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DIMENSIONAL ANALYSIS, SIMILARITY, ANALOGY AND THE SIMULATIO

- THEORY (ABSTRACT) ‘ '

-Dr. Allen Davis, P.E.

Argonne National Laboratory
Energy and Environmental Systems Division

Dimensional analysis, similarity, analogy, and cybermetics are shown
to be four consecutive steps in application of the simulation theory. This
paper introduces the classes of phenomena which follow the same formal
mathematical equations as models of the natural laws and the interior sphere
of restraints groups of phenomena in which we can introduce simplified
nondimensional mathematic equations. The simulation by similarity in a spec-
ific field of physics, by analogy in two or more different fields of physics
and by cybernetics in nature in two or more fields of mathematics, paysics,
biology, economics, politics, sociology, etc., appears as a unique theory
which permits to transport the results of experiments from the models, conven-
able selected to meet the conditions of researches, constructions and measure-
ments in the laboratories to the originals which are the primaries objectives
of the researches. Some interesting conclusions which cannot be avoided in
use of simplified nondimensional mathematical equations as models of natural
laws are presented. Interesting limitations on- the use of simulation theory
based on assumed simplifications are recognized.

This paper shows as necessary, . in scientific research, to write
mathematical models of general laws which will be applied to nature in its
entirety. The paper proposes the extent of the second law of thermodynamics
as the generalized law of entropy to model life and its activities.

This paper shows that the physical studies and philosophical interpre-
tations of phenomena and natural laws cannot be separated in scientific workj
they are interconnected and one cannot be put above the others.



DIMENSIONAL ANALYSIS, SIMILARITY, ANALOGY, AND THE SIMULATION THEORY

Dr. Allen Davis P.E.

Argonne National Laboratory
Energy & Environmental Systems Division
Simulation theory, which allows the study of an original phenomenon by
a model, or even by computer calculations, is not new. It originated before

Newton in the sixteenth century with the dimensional analysis, and was con=

.tinued through similarity, analogy, and cybernetics into the present.

This article attempts to show: (1) how fhe basic theory can be aéplied
in the study of a phenomenon establishing the adequate ﬁathematical formé.for.
the natural laws; (2) how the simulation theéry should be understood and
used; (3) what conditions should'be'introdhcéd when using the simﬁiation

theory; and (4) the limitations and restrictions inherent in each study.

As a result of the materiél introduéed, it appears that the’experiﬁental
equations for a phenomemon, or gfoup of pheﬁomena, defined by similarity,
analogy, or cybernétics, should be presented in dimensiéﬁless nﬁmber#.(criteria)
and should be comp}eted within the area of viability in which.thg exPeriment;
wvas performed. Some examples are introduced here to facilitéte_follbwing the

theory and to show directly how this theory can be applied to the physical

- phenomena studies.

Through the use of dimensional analysis, it is possible to derive thel-

physical laws through their mathematical forms (equations) knowing that the
equiatons have only equidimensional components. At the same time, the

dimensional analysis establishes connections between the physical quantities

" which are characteristics for a physical phenomenon, when we do not know the

mathematical forms for the basic equations.
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The dimensional analysis is based on the multiplying law, called the

( oo theorem: a mitk'ﬂ:tic‘équation which fep}esents a physical law, and has %
primary quantities, and n-k derivative, may be written as a function of n-k
dimensionless numders (eriteria).

Having Ai primary quantities and Bk+j derivative, with [Ai]’ [Bk#j]
measurement units, and a, = Ai ? [Ai]’ bk+j f Bk+j : [Bk+j] nume;lcal values,
the equations which represent a phenomenon and depend only on phyéical
qdantitites, béing independent of the measurement units, are:

- 1 ' . ' :
£ (al? 8y + - . By, bk+l . o . bn) £ (al, 3y« - . 8, bk+l e e .
1y - ) -

- pn) o.' | _ 1
The second equation of (1) has the measurement units [Ai] :'ci, with cg num-
erical values. In that:

A,
s ',=__]_~_c=ac ‘ . (2)
(4 - 25 (A %" %% 4 . .
B . k k. r.:
' - k+j r. _ i : A
beti T X r.. T_T €3 * bk+jT|__ €3 o (3
i i=1 i=1
T a1
i=1
- . ’ . ] . . .
in which the measurement units [Bk+j1 and [Bk+j] are being wr;tten with
primary units. Because cj flay have any values, with a; ¢, = 1:
4 k m,
£ (ag, ay « - . 2, lbk_*_.j ... bn).= £(,1...1, bkﬂ'g"l c; .-
) -k p, b :
.l."bn]T cil)=F(lzc+‘l ""—-—E———.—):F(‘H‘A..,.‘n ):0
o i=1 TI— m, 'k P. r “n-k ’
a i TT.a * :
1=1%1 1%
(4)
k r bk+‘ ' (5)

with: w, = bk“'" TT (.‘._‘r i ='k——i—— ’ ' ‘ .

Lo J J i=1 ~ -ﬂ' R

kY ai

a dimensionless number.
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The result is that an equation which represents a phenomenon having
n quantities (k primaries and n-k derivatives from,the primaries) may be

written as a new equation with n-k dimensionless numbers.

Although tﬁe dimensional analyéis-can be used in the physical studies,
especially when the phenomena equations are not known, it may give wrong
conclusion34especially wheq: |

(a) not all quantitites that are characteristic for the studied

pheﬁomenon are known;

(b) the general equations include dimensionless quantities

that -are out of the dimensional analysis control, and that can
" be known only on an experimental basis;'

(c) wrong quantities, wﬁich normally cannot bé excluded on the

calculation basis, are introduced into the study;

(3) tﬁe equations contain more quantities with the same dimension,

A, which»cannot'be sepafated on a‘éalculation basis.

Some examples of using dimensional analysis to derive an equation are given below:

Emample.i —'using the dimeﬁsiénal.analysié,_derive thejéquétiohé’thaﬁ'réﬁiesent‘
fhe ideal gas law in thermodynamics. |

Solution 1: 1In the equation shall be introduced n‘= 5 quantities (pressure

= p3 volume = V; temperatufe.= T; mass = M; and the:ideal gas cpnétant = R).

With these

£ (p,V,T,M,R) = O.

Having a total of @ = S)quantities, the primary can be selected on a dimensional

basis:
= IF)] _ g ~1p72-2
[P]'- [A] ML T L .
vy =13,

tr] =8 ,



vwhere in the SI system, M = mass; L = length; T = time, and O =-temperature.
For the ideal gas law the resultant; k = 4 and n-k = 1:
F (nl) =0

The dimensionless number'ﬂl, can be writtenrs

L 772 73R of S 128yt g2t gt

- om = p VP TT M R

and ffom this:

-1+ 3p+ 2t =0
-2 -.2t =0
r-t=20
having:
Pp=1l, r=-1, s=0, t =-1,
and:
™ = §¥.= constant = n,
or: |

pV = nRT.

The constant, n, should be established on an experimental basis.

Example 2 - Derive the'transient‘conduétion's.law through'dimenéional analysis
method.

Solution 2: Iﬁ the equation should be introduced n = 6 quantities (temperature

= t, time = T, length = i, thermal diffusivity = a, thermal conductivity = k,

and coefficient of heat transfer through a surface = h):

£ (t,T,1,a,k.h) = O,
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with the dimensions:

- [t] =6
{tl] =T,
1] =1,
[a] = 1% 178,
| k] = m-rr’;3 oL,
[h] = M1 071,

The primary quantities are:r k = 4 (t,T,1,k) and the derivatives n-k = 2 (a,h).

With that, the basic equation should be written with two dimensionless

numbers:
F (tl, ﬂz) = 0,
or: .
a > h a
F ( Py I, S m, .p, T, S ) =0.
RS RS | 2 P2 T2 S

k t T 1 k

From the dimensional amalysis:

2 -1 "By TPy Ty s sy 35y sy

and with:

1
_Sl=0 ,
T Py + 351 =0,
- o+ Si =0,

it results:

m, =0, Py = 1, r, = 2, sy = 0.

