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EFFECTS OF ALTERNATE FUELS 
REPORT NO. 6 

ANALYSIS OF LOW-ALUMINA CASTABLE REFRACTORY 
DEGRADED BY RESIDUAL OIL COMBUSTION PRODUCTS 

G. C. Wei and V. J. Tennery 

ABSTRACT 

This is the sixth of a series of reports on analyses of 
several types of refractories used in industrial furnaces 
with fuels considered alternate to natural gas. Analyses 
were performed on a low-alumina castable used for only two 
months in the roof of a residual-oil-fired boiler. The 
maximum hot-face temperature during operation was about 
1530 K. The original microstructure of the castabie, which 
consisted of mullite aggregate bonded with iron-contain-ing 
gehlenite (2Ca0•Alz03•Si0z), quartz and cristobalite, 
was totally altered during service in regions close to the 
hot face. At room temperature the altered microstructure 
consisted of corundum.and gehlenite in a new oxide glass 
phase containing the elements Na, K, Ca, Fe, Ti, Al, Ni, 
and Si. The reactions of the fuel oil impurities Na, Fe, 
and Ni with mullite, quartz, and cristobalite in the original 
castable refractory caused the rapid degradation at the 
hot face during service in the boiler. Increasing the Al 2 0 3 
content of the castable by replacing mullite aggregate with 
alum~na aggregate· and using gehlenite with less iron impurity 
as the bonding material should improve the performance of 
this castable refractory or retard reactions of the castable 
with fuel oil combustion products including Na, Fe, and Ni. · 

INTRODUCTION 

Diminishing supplies of natural gas 1 may necessitate a conversion 

from natural gas fuels to alt.,::ntate fuels in a wide variety of industries 

in the U.S .. in the forseeable future. Curren~ favored industrial alternate 

fuP.ls in the order of decreGsing U.S. industrial interest are: distillate 

and residual oils, coal, electricity, and low-joule gases. Distillate 

oils are relatively clean and their effects on refractories are minor 

if the combustion system is properly installed and operated. The use of 

1 
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distillate oils in place of natural gas fuel has been adopted by many 

industrial firms. Residual oils offer an economic advantage over distil­

late oils in joules per dollar in many areas of the U.S., and therefore 

are viewed favorably as industrial alternate fuels. However, residual 

oils - essentially the remains of petroleum after gasoline and distillate 

extraction at various refinery stages - typically contain substantial 

impurities detrimental to refractories at high temperatures. Currently, 

industrial experience with residual oil combustion for process heat is 

inadequate to predict and prevent damage to the furnace linings. There­

fore, analyses of refractories used in a residual oil combustion environment 

will provide a sound technical understanding of accelerated refra~tory and 

insulation degradation by reactions with residual oLl impurities. Results 

of these analyses can guide the selection and development of refractories 

for improved service where use of ·this relatively impure. fuel is desirable. 

This report is the sixth of a series of reports on analyses of 

several generic types of refractories used in industrial furnaces fired 

with either residual oils or coal. 2
-

6 The refractory analyzed in this 

study is a low-alumina castable used in the roof of a residual-oil-fired 

boiler. 

Castable refractories are mixtures of calcined fireclay or sintered 

alvmina aggregate and finely ground cement. 7 Caslaules are applied as 

a wet, plasti~ UlciSS by pouring, ranuning, e;nnning, or vibration casting. 

The cement begins to set shortly after water i3 added and h~r~ens after 

a prolonged drying period. 8
'

9 The dried material is then fired to produce 

a (IPnse, monolithic structure. TilE! pro~euutt:::, used to insta.ll, hyt;lr~tP, 

set, dry, and fire castables are usually established empirically. 

The advantages of using castable refractories are numerous. For 

example, joints, sources of spalling and liquid intrusion, are eliminated, 

and installation labor is reduced. In addition, under certain conditions 

·castables are less permeable than refractory brick structures of similar 

composition, and consequently better resist penetration by liquids and 

gases at high temperatures. Refractory castables are used in numerous 

industries including petrochemical. Their applications include linings 

in boilers, process heaters, catalytic reactors, regenerators, coolers, 

and cyclones. 10 The castable refractories so applied have generally been 
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used in a clean combustion environment typical of natural gas firing. 

