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Abstract

This is part II of a study of resonant perturbations, such as resistive tearing and ballooning
modes, in a torus. These are described by marginal ideal mhd equations in the regions
between resonant surfaces; matching across these surfaces provides the dispersion relation.
In part 1 we described how all the necessary information from the ideal mhd calculations
could be represented by a so-called .E-matrix. We also described the calculation of this FE-
matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio
torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix
is a generalisation of the familiar A' quantity in a cylinder.

In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity
in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes
are intrinsically toroidal and are not directly related to the odd-parity modes in a cylinder.
This is evident from the analysis of the high-n limit in ballooning-space, where a transition
from a stable A' to an unstable A' occurs for the twisting mode when the ballooning effect
exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak).
Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this
singular behaviour and indicates how one may define a twisting-mode A'. It also yields a
prescription for treating low-n twisting modes and a method for calculating an E-matrix for
resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are
given in terms of cylindrical tearing mode solutions.
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1 Introduction

In part I of this work*1) we investigated toroidally coupled tearing modes. These are examples
of ‘resonant’ perturbations described by the marginal ideal mhd equations outside critical
layers at ng = m, where there are discontinuities Am in the small component. These discon-
tinuities are matched to corresponding Am(w) calculated from the layer equations (which
contain additional physical processes such as resistivity). In a cylinder, where harmonics of
different m are uncoupled, the ideal mhd equations determine each Am, but in a torus they
determine only a single relation between all the Am - called the “.E-matrix” in L.

The tearing modes are distinguished by the fact that they have even-parity (ie symmetric
in perturbed normal magnetic field O) in the critical layer. In a large aspect ratio torus
different even-parity harmonics are weakly coupled and the toroidal mode is closely related
to the cylinder tearing-mode.

In the present paper we consider toroidal twisting modes, ie modes with odd-parity in
the layers. We will show that these exist only by virtue of toroidal coupling and are not
related to the cylinder twisting mode.

The intrinsic toroidal nature of the twisting modes is already apparent in their behaviour
in the high-n limit. This is usually described using the “ballooning-transformation” *2'34)
when a quantity AB, determined from the asymptotic [I/| — oo behaviour of the ideal mhd
solution in transform space, replaces A. In a large aspect-ratio tokamak, with zero average
curvature, AB for the tearing mode approaches A for a cylinder as pressure, and therefore
toroidal coupling, tends to zero. However, although the twisting and tearing modes have the
same (negative) A in a cylinder (the solution for one parity is obtained from the other by
inverting the function on one side of the resonant surface - leaving A unchanged), AB for
the twisting parity toroidal mode remains positive as pressure tends to zero!

In section (2) we show how the cylinder limit of high-n toroidal twisting modes is resolved
by the introduction of non-zero average curvature, and in section (3) we show how these
modes can be calculated in coordinate space. This leads to the main result of the present

paper - the calculation of low-n toroidal twisting modes in section (4).

2 High-n modes in Ballooning space

Perturbations with high toroidal mode number n and many resonant surfaces ng = m, are
best described using the “ballooning-transformation”*2-4) This exploits the fact that, at
large n, harmonics centered on different rational surfaces are equivalent to one another.

Formally the transformation is written



OM) = £<Unje-m* — B¢ MV ~cpran )
where 1, 0 are polar coordinates in the poloidal plane and
0(77,7-) = e~"ng"VF(T], 1). 2

Then at large n F' varies slowly with r and to a first approximation F ~ F(7i). Clearly
F(1) can be regarded as the fourier-transform, with respect to nq(7), of Om(r) which, in
accordance with the equivalence of different harmonics, ~ O (m — nq(7)). The singularity
at (m — ngq(r)) = 0 is reflected in the asymptotic behaviour of F(g) through As, the ratio
of the small to the large component at large \¢\. This must be matched to the solution of a
more complete plasma model,which vanishes as |7;] — oo.

