ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439-4801
ANL/MCS-TM--138

DE90 014932

ANL/MCS-TM-138

ELEFUNT Test Results under AST Fortran V1.8.0

on the Sequent Symmetry
by

W.J. Cody

Mathematics and Computer Science Division

Technical Memorandum No. 138

July 1990

This work was supportcd by the Applicd Mathematical subprogram of the Office of Encrgy Research, U.S.
Department of Encrgy, under Contract W-31-109-Eng-38.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER &

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Contents

ADSITACL..cou ettt cnsenestestessasacasssssnsssessssass sansssesssssesasanstesseonssnnestasssnssnnesasssnsnanassesesnssrenns 1
L INTOQUCLION ..oveiineicniinsncecsinintcenresesnssasssessssssessusnssessessensessssenesssssastessssessasansnosesessassessesanesssns 1
2. The AREHINEHCc.coveriiiirtrtisccecneresesinreersecseensan s seseesesessssssssessemseseseasessssasssassessssaessassarasinns 1
3. ELEFUNT/INTFUNT RESUISc.ccceetiniruirnrernrenneesnsserenesnnientesssssansesssssesssssessessssssssessssessasasasass 6
4. SUMMATY.....ccceerirerrserrreseneninessssrsssssasesssssessssessessessasessessssesssnsnsestsssstassssssssssassessassassessssassansssrases 17
S. EPDIIOZUE.....coieiiietieennecensecsesieneseessosessesssssssesessnsssassassssssssstessessesssssssasesnsssssssensesansensansanens 18
REFEIEIICES.......ciiiiniiciitiint it sscs st esc s sestsassaesesseestsnssesssassessessas ssesssnensesenee st asesansaranssssce 18

ELEFUNT Test Results under AST Fortran V1.8.0
on the Sequent Symmetry

by

W.J. Cody

Abstract

This report discusses testing of the floating-point arithmetic and of the elementary function libraries
under AST Fortran on a 24-processor Sequent Symmetry computer. The programs MACHAR and
PARANOIA were used to check the quality of arithmetic, and the ELEFUNT suite of programs from the
book Software Manual for the Elementary Functions by Cody and Waite was used to check function per-
formance. Two complete sets of tests were run, one for each type of floating-point processor, Intel 80387
and Weitek 1167, on the machine.

1. Introduction

The Environmental Assessment and Information Sciences Division at Argonne National Laboratory
acquired a 24-processor Sequent Symmetry computer in early 1989. The machine provides two different
implementations of IEEE-style floating-point arithmetic [IEEE 1985] in Intel 80387 and Weitek 1167
chips. Sequent ATS Fortran V1.8.0 is the default Fortran compiler on this machine, but a second com-
piler, Sequent Fortran V3.2, is also available on request. This report summarizes and analyzes the results
of various tests of the arithmetic and of the Fortran elementary and intrinsic function packages using the
ATS compiler (under DYNIX 3.0.17.9 NFS) and both the Intel and the Weitek arithmetic systems. The
test results are valid only for the floating-point environment (the particular combination of compiler and
floating-point hardware) under which they were run. Hereafter we will use the terms Intel/Weitek to
mean the floating-point environment consisting of the ATS compiler and that chip. We abandoned plans
to run similar tests under the Sequent Fortran V3.2 compiler when preliminary runs uncovered serious
problems not encountered with the ATS compiler.

The next section discusses the computer arithmetic as analyzed by MACHAR [Cody 1988a] and
PARANOIA [Karpinski 1985]. Section 3 discusses test results for the elementary and intrinsic functions
obtained with the ELEFUNT [Cody and Waite 1980] and INTFUNT test suites. Section 4 summarizes
our findings.

This report is one of a continuing series of reports on the quality of the arithmetic and Fortran
libraries available on machines at Argonne National Laboratory [Cody 1986a, 1986b, 1986¢, 1986d,
1988b, and 1989].

2. The Arithmetic

MACHAR is an evolving subroutine to dynamically determine fundamental parameters for the
floating-point arithmetic system. Because it probes the dusty corners of the system, MACHAR is
extremely sensitive to compiler optimizations that have no noticeable effect on most other programs. In
particular, it seriously malfunctions unless critical intermediate results are stored at working precision.

