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DMENSIONAL ANALYSIS, SIMILARITY, ANALOGY Am THE SIMULATION ' . . . . -.. 
/! ... " THEORY (ABSTRACT) 
t. 

D r .  A l l en  Davis ,  P.E. 
Argonne Na t iona l  Labora tory  
Energy and Environmental Systems D i v i s i o n  

Dimensional a n a l y s i s ,  s i m i l a r i t y ,  analogy,  and c y b e r n e t i c s  a r e  shown 
t o  be  f o u r  c o n s e c u t i v e  s t e p s  i n  a p p l i c a t i o n  of t h e  s i m u l a t i o n  t h e o r y .  Th i s  
pape r  i n t r o d u c e s  t h e  c l a s s e s  o f  phenomena which f o l l o w  t h e  same formar  
mathemat ica l  e q u a t i o n s  a s  models o f  t h e  n a t u r a l  laws and t h e  i n t e r i o r  s p h e r e  
o f  r e s t r a i n t s  groups of  phenomena i n  which we can I n t r o d u c e  s i m p l i f i e d  
nondimensional mathematic equa t ions .  The s i m u l a t i o n  by s i m i l a r i t y  i n  a spec- 
i f i c  f i e l d  o f . p h y s i c s ,  by analogy i n  two o r  more d i f f e r e n t  f i e l d s  of  phys i c s  
and by c y b e r n e t i c s  i n  n a t u r e  i n  two o r  more f i e l d s  of  na thema t i c s ,  phys i c s ,  
b io logy ,  economics, p o l i t i c s ,  s o c i o l o g y ,  e t c . ,  appea r s  a s  a  unique t h e o r y  
which pe rmi t s  t o  t r a n s p o r t  t h e  r e s u l t s  o f  exper iments  from t h e  models,  conven- 
a b l e  s e l e c t e d  t o  meet t h e  c o n d i t i o n s  of r e s e a r c h e s ,  c o n s t r u c t i o n s  and measure- 
ments i n  t h e  l a b o r a t o r i e s  t o  t h e  o r i g i n a l s  which a r e  t h e  p r i m e r i e s  o b j e c t i v e s  
o f  t h e  r e sea rches .  Some i n t e r e s t i n g  conc lus ions  which cannot  b e  avoided  i n  
u s e  o f  s i m p l i f i e d  nondimensional mathemat ica l  e q u a t i o n s  a s  models o f  n a t u r a l  
l a w s  a r e  p re sen ted .  I n t e r e s t i n g  l i m i t a t i o n s  on t h e  u s e  o f  s i m u l a t i o n  t h e o r y  
based o n  assumed s i m p l i f i c a t i o n s  a r e  recognized .  

i' . . 

('s .. T h i s  paper  shows a s  neces sa ry ,  i n  s c i e n t i f i c  ' r e s e a r c h ,  t o  w r i t e  
mathematical  models of  g e n e r a l  laws which w i l l  b e  a p p l i e d  t o  n a t u r e  i n  i t s  
e n t i r e t y .  , The paper  proposes t h e  e x t e n t  of  t h e  second law of  thermodynamics 
as t h e  genera l iz .ed  law of  en t ropy  t o  model l i f e  and its a c t i v i t i e s .  

Th i s  pape r  shows t h a t  t h e  p h y s i c a l  s t u d i e s  and p h i l o s o p h i c a l  i n t e q r e -  
t a t i o n s  of phenomena and n a t u r a l .  l aws  cannot  b e  s e p a r a t e d  i n  s c i e n t i f i c  work;. 
t h e y  a r e  i n t e r c o n n e c t e d  and one  cannot  b e  p u t  above t h e  o t h e r s .  



DnfEISIOIIAL iL1'ALYS IS,  SIMILARITY, ANALOGY, AND M E  SIMlWTIOB THEORY 
. . -  

Dr. N l e n  Davis P.E. 

Argonne National' Laboratory 
Energy & Environmental Systems Divis ion 

Simulation theory,  which al lows t h e  s tudy of a n  o r i g i n a l  phenomenon by 

a model, o r  even by computer ca l ck l a t ions ,  is n o t  new. It or ig ina ted  before  

h'ewton i n  t h e  s i x t e e n t h  century wi th  t h e  dimensional ana lys i s ,  and w a s  con- 

t i n u e d  through s i m i l a r i t y ,  analogy, and cyberne t ics  i n t o  t h e  present. 

This  a r t i c l e  a t t e m p t s t o  show: (1) how t h e  b a s i c  theory can b e  appl ied  

in t h e  s tudy  of a phenortenon e s t ab l i sh ing  t h e  adequate mathematical forms f o r  

t h e  n a t u r a l  laws; (2) how t h e  s imulat ion theory should b e  understood and 

used; (3) what condi t ions  should b e  introduced when us ing  , t h e  s imulat ion 

theory; and (4) t h e  l i m i t a t i o n s  and r e s t r i c t i o n s  inheren t  in each study. 

