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EFFECTS OF ALTERNATE FUELS
REPORT NO. 6
ANALYSTS OF LOW-ALUMINA CASTABLE REFRACTORY
DEGRADED BY RESIDUAL OIL COMBUSTION PRODUCTS

G. C. Wei and V. J. Tennery

ABSTRACT

This is the sixth of a series of reports on analyses of
several types of refractories used in industrial furnaces
with fuels considered alternate to natural gas. Analyses
were performed on a low-alumina castable used for only two
months in the roof of a residual-oil-fired boiler. The
maximum hot-face temperature during operation was about
1530 K. The original microstructure of the castable, which
consisted of mullite aggregate bonded with iron-containing
gehlenite (2Ca0<Al1303+Si0,), quartz and cristobalite,
was totally altered during service in regions close to the
hot face. At room temperature the altered microstructure
consisted of corundum and gehlenite in a new oxide glass
phase containing the elements Na, K, Ca, Fe, Ti, Al, Ni,
and Si. ‘The reactions of the fuel o0il impurities Na, Fe,
and Ni with mullite, quartz, and cristobalite in the original
castable refractory caused the rapid degradation at the
hot face during service in the boiler. Increasing the Al,0;
content of the castable by replacing mullite aggregate with
alumina aggregate and using gehlenite with less iron impurity
as the bonding material should improve the performance of
this castable refractory or retard reactions of the castable
with fuel o0il combustion products including Na, Fe, and Ni.

INTRODUCTION

Diminishing supplies of nétural gas1 may necessitate a conversion
from natural gas fuels to alternate fuels in a wide variety of industries
in the U.S. .in the forseeable future. Current favored industrial alternate
fuels in the order of decrezsing U.S. industrial interest are: distillate
and reéidual oils, coal, electricity, and low-joule gases. Distillate
oils are felatively clean and their effects on refractories are minor

if the combustion system is properly installed and operated. The use of



distillate oils in place of natural gas fuel has been adopted by many
industrial firms. Residual oils offer an economic advantage over distil-
late oils in joules per dollar in maﬁy areas of the U.S., and therefore
are viewed favorably as industrial alternate fuels. However, residual
0oils — essentially the remains of petroleum after gasoline and distillate
extraction at various refinery stages — typically contain substantial
impurities detrimental to refractories at high temperatures. Currently,
industrial experience with residual oil combustion for process heat is
inadequate to predict and prevent damage to the furnace linings. There-
fore, analyses of refracrories used in a residual oilycombustion environment
will provide a sound technical understanding of accelerated refractory and
insulation degradation by reactions with residual oil impurities. Results
of these analyses can guide the selection and development of refractories
for improved service where use of this relatively impure fuel is desirable.
This report is the sixth of a series of reports on analyses of
several generic tyﬁes of refractories used in industrial furnaces fired

with either residual oils or coal.?”®

The refractory analyzed in this
study is a low-alumina castable used in the roof of a residual-oil-fired
boiler.

Castable refractories are mixtures of calcined fireclay or sintered
alumina aggregate and finely ground cement.’ Caslables are applicd as
a wet, plastic wass by pouring, ramming, gunning, or vibration casting.
The cement begins to set shortly after water is added and hardens after

a prolonged drying period.a’9

The dried material is then fired to produce
a dense, monolithic structure. The procedures used to install, hydrare,
set, dry, and fire castables are usually established empirically.

. The advantages of using castable refractories are numerous. For
example, joints, sources of spalling and liquid intrusion, are eliminated,
and installation labor is reduced. In addition, under certain conditions
‘castables are less permeable than refractory brick structures of similar
composition, and consequently better resist penetration by liquids and
gases at high temperatures. Refractory castables are used in numerous
industries including petrochemical. Their applications include linings
in boilers; process heaters, catalytic reactors, regenerators, coolers,

10

and cyclones. The castable refractories so applied have generally been



used in a clean combustion environment typical of natural gas firing.
Little open literature exists on the behavior of castable refractories
exposed to high-temperature combustion of residual oils or coal. We
believe this report is the first published analysis of refractory

castables degraded by residual oil combustion products.

