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ELEFUNT Test Results under AST Fortran Vl.8.0 
on the Sequent Symmetry

by

W. J. Cody

Abstract
This report discusses testing of the floating-point arithmetic and of the elementary function libraries 

under AST Fortran on a 24-processor Sequent Symmetry computer. The programs MACHAR and 
PARANOIA were used to check the quality of arithmetic, and the ELEFUNT suite of programs from the 
book Software Manual for the Elementary Functions by Cody and Waite was used to check function per­
formance. Two complete sets of tests were run, one for each type of floating-point processor, Intel 80387 
and Weitek 1167, on the machine.

1. Introduction

The Environmental Assessment and Information Sciences Division at Argonne National Laboratory 
acquired a 24-processor Sequent Symmetry computer in early 1989. The machine provides two different 
implementations of lEEE-style floating-point arithmetic [IEEE 1985] in Intel 80387 and Weitek 1167 
chips. Sequent ATS Fortran Vl.8.0 is the default Fortran compiler on this machine, but a second com­
piler, Sequent Fortran V3.2, is also available on request. This report summarizes and analyzes the results 
of various tests of the arithmetic and of the Fortran elementary and intrinsic function packages using the 
ATS compiler (under DYNIX 3.0.17.9 NFS) and both the Intel and the Weitek arithmetic systems. The 
test results are valid only for the floating-point environment (the particular combination of compiler and 
floating-point hardware) under which they were run. Hereafter we will use the terms Intel/Weitek to 
mean the floating-point environment consisting of the ATS compiler and that chip. We abandoned plans 
to run similar tests under the Sequent Fortran V3.2 compiler when preliminary runs uncovered serious 
problems not encountered with the ATS compiler.

The next section discusses the computer arithmetic as analyzed by MACHAR [Cody 1988a] and 
PARANOIA [Karpinski 1985]. Section 3 discusses test results for the elementary and intrinsic functions 
obtained with the ELEFUNT [Cody and Waite 1980] and INTFUNT test suites. Section 4 summarizes 
our findings.

This report is one of a continuing series of reports on the quality of the arithmetic and Fortran 
libraries available on machines at Argonne National Laboratory [Cody 1986a, 1986b, 1986c, 1986d, 
1988b, and 1989].

2. The Arithmetic
MACHAR is an evolving subroutine to dynamically determine fundamental parameters for the 

floating-point arithmetic system. Because it probes the dusty comers of the system, MACHAR is 
extremely sensitive to compiler optimizations that have no noticeable effect on most other programs. In 
particular, it seriously malfunctions unless critical intermediate results are stored at working precision.
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Table 1. Machine Parameters for 180387 as Determined by MACHAR

$ denotes results for Weitek 1167

Parameter Single Precision Double Precision

P 2 2

t 24 53

rnd 5 5

$ 2 2

ngrd 0 0

machep -23 -52

negep -24 -53

iexp 8 11

ntinexp -126 -1022

maxexp 128 1024

eps 0.1192093e-06 0.2220446049250d-15

epsneg 0.5960464e-07 0.1110223024625d-15

xmin 0.1175494e-37 0.2225073858507d-307

xmax 0.3402823e+39 0.1797693134862d+309

lEEE-style systems frequently do all floating-point computations in extended precision, retaining results 
in extended registers whenever possible. Optimizing compilers on such systems exploit this behavior, 
and MACHAR malfunctions unless compiler optimization is suppressed. Results in this report were all 
obtained with the -N flag to kill compiler optimization, although preliminary runs with the default level of 
optimization were equally successful with Weitek arithmetic (which lacks extended precision). Regard­
less of the optimization level and floating-point chips used, runs with Sequent Fortran V3.2 were uni­
formly unsuccessful, terminating with arithmetic exceptions or becoming lost in infinite loops. We have 
not attempted to circumvent the problems nor to tabulate results for that compiler.

Table 1 lists single-precision and double-precision parameters determined by MACHAR. Here and 
in subsequent tables, the primary entries are for tests with the Intel chip. Where results differ, entries for 
the Weitek chip are marked with a double dagger ($).
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Definitions of the tabulated parameters are as follows:

1) p, the radix for the representation scheme:
2) t, the number of base-p digits in the floating-point significand;

3) rnd, a parameter indicating the method of rounding in addition and the type of underflow (full or 
partial):

a value of 0 indicates truncation with full underflow; 
a value of 1 indicates some non-IEEE form of rounding with full underflow; 
a value of 2 indicates lEEE-style of rounding with full underflow; 
a value of 3 indicates truncation with partial underflow;
a value of 4 indicates some non-IEEE form of rounding with partial underflow; and 
a value of 5 indicates lEEE-style rounding with partial underflow;

4) ngrd, 0 for rnd * 0; otherwise, the number of base-p guard digits used in multiplication;

5) machep, the exponent for the smallest power of p (but bounded below by t-3) whose sum with 1.0 is 
greater than 1.0;

6) negep, the exponent for the smallest power of p (but bounded below by f-3) whose difference with 
1.0 is less than 1.0;

7) iexp, the number of bits dedicated to the representation of the exponent (including bias or sign) of a 
floating-point number;

8) minexp, the smallest permissible exponent;
9) maxexp, the largest permissible exponent;
10) eps, on a binary machine, the floating-point number ;
11) epsneg, on a binary machine, the floating-point number p«<w;
12) xmin, the floating-point number P'mn'v; and
13) xmax, an approximation of the floating-point number p^v.

