) - sin'](zA/z1)
+ (sin(2sin” (zy/27)) - sin(2 sin™V(z4/2,)))/2)/2

In Eq. (3-107) and Eg. (3-108), the grid cell extends radially from
ry torg and axially from z; to z;. The numerical orbit-average is

then the ratio of contributions from all grid cells.

;(ps8)
(ps8) _ “num (3-109)

=(ps8)

Xdeno
The numerator and denominator of Y(psB) both depend on oscillation
frequencies; however i(psB) itself is independent of the w. and

w, frequencies. The R(p58) formula is particuiar to the harmonic

oscillator potential and the chosen test function of Eq. (3-106) used



in the AV code. The main utility of Y(pSB) is to compare results

with the other numerical orbit-average formulas. The frequency
independence of the i(psB) orbit average means the other, more
general, orbit-average formulas are not at a disadvantage even though
they do not account for this aspect of the precise orbit.

The numerical Y(pss) orbit average, denoted i(psQ)’ is

implemented in a grid cell as an average y value times the grid

cell area. The i(psg) denominator is the grid cell area as shown
belov,
—(ps9) _ -
deno fdrdz (3-110)
= Ardz

The Y(psQ) numerator is calculated by assuming a biiinear y

variation in a grid cell.

Yﬁﬂf&g) = f(xl * {xp - xqdr/ar + (xg - xq)2/02

+(Xy = Xp * X3 = Xg)rz/(sraz))drdz
= (X7 * Xp * X3 * Xq)draz/é

The final fcrm o i(psg) jr a rectangular grid is then a ratio of
the sum of numerator and denominator contributions as indicated

below.
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=(ps9) _ 2(ps9)f=(ps9)

- 2 (i),

= Z ((X] + X2 + X3 + X4)/4)_
1

i

(3-112)

For the case of a potential well, which is not rectangular, the
boundary of the allowed orbit region passes through a grid cell.
Figures 3-3a to h show the case of the boundary intersecting the
bottom and right, the bottom and left, the bottom and top to the
right, the bottom and top to the left, the top and right, the top
and left, the right and left downward, and the right and left upward
grid-cell sides respectively. In assessing the grid cell
contribution it must be determined which of the four regions are in
the allowed orbit regiun. Thus, for each grid cell having a
boundary intersection, only some of the formulas below are used.

The formulas for contributions from regions one-to-four are written
in terms of functions Zn and Un, with appropriate arguments. The
subscript n denotes region one-to-four. In what follows, the x
subscript indicates either a numerator (num) or a denominator (deno)
contribution on tii: left side of the equal sign, or the usual
grid-cell corner values in the arguments of Zn and Uy - The boundary
intersection is contained in the argument with a region designation.

=(ps9)

Xnum  (BRM) = Z.(xq5(xp = x3)/8rs (X4 - x1)/82,

(3-113)
(X7 = Xp * x3 = x4)/(8raz))
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Figure 3-3. The four regions and coordinate orientations for
potential boundary grid cell intersections. (a) BR intersection (b)
BL intersection (c) BT intersection to the right {d) BT intersection
to the left (e} TR intersection (f) TL intersection (g) RL inter-
section downward (h) RL intersection upward.
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Koo (BL0)

X(psg)

num (TRn})

R

The denominator contributions for BRn, BLn, TRn

identical.

(ps9)

Xdeno (BR1)

(ps9)
Xdeno

(ps9)
Xdeno

(BR3)

(BR2) =

Z,(xgs(x3 = xg)/try (X7 - xg)/02,

(3-114)
(X4 - X3t X - )(])/(AI"AZ))
2,(x2s (X7 = Xpi/8r, (x3 = xp)/Az,
(3-115)
(xp = X7 * xq = x3)/(araz))
Zn(X3s(X4 - X3)/Ar, (X2 - )(3)/AZ,
(3-116)
(x3 = Xg * x7 = xp)/ (8raz)}
and TLn are all
Kimo (811) = Xetng) (TR1) = S0 (1L)
(3-117)
rz(Az - z])/2
Xéano) (812) = Xylng) (TR2) = R0 (1L2)
(3-118)
rz(Az - z])/2
" Xiono) (313) = Hilng) (183) = X3 (103)

(3-119)

241



9 9 9 9
et 3z 3 - e

(3-120)
= Az(Ar - rz)

For the potential boundary intersections from the bottom-to-the-top

or the right-to-the-left, the following formulas apply.

iﬁﬁ;g)(BTN) U (xqs{xe = x7)/0r, (x4 = xy)/02,

(3-121)
(X] - Xs + X3~ x4)/(AY‘AZ),Z],22, ar)
—(ps9
3PSO (Rin) = U (x5 (xq - Xo)/02,(x) = Xp)/8r
(3-122)
(Xp = X3 * Xg = x3)/(8rdz),ry,r,02)
The denominators are defined as follows.
xég;g)(BTl) = or min(z,2,)
(3-123)
—8232)(RL]) = Ar min(r],rz)
8232)(BT2) = 4r|z, - 73]
(3-124)
s9
ngno)(RLe) = Az|r2 - rﬂ
~f s9
ngno)(BT3) = ar|z, - z,]

(3-125)
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—=(ps9) -
Xdeno {RL3) = bz|ry - 1|

Yég;g)(BT4) = ar(oz - max(zy,2,))

(3-126)

Yégzg)(RL4) = pz(ar - max(r],rz))

In previous discussion, i(p57) was derived as an approximation
to ;(psﬁ). The difference between these forrulas is a replacement
of v2 for VeV, The numerical approximation to ;(ps7), denoted
}(p510), is obtained by ac-uming a bilinear variation of x and vi

in a rectangular grid cell.

ar Az
Apsi0) I AL LI L
Xnum h1+ hzr ¥ h3z T hqrz
0 0
fAY‘ (g.l + 921“ (h.l + hzr)(g3 + qdr))
i hy *hr " 5
0 [ 3 4 (hy + hyr)
(3-127)
h, + hqr
1oq<] PR RT AZ)
2
g3 * gur
h3 Y h4'. [i¥4 dr
3
ar h, + h,r
=psl0) _ dr 3 4 )
Xdeno J/‘ hy * hyr log <] + ﬁ?“:—ﬁg;— liv4 (3-128)



173

In Ea, (3-127) and Eg. (3-128), the subscripted g and h parameters

are related to y and v, as follows.

9 % Xy
9,= (X, = xy)78r

93 = (X4 = X])/AZ

h] = vé] (3-129)
h2 = (vg2 - v2])/Ar

h3 = (vg4 - vg])/Az

h, = (v2 - v2 + vq - v_ )/ (araz)

The orbit average is then a ratio of a sum of numerator and
denominator contributions from all grid cells.
}(PS]O)
—(ps10 num
7(Ps10) 1550 (3-130)
Xdeno
For the case of an orbit potential passing through a grid
cell, formulas are derived with four individual contributions per
cell. Figures 3-3a to h depict the various possibilities as

discussed for the Y(psQ) orbit average. The same rotation is used
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for x

deno

deno
and Nn

. num
£
of functions Ko > Kpos N

num
n

Appendix A.

- 10 m
Xéﬁ; )(BRH) = KQU (X],(XZ - X])/AY‘,(X4 - X])/AZ’

(X'l = X2 + X3 - X4)/(ArAZ)=

2 2 2 /4 2
vooL (VS =S ) /e (V- v )/ Az,
(v2 V8 e Ly )/ (araz))

P P3P 1

- 10
Xﬁﬁ; )(TRn) = Kgum(xz’(x] - xz)/Ar,(x3 - Xp)/ 0z,

(XZ - X + Xg ~ X3)/(AFAZ)a

2 2 2 2 2
’ - s = /A Y
vp2 (Vp] vpz)/Ar (vp3 VpZ) 7

, which are defined in

(Ps10) 25 for i(psQ), and the formulas are expressed in terms

(3-131)

(3-132)

(3-133)
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_5‘3;]0)<TL") = Kgum(X3,<X4 - X3)/AY‘,(X2 - X3)/AZs
(X3 - Xg ¥ X] - Xz)/(AY‘AZ),
(3-134)
2 2 2 2 2
v (Ve - v Yar (VD - v YAz,
2 2
(vi - vD + v - v )/ (i)
P2 P Pg 3
—({ps10) _ ,deno, 2 2 2 2
deno  (BRR) = Ko (p],(vp2 vp])/L\r,(vp4 v ])/Az,
(3-135)
2 2 2 2
(v = vD + v - v )/(araz))
Pt P2 P3 4
—(ps10) deno; 2 2 2 2 2
deno (BLn) Ko (vp W D vpa)/Ar,(vp] vpa)/Az,
(3-136)
2 2 2
(v& - v& +v& - v )/ (araz))
Pp P3P 1
—{ps10) deno, 2 2 2 2
deno (TRn) = K (pz,(vp] vpz)/l‘r,(vp3 v 2)/Az,
(3-137)
(vi2 - vi] + via - v2 i/ {araz))
1:510) - deno, 2 2 _ 2 2
7 \eno (Ttn) Kp (vp3,(vp4 vp3)/Ar,(vp2 v 3)/Az,
(3-138)
(vZ N Y }/{araz))
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The Kzum functions are defined in Appendix A with eight consecutive
arguments which are 9> %> 93> Yo h], h2, h3, and h4

respectiveiy. The ngno functions are defined in Appendix A with

four consecutive arguments which are h], h2, h3, and h4,
respectively. To avoid the zero of vg at the orbit boundary, an
additional parameter o is introduced as the exponent of the bilinear

v2 fit. For orbit potential boundary intersections from the bottom-

P
to-the-top or from the right-to-the-left, the following formulas are

ysed.
Yﬁﬂ;]o)(BTn) = Ng“m(x1,(xg = XM, (xg = xq)/ 8z,
(X7 = Xz * X3 = xg)/(&r&2),
(3-139)
2 2 2 2 2
Vp]’(vpz vp])/Ar,(qu vp1)/Az,
2 2 2 2
(vp] - vp2 + vp3 - vpd)/(ArAz)),z],zz,Ar )
—(ps10) _ deno, 2 2 2 2 2
BT - ’ = [ - >
Xdeno (BTR) = N_ (vp] (VPZ vp])/Ar (vp4 vp])/Az
(3-140)
2 2 2 2
- + -
(vp] vp2 vp3 vp4)/(ArAz),z],22,Ar)
—(ps]
xﬁE; O (ain) = Nﬁ”m(xz,(x3 = Xp)/8z,(xq - xp)/ar,

(xp = X3 * Xg = Xq)/(8raz),
(3-141)



2 2 2 2
’ = s - /A ’
sz (Vp3 vpz)/Az (vp v 2) r
2 2 2 2 )
(Vp2 - Vp3 + Vp - Vp])/(A'AZ)sr],rZ’AZ)
—(ps10) _ ndeno, 2 2 2 2 2
R = N , - /b2, - &,
deno (RLn) n (vpZ ( Py vpz) (Vp] v 2)/
(3-142)
2 2 2 2
(vp? - vp3 + vp4 - vp])/(ArAz),r],rz,Az)

The Nﬂ“m functions are defined in Appendix A with eleven consecutive
arguments, 91> 9s 93> Is h]y h2, h3, hy s 715 Z,, and 23,
respectively. The Ngeno functions are defined in Appendix A with
seven consecutive arguments h], h2, h3, h4, Zy, 22, and Z3,

respectively.
3.5 AV Code Results

The orbit average formulas are compared numerically against the
orbit average definition Y(O), computed using the trapezoidal
integration method. A seven-point integration scheme was checked

(0)

against the trapezoidal method and it was found ¥ did not change

up to three decimal places. Thus, in the discussion of results to

follow, the i(o)

orbit average value obtained by the trapezoidal
method is taken to be the proper orbit average value.
In one dimension, an exponential y{r) is chosen as the function

to be averaged.
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(r-rg)/r;
x(r) = e (3-143)
The objective in choosing x(r) is to select a smooth function having
a reasonable variation between o~ T and oty The AV code was
run with the following parameter values: ro = 5, ry = 1, we = .198,
at = .005, 9 = 0. The r grid had 2000 points and the orbit was
followed 6348 steps. The frequency W, and the number of steps
multiplied by At were chosen so the sine argument of the analytic
orbit, r{t), went from zero to 2n. The oscillation amplitude
bounds the orbit between 4 and 6, and over this range x(r) varies

from .37 to 2.72. The results are i(o) = 1.2661, and §(4) = 1.2637.

As verification of the Y(O) value the following trigonometric

substitution,
cos(8) = (r - rg)/ry (3-144)
is made in §(4) to yield,
m
x4 =1 f ecs(8) 4 (3-145)
0

The formula 3-145 is the integral definition of the imaginary Bessel
function of order zero and argument one, 10(1) = 1.2661. The
orbit average formula, 2(4), is thus well-approximated by the
numerical integration formula.

In two dimensions the averaged function x(r,z), given by
formula 3-106, is exponential in r and gquadratic in z. Due to these

symmetries it is only necessary to integrate over one-fourth of the
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allowed orbit region. As in the one dimensional case i(o), computed

using the trapezoidal integration approximation, is compared with
numerical orbit average formulas. As a brief review, the two-
(53 (6,
§(7), }(pSB)’ Q(psg) and f(pS]O). The path integral formulas,

dimensional numerical orbit-averaged formulas are ¥

i(s), Y(e) and §(7), integrate along a straight-line path in a grid
cell and then integrate over all possible straight-line paths. The

path integral formula 2(5) integrates over a grid cell, assuming a

p
for the denominator. The integration over the path is the

linear variation along grid-cell sides of xv_= for the numerator

and v']
p

path length multiplied by half the sum of xv;] for the numerator

! for the denominator. The integration over the path is the

path Tength multiplied by half the sum of Xv;] or v at the grid

p
cell side intersections. The path integral formula, i(s)

1

and v_
Yp

, integrates
over a grid cell assuming a bilinear variation of xv; for the
numerator and v;] for the denowinator. The integral along the path
is obtained by using the equation of the path line to convert J d&

to S(d&/dr)dr. The'i(7) path integral assumes x has a bilinear
variation in a grid cell, but may be taken to be a constant along the
path line at the midpoint path value given by the bilinear formula.
The path integral in the numerator and denominator contribution is
then an integral only over v;]. The path integral is calculated
using a trigonometric substitution resulting in the reciprocal of

the sum of the path endpoint vp values. The final form of the

7#7) formula is then obtained by assuming vp varies linearly along

the path for the integrals over all paths. The phase-space derived
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formulas are’i(pss) and Y(DSQ). The’i(pS]O) formula is a numerical
orbit average of the i(p57) approximation to i(pSG). The'i(psg)
foermula, except for the 15 integral, is essentially analytic in a
grid cell, The y(r,z) function to be averaged has been incorporated
into'i(psg) as well as the analytic orbits. The i{ps9) formula is
an area average of x(r,z) normalized to the total area. Assuming a
bilinear x{r,z) variation in a grid cell results in a numerator
formula which is one-fourth the sum of the four grid-cell corner

s10) formula is an integral over the grid cell area,

assuming x{r,z) is bilinear and vg

values, The'}(p
is bilinear.

A11 of these numerical orbit-average formulas are generally
applicable except'i(pss), which is particular to the harmonic
oscillator potential. In examining the results of a two-dimensional
AV-code run, it is nat expected Y(ps9) would provide a good orbit
average value since it assumes a larger orbit region is available.
The'i(psg) formula is derived assuming only two constants of the
motion exist when, for the uncoupled two-dimensional oscillator there
are, including Pge three. The object in considering Y(psQ) is to
gauge the amount of error in applying this formula when a third
constant of the motior ~vists but is not taken into account. The
Q(DS]O) formula is an approximation to Y(psS) which does not require
the analytic orbits. In a case of basically harmonic motion, where

the Hamiltonian has weak coupling or anharmonicity, i(pS]O) may be a

better approximation than Y(psB)' The ;(psS),-Y(psﬁ) and ;(ps?)
orbit average are evaluated to measure the agreement of i‘o) with

the path integral formulas, which do not include knowledge of the
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exact constants of the motion. In other words, these formulas are
the same whether aor not there are two or three constants of the
motion. A1l of the numerical orbit-average formulas assume the
actual grbit encounters all allowed space at every angle, In the AV
code, for a particular orbit, the analytic r, and z formulas show
the orbit is actually a lissajous figure. This is because,
numerically, the freguencies w,. and w, are rational numbers.
Consequently, & grbit is periodic and as a result there are always
areas that are not encountered. In addition, the analytic positions

and velocities may be used to express the velocity ratio in terms of

position,
172
Vi w,. I"z] - {r - ro)z .
K im— R A (3-]46)
4 4 Z] -2

From Eq. (3-146), it can be seen that a particuler orbit can pass
through a fixed position at only two specific angles. Figure 3-4

illustrates an orbit with W, = 1, w, =4, rg = 5, ry = 1,s zy = 1,

z
9, = 0, and g, = 0. This shows the orbit periodicity and the
occurrence of only two angles at the crossings. The numerical orbit-
average formulas, in assuming the available area is covered, are
actually dealing with a distribution of initial phases ¢, and ¢, and
thus, a range of periodic orbits or equivalently as will be shown
later, a nearby orbit having irrational frequency ratio “r/mz’ which
would then cover the entire area. Figure 3-5 shows an orbit which

has the same parameters as that in Fig. 3-4, except @ = .3 and

¢, = .1. Comparing Figs. 3-4 and 3-5, it is clear each closed-orbit
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Figure 3-4. Orbit withwe. = 1, w, = 4, g = 0, g, = O.



Figure 3-5. Orbit with we = 1, wy, = 4, op = .3, g, = .1.
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having the same w,. and w, encounters very different spatial regions
as a consequence of different initial phases. In order to make a
comparison of'§(0) with numerical orbit average formulas, orbit
parameters are chosen to cause a dense covering of the allowed orbit
region. The objective is to choose oscillation frequencies W, and
w, such that the orbit requires many oscillations before it begins
to repeat. The complete'i(o) value is known after only one orbit
period is obtéined since the Timit of large path length makes the

contribution from any partial orbit insignificant.

L
—0) . _#xdp , Jox %
X §di+ &n nfdi+ g

(3-147)

As can be seen from Eq. (3-147), as n becomes large the second term
is unimportant. Using oscillation frequencies w, = .198 and w, =
1.218, the orbit completes after 33 radial oscillations and 203

axial oscillations. Figure 3-6 shows the allowed orbit region is
well-covered for this choice of frequencies. The values of orbit
average formulas for 41888 orbit steps at at = .025 used to calculate

Y(O) and a 40x40 point grid used to calculate all other orbit average

farmulas are in Table 3-1.

Y(O) 7% ;(6) Z(7) Y(PSB) 3(Ps9) | 3(ps10)

.8767 L7147 .7264 .6954 | .8767 .4874 .6899

Table 3-1. Orbit Average Values for the AV Code
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Figure 3-6. Orbit with w, = .198, w; = 1.218, ¢p = .3, ¢, =

1.
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Changing the grid to 80x80 results in only a few percent change in
Y(S), i(s), §(7), Y(psQ) and Y(pS]O). From the table of values it
can be seen there is good agreement between Y(O) and 7(p58). The
path integral formulas Y(s), i(ﬁ), §(7) are Tow by 18%, 17% and 20%,
respectively. It appears, for this example, there is no gain
obtained from the more elaborate §(7) formula, The best path

(6)

integral result in this case is § ; however, this may not always
be true for orbit averages of other x(r,z) functions. The i(psg)
result demonstrates the hazard of applying a phase-space derived
formula without knowledge of the actual constants of the motion. The
i(psQ) result differs from Q(O) by 44%, wnich is about twice the
error of the other numerical formulas. The R(DS]O) formula, which
is related to Y(psQ)’ has a value of .6899, which is in line with the
path integral results.

The numerical orbit-average formulas }(5), 2(6), §(7),
i(pss), i(psQ) and i(pS]o), all assume the allowed orbit region is
covered by the trajectory used with the basic orbit-average
definition g1°). As was shown by Figs. 3-4 and 3-5, the effect of a
distribution of initial phases is to result in a covering of the
allowed orbit region. To determine when a single periodic orbit,
such as that used to compare the numerical orbit-averaged formulas,
represents the orbit average definition, i(o) is examined using the

analytic orbits.
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2
T ((r-r,3/ry)
Vim 4 e 071
aoo |

(=]
[}

(3-148)

> |

0
2 .2
risinT(w t+e)
= hmTf 2 51‘n2(wzt+q;z)e] Tt

The half angle formula is used in Eq. {3-148) and the oscillation

amplitudes are set to ore to yield,

T

70 - 1 172 nm,} f (1 - cos(aut + 2¢z))e-1/2cos(2wrt+2¢r) dt
0

(3-149)

The formula 3-145 is examined by expanding the exponential in a
Taylor series and splitting into two parts. The first part is one

times the expanded exponential.

OO

1 n
(- 5 cos(2w .t + 2¢.))
YSO) - I/2 -I.lm f Z n'l" ‘Pr‘ (3_]50)

For n-odd, the termec vanish in Eq. (3-150) because the integrand is
odd over a period. Interchanging the order of integration and

summation in Eq. (3-150) and using,

2“ L] . LB N )
= [ cos?" g do = 113 23 tee (20 - 1) (3-151)
0

yields the following formula.
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- 12/ = 1 1 9+3 5 «es(2n-1

o mge e 30 P ) 5152)
= 4(2n)!

