
INSTITUTE FOR 
FUSION STUDIES

AUG 0 7 1990

DOE/ET/53088-439 IFSR #439

Resonant MHD Modes with Toroidal Coupling Part II. 
Ballooning-Twisting Modes

J. W. Connor and R. J. Hastie 
Culham Laboratory

(UKAEA/Euratom Fusion Association)
Abingdon, Oxfordshire 0X14 3DB, England

J. B. Taylor
Institute for Fusion Studies 

The University of Texas at Austin 
Austin, Texas 78712 

USA

July 1990

THE UNIVERSITY OF TEXAS

AUSTIN

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



DOE/ET/530 88—43 9 

DE90 015185

Resonant MHD Modes with Toroidal Coupling 
Part II. Ballooning-Twisting Modes.

J.W.Connor and R.J.Hastie 
Culham Laboratory

(UKAEA/Euratom Fusion Association) 
Abingdon, Oxfordshire, 0X14 3DB, England

J.B. Taylor
Institute for Fusion Studies 

The University of Texas at Austin 
Austin 

Texas 78712 
U.S.A.

Abstract
This is part II of a study of resonant perturbations, such as resistive tearing and ballooning 
modes, in a torus. These are described by marginal ideal mhd equations in the regions 
between resonant surfaces; matching across these surfaces provides the dispersion relation. 
In part I we described how all the necessary information from the ideal mhd calculations 
could be represented by a so-called .E-matrix. We also described the calculation of this E- 
matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio 
torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix 
is a generalisation of the familiar A' quantity in a cylinder.
In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity 
in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes 
are intrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. 
This is evident from the analysis of the high-n limit in ballooning-space, where a transition 
from a stable A' to an unstable A' occurs for the twisting mode when the ballooning effect 
exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). 
Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this 
singular behaviour and indicates how one may define a twisting-mode A'. It also yields a 
prescription for treating low-n twisting modes and a method for calculating an E-matrix for 
resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are 
given in terms of cylindrical tearing mode solutions.
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1 Introduction

In part I of this work*1) we investigated toroidally coupled tearing modes. These are examples 
of ‘resonant’ perturbations described by the marginal ideal mhd equations outside critical 
layers at nq = m, where there are discontinuities Am in the small component. These discon­
tinuities are matched to corresponding Am(w) calculated from the layer equations (which 
contain additional physical processes such as resistivity). In a cylinder, where harmonics of 
different m are uncoupled, the ideal mhd equations determine each Am, but in a torus they 
determine only a single relation between all the Am - called the “.E-matrix” in I.

The tearing modes are distinguished by the fact that they have even-parity (ie symmetric 
in perturbed normal magnetic field 0) in the critical layer. In a large aspect ratio torus 
different even-parity harmonics are weakly coupled and the toroidal mode is closely related 
to the cylinder tearing-mode.

In the present paper we consider toroidal twisting modes, ie modes with odd-parity in 
the layers. We will show that these exist only by virtue of toroidal coupling and are not 
related to the cylinder twisting mode.

The intrinsic toroidal nature of the twisting modes is already apparent in their behaviour 
in the high-n limit. This is usually described using the “ballooning-transformation” *2’3,4) 

when a quantity Ab, determined from the asymptotic |t/| —> oo behaviour of the ideal mhd 
solution in transform space, replaces A. In a large aspect-ratio tokamak, with zero average 
curvature, Ab for the tearing mode approaches A for a cylinder as pressure, and therefore 
toroidal coupling, tends to zero. However, although the twisting and tearing modes have the 
same (negative) A in a cylinder (the solution for one parity is obtained from the other by 
inverting the function on one side of the resonant surface - leaving A unchanged), Ab for 
the twisting parity toroidal mode remains positive as pressure tends to zero!

In section (2) we show how the cylinder limit of high-n toroidal twisting modes is resolved 
by the introduction of non-zero average curvature, and in section (3) we show how these 
modes can be calculated in coordinate space. This leads to the main result of the present 
paper - the calculation of low-n toroidal twisting modes in section (4).

