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Mathematical Models of the AIDS Epidemic:
an Historical Perspective

INTRODUCTION

Researchers ceveloping mathematical models of the spreading of HIV, the Human
Immunodefi.iency Virus that causes AIDS, hope to achieve a number of goals.
These go?,3 may be classified rather broadly into three categories: understanding,
prediction, and control. Understanding which are the key biological and sociolog-
ical precesses spreading this epidemic and leading to the deaths of those infected
will al.ow AIDS researchers to collect better data and to identify ways of slowing
the eridemic. Predicting the groups at risk and future numbers of ill people will
allew an appropriate allocation of health-care resources. Analysis and comparison
of proposed control methods will point out unexpected consequences and allow a
betier Jesign of these programs. The processes which lead to the spread of HIV
ace biologically and sociologically complex. Mathematical models allow us to orga-
nize our knowledge into a coherent picture and examine the logical consequences,
therefore they have the potential to he extremely useful in the search to control
this disease.



AN HISTORICAL CAUTION

However, we need to be cautious about what it is possible to achieve with =pidernic
models. [f we examine the history of modeling of intectious diseases, we can learn
quite a lot about what can and cannot be done with models*!3 Models have
been developed to study the mechanisms behind disease spread and predict the
spread of a large number of infectious dissases. Many insights have been gained by
studying epidemics using models, some of which have been useful and some of which
have been misleading. However, models have been largely unsuccessful at predicting
future disease spread. Only models which have been built on a solid knowledge of the
specific disease of interest have proved useful in the actual prevention and coantrol
of disease. For the most part, even the successfui models have primaiiy provided
some key epidemiological concepts, which tend tc sccun obvioua once they've been
pointed out.

One of the basic concepts behind epidemic models, the mass action law, was
formulated by Hamer in 19062, Tt.is principle, that the rate that people are infected
is proportional to the number of susceptible individuals times the number infected
times the contact rate, is a key insight into the transmiseion of infectious agents and
explains the shape of most epidemic curves: initisl exponential growth, followed by
a slowdown as the population saturates, and a die-off as the infecteds all recover or
die.

Sir Ronald Ross wrote down the first equations based on transmission dynami:s
in 1911?*. His simple malaria model showed that malaria can be ccntrolled without
killing off every mosquitn, a point that was hotly debated at the time. Although
Ross’ conclusion was not accepted until malaria was actually controlled in the field,
his concept of a threshold below which a disease dies out became one of the fun-
damental concepts in epidemiology. Ross further developed his model to show that
malaria can be controlled in a region despite mosqui.o diffusion from neighboring,
uncontrolled, regions. MacDonald?? found that control of adult mosquitoes is more
effective than larval control, using transmission models that took account of the
eflects of itnmunity. Since then, models of malaria have been used to examine moie
detailed questions of annual cycles, insecticide use, age-dependent immunity, etc.,
but none have had the impact of these early studies®.

Models have probably been used the most in the control aad pievention of
malaria. However, there are a number of other examples where they have nad
some impact on public health policies. Hairston showed the importance of rata as
reservoirs for schistosomiasis and gave a coherence to tne epidemiological data!!.
Hethcote, Yorke and Nold!? showed that a core group of highly promiscuous het-
erosexuals could maintain gonorrhea, and that contact tracing is & more efficient
means of controlling its spreac than routine screening: this haa changed the focus
of control programa in the U.S. and allowed this disease to be coutrolled in many
groups. Anderson and May's age-structured models of measles' were used to guide
the design of vaccination programs in Great Britain.

Models which have been useful for public health policy have primartily been
sinple models that provided useful qualitative insights. One reason for this e that
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epidemiologists rarely care to deal with complicated mathematics, and mathemati-
c1ans rarely understand enough about epidermiology to build useful models Another
reason s that the more Jdetailed and sociologically correct a model becomes, the
less robust to changes 1in parameter values it will tend to be. This bias toward over-
simplified models can be a problem when some of the more important etfects are
aeglected. For example, even though models indicated that it would be possible to
eliminate smallpox by vaccinating a large fraction of the population, this herd im-
munity approach had to be abandoned in favor of the more ad hoc procedure of case
finding and of vaccination of visitors to a region. It 13 believed that heterogeneities
in population densities and contact patterns, neglected in the model, caused predic-
tions 1o be invalid. Hethcote and Van Ark'* argue that the core/noncore concept
of the gonorrhea model need to be applied, with the two groups being cities and
villages with nonproportionate mixing between them. The same neglect of spatial
heterogeneity proved a disaster for the above-mentioned malaria models of Mac-
Donald: despite the useful qualitative insight, his predictions that malar:a co'dd be
eliminated proved incorrect.