Little open literature exists on the behavior of castable refractories 

exposed to high-temperature combustion of residual oils or coal. We 

believe this report is the first published analysis of refractory 

castables degraded by residual oil combustion products. 

SPECIMEN HISTORY 

The low-alumina castable we received from a chemical company had 

been used for only two months in the roof of a No. 6 oil-fired boiler. 

Figure 1 shows the gross fluxing and darkening that had occurred in 

regions of the refractory near the hot face. The maximum hot-face 

temperature reported by the chemical company was 1530 K, lower than 

the vendor-quoted maximum service temperature, 1580 K, for this type of 

castable. This temperature was estimated by boiler operators from their 

past experience and was considered accurate to ±30 K. As the No. 6 fuel 

oil used in firing the boiler was not analyzed for impurities, we do 

not know how much of them was introduced to the boiler during the exposure 

period. 

RESULTS 

The low-alumina castable was examined by chemical, x-ray diffraction, 

optical microscopy, electron microprobe, and scanning electron microscopy 

(SEM) analyccc. The experimeulal pr·ocedures were the same as those out­

lined in a previous report. 2 

Visual inspection of the low-alumina castable specimen shown in Fig. 1 

revealed two zones. The zone close to and including the hot face had 

completely changed color from Lhe refractory's original brown-gray-pink 

hue to a very dark gray. Some glassy appearing slag had also formed on 

the hot focc. This zoue wa~ ue~ignated the altered zone. Behind the 

altered zone was the unaltered zone of the refractory, which apparently 

had not undergone any drastic structural or color changes during use. The 

unaltered zone had a brown-gray-pink color. 
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50 mm 

ORNL-DWG 78-9139 

TOWARD 
COLD 
END 

ALTERED ZONE UNALTERED ZONE 

Fig . 1 . The Low- Alumina Castable Used in the Roof of a Res idual- Oil­
Fired Bo i ler for Two Mon t hs . 
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The results of chemical analyses of the altered and unaltered zones 

are shown in Table 1. The large value for loss-on-ignition in the un­

altered zone is significant. This indicates that the plasticizing 

additive and water in the as-placed castable had not been completely 

burned off during the drying and curing of the castable and the first 

firing of the boiler. The Al20 3/Si0 2 , CaO/Al203, and CaO/Si02 ratios 

are essentially the same in the altered and unaltered zones . The Fe203, 

Na20, and NiO contents increased significantly in the altered zone, 

probably because of Fe, Na, and Ni impurities in the fuel oil. Other 

impurities common to residual oils such as vanadium and sulfur, were 

present in the altered zone in only negligible amounts. The K20 content 

in the altered zone was almost the same as that in the unaltered zone. 

X-ray diffraction analysis of the altered and unaltered zones of 

the castable revealed mullite, low-cristobalite, and gehlenite, 2Ca0• 

Al 203 •Si02 . Rutile (Ti02) and hematite (Fe20 3) were also present in 

minor amounts in both the altered and the unaltered zones. Alpha-quartz, 

observed in the unaltered zone of the refractory, apparently had been 

Table 1. Chemical Compositions of the Altered and Unaltered 
Zones of the Low-Alumina Castable 

Weight Percent of Oxide Equivalent 
Oxide 

Altered Zone Unaltered Zone 

Al7.0 3 37.3 33.5 

CaO 13.6 11.5 

Cr 203 0.23 0.25 

Fe203 6.13 5.85 

K20 1.24 1.29 

MgO 1 . 22 1.57 

Na20 0.27 0.08 

NiO 0.102 n.n17 

PbO a 0.01 

50 3 0.027 0.22 

Si0 2 38.3 34.2 

Ti02 1.62 1.60 

V20 ~ u u 

Loss on ignition 0 9.72 

aNnnP nPrPrrPn 
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converted to either low-cristobalite or a glassy phase in the altered 

zone. Corundum was absent in the unaltered zone but was observed in 

the altered zone. Large grog particles in the unaltered zones contained 

mullite and low-cristobalite. The major crystalline phases identified 

in the altered and unaltered zones, and in the grog particles of the 

unaltered zone are listed in Table 2. Appendix A lists the x-ray 

diffraction data for these phases in terms of lattice spacings. 