SPECIMEN HISTORY

The low-alumina castable we received from a chemical company had
been used for only two months in the roof of a No. 6 oil-fired boiler.
Figure 1 shows the gross fluxing and darkening that had occurred in
regions of the refractory near the hot face. The maximum hot-face
temperature reported by the chemical company was 1530 K, lower than
the vendor-quoted maximum service temperature, 1580 K, for this type of
castable. This temperature was estimated by boiler operators from their
past experience and was considered accurate to *30 K. As the No. 6 fuel
0il used in firing the boiler was not analyzed for impurities, we do
not know how much of them was introduced to the boiler during the exposure

period.

RESULTS

The low-alumina castable was examined by chemical, x-ray diffraction,
optical microscopy, electron microprobe, and scanning electron microscopy
(SEM) analyscs. The experimeulal procedures were the same as those out-
lined in a previous report.2

Visual inspection of the low-alumina castable specimen shown in Fig. 1
revealed two zones. The zone close to and including the hot face had
completely changed color from Lhe refractory's original brown-gray-pink
hue to a very dark gray. Some glassy appearing slag had also formed on
the hot face. This zone was designated the altered zone. Behind the
altered zone was the unaltered zone of the refractory, which apparently
had not undergone any drastic structural or color changes during use. The

unaltered zone had a brown-gray-pink color.
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Fig. 1. The Low-Alumina Castable Used in the Roof of a Residual-0il-
Fired Boiler for Two Months.



The results of chemical analyses of the altered and unaltered zones
are shown in Table 1. The large value for loss-on-ignition in the un-
altered zone is significant. This indicates that the plasticizing
additive and water in the as-placed castable had not been completely
burned off during the drying and curing of the castable and the first
firing of the boiler. The Al,03/8i0,, Ca0/Al,03, and Ca0/Si0O, ratios
are essentially the same in the altered and unaltered zones. The Fe;03,
Na,0, and NiO contents increased significantly in the altered zone,
probably because of Fe, Na, and Ni impurities in the fuel oil. Other
impurities common to residual oils such as vanadium and sulfur, were
present in the altered zone in only negligible amounts. The K,0 content
in the altered zone was almost the same as that in the unaltered zone.

X-ray diffraction analysis of the altered and unaltered zones of
the castable revealed mullite, low-cristobalite, and gehlenite, 2CaO-
Al,03°Si0,. Rutile (TiO,) and hematite (Fe,03) were also present in
minor amounts in both the altered and the unaltered zones. Alpha-quartz,

observed in the unaltered zone of the refractory, apparently had been

Table 1. Chemical Compositions of the Altered and Unaltered
Zones of the Low-Alumina Castable

Weight Percent of Oxide Equivalent

Oxide
Altered Zone Unaltered Zone
Al,04 3.3 85
Ca0 1356 Bt
Cr,03 0.23 0.25
Fe, 04 6:13 5.:85
K,0 1.24 1.29
Mg0 1522 1557
Na,0 0.27 0.08
NiO 0.102 0.032
PbO a 0.01
S0, 0.027 022
S$i0, 38.3 34.2
TiO, 1,62 1.60
V,0, a a
Loss on ignition 0 9.72

aNnnP detected



converted to either low-cristobalite or a glassy phase in the altered
zone. Corundum was absent in the unaltered zone but was observed in
the altered zone. Large grog particles in the unaltered zones contained
mullite and low-cristobalite. The major crystalline phases identified
in the altered and unaltered zones, and in the grog particles of the
unaltered zone are listed in Table 2. Appendix A lists the x-ray

diffraction data for these phases in terms of lattice spacings.