Cne intriguing charactetistic of epidemic models has been their ability to almost
explain the nearly periodic (slightly chantic) nature of many diseases. Invariabiy,
the model exhibits damped periodic (nr chaotic) behavior. The periodic nature of
diseases is thus an almost obvious asp-~ct of the disease transmission and recovery
process. Finding the key to undamped, cuntinuous oscillations has been nontrivial.
Recently, Schenzle?® showed that the variation of contact rates with the school year
will give stable oscillations for meaales in an age-structured population, with period
1 year for England and 2 years for Germany. Thus a slightly more complex, but
very tealistic, model was able to provide a likely explanation for a phenomenon that
simple models could not explain.

One exception to the rule that models ar.: primarily useful for qualitative in-
sights into the spreading of a disease is the influenza models of Baroyan, et ald.
These models, which inciude extensive work on contac. rates between cities, agree
remarkably well with epidemics in Russia, and have been saccessfully applied to the
spread of the Hong Kong flu in 1968 69. A review of this vork, and presentation
of the model, are given in Longini!®. This is a very hopeful (nstance where good
madelers working in conjunction with epidemiologists have becn able to do both
qualitative and quantitative predictions

This abbreviated history shows that models can be useful if they go hand-in-
hand with a strong understanding of the diseasa. They will primarily allow us to
check that our assumptions about a disease process lead to logical and reasonable
conclusions, and thus provide us with useful insights into the mechaniams behiad
disease spread. This will be best achieved if there is a good interaction between
modelers and epidemiologists.



AIDS, SOME BASIC CONCEPTS™

HIV is spread by sexual contact, blood and blood products, and from mother to
child during pregnancy or breast-feeding. Because the virus is spread by blood, IV
drug usersspread it by sharing needles and other equipment, and it is also spread by
accidents leading to blood injection. A number of studies of household contacts of
HIV infected people, and of people living in regions with high mosquito populations
have been unable to documnent a single case where the virus could only have have
been spread by insects or by normal, nonsexual contact. However, there have been
a few cases where the virus has been spread by skin or eye contact with blood.

Except for cases when large amounts of blood or blood products are transferred,
the average probability of becormung infected from a single contact with an infected
person is small, on the order of 107%-10~“ for a sexual contact or needle-stick
injury. A mother will transfer infection 20-50% ol the time to her fetus. There is
growing evidence that the infectivity of people is extremely variable, however. Not
only can the presence of genital ulcers increase infectivity (and susceptibility?), but
infectivity and/or susceptibility may vary with disease stage or straiu of the virus,
beiween circumcised and uncircumcised men, with the use of birth control pills,
and between individuals for many unknown reasons.

Once infected, the immune system and/or the nervous system of the infected
person 8 slowly destroyed, leading eventually to AIDS and death. The time from
infection to major symptoms is different (or each individual. Adults take at least 2
years to develop AIDS, and about 50% develop AIDS by 10 years after infection,
with most of the rest having serious imumune deterioration at th t point. It is not
known 1if some small fraztion (at most 10of people are resistant to the virus and will
never develop serious problems. Once AIDS develops, the average time to death is
about 13 months, with AZT prolonging life for 6 months to a year in those who
can toierate 1t.

[t 1s not known why the time from infection to AIDS, and the infectivity of
people, are so variable. Despite all that has been learned about this virus, the
processes that lead to immune and brain deterioration are still poorly understood.

TWO SIMPLE MODELS FOR THE SPREAD OF HIV

Let us now consider the transmission of HIV by sex and needle-sharing. 1 will start
hy presenting two very siinplified modeis of this spread, and then proceed to discuss
how they can be expanded to include some of the specia' features of AIDS.