2 High -n modes in Ballooning space

Perturbations with high toroidal mode number n and many resonant surfaces nq = m, are 
best described using the “ballooning-transformation”.*2-4) This exploits the fact that, at 

large n, harmonics centered on different rational surfaces are equivalent to one another. 
Formally the transformation is written

1



(1)0M) = £<Ur)e-'m* - Ee_,mV ^(V^dv

where r, 0 are polar coordinates in the poloidal plane and 

0(77,7-) = e~'nq^vF(T], r). (2)

Then at large n F varies slowly with r and to a first approximation F ~ F(ri). Clearly 
F(tj) can be regarded as the fourier-transform, with respect to nq(r), of 0m(r) which, in 
accordance with the equivalence of different harmonics, ~ 0 (m — nq(r)). The singularity 
at (m — nq(r)) = 0 is reflected in the asymptotic behaviour of F(q) through As, the ratio 
of the small to the large component at large \q\. This must be matched to the solution of a 
more complete plasma model,which vanishes as |7;| —v oo.

Strauss introduced a model for a large aspect ratio, low shear (s = rq' / q -Cl) tokamak 
for which he calculated Ag. The low shear permits an averaging of the ideal mhd equations 
over a connection length, so that the electrostatic potential for a marginal ideal mode is 
given by

d , i, d \2
tF + z)-z + — + 6 0=0 (3)

where z = sq,\2 = a2/s and a = —2Rp'q2/B2. The term 6 = Q:e(l —q2)lq2s2 represents the 

effect of average curvature (interchange energy).
Strauss considered <5 = 0. Then the twisting and tearing parity solutions are

(j)TW = cos(A tan 1 z)

cj)T = sin(A tan 1 z)

oo
Att

cos{Y> 1 +
A tan(A7r/2)

sin
oo

Att
1 -

A cot(A7r/2)
sgn(z)

(4a)

(4b)

[N.B. 0 has the opposite parity to the magnetic field perturbation 0] so that

AZe = —— cot I A-Att

(5a)

(5b)

As A —► 0, AbE —7 -2/its, corresponding to A7 = -2nq/r for high-rr modes in a cylinder(6), 

and the expression (4b) is equivalent to the form

<f>TE{x)
x—*0

JL_
|x|

7T
t~7 + sgn(x) (6)
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near a resonant surface rm in coordinate space (with x = (r — rm)nq'[rm)). This also 

corresponds to tearing modes in a cylinder.
On the other hand, is always positive and —> 7tA2/2s as A —0. Furthermore the

expression (4a) is equivalent to the form

(j)1 (x) —« 2-k6{x) — 2Ag log |x| + constant (7)

in coordinate space, which bears no resemblance to the form of the cylinder twisting mode

-p-r + A'
x (8)

To understand the cylinder limits we re-introduce the interchange term 6. The solution of 
eqn.(3) can then be expressed in associated Legendre functions and leads to the asymptotic 
forms for large |t/|

with

and

[iT/r+A7|r?r-]^n(7?)

,±=-I±(I-^,

A™ = 7rr(l + i/-A) f .tt .
r(i + ,)r(| + wr(-A-,)(2,)-^ ltan,r‘'’tan[2(A + ^

{*^TE _ + " — ^)
B r(i + I/))r(f+ I.)^(-A-I/)(2s)1+2‘'

(whe^e 1/ = 2/+).
The expressions (9) correspond to 

<t>TW(x) ~ \x\v~ + A^lxp 

4>TE{x) ~ [ixl"- + AT£|xp] sgn{x) 

in coordinate space, with

atw=cot f—^
\ 2 J i/r(l + i/) S

tan ttis -)- cot

ATE = tan ( A-ttis) r(i - is) aTE
2 7 i/r(i + i/)

(9a)

(9b)

(10a)

} (10b)

(11a)

(11b)

(12a)

(12b)
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(13a)

When A and 8 are both small (note that u ~ —8)

Atw ~ -- 
s 82

and

Ate ~ —-1 ! + 28(\ — 1 + tn [ -j — ^
7T2A2

(13b)

with 7 = 0.5771..., the Euler constant. Thus we see that ATE always approaches the 
cylinder limit (here= — l/s) when 8 and A are small, but ATW does so only if A2 < S'2; 
otherwise it remains positive - corresponding to instability for simple layer models. (N.B. 
The fact that ATW is negative when A2 < 82 implies, on the extended Strauss model, a 
potential for tight-aspect-ratio stabilisation of resistive ballooning modes in a tokamak if

3 Calculation of ZXJ’1' in Configuration Space

In a toroidal system with 8^0 the matching condition for high-n modes may be applied 
either in coordinate space, using A from the form (|x|_1+l5 + A|x|-lS) as |x| —> 0, or in 
ballooning-transform space using Ab from the form (|f7|-5 + Ab|t7|~1+'5) as (t/I —*• oo.