Table 2. Major Crystalline Phases in the Used
Low-Alumina Castable

Altered Unaltered Grog Particles in
Zone Zone Unaltered Zone

Mullite X x b d

Low cristobalite X X p:4
2Ca0°*A1,03°S1i0, X b’

Corundum X

o—quartz b4

Rutile X X

Hematite X X

Reflected-1light optical microscopy analyses of the unaltered zone
revealed a microstructure consisting of large grog particles composed
of fine mullite crystallites bonded with fine low cristobalite in a
matrix material of gehlenite (2Ca0°*Al,03°Si0O,), a-quartz, and a siliceous
glassy phase containing Al, K, Ti, and Fe. The phases were identified
by electron microprobe analysis of the polished samples examined in the
optical microscope and by x-ray diffraction results. Figures 2 and 3
illustrate the typical unaltered-zone microstructure of this refractory.
The altered zone had a distinctly different microstructure than
did the unaltered zone. The altered region contained long lathlike
corundum crystals (2200 um) dispersed in a matrix material that included
gehlenite (2Ca0+Al,03°Si0,) crystals, a new siliceous glassy phase con-
taining the elements Na, K, Al, Ca, Ti, Fe, and Ni, and a highly reflecting

Al-Ti-Fe oxide compound. Figures 4, 5, and 6 show the features of the



Fig. 2. Reflected-Light Photomicrograph of
the Unaltered Zone Showing Mullite Grog Particles
(M) Bonded with a Matrix Material Containing
Gehlenite, Quartz, and a Siliceous Glassy Phase.
50%.

Fig. 3. Reflected-Light Photomicrograph of
the Unaltered Zone Showing Mullite Grog Particles
(M) Bonded with a Matrix Material Containing
Gehlenite, Quartz, and a Siliceous Glassy Phase.

Highly reflecting phases are rutile and hematite.
100x%.



Reflected-Light Photomicrograph of
the Altered Zone Showing Long Corundum Crystals
(C) Dispersed in a Matrix Containing Gehlenite and
a New Siliceous Glassy Phase.

Fig. 5. Reflected-Light Photomicrograph of
the Altered Zone Showing Long Corundum Crystals
(C) Dispersed in a Matrix Containing Gehlenite and
a New Siliceous Glassy Phase. Highly reflecting
phase is an Al-Ti-Fe Oxide Compound. 100X.
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Fig. 6. Reflccted-Liglit Photomicrograph of the Altered Zone Showing
Long Corundum Crystals (C) in a Matrix Containing Gehlenite (G) and a
New Siliceous Glassy Phase (S). Highly reflecting phase is an
Al-Ti-Fe oxide compound (ATFT). 500x.

microstructure of the altered zone. The original mullite-containing grog

particles in the castable were replaced by new phases. The original

quartz grains were also absent. The irregular boundaries between the
gehlenite and the new siliceous glassy phase make the gehlenite (M.P. 1866 K)
appear to have started to dissolve in the siliceous glassy phase.

Scanning electron microscopy and energy dispersive x-ray analysis

of the altered zone revecaled the presence of nickel in the siliceous
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glassy phase of the altered zone. Figures 7, 8, and 9 illustrate the
microstructural features of the internal pore surfaces of a fractured
piece of the altered zone. Gehlenite crystals were embedded in the
siliceous glassy phase, which contained the elements Na, K, Ca, Al, Ti,

Fe, and Ni (Fig. 7). Figures 8 and 9 show small porous spheroidal
particles, which probably were derived from the siliceous glassy phase.
These objects contained the same elements as the glassy phase. The
mechanism for the formation of these features was not identified. In

the unaltered zone, many crystallites containing Ca, Al, Si, and apparently

gehlenite were observed on the fractured surface (Fig. 10).