Strauss  introduced a model for a large aspect ratio, low shear (s = rq'/q -Cl) tokamak
for which he calculated Ag. The low shear permits an averaging of the ideal mhd equations

over a connection length, so that the electrostatic potential for a marginal ideal mode is

given by
d, i, d \] _
T+ 2)-7+—+6 0=0 (3)

where z = sq,\? = a2/s and a = —2Rp'q2/B2. The term 6 = Q:e(l —q2)Ilg2s? represents the
effect of average curvature (interchange energy).

Strauss considered § = 0. Then the twisting and tearing parity solutions are

A A tan(A7r/2
()TW = cos(Atan |z) COS{YIT> 1+ an(A7r/2) (4a)
00

A A cot(A7r/2
T = sin(Atan |z) sin " 1 - COATH2)
00

sgn(z) (4b)
[N.B. 0 has the opposite parity to the magnetic field perturbation 0] so that

(52)

AZE — — cot | AT (5b)

As A = 0, ABE —1 -2/115, corresponding to Al = -2nq/r for high-rr modes in a cylinder(6),

and the expression (4b) is equivalent to the form

JL m
0 1&7 + sgn(x) ©)

¢>TE({ )



near a resonant surface rm in coordinate space (with x = (r — rm)ng'[/rm)). This also
corresponds to tearing modes in a cylinder.
On the other hand, is always positive and — 1TA2/2S as A —0. Furthermore the

expression (4a) is equivalent to the form
Gl (x) — 2K6{x) — 2Ag log |x| + constant (7)
in coordinate space, which bears no resemblance to the form of the cylinder twisting mode
-;))(—r + A )

To understand the cylinder limits we re-introduce the interchange term 6. The solution of
eqn.(3) can then be expressed in associated Legendre functions and leads to the asymptotic

forms for large |1/|

(9a)
[iT/r+A7|rr-]1"™"n(7?) (9b)
with
pi:_I:I:(I_/\s
and
Trr(l + 1/-A f )\ :
A™ = (i + (T CAY (2. Ltanre® = tanf2A + < (10a)
TE +" =" % } (10b)
— J)- cot
B r(i + V)IE(Er IHA(-A-Y)(2s)142" {tan s - co
(whe”e 1/ = 2/+).
The expressions (9) correspond to
CTW(x) ~ xh~ + ANXp (11a)
PTE{Xx) ~ [ix]"- + ATE|xp] sgnix) (11b)
in coordinate space, with
A Tw=—cot_f~—" (12a)

2J imwa+in s

ATE = tan ( &Y 71— aTE (12b)
27 v/r( + 1)



When A and § are both small (note that u ~ —8)

ATW ~ — " (13a)

and

TM2A2
N

-1
ATE ~— 1+ 280\ —1+tn|[-j — (13b)

with 7 = 0.5771..., the Euler constant. Thus we see that ATE always approaches the
cylinder limit (here= —1/s) when § and A are small, but ATW does so only if A2 < §7
otherwise it remains positive - corresponding to instability for simple layer models. (N.B.
The fact that ATW is negative when Al < &8 implies, on the extended Strauss model, a

potential for tight-aspect-ratio stabilisation of resistive ballooning modes in a tokamak if

3 Calculation of ZXJ'I' in Configuration Space

In a toroidal system with &0 the matching condition for high-n modes may be applied
either in coordinate space, using A from the form (|x| 1+l5 + A|x]-IS) as |x| — 0, or in
ballooning-transform space using AB from the form (|f7|-5 + ABJ17|~1+5) as (/I —" oo.

For the tearing parity mode a smooth limit exists in coordinate space and in ballooning
space as § — 0. However for the twisting parity mode the limit 6 — 0 is singular in
coordinate space. This singular behaviour arises because, in addition to the discontinuous
components |x|-1+4 and |x|-5, there is a continuous component (due to toroidal coupling)
which becomes indistinguishable from the ‘small’ component |x|-4 as § — 0. However the
presence of a continuous component at x = 0 does not affect the asymptotic, |7 — oo,
behaviour in ballooning-space; this reflects only singularities at x = 0. Consequently 4™
is unaffected by the continuous component.