Because MACHAR is intended to be used by other programs, it must avoid exceptions that will ter­
minate execution. Thus, it is severely limited in what it can attempt to determine about an arithmetic sys­
tem. PARANOIA (see Table 2), a second and more probing program for examining computer arithmetic, 
does not have that handicap. It is a self-contained program that periodically marks its progress by writing 
recovery information to file. Thus, if execution is terminated for any of a number of anticipated reasons, 
the program can be restarted with the expectation that saved data will permit it to properly report the rea­
son for its termination and to resume execution beyond the troublesome point. In this way, with possible 
restarts from time to time, the program is able to run tests on arithmetic characteristics that are not possi­
ble with MACHAR.

PARANOIA was originally written in BASIC by W. Kahan at the University of California, Berke­
ley, and then translated to Fortran by T. Quarles and G. Taylor. It was made available to the general pub­
lic by R. Karpinski at the University of California, San Francisco [Karpinski 1985]. The particular ver­
sion used here was further refined at AT&T Bell Laboratories and transmitted privately by David Gay.

The PARANOIA results reported in Table 2 are self-explanatory (except that ULP refers to Units in 
the Last Place of the significand). The final evaluation issued by PARANOIA was that Intel arithmetic 
was “excellent,” and that Weitek arithmetic was “satisfactory though flawed.” We disagree with both of 
these assessments, primarily because of the evaluation of 0/0 as 1.0 without an error indication, and will 
notify Karpinski of PARANOIA’S failure in this case.



-4-

Table 2. Results from PARANOIA for 180387

$ denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result

Integer Arithmetic Okay Okay

P 2 2

epsneg 5.96046448E-08 1.11022302E-16

t 24 53

Extra-Precise Subexpressions Yes (29 extra bits) No

* No No

Subtraction Normalized Yes Yes

Guard Digits in x, +, - Yes Yes

Rounding in +/-, x, + Yes Yes

Sticky Bit Yes Yes

Multiplication Commutative Yes Yes

A & II Yes Yes

Sqrt Monotone Yes Yes

Sqrt Correctly Rounded or Chopped Correcdy Rounded Correctly Rounded

t Neither Neither

Error Bounds for Sqrt -0.5 and +0.5 ULP -0.5 and 0.5 ULP

$ -0.6 and+1.0 ULP -0.6 and 0.5 ULP

We note with surprise that extra-precise subexpressions are generated in the single-precision case 
for Intel arithmetic although we asked the compiler to kill optimization, and further that these extra- 
precise single-precision subexpressions are accurate only to double precision and not to extended preci­
sion. Flaws detected for Weitek arithmetic include the lack of graceful underflow and the lack of correct 
rounding in the sqrt function despite the machine’s using IEEE round-to-nearest-even arithmetic. More 
interesting is the overflow exception triggered by the computation of p-2x»“«v. This is serious because
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Table 2. Results from PARANOIA for 180387 (Continued)

$ denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result

z * for Small Positive i Okay Okay

minpos 1.40129846E-45 4.94065564E-324

t 1.1754944E-38 2.22507386E-308

(minpos +minpos )/minpos 2.0 2.0

1.375 x minpos - minpos * 0.0 w/o Underflow Signal 0.0 w/o Underflow Signal

Gradual Underflow Yes Yes

* No No

xmin (underflow threshold) 1.17549435E-38 2.22507386E-308

P —2 x minexp Okay Okay

$ Okay Overflow Exception

x((*+m*-V)Vs exp(2)yx—>l Okay Okay

zi for Nearly Extremal Values Okay Okay

Overflow Exception Exception

xmax (Overflow Threshold) 3.40282347E+38 1.79769313E+308

z = xmax x l,xmax /1 Okay Okay

1/0 Zero Divide Exception Zero Divide Exception

0/0 1.0 w/o Exception 1.0 w/o Exception

the exception is misleading and halts execution, whereas the expected underflow would simply return a 
zero result and continue.