Formula 3-152 shows the first contribution to 2(0) is independent of

phase and frequency. The sum of the first few terms of Eq. (3-152)

is below.

X = ge (1 * 75 * 20z * TS wﬁm) 87669

(3-153)
To understand why Rgo) is essentially equal to i(o), the second
contribution to i(o) must be examined to determine under what
conditions it is small. The second contribution to to'i(o) is

cos(Zth + 2¢z) times the expanded exponential.

.
W ot e vind f cos(2w,t + 2g,)
-0
0
(3-154)

© 1
ol COS(Zmrt"'Z(pr))n

n=1 ni

The n = 0 term vanishes. Expressing cosine as a sum of exponentials, and

expanding cosine to the n in a binomial series, and using,

! 2n . ¢
> f e’ dt = §(a)
0

yields the following formula.



cos((2n - 4k)o, - 29,) (3-155)

8{(n ~ 2k)wr - mz) )

~0)

From Eq. (3-155) it can be seen that Xy = 0 when “z/“r is not
rational. Thus, for w,/w. equal to an irrational number'i(o) =
'Ygo). Also, when w./w. is equal to m, a rational number, the first
non-vanishing term of Eq. (3-155) is bounded by Z'Z"le This means
that a periodic repeating orbit yields essentially the ergodic orbit
average as soon as m = 6. At m = 6,'}%0) is down by a factor of 3

X 10'7. When m is large there are many axial oscillations for each
radial oscillation and the averaged function appears to only have a
z variation along the orbit. The same conciusion can be shown to be
true for a general function x(r,z). To do, this the 3#0) formula is

written with x(r,z) represented by a Taylor expansion in r and z

expanded about o and 2y

™\ - )" (2 - 2"

=(0) _ 150 ] ’/"" iy
X = lim = Z 2 N .m N My dt
Tee® Jo 50 &8 \0r? Zof

(3-156)

Substituting sinusoids for r(t) and 2(t), integrating and expanding the
exponential representation of sine in a b.nomial expansion yields the

following formula.

[e] O n+m -
3 - (X \L & 2~ (mtm)
T |2, 2 AT RO
n=0 m=0 0" "0/ k=0 =0

(3-157)
ei(‘Pr(“‘Zk) +‘Pz(“"29‘) 8(w.(n - 2k) + w (m - 22))
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Equation (3-157) shows there are two types of contributions to Eq.
(3-156). The first kind consists of all terms with n = 2k and m = 2%,
These terms are independent of phase and oscillation freguency.
Furthermore, if wr/wz is an irrational number, all other terms

vanish. Because the condition of jrrational w./w, is the condition
for an ergodic orbit, the sum of terms with n = 2k and m = 22 is the
ergodic contribution to the orbit average. The second kind of
contribution to the orbit average has wr/wz equal to a rational
number, For widely different frequencies these terms are down by a

(n+m)’ and can then be considered only a small correction

factor 2°
to the ergodic contribution to the orbit average. A periodic orbit
with widely different radial and axial frequencies is then equivalent
to the ergodic orbit average. This conclusion is also valid when the
potential is anharmonic, but the orbit is essentially oscillatory.
For this case, the expansion analogous to Eg. (3-157) has summations
of sinusoids in r and summations of sinusoids in z. As before, the
ergodic orbit-average contribution consists of terms with irrational

frequency ratios, and for widely different frequency ratios, the

ergodic orbit average is the dominant contribution.

3.6 Hi'll's Vortex Orbit Code

3.6.1 Investigation Issues

There are essentially three issues in considering the orbit
average with the NEO code. First, the application of formulas

validated with the AV harmonic oscillator code are examined in



appropriate H, Pg regimes. Second, a procedure is applied to
determine the existence of the third constant of the motion,#. The
existence of .# implies a distribution function depending on . is
possible and thus an orbit average taking into account.# would be
useful, In the case of Tow energy with no sharp field gradients or
rapid time variations the magnetic moment is a suitable adiabatic
constant of the motion. Such a system may then be described in this
regime with a distribution function which depends on H, Pg and the
magnetic moment. Third, the question of stochasticity is briefly
considered to determine if conditions occur where no constant of the

motion exist.

3.6.2 Equations of Motion and Method of Solution

The NEO code solves the equations of motion in cylindrical r,
8, z coordinates using magnetic fields derived from the spherical
Hill's vortex. The resulting orbits are used to investigate a
realistic application of the previously derived numerical orbit
averages and to explore the existence of invariants of the motion.
As demonstrated in the case of the harmonic oscillator, knowledge of
the invariants of the motion lead to specialized forms of the orbit

average. Experimentally, it may be possible to design magnetic

fields with invariants of the motion that produce beneficial transport

properties. The magnetic moment, H, /2B which is only an adiabatic

invariant[]46’147] has been employed to enhance particle confinement
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in magnetic mirror devices.[]48’]4g] Thus the construction of an

approximate constant of the motion is also useful.

The equations solved by the NEO code are obtained from the

following dimensionless Hamiitonian,

1,2, 20 .1 -1 -
H=x(p. +p,) 5 (pgr - r W)

where y is defined below.

%rz(r2 v 22 - 1)

V= -3/2
?rz(] c2 s D >

\

—

(3-158)

(3-159)

Lengths are normalized to the Hill's vortex plasma radius, time is

normalized by the uniform field cyclotron frequency eZB/mc, mass and

charge are normalized to proton mass and charge, and Pg is

normalized by the product of the proton mass, cyclotron frequency,

and plasma radius squared. Since Po is a conserved quantity in
axisymmetry, it is used to obtain the time derivative of theta.

equations solved by the NEO code are than below.

r‘=pr

~

n

"=
~N

o
<
i
1
-

The

(3-160)

(3-161)

(3-162)

(3-163)

(3-164)



A dot denotes derivative with respect to time. The numerical
solution of the system of five first order ordinary differential
equations is obtained by the GEAR[]SO} multistep method employing
variable time step and order to guarantee a specified local error
criteria is satisfied. For a general first order ordinary
differential equation for variable y,

& - ¥(5,1) (3-165)

the solution method is as follows,

Ky

Yp =@ Y, * A Z Bjyn-j (3-166)
j=0

where the subscript n represents the time step level. The values of
k], o, and the Bj constants have well known values depending on the
order of the method.[IS]} The formula 3-166 is commonly known as

a k] + 1 order implicit Adams method. It is important from the
viewpoint of considering constants of the motion that the orbit
position and velocity are accurately known. The formula 3-166 used
to solve the set of Egs. (3-160) through (3-164) has Pg as a constant
since this is enforced in the formulation; however there is no
guarantee the energy is numerically constant. There are algorithms,

f1s2] which conserve energy exactly.

such as the leap frog scheme,
The trouble in using a scheme like leap frog is understood by taking

the dot product of both sides of the velocity advance equation,

-+ +> -+ -+ +>
V2L /2 g (32, 2y gt (3-167)
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The result is,
2 2
(vn+3/2) - (vn+1/2) (3-168)

and consequently the total velocity magnitude is preserved to within
round off error. The difficulty is each velocity component is not
known this accurately and also Po is no longer a constant. To
resolve such difficulties, the muitistep method is used with an
error criteria of 10']5. To invoke an error criteria as small as
10']5, it is necessary to use double precision arithmetic. In
monitoring the error criteria, it was found the time step must be
adjusted in accordance with the Tocal anticipated error rather than
the greatest error encountered along an orbit. This consideration
arises due to the orbit turning points where the velocities in the r
or z direction decrease to zero and then change sign. In general,
near a turning point, much smaller time steps are required than
during other parts of an orbit. In the most recent ordinary
differential equation solver, {LSODE) it is possible to independently
set the error criteria for each unknown variable. In the problems
of interest here, the theta location is not important so the error

0" and the error criteria for

criteria for r, z, Pps P, is 1
6 is set Lo one. In practice this means the predicted error
caused by the theta equation does not cause the time step to be

reduced.



3.6.3 Axisymmetric Orbit Considerations

The reason 8§ is not accurately calculated is because only
axisymmetry is considered. As discussed previously Py is then
conserved, The consequence of constant Py is that the orbit may be
considered to be two dimensional and Vo is then replaced by a
function of r, 2z, and Pg- The Hamiltonian then appears two
dimensional with Vg serving as a potential, V(r, z]po) naving a

parameter Pg-

V(r,z{pg) =% (per'] ) (3-165)

Substituting Eq. (3-169) into £q. (3~158) recasts the Hamiltonian as

follows.

2

2
r + pZ) + V(Y‘, lee) (3']70)

_ 1
H=>5(p

From Eq. (3-170) an orbit having H < V is confined to a region of
space provided V has closed contour surfaces. For the Hill's vortex
in a range of Pg values, V does have closed surfaces and thus

there is confinement. Physically at the boundary of a confining
surface all the particle energy is in the theta direction. Thus in
two dimensions at the bounding curve p,. and p, are zero. The
confinement of -orbits to regions of space as a consequence of the
potential V makes it natural to consider transport properties
averaged over these regions. It is then necessary to consider under
what conditions V has closed surfaces and potential confinement
results. The ¢ function is positive outside the plasma region and

thus from considering Eq. (3-169) a potential barrier exists when
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Pg < 0. There are two distinctive types of orbits that occur for

pg < 0. Examination of Eq. (3-159) shows the maximum value -y has
inside the plasma is 3/16. Consequently for Pg < - 3/16, Vo is
always less than zero or in other words the orbit is axis encircling
and always moves in the negative 0 direction. The consequence for
spatial confinement is obtained from the first derivative of V with

respect to r inside the plasma.

9 V(r,z,|p,) ‘ .
—— | A (per°] + % r(1 - r2 - 22))<—per'2 + % (1 - 3r2 - 22))
(3-171)

At positive r, Eq. (3-171) shows there are three positions where

av/ar = 0.
ryo= 21 (1 -2 - 22)2 + 18 pe)]/z)]/Z (3-172)
rp = 2“/2(1 -2+ - 22)2 + 18 pe)‘/z)”2 (3-173)
o ® 6'”2(1 -2+ (- 22)2 - 16 pe)”‘?)”2 (3-174)

When Pq < - 3/16 " and r, are both imaginary. This situation is
illustrated qualitatively in Fig. 3-7(a). In this case V has a
minimum at ror When -3/16 < Py < 0 Fis Tos and ro are all real with
ryand r, being local minima and o being a position of local
maximum, This case is illustratred qualitatively in Fig. 3-7(b).
The basic difference between orbits in these two Pg regions is for

- 3/16 < Py < 0 and H < V(r,, zlpe). As shown by Fig. 3-7(b), the
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Figure 3-7. Potential at z = O versus r. (a) pg < - 3/16
(b) - 3/16 < pg < 0.
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orbit in this case has an excluded region around i = ry. In ther, z
plane the orbit is then ring like in contrast to H > V(ro, z]pe)

for which ry<r<r, orbit values are allowed. For H QSV(r], zlpe)
the orbit degenerates to a curve in the r, z plane. If in addition
P = 0 the curve becomes a constant ¢ contour and this class of
particles is confined to flux surfaces.

The second parameter which determines when an orbit has
potential confinement is H. In the radial direction at z = 0 and
large r, V~1/8 r2. Thus, at large enough r an orbit of any H is
confined radially. Typically in practice, a radial wall exists and
confinement ceases when the energy is large enough to cause the
orbit te intersect the wall. A cufficient but not necessary
condition for radial confinemrnt when ro < 1 isH < pg. In
this case the orbit only encounters closed field line. For confined
orbits which encounter open field lines, loss may occur by
intersecting a radial wall or by having an energy large enough so
axial loss occurs. The energy threshold for axial loss is derived
by considering the r and z derivative of the potential V in the

region outside the plasma.

-3/2

i , -5/2
‘(’,—‘i=;(pe-¢)(-per2-Jz+7}(r2+zz) 32 )
(3-175)
-5/2
B3y - 2P+ 2D (3-176)

Qutside the plasmz ¢ is positive and Po has been chosen negative
so the quantity py - ¥ is always negative. From Eq. (3-176), dV/dz

is then always positive, diminishing as 2'4 as z increases with r



fixed. This means the potential becomes constant asymptotically in
the axial direction. From Eg. {3-175), the second factor on the
right indicates at large z, V has a radial minimum at r2 = - 2p9.

The energy threshold for axial loss then occurs at r2

= - 2pe and

z + =, Using these values in £q. {3-169), the c¢nergy threshold for
axial loss occurs at Hloss = - Pge The orbits to be discussed are
all energetically confined and thus Pg < 0 and H < - pg. In
addition, to limit the discussion to a potential with a single

minimum Pg is further restricted to be less than - 3/16.

3.6.4 NEOQ Orbit Average Results

The’i(s),itﬁ)s and'§(7) path integrals are not implemented in
the NEO code. These formulas were derived to be applied to regions
determined by a third invariant of the motion,.# . The low energy
formula derived for Hill's vortex is not readily amenable to this

3éps9) and'i(pS]O’ are

application and consequently only results for
presented. The orbits are characterized by the initial positior and
velocity. The theta velocity is always selected by specifying

Pge The remaining velocities may be specified in three ways:

1. H, v
2. P Py
3. v ¥

where cos y =T'_B>(pB)-]

» v=(H- VO)/VO’ and Vq is the value of
the minimum of the potential.
As verified by earlier work[]53] when the NEQ code is run with

Pg = - 1.19 and v = .5 a stochastic orbit results. The stochastic
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nature of the orbit is evidenced in three ways. First, Fig. 3-8
shows points sampled along the orbit fill, the energetically allowed
region in r and z, Second, Fig. 3-9 shows the velocity direction at
each point is irregular. Third, Fig. 3-10 shows the surface of
section is random. The surface of section is the locus of r, Py
points at z = 0. This oroit satisfies the assumptions which were
used to derive‘i(psg). Using the x(r,z) function given by

Eq. {3-106) the orbii was followed 14,000 steps toa vield i{o) =
526.2. An additional run which followed the orbit 28,000 steps
changed this result by only .06%. Calculating'i(psg) ard 3éps10)

on a 30 x 30 mesh yields X\P%) = 470.6, and 3(P$10) = 1019, The
value of }‘psg) differs from i{o) by 11% and the value of i{ps]O)

by 94%. Reasonable agreement is obtained for'i(psg); however,
'Q(DSIO) appears to be inappropriate for this case. Apparently the
argument used to derive the orbit average }‘0) using anaiytic orbits
is not valid for the case of a stochastic orbit. This is because
non-linearities preclude the determination of an analytic orbit and
the motion can not bhe considered to be in any approximation
oscillatory. In the same way theli(psg) orbit average ignored the
constants of the motion in the oscillator case and did not agree
with'i(o), here'i(pS]O) anticipates oscillatory motion when it is
absent and thus does not agree with'i(o) when the orbiv is

stochastic. These comparisons point to the desirability of knowing

when a third constant of the motion exist.
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Figure 3-8. 0-bit positions sampled along a trajectory with
pg = - 1.19, v = .5. Contours are constant energy values.
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Figure 3-9. Velocity direction arrows at orbit positions for
pg = - 1.19, v = .5,
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Figure 3-10. Surface of section for pg = - 1,19, v = .5,
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3.6.5 Existence of Third Invariants

An early consideration of the conditions for the existence of

a third constant of the motion was undertaken by Whittaker,[]sq] He

determined the conditions for the existence of a constant of the
motion which is at most second order in the velocities, but his

[155]

methodology was incomplete. Hall corrected tinis work by noting

velocities are related by conservation of energy, and derived the

conditions for the existence of an invariant of Nth order in the
velocity.
vz, r ) = R (z,r)2™ ¢ (3-177)
Slzyry 2, v} = :E: j{: akzer)zhr
n=0 m=0

Necessary and sufficient conditions for the existence of.7N were
derived from the expression for»VN formed by substituting the
equations of motion for 7 and ¥ and using the relationship between z
and r implied by conservation of energy, The existence conditions
arise from requiring coefficients of velocity in.éN to vanish., For
this work z and r in Eq. (3-177) may alternatively refer to z and
ro- T where "o is the radial position of the pot tial minimum
defined by Eq. (3-175). 1In the foliowing discussion attention is
restricted to the invariants 4% and.ﬂh which are third and fourth
order in the velocity respectively.

The application of Hali's theory, for.aé and.a&, with the
Hill's vortex Hamiltonian reduces to finding a function of space,

¢ which satisfies a Poisson equation subject to a constraint

condition. The Poisson equation is below.



2 2
3¢+_3__Q=
ol el

(3-178)

In Eq. (3-178), T is twice the kinetic energy 2(E-V), which is only

a function of space. For.ﬂé the constraint equation is as follows.

[+5]
(=5

Q

JCERNER

The formula for.’3 in terms of velocity and ¢ is below.

3 1% t2
Sar T3E -2

For.y4 the constraint equation is as follows.

4 2 4

4 4 2
3 3 % ¢ 3 % 3¢
+
azar (ar 9z ) ( ar3az 92 araz3)

3(3 T

Q
N
%]
()
@
r\)‘ew
N—
]

2, 20\ g - 2
, .1 %y _ 2%\ 2 _ 2y, . 2%
’zl‘zFo'(a,z'az)(z A
&~ r
- 8

In Eq. (3-182), FO has the following definition,

(3-179)

(3-180)

{3-181)

(3-182)

205



206

2
- 3¢ T
T Zfdz 9z or ar - 2fdr dzar 9z

{3-183)
+F1(r) + f,l2)
where,
2 2
3 3
f,(2) - fy(r) = oa7(2% - -4fd
2 1 (az ar > azar ar
(3-184)
£
b 4fdz 9z ar

BOth.’/3 and.v& require the solution of the Poisson equation given by
Eq. (3-178). Because it is only necessary to obtain a solution ¢
which satisfies Eq. (3-178) without regard to boundary conditions, any
homogeneous solution may be added to ¢. It is then the homogeneous
solutions which allow the flexibility needed to satisfy a constraint
such as £q. (3-179) or Eq. (3-181). Since V(r,z) is a polynomial in r

and z it is represented as follows.

5 n
. -2 2 2n-2m _2m
V(r,z) = r Pg * Z; CZn-Zm,Zm r z (3-185)
n=0 m=0

From £q. (3-175) it can be shown the minimum of the potential V moves
outside the plasma, ro > 1 when Pg < - 3/2. Consequently it is
necessary to obtain coefficients for Eq. (3-185) using the Hill's
vortex formula for the region inside and outside the plasma. Because
the exterior solution b, consist of inverse powers of r and z, the
expansion in terms of r and z is designed to be accurate near the

separatrix. Inside the plasma V(r,z) is exact. To obtain the



approximate exterior V(r,z) a change of variables is made.

r=(o+ 1) %sine
z = (p+ 1)1/2 cos 8

(3-186)
p = r2 + 22 -1

From Eq. (3-186) the expression for p shows p = 0 is the location of
the separatrix and thus p serves as an expansion parameter near
the separatrix. The Hill's vortex model is written in terins of p

and 6 below.,

2*o) p <0

oo

b = sinze (p
(3-187)

~of —

v, = 5 sin’e (p + 1)(1 - (p + 1)‘3/2) 0 >0

The objective in obtaining the C coefficients for Eq. (3-185) is to
maintain continuity of value and first derivative across the

separatrix. Since it is desired for V(r,z) to be exact for p < 0,
)2 in powers of p to the same
2
)

it is necessary to expand (pe N

order as (pe - w<)2. The expression below indicates (pe N

must be expanded to at least fourth order in p.

4 2

. . 4
(pg - ¥,) =pe—%pesmze(pz+p)+%—6sme(o +203+p)

(3-188)

To aid in converting from p, 6 back to r,z coordinates by is expanded
in powers of p up to fifth order. The quantity (pe - ¢>)2 then has

sinze times powers of p up to p5 and sin49 times powers of p up to
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10

p . The ps 2

sin"6 term is replaced by an arbitrary constant times

pssinze and the pssin4e and 06 sin4e terms are replaced by

arbitrary constants times DS sin4e and pssin4e. The substitution is
then made that p = p' - 1, and the arbitrary coefficients are chosen

26 divided by p' is a constant

so the polynomial in p multiplying sin
plus a polynomial in p' and the polynomial in p multiplying

sin4e divided by (p')2 is a constant plus a polynomial in p'. The
substitution is then made, sinze = (p')-] rz, pt = r2 4+ 22 and

sin49 = (p')'2 r4. The resulting C coefficients for the V(r,z)
expression Eq. (3-185) are listed in Appendix B. Given the expansion
formula for V(r,z) then T = 2 (E-V) is known and a polynomial

solution for ¢ can be constructed.

6 n
¢=pglogr+ B Ao p2n-2m ,2n (3-189)

n=1 m=0

The An m coefficients used in Eq. (3-189) are listed in Appendix C.
t]
Additional homogeneous solutions may be added to ¢ using the
following coefficient recursion formula.
s m@n-2m- ) (e )T eme )T (3-190)
However, the upper 1imit of n = 6 in Eq. (3-189) is compatible with
the upper 1imit of n = 5 in the V(r,z) expression given by Eq.
(3-185).
As a preliminary step in constructing.ﬂé and Ja for the

Hill's vortex the following potential has been investigated.

1,2 .1 3

Vyraz) = 5 82° + 5 B(r - rg)?

+c2% (r - ro) * %»D(r - rg)” (3-191)

)
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]55], formulas for approximate constants of the

From other work[
motion h been derived for VH with arbitrary A,B,C,D values and
exact ¢ .nstants of the motion for several special choices. The
Hill's vortex, Taylor expanded about r = o and z = 0 to third

order yields the following coefficient values.