In the remainder of this section we show that, despite the singular behaviour of A when
4 = 0, the matching may still be carried out in coordinate space. This will open the way for
a similiar calculation of low-n twisting modes, (for which the ballooning-transformation is
not applicable) in the next section.

In coordinate space the singular part of the twisting parity mode is given by,

ST+ Z=dV eir] (M-4 + ATM>|-144) (14)

where 10 1. For <570 this takes the form (|x|-1+4 + A|x|-4) but for § = 0 it becomes

27r<5(x)-2AL£;v[log|x| + log770] (15)



cis in eqn.(7). This indicates that calculation of toroidal twisting modes in coordinate space
should be based not on coupling of the usual cylinder modes, but on coupling of (5-function

modes. Then we can recognise AgWW in the behaviour near a critical surface as

aTwWw T X Coeffoflo x|
% (16)

To illustrate this, we consider the well-known “s —a” modeb7) of high-n modes in a large

aspect ratio tokamak. In ballooning space this is given by

E Ll + (ST — a sin 7/)2{ + acosT +sin7/(377 —asin77)] 0 =0 (17)
r X

Drake and Antonsen”8' obtained an asymptotic solution of eqn.(17) by expansion in a, as

() 1+ ATM7|1] (18)
with
T*Cl .
AEW TP'<S +2) | - s Jsr 2) exp (19)

(Note that § = 0 in the s —a. model and eqn.(19) agrees with the small a limit of the Strauss
model as s —7 0.).
The s—a model in ballooning space can be considered as the fourier-transform of an

equation for $m(x) = <f)(x — m) in coordinate space, namely

~~2 Js(x2 + N EEAX S + SX—=""WX+ 1)+ X ~
+si[<Mx + 1) = (> = D] = i<T>(x + 1) + <fr = 1)]]

—~z {(x2 + OW1) ~ +2) + 05X = 2))] — X<t +2) — P —2)]| =0 (20)

[This equation can also be derived from the general toroidal equations discussed in the next
section. |
In the light of the preceding discussion we now seek a solution of eqn.(20) in the form
=) + + a2®2)-- ...where <" = <5(x) and arise from toroidal coupling.
In first order we find that ip”~(x) = x<f>W(x) has discontinuities at the ‘sideband’ positions

x=+=1 =0,

+2
(s ) exp sgn(x) for|x| > 1 @A)

[
&
a
=

and



—~=qa exXp (_) sinh (£) for |X| < 1. (22)

In second order “~2\x) is given, near x = 0, by

xa’xl =
where
. VAN
RW = A+ isn — 3500 (1 + )i~ + s 4P (24)
2s) dx i dx

and the logarithmic contribution to * is .ft"xlog |x|. Then, from eqn.(16), evaluating

we have

A™M=5_~42) T _ 6D ) (25)

in accord with the calculation in ballooning space.

Note that the essential features of the high-n calculation in coordinate space are that
toroidal coupling induces discontinuous ‘sidebands’ of a *-function perturbation on a resonant
surface and that these sidebands in turn induce a logarithmic singularity at the original
resonant surface. These features will also appear in the calculation of low-n modes to be

described in the next section.

4 Low-n Resistive Ballooning Modes

We now turn to the main topic of this work, the description of low-n ballooning (twisting
parity) modes in a large aspect ratio tokamak (<5 = 0). As in part I, the marginal ideal mhd

equations are

LmXm y-
26
dr (m-nq) m=+ | —ng (26)
( ) B oo + P m=+X @7)
rm_nqdi_f(m—an (m—nq)r % m =+ 1 —nq

where Vm = (m — ng)<pm and the coefficients L,M,N,P have been given in part 1. The
ordering parameter ¢ has been introduced to identify terms representing toroidal coupling.