For the tearing parity mode a smooth limit exists in coordinate space and in ballooning 
space as <5 —► 0. However for the twisting parity mode the limit 6 —» 0 is singular in 
coordinate space. This singular behaviour arises because, in addition to the discontinuous 
components |x|-1+4 and |x|-5, there is a continuous component (due to toroidal coupling) 
which becomes indistinguishable from the ‘small’ component |x|-4 as <5 —» 0. However the 
presence of a continuous component at x = 0 does not affect the asymptotic, |?7| —> oo, 
behaviour in ballooning-space; this reflects only singularities at x = 0. Consequently A™ 

is unaffected by the continuous component.
In the remainder of this section we show that, despite the singular behaviour of A when 

<5 = 0, the matching may still be carried out in coordinate space. This will open the way for 
a similiar calculation of low-n twisting modes, (for which the ballooning-transformation is 
not applicable) in the next section.

In coordinate space the singular part of the twisting parity mode is given by,

f'"0 + r dV eixr} (M-4 + A™>|-1+4) (14)

where t]0 1. For <5^0 this takes the form (|x|-1+4 + A|x|-4) but for <5 = 0 it becomes

27r<5(x)-2A£;v[log|x| + log77o] (15)
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cis in eqn.(7). This indicates that calculation of toroidal twisting modes in coordinate space 
should be based not on coupling of the usual cylinder modes, but on coupling of (5-function 
modes. Then we can recognise AgW in the behaviour near a critical surface as

aTW tt x Coeff.of log |x|
=------ CoefF.oM(x) (16)

To illustrate this, we consider the well-known “s — a” modeb7) of high-n modes in a large 
aspect ratio tokamak. In ballooning space this is given by

— [l + (stj — a sin 7/)2j + a [cos 77 + sin 77(377 — a sin 77)] 0 = 0d<j)
dr) ^ x ^ dt]

Drake and Antonsen^8' obtained an asymptotic solution of eqn.(17) by expansion in a, as

(17)

<£(*?) i + a™7|t?I (18)

with

ATW
B

T* Cl . _
7P'<5 + 2) 1 - (■S + 2)

s exp (19)

(Note that <5 = 0 in the s — a. model and eqn.(19) agrees with the small a limit of the Strauss 
model as s —7 0.).

The s—a model in ballooning space can be considered as the fourier-transform of an 

equation for <f>m(x) = <f)(x — m) in coordinate space, namely

~~2 js(x2 + ^ “ ^(X “ + SX~^WX + !) + ^(X ~

+ si[<^(x + 1) - (i>{x - 1)] - i[<7i>(x + 1) + <t>{x - 1)]|

-^2 {(x2 + OW1) ~ + 2) + <t5(x - 2))] - x[<t>(x + 2) - <j>{x - 2)]| = 0 (20)

[This equation can also be derived from the general toroidal equations discussed in the next 

section.]
In the light of the preceding discussion we now seek a solution of eqn.(20) in the form 

= ^(°) + + a2d>(2)-|- ...where <f>^ = <5(x) and arise from toroidal coupling.
In first order we find that ip^(x) = x<f>W(x) has discontinuities at the ‘sideband’ positions 

x±l = 0,

= — exp 
4

(s + 2)
exp sgn(x) for|x| > 1 (21)

and

t

*
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for |x| < 1. (22)
^ = a exp (_) sinh (£)

In second order ^2\x) is given, near x = 0, by 

d2
x —— 

dx1

where

rW =
2s2

(1 + s)ll>^ — 3 di()W
dx J i

(1 + s)ip^ + s drp^
dx -i

(23)

(24)

and the logarithmic contribution to ^ is .ft^xlog |x|. Then, from eqn.(16), evaluating 
we have

r (s + 2) /—2'A™=5-^+2) 1 - ■ exp (t) (25)

in accord with the calculation in ballooning space.
Note that the essential features of the high-n calculation in coordinate space are that 

toroidal coupling induces discontinuous ‘sidebands’ of a ^-function perturbation on a resonant 
surface and that these sidebands in turn induce a logarithmic singularity at the original 
resonant surface. These features will also appear in the calculation of low-n modes to be 
described in the next section.

4 Low-n Resistive Ballooning Modes

We now turn to the main topic of this work, the description of low-n ballooning (twisting 
parity) modes in a large aspect ratio tokamak (<5 = 0). As in part I, the marginal ideal mhd 
equations are

dr
LmXm y-

(m-nq) m ± 1 — ng

r(m - nq)------------r = ----------- r + e2^dr (m — nq) (m — nq) ±
+ P^m±X

m ± 1 — nq

(26)

(27)

where V’m = (m — nq)<pm and the coefficients L,M,N,P have been given in part 1. The 
ordering parameter e has been introduced to identify terms representing toroidal coupling.