-1-

2-

Table 1. Machine Parameters for i80387 as Determined by MACHAR

1 denotes results for Weitek 1167

Parameter Single Precision Double Precision
B 2 2
t 24 53
rnd 5 5
i 2 2
ngrd 0 0
machep -23 -52
negep -24 -53
iexp 8 11
minexp -126 -1022
maxexp 128 1024
eps 0.1192093e-06 0.2220446049250d-15
epsneg 0.5960464¢-07 0.1110223024625d-15
xmin 0.1175494e-37 0.2225073858507d-307
xmax ©0.3402823e+39 0.1797693134862d+309

IEEE-style systems frequently do all floating-point computations in extended precision, retaining results
in extended registers whenever possible. Optimizing compilers on such systems exploit this behavior,
and MACHAR malfunctions unless compiler optimization is suppressed. Results in this report were all
obtained with the -N flag to kill compiler optimization, although preliminary runs with the default level of
optimization were equally successful with Weitek arithmetic (which lacks extended precision). Regard-
less of the optimization level and floating-point chips used, runs with Sequent Fortran V3.2 were uni-
formly unsuccessful, terminating with arithmetic exceptions or becoming lost in infinite loops. We have
not attempted to circumvent the problems nor to tabulate results for that compiler.

Table 1 lists single-precision and double-precision parameters determined by MACHAR. Here and
in subsequent tables, the primary entries are for tests with the Intel chip. Where results differ, entries for
the Weitek chip are marked with a double dagger (}).

3-

Definitions of the tabulated parameters are as follows:
1) B, the radix for the representation scheme;
2) t, the number of base-p digits in the floating-point significand;

3) rnd, a parameter indicating the method of rounding in addition and the type of underflow (full or
partial):
a value of 0 indicates truncation with full underflow;
a value of 1 indicates some non-IEEE form of rounding with full underflow;
avalue of 2 indicates IEEE-style of rounding with full underflow;
a value of 3 indicates truncation with partial underflow;
a value of 4 indicates some non-IEEE form of rounding with partial underflow; and
a value of § indicates IEEE-style rounding with partial underflow;

4) ngrd, O for rnd #0; otherwise, the number of base-f guard digits used in multiplication;

S) machep, the exponent for the smallest power of B (but bounded below by 1~3) whose sum with 1.0 is
greater than 1.0;

6) negep, the exponent for the smallest power of B (but bounded below by ¢~3) whose difference with
1.0 is less than 1.0;

7) iexp, the number of bits dedicated to the representation of the exponent (including bias or sign) of a
floating-point number;

8) minexp, the smallest permissible exponent;
9) maxexp, the largest permissible exponent;

. 10) eps, on a binary machine, the floating-point number Bmachep ;
11) epsneg, on a binary machine, the floating-point number Breger;
12) xmin, the floating-point number Bmirexr ; and
13) xmax, an approximation of the floating-point number frmaxez

Because MACHAR s intended to be used by other programs, it must avoid exceptions that will ter-
‘minate execution. Thus, it is severely limited in what it can attempt to determine about an arithmetic sys-
tem. PARANOIA (see Table 2), a second and more probing program for examining computer arithmetic,
does not have that handicap. It is a self-contained program that periodically marks its progress by writing
recovery information to file. Thus, if execution is terminated for any of a number of anticipated reasons,
the program can be restarted with the expectation that saved data will permit it to properly report the rea-
son for its termination and to resume execution beyond the troublesome point. In this way, with possible
restarts from time to time, the program is able to run tests on arithmetic characteristics that are not possi-
ble with MACHAR.

PARANOIA was originally written in BASIC by W. Kahan at the University of California, Berke-
ley, and then translated to Fortran by T. Quarles and G. Taylor. It was made available to the general pub-
lic by R. Karpinski at the University of California, San Francisco [Karpinski 1985]. The particular ver-
sion used here was further refined at AT&T Bell Laboratories and transmitted privately by David Gay.

The PARANOIA results reported in Table 2 are self-explanatory (except that ULP refers to Units in
the Last Place of the significand). The final evaluation issued by PARANOIA was that Intel arithmetic
was “excellent,” and that Weitek arithmetic was “satisfactory though flawed.” We disagree with both of
these assessments, primarily because of the evaluation of 0/0 as 1.0 without an error indication, and will
notify Karpinski of PARANOIA’s failure in this case.