Before discussing the solutions of eqns.(26) and (27) it is necessary to reconsider the
matching problem. We recall that when 60 the outer, ideal mhd, solution near a critical

surface rm is

P ~AL'R{\r — rml 145 + A jr-rm (28)



where the subscripts L,R denote left and right of the critical surface. This can be written as

a symmetric part
{AR + AL)\r —rm 145 + (AflA/j + r — rml-15 (29)

and an antisymmetric part

{(Afi — AD)\r — rm|_1+i + (AflIAfi — AL™ND)\r — rm\~6" sgn(r — rm). (30)

These have to be matched to the symmetric and antisymmetric inner layer solutions
A(ly|-1+5 + A-{u>)yl~6) + B (Jyrl+ + A+(W)ly|_1) sgn(y) 31
where y = (r — rm)/a, with a the layer width. The matching leads, as in part 1, to a
dispersion equation
AHO>)A-M — ™1 25(AR + AL)(A+M + A_M) + T12(1-26)ALAH = 0. (32)
In general, the eigenmodes need not have definite overall parity. However, since it is
implicit in the matching that <7 — 0, separation into eigenmodes with definite parity in the

layer occurs so long as A+(>) and A (u;) do not vanish simultaneously. Then we find an

eigenmode of tearing parity (odd <f) in the layer, for which

A+(a;) = icrl 25(AH + Af£,)) and AR ~ -AL. (33)
and an eigenmode with twisting (even () parity, for which

A _(v>) = icrl-2fi(Afl + AL) and AR ~ +AL. (34)

When § — 0, we will see that, as in the high-n limit, the twisting and tearing modes
are no longer distinguished merely by their parity; each then has a different functional
form. The antisymmetric part of the solution becomes

Y —L + D\ sgn(r — rm) (35)
1r-

while the symmetric part becomes
Gs ~ {27tE(r — rm) — C£n\r — rm|} . (36)
These have to be matched to the inner solutions which themselves become

(271%) — 2ALw(w)En|t/) and > Sgn(y) (37)

Again assuming that 4-gE(u>) and 4-gW(u) do not vanish simultaneously, this leads to an

eigenmode of tearing parity in the layer, with



A£E() = 2<jD/x (38)
and an eigenmode of twisting parity in the layer, with
= <1<7/2. (39)

As the twisting parity modes are uniquely identified by the appearance of "-function and
logarithmic singularities at resonant surfaces we can calculate low-n twisting modes in a
large aspect ratio tokamak by finding the logarithmic response of ipn, induced by toroidal

coupling, to a solution
pll) = - nq(r)) (40)

of the lowest order (uncoupled) equations - just as we did for high-n modes in section (3).

The logarithmic response is second order in toroidal coupling. The first order response

V'mii contains contributions from and /M'mt2 and to describe these it is convenient to
introduce functions which satisfy the uncoupled equations, with ipL = 0 at
r =0 and = 0 at r = a. These functions are continuous and have unit amplitude at

their resonant surfaces. Then between resonant surfaces ipmLi can he expressed in terms of

and PR and it has the following discontinuities at rm and rmi:

~mil
mi = AnCij, !V’mill = PmK‘;l:I:]
dar J'm
#m=1
41
i J rméd-) S
J rm£2
where
rm=lnm
hy e~ mE = :II/\;E(l + S)
nqg'
rm+tl pmt2 m=1? a
o mil_ mEDLa
ng’ (m£2) 2 .
rm=+2 rmi2
<7IIII/71il = —-~mil(xm) = (/\l‘:AZI)Q"!["(rm)
m VA
m£2 »Ami2/ \ (m + 1) ~ \ (A0\
m=l Mmil(rm+£2) (m £2)25"

and, as defined earlier, s = rqjq and a = —2Rp'q2/B2.
If the resonant surfaces rm and rm 2 both lie within the plasma, V'm-i is given in terms

of for 0 < r < rm_2, by a combination of i/m-i an<l T'm-i fr Tm-2 < r < rm, and in



terms of f°r rm < r ™ a- The discontinuities (41) determine the coefficients of Vm-r
and V'm.i in the three regions. If the resonance rm 2 lies outside the plasma, /m 2 = 0 and
Vm-i is given in terms of Vm-i f°r all 0 < r < rm. Similar remarks apply to Vm+i-