Before discussing the solutions of eqns.(26) and (27) it is necessary to reconsider the 
matching problem. We recall that when 6^0 the outer, ideal mhd, solution near a critical 
surface rm is

<t> ~ AL'R{\r - rm\ 1+5 + A^jr-rm| (28)
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where the subscripts L,R denote left and right of the critical surface. This can be written as 

a symmetric part

{Ar + AL,)\r — rm\ 1+5 + (AflA/j + |r — rml-15 (29)

and an antisymmetric part

{(Afi - AL)\r - rm|_1+i + (AflAfi - AL^.L)\r - rm\~6^ sgn(r - rm). (30)

These have to be matched to the symmetric and antisymmetric inner layer solutions

A(|y|-1+5 + A-{u>)\y\~6) + B (|yr1+* + A+(w)|y|_i) sgn(y) (31)

where y = (r — rm)/a, with a the layer width. The matching leads, as in part 1, to a 
dispersion equation

A+(o>)A-M - ^1_25(Ar + Al)(A+M + A_M) + <t2(1-26)AlAh = 0. (32)

In general, the eigenmodes need not have definite overall parity. However, since it is 
implicit in the matching that <7 —» 0, separation into eigenmodes with definite parity in the 
layer occurs so long as A+(u>) and A_(u;) do not vanish simultaneously. Then we find an 
eigenmode of tearing parity (odd <f>) in the layer, for which

A+(a;) = icr1 2,5(Ah + A£,) and Ar ~ -AL. 

and an eigenmode with twisting (even (f>) parity, for which 

A_(u>) = icr1-2fi(Afl + Al) and Ar ~ +AL.

(33)

(34)

When <5 —► 0, we will see that, as in the high-n limit, the twisting and tearing modes 
are no longer distinguished merely by their parity; each then has a different functional 
form. The antisymmetric part of the solution becomes

<I>a (—L
llr-’

+ D \ sgn(r - rm) (35)

while the symmetric part becomes

<j)s ~ {27r£(r - rm) - C£n\r - rm|} .

These have to be matched to the inner solutions which themselves become 

(27r%) - 2A£vv(u;)£n|t/|) and ^ Sgn(y)

Again assuming that A-gE(u>) and A-gW(u) do not vanish simultaneously, this leads to an 
eigenmode of tearing parity in the layer, with

(36)

(37)
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A£e(u») = 2<jD/x (38)

and an eigenmode of twisting parity in the layer, with

= <r<7/2. (39)

As the twisting parity modes are uniquely identified by the appearance of ^-function and 
logarithmic singularities at resonant surfaces we can calculate low-n twisting modes in a 
large aspect ratio tokamak by finding the logarithmic response of ipm, induced by toroidal 
coupling, to a solution

4>{0) = - nq(r)) (40)

of the lowest order (uncoupled) equations - just as we did for high-n modes in section (3).
The logarithmic response is second order in toroidal coupling. The first order response 

V’mii contains contributions from and /?m±2 and to describe these it is convenient to 

introduce functions which satisfy the uncoupled equations, with ipL = 0 a.t

r = 0 and = 0 at r = a. These functions are continuous and have unit amplitude at 
their resonant surfaces. Then between resonant surfaces ipmLi can he expressed in terms of 

and il>R and it has the following discontinuities at rm and rm±i:

^mil
dr

#m±l
dr

m^m±l= AnCij, [V’mill = PmK
L J "m

*■ J rm4-2
(41)

J rm±2

where
rm±lnm

m  i m±lTm±l = ^-----------------

m±2 _ ,
rm±l — =

nq'

rm±l pm±2 
mil

nq'

= ±^£(l + s)

(m ± l)2 a= (1 + ^)
rm±2

(m ± 2) 2s
r mi2

m . (^l ±1)0!,
<7m±l = -^mil(rm) = “ TT(rm)

m Zs

m±2   »^mi2/' \   (m + 1) ^ \ (A0\
m±l Mmil(rm±2) (m ±2)25^

and, as defined earlier, s = rq'jq and a = —2Rp'q2/B2.
If the resonant surfaces rm and rm_2 both lie within the plasma, V’m-i is given in terms 

of for 0 < r < rm_2, by a combination of i/’m-i an<l 'I’m-i f°r rm-2 < r < rm, and in