The dimensionless number calculated is the Fourier number:
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Also from dimensional analysis:

-m

T, = MT 3_9 Lo 2772 2 2y 27242 ,
-r, s, = 0
1- Sy = 0
-3-p, % 352 =0
-1- m, +s, = 0

m, = 0, pz‘% 0, r, = -1, s, = 1.

The dimensionless number calcula;ed is the Biot number:

. _h1l
“2 Bi = -
The basic ‘equation is:

F (Fo, Bi) = O.

Because of the restrictions of the dimensional analysis, the dimensionless

t e
_ number T~ vas lost in our calculations.

o]

Thus:

¢ (Fo, Bi,,-E—-) =0,
o
or:
t =t ¢ (Fo, BI) .

We have the correct equation which can be completely established oun a

similarity basis as shown below.

Physical similarity is the next step —— starting with dimensional

analysis -— in establishing the physical laws for the phenomena by starting
with the general equations of the phenomenon, for which we apply the
dimensional analysis. A physical law is written as an equation in which,

of course, all terms are equidimentional. All phenomena that follow a law
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written as a single equation, are in a swmilarity class if they are included

in same physical field, but they are in a analogy class if they are included

-in different physical fields.

A physical law may be written through an equation or equation system
algebraical, differential, integral, or integro-differential. Except for
the algebraical case,.the general solutions are multiple, i.é.,.value of the
constant may vary from —= to +», and the particular single solution is:
est;blished by singularity conditions that separate‘the studied phenomeﬁon
from others in the similarity or aﬁalogy class. The singularity conditions
can be as forms algebraical, differential, integral or integro-differential.
To establish the single algebraic equations that represent the physical law
for a studied phgnomenon, the basic equations and singularit& conditions
may be used with one of the following methods: |

(a) a direct settlement of the eqﬁations;

() an appfoximate settlement of the equations, using some |

admissible simplifications; or | |

(c) an eXperimental settlement based on physical similarity

or analog&.

The éhysical similarity is the connection between the theory and the
-experiment and can be used successfully where the‘firs; two ﬁethods are not
applicable. The similarity is the result of application qf the dimensional
analysis to the basic equations for the similarity class of the physical
phenoﬁené. The compatibility conditions tﬁat result from chéngiﬁg the

measurement units (which mathematically correspond to an affine transformation)

" establish the dimensionless numbers.

Use of similarity is accomplished on the basis of its laws. There are

two postulates and three laws for the similarity.
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The basic postulates are:

1. AZZ natural phenomend have laws that can be uritten aé.mathematical
’équations;

2. The &imensionless numbers thﬁt_correspond to a system of differ-
ential, integral, or integro—différential equations, written for
an element of their integration domain, are valid for all

domains.

The first law of the similarity is: If a multiple phenomenon which
corrzspords to an equation system forms a similarity group, each of the dimer-
sionless numbers has a uniquz numeric value for the entire group's phenomera

(Newton 1686).

For two phenomena A and B:

A A A A A, ., B _B . B .B :
f (al > 3y - - ey, bk+l .- o e bn Y =¢£ (al , a2 - ey s bk+l . . .
B
e . . bn ) =0 6)
The dimensionless forms are:
. A A —
b b : :
© Tk+1 n - :
Fl_ﬁ_ - = + .. .ﬁ—T —0,. , - (7)
A . A '
=1 (5 | =1 ()|
B -
- B b
i b, . n : )
Fl—K % p. | =0. . o (8)
i k B. T TT— B i ! .
flI (a;) =1 (@1
- . . A_ B
Because between quantities A and B are the connections a; =ecgay; and
A B . . .
bk&j = ck+j bk+j the equation (7) in the follow1§g form:
B . : -
r S Prt1 . c B |
F! —— &k m, . e ¢ o« « - - =0 , (9

k m B, 1 k P: - k P

i l[ ™ : B 1o}

B cy (a5 ; K ST (a; y
i=1" i=1 ~i i=1



' ‘ i ) A B
should be identical with (8). With ¢, : -l‘-‘r ¢; L=1, withe =2 :a
_ LA B ) j=1
and ckfj bk+j : bk+j it results:
A B
b, .. b, .. -
ket = kt] or: wh=n2 . ' (10)
k A T3 k B. T3 J i ) :
H(a.)J CTT @D '
. 1 . o 1
i=1 i=1