-4-

Table 2. Results from PARANOIA for i80387

 denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result
Integer Arithmetic Okay Okay
B 2 2
epsneg 5.96046448E-08 1.11022302E-16
t 24 53
Extra-i’recise Subexpressions Yes (29 extra bits) No
i No No
Subtraction Normaliied Yes Yes
Guard Digits in X, +, — Yes Yes
Rounding in +/—, X, + Yes Yes
Sticky Bit Yes Yes
Multiplication Commutative Yes Yes
Vixi)=i Yes Yes
Sqrt Monotone Yes Ye;s
Sqrt Correctly Rounded or Chopped Correctly Rounded Correctly Rounded
i Neither Neither
Error Bounds for Sqrt -0.5 and +0.5 ULP -0.5 and 0.5 ULP
i -0.6 and +1.0 ULP -0.6 and 0.5 ULP

We note with surprise that extra-precise subexpressions are generated in the single-precision case
for Intel arithmetic although we asked the compiler to kill optimization, and further that these extra-
precise single-precision subexpressions are accurate only to double precision and not to extended preci-
sion. Flaws detected for Weitek arithmetic include the lack of graceful underflow and the lack of correct
rounding in the sqrt function despite the machine’s using IEEE round-to-nearest-even arithmetic. More
interesting is the overflow exception triggered by the computation of §-2xminexr . This is serious because

Table 2, Results from PARANOIA for i80387 (Continued)

1 denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result
z ¢ for Small Positive i Okay Okay
minpos 1.40129846E-45 4.94065564E-324
1.1754944E-38 2.22507386E-308
(minpos +minpos)iminpos 20 20
1.375 X minpos -~ minpos 0.0 w/o Underflow Signal 0.0 w/o Underflow Signal
Gradual Underflow Yes Yes
No No
xmin (underflow threshold) 1.17549435E-38 2.22507386E-308
B -2 % minezp Okay Okay
Okay Overflow Exception
x (+Ya-1) ys exp (2), x—1 Okay Okay
24 for Nearly Extremal Values Okay Okay
Overflow Exception Exception
xmax (Overflow Threshold) 3.40282347E+38 1.79769313E+308
z =xmax X 1,xmax /1 Okay Okay
1/0 Zero Divide Exception Zero Divide Exception
0/0 1.0 w/o Exception 1.0 w/o Exception

the exception is misleading and halts execution, whereas the expected underflow would simply retum a
zero result and continue.

Overall, other than as noted here, the arithmetic seems good. Both floating-point environments pro-
vide many of the features of the IEEE floating-point standard, but the Weitek environment lacks graceful
underflow and proper rounding in the square root. Other requirements for conformance to the standard,
such as support for infinities and NaNs and control of rounding mode, have not been checked. Often
these features are not supported by the compiler even if they are available on the hardware.

-6-

On the other hand, a defect surfaced during these tests that hampered us throughout the testing pro-
cess. Formatted output retumns a string of asterisks for any double-precision quantity with a three-digit
exponent. This is a major flaw in the Fortran environment that renders it useless in many situations. We
urge that it be fixed immediately.

3. ELEFUNT/INTFUNT Results

ELEFUNT is the suite of transportable Fortran test programs from the Software Manual for the Ele-
mentary Functions by Cody and Waite [1980], and INTFUNT is a companion suite of test programs
extending the ELEFUNT concepts to tests of intrinsic functions. Each of the test programs exercises one
or more of the elementary or intrinsic functions to estimate accuracy, check simple mathematical proper-
ties, and assess the response to improper or unusual arguments. The requirement that the test programs be
portable has limited the approach in accuracy checking to determining how well the function program
tested satisfies certain well-behaved identities.

The INTFUNT tests interpret results without reporting specific statistics. Table 3 summarizes
single- and double-precision results for INTFUNT tests of AINT, ANINT, INT, and MOD. The Intel and
Weitek test results were identical most of the time, the only disagreements between the two being in the
results for ANINT. ANINT in the Weitek environment, for example, rounded 221 to 2%. We speculate
that the algorithm used does a floating-point add of 1/2 to the argument and then invokes AINT. If this is
the case, then (2%-1) + 1/2 returns a result halfway between two floating-point numbers, and the IEEE
round-to-even rule causes the result to be rounded up to 224, which is incorrect. Our hypothesis has been
tested with additional arguments without contradicting the hypothesis. The analogous algorithm appears
to have been used for the default double-precision version of ANINT also. These routines should be
corrected.