A s  a r e s u l t  of t h e  ma te r i a l  introduced, i t  appears  t h a t  t h e  experiment& 

equat ioas  f o r  a phenonenon, o r  group of phenomena, def ined by s i m i l a r i t y ,  

a a l o g y ,  o r  cybernet ics ,  should b e  presented i n  dimensionless numbers . (c r i te r ia )  

and should b e  coinpleted wi th in  t h e  a r e a  of v i a b i l i t y  i n  xuhieh ' the  experiment.  . 
. . 

v a s  performed. Some examplesa re  introduced h e r e  t o  f a c i l i t a t e  following the . ' .  

. . theory  and t o  show d i r e c t l y  how t h i s  theory can be  app l i ed  t o  t h e  phys ica l  

phenomena s tud ie s .  . . 

. . 

Through t h e  u s e  oE dtnensionaZ amZysis ,  it is p o s s i b l e  t o  de r ive  the : .  . 

phys ica l  l a w s  through t h e i r  m a t h m a t i c a l  forms (equations) knowing. t h a t  t h e  . . . . ' 

equiatons have only equidimensional components. A t  t h e  same time, t h e  

d b e n s i o n a l  a n a l y s i s  e s t a b l i s h e s  connections between t h e  phys ica l  q u a n t i t i e s  - 
which a r e  c h a r a c t e r i s t i c s  f o r  a physical  phenomenon, when w e  do n o t  know the  

nathematical  forms f o r  t he  bas ic  equations. 



/ 

, .: 
The dimensional ana lys i s  is based on t h e  multiplying law, c a l l e d  the  

7. . 

( :. R theorem: .a mt%a~ztS:c equation which .represents a physical Zm, and has 

primcar3 q . ~ m t i t < e s ,  z d  n-k der iva t ive ,  may be o r i t t e n  a3 a fvxction of n-k 

, 
Having A. I primary q u a n t i t i e s  and B k+ j der iva t ive ,  with [A.], 1 [Bk+j] 

measurement u n i t s ,  and ai = Ai : [Ai], bk+j = Bk+j : [Bk+j] numerical values ,  

t h e  equations which represent  a phenomenon and depend o n l y  on physical  

q u a n t i t i t e s ,  being independent of t h e  measurement u n i t s ,  are:  

The second equation of (1) has t he  measurement u n i t s  [Ai] : c i' with ci nun- 

e r i c a l  values.  In tha t :  

*i .= - c = a c  
'i [Ai] i i i '  

i n  which the  measurement u n i t s  [Bk+j] and [Bi+j] are being wr i t t en  with 

prinary uni t s .  Because c m y  have any values, with ai ci = 1: 
j 

m 
f (a,, a 2  . . %, bk+j . . . b )  = f  ( 1 ,  . .l, bk+l 

i 

n . c i  i-1 .. 

with: Tj = bk+j r . bk+j T c i i 5  k ri 9 

i=l TT a; 
A. i=l 

a dimensionless number. 



. . 
.\ ' 

. . The r e s u l t  i s  t h a t  an  equat ion which r e p r e s e n t s  a  phenomenon having 

,.--.. n q u a n t i t i e s  (k p r h a r i e s  and n-k d e r i v a t i v e s  f r o h , t h e  primaries)  may b e  
('*,. . ,. 

w r i t t e n  a s  a new equat ion wi th  n-k d imensionless  numbers. 

Although t h e  dimensional a n a l y s i s  c a n  b e  used i n  the  p h y s i c a l  s t u d i e s ,  

e s p e c i a l l y  when t h e  phenomena e q u a t i o n s  a r e  n o t  known, i t  may g i v e  wrong 

c o n c l u s i o n s  e s p e c i a l l y  when: 

(a) n o t  a l l  q u a n t i t i t e s  t h a t .  are c h a r a c t e r i s t i c  f o r  t h e  s t u d i e d  

phenomenon a r e  known; 

(b) t h e  g e n e r a l  equa t ions  i n c l u d e  dimensionless  q u a n t i t i e s  

t h a t . a r e  o u t  of t h e  dimensional  a n a l y s i s  c o n t r o l ,  and t h a t  can 

b e  known' on ly  on an exper imenta l  b a s i s ;  ' . *.. . . . .  
. . 

(c) wrong q u a n t i t i e s ,  which normally cannot b e  excluded on t h e  
' 

c a l c u l a t i o n  b a s i s ,  are in t roduced  i n t o  t h e  study;  

(d) t h e  equa t ions  con ta in  more q u a n t i t i e s  wi th  t h e  same dimension, 

( i  
. . ... . . 

I which.cannot b e  separa ted  on a c a l c u l a t i o n  b a s i s . ,  
. . 

Some exaoples  of u s i n g  dimensional  a n a l y s i s  t o  d e r i v e  an  equat ion are given belov:  

. . 
. _ . .  

. . : .. 
. . . .  I. - . . .  . . 

. .  . . . . . . 
. . . .  

ExcmrpZe 7 - u s i n g  t h e  dimensional ana lys i s , .  d e r i v e  t h e . e q u a t i o n s  t h a t  r e p r e s e n t  

t h e  i d e a l .  gas  law i n  .thermodynamics. 