Table 2. Major Crystalline Phases in the Used 
Low-Alumina Castable 

Altered Unaltered Grog Particles in 
Zone Zone Unaltered Zone 

Mullite X X X 

Low cristobalite X X X 

2CaO•Al20 3 •Si02 X X 

Corundum X 

a-quartz X 

"RntilP X X 

Hematite X X 

Reflected-light optical microscopy analyses of the unaltered zone 

revealed a microstructure consisting of large grog particles composed 

of fine mullite crystallites bonded with fine low cristobalite in a 

matrix material of gehlenite (2Ca0•Al20 3 •Si02), a-quartz, and a siliceous 

glassy phase containing Al, K, Ti, and Fe. The phases were identified 

by electron microprobe analysis of the polished samples examined in the 

optical microscope and by x-ray diffraction results. Figures 2 and 3 

illustrate the typical unaltered-zone microstructure of this refractory. 

The altered zone had a distinctly different microstructure than 

did the unaltered zone. The altered region contained long lathlike 

corundum crystals (~200 ~m) dispersed in a matrix material that included 

gehlenite (2Ca0•Al20 3 •Si02) crystals, a new siliceous glassy phase con­

taining the elements Na, K, Al, Ca, Ti, Fe, and Ni, and a highly reflecting 

Al-Ti-Fe oxide compound. Figures 4, 5, and 6 show the features of the 



Fig. 2. Reflected-Light Photomicrograph of 
the Unaltered Zone Showing Mullite Grog Particles 
(N) Bonded with a Matrix Material Containing 
Gehlenite, Quartz, and a Siliceous Glassy Phase. 
sox. 

Fig. 3. Reflected-Light Photomicrograph of 
the Unaltered Zone Showing Mullite Grog Particles 
(M) Bonded with a Matrix Material Containing 
Gehlenite, Quartz, and a Siliceous Glassy Phase. 
Highly reflecting phases are rutile and hematite. 
lQQX. 



Fig. 4. Reflected-Light Photomicrograph of 
the Altered Zone Showing Long Corundum Crystals 
(C) Dispersed in a Matrix Containing Gehlenite and 
a New Siliceous Glassy Phase. sox. 

Fig. 5. Reflected-Light Photomicrograph of 
the Altered Zone Showing Long Corundum Crystals 
(C) Dispersed in a Matrix Containing Gehlenite and 
a New Siliceous Glassy Phase. Highly reflecting 
phase is an Al-Ti-Fe Oxide Compound. lOOx . 

00 
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Fie. 6. Reflccted-LigltL Phot:omicrograph of the Altered Zone Showing 
Long Corundum Crystals (C) in a Matrix Containing Gehlenite (G) and a 
New Siliceous Glassy Phase (S). Highly reflecting phase is an 
Al-Ti-Fe oxide compound (ATFT). SOOx . 

microstructure of the altered zone. The original mullite-containing grog 

particles in the castable were replaced by new phases. The original 

qw=~rtz grains were also absent. The irregular boundaries between the 

gehlenite and the new siliceous glassy phase make the gehlenite (M.P. 1866 K) 

appear to have started to dissolve in the siliceous glassy phase. 

Scanning electron ~icroscopy and energy dispersive x-ray analysis 

of the altered 7.0ne revc.:1led tht: IJresence ot nickel in the siliceous 
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glassy phase of the altered zone. Figures 7, 8, and 9 illustrate the 

microstructural features of the internal pore surfaces of a fractured 

piece of the alte red zone. Gehlenite crystals were embedded in the 

siliceous glassy phase, which contained the elements Na, K, Ca, Al, Ti, 

Fe, and Ni (Fig. 7). Figures 8 and 9 show small porous spheroidal 

particles, which probably were derived from the siliceous glassy phase. 

These objects contained the same elements as the glassy phase. The 

mechanism for the formation of these features was not identified. In 

the unaltered zone, many crystallites containing Ca, Al, Si, and apparently 

gehlenite were observed on the fractured surface (Fig. 10). 

DISCUSSION 

Fuel Oil Combustion Products 

Since the residual oil used in firing the boiler was not analyzed 

for impurities, we do not know precisely either the types or amounts of 

impurities discharged from the fuel oil. However, comparison of the 

analytical results from the unaltered and altered zones of this low-

alumina castable suggests that the elements observed in higher concentrations 

in the altered zone, or observed lu the altered zone but not in the 

unaltered zone, came from the fuel oil and reacted with the refractory. 