DISCUSSION

Fuel 0il Combustion Products

Since the residual o0il used in firing the boiler was not analyzed
for impurities, we do not know precisely either the types or amounts of
impurities discharged from the fuel oil. However, comparison of the
analytical results from the unaltered and altered zones of this low-
alumina castable suggests that the elements observed in higher concentrations
in the altered zone, or observed in the altercd zone but not in the
unaltered zone, came from the fuel oil and reacted with the refractory.
This assumption implies that Na, Fe, and Ni were the more abundant fuel
0il impurities during the service period for this refractory. Other
impurities such as vanadium aud sulfur commonly found in residual oils
apparently were not present in significant quantities in the fuel oil
used in firing the present boiler. If they were present, however, they
did not react with the castable refractory, but left the boiler in the

flue gases.

Degradation Mechanism

The degradation that had occurred in this low-alumina castable

refractory mainly consisted of fluxing and slructural alterations in



ALTERED
ZONE

UNALTERED
ZONE

11

GEHLENITE

GLASSY PHASE CON-
TAINING Na, Ni, Fe
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Fig. 7. Scanning
Electron Micrograph of
the Altered Zone Show-
ing Gehlenite Crystals
Embedded in a Glassy
Matrix that Contains
Elements Na, K, Ca, Ti,
Fe, Al, Ni, and Si.

Fig. 8. Scanning
Electron Micrograph
of the Altered Zone
Showing Large Porous
Particles Containing
AlGSH - K Ca st tle,
and Ni Were Formed From
the Hot Face of the
Altered Zone.

Fig. 9. Scanning
Electron Micrograph of
the Hot Face of the
Castable Showing Large
Porous Particle Formation
and Small Crystallites
Which Contain Mg, Al,
Si, Ca, Ti, Fe, and Ni
Distributed in a Glassy
Matrix Containing Na,
Al SaL K= Cay T1y Fe,
and Ni.

Fig. 10, Scanning
Electron Micrograph of
the Fractured Surface
of the Unaltered Zone
Showing Small Gehlenite
Crystallites.
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regions near the hot face. 1In this section we will discuss the degrada-
tion mechanism in terms of the microstructural, mineralogical, and
chemical changes in the altered zone of the castable.

The optical microscopy analysis of the altered zone showed that
during service in the boiler, cristobalite and mullite had essentially
disappeared except for minor amounts detected by x-ray diffraction.

Quartz was not observed in the altered zone by either optical microscopy
or x-ray diffraction. Thus, quartz, cristobalite, and mullite, the major
constituents of the original castable, reacted with the fuel oil impurities,
primarily Na, Fe, and Ni, to form a new glassy phase in the altered zone
during boiler operation. Corundum, in the form of long needles, crystal-
lized from the newly formed glass melt in the altered zone. Gehlenite
was present in both the altered and unaltered zones of the castable. Its
concentration did not seem to be affected significantly by the residual
0il combustion products, except for some evidence of dissolution in the
new glass melt of the altered zone. The degradation in the altered zone,
therefore, mainly resulted from reactions of quartz, cristobalite, and
mullite with Na, Fe, and Ni fuel oil impurities.

Electron microprobe analyses did not revecal significant concentration
gradients of the impurity elements in the various phases in the altered
and unaltered zones. Consequently, the reactions causing reftractory
degradation appear to be controlled by Lransport at the interface bhetween
the original phases and the glassy phase that surrounds them, instead
of by diffusion of detrimental species through the glassy phase in the
altered zone. This typec of mechanism requires that at operaling tempera—
tures, the rate of chemical reaction at the hot face of the refractory
be significantly lower than the rate of diffusion of the impurity elements
in the glass melt. Tt must also be lower than the generation rate of
the glass melt itself at operating temperatures. To reduce the rate
of refractory degradation, the slowest step of the degradation process

must be retarded, that is, the chemical reaction rate must be decreased.
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Composition Recommendations

dommercially available aluminosilicate castables can be divided
into three majqr groups: high-alumina (>70 wt % Al,03), intermediate-
Alumi;a.<45—70 Qt % AléOa), and low-alumina (<45 wt %(Alzoa)il The
‘ caétablé-we ahaiyzed beiongs to tﬁe last group. Either corundum or
mullite grog pafticles are used as aggrggate:in,all three families of
.élpmiﬁosili;ate éastables._ The bond materiai consists of one or more
oflthg fo%}owing'materials: calciuﬁ aluﬁinate CA(Ca0°Al,03), gehlenite