3 4 2 _
=2 (. - -
A=3 (-dpy+3rg-3r]) (3-192)
3 2 4 .. 8 6 4
B = —3 (18 Pg - 8 Pe’o + 45 ro " 36 ro* 3 ro) (3-193)
8 o
9 2 ]
C=gry (20 -1) (3-194)
3 2 6
D =-S5 (- 16 pg + 45 rg-18 ro) (3-195)
"o

The special coefficient values for constants of the motion are A

]
(o]
-

C =D for exact-Vé, C =0 for exact.7é, 6C = D for exact %,, 16A = B,
16C = D for exact »% and A =B, C = - D for approximate-Vé. From
Eq. (3-194) and Eq. (3-175) it can be shown C = 0 for Py = - 3/16.
Thus, the approximate third order fit to the Hili's vortex has an
exact constant of the motion when Pg = - 3/16. In general, for
-3/2 < Pg < - 3/16 the ratio B/A varies from 4 to 5, D/C varies
from -5 x 107> to -3 and 6C/D varies from -1.2 x 10° to -2. There

is then no apparent exact invariant and approximate invariant
formulas have been implemented for Jé and -%,. The main result of

the approximate-95 and .¢

4
having coefficients given by Eq. (3-192) is that J@ is not

invariant formulas for the VH potential
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appropriate for the Hill's vortex. This is illustrated by Figs.
3-11(a) and 3-11(b). For an orbit with Pg = - .2 and H=V,, Fig.
3-11(a) shows.ﬂé changes by 100% varying in sign and magnitude.
Figure 3-11(b) shows.ﬁh has a .6% variation and thus demonstrates
reasonable constancy. Furthermore, the surface of section plot in
Fig. 3-12 is superpose” a contour plot of &a(r, z =0, Vi
Vz(vr)) and good ay-eement is apparent. The reason behind the
constancy of J4 is understood by examining an alternate form of

the Eq. (3-181) constraint equation.

2 2
) aT /3 3 ) 3T, 9
9 [o 9l __% - - 4(£)
ar ( 3 (az ar ar’ aroz

2 3
3 ] 3 3 -
+7 Fa (——% - ——g) + 27 ) =0 (3~196)
Equation (3-196) shows when T is the sum of a function of r and a

function of z then the constraint becomes,

3 3
0= % I . _B_I g (3-197)
ar 9z

and thus the constraint equation for<9a is satisfied identically.
This means a small coupling coefficient for terms involving powers

of both r and z in V(r,z)} causes the constraint equation to be
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closer to being satisfied. In the case of.aé there is no automatic
soiution of the Eq. {3-179) constraint equation.

For the complete Hill's vortex potential oniy-VA has been
implemented as a consequence of experience gained with the
approximate VH potential. Additional motivation for the
appropriateness of.ah is provided by arrow plois of particla orbits.
Along an orbit at chosen time intervals the particle velocities may
be recorded and an arrow of fixed length plotted with direction

-1 -1

tan = (v v

" } at the corresponding coordinate position. An example

is shown in Fig. 3-13, This is an orbit with v = 391 and Pg = - .208.
The arrows in this plot indicate at orbit crossings there are four
directions of the motion., Conseguently the constant of the motion
must be at least fourth order in the velocity. This fact is related
to the invariance of vneine for n different values of 6 from zero to
2n. For n = 4 there are ther four different directions allowed which
leave (vZ + 9 Vr)4 invariant.

The previously derived ¢ formula given by Eq. (3-189) <an be
seen to have six arbitrary coefficients A],], A2,2’ A3,3, A4,4, A5’5,
A6,6' Because all other coefficients have been selected so the
Poisson equation is satisfied, these six coefficients may be chosen
to satisfy the constraint equation for Jh. A substitution of ¢ into
the.yh constraint equation yields a polynomial in r and z which has
more than six terms. It is not then possible to satisfy the
constraint equation with only six arbitrary coefficients. Adding
more homogeneous solutions to ¢ does not .1p since additional

homogeneous solutions are of higher order and thus add rore terms
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than can be eliminated. The approach that has been implemented to
achieve the best.ya jnvariant is to expand the constraint equation

polynomial, written in terms of r“ and 22, about r2 = rg and

22 = 0. It js then possible to use the six arbitrary coefficients to
elimirate the constant, linear and quadratic terms in the expansion.
This procedure has been accomplished using th» REDUCE['SGJ algebraic
manipulation program. REDUCE generates subroutines which compute
the coefficients of a system of six equations that are liriear in the
six arbitrary coefficients. A standard decomposition of a 6 by 6
matrix into the usual LU product then yields the unknown caefficients.
The result is a formula for.ﬂh for which ¢ satisfies the Poisson
equation and the constraint equatinn is satisficd to second order
near r2 = rg and z = 0. The constraint equation may be guaranteed
to higher order by adding more homogeneous solutions. In general,
to go from satisfying the cons'raint equation at nth order to n + 1
order requires adding n + 1 homogeneous solutions to ¢. The actual
.yh formula with the constraint equation satisfied to second order

is many pages long and thus not written here. It is however known
and is available to be used to calculate a change of variables
Jacobian which could be implemented to produce an orbit average
formula particular to-ﬂh. Such a formula would however only apply
to low energy. Using the-VA formula with the constraint equation
guaranteed to second order for this purpose is better than using the
Ay formula based on the Yy potertial with fitted Hill's vortex

coefficients. Low energy H =\ orbits show the former formuia is

superior. An orbit with Py = - .2, v = .01 had a variation of Tess
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than a percent for the former formula, but a variation greater than
5% in the latter case.

Adding in more homogeneous solutions better satisfies the
constraint equation, however this process is at best asymptotic.
Otherwise in the case of « potential having stochastic orbits it
would be possible to construct an invariant. The term stochastic
here refers to an orbit for which correlations diminish in time and

neighboring orbits diverge exponentially.

3.6.6 Investigation of Conditions for Stochasticity

Complementary to the effort directed at constructing constants
of the motion a consideration has been given to the conditions under
which an orbit is stochastic. One means of examining stochasticity

[157] and express the Hamiltonian

is to transform to canonical variables
in terms of a function only of momenta and a perturbing function
which may depend on all coordinates.[]58’159] The reason for this

approach is the resulting form of the equations of moiion.

Ho= 6y(P,) + € G)(Q,P)) (3-198)
. %,

P'I = - € 'm—]- (3-]99)
. a‘]

Q = L (3-200)

Since € is a small parameter Eq. (3-199) implies Pi is almost
constant, If e = 0 then the particle orbit is a point in Pi

momenta space. For non-zero ¢ the orbit tends to fluctuate near the



€ = 0 point. When the small part of the Hamiltonian G2 can be

written as follows,

6, =Z 6 (P5) sin (KQp + 20,) (3-201)
T

then the fluctuations can be large if the argument of the sine is
slowly varying, or when the resonance condition ké] + sz =0 is
satisfied. The magnitude of the fluctuation near the resonance is
limited because d depends on P and thus the resonance condition is
detuned as P changes. The fluctuation magnitude or resonance width

£159] from a pendulum Hamiltonian obtained

is approximated by Chirikov
by expanding H about a resonance and then only keeping the resonant
term in GZ' The resonance width is then taken to be the momentum
range between the separatrix which separates oscillating and

circulating orbits.

N 1/2
P = (e 6 ,) (3-202)

The momenta and hence the particle orbit behaves stochastically when

[160-163] the

the widths of two resonances overlap. In other work
Hamiltonian given by Eq. (3-198) has an e independent of P and (Q
and may therefore be used to determine a stochasticity th~eshold.
For example in the work of Cohen,[]60] the basic motion is axial
and radial bouncing and the perturbation is the effect of a
quadrupole field. The parameter ¢ then measures the strength of

the quadrupole field and indicates when this effect leads to

stochasticity. In the case of Hill's vortex there is no independent

217
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€ parameter. The origin of stcchastic behavior for Hill's voriex is
understood by examining a canonical transformation of a separable
Hamiltonian. In a separable two dimensional Hamiltonian the
potential consist of two functions which each only depend on one

coordinate,

21,2 2 .
H = 7 (pr + P, + G3(r) + G4(Z)) (3-203)
In principle the solution of the equations of motion corresponding
to Eg. (3-203) can be written as a quadrature by introducing the

following generating funCLion.[]57]

Far) = Jar (20, - 65(r))"/2
(3-204)

+ Jaz (20, - 6(2))"/?

The generating function in Eq. (3-204) consist of old coordinates

and new momenta and the following relations thus obtain,

3
T

(20, - GB(r))]/Z (3-205)

o
N
1
Q)
N

1/2 (3-206)

"
—_
~n
o
n
t
o
F-Y
—
N
~—
~—

Jar (20, - 6007172 (3-207)
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Q T e
2 8P2

Jaz (2p, - 6, (2))7172 (3-208)

Substituting Eqs. (3-205) and (3-206) into Egq. (3-203) yields,

HePy+P, (3-209)

and the new Hamiltonian does not depend on coordinates., Thus, Py and
P2 are constants and pi + G, and pi + Gy are also constant.

As usual é = 3gH/3P so Q] =t + C] and 02 =t + C2, and r(t) and z(t)
are implicitly defined by Eqs. (3-207) and (3-208). In the case of
Hi11's vortex there are terms in Eq. (3-185) which are products of
powers of r and z, and the Hamiltonian can not be written as Eq.
(3-203). It is then these coupling terms which prevent an obvious
canonical transformation resulting in a Hamiltonian depending only
on momenta, which would then be constant. In general, methods exist
to transform a Hamiltonian to normal form. In this case the
Hamiltonian is only a function of actions which are n(P% + Q?).
Birkhoff[]sq] has derived a procedure which cast a Hamiltonian inte
normal form to a given order in the new canonical variables, As the
order goes to infinity the normal form is obtained; however, there
are questions of convergence of the procedure. Also Birkhoff
requires the frequencies of the linearized motion to be

65] a normalization method

incommensurate. In more recent work[]
has been derived which allows commcnsurate freguencies, including

zero frequency, but even obtaining normal form at small order can
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require an immense amount of algebra. Typically, algebraic
operstions are done on a computer.

An alternative approach is to seek a generating function which
transforms the Hamiltonian to the form of Eq. (3-198), with G2
similar to that of Eq. (3-201). The Hamiltonian valid for both

and ¢, with the appropriate Cn m coefficients is as follows.
*

] 2, .1 =2 2
H=g(pf+pz)+vgr (pg = ¥)
(3-210)
Sl ey el 2] . & c 2n-2m_2m
'7(pr P, 7" Pg*7 Z Z 2n-2m,2m " z
n=1 m=0

The goal of the canonical trarsformation is to obtain new momenta or

actions which account for the zero order particle motion. Thus H is
considered in an expansion about r2 = rg and 22 = 0. From Eq. (3-210)

it can ve seen the r'2 2 term, which is present for all magnetic

Pe
fields, causes the expansion to have an infinite number of terms.
The lowest order terms in the expansion are 40?(r2 - r%) and
48222 where,
of = %(ﬂ’—z-) (3-211)
/2.2
0
2 _1/73H
B =z<a—z-\' (3-212)
3z /22=0

A generating function is then constructed similar to Eq. (3-204)

taking account of all contributions from r'z p% and considering
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only 4a2(r2 - r%) and 482 22,
F(q.P) = ﬁr (80°P, - 4alr 2 By - 4a2r2)”2
N /dz (8877, - 43222)]/2 (3-213)
where,
Preal P (3-214)
P, = B! P, (3-215)
Py = p%/(‘laz) (3-216)

The canonical variables are P] and P2, and the barred variables
'5], ?é are convenient normalizations, The following definitions were

obtained similar to the manner in which Egqs. (3-205) to (3-208) were

derived.
Q, = sin”! ((r2 - P (P - ae)'”z) (3-217)
Py= (ol + 462r2 By * 46°r?) /(8a) (3-218)
Q, = 2 sin”! (z (2?2)‘”2) (3-219)
P, = (pi + 48%2%) /(8g) (3-220)
P2 e L (Ff - Ee)]/z sin Q (3-221)
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22 = ﬁé (1 - cos 02)
The Hamiltonian which results from substituting Eq. (3-217) to Eq.
(3-222) for Pps Pys r2 and 22 is in Appendix D. Considering as
before the resonance condition kQ] + 2@2 = 0 the relevant (k, &)
values are (1,1), (1, =1), (2,1), (2, -1), (1,2}, (1, -2), (1,0),
and (0,1). The zero order Hamiltonian HO‘ is assumed to consist
of terms that only depend on momenta and are no higher power than
cubic. Inside the plasma region this is exact; however, outside the

plasma this is an approximation. The resulting coordinate time

derivatives are below.

aH
0
Q] -

Ql—

3Py

) 2 15 2 3 _
=7 (Lot 8 * g 0o Pp -3 Ce,0 P

13 15 - -
*a (307 Cg0 PPy

1 3 —
s (G -5 G o PeIP, (3-223)
35 35 _
* 72 7 %50 - T Cyg,0 Pg)P
13 9 — 2
* 75 (2 80,0 =7 C6,a PP,

(3-222)



1.3 15 . - =
5 3 C 0 -7 Cg,oPe)PP;
.o

1 Mg
“TE—

Py
B 2 3 2 1 _
=75 (Cg o * 48 + 5 Cg 0Py -7 0q 2Py

(3-224)

3 15 — o2
Y78 3G, -7 Cg,0 PelPy

—

1,3 -
*5 & Ca 7%, 0P

The resonance condition determines the resonance curves in momentum
space. The excursions about the resonance curves are obtained by
expanding H0 about a harmonic oscillator at position P]O' PZO'

The resonance condition and h], hz, h3, h4, h5 are written out in

Appendix E. The expanded H0 is then below.

-p

+ h 20)

(P

H 2

+ h (P, - P

0 = MolPrgs Pyg) + Py = Pyg) + 1y

2 2
¥ 3Py = Pyg) (Py = Pog) + hy(Py - Pyg)™ + g

223
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Each resonance is examined separately by considering the Hamiltonian
to consist of H0 and one trigonometric term. A canonical
transformation {s made to make the argument of the trigonometric
function a single variable. The momentum conjugate to the cyclic
angle is then constant. The resonance width is then given by the
separatrix in the pendulum Hamiltonian. For the general sin (kQ] +
202) term the resonance condition is as previously mentioned kQ] +

202 = 0 and the following generating function is used to make Q2

cyclic.
F(Qsm) = (kQy * RQ,)Ty + Q4P + Qplm, + Pog) (3-226)

The transformed coordinates are below,

Qg = k0y *+2Q,

0 = O,

my = (Py = Pyl

T, = Py - Pog = BBy - P/ (3-227)

Considering H0 expanded about P]O’ PZO’ neglecting constants and

other trigonometric terms the Hamiltonian is as follows.

_ 2 2,2
H = (kh] + th)n] + (h3k1 + h4k + hsm )n]

+ sz sin Qi (3-228)

The coefficient le is the coefficient of sin (kQ] + 202) written in

Appendix D, expressed in terms of the expansion position variables



P]O’ PZO' The resonance width is then obtained from the followirg

relations.

1/2
- 1/2 2 2
1S P]O t k(Zsz) (h3k£ + h4k + hsk )

172 . 2 V2

Py = on + E(Zka (h3k2 t okt F ket )

The above formulas and the relevant resonance conditions for the
Hill's vortex have been plotted as a function of Pg- For -.202 <
Pg < 0 there are three resonance conditions which are satisfied,

(1, -1, (2,1) and (1, -2). For -.325 < Pg < -.202 there are two
resonance conditions satisfied, (1, -1) and (1, -2). For Pg < -.325
there is one resonance condition satisfied, (1, -2). The plots of
resonance conditions show ranges of P] and P2 which correspond to
overlap and thus an orbit which has these values would be predicted
to exhibit stochastic behavior. The resonance condition predictions
have been explored with corresponding orbits in the NEQO code. It
was found orbits that exhibited excurions between three resonances
appeared to be regular. Also, no stochastic behavior was evident in
surface of section plots. These results occurred for P] > 1, P2

> 1 and consequently in this range the underlying assumption that
le is small compared to HO is violated. An alternate symptom that
an assumption has been violated is that the resonance widths are of
the same order as P]O’ P20' The difficulty stems from the non-
constancy of P] and P2 which indicates these variables are not

adequately describing the zero order motion. In a different regime
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where P] < .11 and P2 < .1, the resonance widths are smaller than
P]O’ PZO' The resonance curves for Py = -.196 and Pg = -.202 ire
shown in Figs. 3-14 and 3-15 respectively. At Pg = -.196, there

are three resonances and for P2 =0, Py = .1 the (1, -1) and (2, -1)
branches are nearby. At Pg = -.202, the (2, -1) resonance condition
is not satisfied and for P, = 0, Py & .1 there is only the (1, -1)
resonance. To investigate the effect of the resonances two orbits
were followed. The first at Pg = -.196 and the secend at Pg = -.202.
In each case the energy was chosen as 6% of the axial loss value.
For Pg = -.196, .098 < P] <.l, .01 < P2 < .045. For Pg = -.202,

< ,037. 1n both cases it can be seen P]

1 <P .11, .01 <P

1< 2
is nearly a constant. The surface of section v versus r at z = 0 is
qualitatively different for the two orbits. The Pg = -.196 surface
of section shown in Fig. 3-16 exhibits rippling and begins to show
the breakup of a smooth structure. This is the case where the orbit
has Py, P, values that intersect two resonance curves. In Fig. 3-17
for Py = -.202, the orbit is only under the influence of one
resonance and the surface of section is regular and very smooth. A
change of only 3% in the value of Pg results in an irregular surface
of section. The small Pg change brings in another resonance curve
and this is responsible for the irregular surface of section. At
small values of P], P2 the interaction of several resonances with an
orbit causes surface of section jrregularity; however, the total
lack of structure characteristic of stochasticity has not been
observed, At large values of P], P2 where the orbits are stochastic,
this implementation of resonance overlap theory does not apply since as

discussed previously the coordinates are inappropriate in this regime.
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CHAPTER 4

LARGE LARMOR RADIUS KINETIC EQUATION MODEL

4,1 Introduction

The large Larmor radius effects are incorporated in the plasma
description by considering the electrons as an inertialess fluid and
modeling the ions with a distribution function. The electrons are
governed by a continuity and momentum equation, and quasineutrality
is assumed. The ion distribution function is required to satisfy a
kinetic equation. Due to the complexity of the problem axisymmetry
is assumec and only a radial spatial variation is allowed. The
formulation is thus one dimensional.

The plasma is subject to a magnetic field obtained from the
cylindrical coordinate theta component of the vector potential. This
restricts the magnetic field to be poloidal and in one dimension
there is only a BZ magnetic field. The vector potential is

obtained by solving Ampere's law with a current which is the
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difference between the theta veiocity moment of the ion distribution
function and the density times the theta electron fluid velocity.

- The kinetic equation is formulated in terms of a Poisson
bracket with the system Hamiltonian., The Hamiltonian and the ion
distribution function are expanded using coilision frequency as an
expansion parameter. By applying the orbit average to the hierarchy
of resulting equations a kinetic equation for the zero order ion
distribution function is obtained. This procedure is similar to the
method used to derive neoclassical diffusion however, the actual
orbit has been averaged rather than just the gyro-orbit.

The time evolution of the zero order ion distribution function
requires an initial condition. To generate self-consistent electric
and magnetic fields, the electron equations have been solved in
conjunction with an idealized ion distribution function. Assumptions
have been made to generate completely analytic self-consistent
electric and magnetic fields. More realism is possible by relaxing
assumptions and proceeding with a numerical solution however, the
analytic solution shows the effect of the radial electron velocity

and the resulting electric and magnetic fields.

4.2 Analytic Electric and Magnetic Fields

The off axis tangential neutral beam injection experiments in
2XI1IB did not achieve field reversal as discussed in Chapter 1. It
was proposed that electron dynamics were responsible for this result.
The hypothesis was the electrons cancelled the intended dominant ion

current by electron ion drag and drifts caused by radial electric
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fields. A model to study the electron effects was proposed by
Baldwin and Rensink[?66] and forms the basis of the electron model

in this analysis. Their electron model consists of quasineautrality,

0= :E: n:Z, - n (4-1)
3 JJ

e

and the electron momentum equation,

a7 -1
0=-e(E+c Ve X B) - ng Vv neTe
-+ -+
-] 2
* MVaile :%: anj (Vj - ve) (4-2)

where j is the ion species subscript, e is the magnitude of the
charge of the electron, subscript e refers to electrons, Zj is the
jon charge state and the electron ion collision frequency is defined

below.
-1
) 172 _ 4 1/2 .3/2 i
vgy = 4n, 2% ne x(ame 138) (4-3)

In Eq, (4-3), A is the coulomb logarithm given by Eq. (2-47). The

collision term in Eq. (4-2) is treated as linear in the velocity

difference. This approximation has been derived by Braginskii[167]

by expanding relative electron ion velocity in terms of ion velocity

in the collision operataor, neglecting terms of order memgl, and

approximating the electron distribution as a perturbed maxwellian.

The other feature of Eq. (4-2) is the absence of the medve/dt inertia

term, which implies the electron mass is assumed small or the
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electron response time is instantaneous. This is the inertialess
fluid approximation.
An additional equation beyond the Baldwin, Rensink model which

applies to the electrons is the continuity equation.

an -+
§EE + Ve (ny,) = s(e) (4-4)

f
In Eg. (4-4) S‘e) is the electron source function.
Maxwell's equations without displacement current are used to

solve for E and B. The magnetic field only has a poloidal component.