This assumption implies that Na, Fe, and Ni were the more abundant fuel 

oil impurities during the service period for this refractory. Other 

impurities such as vanadiutU awl ::.ulfur commonly folJnrl in rPsidual oils 

apparently were not present in significant quantities in the fuel oil 

used in firing the present boiler. If they were present, however, they 

did not react with the castable refractory, but left the boiler in the 

flue gases. 

Degradation Mechanism 

The degradation that had occurred in this low-alumina castable 

refractory mainly consisted of fluxing and slructural alterations in 
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GEHLENITE 

GLASSY PHASE CON­
TAINING Na, Ni, Fe 

LARGE POROUS 
PARTICLE 

CORUNDUM 

LARGE POROUS 
PARTICLE 

GEHLENITE 

Y-154094 

Fig. 7. Scanning 
Electron Micrograph of 
the Altered Zone Show­
ing Gehlenite Crystals 
Embedded in a Glassy 
Matrix that Contains 
Elements Na, K, Ca, Ti, 
Fe, Al, Ni, and Si. 

Fig. 8. Scanning 
Electron Micrograph 
of the Altered Zone 
Showing Large Porous 
Particles Containing 
Al, Si, K, Ca, Ti, Fe, 
and Ni Were Formed From 
the Hot Face of the 
Altered Zone. 

Fig. 9. Scanning 
Electron Micrograph of 
the Hot Face of the 
Castable Showing Large 
Porous Particle Formation 
and Small Crystallites 
Which Contain Mg, Al, 
Si, Ca, Ti, Fe, and Ni 
Distributed in a Glassy 
Matrix Containine Na, 
Al, Si, K, Ca, Ti, Fe, 
and Ni. 

Fig. 10. Scanning 
Electron Micrograph of 
the Fractured Surface 
of the Unaltered Zone 
Showing Small Gehlenite 
Crystallites. 
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regions near the hot face. In this section we will discuss the degrada­

tion mechanism in terms of the microstructural, mineralogical, and 

chemical changes i n the altered zone of the castable. 

The optical microscopy analysis of the altered zone showed that 

during service in the boiler, cristobalite and mullite had essentially 

disappeared except for minor amounts detected by x-ray diffraction. 

Quartz was not observed in the altered zone by either optical microscopy 

or x-ray diffraction. Thus, quartz, cristobalite, and mullite, the major 

constituents of the original castable, reacted with the fuel oil impurities, 

primarily Na, Fe, and Nl, to form a new glassy phase in the allered zone 

during boiler operation. Corundum, in the form of long needles, crystal­

lized from the newly formed glass melt in the altered zone. Gehlenitc 

was present in both the altered anJ unaltered zones of the c.astable. Its 

concentration did not seem to be affected significantly by the residual 

oil combustion products, except for some evidence of dissolution in the 

new glass melt of the altered zone. The degradation in the altered zone, 

therefore, mainly resulted from reactions of quartz, cristobalite, and 

mullite with Na, Fe, and Ni fuel oil impurities. 

Electron microprobe analyses Jid not reveal significAnt concentration 

gradients of the impurity elements in the various phases in the altered 

and unaltered zones. Consequently, the reactions causing retractory 

degradation appear to be controlled by LL"d.tlsport at the interfRrP hetween 

the original phases and the glassy phase that surrounds them, instead 

of by diffusion of detrimental species through the glassy phase in the 

altered zone. This type of mechanism requires that at operaling tempeLu­

tures, the rate of chemical reaction at the hot face of the refractory 

be significantly lower than the rate of diffusion of the impurity elements 

in the glass melt. Tt must also be lower than the generation rate of 

the glass melt itself at operating temperatures. To reduce the rale 

of refractory degradation, the slowest step of the degradation process 

must be retarded, that is, the chemical reaction rate must be decreased. 
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Composition Recommendations 

Commercially available aluminosilicate castables can b~ divided 

into three major groups: high-alumina (>70 wt% Al 203), intermediate-
'· . . 