Tﬁe seéond law of similarity is: The gensral soluzion for an equaiion
system (algebraiec, differential, integral, in;egro—dif?érential) which
corresponds to a simtlarity phenomena group, may be wriiizn with simtlarity
dimensionless numbers obtained from the equation’é'sysjar. . The singular
solutions which correspond to known singulariiy conditiors, hay be Qritten
vith the same dimensionless numbers or with thz dimensionlaess numbers that
result froh the singularity conditions, and with dimensionless ratios between
quantities which are chargctéristic of the singularity ﬁonditioﬁs and some

special values for these. quantities (Buckingham and Federman, 1911). That

law is known as T theorem.

Having:
f (al, 82 & & s a.k,bk_*_l, L » L3 hn) = O . ’ S .. (ll)

this differential or integral equation can be written as:

Fm, .- My =0 . | a2
- kT | |
w1th:. Nj = bk+j':.11;(ai) , and the solution will be:

¢(1!l,.'..‘n' )=0 . ‘ (13)



A singular solution can be written with (n-k) dimensionless numbers from (13)
i and [s - (n-k)] dimensionless numbers from: singularity conditions, and (k-s)

dimensionless ratios:

(3>]=o. (14)

¢[1T,.Q.Tr-,1r_ 9 o o ’ > e e &
1 n~k’ n-k+l .8 \x s+l \z p

The third law of similarity is: the multitude of the phenoﬁena’which
correspond with an equatiion’s system and known singularity conditions, are
into a similarity prz~omzna group only if the dimensionless ﬁumbers which
result from the equaiion’s systems and singularity conditions have unique
values (M.V. Kirpicev ard A. A. Guhman, 1933).
| The third law can be enunicate with less rigorism as follows: Are
stmilarity phenomena, inose for which the singulérity conditions crz éame and

the dimensionless nurSzrs have some wnique values.

Two similarity phenomena A and B may be written as follows:

(-
- A A - :
b b . . -
3 kil n lcra® .2 y-0, (15)
k m; k AP 1 1 T n-k
TT @) O TT @y T
i=1 i=1 J
b b : _
% . B
Flap o —, . . . — =¥ P ool =0, e
B, i B, Y1
RS T ;)
. .. . . A B
and from the first similarity law having v = w7, :
k r : J J
bk-él-j Jlf!. (ai ) . k aiA riv k ri
B -k o T 3 = TT.(Ci) = Cp4q = constant. 17
B Y '=l ) =
bk+j TT-(ai ) i ai i=1
i=1
ck+j are similarity constants with different values. From the equation (17)
b A and b .B can be univocal determined.

k+j k+j
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For the third law of similarity was not possible to have a mathematical
demonstration, because the singularity conditions are not known in a general
form. A demonstration was done in base of a logistic mathematics. The

similarity laws permit:

1. To generalize the results from an experience to the_pken&men&
in entire stmilarity group, which is ckaractefized by known
values for dimensionless numbers.

2. To write thz mathematical équations for the physical laws
using the dimzrsionless numbers, less ccmplex and more
accurate.

3. To study a siﬁilérity group through experimental methods

more simplz and more accurate.

The similarity use as method and experience, because the mathematical
 solution for the equations system with the singularity conditions is not
always possible because the similarity solutions are approximatve we restrict
voluntary the area of viability of these solutions, with the intention to
simplifying the results.
The general equations system for the system in a group including the

singularity conditions may be written:

n

E:: A,, =0, | ' | (18)

: i : .