One way of modeling the epidemic is shown as the model 1 flow chart in Figure
1. We can divide the at-risk pcpulation into uninfected susceptibles, 5(t}, pre-
ANS infected people, 1(t), and AIDS cases, A(t). Asauming that AIDS cases stop
spreading HIV, suscepubles become infecte!d *hrough contacts with infecteds
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FIGURE 1 The flow of pecple in the simple models (1) and (2)

at some rate A(t) per susceptible. Infected people develop AIDS at a rate vy
per infected, and AIDS cases die at a rate § per person. There is also some rate
background rate of ageing or dying, u per petson, that takes people ou: of the
susceptible and infected populations, and some maturation rate, uS,, that brings
susceptibles into the population (if there were no HIV present, then the popula-
tion would equilibrate at S, susceptibles). Under these conditions, we obtain the
rrquations
%‘ti =u(S, = S(1)) - AMO)S(L) . (la)

2L MOSO - (e 1) (18)
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Infections are transferred by either sexual or needle-sharing contacts between what
we shall w.rm partners. When a new partner is chosen, there 18 some probabil-
iy, [{)/(5(t) + I(¢)), that that partner is infected. There will then be ¢ contacts
between the two people, and probabiiity i of transferring the infection with each
contact. If we are dealing with a population which has a high partner-turnover rate
and few contacts per partner, then the fact that the probability of transferring HIV
per contact is small (i € 1) implies that we can use

1w "
(t)+ 5(1)
where p is the average nurnber of new partners per unit time for an individual in
our

population. The above model, which has been used by many groups as a basis
for model building, focuses on the risk to an uninfected individual. Another per-
spective has been taken by Klaus Dietz?, who suggests that we should focus on the
transmission within partnerships. Model 2 in Figure 1 shows the flow chart for this
model. Dietz divides the population into six basic classes. Before AIDS there are
2 classes, those in partnerships and those not in partnerships. With the introduc-
tion of HIV, there can now be infected, V'(t), and uninfected, U(t), people who are
not paired, uninfected pairs, Pyy(t), disparate pairs, Pyv(t), and infected pairs,
Pyv(t). There can also be AIDS cases, A(t), and we shall assume that pairs dissolve
when one person gets AIDS. People form pairs at a rate p per person, and dissolve
them at a rate o per pair. Infection is transferred within the disparate pairs, at a

rate coi, where co is the frequency of conta . within the pair. This then gives the
system

A(t) = icp

‘fT(:j = uSe = (n+pU(1) + 20 + ) Puy(t) + (u+ o+ MPuv(t) . (2a)

= (o + VO + Ao +u+ NP (O + W+ DRV () ()
M = v o Y WAL *
i%t—/i = 4p'UL(/t()_t)+v‘(/t()t) ~ (0 +2+ 7 +ico)Pyv(t), (24
i%‘i = P“u(:‘)/':(t‘)/(:) ~ (o +2u + 2Py () +icaPyv (1) . (2¢)
%:1 = 7 (V(t) + Puv(t) + 2Py (1) — 8A(1) . @

This formulation takes better account of the transmiseion within long-term
relationships than does system (1). It becomes, however, more complex than is

really necessary when we start dividing people up into groups, as we shall do in the
next section.
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A MORE COMPLEX MODEL

There are a number of features of AIDS that neither of the above systems accounts
for. There is, for one thing, a highly variable duration of infection. The constant
rate of conversion from infection to AIDS, ¥, leads to an exponentially decaying
distribution of time from infection to AIDS, c{t) = ye~7?'. But the data shows
that c(t) gradually increases for the first 6-10 years after infection, and a Weibul
distribution ¢(t) = mt"e~™" with n = 2.4 and m = 0.11 is a good fit to current
data. There is some evidence that infectivity may vary with disease stage, with
a short infectious period early in infection, a long noninfectious period, and then
people becoming more infectious the ciceer they get to AIDS. There is a large
variation in behavior, even among homosexual men. Some men have very many
partners and some have few: if we examine the distribuiion of men according to
numbers of partners in some time interval, we see that the variance is large compared
to the mean squared, with the distribution decaying roughly as p~", n about 3 or
4, for p large. Similar distributions presumably hold for heterosexual people and
for intravenous needle-sharing. The transmission rates for different sex acts may be
different, age may play a strong role in how people choose partners, and who they
choose, distance may be important, etc.