->

B =W x Vo (4-5)
. _ 13y

B = - ¥ % (4-6)
13

B, = v 3% (4-7)

In Eq. (4-5) as before ¥ = rAe where Ae is the theta component of
the vector potential. Ampere's law neglecting displacement current

then yields the equation below.

>
x (VY x v8) = anc ! g (4-8)
Faraday's law yields an electric field of the following form,

E=-c v —g:‘f - % (4-9)

where ¢ is the electric field scalar potentjal. The electron

momentum equation, Eq. (4-2) is written in terms of resistivity n and



>
current using Eq. (4-9) for E.

_ -1 38y N -1
0=c¢ S VOt Vp - ¢ vy x 8 - (ene) V'neTe
> >
¥ n(d - JOhkawa) (4-10)

In Eq. (4-10) the following definitions are used,

'S > 'S

J=e ,]Z nJ.vJ.ZJ. - eneve

> >

Jnkawa . o S o s (4-12)

T 3" j

n=myv_ . <Z> (e2n )'] (4-13)
eei e

2> =l 2022 (4-14)

e 5N

In a steady state, axisymmetric, one dimensional system the
electrons are modeled by six equations, with six unknowns Ngs
S(e), Vv, ¢, Vper Vgeo The electron temperature Te is actually
specified by a heat or energy equation, however for the purposes of
this model Te is given an assumed functional form or used as a free
parameter. Introducing another equation would bring in the heat
flux which would then have to have some assumed form. The ion

quantities in the six equations, such as n., v are assumed to

i* Yric Ve
be obtained from moments of a known ijon distribution function. The
electron density is defined in terms of ion densitics and charge

states by the quasineutrality condition, Eq. (4-1).

(4-11)



236

n_= :E: n.z. (4-15)

The continuity equation, £q. (4-4) in steady state is used as a

(e)

means of determining S after NeVee is known, This is actually a

consistency condition because usually S(e) is defined initially and
NeVpe is determined. The equation below defines a source function

which must have existed to generate the n which is really

e're
constrained by the choice of ion distribution function.

=F]a_. (rn_v_ ) (4-16)
The theta component of Ampere's Yaw in Eq. (4-8) is used to determine
.

%&) = - 4nc”! Jg (4-17)

S5|—

&
ar
The radial component of the electron momentum equation, Eq. (4-10)

provides an equation for ¢.

. (rc)_] v, W, (en

-1 3
ar fe or ) ar (neTe)

e

Ohkawa !
-n (Jr - Jr ) {4-18)

The radial electron velocity Ve is obtained from a rearrangement of

the radial component of Ampere's law, Eq. (4-19).

J, =0 (4-19)

(4-20)



The theta electron velocity results from the theta component of the

electron momentum equation,

3 3 Ohkawa
§¥ * Vo 5%-: - ren (Je - Je ) (4-21)
written in steady state.
_ -1 3y Ohkawa
Je == Vo (rcn) T Je (4-22)

The first term on the right side of Eq. (4-22) is analogous to the

[168]

bootstrap current in tokamak theory. The second term is the

[169]

Ohkawa current which was first studied in an application

related to neutral beam injection of tokamaks. The Ohkawa current

is relevant in this application since Eq. (4-22) shows near the field

null (ay/ar = 0} Je vanishes without an Ohkawa current. From Eq.
(4-12}) it can be seen Jghkawa is zero if all ion species have the
same average velocity or charge state. Thus, it is necessary to
have ion species of different charge states or average velocities to
maintain a current at the field null, Baldwin and Rensink argue
that an assumed field variation of B = pa, gives Je = p“']

from Ampere's law where p is distance from the field null and Eq.
- p—] if J%hkawa

(4-22) then implies v = 0. It is then necessary

re
to have an Ohkawa current to avoid a singular electron velcoity at
the field null. They further conclude from the diffusion character
of Eq. (4-21) an initially nonreversed field can not become field
reversed without an Ohkawa current. Substituting Eq. (4-11) and Eq.

(4-12) into Eq. (4-22) yields the equation for Vger

237



238

_ -1 -1 3y 2 -1 .
Voe = (ene) (vre(rcn) &t e JZ njvejzj <Z> ) (4-23)

It can be seen from Eq. (4-23) that near the field null Voe is almost
totally determined by the second term on the right side. From Eq.

(4-22) this is a statement that the current J9 is essentially equal
Oht.awa
to J0 .

4.2,1 Zero Radial Electron Velocity

The condition Jg = Jg“ka“’a is satisfied at the field null.

Assuming Vrj = 0 then from Eq. {4-20), Ve © 0 and Je

_ 0hkawa
= Je

everywhere. Any function of the constants of the motion satisfies
the Vlasov equation and as shown in a later section it is thus
reasonable to assume the ion distribution function depends on H,
Pg and P,- The Hamiltonian H is even in P, SO the Pp velocity
moment of the jon distribution function is zero and v ; = 0. The

J

radral electron velocity is thus set to zero and Voo is obtained from

Eq. (4-23), substituting the definition of <Z> from Eq. (4-14).

-1
2 2
= .25 VL2 4-24
o (T4 T o
The condition Vej 0 also changes Eq. (4-18) as follows.
QL eyl W 13 )
r {rc) Voe 3 * (ene) e (neTe) {4-25)

Solving Eq. (4-25) requires the jon distribution fj to obtain

njvej. It is then possible to calculate Je and solve for ¢ by Eq.

{4-17). In general Je depends on ¢ and ¢, and Eq. (4-25) must be



solved simultaneously with Eq. (4-17). The coupling between these

(170]

equations is avoided using a formulation by Marx as extended by

Post.[]7]] The distribution function is assumed to be a delta

function in H and Py and constant in Py

- -1
fj = ROan ("mj) 8(H - HOj) J (pB - poj) (4-26)

In Eq. (4-26) RO is the position where density ng; oceurs. The

density is obtained from a velocity space integration over fj.
= t -
n, f fJ. dp, dpy dp, (4-27)
In Eq. (4-27),
Pg = vy

= r" (py - erc']w) (4-28)

where Pg is the usual canonical momentum. To integrate fj which is

a function of H, Pgs P, @ change of variables Jacobian is used.

a(Hi pe) _’I
m = mj r pr (4-29)

Expressing Py in terms of H, Pgs P, using Eq. (3-21), and
substituting in Eq. (4-27) yields the following equation.

o -]
ng=room, ./”(

fidHdpg dp,

-2 2)T/2

2
-1 )
2 m(H - eZ;0) -1 (pe -el;e ) -,

(4-30)
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Let,
1/2
= (2 m (HOJ - er¢)) (4-31)

and substituting Ey. (4-26) in Eq. (4-30) yields,

-1/2
nj = Noj Ro(nr)']f dpz(ag. - (pOJ- - eZJ.c']w) - pg)

"5 Ro ¥ -1 (4-32)

In Eq. (4-32) the Timits of integration are
2 2 -1.1241/2
t (o - -V .
£ (ozJ (poJ eZ;c V)
The current for species j is obtained from a velocity space

inteyration over vefj.

‘Jej = eZJ. fvefj dp, dpj dp, (4-33)

Changing variables to H, Pg> P, yields,

Joj * -2.[ (

- ezyc” ly) f; dHdpg dp,

i 2\172
2m,(H - eZ $) -~ r2 (pe 5€ w) )

-1
_ 2 A _
- eZyng R (mjr ) (pgs = €27 W) (4-34)

From Je = Jghkawa and Eq. (4-12) with Eq. {4-34) the current is

below.

:Z: eZ.n (m rz)-] { - el c'lw) (1 - Z.<Z>) (4-35)
ofo Poj 3 J



The Post[]7]] result solved for ¥ with no electric field ¢ = 0.
Comparing the current in the work of Post with Eq. (4-35) it can be
seen the functional dependence is identical and only constant

factors differ. Thus, the previous ¢ = 0 solutions obtained for ¥
by Post are still applicable with modified constants for this case
which includes an electric field. Because £q. (4-35) does not

depend on ¢, Eq. (4-17) used to solve for ¢ is uncoupled from

£Eq. (4-25) used to solve for ¢. Thus, Yy may be assumed to be a known
function of r and Eg. (4-25) may be integrated after obtaining an

expression for v

e
anzJ? = gyl s(2) (4-36)
; "3% Yoy 7 ZJ: 1239,

- r? (ergst?) - crgsSyyst?) (8-37)
(re) ! v = 72 (59 - 5By (4-38)

The definition of the s¢1) constants follow.

(0} . (S(z)c)-l JE mJ._l z§ Ro3 ™o; (3-39)
s(1) . ZJ: o524 (8-40)
s(2) . ZJ: n0j2§ (3-41)
s(3) 2 eV 20 o2, (3-42)

24
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s(4) - 5(3),4(2) (4-43)
() <o s21c?)” Z 3 g g0y (4-44)
s(6) = 5n ? noga; (1 - 1 <z>‘]) (8-45)
> = s@lysth (4-46)

Substituting Eq. (4-38) and Eq. (4-32) into Eq. (4-25) yields the

following equation.

i- S(O)( (r~ \p) + 2r \p) (5) (ar (.5r-'2\p2) + r'3¢2)

(e
+ e 5;— -, (4-47)

Integrating Eq. (4-47) gives an expression for ¢.

$ = 5(0) Y‘-Zw - 558 r—2w2 vl T

250 f +3y ar - s&) [ 1732 gr

- e']fr'] T, dr (4-48)

Assuming a radial variation of Te and using the Post formulas for ¢

e

+

it is possible to calculate ¢. A numerical solution is possible,
however analytic progress is inhibited since ¥ is expressed in terms
of modified Bessel functions and it is thus necessary to integrate
products of modified Bessel functions. It is however possible to

gain information from Eq. (4-48) concerning the cross field variation



of density. Assume To is constant and rewrite Eq. (4-48).

-1
e

+ ZS(O)T;] efq) w3 dr - S(S)T'e]feq)z w3 ar (4-49)

2 -2

1o ses(502 -2 g

e T;] = gnon+ es {0y r2 T,

The magnitude of the various terms can be estimated for typical
parameters. The first teri on the right side of Eq. (4-49) is of
the Boltzmann form and leads to the relationship n = "o ee¢/Te.

The scaling of the first term is approximately 10. The other four
terms on the right side of Eq. (4-49) are a consequence of the v x B
term in the momentum equation. The second and fourth terms scale as
2

. - s e 2 2
epgl (L mjc Te) 7. Approximating ¢ as BL", Te as mjv /3 (Te/Ti)

and Pg as mjv L+ eBLz/c yields the following result,
epew(rzmjc Te)'] = (L + Lza;]) 3 a;] (Ti/Te) (4-50)

where a; is ion gyroradius and L is a scale length., Usually a3 is
half or a third L so the second and fourth terms are about 20
Ti/Te‘ For ions one to ten times hotter than electrons these terms

are .7 to 200 times larger than the Boltzmann term. The third and

fifth term scale as ezwz (mc2L2Te)']. Using the previous assumptions
yields the following result.
&2y’ (mc2L2T )-] =3 %2 T T (4-51)
e a5 Yille -

The scaling in Eq. (4-51) is the same as Eq. (4-50) so again the

tnird and fifth terms are 20 to 200 times larger than the Boltzmann
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term. Thus, it is inappropriate to assume the Boltzmann relationship
for density across the magnetic field.

The formula in Eq. (4-48) is not tractable analytically using
the ¢ from the Post solution. Also as can be seen from Eq. (4-32)
the density has a singularity at r = 0. To resolve these difficulties
an alteritate ion distribution function has been devised,

fy=cnp; (em(y, + wc)mjzj)"' S(py) 6 (H - HOJ-) (Pg+ eZJ-C'1wC)

(4-52)

In Eq. {4-52), an is the density at ¢ = ¥y which is the magnetic
axis positicn. It follows from the definition of B, that Yy < 0 and
wc is a constant chosen less than zero so wo + wc < 0. Consequently
to maintain a positive fj it is necessary to require Py +

erc']\pc < 0. This restricts the class of particles mainly to those
which are absolutely confined or confined by the orbit potential as
explained in Chapter three. Using formulas given by Eq. (4-28), Eq.

(4-30), and Eq. (4-31) yields the followine formula for the density.

-1,
m.v,r + erc (¢ + wc)) rd (mjve)

= ¢n n(¢+¢.ezr"] (39
J 0j 0" Tt ( 2 2_2>1/Z
°j 1 - mjve“j

3
I

ny (6 + 4c) (ug + u)” (a-53)

In Chapter 2 in the magnetohydrodynamic 1imit of small Larmor radius
it was found pressure and density were functions of y. In the ign
distribution function description which allows large Larmor radius

particles it is unusual to obtain a result like Eq. (4-53). The
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current for species j is obtained in a manner similar to the

derivation of Eq. (4-34),

m. ve(m vor + eZJc (w b r d(mjve)
a1 - 08 <)
J 9 J

Can (‘bo + wc)-] (HOJ - EZ‘I].d))r (4-54)

In contrast to Fq. (4-34), Jej in Eq. (4-54) depends on ¢ which
has the potential of coupling the equations used to solve for § and
¢. From J6 = Jghkawa and Eq. (4-12) with Eq. (4-54) the expression

for Je is derived,

()
1

= cr(yg + wc)" Z (Hoj - eZy0) (1 - Z; >l
N

2¢5(8) (n(yy + v )7 ¥ (4-55)
As a result of the following relationship there is no coupling.

-1 .
Z nols (1-25<27) =0 (4-56)

Using Eq. (4-53) and Eg. (4-54) the relationships below are derived.

2 _ {2) -1
%: 02 = 59 ug et o+ ) (4-57)
2 -1
; anJ.veJ. = JZ e Zj Jej
= re Gy + 07t (50 - s(By) (4-58)

(re)™ vge = b+ u )™ 51V g (4-59)



Substituting Eg. (4-59) and Eg. {4-53) into Eq. (4-25) yields the

following equation.

o ey)? W o e )T & v g1, (4-60)

From the form of Eq. (4-60) if T, is assumed to be a function of
then ¢ may be assumed to be a function of Y and the r derivatives are

changed to ¥ derivatives.

ey W) Bt @6

Using ¢ + dh as an integrating factor and then integrating Eq. (4-61)

yields an expression for ¢.

o= sy ey e, (4-62)

The solution in Eq. (4-62) is for the plasma region r < Rsep’ inside

of the separatrix. Outside the plasma ¢ satisfies Laplace's

equation.

12 (r‘ %;R) =0 (4-63)

The general solution of Eq. (4-63) has two constants cp1, cpz.

o(r >R ) = ¢

b D] * Cpo anr (4-64)

The constants cp], cp2 are chosen for continuity of ¢ and a¢/ar

at r = RSep or if the plasma is in a conductor the constants can be

chosen for the potential value at the conductor and at r = Rsep'
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The magnetic field and vy are obtained from Eq. (4-17) with
Jg given by Eq. (4-55).
3 (1 2&) R A (4-65)

ar \r ar

The solution of Eq. (4-65) introduces an arbitrary constant BO'
-1 4
b= 58yt - s (g e gt Y (4-66)

For consistency it is necessary that ¢ have the value ¥ at the
magnetic axis o For 5(6) >0 and by * ¥, < 0 the following

formula is obtained.
rO = (‘BO (‘IJO + \pc)/(q- 5(6)))]/2 (4‘67)
The constant B0 is then determined,
1/2
By = 4(5(6) Wy (b * wc)") (4-68)

Substituting Eq. (4-68) into Eq. (4-66) gives the ¢ solution,

b =2 (s + wc)")]/z r2 =58 gy e w7t (4-69)
The exterior or vacuum solution satisfies
() -0 (=19
which has a solution with two constants.
Yyac = &1 Y C2r2 (4-71)
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Requiring continuity of ¢ and 3y/3r at r = Rsep determines ¢ and

c2.
1/2
llJVac = 2(5(6) Yo N’O + wc)-]> (Y'2 - ZF%) (4-72)

From Eq. (4-69) and $(R__) = 0, and Eq. (4-67) and Eq. {4-68) the

sep
following relations are obtained

1/4
(votvg * b,)/5)) (4-73)

-
o
"

R =22 (4-74)

sep 0

The total current per unit length in amps is obtained by multiplyine

the right side of Eq. (4-65) by -10(4w)” ' and integrating from 0 to

v o=

Rsep*

1/2

- 20 i{_fi_)_djg (4-75)
total 1 Yo + ¥ -

4,2.2 Finite Radial Eiectron Velocity

The self consistent ¢ and Yy solutions in Eg. (4-62) and Eq.

(4-69) were derived assuming Je = Jghkawa- To examine the region

of validity of this assumption it is necessary to estimate the
deviation of Je from Jghkawa_ An approximate formula for Vee has

been derived in other work[]72] related to the 2XIIB experiment.

Ve = 300 (r - o) (4-76)

The speed of light times resistivity is below with Te in eV.



3 -3/2

cn = 4.2 x 107 T, ° em-statohm {4-77)

The current difference is obtained from Eq. (4-22), using Eq. {4-77)

for cn, and Eq. (4-76) for Ve

Ohk 4 3/2
oML g = 7 x 10% (r - vg) BT, / (4-78)

The right side of Eg. (4-65) multiplied by c(4n)'] gives an estimate

of Jghkawa in term, of density and energy in eV.

ggnkawa - 4.8 x 107 nH (4-79)
Assuming a magnetic field of 2 kilogauss, a product of nH of 1016 and

r-rg= 10 gives the following relationship.

. JOhkawa Ohkawa _ 015 Te3/2 (4-8C)

(JG ) )/JG

Thus the Je = Jghkawa results apply when the electron temperature
is small. At 5 eV, Eq. (4-80) gives a value of .17 and at 100 eV, a
value of 15.

Allowing a finite Vre requires the ion distribution function
to have a nonzero radial velocity moment. This means fj in Eq.
(4-52) must have a correction added to it which yields a finite
v_.. This correction is small and it is assumed Eq. (4-20) is

rJ
satisfied, but the Vrj = 0 formula is used for ”j'
The theta electron velocity is obtained from £q. (4-23) which
now includes the Vee term. The equation for ¢ is obtained by

substituting Eq. (4-23) into Eq. (4-18).
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1&
"

-1 -1 -1 2
5 = B,leng) (vreBZ(cne) + <> ;"j"ejZJ)

tne <l 22 (v - v..) (4-81)

The previous equation for ¢, Eq. (4-65) is modified by a term linear

inv_ .,
" Vee

38 -1
L= - gs{6) (g + ¢c)" o 4nvreﬁz(nc2) (4-82)

Assuming Vee is a known function of r, the solution to Eq. (4-82) may

be written as two quadratures.

2,23 -
S (i) ar 0 fam (D)7 ar
re dr

- (6) -1
BZ = - 85 (wo + lI)c) e

2,-1
f4nvre(nc ) dr

- By € (4-83)

Further progress toward an analytic solution requires a model for

Te(r) and vre(r). The electron temperature is assumed to be

constant. The equilibration around a flux surface is much more
rapid than across a flux surface so the electrons are lost by moving
away from the magnetic axis. A step model is the first approximation

to this behavior and thus the radizl electron velocity is Vre = Yo

when BZ > 0 and Vee 7 Vg when BZ < 0.



In the remainder of this section subscript - denotes below and
subscript + denotes above the magnetic axis or field null, The

exponent integral in Eq. (4-83) has twe formulas,

1 -ar r<rg
"
f4"Vre (nc ) dr = { (4-84)
ar - Zaro r>ry
where a is the absolute value of 4nv0(nc2)']. Substituting Eq.
{4-84) into Eq. {4-83) gives the magnetic field solution,
6 A, a1 .2, o) -1
Bz- = - 85( ) (wo + wc) (ra -a“+e (a © - roo 1)
(4-85)
6 o, alrerg) -1 -2
By =- 858 (u v (e O (aZerge) - ra! - 07

(4-86)

It is necessary that BZ_(ro) = 0 and this condition expresses the
arbitrary B,, constant in Eq. (4-83) in terms of 5(6), Yoo Vo

o, and ror

-Qar ar
B,o = 858 (vy + v (roa'] +oale O. 1))e 0 (4-87)

The formulas for ¢ are obtained by multipiying £q. {4-85) and Eq.
{4-86) by r and integrating with respect to r.

V= - as(®) (g + \pc)’] r3(3a)'] - a?e

r
- (re“ru'l + a'z(e'ar - 1) (oz'2 - roa'])ea 0) (4-88)
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-1
b= v - 80y + 0T (0 - e+ 0 - ) ed)

+ (oz'3 + roa'z) (rea(r-ro) -rpt o (1 - eu(r-ro))» (4-89)

The ¢ and Bz solutions are used in Eq. (4-81) to solve for ¢.
Using Eq. (4-59), Eq. (4-82), and Eq. (4-53) for Ny in Eq. (4-81)
yields,
3.y + )(e4ns“)( e )T (o g5 (8 (g v )]
ar 0 lj}c ¥ lj’c Z\ ar l"0 wc

ey s g et T e )T R vy

t Sgun(¥ * v) (4-90)

+ i - < .
where SSum is used for r > o and Ssum for r o

S, = ne(S(z)(\DO + wc))'] 2 nojlz <§; "ok2k (Vek - Vrj)>

sum 3 Jj
(4-91)
Multiplying Eq. (4-90) by v + Yoo and integrating gives the
following soTution.
-1 4 -
o=l 15 a5 Bl egy o Conil¥+ ¥
+ 8 o+ ue) (0w s e (4-92)
1 9
* SoumV v H(r - ro) }E: ka = (1=K (r- rO))Ip]
k=2
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In Eq. (4-92), cphi is a constant and HS is the step function.
1 x >0
Hy (x) =
0 x>0

The ka functions are related to the integral of flux squared.