Overall, other than as noted here, the arithmetic seems good. Both floating-point environments pro­
vide many of the features of the IEEE floating-point standard, but the Weitek environment lacks graceful 
underflow and proper rounding in the square root. Other requirements for conformance to the standard, 
such as support for infinities and NaNs and control of rounding mode, have not been checked. Often 
these features are not supported by the compiler even if they are available on the hardware.
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On the other hand, a defect surfaced during these tests that hampered us throughout the testing pro­
cess. Formatted output returns a string of asterisks for any double-precision quantity with a three-digit 
exponent. This is a major flaw in the Fortran environment that renders it useless in many situations. We 
urge that it be fixed immediately.

3. ELEFUNT/INTFUNT Results
ELEFUNT is the suite of transportable Fortran test programs from the Software Manual for the Ele­

mentary Functions by Cody and Waite [1980], and INTFUNT is a companion suite of test programs 
extending the ELEFUNT concepts to tests of intrinsic functions. Each of the test programs exercises one 
or more of the elementary or intrinsic functions to estimate accuracy, check simple mathematical proper­
ties, and assess the response to improper or unusual arguments. The requirement that the test programs be 
portable has limited the approach in accuracy checking to determining how well the function program 
tested satisfies certain well-behaved identities.

The INTFUNT tests interpret results without reporting specific statistics. Table 3 summarizes 
single- and double-precision results for INTFUNT tests of AINT, ANINT, INT, and MOD. The Intel and 
Weitek test results were identical most of the time, the only disagreements between the two being in the 
results for ANINT. ANINT in the Weitek environment, for example, rounded 224-l to 224. We speculate 
that the algorithm used does a floating-point add of 1/2 to the argument and then invokes AINT. If this is 
the case, then (224-l) +1/2 returns a result halfway between two floating-point numbers, and the IEEE 
round-to-even rule causes the result to be rounded up to 224, which is incorrect. Our hypothesis has been 
tested with additional arguments without contradicting the hypothesis. The analogous algorithm appears 
to have been used for the default double-precision version of ANINT also. These routines should be 
corrected.

In contrast with the INTFUNT tests, ELEFUNT tests report statistics without interpretation. A typi­
cal accuracy test from the ELEFUNT suite evaluates an identity by using 2000 random arguments uni­
formly distributed across an interval, and reports the number of times the identity was exactly satisfied, 
the number of times it was not satisfied on the high side and on the low side, the maximum relative error 
(MRE) encountered, and the root-mean-square (RMS) relative error. To normalize results, the MRE and 
RMS errors are reported as an estimated number of erroneous trailing base-p digits in the significand 
using the equations

MRE = t + In (max I £,• I) / ln(P),

and

RMS = max [ 0.0, / +M££,2/ N)/ (2 ln(p»],

where £, is the error for the <-th argument. Note that the computation of RMS has been adjusted so it 
never reports a negative loss of significant bits. In general, MRE values between 1.0 and 2.0 are common 
with ELEFUNT on binary machines; values over 2.5 are rare and often indicate trouble.

The evaluation of the identities used in the accuracy tests inevitably introduces some error. This 
error is estimated by calibrating the test program, i.e., by running the test program in single-precision 
arithmetic with a function program that accepts single-precision arguments, does all computations in dou­
ble precision, and returns single-precision results. Such a function returns the best possible single­
precision values on a particular machine/compiler combination. Calibration is thus a practical determina­
tion of the reliability of our test procedure, a calibration of the testing tool to determine the background 
noise level on a particular system.
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Table 3. INTFUNT Test Results for 180387

t denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result

AINT

aint(x) vs 0, x =2‘,i = -Ijninexp Okay Okay
aint(l+x) vs 1, x = 2‘, i = -Ijninexp Okay Okay
aint(x+\l2) vs x, x =2‘,i = 1,max(35,f+3) Okay Okay
Parity check Okay Okay
2‘ - 1.0 Okay Okay
aint(±xmax) Okay Okay

ANINT

anint(x), x =2‘,i = -Ijninexp Okay Okay
anint(x+1/2) vs 1, x = 2*, i =-Ijninexp Okay Okay
anint(x+\l2) vs jc+1, x =2*,i = 1,max(t+3,35) Okay Okay
Parity check Okay Okay
mint (2' - 1.0) Okay Okay

* 224 253
mint {xmax) Okay Okay
mint {-xmax) Okay Okay

INT

int{x) vs 0, x = 2~‘, i = 1,126 Okay Okay
int{l+x) vs 1, x = 2~i,i = 1,126 Okay Okay
int{x+\/2) vs x, x =2‘,i = 1,30 Okay Okay
Parity check Okay Okay
2" - 1.0,n = min{t,31) Okay Okay
int{xmax) Invalid Operation Exception --

* Overflow Exception —

MOD

mod {nxx+half jc).
x and n random in (0,1000) All Bits Correct All Bits Correct

mod{x+'A,1.0), x =2‘,i = l,mox(/+3,35) Okay Okay
Parity check Okay Okay
mod (1.0,0.0) Zero Divide Exception Zero Divide Exception

We would not expect the MRE (measured in our way) for a single-precision program to exceed that 
for the corresponding double-precision program, and it rarely does in tests on the Sequent Symmetry. 
The Intel 80387 provides many of the core computations for the elementary functions, so we would
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further expect the Intel library to be superb. We cannot say whether the Weitek chip provides similar 
capabilities. Even if it does not, programs for the elementary functions are usually written in C on UNIX 
systems, and C normally does all floating-point computation in at least double precision. We would 
therefore expect the single-precision functions, even those in the Weitek environment, to be accurate to 
within rounding error.