(2CaQ~A120§fSiOZ),‘CA2 (Ca0+2A1503), Ci2A7 (l?CaO;7A1203), gibbsite
(A1503‘3H20),.C3AH5 (3CaO°A1203-6HZQ), C3AHg_12 (3Ca0°Al,03-8-12H,0),
qu;rt; (51i0,), mullite'(Aleg),.pervoskite (CaO-Tin), corunﬁum (0—-A1,03),
and 8—a1umina. Frequently used bond systems consist of Ca0<*Al,0; and
3Ca0+Al,03°6H,0, Ca0+Al,03 and 2Ca0+Al,03-Si0,, or Ca0+Al,03; and 2Ca0-
Al,03+S1i0, with appreciable Fe impurity.

The mullite originally present in this low-alumina castable reacted
with the fuel 0il impurities.and resulted in corundum crystallizing from
- the glass melt in the altered zone. Therefore, aggregate-containing
corundum should resist much better the corrosion and fluxing by fuel oil
impurities than does aggregate consisting .of mullite. Furthermore, in-
creasing the Al,0; content of the present castable by changing from
mullite to alumina aggregate should improve the ‘performance of the
castable under operating conditions similar to those 'of this study.

The bond ‘material, which was largely gehlenite in the-present:castable,
seems to resist reasonably well reactions in which slag i$ produced by
the fuel .0il impurities. Thus, unless experiments demonstrate that other
calcium aluminates such as CA or CA, withstand reactions with these
fuel oil impurities better than gehlenite does, we recommend that gehlenite
be used as the bonding material in a corrosive environment ‘similar to
that of this study: The original bonding material in the castable con-
sisted of gehlenite with an appreciable level of iron impurities. Apparently,
iron was dissolved in the glassy phase -of the altered zone and either
lowered. the refractoriness of the castable. or resulted in more liquid

phase formation in the altered zone. 'Use of relatively iron-free gehlenite
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as the bonding material should result in less glass melt in the altered
zone and retard the reactions of quartz, cristobalite, and mullite with
fuel oil impurities.

We stress that because the castable degradation is a chemical reaction-
controlled process, decreasing the rate of diffusion in the glass melt
of the altered zone by increasing its Al,0; content (by replacing the original
quartz and cristobalite with mullite) probably will not effectively improve
the performance of the castable. Hdwever, increasing the Al,03; content
in the glass melt may yield lower viscosity liquids and less glass phase,
and may reduce the activity or chemical potential of detrimental species
in the glass melt. Substitution of alumina aggregate for the original
mullite aggregate should enhance the performance of the refractory

because alumina is more stable than mullite in the specified .environment.

CONCLUSIONS

A low-alumina (34 wt %Z Al,0;) castable refractory used in the roof
of a residual-oil-fired boiler at a maximum hot-face temperature of 1530 K,
underwent serious degradation. This resulted in boiler shutdown after
a service time of only two months. This low-alumina castable was analyzed
for the chemical, microstructural, and structural changes that accompanied
the refractory degradation.

- Quartz, cristobalite, and mullite in the original castable reacted
with fuel o0il impurities, including Na, Fe, and Ni, to form a new glass
melt in the altered zone at operating temperatures. Corundum crystallized
from the glass melt in the altered zone. Gehlenite, the bonding material
in the original castable, apparently was not significantly affected by
the fuel o0il impurities. Rutile and hematite, present in minor amounts
in the original castable, were also observed in the altered zone. In
addition, an aluminum-titanium-iron oxide compound was formed in the
altered zonme.