SoZution 1: I n  t h e  equat ion s h a l l  b e  in t roduced n = 5 ' q u a n t i t i e s  (p ressure  

= p; volume = V ;  temperature = T ; mass = M ;  and t h e  i d e a l  gas c o n s t a n t  = R) . 
With t h e s e  

.' Having a t o t a l  of b = S l q u a n t i t i e s ,  t h e  primary can be  s e l e c t e d  on a dimensional  
. . 

basis: 



[R] = L2 NT-2 ,, 

where i n  t h e  S I  s y s t a ,  >1 = mass; L = l eng th ;  T = time, and O =-. temperature.  , .  
. . 

. . 
. . .. . . .  . . . .  . .  . 

. .. . 
For t h e  i d e a l  gas  l a w  t h e  r e s u l t a n t ,  k = 4 and n-k = 1: . 

The dimensionless nunber 'T can b e  w r i t t e n :  1' 

and from t h i s :  

having : 

and : 

* = = c o n s t a n t  = ri, 1 RT 

or: 

The cons tan t ,  n,, should be e s t a b l i s h e d  on an exper imenta l  b a s i s .  

-- --- 

EzmnpZe 2 - Derive t h e  t r a n s i e n t  conduct ion 's  law through dimensional  a n a l y s i s  

method. 

SoZution 2: I n  t h e  equa t ion  should be in t roduced n = 6 q u a n t i t i e s  ( temperature  

= t, t i m e  = T, l eng th  =: 1, thermal d i f f u s i v i t y  = a, thermal c o n d u c t i v i t y  = k, 
( :: 

and c o e f f i c i e n t  of h e a t  ' t r a n s f e r  through a s u r f a c e  = h)  : 



w i t h  t h e  dimensions: 

[t] = 8 

-3 -1 
[k] 8 , 

[h] = ?IT 
-3 

3 

The primary q u a n t i t i e s  are:.  k = 4 ( t , r , l , k )  and t h e  d e r i v a t i v e s  n-k = 2 (a,h). 

With t h a t ,  t h e  basic equa t ion  should be  w r i t t e n  wi th  two d i n e n s i o n l e s s  

numbers : 

or: 

From t h e  dimensional  a n a l y s i s :  ,'/ ' . 

and with: 

it results: 

The dimensionless n u d e r  c a l c u l a t e d  i s  t h e  F o u r i e r  number: 



Also from.dimensiona1 a n a l y s i s :  

The dimensionless  nunber c a l c u l a t e d  i s  t h e  Biot  nunber: 

h 1 a B i = -  
2 k 

The b a s i c  equa t ion  is: 

F (Fo, Bi) = 0. 

Because of t h e  r e s t r i c t i o n s  of t h e  d i a e n s i o n a l  a n a l y s i s ,  t h e  d imensionless  

,',. 
!!., ,: number - was l o s t  i n  o u r  c a l c u l a t i o n s .  

to 

Thus : 

or: 

IJe have t h e  c o r r e c t  equat ion which can b e  completely e s t a b l i s h e d  on a 

s i m i l a r i t y  b a s i s  as shown below. . .  . .  . 
. . 

Physicat sirnil,a-ri-Qj is t h e  nex t  s t e p  - s t a r t i n g  w i t h  d imensional  
-. 

a n a l y s i s  - i f i  e s t a b l i s h i n g  t h e  p h y s i c a l  l a w s  f o r  t h e  phenomena by  s t a r t i n g  

w i t h  the .  genera l  equa t ions  of t h e  phenomenon, for.  whichwe  apply  t h e  

dimensional  a n a l y s i s .  A p h y s i c a l  l a w  is  w r i t t e n  a s  a n  equa t ion  i n  which, 

C - of course ,  a l l  t e r n s  a r e  equidimentional .  A l l  phenometia char follow a law 



w r i t t e n  a s  a  s i n g l e  equation,  a r e  i n  a  simizarity class i f  they a r e  inc luded 

.,.- 
i n  same p h y s i c a l  f i e l d ,  b u t  they a r e  i n  a anazogy c k s g  i f  they a r e  . included 

f.' '. 
( ' :  ;' . C 

- i n  d i f f e r e n t  phys ica l  f i e l d s .  . . 

A p h y s i c a l  law may b e  w r i t t e n  through a n  equat ion o r  equa t ion  system 

algebraical,differential,  i n t e g r a l ,  o r  i n t e g r o - d i f f e r e n t i a l .  Except f o r  

t h e  a l g e b r a i c a l  case, t h e  g e n e r a l  s o l u t i o n s  a r e  mul t ip le ,  i . e . ,  v a l u e  of t h e  . 

c o n s t a n t  may vary  from a t o  SaD, and t h e  p a r t i c u l a r  s i n g l e  s o l u t i o n  is 

e s t a b l i s h e d  by s i n g u l a r i t y  c o n d i t i o n s  t h a t  s e p a r a t e  t h e  s t u d i e d  phenomenon 

from o t h e r s  i n  t h e  s i m i l a r i t y  o r  analogy c l a s s .  The s i n g u l a r i t y  c o n d i t i o n s  

can  b e  as forms a lgebra ica l . ,  d i f f e r e n t i a l ,  i n t e g r a l  o r  i n t e g r o - d i f f e r e n t i a l -  

To e s t a b l i s h  t h e  s i n g l e  a l g e b r a i c  equa t ions  t h a t  r e p r e s e n t  t h e  p h y s i c a l  law 

f o r  a s t u d i e d  phenomenon, t h e  b a s i c  equa t ions  and s i n g u l z r i t y  c o n d i t i o n s  

may be used wi th  one of t h e  fo l lowing  methods: 

(a) a d i r e c t  s e t t l e m e n t  of t h e  equat ions ;  

h;- .... . (b) a n  approximate s e t t l e m e n t  of t h e  equat ions ,  u s i n g  some 

a d m i s s i b l e  s i m p l i f i c a t i o n s ;  o r  

(c) a n  exper imenta l  s e t t l e m e n t  based on p h y s i c a l  s i m i l a r i t y  

o r  analogy. 