Table 4 summarizes results for the ELEFUNT accuracy tests. Results labeled single-precision and 
double-precision are for Intel; those preceded with a $ are for Weitek. Where separate Weitek results are 
not given, they coincide with the Intel results. Intel calibration results are included in the table. Those for 
the Weitek case, again marked with $, are included only if they are significantly different from the 
corresponding Intel results.

Following are detailed discussions of test results for each function. In addition to checking accu­
racy, most of the test programs also check for preservation of parity, for small argument approximations, 
for behavior near the boundaries of the function domain, and for response to illegal or ill-advised argu­
ments. Unless otherwise noted, the results for these ancillary checks were satisfactory.

The tabulated results for the single-precision ASIN/ACOS functions duplicate the calibration 
results, so the functions are doing the best they can. Although the Weitek tests sometimes report larger 
errors than the corresponding Intel tests, the difference is consistent with Weitek’s lack of extended preci­
sion. Overall, the ASIN/ACOS accuracy test results are satisfactory for both systems and both precisions.

Arguments greater than 1.0 in magnitude cause ASIN or ACOS to terminate execution with an 
appropriate error message, contrary to the on-line documentation which claims that execution continues 
with a zero result. In the Intel case, a more reasonable response would be continued execution with a 
NaN result; apparently the system does not fully exploit the capabilities of the Intel chip.

The accuracy results for the Intel AT AN appear normal; single-precision results either agree with 
the calibration results or are slightly better (the second test), and the double-precision results are almost 
identical. However, the Weitek single-precision results are uniformly, and sometimes significantly, worse 
than the Weitek calibration results. In the last two tests, for example, the reported MRE and RMS values 
are even worse than the corresponding double-precision ones. While the routine has acceptable accuracy, 
it is possible to do better. Results for the double-precision Weitek routine compare favorably with those 
for other machines lacking extended precision.

Each of the ATAN programs handles small and extreme arguments correctly. The ATAN2 pro­
grams are correct in their handling of troublesome arguments, including cases where one of the arguments 
is zero. Further, they are consistent in returning zero for ATAN2(0.0,0.0). While we personally prefer a 
NaN or an error return for this case, persuasive arguments can be made for a zero result. We find the 
overall performance of these routines to be satisfactory.

Test results for the EXP programs are generally disappointing. Only the Intel single-precision EXP 
matches expectations with error statistics duplicating those for the calibration runs. The MRE reported 
for the Weitek single-precision routine, while acceptable, is about twice as large as expected based on the 
calibration runs. Considering the lack of extended precision, the double-precision Weitek results are also 
acceptable. However, the estimated loss of more than 9 bits (i.e., more than 28 ULPs, and almost 3 
significant decimal digits) in the Intel DEXP for large arguments suggests a major problem in argument 
reduction. This program is unsatisfactory by today’s standards.

Each routine does well on tests with special identities, the Intel routines returning exactly 1.0 for 
EXP(X)!|tEXP(-X) most of the time. Auxiliary tests with extreme arguments are satisfactory, although the 
Intel and Weitek double-precision results disagree after 14 significant decimal figures (an error consistent 
with the reported MRE for the Intel routine). All routines return zero with quiet underflow for large nega­
tive arguments, and all properly terminate execution with an error message for large positive arguments.
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Table 4. ELEFUNT Test Results for 180387

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

ASIN

asin(x) vs Taylor Series (-1/8,1/8) Calibration. 1999 0.10 0.00
Single Free. 1999 0.10 0.00

t Single Free. 1998 0.10 0.00
Double Free. 1581 0.99 0.00

t Double Free. 1068 1.22 0.00

(3/4,1) Calibration 1671 1.00 0.00
t Calibration 1510 1.22 0.00

Single Free. 1671 1.00 0.00
t Single Free. 1510 1.22 0.00

Double Free. 1590 1.00 0.00
t Double Free. 754 2.24 0.72

ACOS

acos{x) vs Taylor Series (-1/8,1/8) Calibration 1963 0.46 0.00
Single Free. 1963 0.46 0.00
Double Free. 1576 0.47 0.00

t Double Free. 1467 0.47 0.00

(3/4,1) Calibration 1534 0.99 0.00
t Calibration 1193 1.99 0.00

(3/4,1) Single Free. 1534 0.99 0.00
t Single Free. 1193 1.99 0.00

Double Free. 1280 1.55 0.00
t Double Free. 591 2.49 0.88

(-1, -3/4) Calibration 1819 0.73 0.00
(-1, -3/4) Single Free. 1819 0.73 0.00
(-1, -3/4) t Single Free. 1777 0.73 0.00