In contrast with the INTFUNT tests, ELEFUNT tests report statistics without interpretation. A typi-
cal accuracy test from the ELEFUNT suite evaluates an identity by using 2000 random arguments uni-
formly distributed across an interval, and reports the number of times the identity was exactly satisfied,
the number of times it was not satisfied on the high side and on the low side, the maximum relative error
(MRE) encountered, and the root-mean-square (RMS) relative error. To normalize results, the MRE and
RMS errors are reported as an estimated number of erroneous trailing base-B digits in the significand
using the equations

MRE =t + In(max!E; 1)/ In(B),

and
RMS =max[0.0,¢ + In(}; E2/ N)/ (2In(B))],

where E; is the error for the i-th argument. Note that the computation of RMS has been adjusted so it
never reports a negative loss of significant bits. In general, MRE values between 1.0 and 2.0 are common
with ELEFUNT on binary machines; values over 2.5 are rare and often indicate trouble.

The evaluation of the identities used in the accuracy tests inevitably introduces some error. This
error is estimated by calibrating the test program, i.e., by running the test program in single-precision
arithmetic with a function program that accepts single-precision arguments, does all computations in dou-
ble precision, and returns single-precision results. Such a function retumns the best possible single-
precision values on a particular machine/compiler combination. Calibration is thus a practical determina-
tion of the reliability of our test procedure, a calibration of the testing tool to determine the background
noise level on a particular system.

.

Table 3. INTFUNT Test Results for i80387

1 denotes results for Weitek 1167

Test Single-Precision Result Double-Precision Result
AINT
aint(x) vs 0, x =2,i =—1,minexp Okay Okay
aint(14x) vs 1, x =2¢,i =-1,minexp Okay Okay
aint(x+1/2) vs x, x =2i,i = 1,max(35,t+3) Okay Okay
Parity check Okay Okay
2-10 Okay Okay
aint (Xxmax) Okay Okay
ANINT
anint(x), x =2 ,i =—1,minexp Okay Okay
anint(x+1/2) vs 1, x = 2,i =—1,minexp Okay Okay
anint (x+1/2) vs x+1, x =2, i = 1,max(¢t+3,35) Okay Okay
Parity check Okay Okay
anint (2t — 1.0) Okay Okay
% 224 253
anint (amax) Okay Okay
anint (—~xmax) Okay Okay
INT
int(x) vs 0, x =2-,i = 1,126 Okay Okay
int(l+x) vs 1, x =27,i =1,126 Okay Okay
int(x+1/2) vs x, x =2i i =1,30 Okay Okay
Parity check Okay Okay
22 —1.0,n = min(¢,31) Okay Okay
int (xmax) Invalid Operation Exception -
{ Overflow Exception -
MOD
mod (nXx+half x),

x and n random in (0,1000) All Bits Correct All Bits Correct
mod (x+Y,1.0), x =2¢,i = 1,max(+3,35) Okay Okay
Parity check Okay Okay
mod (1.0,0.0) Zero Divide Exception Zero Divide Exception

We would not expect the MRE (measured in our way) for a single-precision program to exceed that
for the corresponding double-precision program, and it rarely does in tests on the Sequent Symmetry.
The Intel 80387 provides many of the core computations for the elementary functions, so we would

8-

further expect the Intel library to be superb. We cannot say whether the Weitek chip provides similar
capabilities. Even if it does not, programs for the elementary functions are usually written in C on UNIX
systems, and C normally does all floating-point computation in at least double precision. We would
therefore expect the single-precision functions, even those in the Weitek environment, to be accurate to
within rounding error.

Table 4 summarizes results for the ELEFUNT accuracy tests. Results labeled single-precision and
double-precision are for Intel; those preceded with a § are for Weitek. Where separate Weitek results are
not given, they coincide with the Intel results. Intel calibration results are included in the table. Those for
the Weitek case, again marked with f, are included only if they are significantly different from the
corresponding Intel results.

Following are detailed discussions of test results for each function. In addition to checking accu-
racy, most of the test programs also check for preservation of parity, for small argument approximations,
for behavior near the boundaries of the function domain, and for response to illegal or ill-advised argu-
ments. Unless otherwise noted, the results for these ancillary checks were satisfactory.