alumina (45--70 wt% Al20 3), and low-alumina (<45 wt% Alz03). The 

castable we analyzed belongs to the last group~ Either ~orundum or 

mullite grog particles are used_as aggregate; in all three families of 

al¥minosilicate castables. The bond mate~ial consists <;>f one o.r more 

of the following materials: calcium aluminate CA(CaO•Al 20 3), gehlenite 

(2Ca_o•Alz03 •SiOz) ,. CAz (Ca0•2Alz03), C12A7 (12Ca0~7Alz03), gibbsit;e 

(Alz03•3Hz0),. C3AH6 (3CaO•Alz03•6Hzt;>), C3AJ:l8-12. (3CaO•Alz03•8-12HzO), 

quartz (SiOz), mullite_ (Alz03), p~rvoskite (<;:aO•TiOz), corun.~um (a-Alz03), 

and R-alumina. Frequently used bond syst·ems consist of CaO•Al 20 3 and 

3CaO•Alz03•6HzO, CaO•Alz03 and 2CaO•Alz03•SiOz, or CaO•Alz03 and 2Ca0• 

Al20 3•Si0z with appreciable Fe impurity. 

The mullite originally present in this low-alumina castable reacted 

with the fuel·oil impurities.and resulted in corundum crystallizing from 

th~··glass melt· in the altered zone. Ther~fore, aggre~ate-containing 

corundum should resist much better ·the corrosion and fluxing by fuel oil 

impurities.than does aggregate consisting .of mullite. Furthermore, in­

creasing the Al 20 3 content of the present castable by changing from 

mullite to alumina aggregate should improve the -performance of tlre 

cast able under operating conditions similar· to those ·of this study. 

The bond ·material, .which was largely gehlenite in the ·present· castable, 

seems to resist reasonably well reac.tions ·in which slag is produced by 

.the fuel .oil impurities. Thus, unless experiments demonstrate -that other 

calcium aluminates such as CA or CA2 withstand -react·ions ·with these 

.fuel oil impurities better than gehlenite does, we recommend thaf gehleni te 

be used as the bonding material in a corrosive environment ·similar· to 

that of this·study; The original bonding material in the castable con-

sisted of gehlenite with an appreciable level of iron impurities. Apparently, 

iron was dissolved in the· glassy phase -of the altered zone and either 

lowered. the refractoriness of the castable.or resulted in more liquid 

phase formation in the altered zone. ·Use of relatively i'ron-free · gehlenite 
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as the bonding material should result in less glass melt in the altered 

zone and retard the reactions of quartz, cristobalite, and mullite with 

fuel oil impurities. 

We stress that because the castable degradation is a chemical reaction­

controlled process, decreasing the rate of diffusion in the glass melt 

of the altered zone by increasing its 'Al 2 0 3 content (by replacing the original 

quartz and cristobalite with mullite) probably will not effectively improve 

the performance of the castable. However, increasing the Al 2 0 3 content 

in the glass melt may yield lower viscosity liquids and less glass phase, 

and may reduce the activity or chemical potential of detrimental species 

in the glass melt. Substitution of alumina aggregate for the original 

mullite aggregate should enhance the performance of the refractory 

because alumina is more stable than mullite in the specified environment. 

CONCLUSIONS 

A low-alumina (34 wt % Al 2 0 3 ) castable refractory used in the roof 

of a residual-oil-fired boiler at a maximum hot-face temperature of 1530 K, 

underwent serious degradation. This resulted in boiler shutdown after 

a service time of only two months. This low-alumina castable was analyzed 

for the chemical, microstructural, and structural changes that accompanied 

the refractory degradation. 

Quartz, cristobalite, and mullite in the original castable reacted 

with fuel oil impurities, including Na, Fe, and Ni, to form a new glass 

melt in the altered zone at operating temperatures. Corundum crystallized 

from the glass melt in the altered zone. Gehlenite, the bonding material 

in the original castable, apparently was not significantly affected by 

the fuel oil impurities. Rutile and hematite, present in minor amounts 

in the original castable, were aiso observed in the altered zone. In 

addition, an aluminum-titanium-iron oxide compound was formed in the 

altered zone. 