Double Free. 1778 0.72 0.00
t Double Free. 1104 1.72 0.06

The Weitek error messages identify the problem as an argument that exceeds the maximum permissible 
for the EXP function, but the Intel error messages are for an overflow with no indication that the problem 
lies in the EXP function. This oversight should be corrected. Indeed, if the compiler and library fully 
supported the Intel chip, EXP would return an infinity, signal overflow, and continue execution.

The results of accuracy tests for the LOG functions are all satisfactory, although the reported MRE 
for the Weitek single-precision routine is a tad large. Ancillary tests of special identities and with special
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

ATAN

atan(x)vs Taylor Series (-1/16,1/16) Calibration 2000 0.00 0.00
Single Free. 2000 0.00 0.00

t Single Prec. 965 1.32 0.02
Double Prec. 1999 0.67 0.00

t Double Prec. 939 1.78 0.17

atari (x) vs atari (lil6)+atan [ ] (1/16,2-V3) Calibration 1436 1.00 0.00
t Calibration 1343 1.00 0.00

Single Prec. 1556 1.00 0.00
t Single Prec. 1041 1.71 0.02

Double Prec. 1513 1.00 0.00
$ Double Prec. 825 1.95 0.41

2 atari (x) vs atari [ (2-V3, V2-1) Calibration 1695 0.93 0.00
t Calibration 1495 0.93 0.00

Single Prec. 1695 0.93 0.00
t Single Prec. 679 2.38 0.73

Double Prec. 1477 0.93 0.00
t Double Prec. 1357 1.91 0.00

(V2-1,1) Calibration 1839 1.00 0.00
efi-i. i) t Calibration 1755 1.00 0.00

Single Prec. 1839 1.00 0.00
t Single Prec. 580 2.54 0.93

Double Prec. 1746 1.00 0.00
t Double Prec. 1303 1.35 0.00

arguments are also satisfactory. Indeed, the Weitek routines return zero for LOG(X) - LOG(1.0/X) most 
of the time. Each routine properly terminates execution when given a negative argument, but the Intel 
error messages are again misleading, reporting a floating invalid operation with no reference to LOG. The 
Intel error message changes to floating divide by zero for a zero argument, still without reference to LOG. 
The Weitek error messages are correct and informative.

The POWER/DPOWER pair (aliases for exponentiation) are a mixed bag. Accuracy results for the 
single-precision routines duplicate those of the corresponding calibration runs, showing that the compute 
in double-precision strategy was used. However, the double-precision routines return large errors for 
large arguments. The probable explanation is simple. When higher-precision arithmetic is not available, 
a good program for the power function is perhaps the most difficult elementary function program to write.
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

EXP

exp(x 1/16) vs ggjffife (l/16-//t (2)/2, In (2)/2) Calibration 1475 1.00 0.00
Single Prec. 1475 1.00 0.00

* Single Prec. 977 1.99 0.23
Double Prec. 1469 1.00 0.00

t Double Prec. 986 1.99 0.21

exp(x-45H6) vs (-5 In (2), In [25sxmin ]) Calibration 1498 1.00 0.00
t Calibration 1514 1.00 0.00

Single Prec. 1498 1.00 0.00
t Single Prec. 989 1.98 0.19

Double Prec. 1 9.14 7.80
t Double Prec. 930 1.96 0.25

(10 In (2), In [.9 xmax]) Calibration 1513 1.00 0.00
t Single Prec. 1509 1.00 0.00

Single Prec. 1513 1.00 0.00
t Single Prec. 1013 1.93 0.15

Double Prec. 0 9.14 7.80
t Double Prec. 868 1.96 0.32

Mathematically x > = exp[yxln(x)]. A little error analysis shows that the relative error in the function 
value is roughly the absolute error in the argument to the exponential function. This means that exponen­
tiation using the obvious composition of functions loses as many significant digits as there are digits 
before the decimal point in the value of yxln(x). The reported MRE values in the third Intel test and the 
third and fourth Weitek tests are consistent with this error analysis, indicating that the composition-of- 
functions approach was probably used. On the other hand, the last Intel test shows good accuracy for 
large arguments, which is inconsistent with our guess at the algorithm. To explore this inconsistency, we 
compared X**Y against a result computed from repeated multiplications of X with itself, and found good 
agreement. Based on these results, we believe that DPOWER uses a similar algorithm when the exponent 
is an integer, and that it uses a more complicated but flawed algorithm otherwise.