8



terms of f°r rm < r ^ a- The discontinuities (41) determine the coefficients of V’m-r
and V’m.i in the three regions. If the resonance rm_2 lies outside the plasma, /?m_2 = 0 and 
V’m-i is given in terms of V’m-i f°r all 0 < r < rm. Similar remarks apply to V’m+i- 

In the region rm_2 < r < rm we find, for example,

Am = A, (r^“- - - 'Ki +

Pm-2 a { d lL , , 1W1 , w
{rTr^-' + (m - W + S)* -l)] rf-1

/ j rm-2
(r) (43)

0:
(1) _
m+1 = 0;

/ Pr,

+

m+1\rm+lA°w

Pm+2

m+1
ir^*' + <"• + ’X1 +

^S(4^--(m+1)<1+3)^)],„J (44)
where A^l±1 are the conventional tearing mode discontinuities in the absence of coupling

A0 =
0.

1 (d0£
drdr

(45)
J r=rm

(If a sideband m ± 1 is non-resonant it is convenient to normalise the two solutions to unity 
at rm and then r^iA^! is replaced by rmW where W is the Wronskian of the solutions

0m±l and 0m±lO

In second order we have for 0^(r)

d d 2 rmqcr
r-r----- m —

dr dr (m — nq) 0m)(r) =
RW(r)

(46)
(m — nq)

where R^(r) is given in terms of 0m±i and a = (l/r)(r2/q)' (see part I). The logarithmic 
singularity in at (771 _ nq) = 0 is therefore given by

0m)(r) = Rm- ^"^(r - rm) log |r -
msrn

so that, in eqn.(36),

C =
2tt RW(rm)

(47)

(48)
/3mmsrm

Writing Am for AgW, and expressing R$ explicitly in terms of 0m±i, this leads to the 
relation

nam
ftm Am — 2. n , 1 1 \± 2s(m ± 1)

r^0m±l ± (m ± l)(s + 1)0^!'.(1) (49)

9



Recalling that V’Uij involve only j3m and /?m±2> eqn.(49) leads to a three-term recurrence 

relation

Pm-lEm-2 + /?m “ Am) + /3m+2£'m-(-2 = 0

and hence to a tridiagonal “^matrix” for toroidal twisting modes

\E — Am I = 0

(50)

(51)

where Am = {diagonalAm} and
■K

Em<m+2 —

Em,m—2 =

1
A0 r \ ^m’+l (rm)-Om+1 (rm+2 )

4(m + 2) rm+1 A^+1s(rm)
^ 1 ~R,~

4(m -2) A^l_1s(rm)

= E i
4m ^ rm±iA^±1s(rm)

i,±

where

dZ* = - rdr^ ±^1 + S^* etc.

(52)

(53)

Note that, despite the fact that the toroidal twisting modes are not directly related to 
the cylinder modes, the elements of the £tmatrix are given in terms of uncoupled cylinder 
solutions il>L and rp11 and the cylinder tearing mode quantities A^.

It is interesting to see the relation of the £lmatrix (52) for twisting modes of general n 
to the high-n limit discussed in section (3). At large m

(54)

and

rm±l

Therefore

^m(r) ~ (-?-) and ^m(r) ~ (7-)
\Tm'

(i T ——) •
\ ms/

Em,m~j%f(s + 2) = EQ. 
4 s*

(55)

(56)

and
-it a

Em,m±2 ~ + 2)2exp = Ej. (57)

The harmonic number m no longer appears in the ^-matrix and all resonant surfaces are now 
equivalent. The coefficients /3m therefore differ only by a phase factor so that (3m ~ exp(zu). 
Then from eqn.(50)

A = £^0 + 2£l2 cos(2u). (58)

This is in agreement with the value given in section (3) if one sets u = 0, ie, (3m = 1.
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5 Summary and Conclusions

In parts I and II of this work we have discussed resonant toroidal modes described by ideal 
mhd equations outside critical layers at nq = m, where there are discontinuities Am in 
the solution. These discontinuities are matched to corresponding A(u;) calculated from the 
critical layer equations, which contain non-ideal terms such as resistivity.

In a torus the ideal mhd equations do not specify the individual Am, as they do for a 
cylinder. Instead they specify a single relation between the Am in the form of an “^-matrix” 
such that IE1 — A| = 0, where A = {diagonal Am}.

Part I concerned toroidal tearing modes, in which the perturbed magnetic field has even 
parity in the critical layers. We showed that in a large aspect ratio torus these modes are, 
as one would expect, a natural extension of the cylinder tearing modes.