The tabulated results for the single-precision ASIN/JACOS functions duplicate the calibration
results, so the functions are doing the best they can. Although the Weitek tests sometimes report larger
errors than the corresponding Intel tests, the difference is consistent with Weitek’s lack of extended preci-
sion. Overall, the ASINJACOS accuracy test results are satisfactory for both systems and both precisions.

Arguments greater than 1.0 in magnitude cause ASIN or ACOS to terminate execution with an
appropriate error message, contrary to the on-line documentation which claims that execution continues
with a zero result. In the Intel case, a more reasonable response would be continued execution with a
NaN result; apparently the system does not fully exploit the capabilities of the Intel chip.

The accuracy results for the Intel ATAN appear normal; single-precision results either agree with
the calibration results or are slightly better (the second test), and the double-precision results are almost
identical. However, the Weitek single-precision results are uniformly, and sometimes significantly, worse
than the Weitek calibration results. In the last two tests, for example, the reported MRE and RMS values
are even worse than the corresponding double-precision ones. While the routine has acceptable accuracy,
it is possible to do better. Results for the double-precision Weitek routine compare favorably with those
for other machines lacking extended precision.

Each of the ATAN programs handles small and extreme arguments correctly. The ATAN2 pro-
grams are correct in their handling of troublesome arguments, including cases where one of the arguments
is zero. Further, they are consistent in returning zero for ATAN2(0.0,0.0). While we personally prefer a
NaN or an error return for this case, persuasive arguments can be made for a zero result. We find the
overall performance of these routines to be satisfactory.

Test results for the EXP programs are generally disappointing. Only the Intel single-precision EXP
matches expectations with error statistics duplicating those for the calibration runs. The MRE reported
for the Weitek single-precision routine, while acceptable, is about twice as large as expected based on the
calibration runs. Considering the lack of extended precision, the double-precision Weitek results are also
acceptable. However, the estimated loss of more than 9 bits (i.c., more than 28 ULPs, and almost 3
significant decimal digits) in the Intel DEXP for large arguments suggests a major problem in argument
reduction. This program is unsatisfactory by today’s standards.

Each routine does well on tests with special identities, the Intel routines returning exactly 1.0 for
EXP(X)*EXP(-X) most of the time. Auxiliary tests with extreme arguments are satisfactory, although the
Intel and Weitek double-precision results disagree after 14 significant decimal figures (an error consistent
with the reported MRE for the Intel routine). All routines retum zero with quiet underflow for large nega-
tive arguments, and all properly terminate execution with an error message for large positive arguments.

9.

Table 4. ELEFUNT Test Results for i80387

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
ASIN
asin(x) vs Taylor Series | (-1/8,1/8) Calibration. 1999 0.10 0.00
Single Prec. 1999 0.10 0.00
i Single Prec. 1998 0.10 0.00
Double Prec. 1581 0.99 0.00
i Double Prec. 1068 122 0.00
(GMi,1) Calibration 1671 1.00 0.00
i Calibration 1510 1.22 0.00
Single Prec. 1671 1.00 0.00
i Single Prec. 1510 1.22 0.00
Double Prec. 1590 1.00 0.00
i Double Prec. 754 2.24 0.72
ACOS
acos (x) vs Taylor Series | (-1/8,1/8) Calibration 1963 0.46 0.00

Single Prec. 1963 046 0.00
Double Prec. 1576 047 0.00
t DoublePrec. 1467 047 0.00

(3/4,1) Calibration 1534 099 0.00
} Calibration 1193 1.99 0.00
3/4,1) Single Prec. 1534 099 000

it Single Prec. 1193 1.99 0.00
Double Prec. 1280 1.55 0.00
¥ Double Prec. 591 2.49 0.88

(-1,-3/4) Calibration 1819 0.73 0.00
(-1,-3/4) Single Prec. 1819 0.73 0.00
(-1,-3/4) | ¥ Single Prec. 1777 0.73 0.00

Double Prec. 1778 0.72 0.00
¥ Double Prec. 1104 1.72 0.06

The Weitek error messages identify the problem as an argument that exceeds the maximum permissible
for the EXP function, but the Intel error messages are for an overflow with no indication that the problem
lies in the EXP function. This oversight should be corrected. Indeed, if the compiler and library fully
supported the Intel chip, EXP would return an infinity, signal overflow, and continue execution.