We ran further tests to explore this inconsistency in the Intel results. Note that the third test com­
pares output from DPOWER against independently generated values, and that the last test compares one 
output from DPOWER against another. We ran an additional test to determine whether DPOWER con­
tained an internal error that would not be revealed by our last test. In particular, we selected X = 9.625
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

LOG

ln(x) vs Taylor Series (l-£,l+e) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00

t Single Prec. 1217 1.87 0.00
Double Prec. 1999 0.38 0.00

$ Double Prec. 1183 1.50 0.00

ln(x) vs In (I7x/l6)-ln (17/16) (1/V5,15/16) Calibration 1434 1.00 0.00
Single Prec. 1719 1.00 0.00

♦ Single Prec. 1401 1.30 0.00
Double Prec. 1695 1.00 0.00

t Double Prec. 935 1.41 0.07

ln(x xx)vs 2 ln(x) (16,240) Calibration 1959 0.96 0.00
Single Prec. 2000 0.00 0.00

t Single Prec. 1535 1.00 0.00
Double Prec. 1951 0.99 0.00

* Double Prec. 1820 1.00 0.00

LOGIC

log(x)vs log(llx/l0)-log(11/10) (1/Vfi), .9) Calibration 922 2.13 0.38
Single Prec. 941 2.03 0.37

t Single Prec. 770 2.42 0.57
Double Prec. 962 2.05 0.37

t Double Prec. 792 2.41 0.58

and Y = 80, both of which are exactly representable in the floating-point system. Then we computed 
X**Y, (X*X)**(Y / 2), and (X*X*X*X)** (Y / 4) in a loop in which Y was increased by 1.0 for each loop 
iteration. Each argument was exact, hence contributed no error to the final result. Strangely, the com­
puted values agreed whenever the corresponding exponents were both integers, or both non-integers, but 
disagreed when one exponent was an integer and the other was not. This strongly suggests that 
DPOWER uses different algorithms for integer and non-integer exponents, and that one of the internal 
algorithms has a consistent error in it.

If our guesses are correct, the algorithms in both the Intel and Weitek DPOWER functions must be 
replaced by ones in which the intermediate value of yxln(x) is computed to more than working precision.
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Table 4. ELEFUNT Test Results for 180387 (Continued)

| denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

POWER

X VS X1 (1/2, 1) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00
Double Prec. 2000 0.00 0.00

(x xxy-Svs (x xx) XX d/2,1) Calibration 1986 0.95 0.00
t Calibration 1986 0.98 0.00

Single Prec. 1986 0.95 0.00
t Single Prec. 1986 0.98 0.00

Double Prec. 1188 1.97 0.01
t Double Prec. 709 2.22 0.56

(l,xmaxM) Calibration 1986 0.98 0.00
Single Prec. 1986 0.98 0.00

t Single Prec. 1978 0.98 0.00
Double Prec. 1 9.99 8.63

t Double Prec. 3 10.45 9.25

x> vs (x xx)y/2 X: (1/10,10),
v. /■ In \xmin 1 ,-ln \xmin 1 \
Y- WnTlOOj InflOO]1' Calibration 2000 0.00 0.00

Single Prec. 2000 0.00 0.00
Double Prec. 2000 0.00 0.00

t Double Prec. 1698 9.00 6.21

(It is possible that the Intel algorithm for non-integer exponents is intended to be of this type.) Such algo­
rithms have been known and used for more than 20 years [Cody and Waite 1980] and are now an industry 
standard. The disturbing factor here is that a similar problem was pointed out to Sequent almost four 
years ago in our test report on the Sequent Balance [Cody 1986d]. We are disappointed that the advice 
there has either not been applied here or has been incorrectly applied.

There are again some flaws in the handling of Intel error conditions. Each program correctly aborts 
execution with a clear error message identifying the problem when asked to raise 0.0 to the 0.0 power. 
(We prefer this to the approach espoused by some that 0.0**0.0 be 1.0.) The Fortran Standard [ANSI 
1978] says nothing about what should happen for X**T when X is negative. At one time this was con­
sidered to be an error, but the accepted practice now is to return a proper mathematical result when F is a 
floating-point integer and to return an error otherwise. Each exponentiation program on the Symmetry 
correctly computes the result for negative X and integer Y. The Weitek library also terminates execution
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

SIN

sin (x) vs 3sin (x /3)-4sin (x /3)3 (0, tc/2) Calibration 1634 1.00 0.00
t Calibration 1250 1.32 0.00