-
fp1 = Jc-, (o * ¥)" or (4-93)
9 , .
PIRIT f (v, + ‘J’C)Z dr + f O (y, + wc)2 dr (4-94)
k=2 r‘o 0

The formulas for ka are in Appendix F. In Eq. {4-92) the ¥ function

is understood to be y_ for r < rg and y, for r > rj.

4,2.3 Results for Finite Radial Electron Velocity

The formulas for ¢, Er’ Y, and BZ derived in Section 4.2.2 are
plotted for two cases to illustrate the effect ¢f the magnitude of
Vee For the step model the variable that is changed between the
two cases is vy. In the first case Vg = 10 cm/sec and in the second
case vy = 100 cm/sec. The complete set of parameters for the two
cases are listed in Table 4-1. A charge state two, impurity at 5%
the main density and one sixth the main species energy yields an
effective charge state of 1.09.

The total current per length of -457 amps for Case I and -470
amps for Case Il is almost the same. As a result the plot of ¢(r)

in Fig. 4-1a, for Case I and in Fig. 4-1b for Case Il are nearly

identical. The magnetic axis position is at v = 10 cm and the
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1 11

n 1x 103 e 1 x 10 ca
np 5 x 10!} end 5 x 10" o3
Z 1 1

Z9 2 2
HO] 3 keV 3 keV
H02 .5 keV .5 keV
Vel 10.05 cm/sec 10.05 cm/sec
v 9,502 cm/sec 99.95 cm/¢<.

re ]
<Z> 1.09 1.09

1 -457 amps -470 amps
T .1 keV .1 keV

e
Vee 10 cm/sec 100 cm/sec
a 9.13 x 1w 9.13 x 077

Table 4-1.

One Dimensional E, B Result Parameters
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separatrix is at r = 14 cm for both cases. The Yo magnetic axis value
for Case I is -7214 gauss-cit and -7298 gauss-cn’ for Case II. The
edge flux Y 1s -800 gauss-—cm2 for both cases.

The magnetic field is shown in Fig. 4-2a for Cass I and in
Fig. 4-2b for Case II., For both cases the general behavior is
positive BZ for r > o and negative BZ for r < ro: The field goes
to zero at the ro magnetic axis position in both cases. As in the
y plots the BZ plots are nearly the same. The magnetic field at
r =0 is -290 gauss for Case I and -302 gauss for Case II. The
magnetic field at the separatrix is 289 gauss for Case I and 292 for
Case II.

The plots of ed(r) in Fia, 4-3a for Case I and in Fig. 4-3b

for Case II indicate the change of Ve has a more pronounced effect

e
on ¢ than y. Fer Vee © 10 cm/sec Fig. 4-3a shows ed is nearly
constant at 2.64 keV. For Ve © 100 cm/sec Fig. 4-3b shows e¢ ranges

from 2.63 to 2.74 keV. The larger variation of ¢ then appears as an
increased electric field.

The electric field for Case I is plotted in Fig. 4-4a and for
Case II in Fig. 4-4b. The Case I result in Fig. 4-4a shows Er(r) has
a minimum of -.5 volt/cm and a maximum of 3.5 volt/cm. The effect
of increased Vie is shown in Fig. 4-4b as a peaking of the electric
field near r = 0 and the s2paratrix. A change of Vee from 10 to
100 cm/sec results in an increase in the maximum electric field from

3.5 to 50 volts/cm.
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4.3 Kinetic Equation with Large Larmor Radius Effects

The generation of energetic fusion products or the injection
of high energy neutral beams in a plasma creates a population of
large Larmer radius ions. These ions cause modifications to the
results obtained in Chapter 2 which relied on the magnetohydrodynamic
theory. Technically the magnetohydrodynamic theory of Chapter 2 is
applicable to zero Larmor radius and is considered to be a limit for
the desired small Larmor radius plasma. One of the earliest
treatments where finite Larmor radius corrections are incorporated
into the magnetohydrodynamic theory was work by Roberts and
Tay]or.[]73]

Finite Larmor radius corrections for transport effects were

[174] In the collision

considered by Nocentini and Engelman.
dominated regime they ohtained results indicating a much reduced ion
heat flux compared to the Pfirsch-Schluter zero Larmor radius
magnetohydrodynamic theory. The heat flux reduction is attributed
to poloidal variation of density and ion temperature. This is in
direct contrast to the Chapter 2 model where transport occurs
between flux surfaces. The Nocentini results are not directly
applicable to field reversed mirrors since he assumed Tow beta,
concentric circular flux surfaces and large aspect ratio., It is
however true the consideration of ion orbits restricted by H and
Pg in a field reversed mirror does lead to transport variation around
flux surfaces.

Another method of accounting for large Larmor radius effects,

without magnetohydrodynamic theory, has been ‘mplemented by Haldy
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and Ligou.[175] They consider the problem of energetic ions caused
by fusion products or beams, interacting with a plasma in thermal
equilibrium. The energetic ion population is described by a
distribution function which obeys a kinetic equation. The
distribution function is approximately constructed from its first
few moments.[]76] The results of this formulation are obtained only
for an infinite homogeneous plasma without electromagnetic fields,
which permits a tractable solution.

The inclusion of geometry or restricting the plasma to a
finite size leads to the necessity of averaging over orbits. The
usual procedure is to average the distribution function kinetic
equation over the gyro-orbit to obtain neoclassical theory. The
drift kinetic equation derived in this case is accurate to first
order in the ratio of Larmor radius to gradient scale 1ength.[]77]
Retaining extra terms can lead to a second order accurate drift
kinetic equation.[]78']80]

In the field reversed mirror the orbit is not adequately
described by a drift and a rapid gyration about a field line. It is
then necessary to integrate over the exact orbit., Boffi and
Molinari[w]J derive an integral transport theory which formally
includes this orbit integration, uses a separable isotropic
scattering kernal, but finally only allows a constant magnetic field.

In the derivation in this section the magnetic field is a
function of the radius. The ions are described by a distribution
function expressed as an expansion in collision frequency and the

electrons are modeled as an inertialess fluid. At zero order this
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is similar to the Vlasov fluid model used for stability
studies.[]82'184] In the Vliasov fluid model the ions are treated

as collisionless and the electrons are an inertialess fluid. In
this section the kinetic equation collision operator is considered
to be first order in collision frequency which yields a zero order
equation with no collision operator contribution. The zero order
distribution function equation is then solved by any function of the
constants of the motion.

A one dimensional kinetic ion model for a neutral beam
injected field reversed mirror has been developed by Hai]l.[]asj
This model has been used in conjunction with a fluid model for
electrons and low energy ions by Stark.[lae] A multigroup kinetic
treatment[]87] of high energy ions is used to account for large
Larmor radius. The energetic ions are described by groups in energy
and Pg constants of the motion. Electron collisions and the
inductive electric field move particles to adjacent groups. The
energy loss, ion current and density are obtained from profiles
derived from the average of the ion orbit over a radial bounce.

The same physics issues and geometry are considered in the
large Larmor radius model derived in this work. There are however
three major contrasts with the Stark model. First the orbit average
obtained from discussions in Chapter 3 is used rather than a
weighted bounce average. Second, the electron fluid equations are
based on the Ohkawa current model previously discussed. Third, the
jon distribution function is expressed as an expansion in collision
frequency and an orbit averaged kinetic equation analogous to the

neoclassical drift kinetic equation is derived.



4.3.1 The Orbit Averaged Kinetic Equation

The kinetic equation for the ion distribution function is

written in terms of a Poissun bracket.

A [FHI = C(R) + S (4-95)

The collision operator is represented by C{f,f) and S accounts for
sources or losses. The distribution function f, the Hamiltonian H,
the collision operator C and sources S are expanded in terms of

collision frequency v which is considered to be a small parameter.

fe 2y wiglh) (4-96)

i

" = E Win(i) (4-97)
i

C = E Jici) (4-98)
1

s = 2 visli) (4-99)
i

The time scale for change of f is assumed to be vz. Substituting
Eq. (4-96) to Eq. (4-99) into Eq. (4-95) yields the results below to

secand order.

«

P %ffgl o0 40y e ) (0 4 22D f0)y

00, L el (), 0), (), 2(2)

(4-100)

i
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A hierarchy of equations results from Eq. (4-100) by requiring that
the coefficient of each power of v vanishes. The zero, first and

second order equations are below.
4(0)] < ¢(0) 4 5(0) (4-101)

(1) {0y 2 (M) 4 (1) 0] (1) (4-102)

LD )y L p(0) (@) (4-103)

As explained in Chapter 3 and shown in Eq. (3-5) a constraint

equation results from each of Eq. (4-101) to Eq. (4-103). The inner
product of the rights sides of these equations with the homogeneous
adjoint operator solution yields the constraint equation. The inner
product is the Chapter 3 orbit average and the homogeneaus solution
is a constant of the motion. The constraint equations are then the

orbit averages of the right sides of Eq. {4-101) to Eq. (4-103).

0745000 < g (4-104)
[ A SRR (T € D) (4-105)

@5 o T L 2 (anioe)

The orbit averaged kinetic equation is derived from Eq. (4-106)
.1ing several assumptions and an operator which integrates the

* .ntuating part of a function along the orbit. This operater is



designated with a caret and is defined below for a general function

X

x<f - Dt (4-107)

An expression enclosed in narenthesis super-scripted by * indicates
the caret operator is to be applied to the entire expression. From
the Eq. (4-107) and Eg. (3-10) definitions, the following relations
are obtained for a function of the coustants of the motion F and a

general function G.[]BB]

([F, 61)° = [F, 6] (4-108)
IF, G] = [F, E] (4-109)

The caret operator is an indefinite integral along the orbit.
Since integration along the orbit inverts tha Poisson bracket of a
function with H, then the caret operator plus any function of the
constants of the motion solves the expressions in Eq. {(4-101) to Eqg.
(4-103). This is true because Eq. (3-5) can be written for a
th

general function G which may be the n~" order distribution function.

(6, 1] = g (4-110)

The solution for f(o) and f(]) are then written in terms of

the caret operator.

£10) - g0 5100 4 g (4-111)
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f(]) - ’E(]) - /S\(]) - ([f(O), H]])A + Fy (4-112)

In Eq. (4-111) and Eq. (4-112) F0 and F} are functions of the
constants of the motion. Substituting Eq. (4-111) and Eq. (4-112)
into Eq. (4-106) yields the orbit average kinetic equation in terms

of £(0),

gi(0) 2§24 502 LR, My s, (g

+

AN PRSI - )

AY . A0
- 1600, W@y 80 @)y ey, wE) (4-113)
Equation (4-113) provides the orbit average of the time derivative
of f(o). To obtain a kinetic equation for f(o) it is necessary to
derive an equation for af(o)lat. This is possible using Eq. (4-113)
if,

¢l0) L (0) g (4-114)

In this case f(o) is only a function of the constants of the motion

and the following identity results.

(0 0)
ot (0 2r® (4-115)

at ot



Because f(o) is now considered to be a function of the constants of

the motion F] is absorbed into the definition of f(o). The following

orbit averaged kinetic equation for f(o) then results from Eq. (4-113).

(0 . N A
£— D @) 5@ ety s, 00

+ 0AO0, A, Wy - pef0)) /1y (4-116)

Equation (4-116) has been derived assuming only that f(o) is a
function of the constants of the motion, which is implied by Eq.
(4-114). Further modifications occur to Eq. (4-116) when
axisymmetry is invoked. A general function F(ll, I, 13) where
I], 12, I3 are constants of the motion has the following Poisson

bracket with function G.

(F, e]=g—f~]-n], G]+%¥E[Iz, G]+%§-g[l3, 6] (4-117)

In axisymmetry 1, is H, I, is p, and there may be a third invariant
1 2 ]

I depending on the fields. Thus Eq. (4~117) in axisymmetry becomes,

[F, G] = g—,ﬁ- [H, 6] + %FG (I3, 6] (4-118)

The orbit average of £q. (4-118) is obtained using £q. (4-109) and
Eq. (4-110).

- 3F3 (1, B (4-119)
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A similar relation applies to the caret operator.

A

([F, 61)

[F, G]

%%5 [1;, 6] (4-120)

The axisymmetric version of Eq. (4-116) is obtained using Eq.

(4-119) and Eq. (4-120).

e (0) - \
o0 2(2), 5l2) ey L s

3t
+ 31 [3’ ’ __I_.__[ 3’ ( - 2 )

In the one dimensional ¢ isymmetric case the second term of
Eq. (4-118) becomes,

aF

31 L3, 6] = 55- =7

313 3 apZ ¥

=0 (4-122)

since there is no z dependence. In the two dimensional axisymmetric
case with no third constant of the motion aF/aI3 is zero. In both

of these cases Egq. (4-118) becomes,
[F, 61 = & [, 6] (4-123)
] 3':" »

Equation (4-123) with Eg. (4-110) yields the following result,

(¢, 6] =0 (4-124)

. =



The following thr. . conditions,
1. f(o) only a function of the constants of motion,
2. axisymmetry,
3. two dimensional with no third invariant or one dimensional,

vinld the three constraint equations from Eq. (4-101) to Eq. (4-103).

tl0 4500 . (4-125)

tM 45 2y (4-126)
0 T .

tl2) 4 52) . g;i_l N ARSI (a-127)

The first order distribution function becomes,

A1) ey () %5&91 ey (4-128)

and the orbit ave.aged kinetic equation is then below.

ot _2(2) 5020 g,y - s,y (4-129)

___:C

ot

Equation (4-129) is a kinetic equation in H, Pg» Pye

4.3.2 Poisson Bracket Solution by Eigenfunctions

The orbit average kinetic equation in Eq. (4-129) applies to
one and two dimensicas in axisymmetry. The primary reason only the
one dimensional radial geometry is considered in this chapter is a
consequence of the formula for £} in Eq. (4-128). The orbit

average has been derived for one dimension, r or two dimensions, r, z
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in Chapter 3; however, the Q operation of Eq. 4-107) is difficult

A ~
to obtain in two dimensions. The integrals C(]) and S(]) are
intearals of the variable part of C(]) and S(]) along the orbit from

)

a starting position to the orbit position at which f(] is to be
evaluated. An integral of this type requires a detailed knowledge
of the orbit and is thus impractical. The function which is
actually needed is f(]) and the particular solution technique of
integrating along the orbit necessitated calculating é(]) and
é(]). An alternate approach due to Lewis and Symon[]ggj is to

obtain f(]) by setting it equal to H(]) af(o)/aH plus an expansion

of eigenfuncticns of the Poisson bracket. This method may ultimately
be a means of resolviag the r, z orbit following problem. In this
section the methnd is presented for the one dimensional case.

(1)

The first order distribution function f previously given by

Eq. (4-128) is repraesented by eigenfunctions wa below.
0)
(v)y _ (N af(
R z Yy (4-130)

The wa satisfy the relation below,

[wa, H] = i uawa (4-131)

where 1, is the eigenvalue. To obtain Na the orbit is
projected into the nonignorable region of phase space, r, Pp- An
orbit is determined by setting the zero order Hamiltonian egual to a

constant e.

H(r’ prs pes pZ) =€ (4'|32)



The orbit label implied by Eq. (4-132) is e, Pg Py 2 where a
distinguishes between orbits in r, P, space that are discontinuous.
A discontinuous orbit corresponds to the pgy > - 3/16 case discussed
in the axisymmetric orbit considerations section of Chapter 3. Let
1 be the time measured along the orbit, then Hamilton's eguation

along the orbit is given below.

ar _ aH
== 35: (4-133)
Pe=Pn(rs2,e,Pq,P,)
Using the definition of H, Eq. (4-133) becomes,
1/2
- 2 -2 - 21
%% =m ! (Zm(e - el¢) - p, - T (pe - elc ]w) ) (4-134)

where Eq. (4-134) refers to an orbit labelled a. The time along the
orbit is then obtained in terms of r, a, e, Pgr P, by solving Eq.

(4-134),

-1/2
) (4-135)

T = m‘,ﬁdr (Zm(e - elp) - pi - r'z (Pe - ezc_]lli)2

with the integration range given by the €, Py determined accessible
orbit region. The Poisson bracket is now written in terms of 1, ¢

instead of r, Py

aH 3 aH 3

v 9 , 98 3 ,oH 3
Lovo=gpt 3, 32 ' 3pg 90 (4-136)

In Eg. (4-136) the ignorable coordinates 8, z appear because 3/3t

is at constant ¢, 0, z, Pgs P, and along the orbit 6 and 7 vary.
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The derivatives aH/apz and aH/ape in Eq. (4-136) are computed
taking H to be a function of r, Pps Pgs P, and then expressing the

result in terms cf 1, a, e, Pgs Py Equation (4-136) is then,

|o:

, -1
- -1 3 2 Ca7emly 3 -
[, H] = tmoop, ot (mr ) (pe elc ) ) (4-137)

(=]

T

where r, ¥ must be eliminated in favor of T, €, a using Eq. (4-132)
and Eq. (4-135). In the form of Eq. (4-137), [, H] commutes with H,
Pgs» Py» 3/3z and 3/38. Consequently, eigenfunctions may be

chosen that are simultaneously eigenfunctions of all the commuting
operators. This means wa is a product of eigenfunctions of g, Pge
Pys 9/36, 3/3z multiplied by a function of t. The eigenfunction of
a coordinate such as momentum in momentum space is obtained by
considering the quantum analogy of conjugate coordinates. For the
case of position and momentum, in position space the momentum
operator is -1‘(21r)"1 h 3/3x. The projection of the operator into
ikx

momentum space is the Fourier integral of e which is the

eigenfunction of *i(2n)'] h 3/3x. The momentum space eigenfunction

1

is(2n)" ' h 8(k - k').

By similar reasoning wa is a product of delta functions for
H, Pgs P,-

W =3¢ _,
[¢1 aa

6 (e - €'} 8§ (pg - pg) 8 (p, - p,)
kg8 k2

e e ua(r)

(4-138)

The function ua(T) is found by substituting Eg. (4-138) into Eq.
(4-131), using Eq. (4-137) for [, H]. Note in Eq. (4-138) kg is
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an integer to ensure 6 periodicity.

du 2 -1

a . . f =1 -1 - -
- + i (m pzkz + ke(mr ) (p8 -~ elc ) - pa)u =0 (4-139)

dt a

The solution of Eq. (4-139) with da as a normalization constant is,

(b, = G, (1))

u =de (4-140)
a a
where,

6 -fT Tk vk ) (o, - eze™ ) (1-141)
a T gy AT P T e Pg - elc wifdt ‘

= 3! ar (3-142)
Ty P

-1 J{Jb 2\ -1 -1 .

BQ =T : keénr ) (pe - eZc 'Y)dr +m kzpZ (4-14- )

_ -1
Wyt By T 2mk (4-144)

with kT an integer and M, chosen to guarantee periodicity. The
eigenfunction label a is a', €', pé, p%, ke, kz, Hey and the
orthnormality condition requires da = (Zn)'z. The eigenfunction

wa is then,

)

-2
Wy =(2m) "8, .0 8 (e-e') 8 (py-pg)s(p, -p,

ik, ik_z i(pt-6(1)
e 0 e T g ¢ @ (4-145)

The method of expanding f(l) in terms of wa means it is

necessary to express C(]) and S(]) in terms of the wa eigenfunctions.
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This procedure is an alternative to the integral along an orbit which

is used in Section 4.3.4 to compute guancities needed in the Eq.

(4-128) £1) defini

tion.

4.3.3 Perturbed Fluid Electron Model

The solution of Eq. (4-129) requires the perturbed Hamiltonian.

The perturbed potentials which occur in the perturbed Hamiltonian

are obtained fram the fluid electron model which includes Ampere's

and Faraday's law.

The perturbed Hamiltonian results from substituting collision

frequency expansions of ¢ and ¢ into Eq. (3-21).

= (2m)”! (p

2 2
rt P

) + <2mr2)_] <pe - eZc'.I Z \)illl(i)>2

i

v ez 2 vlel V) (4-146)
1

To second order the Eq. (4-146) Hamiltonian is below.

H= (2m)! (pl

2 2
+pZ

-1
) + (Zmrz) (pg - 2eZc'] (pew(o)

2,2 -2

(1)2

v 29 001 4 22000, 02) 42,0102y

2)

+ aZ (¢(0) + v¢(]) + v2¢( ) (4-147)

As a consequence of Eq. (4-147) the following definitions result.
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2

.
10 < (om)7! (p2 + p%) + (2'”"2) (s - ez WD) 4 ezgl?)

(4-148)

-1
nih) - (mrz) ezc”! (-pewm + ezc”! w(o)w(”) + ezo ") (4-149)

-1

H(Z) = (mrz) eZc'] (—pew(z) + eZc'] (2¢(0)¢(2) + w(])zﬂ

+ ez¢(2) (4-150)

The solution of Eq. (4-129) requires H(]) and implicitly
H(O). From Eq. (4-148) and Eq. (4-149) it is then necessary to
derive equations which determine Q;O)’ w(]), ¢(0), and ¢(]).
The equations used in Section 4.2 are written below with v as an
order parameter which will later be set to one. The quasineutrality

condition came from the divergence equation belaw.