=1 M ,

with i =1,2 . . . n, and:

2

= m,.._. - -ﬁ- m.
Agy =My [ll a_ i3T, A o= Mg 1N a_ ikr , (19)

where M is a numeric value and(fr =1,2 . . . p) are the primary quantities.

Oy
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The terms (19) are equidimensional and they are independent to the

changes of measurement units. Because a_ = ci;a. it results the

L
r

compatibility condition:

m,. " m, ' g
'ﬁ' c ijr = ﬁ c. ikr , - (20)

r=1 r=1

and with cr = a_ : a{, the dimensionless number is:

r
‘ 12:[ °r T m; - m | :
Trl = ————— = ﬁ_ a_ijr ikr = idem . ' (2L
r
-ﬁ— a_ ikr r=1

Having the dimensionless numbers which they are not all independent, the

solution of (18) in a finite form, on a second law of similarity base is:

T . T /3{—> . . (z—-) ] -—-.0 , ”(22)'

¢['ﬂ' _,Tf_ y o o - >\ )
, r;k’ n-k+l s “\os+l zopA

P

and the dimensionless number which includes the value which is intended to

be known:

xlx’

' (% (%)
.".j = e [‘"l’ e o o Trj_l’ Trj_*_l’ e o o Tfs, 0)S+l | I zo p] L4 (23)

This equation (23) which usually is the solution of a complex equation system’

with partial derivative, may be writtem through the variable separation

method:
e -1 | Py s _/x_)ms+1 o
B 3 1 7" -1 j+1 s \xo s+l
m . o
(3..) P, : - - (24)
%o P .
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Restricting voluntarily the area of valability (applicability)'wé may use only

a term replacing Eq. 24 but with the adequate coefficient and exponents:

m m, . m v m

m ' m
‘ 1 j=1 ~j+1 s (x s+1 (z ) P
m, = ¢C k(¢ e o o T. e o T. o. » o T - _ e o\ T - (25)
b 1 j-1 i+l o s xo)s+1 z, p

So in a restricted area of the supface representéd in u dimensional space by
Eq. 24, we superpose a simplified surface Eq. 25; However{ the area of
valabilitf is restricted only in researched aréa. In Eq. 25, we establish
theoretically the componeﬁts of the equation, and, if possibla, some of the
exponents. - Next, we determine experimentally the constant ¢ and the other
expoﬂents,

If we use all diﬁensiﬁnless ﬁumbers in Eq. 25, we introduce complete
stmilarity. In Eq. 25 some aimensionless numbers are important (if the
exponents mj are far from zero); some are not as important (if the exponents
m; are very close to zero). If we use only'the determinative dimensionless
numbers in the solution, ﬁe introduce tnecomplete similarity, which is more
restricted than the complete similarity, easier to apply. The use of
incomplete similarity should be made with care. The determinative dimen-—
sianless ﬁumbers being done by the careful made experiences.

In general, some dimensionless numbers are not determinative in a
restricted area of validity. For these, we may use ﬁwo mofe similarity‘of

equations, each having restricted area of validity in the experimental area.

m .
=c T, , we will

Fxample 3 -~ Having the simplest solution (25) in form 7 2

1
determine the constant, c, and the exponent m.

Solution 3: On simulation theory base from the similarity group of phenomena
will select one which can be easier investigated in laboratory, and for this

phenomenon we will establish simulaneous couples of values (ﬂli’ “21)'
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; ' Using logarithmic values for these couples (lnﬂli, lnHZi) a series
('“ : of points can be plotted as shown in Fig. 1. : -
‘07["

. me m n = - - .- -

]

H

bes vV : !
‘\

5 -~ v e {7 7= i

d in 7] A EEE LS : .
Lomszid] ) I = :

T 7 Tl BT BeGo ;
Fig. 1 :

Through these points should be drawn a straight line:

1In Ty = lnc+min T, .
This is not possible, therefore, we should restrict the area of
viability as sho&n in the figure (1 = I; II, and III) having.three formulas
for each with c,; the ordinate at thé.o:igin and~H& the lines' slope. Each
straight line is drawn under the Gauss error conditions. Using Gauss
equations for‘deviations in the ordinates aﬁd.abscissas, we can determine
two regression lines and select.theAbisection for the solution. The result
1s an equation in which the constant and the exponents are known experimentally
but do not have viability outside the area in which the experiment was done.
L\“ | No experimental fbrm?la can be used unless it is completed within the area of

viability in which the exzperiment was performed.
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Example 4 - Using the differential equations for heat conduction, we will

determine'the solution for transient flow without internal sources, established

_ throﬁgh dimensional analysis in Example 2.

Solution 4: The general equations for heat conduction are: Fourier equation
for the temperature field, without internal heat sources:

== = a div

37 grad t,

Singularity condition at time origin:
£ (r, T=0) =t ().
Singularity condition of heat exchange in surface:

-k grad t = f (tS - tf) nl

in which t is the temperature field, T the time; a the thermal diffusivity;

T the position vector in space; k the thermal conductivity; f the coefficient

of heat transfer through surface §; tS the surface temperature; t " the fluid

£

average temperature; and n° the unit vector for the normal of the surface, S.
With these, from first similarity law, changing the dimension units:

t'=c¢c_ .t ,
' 3

to cto to s

T=c_ -T

a'=¢_ .a ,
1! = ¢ -1

k' =¢

n' =



it results:

(4 - c

at'—._g. .a—£= ' 7 et = _E.
ey T 37 a' div grad' t c, a clz div grad t,

c. . £ c, (ts - tf) . n

£

Because the last system represents a phenomenon. in the-same group of

similarity as the first one:

c

'EE =c. — c, =c ¢, == =c..c

c a 2 "t to?’ "k c £ e’
T ) 1

and with cj =a. : a! the following dimensionless numbers result:

T tt . ' ' \ ' . -
2t = a'-,; = Fo (Fourier), ;— = 'E—x ’ —lf(’l = %— = Bi (Biot).
1 1 o o] '

Using the second similarity law, the solution is:
. . t
¢ {Fo, Bl,;r‘) =0
o
or:
t = £, ¢ (Fo, Bi) ', : .
as we found in Example 2. This equation,'with a restricted viability area may

be written:

t= to c Fom Bi"

(Fo'.ni)l < (Fo.Bi) < (Fo.B1),.
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Physical analogy repiesents the next step after the similarity, and

its application is the same as the last one, but within larger analogy class.

‘An analogy group is a group of physical phenomena from different physical

fields, and is content inside an analogy class for which the definition has
been established.

For example, ;nalogy study starts from the common equ;tions sysfem
which represents phenomena laws and common singularity coﬁditions-which
separate the.gfoup from the class. Because we used mathematical equations
and not directvthSical phenomena in past demonstrations, the analogy has the
same laws as the similarity: | |

- First law of thé analogy: For thg analogy phenomena the same
dimensionless numbers that'correspond to various physiecal fields have the
same udlues. |

+ Second analogy law: The general solution for an analogé group may be

written with the dimensionless numbers determinated from the basic equations.

" The solutions that correspond to the singularity conditions may be written.

with the same dimensionless numbers and dimensionless ratios determined by
the éingularity conditions.

. Thira analogy law: Analogy phenomena are those for wkich.tke singularity
conditions correspond and which have the dimensionless numbers with the same
values.

The experiment for analogy differs from that for similarity because
the exéerimental phenomenon (model) which can be investigatéd easier in the

laboratory is from a different physical field than the original studied.

" Example 4 - Determine the coefficient of mass diffusion on the basis
of analogy convection-diffusion, if the coefficient of heat transfer through

the surface is known from the equation:



18

A - Nu = ‘gi'(']'-‘ =c' ,'Rem Prn_ >

_.ﬁith ¢, m, and n determined from a viability area Ré1<Re<Re2.