The p h y s i c a l  s i m i l a r i t y  . is  t h e  connection between t h e  t h e o r y  and t h e  

experiment and can b e  used s u c c e s s f u l l y  where t h e  f i r s t  two methods are n o t  

a p p l i c a b l e ,  The s i m i l a r i t y  is t h e  r e s u l t  of a p p l i c a t i o n  of t h e  dimensional  

a n a l y s i s  t o  t h e  b a s i c  equa t ions  f o r  t h e  s i m i l a r i t y  c l a s s  o f  t h e  p h y s i c a l  

phenomena. The c o m p a t i b i l i t y  c o n d i t i o n s  t h a t  r e s u l t  from changing t h e  

measurement u n i t s  (which mathemat ica l ly  correspond t o  a n  a f f  i n e  t ransformat ion)  

e s t a b l i s h  t h e  dimensionless numbers. 

U s e  of  s i m i l a r i t y  is accomplished on t h e  b a s i s  of i t s  laws. There a r e  

, . 
two pose~l lates  and t h r e e  laws f o r ,  t h e  s i m i l a r i t y .  ' 

-?- 



The basic  postulates are: 

-. -., 

( ... 1. A l l  naturczt phenomsw have laws tlzat can be ~ r i t t e n  as mathematical 

equations; 

2. The dimensionZess nmbers that  correspond to a s y s t m  of d i f f er -  

ent ia l ,  intzgraz, or  integro-diffgerentiat eqxatiohs, writ ten for 

an etement o f  their  integration domain, are valid for aZZ 

domains. 

The f i r s t  law of the s imi lar i ty  is: I f a  n iuZt i~le  phenomeizon uhich 

c o r r ~ s ~ ~ z d s  t o  an eqvxz2ion system forms a sirzilarity grg%?, each of  the dimex- 

siontsaz nunbers has a zniqw.  nmer ic  vaZue for the en2ire groxp 'a phenoze~z 

. . (Newton 168 6) . 

For two phenomena A and B,:' 

The dimensionless £0- are: 

B Because between quantities A and B are the connections a A = c  a and i i i 
A 

bkCj = c 
bB the equation ( 7 )  i n  the following form: k+j k+j 



, , 
k 

r 
'i . A 

should  be  i d e n t i c a l  wi th  (8). With c  = l , w i t h c  = a  : a  
B 

. .. k j  : 'i i i i 
( . '. ., 

A .  j =1 /. - 

(. and c = i t  r e s u l t s :  
k+j bk+j bk+j 

A B 
bk+ j - - bk+j A ' B  

k 
or :  IT = T. 

k j J 
(10) 

. . B =j 
A rj ( a .  ) rr (ai 1 1 

i=l i=l 

The second law of  s i m i l a r i t y  is: The gemmZ aoL$ion for an e p a t i o n  

system (algebraic, d i f f eren t ia l ,  integraz, in$9g~0-dif-?%:~2I.rti~ 2 )  vhich 

comssponds t o  a similari ty  phenomena group,. nzy be vr<tjsn with similarittj 

dimznsionZess n m b e ~ s  obtained from the equation's systz.7. . The singutar 

soZu5ions which correspond t o  known singuzarity ~0ni?it<3cs,  may be vritteiz 

u i t h  t k s  same dimensionless nmbers or with ths dimens?:~.rlsss n z ~ 3 e r s  that  

,.I . . ?zsuZt porn the . s inguZz~i ty  coi.iditions, and wi th  d imensionless  r a t i o s  between 

: : 
- q u a n t i t i e s  which are c h a r a c t e r i s t i c  of t h e  s i n g u l a r i t y  c o n d i t i o n s  and some 

s p e c i a l  v a l u e s  f o r  t h e s e .  q u a n t i t i e s  (Buckingham and Federnan, 1911). That 

law is known a s  T theorem. 

Having: 
. . 

f (5, a2. . . %, bk+l, . hn) = 0. 

t h i s  d i f f e r e n t i a l  o r  i n t e g r a l  equa t ion  can b e  w r i t t e n  as :  

F a , . .  T n-k ) = 0  

k .  r 
i 

with: T.'= b : (ai) , and t h e  s o l u t i o n  w i l l  be: 
J Hi. 

Q (n,, . . . a  ) = O  n-k 



A s i n g u l a r  s o l u t i o n  can. be  w r i t  t en  w i t h  (n-k) dimensionless numbers from (13) 

and [ s  - (n-k)] dimensionless numbers .froin; s i n g u l a r . i t y  cond i t ions ,  and (k-s) 

dimensionless  r a t i o s :  . 