In the region rm 2 < r < rm we find, for example,

A r-—~“— - - 'Ki-+
A M= : (
Pm-2 a d IL - WL, w _
ér]?ﬂ“—’—k(nl— s DI rBlgy @)
/ j rm-2
1 /P PN P My g
omt = 0 lr Fh X

N Pm+2 /N S (4A——(m‘|'1)<1+3)/\)] 999J (44)

where A7Mt1 are the conventional tearing mode discontinuities in the absence of coupling

| £
A0 = < 0 (45)
0 dr a |,
(If a sideband m = | is non-resonant it is convenient to normalise the two solutions to unity
at rm and then T™1A™! is replaced by rmW where W is the Wronskian of the solutions
Om+l and Om=+10

In second order we have for O™ (1)

d d 2 rmgcr RW(r)

a @ (m — ng) Om)(r) = (m — ng) (46)

where R”™(7) is given in terms of Om+i and a = (4/r)(r2/q)’ (see part 1). The logarithmic

singularity in at (771 _ ng) = 0 is therefore given by
Om)(r) = Rm- ~"™(r - rm) log |r - (47)
ms
so that, in eqn.(36),
_ 21TRW (rm) 48)
3mmsrm

Writing Am for AgW, and expressing R$ explicitly in terms of Om+i, this leads to the

relation

nam r™"Om=l = (m %= 1)(s + 1)QH! 49
(WM_%%miﬂ (49)



Recalling that V'Uij involve only j3m and /m£2> eqn.(49) leads to a three-term recurrence

relation

Pm-IEm-2 + I’'m “ Am) + Am+2'm-(2 = 0 (50)

and hence to a tridiagonal ““matrix” for toroidal twisting modes
g g

IE— Ami =0 (51)
where Am = {diagonalAm} and
Em<m+2 i AO1 r |\ ~m-+l(GEm)-Om+1 (rm+2)
4(m + 2) rm+1 A™M1s(rm)
A 1 ~R,~
Emm=l =" 4m -2y AAL Is(rm)
- E i+ (52)
4m 7 rm=iA”+1s(rm)
where
DZ* = — rdr™ =] + S§A* et (53)

Note that, despite the fact that the toroidal twisting modes are not directly related to
the cylinder modes, the elements of the £tmatrix are given in terms of uncoupled cylinder
solutions i>L and rpll and the cylinder tearing mode quantities A”.

It is interesting to see the relation of the £lmatrix (52) for twisting modes of general n

to the high-n limit discussed in section (3). At large m

m(r) ~ (-?-) and “m((r) ~ (7-) (54)
\Tm'
and
GiT—) (55)
rmetl \ ms/
Therefore
Emm~j2of(s +2) = EQ. (56)
4 s*
and
Emm=x2 ~ ey 2)2exp = Ej. (57)

The harmonic number m no longer appears in the ~-matrix and all resonant surfaces are now
equivalent. The coefficients /3m therefore differ only by a phase factor so that (3m ~ exp(zu).

Then from eqn.(50)
A = £ + 2£2 cos(2u). (58)

This is in agreement with the value given in section (3) if one sets u = 0, ie, 3m = 1.

10



S Summary and Conclusions

In parts I and II of this work we have discussed resonant toroidal modes described by ideal
mhd equations outside critical layers at ng = m, where there are discontinuities Am in
the solution. These discontinuities are matched to corresponding A(u;) calculated from the
critical layer equations, which contain non-ideal terms such as resistivity.

In a torus the ideal mhd equations do not specify the individual Am, as they do for a
cylinder. Instead they specify a single relation between the Am in the form of an “*-matrix”
such that IEl — A| = 0, where A = {diagonal Am}.

Part I concerned toroidal tearing modes, in which the perturbed magnetic field has even
parity in the critical layers. We showed that in a large aspect ratio torus these modes are,
as one would expect, a natural extension of the cylinder tearing modes.

In the present paper we have considered toroidal twisting modes, in which the perturbed
magnetic field has odd parity in the critical layer. We have shown that, when the interchange
term 6 is small, these modes are intrinsically toroidal. Even when the toroidal coupling is
weak they are not related to the cylinder twisting modes.