Single Prec. 1634 1.00 0.00
$ Single Prec. 1072 2.04 0.00

Double Prec. 1263 1.27 0.00
t Double Prec. 1109 1.53 0.00

(6ji, 6.5tc) Calibration 1630 1.00 0.00
$ Calibration 1215 1.25 0.00

Single Prec. 1630 1.00 0.00
$ Single Prec. 954 1.84 0.07

Double Prec. 1242 1.37 0.00
t Double Prec. 982 1.86 0.01

COS

cos(x) vs 4cos(x/3)3-3cos(x/3) (7rc, 7.5tc) Calibration 1600 0.99 0.00
t Calibration 1243 1.15 0.00

Single Prec. 1600 0.99 0.00
t Single Prec. 1053 1.53 0.00

Double Prec. 1230 1.35 0.00
t Double Prec. 1082 1.58 0.00

with a clear error message when both arguments are negative, but the Intel library terminates with a “Seg­
mentation violation” error message that confuses at best.

Error statistics for the SIN/COS functions all appear normal. The Weitek single-precision results 
are slightly worse than the Calibration results, especially in the first test. The differences are not enough 
to cause concern, but the routine could be “tuned” a little. The programs also pass all tests for parity and 
small-argument approximations. Small-argument tests for the Intel single-precision SIN reveal that a 
double-precision function value is returned and used in intermediate results. This is contrary to expecta­
tions and should be corrected, in our opinion. The Intel routines continue normal execution when given 
arguments large enough that perhaps half of the significance should be lost during argument reduction. 
The single-precision routines can do this safely because internal computations are done in higher preci­
sion. That is not the case for the double-precision programs, and we believe that a warning should be 
given for arguments greater than, say, 109 in magnitude. The Weitek routines take a different, but flawed 
approach for large arguments. SIN returns a value correct to only about two decimal digits for an argu­
ment of 108. Both SIN and DSIN terminate execution for arguments of 1010. The error message for DSIN 
correctly identifies the problem as too large an argument, but that for SIN is an overflow message.
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

SINK

sink(x) vs Taylor Series (0,1/2) Calibration 1982 0.98 0.00
t Calibration 1979 0.98 0.00

Single Prec. 1982 0.98 0.00
$ Single Prec. 1979 0.98 0.00

Double Prec. 1969 0.99 0.00

sinh(x) vs l^(x+iy+sinh{x-\)] (i,ln(xmaxy-l/2) Calibration 999 1.43 0.04
t Calibration 956 1.57 0.15

Single Prec. 1014 1.39 0.04
t Single Prec. 956 1.57 0.15

Double Prec. 934 1.67 0.16
t Double Prec. 126 12.94 11.05

COSH

cosh(x) vs Taylor Series (0,1/2) Calibration 1967 0.96 0.00
Single Prec. 1967 0.96 0.00
Double Prec. 1952 0.99 0.00

t Double Prec. 1765 1.00 0.00

cosh(x) vs (3, In{xmax)-\I2) Calibration 999 1.40 0.04
Calibration 960 1.61 0.15
Single Prec. 991 1.40 0.04

t Single Prec. 960 1.61 0.15
Double Prec. 983 1.62 0.16

t Double Prec. 122 12.96 11.07

Unfortunately, the overflow message is also returned for much larger arguments in DSIN. We find much 
to complain about here. First, a message is warranted when accuracy degenerates as it does in SIN, say 
for arguments greater than about 104 in magnitude. Second, if a message is to be given, it should be the 
correct message and it should identify the offending program.

Error statistics for SINH/COSH are nominal except those for the double-precision Weitek programs. 
There are no obvious explanations for the inaccuracies for large arguments, because the Weitek DEXP 
program appears to be good. The accuracy of the Weitek DSINH/DCOSH is clearly unsatisfactory.

All programs passed parity tests and tests with small arguments. The Intel programs and the Weitek 
COSH/DCOSH programs also correctly terminated execution with a meaningful error message when sup­
plied large arguments. The Weitek SINH/DSINH programs failed this test, however, continuing
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

SQRT

X VS 'lx XX (l/>5,1) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00

t Single Prec. 1217 1.44 0.00
Double Prec. 2000 0.00 0.00

* Double Prec. 1841 0.50 0.00

(1.^6) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00

t Single Prec. 1543 1.00 0.00
Double Prec. 2000 0.00 0.00

t Double Prec. 1998 1.00 0.00

TAN

tan^vs (0, jt/4) Single Prec. 1 1.01 0.00
$ Single Prec. 1078 1.74 0.01

Double Prec. 1113 1.92 0.03
t Double Prec. 1093 1.92 0.03

(7rc/8,97r/8) Single Prec. 0 1.27 0.00
t Single Prec. 1299 1.50 0.00

Double Prec. 1266 1.24 0.00
$ Double Prec. 1122 1.88 0.00

(67r, 6.257!) Single Prec. 1 1.18 0.00
$ Single Prec. 1075 1.77 0.02

Double Prec. 1085 1.99 0.04
$ Double Prec. 1067 1.83 0.05

execution after delivering the result 1.0. Such performance is unbelievable.
Test results for the Intel SQRT/DSQRT are all nominal, but the reported MRE for the Weitek SQRT 

is too large in the first test. On the other hand, the Weitek routines correctly respond to negative argu­
ments with a meaningful error message and program termination, while the Intel routines abort execution 
with a “Floating invalid operation” message.