The t h i r d  law of s i m i l a r i t y  is: the multittcde of  the pheizomona which 

cor~espond with an spz+:on ' s  system and k ~ o w n  singuZrlriky conditions, are 

i n to  a s i m i l m i t y  p h z r g ~ m a  group only i f  tha dimensionless numbera which 

resut t from tke  eqiii$<:x 'a systems am% s in~ ix l s r i t y  ccndit ions hacz m i q u z  

values (l4.V. Kir? ics~  srd A. A.  Guhan,' 1933) .  

The t h i r d  law can be enun ica te  wi th  less r igor i sm a s  fol lows:  Are 

s i r n i l d t y  phsnonsnrr, 5 o s e  for which the s i n g u W t , u  conditions c ~ s  same and 

the dimensionless r?x732rs have some u7ziqv.e values. 

Two s i m i l a r i t y  phenomena A and B may. be  w r i t t e n  2s fol lows:  

b  A 
- 

, . . *  'n I F , . .  A . f h k ) = O ,  A 

A Pi. 1 - 
Ti- 1 1 

J : i=l 

B B = ( T ~  , . . :tr n-k ) = 0 , 

A B . 
and from t h e  f i r s t  siailarity law having IT = T . 

k j j - . ri 

A 
A -  I I (ai ) & i=l 

k r - 
B k r 

= (Ci) = 
Ck+j = cons tan t .  

i=l 
(17) 

'kkj TT (a2? i 

c are s i m i l a r i t y  c o n s t a n t s  w i t h  d i f f e r e n t  values.  From t h e  e q u a t i o n  (17) 
k+j 

bk+j A and bk+j can be univocal  determined. 



For  t h e  t h i r d  l a w  of s i m i l a r i t y  was n o t  p o s s i b l e  t o  have a  m a t h e m t i c a l  

* ' 
demonstrat ion,  because t h e  s i n g u l a r i t y  c o n d i t i o n s  a r e  n o t  known i n  a  genera l  

(. form. A demonstrat ion was done i n  b a s e  of a l o g i s t i c  mathematics. The 

s i m i l a r i t y  laws permit: 

1- TO generglizs the re su l t s  from an experieizcs t o  tke  pkezonms 

i n  ent ire  s i n i l a r i t y  group, vhich i s  ckaracterized b y  known 

values for di?:ensionZess riders. 

2- To write  t k z  msthmcrticat eqwztiorts for t ke  physic.27, Zozs 

using the dirrsxsionless nwn3ers, l e s s  co~?le,- and more 

accurate . 
3 -  To  stud^ a s i n l c r i t y  group through exp~r inzn ta t  xethoZs 

more sinpls  r,zd mora accurate. 

-. ,.. , The similari t2 w e  as method and experience, because t h e  ra themat ica l  

1 .  s o l u t i o n  f o r  t h e  equa t ions  system wi th  t h e  s i n g u l a r i t y  c o n d i t i o n s  i s  n o t  

always p o s s i b l e  because t h e  s i m i l a r i t y  s o l u t i o n s  a r e  approxinatve  w e  r e s t r i c t  

v o l u n t a r y  t h e  area of v i a b i l i t y  of t h e s e  s o l u t i o n s ,  wi th  t h e  i n t e n t i o n  t o  

s i m p l i f y i n g  t h e  r e s u l t s .  

The g e n e r a l  equa t ions  system f o r  t h e  system i n  a group inc lud ing  t h e  

s i n g u l a r i t y  c o n d i t i o n s  m y  be  wr f t t en :  

w i t h  i = 1 , 2  . . . n,. and: 

where P l i s  a  numeric v a l u e  and (r = 1 , 2  . . . p) a r e  t h e  primary q u a n t i t i e s .  / 



The terms (19) are equidimensional and they are independent to the 

changes of measurement units. Because, a' = c.a it results the 
r 1 r' 

compatibility condition: . . . . 
. .. 

. . . . .. ' . . .. , . . , : I: . .. . : .. .. 

and wither = a : a' the dimensionless number is: r r - 

Having the dimensionless numbers which they are not all independent, the 

solution of (18) in a finite form, on a second law of similarity base is: 

. . 

4 rn,,. . . Tr Tr .. . . TF &\ 
n-k' n-k+l' , - ( )  0 (22) ' 'xols+l O P .  

and the dimensionless number which includes the value which is intended to 

be known: 

This equation (23) which usually is. the solution of a complex equation system. 

with partial derivative, nay be written through the variable separation 

method : 



5 Res t r i c t i ng  vo lun ta r i l y  the  area of v a l a b i l i t y  ( app l i cab i l i t y )  we m y  use only 
-. - . . 

a term rep lac ing  Eq. 24 but  with t he  adequate c o e f f i c i e n t  andexponents: 

i . '  

So i n  a r e s t r i c t e d  a r e a  of the  su r f ace  represented i n  u dimensional space by 

Eq. 24, w e  superpose a s impl i f ied  sur face  Eq. 25. However, the  a r e a  of 

v a l a b i l i t y  is r e s t r i c t e d  only i n  researched a rea .  I n  Eq. 25, we e s t a b l i s h  

t h e o r e t i c a l l y  t he  components of t h e  equation, and, i f  possible ,  some of t h e  

exponents. Next, we deternine experimentally the  constant c and t h e  o t h e r  

exponents. 