VeE=dme [ Qonz. -n (4-151)
7 "3 e

On the basis of a Boltzmann distribution the density has an
exponential dependence, with exponent -e¢T;]. Assuming this
quantity is small the exponential can be expanded and Egq. {4-151) is

below,

L S I (4-152)

wheare AD is the Debye length. The content of Eq. (4-152) is that
the riy 't side of Eq. {4-151) scales like ABZ. Since AD is small
compared to a system scale length this means tremendous electric

fields result from small density differences. This is then the
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motivation for the quasineutrality assumption, Consistent with this
assumption and in recognition of the presence of a low energy ion
background e¢ is assumed to be comparable to temperature. As a

(0)

consequence ¢ is assumed to be zero. The electron model equations

with v inserted are then below.

n_ = :E: n.z, (4-153)
€ i NN

z (1-154)

= (rc)-]v - en<Z>'] :Z: njzgv

Ve N Vg re ar > 3 0j
2 (re)! c (4-155)
on T
30 _ -1 ay -1 “e'e Ohkawa
v 5%'_ (re) Voe ar * (eng) o T Ven (dp - Iy )
(4-156)
9 ey o _ -1 -
= (r ar) ¢ dme <:§: njvejzj - nevee> (4-157)

The quasineutrality condition gives Eq. (4-153). The radial
component of Ampere's - gives Eq. (4-154). Since f(o) is a
function of H, Pgs P,s the radial ion velocity is zero in zero order
and Eq. (4-154) s order v. In Eg. (4-155) n is a cullision
frequency quantity and it is thus given a v coefficient. The time

0)

evolution of ¥ is assumed to be caused by the change of f( and it

is thus order v2. As discussed, ¢(O) is zero so 3¢/ or in Eq. (4-156)

is order v, The five functions n_, v

er Voo Vgeor ©» U are obtained from



Eq. (4-153) to Eq. (4-137) at each order by substituting the

following expansions in those equations.

YRR
v =1Zvi vr(_;)

R=d
[}
<
.
R=d
-
~—

<
]

2oyl
i

At order zero the following equations apply.

() . % (0)

ne = (3_4 nJ. Zj

V(O) =0

re

(0) (0) aw(o) ! ? (0)

Voe =" cr <ene T ) w (ne Te)

¢(0) =0

o (1P, -1 (3 (o) o) o)
‘a—r F T2 = - 4mec J nJ. VeJ - ne Vae

(4-158)

(4-159)

(4-160)

(4-161)

(4-162)

(4-163)

(4-164)

(4-165)

(4-166)

(4-167)

Near the field null 3)/ar goes to zero and a singularity develops in

the coefficient on the right side of Eq. (4-165). The singularity

is resolved by solving for r as a function of y near the field null
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and then changing the r derivative to a { derivative.

vég) =-cr (ene(o))-] %@ (1, (4-168)
In Eq. (4-168) n{’) T, is considered to be a function of v
At first order the following equations are obtained.
nlt) = ?ng” Z (4-169)
40O Ty
) ) e ) 2
+ 2>V en ; nJ(.O) zJ? vég)> (4-171)
R i
B ) e (THOG )
g o0 ) 3

The ion gquantities in £q. (4-153) to Eq. (4-173) are obtained

from moments of the ion distribution function as follows.

(i) _ 1 (i) -1
ns') = r mjffj pr.! dHdpydp, (4-174)



In Eq. (4-174) superscript (i) refers to 0 or 1.

nJ(.O) vé?) - r‘zf f§0) p>! (pg - erc-]w) dHdp ip , (4-175)
W oaf .0
n§. ) 'SJ - f f\ ) aHapy dp, (4-176)

ng.o) vé;) + n(.]) vég) = r'szgl) p;] (pe - eZJ.c']Lp) dep6 dpz

(4-177)

4.3.4 Collision Operator for the Orbit Averaged Kinetic

Equation
The solution of Eq. (4-129) requires'f(z) anc 5(]). The usual
approximation is made that large angle scattering due to collisions
results from many small angle scatters. The collision operator

C{f,f) is then taken to be the Fokker-Planck collision operator,[]go]

3 1 azga
C(f,f) = Z [ ov <38v>+?3v v (fjav av
w Ty u Ty

(4-178)

where Eq. (4-178) models collisions of species j with all species

a and the following definitions are used.

2, 22
= mil s 4-17
ry= ot an 25 7, (4-179)
. -1 .3
hy = A (my +m ff ,v-v,]dv (4-180)
> > > 3
ga=)\affa(v') v - v"d v' (4-181}
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The expression in Eq. (4-178) is in terms of cartesian velocities

which may be Ves Vg Vye Equation {4-178) is written in terms of

z

Ver Vg Y, below.,

3
) ' (n), ) (n)> 4-182
C(f,f) = ; I (g IR Xu,YYu,Y { )
ah
) - 2 <f§n> m_q> (4-183)
v r
ah
(ny _ 3 ((n) u)
) SR U - LY L (4-184)
2 av6 J ave
ah
(n) 5 ((n) u)
Q = R f_ e (4‘]85)
3 avz J Jvz
22
X, 1 == (4-186)
avr
3> (4-187)
Ky o = e -
1,2 avrave
K:
5,3 % wvav (4-188)
? 2
XZ - X] » (4-189)
o2
X, 5 =—% (4-190)
? ave
2 (4-191)
Xy o = e -19
2,3 aveavZ
X, . o= X (4-192)



K307 X5 3 (4-193)
2

Y3 = =y (4-194)
av
2

v(n) o pln) g (4-195)

MY J Yo

The orbit averaged kinetic equation, Fq. (4-129) is in
coordinates H, Pgr P, To put the collision operator in the same

variables the relations below are used.

Hoy = 2m, {H - (2m rz)_] - e7 c']wz- (2m \'] 2~97
o1 = "5 My Pg - 74 Myl Py elye

(4-196)
-1 2
- -1 2 -1
H = {?m.) Hm + <?mjr> (pe - eZJ.c w)
-1 2
+ (2m].) n, * 921. ¢ (4-197)
_a_> 3H ) 3
v T v )
r r PgsP
Vgs Y, VgV, 8’7z
= Hot? %) (4-198)
PgsP,
_a> _ > a_> . 3”_6) 2 )
av av aH av ap
6 5 Pns 0 8/,,D
Vr’vz Vr’vz 6°"z VY"VZ H*>"z
- (pa- €7 C-]lb) i—) Fomr =2 (4-199)
] “j oH Bpe
pespz H,p
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=p & + . ._3_> (4-200)

Using Eq. (4-198) to Eq. (4-200) in Eq. (4-182) to Eq. (4-194)

yields Eq., (4-182) terms in H, Pgs Py, coordinates.

(M) o _ w22 (¢ln) 172
B =MW <f;| Ho1 3H> (4-201)

2 ah
Qén) = .l (pg - eZJ.c']w) %FI' <f§n) EH—OL'>
-n.j(e—eZc w)%(gn) 3p>

- '8'2‘ (“’e - ez’ ) f(n) A >

6
- m§ v %5 <f§n) —z—s—g-> (4-202)
o =t (140 ) - e e (1) %)
1,0 ¢ i (Héqz o (4-204)
Wz, gy 32, /2 o

X1,2 = e] (pe - eZJ.c V) — + H91 mJ.r —a-%—pg (4-205)



RV 2 3 A
%1, = Mg P2 el M (4-206)
XZ,] = X]’2 (4-207)

2 .2 2
_ 2 A1\ ¢ 8% U
X2,2 = r Py - eZJ.c V] >+ mJ. (pe eZJ.c V) F5p
oH 6
m 2 (p, - ez c']\p) + mer? a° (4-208)
i g Pe T % AN L2
0
2 2
_oo=1 -1 3 -1 -1 9
XZ,3 =r (pe - eZJ.c V) p, = + my (pe - eZJ.c V) ——aHapz
2 2
) 2 ]
+m.rp oyt MV (4-209)
J Tz apeaH J apeapZ
X3.1 = %3 (4-210)
X3,2 = X2,3 (4-211)
2 2 2
2 9 3 2 2
X = p. S+ m,p — M, z— P, oy t M, — (4-212)
3,3 z o2 JjPz mpz jap, "z H I o 2

z
The 6(]) term requires_C(') which from Eq. {3-31) and Eq.
(3-32) is defined below.

-1

r r
(1) _ f max 1 " max -1
€ = dr p, Jr dr p,. %:

Tmin min

\

3

/ - o(0) L 3 (0) -
\rj (12:] 2 +2xu,YYu,Y>) (4-213)
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In Eq. (4-213) the v

N o
min®  max

integral limits are determined

implicitly for specific H, Pgs P, values from the relaticon below.

-1
- -1 2 2
H (2mj) P, * (ijr )

?
210
(pe - eZgc w) + el50 (4-212)

The allowed orbit region determined by Eq. (4-214) may lead to

multiple disconnected regions.

In this case the integrals in Eq.

(4-213) are understood to be the sum of integrations between the

r

min

and M max of each disconnected region,

There are two simplicities that result in the evaluation of

terms in Eq. (4-213). The first is that fgo) commutes with the

orbit average and caret operator.

caret ¢perator commute with 3/3H, a/ape and a/apz.

The second is the orbit average and

It appears the

orbit average and caret operator do not commute with these

derivatives since the integral 1imits depend on H, Py and P,

The basic definitions with time parameterizing a trajectory and

integrating over many bounce periods do commute with the orbit

average and caret operator.

Thus an interchange may be made between

the basic definition and a derivative and then the orbit average or

caret operator may be converted to its equivalent single bounce

period definition.

The ¢(1) term is similar to Eq. (4-213),

r

1) 1 :
A - 0
C( = mj jr: dr Pp Ea [Pj ; QS )

min

(4-215)



As for Eq. (4-213) the r in Eq. (4-215) is determined by Eq.

min
(4-214). In the case of multiple disconnected regions the integral
in Eq. (4-215) is a sum of integrations over regions bounded by r
values less than the minimum of the region containing the r position
vhere E(]) is to be evaluated plus the integral from "min to r in
the region of interest.

The orbit average or caret of terms on the right side of Eg.
(4-213) and Eq. (4-215) are obtained using the commuting properties

and the operator relation below.

gix) & |= - 29l 4 24y (4-216)

The relation in Eq. (4-216) is used to express the terms as
derivatives of orbit averaged or careted quantities. The terms in
Eq. (4-213) are similar to those of Eq. (4-215) and thus only the
terms in Eq. (4-215) are presented.

The Eq. (4-201) definition is written using Eq. {4-216) as

follows.

(0) ;{2 o) 172 e\ a3 [0y, Mg
&7 =\ /\F; He1‘aﬁ"ﬁ(fj Hor o

mf<°>-a_9-+ _gﬁ<2mjf§°> hg - 73 j;(He]hb (4-217)

n

The caret of EG. (4-217) is then below.

A
ah,,
al0) | 0 Mo, 8 (o) (0) 3 ~
& = f S+ S (em, 3F5 = Fi g (g (4-218)

The other terms in Eq. (4-215) are evaluated in a similar manner.
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3.(0) 2 - A 2 A
- mjfj (- 8mJ. (Voo He1ga) ij (H91 gu)

+2m (H]rveg)

3 -2 IS B a -1 ~
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9 -2 A
+ 2n5 535 (r Vme He] ga)
9 2 -2 -1 ] 1 .
o (-2 (WHO Hot 94) - (Hel 9) * Eﬁg (Hel * Voo ga) )
2
3.3 {.(0)
* "5 Bpe (%j oHap (r ga) >

J pg \'J Po a
22 (W g (4-224)
ape 61 “a
(0) <1/2 % 172 >((0)< 1/2 g,
X7 Y = {H p, —= + in.H e/ f p_H —
1,3'1,3 81 z aHZ J el aHapZ J z 9] aHZ
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J el aHapZ
2 2
(. 3 172 3 1/2 3 /2
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g a9 \\
2 3 ,-1/2\{.(0) 1/27 % /2 ° 9 N
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2 g\ 2 g \
29 (0) a 3" (¢(0)y a >>
"2 <fi (He‘ I ))+ "z 4l (J 61 3H3p,

2/\ 2/’\
9 g 99
S22 3 [oe0) % 2a) 3 8 (¢(0) e 4-226
"j v, (pzfj a'H2> "} 9, (a‘ o, (4-226)
A o)~
(% 1YgO%) = (X 2"% %) (4-227)
) 1] L] ;)
2 2
0) _ (2 2 3 3 22 3
X y( Ve S+ -r+ rv + m;r
2,2Y2,2 <me 2 < g m6> apez

9 g
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2 2 .
) ~ 3 2 " 2 9 2
* mj BHapZ (r vmega) * mjpz apeaH {r ga) * mj apeapZ (r ga)>>

(4-231)
{0y~ (0)
(431%3,1) = (%,3",3) (4-232)
(0)y (0)y»
(X39Y3,2) = (X5 3%, 3") (4-233)
2 2 2
o). (22 3 3 3 2 3
(53,53,5) = (P —Z v "P, Wt M P T T2
3H Z 2 apz

2 2 2
0} 2 a ] 3 3 2 9 :
f( p — m.p —_— . = p —_—F M, ——— g
<J (z aH2 Jjrz E)HapZ J apZ 2 oH J ap22 o

A
Using terms defined in £q. (4-218) to Eq. (4-234) Ct1) s

constructed from the following formula.

'\(]) - f\(O) l (C\ IS -
C :%; ry ;g% ol 5o, v (4-235)

The orbit average of C(z) is defined below.

3
2. :é: I, > §g1) 1y (M (4-236)

i=1 Z “HsY MY
The bar orbit average operator in Eq. (4-236) refers to the integral

operation discussed in relation to Eq. (4-213). The terms in Eq.

(4-236) require integrals of more complicated functions than C(])

because C(Z) involves fgl) rather than fgo) which is a function

only of the constants of motion. From Eq. (4-128) which defines fg]),
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it is clear fg.]) depends on H, Pgs Pys and r. Consequently, in the
terms derived below for Eq. (4-236) fg]) is included in the orbit

average evaluation.

ah
Q“>=m.f<.”—2+§—<zm.f(.”h -f(-”'gﬁ(”e1ha)> (a-237)

1 ji 9 H NG i e T
ah A
3 [y2 (1) e (1 __a>
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an 3h_
) 3 (1) g 2 (1) Py )
ms Wg<r- Vme fJ_ i m; r fJ. ——-ape (4-238)

37T TP i’y T,
3 3h
3 M “a, (1) @ (
P PR I s SR § e 4-239
"3 3, <’z f57a "% @, (4-239)

(1) 3 3 2
+ fj - 4mJ. gaHe] * SR (gaH91) (4-240)
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4,3.5 One Dimensional NOrbit Averaget Kinetic Equation

The orbit averaged kinetic equation in Eg. (4-129) can be

solved given &(]),‘E(Z), §<]),.§(2). The sour_es S(]) and 5(2)

are obtained from physical processes in a particular problem. The

constraint equation, Eq. {4-126) which involves the orbit average of

S(]) and C(]) may be interpreted 1n two ways. The C(]) collision

operator involves fgo) and correspondingly the constraint equation
may be interpreted as a restriction on the functional dependence of
f}u). This viewpoint considers the zero order distribution to be

consirained by the sources. Alternatively an initial f§“’ is chosen

and the sources required for fgo) to exist and for the time
evolution to be described by Eq. (4-129) are determined from
(0)
J
accordance with Eq. (4-129) defines sources which are required to

§(]) = - E(]). in this interprctation an assumed f evolving in
make the medel consistent.

Assuming sources are known the one dimensional orbit averaged
kinetic equation is constructed using the Eq. 4-149), Eq. (4-235),
Eq. (4-236) definitions of H(]), C(]), ang 6(2) respectively. 1In
the derivation of the orbit average and caret of Qi and XU,YYU,Y’
p, was assumed to be a constant of the motion and thus the derived
formulas only apply to the one dimensional radial case.

The Poisson bracket reduces to derivatives with respect to r
and Pp- The first order Hamiltonian does not depend on Py and thus
the first Poisson bracket on the right side of Eq. (4-129) reduces

to the expression below,

. () (1)
(et w2 m} (8*;r )”23/12 BCBH (4-249)
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Similarly the second Poisson bracket is as follows,

;s My = L

J

(N 2(1)
<§%;—> Hy 2 B (4-250)

Using Eq. (4-249) and Eq. (4-250) in Eq. (4-129) and substituting

expressions forE(z), 6(]), and H(]) yields the ane dimensional

orbit averaged kinetic eguation.

4 (0) 3
of |

= 2: m, 2 m w(2)
5t ;r‘j & 521. +2 XU,YYU,Y + S

24
e i? 1, A2 B (78 (pgd ) + ez, Oy ¢“))——a§:5 )

+ Z Iy m32 ez, HI/Z 2 (p2c7] (-pew(” + erc']w(O)\b(])) + ¢ﬁ))
a

(4-251)

In Eq. (4-251) the ¢(0), w(]), and ¢“) potentials are obtained
A
from the electron model equations in Section 4.3.3. The (ng)), 55-]),
(0))“ ( (1)) . . . .
(XH,YYU,Y , and XU,YYH,Y functions have been defined in Section
4.3.4.
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The field reversed mirror scenario discussed earlier consisted
of sustaining an already field reversed plasma with neutral beams.
In this case the neutral beam injection is considered to be the
source which causes a large Larmor radius ion population. These
jons are modeled by the orbit averaged kinetic equation in Eg.
{4-251). The large Larmor radius ions could also be considered to
be fusion products such as alpha particles. The cooler ions are
modeled by the classical Braginskii equations discussed in Chapter 2.
A small population of large Larmor radius ions is then considered to
be immersed in a background of cool ions described by a maxwellian,
The orbit averaged kinetic equation gives the cool ion heating rate
caused by the large Larmor radius ions. The plasma evolution can
then be calculated on a slowing down time rather than on a cyclotron
period time which {s characteristic of standard particle codes. The
c(0)

Eq. (4-125) constraint is satisfied since = 0 and there is no

2zero ovder S(O) source required. If the majority of ions are
non-maxwellian S(O) is necessary because C(O) is not zero. In the
case under discussion the large Larmor radius ion source enters the
formulation at first order as S(]) and represents a replacement of
diffusion losses. To include the large Larmor radius jons in the
cool ion transport equations the H, Pg coordinates in Eq. (4-251)
must be viewed as an r, Vs Vgo Y, dependence using the definition
of the Hamiltonian, Pps Pgs and P, in terms of Ves Vos and V. It
is then possible to take moments following the standard procedure
used by Braginskii to derive the cool ion transport equations. The

flux surface average of transport equations derived in this fashion
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from £q. (4-251) provides terms accounting for large Larmor radius
effects on the right side of the continuity, momentum and energy

transport equations.

The moment or integral over velocity of the one dimensional

orbit averaged kinetic equation, Eq. (4-251) is below.

Lon v, .UM (4-252)

The partial derivative with respect to t is at constant ¢ in Eq.
(4-252) rather than constant position as in £q. (4-251). The MZ’

NZ functions have the following derinitions.

M, f £ v v dv_dvgdv, (4-253)
af(o) MR
N, =f —ai‘” (v - v,)" dv.dgdy, (4-254)

In Eq. (4-253) and Eq. (4-254) & is zero for the continuity equation
and two for the energy equation. The velocity moment is taken with
respect to the random velocity v - qn, where qﬂ is the average
velocity., The MZ moment is density or pressure and Ny is the moment

of the right side of Eq. (4-251). The general time rate of change of

a flux surface average quantity Ga is be]ow,[83]
4 (w9 - _(_39.>d_"+3.< v AR (4-255)
dt a” dy ot © dv  3Y

where 7¢ is the velocity of a flux surface. Substituting Eq. (4-252)

into £q. (4-255) gives the large Larmor radius correction to the

Chapter 2 flux surface averaged transport equations.



d av) _ S s dl 2 . ]
——<<M>—>—<N +v¢ VM9,>d\p+a\p<M9,Vw w> (4-256)

The flux surface average in Eg. (4-256) has the same definition as
in Chapter 2; however, because density and other functions are one

dimensional the flux surface average reduces to the expression below.

6> = (Ga(r])B;](r]) + Ga(rz)B;](rz)) (B;](r]) + B;‘(rzﬂ

(4-257)

In Eq. (4-257) ¥ is assumed to be only double valued in r and

w(r]) = w(rz), where <Ga> is evaluted at y.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

Two plasma models relevant to compact torus research have been
developed to study transport and equilibrium in field reversed
mirrors. In the first model for small Larmor radius and large
collision frequency, the plasma is described as an adiabatic
hydromagnetic fluid. In the second model for 1¢°ge Larmor radius
and small collision frequency, a kinetic theory description has been
developed. Various aspects of the two models have heen studied in
five computer codes ADB, AV, NEOQ, OHK, RES. The ADB code computes
two dimensional equilibrium and one dimensional transport in a flux
coordinate. The AV code calculates orbit average integrals in a
harmonic oscillator potential. The NEQ code follows particle
trajectories in a Hill's vortex magnetic field to study

stochasticity, invariants of the motion, and orbit average
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formulas. The OHK code displays analytic ¢(r), Bz(r), o(r), Er(r)
formulas developed for the kinetic theory description. The RES code
calculates resonance curves to consider overlap regions relevant to
stochastic orbit behavior.