Incrcaoing the Al:£0::~ content of the cast.:able by replacing mullite 

aggregate with alumina aggregate, and using gehlenite with a low level 

of iron impurity as the bonding material should improve .the refractory 

performance of the castable for applications similar to the present case. 
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Table Al. X-Ray Diffraction Data of the Altered Zone 

Lattice Spacings, nm 

Altt:>rt.•d Zl1ne Corundum Nullite 2CaO•Al 2 0 3 ·Si0 2 Low-Cristobalite Rutile Hematite 

11.65154 
0. 64 587 
0.48087 
0. 46561 
0.40203 0.404 
0.39001 
0.37587 0.371-
0.36043 0. 366 
0.34662 0.3479 
0.14199 0.3428 0. 343 
0.33448 0.3390 
0.32491 0.325 
0.31832 0.3138 
0. 31104 
0.30298 .0.307 
0.29402 
0.28865 0. 2886 0.285 
0.28182 0.2845 
0.27985 
0.27183 0.272 
0.26465 0. 2694 0.269 
0.25460 0.2552 0.2542 0.2535 
0.25163 0.251 
0.24947 0.249 0.2487 
0.24616 
0.24551 0.2435 
0.24295 0.2428 
0.24232 
0.24026 0.2404 
0.23787 0.2379 
0.23529 
0.23162 
0.22593 0.2292 0.2297 
0. 22299 
0.21961 0.2195 0.220 
0.21759 
0.21699 0.216J 
0.21526 
0. 21390 
0. 21337 0.2121 0.2126 
0.20872 
0.20826 0. 2054 
0.20208 0.2024 
0.20144 
0.19811 0.1969 0. 196 7 
0.19263 0.1 q74 
0.18872 
0.18769 0. 1864 
0.18354 n. 1R4 
0.17992 0.1795 0. I 75 
0.17956 
0.17664 
0.17399 
0.1731.3 o. 1723 
0.17148 
0.17127 n.1n9 
0.16014 0. 1616 
0.15348 
0.15207 0.1519 
0.1 'j099 
0.14856 
0.14750 0.14 7') 
0. 14 531 
0.14487 0. 1437 
0. 14120 
0.140h0 
0.]")87:! 
O.JJ750 0. 1375 
0. 1319h 0.13h1 
0. 1 ]407 (). l327 
0.12374 0.1253 
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Table A2. X-Ray Diffraction Data of the Unaltered Zone 

Lattice Spacings, nm 

Unaltered Zone Mu11ite 2Ca0• A1, o, · S iO? rt.-()""rr?- Lnw-Cristobalite R11t.il P HPm.1ti tr 

0.53370 0.546 
0.49607 0.508 
0.47075 
0.42183 0.422 0.426 
0.40583 0. 404 
0.34012 0.3428 0.366 
0.33597 0.3390 0.3343 
0.33143 0.325 
0 .. 30278 0,307 0.3138 
0.28639 0.2886 0.285 0.2845 
0.27223 0.272 
0. 27127 
0.27039 0.269 
0.26733 0.~694 

0.26710 
0.24913 0.2542 0. 249 0.2487 0. 251 
0. 24714 
0.24371 0.2428 0.2435 0.2456 
0.24113 0.2404 
0.22738 (). 2292 U.LLn 0.2281 0.2297 
0. 2260!, 
0.22189 0.2236 
0.22147 0.220 
0.21920 0.2195 
0. 21118 0.2121 0.2126 0.2127 
0.21057 0.1969 0.2043 0.1979 0.2024 0.2054 

•0.16899 0.1795 0.175 
U.lb!:!Jb U.lbS/ 0.169 
0.16814 
0.16785 0.1632 0.1671 

.0.15901 0.1616 
0.15155 0.1519 
0.14367 0.1437 

. 
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Table A3. X-Ray Diffraction Data of Grog Particles 
in the Unaltered Zone 

Grog Particles in 
the Unaltered Zone 

0.53756 
0.40730 
0.34179 
0.33784 
0.31393 
0.28819 
0.28435 
0.26873 
0.25411 
0.25075 
0.24538 
0.24257 
0.23470 
0.22038 
0.21189 
0.21024 
0.20247 
O.lqfi17 
0.17946 
0.16945 
0.16896 
0.16007 
0.15252 
0.1443.5 

Lattice Spacings, nm 

Mu11ite 

0. 3.428 
0.3390 

0.2886 

0.2694 
0.2542 

0.2428 
0.2292 

0.2121 

0.1969 
0.1795 

Low-Cristobalite 

0.404 

0.3138 

0.2845 

0.249 

0.2024 
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