Noting that the high variance to mean-squared ratio in the numbers of partners
implies that this is an important variable, Anderson, et al.? introduced the notion
of distributing the population according to the partner change rate, r. Thus suscep-
tibles now become a population density, S(t, p), etc. To account for the time from
infection to AIDS, they distributed the infected population according to time from
infection to AIDS, r, giving I{t, r, p), which has the units people per partner/year
per year (people per partner). AIDS cases can similiarly be distributed by time
since AIDS, which we also designate r, giving A(t, 7, p). Note that this is somewhat
confusing notation: S(t) is the integral over p of the density S(t,p); I(t,p) is the
integral of I(t, r, p) over r; etc.

As soon as we introduce the distribution of people according to risk, we have to
start worrying about how people mix. This problem would also arise if we introduced
sex, age, type of contact, distance, etc. The age/sex problem is a classical problem in
fertility analysis (how are marriages distributed, who makes the partnering choice).
There are two obvious extremes that we can talk about: people choose their partners
solely based on availability, with no regard to who they are; and people choose
partners who are identical to themselves. Reality, of course, lies in the middle, and
there may, under some gircumstances, even be a bias of high and low for each other
(for example, with prostitution).

Determining contact patterns becomnes a difficult mathematical task in itself:
a couple of constraints must be satisfied. When a person with risk p has a partner
with risk ¢, the opposite must also happen. A person with p partners per year should
have p partners per year. A person must have a nonnegative number of partners
from all groups.
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If p(p, q)dq is the fraction of partners of a person with p partners per year that
have between ¢ and ¢ + dq partiers per year (p is a probability density function),
thep the constraints on p are

1. when a person with risk p has a partner with risk ¢, the reverse must happen,

or plp, PpN(p) = plq.p.)gN(q), where N(p)dp is the total number of people
with risk between p and p + dp,

2. the rate of partner choice of a person should be the value specified, or

[e ]
/ p(pygldg =1,
0

ind
3. p(p,q) s strictly positive.

Althuugh satisfying these constraints will not give a unique result, it is non-
trivial to find families of p(p, q) that satisfy all three constraints. Anderson, et al.2
chose to assume random partner choice, for which these constraints can be easily
satisfied. Colgate, et al.” postulated the otner extreme, which just gives independent
epidemics. [ have developed a family of solutions to this mixing problem, which al-
lows a fairly wide range of mixing to be specified. It is based on the assumption that
there is a way of ordering the population in terms of dzsirability, and has both of
these extremne cases as limiting possibilities. If this ordering goes from lowest risk to
highest risk, then those of lowest risk decide how their partners will be distributed
among all risk groups based on availability, ¢N (g), and acceptability, normalized by
the availability and acceptability of all possible partners. The partnerships chosen
by this group are removed from circulation using the symmetry constraint (1.) and
then the next lowest risk group chooses partners from themselves and all groups at

higher risk than themselves. This formulation, which satisfies ail three constraints,
]

p(q,P)IN(q) forg>p

ordered .
p7 % pq) = - J? AN > (3a)
{(1 Js p(p z)dz) NSO forg>p

f(p.q) 18 an arbitrarily chosen acceptance function. There i8 nothing partic-
ularly special about the lowest group; we could use any otdering that we want.
By choosing different acceptance functions, we can mimic a large range of mixing
patterns. If f(p,q) = 1 then we recover proportionate mixing, while if f(p,q) is a
narrow function such ar e~ P~ /€2+9” then self-selection occurs. Once we have
any set of formulations of p(p, q) we can take a linear combination of them, with
coefficients that add up to 1, and still satisfy the three constraints.

This then can be put into A(t, p), which now becomes

Mt.p) = p /0 K(t, p,q)p(t, p. 4)dq , where (3b)
o [ , )
k(t.p.0) = <lp.a) [ e (3¢)
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We then obtain a system which ie 3 modified version of (1):

ER)
¥ = u(So(p) — S(t.p)) = A(t.p)S(t.p) , (4a)
I(t,0,p) = Nt,p)S(t,p) , (1b)
al 81
S ta = —((r) + )t r,p), (4c)
A(t,0.p) = / H ()t 7 par (1d)
0
g4 A
5 + %T- = -§(r)A(t,r,p) . (1e)

Note that now people become infected (or develop AIDS) at r = 0 and convect
along or.e year of infection (or AIDS) for each year of time.