In the first model both poloidal and toroidal magnetic fields
are allowed and the plasma evolves quasi-statically between
equilibrium solutions as a result of transport processes or
adiabatic external current changes. The equilibrium plasma solution
is described by the magnetic field structure and the specification
of two profiles related to pressure and toroidal magnetic field.
When the plasma evolves due to adiabatic external current changes
the two profiles are held constant and the plasma evolution occurs
as a result of modifications to the vacuum magnetic field. When the
plasma is subject to transport processes changes result due to
alterations of the pressure related profile.

The adiabatic fluid model is deduced from the full set of
magnetohydrodynamic equations by neglecting dissipation. The
resulting force balance equation and Ampere's law without
displacement current yield the Grad-Shafranov equation which
determines the two dimensional eqguilibrium, Because the Eq. (2-18)
A* operator is elliptic a boundary condition in addition to the
JT, right side of the equilibrium equation, specifies an
equilibrium solution. The adiabatic assumption fixes a flux value
at the magnetic axis, which in general can not be guaranteed by the
two dimensional equilibrium solution. Consequently, it is also

necessary to solve the flux surface averaged Grad-Shafranov equation.



The equilibration time in a flux surface is much shorter than
between x surfaces. Consequently, the braginskii classical
transpou. t equations are flux surface averaged. The transport is
then one dimensional with coordinate Y. The transport prncesses
considered are conduction, radiation, electron ion energy exchanne,
coulomb friction, and neutral beam deposition. The neutral beam
deposition is modeled in three dimensions and then mapped to the ¢
transport coordinate by a geometric volume ratio and a flux surface
average.

The computation of transport and equilibrium begins from a
given initial condition. The initial condition is determined by
specifying $(r,z) and the S(¥), g(v) profiles. These functions are
determined in the ADB code by four models. The first model is the
Weitzner field which assumes p(y), fT(w) are proporticnal to Y.

The second model is the spherical Hill's vortex which assumes p(y) is
proportional to ¢ and fT(w) = 0. The third model is the elliptical
Hill's vortex. This model is similar to spherical Hill's vortex
except the separatrix is oblate or prolate. For this model exterior
vacuum region solutions were derived. The fourth model represents

the S(¥) and q(y) profiles as variable coefficient functions.

Many neutral beam deposition simulation and adiabatic compression

cases have been run with the ADB code. The focus of these

investigations has been in the areas of radial versus axial plasma shape

change caused by neutral beam injection, plasma shaping by adiabatic

compression, the effect of varying neutral beam energies
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and currents, and the energy balance between neutral beam heating and
radiation energy loss.

In the second field reversed mirrgr model, the magnetic field is
restricted to a poloidal component. The large Larmor radius effects are
incorporated in the plasma description by considering the electrons as
an inertialess fluid and modeling the ions with a distribution
function. This mode! only allows a radial spatial variation and is thus
one dimensional.

The electrons are governed by fluid continuity and momentum
equations and quasineutrality is assumed. This electron description
with Ampere's law without displacement current has been solved
analytically to obtain an initial condition for a diffusion problem.

The analytic model provides self consistent electric and magnetic fields
based on an idealized ion distribution function.

A more realistic ion distribution function satisfies a kinetic
equation which accounts for large Larmor radius effects. The ion
distribution function and Hamiltonian are expanded in terms of collision
frequency and the kinetic equation then yields a hierarchy of
equations. At second order a kinetic equation for the zero order ion
distribution 7. ~ion is obtained. This equation is the large Larmor
radius analog of the 211 Larwor radius drift kinetic equation of
standard neoclassical theory. At first order a constraint equation
determines the first order ijon distribution function in terms of the
first order source, collision operator and Hamiltonian.

The expression for the first order Hamiltonian is obtained by

substituting collision frequency expansions of Y and ¢ into the



definitinn of the Hamiltonian. The potentials which occur in the first
order Hamiltonian are obtained from the perturbation expansion of the
electron fluid equations. The ion quantities required for the perturbed
electron fluid equations are obtained from velocity moments of the zero
and first order ion distribution functicn.

The orbit averaged kinetic equation involves ihe collision
operator acting on the zero and first order distribution function. In
this work, collisions are represented by the Fokker-Planck operator.
Since the orbit averaged kinetic equation is in H,

Po> P, coordinates the standard Fokker-Planck operator has also
been converted to H, Pgs Pye Orbit average or caret operator
expressions have heen derived for required collision operator terms,

The neoclassical drift kinetic equation is derived by
integrating appropriate equations over a gyro-orbit. The orbit
averaged kinetic equation requires integration over the complete
orbit. The orbit average operation provides 3 procedure by which
integration over an orbit is performed without a detailed knowledge
of the orbit. The orbit average operation is the method used to
derive the orbit averaged kinetic equation., The orbit average has
been derived in terms of phase space integrals and path integrals.

The orbit averaged kinetic equation is derived up to a point
assuming f(o) is a function of the constants of the motion,
axisymmetry, and one dimensional or two dimensional with only two
constants of the motion. Furtherr progress has been made by
specializing to one dimension. The benefit of the one dimensional

assumption is that P, is then a constant of the motion. As a
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direct result the orbit average formula is simpler and also some

complexity is removed from the collision operator expressions.

5.2 Conclusions

The field reversed mirror has been modeled in the large
collision frequency, small Larmor radius lTimit using a reduced set
of magnetohydrodynamic equations. The adiabatic assumption is
appropriate for time evolution of a plasma in parameter reg:ions of
interest. The central issues investigated were adiabatic compression
and neutral beam heating.

In this model equations are solved in v, z to obtain y(r,z)
and in a volume coordinate to obtain (V). The Grad methodology of
iterating between the flux surface averaged Grad-Shafranov equation
and the two dimensional Grad-Shafranov equation was found to be
successful except in one case. When large currents devel.p near the
separatrix a numerical instability can be driven if the boundary
conditior is updated during the iteration. This difficulty can occur
during strong adiabatic compression. The numerical instability is

avoided in the case of a conductor around the plasma where the

boundary condition is fixed at wp]asma =

The impTlementation of the ICCG methnd to solve the two
dimensional Grad-Shafranov equation was prompted by the desire to
allow the flexibility of a variable mesh spacing. The initial
motivation was twofold. First it was desirable to cluster grid
rells near the magnetic axis to improve the accuracy of the chord

~zt50d flux surface average. Second distant homogeneous houndary



conditions were an alternative means of dealing with a plasma having
no surrounding conductor. The Green's function method of specifying
boundary conditions proved to be a viable alternative to using
variable grid spacinc as a means of applying the known wp]asma =

at infinity boundary condition. To economically implement the
Greents function technique it is necessary to only update boundary
grid points in the event a monitored boundary point undergoes a
significant change of value.

The chord method of computing the flux surface average near
the magnetic axis ultimately proved unsatisfactory even with
increased grid resolution using a variable mesh. This difficulty
was resolved by following constant ¢ contours by solving the
governing ordinary differential equations using an error controlled
multistep method. This method necessitated the cubic spline fitting
of the y(r,z) function near the magnetic axis.

In addition to the equilibrium solution, the large collision
freguency, small Larmor radius model also requires numerical
solution of transport equations. The transport equations have
coefficients which contain flux surface average functions which are
determined by solution of the two dimensional Grad-Shafranov
equation. Consequently, no gain was realized by treating terms
implicitly and thus a straightforward explicit time difference
scheme has been used.

The equilibrium transport solution begins from a given initial
condition. The most commonly used initial ~~nditions in this work

are the Hill's vortex or variable coefficient profile model. The
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Weitzner magnetic field is useful since it incluues poloidal and
toroidal magnetic fields in contrast to Hill's vortex which only has
poloidal field. Unfortunately, it is restricted since in the
Weitzner model it is not possible to arbitrarily vary pressure and
toroidal field and also maintain a flux function that is at most
double valued. The greatest flexibility for tailoring the initial
condition is realized with the variable coefficient model in terms
of shaping profiies. When it is crucial to have a specific shape
such as oblate or prolate the dil1's vortex may be used.

Two ADB code results have been presented. The first case
considers neutral beam deposition with an enforced - lectron cnergy
decay rate and radiation loss. The second case simulates adiabatic
compression of a prolate plasma.

The first case addressed the issue of whether or not a
realizable neutral beam current and energy could heat a plasma with
radiation and supplemental electron energy loss. .t is clear from
this example that a density which allows the neutrel beam to
penetrate into the plasma interior is important in the eventual time
evolution. The character of the beam penetration is evidenced in
the flux dependence of the S(y) profile. Another factor which is
influential is that the neutrdl beam cnergy input is proportional to
the difference between the plasma energy and beam energy. This is a
consequence of charge excthange. As the plasma heats, the neutral
beam becomes less effective at addirn, additional energy. The
radiation loss was attributed to oxygen which has a power loss as a

function of electron temperature which has two peaks. The main



3n

conclusion to be drawn from this example is that beginning from an
initial state with temperature chosen to cause large radiation Jjoss
the neutral beam is able to dominate and the plasma heats, It
should be noted that in this example a conducting boundary condition
was used and consr~guently the amount of possible plasma expansion
was limited. This fact contributes to the large amount of neutral
beam ahsorption which at tn2 erd of 2.8 msec was 98.7%.

Tha second ANB code result investigated a particular plasma
shaping consideration. The proximitv of conducting walls influences
plasma stability. It was found by other workers plasma stability is
enhanced with distant walls by causing an couatorial bulge in a
prolate plasma. The ADB code successfully generated the appropriate
~hape after a judicious chcice of currents in six external coils.
The initial condition used in this result was a proiate Hill's
vortex. The final shapes is must expediently obtained beginning with
a prolate geometry; however, a spherical geometry may he used as
well. To change a spherical geometry to prolate geometry coils must
be added to generate a cusp field. The final currents that were
used in conjunction with the “rolate Hill's vortex to obtain the
desired shape were positive and negative. This means the plasma was
compressed at some axial positions and expanded at others. The
overall eifect seems to he a near constancy of bulk properties, It
is reasorable to conclude the desired final state was more of a
rearrangement than an alteraticn of the plasma. The toroidal
current went from 32,400 amps to 31,500 amps. Also the kinetic

energy only increased hy 8%.
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The second basic model of the field reversed mirror involves
large Larmor radius and small collision frequency. Since the ions
in this model are described by a distribution function the principle
problem is to derive a kinetic equation for the ijon distribution
function which incorporates large Larmor radius effects. Fundamental
to deriving the kinetic equation is the issue of generating a
procedure that is equivalent to following orbits but which does not
require a detailed knowledge of trajectories. The procedure that
has been derived to satisfy this need is the orbit average.
Beginning from the definition of the orbit average, which actually
amounts to integrating along a known trajectoury, equivalent phase
space and path integral formulas have been derived. In one
dimension the path integral and phase space formula are the same.
Also the caret operator which is a partial integral along an orbit
has been derived. Consequently, equations for the one dimensional
case have been written down for the orbit averaged kinetic equation.
Also analytic solutions have been derived for an initial condition
using an idealized ion distribution function. For the scenario of a
large Larmor radius population of hot ions in a cooler background
the means by which the usual transport equations are modified has
been indicated.

In two dimensions the orbit averaged kinetic cquation is more
difficult to derive for two reasons. First no equivalent form of
the caret operator has been derived in which a detailed knowledge of
a trajectory is not required. Second the existence of a third

constant of the motion changes the form of the orbit average. The



advantage of the one dimensional treatment is that P, is known to

be the third constant of the motion. In two dimensions only the
governing equation and constraint equation are known for various
classes of constants of the motion. Thus it is not known for a
general potential, especially when it is only defined numerically,
whether or not a third constant of the motion even exists. The
existence of a third invariant alters the Wd2 formula in fg, (.-14)
by adding another delta function in the third invariant variable and
also changes the coordinate transformation Jacobian., The effect in
the phase space formulas is to change the integration weighting
function. Depending on the form of the invariant the accessible
orbit average volume may also be changed. Since this change affects
transport a third invariant which is fourth order in the velocity
has been constructed for the Hill's vortex in the low transverse
energy limit. The functional form of this invariant determines the
orbit average formula near the orbit potential well minimum.

In the case of the AV harmonic oscillator code the third
invariant is known. The radial and axial energies are conserved.
The resulting orbit average formula is given by Eq. (3-64). It was
shown that the conditions far a comparison of a single orbit and
this formula are an axial to radial oscillation freguency ratio of
six. With this restriction excellent agreement is obtained. It has
been shown the integral over Hr values yields the orbit average
formula which is derived assuming only H and Py are constants of the
motian. The conclusion is that if a third constant of the motion

exists and the particle distribution is a function of the third
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constant of the motion the orbit average accessible volume and
change of variables Jecohbian should take this into account. If
however the third constant o” the motion does not exist or the
distribution function does not depend on it, the orbit average is
the same as the formule with only H and pg as constants.
Implementing the orbit average which assumes only H and Py are
constant gave good agreement with a stochastic orbit generated using
the NEN code. In the stochastic orbit regime there is no third
constant of the motion and the orbit average is then known. It is
thus important to find parameter ringes where stochastic motion
occurs. In this work stochasticity has been examined by expressing
the Hamiltonian in transformed canonical variables which separate
into a function of momenta and a function of momenta and coordinates.
Ideally the function of momenta and coordinates is a perturbation
and resonance oveilap in momenta space indicates stochasticity. The
check of predicted stochastic orbits in the NEO code showed for the
selected canonical coordinates the resonance overlap theory can only
be applied at low energy. For small change of Pg near pg = - .2 an
irregular surface of section results; however, the total Tack of
surface of section structure characteristic of stochasticity has not

been observed.

5.3 Future Work
The equilibrium solver which forms the basis of the ADB code
has been merged with a mor: elaborate transport model in the Shumaker

FRT code. Improvements to better simulate field reversed mirrors



assuming small Larmor radius should thus be addressed to upgrading

the FRT code. It would be useful to implement an additional initial
condition which allows a selection of geometry and flexibility in

the determination of the S(y) and q(¥) profiles. Originally the

1CCG method was implemented to allow the use of a variable mesh. In
computer calculaticns in which the mesh is uniform, it would be desirable
to have an option to solve the two dimensional Grad-Shafranov equation
using cyclic reduction., The advantage in using cyclic reduction is that
the iteration necessary in the ICCG method is avoided.

The fundamental requirement necessary to calculate a two
dimensional orbit averaged kinetic eguation is a practical definition
of the caret operator in two dimensions. The precise type of averaging
of orbits leading to a given r,z point which yields the caret operator
of a quantity at that point is not understood at this time. The Poisson
bracket eigenfunction expansion may lead to a resolution of this problem.

The orbit average procedure is well defined in one dimension. In
two dimensions a formula exists for constant H and Pg- The
specialization required in the event of the occurrence of a third
invariant dependent distribution function has been discussed. The
search for third invariants of various orders appears to be a fruitful
area of research. The ultimate goal is to understand which potentials
may be beneficial to transport considerations. The asymptotic
polynomial approximation procedure may be extended to higher order or
other techniques may be employed to solve the relevant equations. A
least squares fit or application of the Rayleigh-Ritz principle may

generate useful approximate invariants.
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The numerical implementation of various orbit averages in this
work has relied largely on bilinear fits. Improved accuracy could be
realized with bicubic b-splines or more elaborate guadrature methods.
The issue of integrating near the boundary of the accessible orbit
region has been handled by a chord approximation to the curved
boundary. Increased accuracy at the cost of added complexity is
possible by integrating along low order curve fits to the actual
boundary.

The question of how to delineate parameter regimes where
stochasticity occurs is unanswered globally. In a case where a third
invariant does exist there is a possibility it may break down for some
parameter ranges. It is then desirable to determine the phase space
boundary between regions where the third invariant determined orbit
average is applied and the stochastic orbit average is applied.

The one dimensional orbit averaged kinetic equation has been
derived and terms have been formulated in H. Pg» P, space for the
Fokker-Planck collision operator. The next step is to describe the
sources for a particular problem and numerically implement the
electron fluid equation and the orbit averaged kinetic equation.
Reasonable initial conditions can be obtained from the analytic
model to begin the one dimensional calculation. A more realistic
choice of distribution function and electron radial velocity would
be advantaneous. Using the same distribution function the electron
radial velocity may be modeled as linear in radius and error function
expressions may be derived for the initial ¥ and 4. Beyond this

approximation a full numerical treatment is required.
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APPENDIX A
Definition of Functions Used for Orbit Average Formulas

The In functions

1/2
I - /(1+x2) dx

(A-1)
1/2

= % x(1 + x2) + % log(x + (1 + xz))
: 1/2
L(x,y) = jy(xz +y0) dy
{(4-2)
3/2
= % (x + ¥%)
T4(a,b,c,x) = fdx(x2 + c)ax + b)']

a N (x2 + )2 - brayton(2((x2 + )12+ x)/a)

(A-3)
e+ rd) T tog((2(c + (/)2 (<2 4 )12
- 2bxfa + 2c)(ax + b)'1))
In the case when ¢ = 0 in A-3, a different formula is required.
13(a,b,0,x) = x/a - ba~? log(x + b/a) (A-4)

"

I,(a,b,c,x) fx(xz + c)”2 (ax + b)'] dx
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Al

=) f (x2 + c)]/2 dx -~ (b/a) (x2 + c)”‘(ax + b)dx

1/2

= (c/a)I (x/c"") - (b/a)ly(a,b,c,4x)

In the case when ¢ = 0 in A-5, the following formula applies.

1,(a,0,0,x) = */(2a) - (b/a)15(a,b,0,x)
62 r? sinze
IS(rO’r]‘rA’rB)= e d6
%
where,
8, = in_] ({r, = raddry)
158 A~ "o/
6, = sin | ({r, - ra)/ry)
2 B 0 1
The K, functions
h]+h3z
o ) h2+h4Z + g,r + + g,rz
Knum=f f AR A . A
1 o
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(A-8)

(A-9)
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z, - v 17 et P gz T yre
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2
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1 3 2+h4zAr

(1 - o)(2 ~ a)(h2 + haz

{h

1-a
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1
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0
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0 4
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(A-13)

1-a
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Regions two and three have different formulas depending on the
relative size of z; and Z,. For z, > 2, the following

formulas apply.

num g] + gzr + g3Z + g4rZ
r
h +h32 (hy + hyr + hyz + hyrz)®
Fo¥h,z

1

{72 [ 9+
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A L a)(h TRy (Mt ezt * hy2)zg)
4
(A-19)
9p * 942 1-a
T = a)(hy ¥ Fig2) ( (hy + hgz + (hy + hyz)25)
(hy + hyz + (h, + h4z)z3)2‘°‘ )
- (2 - oL)(h2 + h4z)
z 1-a
deno 2 (M *hyz + (hy * hy2)zg) (A-20)
2 2 (T = a)(h, ¥ hyz)
, ] h1+h3z
2 h,th,z
youm =f dzf 2 4 o 9y + gor + gz * gyrz
3 o
; 0 (h] +hor + haz + h4rz)

Z
7 9y + 932 -
f ((1 oI TR, i) (—(h1 + hyz) a) (A-21)

+
+ 92 g4Z 5 (h] + h3z)2'a
(1 -a)2 - a)(h2 + hyz)
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l-a
- (h] + h3z)

Z2
yeeno . dz
3 1~ aﬁihz + h4z$

2

{A-22)

For z, < 14 the following formulas apply for regions two and three.

z
1 9y * 932
num _ [ 3 - T-a
K, f AT =ayTiy +igzy (M 2
0 2" g

g, + 9,2
* 2 "4 5 (h + h3z)2'°‘) (A-23)
{1 -~ a)(2 - al(h, + h,z)
2 "y
o -(h, + h,z)'"®
TECN 42 S (A-24)
2 (T~ )k, ¥ hy7)
z
2
Z
1 97 *+ 942
num _ 1 3 1-a
N3 f (T-a)(h2+hzT( * hgz + {hy + hyz)25)
4
2
9, + 9,7 Iea
(] SO 7] ( (hy + hyz + (hy + hyz)z 3)
) 2~a
(by #hgz + (hy + hyz)2g) (h-25)
(2= a)(h, * hgz) -
z 1-a
(deno f ! ) (hy + hyz + (hy + hyz)zy) (h26)
= 2 -
3 2, (T = A (h, ¥ hgz)
Ardz/z z
Nnum ) 3 i J/~3 9 + g,r + 932 + g4rz ar
4 () + hyr + hyz + h4rz)a

max(z],zz) 0
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ArAz
24 l' g * G2

| dz[ﬂ —Q)(h, ¥ p2)

max(z],z2

1

((h]+ hyz + (h, + hyz)z,) R (hy + h3z)]'°‘)

9, t 942 T-a
eas Ty 2] (23(h] + hyz + (hy + hyz)z;)

1 2-a
P TRy ) ({hy + hy2)

2-a
- {h1 + h3z + (h2 + h4z)z3) )) (A-27)
Arbdz/z 1-a l-a
ydeno 30, ez vy * hg2)zg) - [y * hy)
4 (1 - a)(h2 + h4z)
max{zl,zz)
(A-28)
The Tn functions
Az )
T, =f X1 {br/x) dx (A-29)
0
Az 3
T2 =f X I](Ar/x)dx (A-30)
0
Az 4
T, =f Ly(x,ar)dx - 82"/12 (A-31)
0

Az
T =[ dx(1,((az = x)/ar) = 1;(-x/8r)) (A~32)
0
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Az