If we use all dimensionless numbers i n  Eq. 25, we in t roduce co,v ls te  

s%Zar i ty .  In Eq. 25 some dimensionless numbers are important ( i f  the  

exponents m a r e  f a r  from zero); some a r e  no t  a s  important ( i f  t h e  exponents . I , j 
(. . m a r e  very c lo se  t o  zero) .  I f  we use only the  determinative dimension$ess i 

numbers in  the  solut ion,  w e  in t roduce inconpZete simiZa?Cty, which is more 

r e s t r i c t e d  than the  corpplete s i m i l a r i t y ,  e a s i e r  t o  apply.  The use  of 

incomplete s i m i l a r i t y  should b e  made with care.  The determinative dimen- 

sionless numbers being done by t h e  c a r e f u l  made experiences. 

In general, some dimensionless numbers are  not determinative i n  a 

r e s t r i c t e d  a rea  of v a l i d i t y .  For these,  w e  may use two more s i m i l a r i t y  of 

equations, . .  each . having r e s t r i c t e d  a r e a  of v a l i d i t y  i n  the  e s ~ e r i m e n t a l  area. 

m 
EsmnpZe 3 - Having the  s implest  s o l u t i o n  (25) i n  form T~ = c s2 , we w i l l  

determine t h e  constant ,  c, and the  exponent m. 

Sotution 3: On simulation thebry base from the  s i m i l a r i t y  group of phenomena 

,< w i l l . s e l e c t  one which can be e a s i e r  inves t iga ted  i n  laboratory,  and for this 

phenomenon w e  w i l l  e s t a b l i s h  simulaneous couples of values  (rli, r2,), 



Using l o g a r i t h n i c  v a l u e s  f o r  t h e s e  couples  (Inn li' I n n  2 i  ) a series 
: - 

j :  

of p o i n t s  can be p l o t t e d  a s  shown i n  Fig. 1. 
('- .- 

Fig. I 

Through t h e s e  p o i n t s  should b e  drawn a  s t r a i g h t  l i n e :  

This i s  ' n o t  p o s s i b l e ,  the re fo re , .  w e  should  r e s t r i c t  t h e  a r e a  of 

v i a b i l i t y  a s  shown i n  the. f i g u r e  (1 = I, 11, and 111) h a v i n g . t h r e e  formulas  . 

f o r  each w i t h  ci t h e  o r d i n a t e  a t  t h i  o r i g i n  and m i  t h e  l i n e s '  s lope .  Each 

s t r a i g h t  l i n e  is drawn under t h e  Gauss e r r o r  cond i t ions .  Using Gauss . 

equa t ions  f o r  d e v i a t i o n s  i n  t h e  o r d i n a t e s  and,abscissas ;we can de te rmine  

two r e g r e s s i o n  l i n e s  and s e l e c t  t h e  b i s e c t i o n  f o r  t h e  s o l u t i o n .  Th8 r e su l t  

is an equation in.which the constant and the exponents are  known experimzntalZy 

but do not have v iab i l i t y  outside the area i n  which the experiment.wczs done. 

C" No experimentat fornula can be used unless it i s  completed within the  area o f  

viabiZity i n  which the  experiment was performed. . . 



.. Example 4 - Using t h e  d i f f e r e n t i a l  equa t ions  f o r  h e a t  conduction, w e  w i l l  
,.3 

:. 

. . determine t h e  s o l u t i o n .  f o r  t r a n s i e n t  f low wi thout  i n t e r n a l  sources ,  e s t a b l i s h e d  

(: .. 
through dimensional  a n a l y s i s  i n  Example 2 .  

SoZution 4: The g e n e r a l  equa t ions  f o r . h e a t ' c o n d u c t i o n  a r e :  F o u r i e r  equat ion 

f o r , t h e  temperature  f i e l d ,  wi thout  i n t e r n a l  h e a t  sources: 

- at = a  d i v  grad t ,  a T 

S i n g u l a r i t y  c o n d i t i o n  a t  t ime o r i g i n :  

- 
t (r, = 0) = to (TI. 

S i n g u l a r i t y  c o n d i t i o n  of h e a t  exchange i n  surface:  

-k grad t = f ( t s  - t f )  2 

i n  which t is t h e  temperature  field,'^ t h e  t i m e ;  a  t h e  t h e m 1  d i f f u s i v i t y ;  
,I. . 

I' - 
12. r t h e  p o s i t i o n  v w t o r  i n  space; k t h e  thermal conduc t iv i ty ;  f  t h e  c o e f f i c i e n t  
L .  . 

of h e a t  t r a n s f e r  through s u r f a c e  S; t t h e  s u r f a c e  temperature;  tf t h e  f l u i d  
S 

average  temperature;  and 2 t h e  u n i t  v e c t o r  f o r  t h e  nornal  of t h e  s u r f a c e ,  S. 