The results of accuracy tests for the LOG functions are all satisfactory, although the reported MRE
for the Weitek single-precision routine is a tad large. Ancillary tests of special identities and with special

-10-

Table 4. ELEFUNT Test Results for i80387 (Continued)

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
ATAN
atan(x) vs Taylor Series (-1/16, 1/16) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00
1 Single Prec. 965 132 0.02
DoublePrec. 1999 0.67 0.00
1 Double Prec. 939 1.78 0.17
atan (x) vs atan(1/16)+atan [E118 1 | (1716, 2-43) Calibration 1436 1.00 0.00
i Calibration 1343 1.00 0.00
Single Prec. 1556 100 0.00
i Single Prec. 1041 1.71 0.02
Double Prec. 1513 100 0.00
1 Double Prec. 825 1.95 041
2 atan (x) vs atan [.(1__2;,7] (-3, V2-1) Calibration 1695 093 0.00

{ Calibration 1495 093 0.00
Single Prec. 1695 093 0.00
it Single Prec. 679 238 0.73
Double Prec. 1477 093 0.00
1 Double Prec. 1357 191 0.00

(V2-1, 1) Calibration 1839 100 000
(2-1,1) t Calibration 1755 100 0.00
Single Prec. 1839 1.00 0.00
t Single Prec. 580 254 093
Double Prec. 1746 1.00 0.00
t DoublePrec. 1303 135 0.0

arguments are also satisfactory. Indeed, the Weitek routines return zero for LOG(X) - LOG(1.0/X) most
of the time. Each routine properly terminates execution when given a negative argument, but the Intel
error messages are again misleading, reporting a floating invalid operation with no reference to LOG. The
Intel error message changes to floating divide by zero for a zero argument, still without reference to LOG.
The Weitek error messages are correct and informative.

The POWER/DPOWER pair (aliases for exponentiation) are a mixed bag. Accuracy results for the
single-precision routines duplicate those of the corresponding calibration runs, showing that the compute
in double-precision strategy was used. However, the double-precision routines return large errors for
large arguments. The probable explanation is simple. When higher-precision arithmetic is not available,
a good program for the power function is perhaps the most difficult elementary function program to write.

.11-

Table 4. ELEFUNT Test Results for i80387 (Continued)

{ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
EXP
exp (x—1/16) vs e_g% (1/16-in(2)/2, In (2)/2) Calibraion 1475 100 0.00
Single Prec. 1475 1.00 0.00
i Single Prec. 977 199 023
Double Prec. 1469 1.00 0.00
$ Double Prec. 986 1.99 0.21
exp (x—45/16) vs - SXB& (-5 In(2), In[2%8xmin}) Calibration 1498 1.00 0.00

D
i Calibration 1514 1.00 0.00

Single Prec. 1498 1.00 0.00
¥ Single Prec. 989 198 0.19
Double Prec. 1 9.14 780
i Double Prec. 930 196 025

(10In(2), In[.9 xmax]) Calibration 1513 1.00 0.00
i Single Prec. 1509 1.00 0.00
Single Prec. 1513 1.00 0.00
f Single Prec. 1013 1.93 0.15
Double Prec. 0 9.14 7.80
1 Double Prec. 868 1.96 0.32

Mathematically x ¥ = exp[yxin(x)]. A little error analysis shows that the relative error in the function
value is roughly the absolute error in the argument to the exponential function. This means that exponen-
tiation using the obvious composition of functions loses as many significant digits as there are digits
before the decimal point in the value of yxin (x). The reported MRE values in the third Intel test and the
third and fourth Weitek tests are consistent with this error analysis, indicating that the composition-of-
functions approach was probably used. On the other hand, the last Intel test shows good accuracy for
large arguments, which is inconsistent with our guess at the algorithm. To explore this inconsistency, we
compared X**Y against a result computed from repeated multiplications of X with itself, and found good
agreement. Based on these results, we believe that DPOWER uses a similar algorithm when the exponent
is an integer, and that it uses a more complicated but flawed algorithm otherwise.