T, f X(1)((82 = x)/ar) - 1,(-x/8r))dx (A-33)
0
Az

T6 i}(. dx(IZ(Ar,Az - x) - IZ(Ar, - x)) (A-34)
0
Ar

T, f dX(1)((r = x)/82) « 1, (-x/82)) (R-35)
0
Ar

Ty f dX(1y((8r = 2)/h2) - 1,(-x/82))x (A-36)
0
Ar

Tg =f dx(IZ(Az,Ar - x) - I,(48z, x)) (A-37)
0
Az 5

T f dxI, (x,8r)x - 82515 (A-38)
0

Az
T” =/ d><(I3((v3 - v4)/Ar,v] * vy
0

+ (v4 -v])x/Az,(Az - X)Z,Ar)
(A-39)
- 13((V3 - v4)/Ar,v] + V4 + (V4 - V.')X/AZ,(AZ - X)Z,O))
Az

12 = dx(I3((v3 - v4)/Ar,v] * Yy
0

T
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2
+ (v4 -v])x/Az,(Az - x)°,ar)
(A-40)

- 1300 - vl By vy + (v = vx/ez, (a2 - 05,000

Az
T3 =f dx(I4((v3 - v4)/Ar,v] t vy
¢]

+ (v4 -v])x/Az,(Az - x)Z,Ar)

(A-41)
- 14(("3 S V)b v, (v4 - vdx/ae, (e - X)Z.O))
Az
TM =f dx(I4((v3 - v4)/Ar,v] + vy
0
+ (V4 ‘V])X/AZ,(AZ = x)zsAr)
(A-42)

= Ig((vy = vp) /ey + vy + (v = vy)x/az, (22 - X)Z,OJ)X

Az

T]5 =f dx(I3((v2 - v])/Ar,v] * vy,
0

+ (V] -v4)x/Az,(Az - x)Z,Ar)
(A-43)

- 13((v2 - v])/Ar,v-I gt (v] - v4)x/A2,(Az - X)Z,O))
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Az
16 =/ dx(I3((v2 - V))/arvy vy,
0

+ vy =vg)x/0z, (82 - x)Z,AY')
(A-44)

= I3(lvy = v)/aryvy vy # (v - vy)x/a2, (82 - x)2,0))x
Az
Tyy = { dx(14((v2 - v])/Ar,v‘ + vy
*0

+ (v] -v4)x/Az,(Az - X)Z,AT)

{A-45)

- 14((V2 - v])/Ar,v] vyt (v] - vgix/az, (a2 - x)Z,O))

Az
T]g =f dx(lq((vz - V])/A"",V] +t VY
0
2

+ (V] -V4)x/Az,(Az - x) ,4r)

(A-46)

I,;((v2 - v])/Ar,v] vyt (v] - v4)x/Az,(Az - x)z,O))x

Az
Tig =f dx(13((vy - V3)/8r, vy + vy
0

+ (v3 -v2)x/Az,(Az - x)z,Ar‘)
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(A-47)

- 15((vg = v3)/8r vy + vy (Vg = vo)x/ 2, (82 - x)2,0))

Az
T20 =f dX(I3((V4 - V3)/AT',V2 + V3
0

+

(vy -v,)x/h2, (82 - x)Z,AF)
(A-48)

T3((vg = Vl/Aryvy *+ vy + (vy = vo)x/ez, (82 = x)2,0))x

Az
T2] =f dX(I4((V4 - V3)/AY‘,V2 + V3
0

+

(v3 -vz)x/Az,(Az - x)Z,Ar)
(A-49)

- Iylvg = v vy + vy + (vg - vo)x/az, (a2 - x)%,0))

Az
T22 =J dx(I4((v4 - v3)/Ar,v2 * vy
0

(v3 -vz)x/Az,(Az - x)z,Ar)

+

{A-50)

= L4((vg = V) 8y + vy (vg - vy)x/az, (82 = x),0))x



bz
Tyg = dx(I5((vy - vy)/8r,v, + vy
“0

+

(v2 ~v3)x/Az,(Az - X)Z.A")

- 13((v] - v2)/Ar,v2 *vgt (v2 - v3)x/Az,(Az - x)5,0

1

Az
T24 'f dx(l3((v] - Vz)/Ar,Vz + V3
0

(v, -v3)x/8z,(bz - x)z,AP)

+

2

))

{A-51)

(A-52)

- T5{{vy = vp)/ar vy + vy * (v, = vy)x/az, {82 - X)Z,O))X

Az
Tys =f dx(14((v] = Vo )Bry v, + vy
0

(v, ~v3)x/0z,(8z - x)°,a)

+

Az
Tog =]. dx(I4((vqy = vy)/ar,v, + vq
0

+ vy =v3)x/bz,{82 - X)Z,A")

14((v] - vz)/Ar‘,v2 gt (v2 - v3)x/Az,(Az - x)2,0))

(A-53)

349
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(A-54)

L T((vy = By + vyt (v - vIx/ 82, (82 = x)2,0))x

—
~N
~3

I

Az
‘f dx(I3((v3 - V) 82,V + vy
0

2
+ (v4 -V tvg - v2)x/A2,Ar ,82 - x)

13((v3 - vz)/Az,v] * v,

+ (v4 - v + vy - vz)x/Az,Arz, - x))

hz
T28 =f dx(I3((V3 - v2)/Az,V] + vy

0

+ (V4 - Vpt g - vz)x/Az,Ar‘z,Az - x)

VRYIY
13((v3 vz,,/Az,v] * v,
+ (v, - v, + v, - v, )x/AzZ Ar2 - x))x
4 1 3 2 ’ ’

Az
ng =f dx(Ia((v3 - vz)/Az,v] t v,
0

+ (v4 - vyt g - vz)x/Az,Arz,Az - x)

- 14((V3 - vz)/Az,v] + v,

(A-55)

(A-56)

(A-57)



30

31

32

+ (Vg vty vz)x/&z,ArZ, - x))

ar
=f dx(I3((v4 - v3)/m*,v3 + v,
0

+ (v] -V, t v - v3)x/Ar,A22,Ar -~ x)

13((v4 - v3)/11\r‘,v3 t v,
+ (v, = v, + v, = Vo Ix/Ar A22 - x))
1 2 4 3 ’ ’

Ar
=f d><(I3((v4 - v:,))/Ar',v3 v,
0

+ (v] -V, t Vg - v3)x/Ar,A22,Ar - x)
- I3((vg - va)/ar, .5+ v,

+ (v] = Vp t vy - v3)x/Ar,A22, - x))x

Ar
=f dx(I4((v4 - v3)/Ar‘,v3 * v,
0

+ (v] =Vt v, - v3)x/Ar,A22,Ar - x)

14((v4 - V3)/AY',V3 t v,

+ (v) -V, t v, - v3)x/Ar‘,A22, - x}))

(A-58)

A=59)

(A-60)

351
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The U functions

min(f,q)

U](a,b,c,d,f,g,h) f dz f (a + br + cz + drz)dr

0 0

(ah + bhZ/2)min(f,q) (A-61)

+

(ch + ah?/2)(min(f,g))2/2

h f+(g-f)r/h

f drf (a + br+ cz + drz)dz

0 min(f,q)

Uy(a,b,c,d,f,g,h)

a(f - min(f,g))h + a(g - f)h/2

+ b(f - min(f,g})h%/2 + b(g - £)h%/3

3

+ (g% - #3)nc/(6(g - £)) - ch(min(f,g))%/2

4 2

dn?(g%(6(g - £)) - (g* - #4)/(28(9 - 1)%)

+

+ (min(f,g))?/4) (A-62)

For f > g Ug has the definition given below.

U3(a,b,c,d,f,g, f dzf (a+ br+cz+ drz)dr
f)h/(g-f)

= ah(f - g)/2 + ch(2f2 - fg - 92)/6

2 2

- bh%(g - £)/3 + dn’(5¢2

(5F° - 3g - 2fg)/24

(A-63)



The Us function is defined below for the case of f <g.

/(g- f‘
Us(a,b,c,d,f,g,h) =f dz f (a + br+ cz + drz)dr
f
2 2
= ah(g - f)/2 + ch(2g” - tg - f7)/6
2 2 2 "
+ bh (g - f}/6 + dh(g(g - f} - (g - f}/4}/6
(A-64)
ArAz/h h
Uy (a,b,c,d,f,g,h) = dz (a + br+ cz+ drz)dr
max(f,q) 0
= {ah + bh2/2}"r‘/\z/h - max(f,g,)) (A-65)

+ (ch + dh2/2)((ArA2/h)2 - (max(f,q,))z)/Z

The Zn functions

rz(z-z])(Az-z])-]

Az
[ dz dr(a + br + cz + drz)
. 2 0

Z ](a,b,c,d)

2)/6

2
arz(Az - z])/Z + cr2(2Az - z]Az - 2,

2
+ br‘z(Az - z])/6

'A-66)

+ dr%(Az(Az - z]) - (az - 21)2/4)/6

353
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ry z]+r(Az-z1)/r‘2
Zz(a,b,c,d) =f drf (a + br + cz + drz)dz
0 Z-l
s 4
= (AZ - z];(ar2 + bro/3 4+ crz(Az ¥ 221)/6 (A-67)

+

dra (52, + 342)/24)

4 2
Za(a,b,c,d) =f dzf {a + br + cz + drz)dr
0 0
(A-68)
= (ar, + br2/2)z + (cr, + dr2/2)22/2
2 2 1 2 2 1
Az fa¥4
24(a,b,c,d) =f dzf {a + br + cz + drz)dr
0 ry
- 2 2
= (a(ar - rz) + b{ar® - r‘z)/Z)Az
(A-b9)

b lelar - ry) + dlar? - /212



APPENDIX B

Coefficients for the Hill's Vortex Potential

Inside the separatrix the following coefficients are non-zero:

C

C

C

C

C

C

C

C

0,0

0,2

2,0

2,2

2,4

4,0

4,2

6,0

Outside the separatrix the following coefficients are non-zero:

C

C

C

C

C

C

0,0

0,2

0,4

0,6

0,8

2,0

3pe/2

- 3pgy/2
= - 3pe/2 + 9/16

- 9/8

9/16

= - 9/8

= 9/8

9/16

i

1027 p/128

- 693 py/32

= 1485 py/64

- 385 pe/32

)

315 p9/128

- 693 pe/32 + 1149/256

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(8-8)

(8-10)

(B-11)

(B-12)

(8-13)

(B-14)
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Cp.g = 1485 py/32 - 987/64
Cpq = 115 pe/32 + 2547/128
Cy 6 = 315 py/128 - 735/64
C, g = 645/256

Cq,0 = 1485 pg/64 - 987/64
Cy,p = - 2310 py/64 + 2547/64
Caq = 945 pg/64 - 2205/64
Cp g = 645/64

Co.0 = - 385 pg/32 + 2547/128
Cg,p = 315 pg/32 - 2205/64
Ce,q = 1935/128

Cg 0 = 315 py/128 - 1470/128
Cg,p = 645/64

c = 645/256

10,0

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)

{B-20)

(B-21)

(B-22)

(B-23)

(B-24)

{B-25)

(B-26)

(B-27)

(8-28)
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APPENDIX C

Invariani Poisson Constraint Equatijon Coefficients

Coefficients for the solution of the poisson equation are as

follows:
Ay =R 4 E-nC (C-1
1,07 "M, T E 7 50,0 -1)
A, = =aCo-6A (C-2)
2,1 =772 %,2 2,2
A, = -deC  -Lta (C-3)
2,0 5777 %2,0 "5 "o
Ay p= -2 Cy, - 154 (C-4)
3,27 Y,4 3,3
Ay g == Cy oy - A (C-5)
3,1 77712 Q.2 = M2
Ay g = = ae €y o= A (C-6)
3,0~ " 30 b,0 " 75 A3,1
1
P37 7006 28R, (C-7)
S S (C-8)
42" T2 %,4a "7 M3 -
o 2
M35 %,2 -5 M2 (C-9)
Ay = -2 Ce g -amA (c-10)
4,0 = " 56 %,0 ~ 78 M1
o
Rg 4= -72Cg~ % A5 5 (1)
1 14
hs 3= T2 C6 -3 55,4 (C-12)
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o
As2=-30 %, - A3 (C-13)
A =-d.c . -3.a (c-14

5,1 - 56 6,2 ~ 14 15,2 -14)
A = --]—C -—]-—A (C-15)
5,0 - - %0 8,0 ~ 35 f5,1

o
Re,5 = =7 Cg,10 = 66 A5 ¢ (C-16)

o 15
Ro,a = =77 C2,8 ~ 7 %s,5 (C-17)

1 28
Re,3 =~ 30 Ca,6 = T5 6,4 (C-18)

o 15
Re,2 =~ 55 %,4 ~ 78 P6,3 (C-19)
A = _l_c -E—A (C-20)
6,1 7 C8,2 = 15 6,2
A, = e G o =2 A (C-21)
6,0 = =137 “10,0 " 8% 6,1
A6 =1 M (c-22)
=1 he (C-23)
A7’4 = -3 A5 (C-24)
Mg =P (C-25)
A= -da (c-26)

7,253 h3

M= TTh,e2 (C-27)



7,0

8,7

8,6

8,5

8,4

8,3

8,2

8,1

8,0

9,8

9,7

9,6

9,5

9,4

9,3

(C-28)

(C-29)

(C-30)

(C-31)

(C-32)

(C-33)

(C-34)

(C-35)

(C-36)

(C-37)

(C-38)

(C-39)

(C-40)

(C-41)

(C-42)
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10,9

10,8

Mo,7

i)

i

10,9

-8 A]O,ﬂ

1
&
>
=
v\:

(C-43)

(C-44)

(C-47)

(C-48)

(C-49)

(C-50)

(C-52)

(C-53)

(C-54)

(C-55)
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APPENDIX D

Canonical Transformation Hamiltonian

3 2

—_ '] _
* %5 C8,0Ps "7 G,g P (0-1)

2 15 2 3. - -
bo” * 57 00,0 Po = 7 C6,0° o) P

c
2 3 —2 Cap_
48"+ 3 Cg 0 Py = 1y)P,

70007605 * (3 Cop - T Cg,0 RIS
3 Co,2 Po/P1 Py
- Cr0,0 Pe)P1 * (7 G 6 - 3 Ca 6 5)%;
7 G0 PgPy Pt G o - = Cs,2 5e)? 7.
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+ sin (Q) + Q) g ((6 Cg 4 P5 + (12 Cg Py + 3 Cg )P )5g(P5- ) '/*

+(-28C, g Py + (<30 ¢ Py - 15.C, )P
-2 — —2
+ (30 Cg P - 16Cy 4 Py - 8Cy 4)F;

=3 ) = 1/2
+(-280Cg , Py - 15C5 Py =80y 5, Py -40C ,)7) (P - pg)

+ sin (01- 02) (coeff as for sin (Q] + 02))

+cos (20+ Q) 15 (4 C p Py Py + (-15.C4 ¢ P

+

(-24 C 4 Py - 8 c4,4)15§ ¢ (-32. G5, P C.2 P

= - 2 =3
- 40y ) IPy)By + 15 C4 6 P T,
2
+ (2 ¢4 G Caa P2)P
4 3 2\
+ (28 C8,2 Py + 12 C 6,2 P] + 4 C4,2 P1)P2)

+ Ccos (ZQ] - 02) (same coeff as cos (ZQ] + Qz)

/2 -

2 = /2 2 =2
(3Cg,q P2 (P - pg) " by

+sin () + 20,) (- 1g) (% - Bp)

$(-28C, gyt (- 200, ;P

3
2,8 "2 - 126 ()P

]

2
(150 P -8 Gy Py - C2,47P2))

>
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+ sin (0]- 202) (same coeff as sin (Q] + 202))

. 2 - = 2
+sin Q) {5 Cyp 9 (5 - pe)pg * (-9 Cq 475

- 2
+ (<28 Cg 5 Py = 6 Cg )P, - 70 Cyp P

8,2

1/2 —

2 —
17 Pg) " g

20 Cg o Py -6C ) (P

+

3
(35 ¢, F‘Z‘ + (40 ¢y ¢ P+ 20C, 0P

2
+ (45 ¢ Fﬁ +28.¢, 4 P+ 12 41,

6,4

=3 -2 — -
+ (56 C8,2 P] + 30 cﬁ’2 P] + 16 C4’2 Py + 8 C2,2)P2

+

= 3 52 2
105 Cpo o Py + 56 Cg o Py + 30 Cg o PG + 8 (C, g - 4a°)

]/2)

ool —

~ -2 -
+ 160, o F1) () - Bp)

+ cos 20Q; (- %) ((2 Cq 5 P, +10 0,0 P+ C8,O)Eg

3
+ (5G4 g Pa+ (9G4 Py -3 c4,4)P‘§

+ (16 Gy, .6 G2 P - 2. )%,

=3

=2 - -
- 40 C]D,G Py - 16 C8,O Py -6 CE,O P -2 C4’O)pe
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=4 =3 2. =
+ (14 C8,2 P, +6 66,2 P] + 2 C4,2 p])pz

p2 p 53 52
+ 30 C]O,O P] + 14 C8,0 P] + 6 C6,0 P] + 2 C4 0 ])

+ 5103 Q) (- ) (5 Cyg o (PG = B /2 55 + (-6 Cg 75
+ (=16 Cg o Py = 4 Cg ) Py = 50 Cpp g P -6 Ca.0 Py
- 4G o) (FS - By 25y~ (6. Cg 5 P
+ (16 Cg P LER G2 PLV P, 445 Chg g 7]
+16 ¢ g ﬁ? 4G 5§) (37 ) 56)]/2)

ol

1 - 52
+cos 4Qy (g) ((Gg 5 Py + 5 Cyg o Py + Cg )Py

5 3
t(-20, P? P = 10Ci0 0 P - 2 G g pﬁ)pé

®p +5¢C

8,2 172 10,0

® o+, P

+ C 1

-2

1/2 -2 - -4
+ sin 501(1——) (P - P (C1,0 Po = 2 C10,0P 1 Pg * C10,0P7

—2

1 = -3 —
+cosQ, (-5) (3 (:8’2 P, Py *+ (<15 c4,6 P, + (-24 (:6’4 P
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2 -2 - - -
-8 Ca“.)P2 + (-30 C8,2 Py - 12 C6,2 P, -4 C4,2)p2)pe

pA

5,
+ 105 C P, + (56 C P' + 56 CO,B) 2

0,10 2

2
(45 C ¢ P + 30 Cp g Py + 30 €603 + 8 (Cg - 46107,

+

3

(40 Cq 4 PY+ 20 Cy +16¢C
6,4 1

+

_af\)

= =2
2,4 P1 * 16 Co 0P

3
+(35C8'2P1:+20C6’2F]+12C4’ PRe8C, , PP,

+cos 20, (= g) ((3Cy ¢ P3+ (3 Co.a 71+ Co )PP,

- 30y 1o 5 * (-14 Cg Py - 14 Co,s”’g
s (-0C, ,Po-6C P -6C )P
WS 2,6 "1 0,62
53 2 - 2
$ -5 4 Py =30 4 Py -2C, Py -2 )P

2 %,
+C°S302(6)(2c46 Py Pg = 45Cy 19 Py + (116G, g Py

3
- 16 Co,a)Pg + (-6 ¢y F‘? =4 Py -4 IR

-5 -
*cos 80, (5Ch g Pp + (G g Pyt Co,s)ﬁg) 2
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-5

7 C P
0,10 2

+ CO0S 5Q2 (-T)

+ resonances not included on the inside]
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APPENDIX E

Resonance Condition for the Canonical Transformation

kG, + 20, = 0
X 35 -3 15 =] <2
[2‘& %07 Co0,0% *75 TG, T Ca,zpe)] Py (E-D)
k 15 g 3 ~ s
¥ [& (3 G0 -7 %,0P) *25 (G0 -5 G2 pe)]Pl

2 15 2 3 _
+[k (C, o+ 8a° + 2 ¢C -3 0P

2,0 g 10,0 Po o)

C
Ly =2 2
+TB \C ’p + 48 +8 8 2 pe e

UI
L::J

K 3 9 32,5 5 — 152
[‘ZE (7,4 -7 %,4Po) * 28 G C,6 =7 Ce Pe)] P2
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APPENDIX F

IDE.ka functions

In this appendix the following definitions are vised for

ay, B, C.

pl

-3 -2y g
a, = (@ 7 - rgo e

= 8508 (g + y)!

[»=]
b

2.7 -2 2

(208%r7 a2 - 708200073

21032r4a2a‘2 - 4208403 a'3a2

126082r oo~ - 2108r%a” "y,

3 -2 -1
4208r o wc - 2520Br‘a2 o wc

1260r¢§ + e (8408%r a0

4208 2, - 12608°r% o %a,

252082ra§a-2 + 25208° o o3

-1 R
25208ra,y o7 - 25208 aya 2 v

3

33608°r 0

+ 638%r°0

-3 _ 12608%r2 aza'4

4

3N

(F-1)

(F-2)

(F-3)
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pe

p3

-25208 aza-2¢c + 1008082r2 a0

+

+

5 2 2 =3

25208°r a,0™° + 25208 a5

-4

176408°r a0 + 1512087 a,0")
e-2ar (- 63082r2 a%a'] - 189082r a%a'z

15758° ada™>))/1260

-C‘.Y‘O )

= e a € (-~ 12e* aCr (¢0 + wc) + 20e™ BC(wy + ¢c)

n

ar ar
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(F-11)

(F-12)

375