With these ,  from f i r s t  s i m i l a r i t y  law, changing t h e  dimension u n i t s :  

t' = c t - t , 
t ;=c  t t o  0 ' 





Physicat analogy r e p r e s e n t s  t h e  n e x t  s t e p  a f t e r  t h e  s i m i l a r i t y ,  and 

7 

...-- its a p p l i c a t i o n  is t h e  same a s  t h e  l a s t  one, b u t w i t h i n  l a r g e r  analogy class. c.: .- ' ' 

.An analogy group is a group of p h y s i c a l  phenomena from d i f f e r e n t  p h y s i c a l  . .  

f i e l d s ,  and is con ten t  i n s i d e  a n  analogy c l a s s  f o r  which t h e  d e f i n i t i o n  has  

been e s t a b l i s h e d  . 
For  example, analogy s t u d y  starts from t h e  common equa t ions  system 

which r e p r e s e n t s  phenomena' laws and common s i n g u l a r i t y  cond i t ions  which 

separa te  t h e . g r o u p  from t h e  c l a s s .  Because w e  used mathematical equa t ions  ' 

and n o t  d i r e c t  p h y s i c a l  phenoaena i n  p a s t  demonstrat ions,  t h e  analogy h a s  t h e  

s a n e  l a w s  as t h e  s i m i l a r i t y :  

F i r s t  l a w  of t h e  analogy: For the analogy phenomena the sme  .. 

dimensionZess numbers thut correspond t o  various f ields have the 

same vatuzs. 

Second analogy law: The gc-nerai! sotution for an analogy group mgy bz 
(;' , . 
\.. . . written. with the dimensionless nuinbers. deteninated from &e basic  equations. 

The soZztions tha t  correspovd t o  the singulcrrity conditions n;.ay.be wri t ten  

o i t h  the  same dimensionzsss nvmbers and dirzensiontess rat ios  d e t e k z e d  by 

the s i n g u 2 a - i ~  conditi&s . 
Third  analogy law: Analogy, phenomsna are those for which the sir;plarcLty 

conditions correspond and which have the dimensionless n d e r s  with the  same 

values. 

The e q e r i m e n t -  f o r  analogy d i f f e r s  from t h a t .  f o r  s i m i l a r i t y  because  

the exper imenta l  phenomenon (model) which can b e  i n v e s t i g a t e d  e a s i e r  i n  the 

l a b o r a t o r y  i s  from a d i f f e r e n t  p h y s i c a l  f i e l d  than t h e  o r i g i n a l  s tud ied .  

. . . . . . . . . 

FxmrpZe 4 -. Determine t h e  c o e f f i c i e n t .  of mass d i f f u s i o n  on t h e  b a s i s  

k . .  ....; of analogy convection-diffusion,  i f  t h e  c o e f f i c i e n t  of h e a t  t r a n s f e r  through 

. . 
the s u r f a c e  is known from t h e  equat ion:  



f,\. .. * . 

, . w i t h  c ,  m, and n determined from a v i a b i l i t y  a r e a  R e  <Re<Re 
1 2 ' 

SoZutwn 4 - The equa t ions  t h a t  r e p r e s e n t  t h e  analogy c l a s s  f o r  convection 

and d i f f u s i o n  a re :  . 

1. t h e  thermal  and mass d i f f u s i o n ,  w i t h  t h e  c o n s t a n t s  i n  uniform 

f i e l d s ,  and wi thout  i n t e r n a l  sources:  

a A - + grad A = B d i v  grad A ; a -r 

2. t h e  c o n t i n u i t y  equat ion f o r  t h e  i n c o n p r i s s i b l e  f l u i d s  : 

d i v  = 0 , 

3. t h e  Navier-Stokes equat ion f o r  v i scous  f l u i d  flow: 

a; - - - 1 2 1- - + w d i v  w = g. ( 1  - s a t )  - - a~ grad p + vV w , 
P 

4. t h e  s i n g u l a r i t y  c o n d i t i o n  f o r  t h e  r e p a r t i t i o n  i n  f i e l d  a t  

o r i g i n  t i m e :  

5.  t h e  s i n g u l a r i t y  c o n d i t i o n  f o r  t h e  h e a t  and mass t r a n s f e r  i n  

su r face ,  S: 

C grad A = D (As - Af) 2 , 

where: 

T = t jmn , 
- 
w = the .  v e l o c i t y  f i e l d  , 
- 
g = t h e  g r a v i t y  f i e l d ,  

a = volume d i l a t a t i o n  c o e f f i c i e n t ,  

t = temperature f i e l d ,  

. . p = d e n s i t y  f i e l d ,  . , .  . . .. . . :  . . . . .  . .;. .. : . . . .' . .  . . . :: .. . . . . , _..: .' . 
. . 

p ,  = press ion  f i e l d ,  . . 



v = cinematic v i s c o s i t y  f i e l d ,  

- 
r = pos i t i on  vec tor  i n  space,  

- 
no = t h e  u n i t  vec to r  f o r  t h e  n o r i a l  s epa ra t i on  sur face ,  S. 

The convection c l a s s  has  t h e  c h a r a c t e r i s t i c  quan t i t i e s :  

A =  t , ; B  = a, C = k, D = f ,  

. . 
with: 

t = temperature f i e l d  , 

a  = thermal d i f f u s i v i t y  f i e l d  , 

k = thermal conduc t iv i ty  f i e l d  , 

f = t h e  c o e f f i c i e n t  of hea t  t r a n s f e r  i n  t h e  surface ,  S. 