Error statistics for the TAN/DTAN routines are reasonable. The low frequency of exact results for 
the Intel Tan tests is caused by the way the compiler handles some intermediate results at a crucial point. 
This is a weakness in the test program itself. Slightly modifying the test source results in a count of exact 
results consistent with the other TAN tests. The MRE values also degenerated slightly, but not
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Table 4. ELEFUNT Test Results for 180387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

TANK

tanh(x) vs \tanh (x-l/8)+tanh (1/8)1
[l+tanh (x+li$)iann(l/&J] (1/8, In [3]/2) Single Prec. 1615 0.99 0.00

t Single Prec. 1077 1.50 0.00
Double Prec. 426 3.97 1.57

t Double Prec. 1086 1.65 0.00

(118+ln [3]/2,59 In [2]/2) Single Prec. 1588 0.76 0.00
t Single Prec. 924 1.13 0.00

Double Prec. 663 2.08 0.39
t Double Prec. 834 10.58 6.16

significantly. We report the results for the unmodified tests to be consistent with previous reports.
Tests of parity and tests with special arguments uncovered no problems. As with the SIN/COS pro­

grams, the Intel TAN/DTAN programs accepted large arguments without complaint, whereas the Weitek 
programs terminated execution with an appropriate error message for arguments greater than about 1010 in 
magnitude. The online documentation for TAN claims that results are garbage for arguments greater than 
about 231. This is probably the threshold built into the Weitek programs, but we found the Intel DTAN to 
be accurate well beyond that point. Nevertheless, we cannot believe that the Intel results for arguments 
like 1030, let alone 10200, have any significance at all, and strongly recommend some sort of error return for 
arguments beyond some sensible threshold. The documentation also claims that the TAN routines return 
large values at their “singular points.” Of course, there are no “singular points” in the computer, so this 
statement is nonsense and should be removed from the documentation.

There are no COT routines, but the Fortran standard does not require any.
The MRE values for the Intel DTANH in the first test and the Weitek DTANH in the second test are 

the largest we can recall for these functions in our series of tests on various machines. Because they occur 
for moderate arguments, we suspect blunders in the programs. All of the TANK family of programs per­
formed satisfactorily with extreme arguments.

4. Summary

The libraries tested on the Sequent Symmetry offer extreme contrasts in quality. Some routines are 
excellent, some are terrible. We uncovered a number of major problems in this exercise:
(1) formatted print statements fail whenever the exponent is greater than 99 in magnitude;

(2) 0.0/0.0 evaluates to 1.0 in both the Intel and Weitek environments;
(3) p-2xm;««p generates overflow in the Weitek environment;
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(4) the Weitek ANINT routines fail for arguments like (J24-!;

(5) the Intel DEXP routine is unacceptably inaccurate for large arguments;
(6) double-precision exponentiation is unacceptably inaccurate in both environments, and the Intel pro­

gram seems to have an internal inconsistency;
(7) the Intel single-precision SIN returns and uses double-precision values (is this the only culprit in the 

Intel library?);
(8) the Intel SIN/DSIN and TAN/DTAN programs need error returns for large arguments;
(9) the error returns in the Weitek SIN/DSIN programs are wrong;
(10) the Weitek DSINH/DCOSH programs are unacceptably inaccurate for large arguments;

(11) the Weitek DSINH program returns 1.0 and continues execution for out-of-range arguments;
(12) both the Intel and the Weitek DTANH programs are unacceptably inaccurate for large arguments; 

and
(13) many of the error messages for faulty arguments to Intel routines (EXP/DEXP, LOG/DLOG, 

exponentiation, SQRT/DSQRT) are totally misleading (overflow, invalid operation, etc.) and do not 
identify the offending routine.

Some of these errors are so blatant that we are surprised they were not discovered during product testing. 
Many are significant enough that they may undermine confidence in scientific computation on and mili­
tary use of the Sequent Symmetry. We urge that they be remedied quickly.

The remaining problems, accuracy of the Weitek ATAN and EXP routines and incorrect documenta­
tion for ASIN/ACOS and TAN, are minor. We suggest that they be corrected, but not at the expense of 
correcting the major problems.

5. Epilogue
Systems people at Sequent who reviewed a draft of this report have stated privately that the 

deficiencies uncovered by our tests will be corrected in a forthcoming software release. Based on our past 
experiences with Sequent, we confidently expect improved software soon.
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