Incrcasing the Al;03 content of the castable by replacing miullite
aggregate with alumina aggregate, and using gehlenite with a low level
of iron impurity as the bonding material should improve the refractory

performance of the castable for applications similar to the present case.
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X~Ray Diffraction Data of the Altered Zomne

Lattice Spacings,

am

Altered Zone

Corundum

Mullite

2Ca0°A1,03-5i0,

Low-Cristobalite Rutile Hematite

DODZTDO0ODODD0DODDCDDODDDO0DODVDTO0OD0DDDO0DCDDDDD00D0DDDO0ODOCDDLLDIDDODD00IDDDDODODDODDODDD

. 65154
. 64587
.48087

46561
40203

.39001
.37587
.36043

34662

. 34399
. 33448
.32491

31832
31104
30298

.29402
.28865
.28182
.27985
.27183
.26465

25460

.25163
.24947
.24616
.24551
.24295

24232
24026
23787
23529
23162

.22593

22299
21961

.21759

21699
21526
21390

.21337

20872

.20826

20208
20144

.19811

19263

.18872

18769
18354
17992
17956
17664
17399

.17313

17148
17127

.lbbLs
.15348
.15207
.15099
.14856
. 14750
.14531
. 14487
L 14120
. 14060
. 13872
. 13750
. 13596
L134607
.12374

0.3479

0.2552

0.2379

0.2165

fe=l

[ )

.3428
.3390

.2886

L2694

L2542

L2121

.1969

L1795

.307

.285

.272

L2535

L2435

L2404

.2195

L2126

L1967
L1824

. 1864

L1723

L1616

L1519

L1475

L1437

L1375
L1361
L1327
.1253

0.404

0.366

0.325
0.3138
0.2845

0.269

0.251
0.249 0.2487

0.2297

0.220

0.2054

0,184

0.169

] 2000
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Table A2. X-Ray Diffraction Data of the Unaltered Zone

Lattice Spacings, nm

Unaltered Zone Mullite 2Ca0+Al>03°Si0» a-Quartz Low-Cristebalite Rurile Hemarite
0.53370 0.546
0.49607 0.508
0.47075
0.42183 0.422 0.426
0.40583 . 0.404
0.34012 0.3428 0.366
0.33597 0.3390 0.3343
0.33143 0.325
0.30278 0.307 0.3138
0.28639 0.2886 0.285 0.2845
0.27223 0.272
0.27127
0.27039 0.269
0.26733 0.2694
0.26710
0.24913 0.2542 0.249 0.2487 0.251
0.24714 ’
0.24371 0.2428 0.2435 0.2456
0.24113 0.2404
0.22758 .2292 0.2292 0.2281 0.2297
0.22604 - ,
0.22189 0.2236
0.22147 0.220
0.21920 0.2195
0.21118 0.2121 0.2126 0.2127
0.21057 0.1969 0.2043 0.1979 0.2024 0.2054
v0.16899 0.1795 0.175 B
U.1685%b 0.Ll68/ 0.169
0.16814
0.16785 0.1632 0.1671
.0.15901 0.1616
0.15155 0.1519
0.14367 0.1437
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X~-Ray Diffraction Data of Grog Particles

in the Unaltered Zone

Lattice Spacings, nm

Grog Particles in

the Unaltered Zone

Mullite

Low-Cristobalite

loNeolaoleNoReloloNoBoNololeRoNoNoNeoNoNoNoNoNoNoNe!

. 53756
.40730
.34179
.33784
.31393
.28819
.28435
.26873
.25411
.25075
.24538
. 24257
.23470
.22038
.21189
.21024
.20247
.196137
.17946
.16945
.16896
.16007
.15252
. 14435

o

.3428
.3390

.2886
.2694
.2542
.2428
.2292
.2121

+1969
.1795

0.404

0.3138

0.2845

0.249

0.2024
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