The d i f f u s i o n  c l a s s  has t h e  c h a r a c t e r i s t i c  quan t i t i e s :  

,. . A = c y , B = C =  B kd, D = -- , 
Y i ( 

with: 

c = concen t ra t ions  f i e l d ,  

y =. s p e c i f i c  weight f i e l d ,  

kd = d i f f u s i o n  c o e f f i c i e n t s  f i e l d  , 

B = t h e  c o e f f i c i e n t  of mass-diffusioa in t h c  sur face ,  S .  

From these,  t h e  s o l u t i o n  f o r  t h e  anology group is: 

with: 

The mass d i f f u s i o n  coef f ic ien t , .  $, i n  t he  v i a b i l i t y  a r e a  Rel<Re<Re2: 



t h e  convect ion equa t ion  is: 

and 

. w i t h  Le = kd : a Lewis d imensionless  number. 

Cybernetics r e p r e s e n t s  t h e  nex t  s t e p  from analogy,  when i n t o  t h e  c y b e r n e t i c  

c l a s s  phenomena from d i f f . e r e n t  s c i e n c e s  -- phys ics ,  b io logy ,psycho logy , .  

p o l i t i c s ,  e t c . , a r e  in t roduced.  

The same laws .o f  s i m i l a r i t y  and analogy govern t h e  c y b e r n e t i c s  and 
, / - -  
((. . - 

s e p a r a t e  t h e  groups from t h e  c l a s s .  Use of c y b e r n e t i c  models f o r  t h e  

phenomena from completely d i f f e r e n t  f i e l d s  of s c i e n c e  should b e  preceeded 

by w r i t i n g  t h e  g e n e r a l  laws, wi th  unique mathamatical equat ion forms i n  

sc ience .  The g e n e r a l  laws i n  s c i e n c e  can b e  m i t t e n  s t a r t i n g  w i t h  t h e  Second 

Law of Thermodynamics, by i n t r o d u c i n g  t h a t  a s  a n  enthropy v a r i a t i o a  law 

(Alber t  E i n s t e i n  s t a r t e d  r e s e a r c h  t o  ' w r i t e  genera l  iaws i n  sc ience) ;  

The sim~Zation theory, a r e s u l t  of t h e  s i m i l a r i t y  and analogy a p p l i c a t i o n s ,  

is based on the. f a c t  t h a t  experiments may u s e  any phenomenon from t h e ' .  
. 

s i m i l a r i t y  o r  analogy group, under  c o n d i t i o n s  of t h e  group e s t a b l i s h e d  by 

s i m i l a r i t y . o r  analogy laws. 

The phenomenon i n v e s t i g a t e d  is t h e  model, and t h e  phenomenon f o r  

which w e  want t o  t r a n s f e r  t h e  r e s u l t s  of t h e  experiment is t h e  o r i g i r d .  
( . -.. 

The s e l e c t i o n  of t h e  model should b e  made by us ing  a scalc. 



. 4. 
We e s t a b l i s h  t h e . s c a l e  such t h a t  t h e  model w i l l  be w i t h i n  p o s s i b l e  C . . .  . . . . . - . - ._.  . . ,,.- '., 

(i. ,, ,2 
measurements. The s c a l e  i s  s e l e c t e d  f o r  one of t h e  q u a n t i t i e s  -- u s u a l l y  f o r '  

l e n g t h s ,  b u t  t h i s  i s  n o t  ob l iga to ry .  Other u n i t  q u a n t i t i e s  w i l l '  be  a r e s u l t  

of t h e . c o n s t a n t  v a l u e  f o r  d imensionless  numbers and r a t i o s  e s t a b l i s h e d  by 

s i m i l a r i t y  and analogy laws. 

The s c a l e  should  be  s e l e c t e d  such t h a t  t h e  average v a l u e s  f o r  t h e  

node l  and o r i g i n a l  w i l l  n o t  d i f f e r  g r e a t l y .  Iforeover, t h e  secondary e f f e c t s  

( u s u a l l y  i n  d i s c o n t i n u i t y  a r e a s )  which change t h e  phenonenon a s p e c t  when 

some q u a n t i t i e s  t a k e  c r i t i c a l  va lues ,  should be  t h e  same f o r  t h e  model and 

o r i g i n a l .  

A complete s i m i l a r i t y  o r  analogy cannot b e  used i n  t h e  exper imenta l  

work because i t  makes t h e  work ve ry  d i f f i c u l t  and o f t e n  impossible.  I n  t h e  

exper imenta l  work, s o s e  dimensionless numbers a r e  incompatible f o r  a 

phenom2non; these  cannot b e  used s i n u l t a n e o u s l y . i n  an  experiment. This is 
i, ( ' .''. 

n o t  c o n t r a d i c t o r y  w i t h  s i m i l a r i t y  o r  analogy theory;  i t  has  happened 

because f o r  t h e  model some q u a n t i t i e s  cannot b e  v a r i e d  i n  such l a r g e  limits 

t o  ensure  unique v a l u e s  f o r  t h e  d imensionless  numbers. , 
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