What does this complicated system mean? [t is possible to make some estimates
for the situation of initial growth of the epidemic. First note that the virus is
spreading much faster than people are developing AIDS or than the population i3
being replenished. In other words, 4 and y(r) are small compared to icp, at least
for the first several years, and we can neglect birth/death terms. Now, suppose that
mixing is very narrow and given by the above exponential, with ¢ very small. As
¢ — 0, asymptotic analysis of integrals can be used (Laplace’s method) to see that

€ 3 2 ak(tvpr‘r)
A(t,p) - p{k(tvp:p) + 2(P+ a)pN(t,p) E((: +a) J“V(tl'2:)—_(9_;'___')]lll(=p '

to O(¢). If we then also take ¢(p, q) and i(7) to be constants, and N(p) to be N ,p~"
for p large, we obtain a very simple diffusion equatior for the number infected:

. n (e

SR = (o™ = IRl (e, p) + 577 (7 By
for large p and small ¢. This equation has similarity solutions which are waves
moving from high risk to low risk of the form p"u(pt). The total number infected
then grows as t"~!, which is very interesting. Most epidemics grow e: ponentially,
at least at first, but this one has grown in a polynomial fashion from very early on
(AIDS cases have grown as t3)7. So this model provides a plausible explanation for
this growth.

A typical simulation with the full model is shown in Figure 2. The effect of
varying the mixing function is chown in Figure 3. Note that as mixing gets wider
there is less and less of a sharp wavefront. The growth also become more exponential.
Note that the epidemic also eventually decimates the sexually active population,
despite continuous replenishment. This is plausible, but not necessarily corract.

We must be very careful about the quantitative predictions - too many of the
parameters are too poorly known, and we have neglected a large number of
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Peopie (mdbons)
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Time (years) Time (years)

mulons per partner/year
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Risk (partners/year) UMe SiNCe injaction (years)

FIGURE 2 A typical calculation of the model in Eq. 4, with a variable infectivity, fairly nar-
row mixing function, and one contact per partner. Upper left: changes in each population
over time. Uppaer right: total numbers ever infected or with AIDS. The increass in both pop-
ulations is roughly polynamial, with a power between 2 and 5, for the first 10 years. Lower
left: infections distnbuted-over risk every 5 years. Lower right: infections distributed over 7
every 5 years.

characteristics thai isolate people socially. A more detailed discussion of this model
and the parameter choices, alcng with more simulations, can be found in Hyman
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FIGURE 3 What happens as the raixing width increases. (a) same as in figure 2. (b) (p.q)
twice as wide. (c) random mixing. The gpidemic gets faster and reachcus lower risk groups
much earlier the greater the mixing.

and Stanley!®:18

DISCUSSION

[ Lave presented several models of the AIDS epidemic. These models are simplified.
They neglect age structure, spatial heterogeneities, the difference between sexes,
contact-type, etc. But we can learn much about the mechanisms behind the disease
spread from these simple models. We can see that the ronexponential growth of this
epidemic 18 prokably due to population structure and the contact networks within
this structure. Diflereat models can and will anawer different questions. This is a
field in which there is 2 lurry of research that is likely to revolutionize our approach
to modeling infectious discases. It will also change the way that parameters, such
as infectivity, are measured. But many puzzles remain, and much work can still be
done.

Most of the work on AIDS modeliag is very recent, and the napers on the
subject, other than those already cited, are still in press. Exciting papers that will
300N apr2ss .uciude 8 couple by a group at the University of Michigan that are
very concerned with mixing questions'”:'®, a more theoretical paper on time delays
by Castillo-Chavez, et al.® and a paper that examines the question of replacing
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the continuous distribution v.ith a small number of risk groups, asking how can we
choose the groups optimally, by Blythe and Anderson®. A paper by May, et al .2},
starts to look at the question of age-structurea models and their implications.
Models of the irmune system, on many levels (cellular, systemic), could also
be extremely usaful to help provide a structure to the confusiug bits of information
that are being assembled. Little werk has been done to date, possible because the
information has been so confusing, so this is a field that is wide open for discovery.
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