Solution 4 - The equations that represent the analogy class for comvection
and diffusion are:
1. the thermal and mass diffusion, with the constants in uniform
fields, and without internal sources:
JA

?r“’-; grad A = B div grad A ;

‘_2. the continuity equation for the incomprissible fluids:
divw =0,
3. the Navier-Stokes equation for viscous fluid flow:

(, -a-‘i+-t;divz;=_g-' (l—UAt)--;-gradp-i-\)V

2 —
3T w

’
4. the singularity condition for the repartition in field at
origin time:
A, T=0)=4a (O,
5. the singularity condition for the heat and mass transfer in

surface, S:
Cgrad A=D (As - Af) n°,
" where:

g
0

the velocity field ,

0|
1

the gravity field,
0 = volume dilatation coefficient,
t = temperature field,

p = density field,

p,=-pf¢ssion fiéld,
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cinematic viscosity field,

N
<
i}

H
1

position vector in space,

n° = the unit vector for the normal separation surface, S.
The convection class has the characteristic quantities:

A=t,B=2a, C=k, D=f,

with:
- t = temperature field ,
a = thermal diffusivity field ,
k = thermal conductivity field ,
f = the coefficient of heat transfer in the surface, S.
The diffusion class has the charactéristic quantities:
P : A=c¢cY, B=C=%,, D -8 s
(C . ' | - d Y
with: .
¢ = concentrations field;
Y =-specifié weight field,
k, = diffusion coefficients field ,
B = the coeffi;ignt of mass—diffusiﬁn in the surface, S.

From these, the solutiom for the anology group is:
Nu, = ¢ Re® Pr. "
3 3

with:

v
D 1 - w 1 ’ PI’. = = .
Nuj = e Re = > j B

The mass diffusion coefficient, B, in the viability area Rel<Re<Re2:
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_'B 1 _ m n_ , wlm. v, .n
Nuj Tk, ©°© Re” Prp” =c ( S ) (k ),
. d d
the convection equation is:
f1 m . n w 1 m vV \n
D e—— ! = ! — o f—
Nu n c' Re Pr ' ) G ),
and
k. n
| 2@y o yp 2t

.with Le = k, : a Lewis dimensionless number.

d

Cybernetics represents the next step from analogy, when into the cybernetic

class phenomena from different.sciences - physics,.biology,'psychology,
politics, etc., are introduced.

The same laws of similarit?band analogy govern the cybernetics and
separate the groups from the class. Use of cybernetic models for the
phenomena from completely different fields of science shéuld be preceeded
by writing the general laws, with unique mathamatical equaﬁion forms in
science. The genefal laws in science can be writtén starting with the Second
Law of Thermodynamics, by introducing that as anAenthropy variétiﬁh~1aw
(Albert Einstein started reséarch tkoriée generai laws in science).

The stmulation theory, a result of the similarity and analogy applicationms,

is based on the fact that experiments may use any phenomenon from the
similarity or analogy group, under conditions of the group established by

similarity .or analogy laws.

The phenomenon investigated is the model, and the phenomenon for

which we want to transfer the results of the experiment is the original.

' The selection of the model should be made by using a scale.
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We establish the. scale such that the model will be within possible

L

measurements. The scale is selected for éﬁe.of the quantities--- ﬁsﬁally fér:“
lengths, but this is not oﬁligatory. Other unit quantities will be a resulﬁ
of the constant value for dimensionless‘nugbers and ratios established by
similarity and analogy laws.
The sealé should be selected such that the average values for the
model and original will not differ greatly. Moreover, the secondary effects
'(usually'in discontinuity areas) which change the phenomenon aspect when
some quantities tage critical values, should be the same for the model and
original. |
A complete similarity or analogy cannot be used in the experimental
wbrk because it makes the work very difficult and often impossible. In the
experimental work, some dimensionless numbers are incompatible for a
phenomaﬁon; these cannot be used simultaneously in an experiment. This.is
not contradictory with similarity or analogy theory; it has happened
because for thg model some quantities cannot be varied in such large limits

to ensure unique values for the dimensionless numbers.
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