The different character of the toroidal tearing and twisting modes is already apparent
in the high-n limit - when modes of either parity can be described using the ballooning
transformation. Then a single quantity As, defined through the asymptotic form of the ideal
mhd solution in r/-transform space, replaces the Am. As the interchange term § — 0,AB
remains finite for both twisting and tearing modes but the corresponding coordinate space
quantity A has a singular limit for twisting modes. Nevertheless we have shown that high-n
twisting modes can be calculated in coordinate space. Essentially, for the twisting mode
the usual III"* forms near a critical surface are replaced by a <*-function and a logarithmic
singularity. The ratio of the coefficients of these terms is related to the ballooning space
quantity As, not to the coordinate space quantity A.

The most important result of the present work is that this calculation of high-n twisting
modes in coordinate space, and the identification of AB as the ratio of coefficients of singu-
lar terms, can be extended to deal with low-n twisting modes - for which the ballooning
transformation itselfis not applicable. Thus in a laxge aspect ratio tokamak, low-n twisting-
ballooning modes are calculated, not by expanding about uncoupled cylinder twisting modes,
but by expanding about singular ~-function modes on each critical surface. Then the toroidal
coupling induces, in second order, a logarithmic contribution at the same resonant surface
- so defining A and hence the appropriate E-matrix. Furthermore the elements of the
E-matrix can be computed from the uncoupled cylinder equations - despite the fact that the

toroidal twisting modes lack any resemblance to cylinder modes. Finally, this E matrix can

11



be used in conjunction with the ballooning space quantity AgW(u>), containing the influence

of non-ideal effects such as resistivity, to form the dispersion equation for low n-modes.

Appendix A’ notation

The symbol A, carrying suffix, superfix or argument, appears in many places throughout this
paper. Sometimes it refers to a quantity in configuration space, within a resonant layer or
external to it, and sometimes it refers to a quantity in ballooning space. While the meaning
of each usage should be self-evident from the context, this appendix gathers them together,
along with their definitions.

The stability index for slab (or cylinder) tearing modes, originally introduced by Furth,
Killeen and Rosenbluth”™10! as the discontinuity in logarithmic derivative, is denoted by A'.
For a particular poloidal harmonic in a cylinder this quantity is denoted by A" (as in Eq.45),
while Am denotes the equivalent discontinuity at the resonant surface rm for a toroidal
mode. [The definition of A', A®, and Am as the discontinuity in logarithmic derivative is
only valid when § = 0. When <570 they are defined, as by Coppi, Greene and Johnson”,
as the discontinuity in the “small” solution at the singularity. See part L]

The quantities corresponding to Am obtained from solutions of the equations within
the critical layers are indicated by explicitly displaying the eigenvalue > as an argument.
Thus Am(u;) is the layer quantity to be matched to the external quantity Am at each critical
surface.

In ballooning space, solutions of the ideal equations have the general structure
KI?) = Wt + ~B\u~ > T1/1 -* 00 (A.D

and are of odd parity for tearing modes and even parity for twisting modes, thus defining (as
in Eqs.9) the ballooning space quantities AgE and AgW. The form corresponding to (A.l)
in configuration space is given in Eqs.(1l) which similarly define the configuration space
quantities ATE and A™!". Because both 1? and z = (r — rm)nq’ are dimensionless variables,
the quantities As, Agf, AgVV, ATE and ATW are all dimensionless.

In section 4, the quantities 4g and As describe the ratio of the small to the large solution
on the left and on the right of the resonant surface. They have the dimension since

the configuration space variable used in section 4 is (r — rm). Using Eqgs.(29) and (30)

ATE = i(AL + AR)(ng ) =~ (A.2)

and in the limit 6 — Othe original A' of Furth, Killeen and Rosenbluth is
A'= (AL + An) (A3)

12



Finally, Eq.(31) defines A+(w) and A_(u;) as the ratio of small solution to large solution
for the resonant layer equations, having tearing parity (A_(u>)) and twisting parity (A+(w))

respectively. These quantities are dimensionless.
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