In the present paper we have considered toroidal twisting modes, in which the perturbed 
magnetic field has odd parity in the critical layer. We have shown that, when the interchange 
term 6 is small, these modes are intrinsically toroidal. Even when the toroidal coupling is 
weak they are not related to the cylinder twisting modes.

The different character of the toroidal tearing and twisting modes is already apparent 
in the high-n limit - when modes of either parity can be described using the ballooning 
transformation. Then a single quantity As, defined through the asymptotic form of the ideal 
mhd solution in r/-transform space, replaces the Am. As the interchange term 8 —► 0,Ab 
remains finite for both twisting and tearing modes but the corresponding coordinate space 
quantity A has a singular limit for twisting modes. Nevertheless we have shown that high-n 
twisting modes can be calculated in coordinate space. Essentially, for the twisting mode 
the usual III"* forms near a critical surface are replaced by a <^-function and a logarithmic 
singularity. The ratio of the coefficients of these terms is related to the ballooning space 
quantity As, not to the coordinate space quantity A.

The most important result of the present work is that this calculation of high-n twisting 
modes in coordinate space, and the identification of Ab as the ratio of coefficients of singu­
lar terms, can be extended to deal with low-n twisting modes - for which the ballooning 
transformation itself is not applicable. Thus in a laxge aspect ratio tokamak, low-n twisting- 
ballooning modes are calculated, not by expanding about uncoupled cylinder twisting modes, 
but by expanding about singular ^-function modes on each critical surface. Then the toroidal 
coupling induces, in second order, a logarithmic contribution at the same resonant surface 
- so defining A^ and hence the appropriate E-matrix. Furthermore the elements of the 
E-matrix can be computed from the uncoupled cylinder equations - despite the fact that the 
toroidal twisting modes lack any resemblance to cylinder modes. Finally, this E matrix can

11



be used in conjunction with the ballooning space quantity AgW(u>), containing the influence 
of non-ideal effects such as resistivity, to form the dispersion equation for low n-modes.

Appendix A' notation

The symbol A, carrying suffix, superfix or argument, appears in many places throughout this 
paper. Sometimes it refers to a quantity in configuration space, within a resonant layer or 
external to it, and sometimes it refers to a quantity in ballooning space. While the meaning 
of each usage should be self-evident from the context, this appendix gathers them together, 
along with their definitions.

The stability index for slab (or cylinder) tearing modes, originally introduced by Furth, 
Killeen and Rosenbluth^10! as the discontinuity in logarithmic derivative, is denoted by A'. 
For a particular poloidal harmonic in a cylinder this quantity is denoted by A^ (as in Eq.45), 
while Am denotes the equivalent discontinuity at the resonant surface rm for a toroidal 
mode. [The definition of A', A^, and Am as the discontinuity in logarithmic derivative is 
only valid when <5 = 0. When <5^0 they are defined, as by Coppi, Greene and Johnson^, 

as the discontinuity in the “small” solution at the singularity. See part I.]
The quantities corresponding to Am obtained from solutions of the equations within 

the critical layers are indicated by explicitly displaying the eigenvalue u> as an argument. 
Thus Am(u;) is the layer quantity to be matched to the external quantity Am at each critical 
surface.

In ballooning space, solutions of the ideal equations have the general structure

<KI?) - \v\u+ + ^b\v\u~ ^ I7/! -*• oo (A.l)

and are of odd parity for tearing modes and even parity for twisting modes, thus defining (as 
in Eqs.9) the ballooning space quantities AgE and AgW. The form corresponding to (A.l) 
in configuration space is given in Eqs.(ll) which similarly define the configuration space 
quantities ATE and A™1". Because both r? and z = (r — rm)nq' are dimensionless variables, 

the quantities As, Ag£, AgVV, ATE and ATW are all dimensionless.
In section 4, the quantities Ag and As describe the ratio of the small to the large solution 

on the left and on the right of the resonant surface. They have the dimension since
the configuration space variable used in section 4 is (r — rm). Using Eqs.(29) and (30)

Ate = i(AL + AR)(nq')^-^ (A.2)

and in the limit 6 —► Othe original A' of Furth, Killeen and Rosenbluth is

A' = (Al + An) (A.3)

12



Finally, Eq.(31) defines A+ (w) and A_(u;) as the ratio of small solution to large solution 

for the resonant layer equations, having tearing parity (A_(u>)) and twisting parity (A+(w)) 
respectively. These quantities are dimensionless.
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