We ran further tests to explore this inconsistency in the Intel results. Note that the third test com-
pares output from DPOWER against independently generated values, and that the last test compares one
output from DPOWER against another. We ran an additional test to determine whether DPOWER con-
tained an internal error that would not be revealed by our last test. In particular, we selected X = 9.625

-12-

Table 4. ELEFUNT Test Results for 180387 (Continued)

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
LOG

In(x) vs Taylor Series (1-e,14¢) Calibration 2000 000 0.00
Single Prec. 2000 0.00 0.00
3 Single Prec. 1217 187 0.00
Double Prec. 1999 0.38 0.00
{ DoublePrec. 183 150 0.00
In(x) vs In(17x/16)-In(17/16) (11V2, 15/16) Calibration 1434 100 0.00
Single Prec, 1719 100 0.00
t Single Prec. 1401 130 000
Double Prec. 1695 100 0.00
1 Double Prec. 935 141 0.07
In(x Xx)vs 2in(x) (16, 240) Calibration 1959 096 0.00
Single Prec. 2000 0.00 0.00
$ Single Prec. 1535 100 0.00
Double Prec. 1951 0.99 0.00
$ DoublePrec. 1820 100 0.00

LOG10
log (x) vs log (11x/10)-log (11/10) | (1/¥10,.9) Calibration 922 213 038
Single Prec. 941 203 037
1 Single Prec. 770 242 057
Double Prec. 962 205 037
$ Double Prec. 792 241 058

and Y = 80, both of which are exactly representable in the floating-point system. Then we computed
X**+Y, (X*X)** (Y / 2), and (X*X*X*X)**(Y / 4) in a loop in which Y was increased by 1.0 for each loop
iteration. Each argument was exact, hence contributed no error to the final result. Strangely, the com-
puted values agreed whenever the corresponding exponents were both integers, or both non-integers, but
disagreed when one exponent was an integer and the other was not. This strongly suggests that
DPOWER uses different algorithms for integer and non-integer exponents, and that one of the internal
algorithms has a consistent error in it.

If our guesses are correct, the algorithms in both the Intel and Weitek DPOWER functions must be
replaced by ones in which the intermediate value of yxIn(x) is computed to more than working precision.

-13-

Table 4. ELEFUNT Test Results for i80387 (Continued)

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
POWER

x vs x! 12,1 Calibration 2000 0.00 0.00
Single Prec. 2000 000 0.00
Double Prec. 2000 000 0.00
(xxx)1Svs (x xx)xx 1/2,1) Calibration 1986 0.95 0.00
b3 Calibration 1986 0.98 0.00
Single Prec. 1986 0.95 0.00
¥ Single Prec. 1986 0.98 0.00
Double Prec. 1188 197 0.01
$ Double Prec. 709 222 0.56
(1, xmax'/3) Calibration 1986 0.98 0.00
Single Prec. 1986 0.98 0.00
¥ Single Prec. 1978 098 0.00
Double Prec. 1 9.99 8.63
¥ Double Prec. 3 1045 9.25

x¥ vs (x X x)2 X: (1/10, 10),
Y: ({plomin] i lanin]) Calibration 2000 000 0.00
Single Prec. 2000 000 0.00
Double Prec. 2000 000 000
i Double Prec. 1698 900 6.21

(It is possible that the Intel algorithm for non-integer exponents is intended to be of this type.) Such algo-
rithms have been known and used for more than 20 years [Cody and Waite 1980] and are now an industry
standard. The disturbing factor here is that a similar problem was pointed out to Sequent almost four
years ago in our test report on the Sequent Balance [Cody 1986d]. We are disappointed that the advice
there has either not been applied here or has been incorrectly applied.

There are again some flaws in the handling of Intel error conditions. Each program correctly aborts
execution with a clear error message identifying the problem when asked to raise 0.0 to the 0.0 power.
(We prefer this to the approach espoused by some that 0.0**0.0 be 1.0.) The Fortran Standard [ANSI
1978] says nothing about what should happen for X**Y when X is negative. At one time this was con-
sidered to be an error, but the accepted practice now is to return a proper mathematical result when Y is a
floating-point integer and to return an error otherwise. Each exponentiation program on the Symmetry
correctly computes the result for negative X and integer Y. The Weitek library also terminates execution

Table 4. ELEFUNT Test Results for i80387 (Continued)

$ denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
SIN

sin(x) vs 3sin(x/3)—4sin(x/3)3 ©, /2) Calibration 1634 1.00 0.00
b Calibration 1250 1.32 0.00
Single Prec. 1634 1.00 0.00
i Single Prec. 1072 2.04 0.00
"Double Prec. 1263 1.27 0.00
¥ Double Prec. 1109 1.53 0.00
(6w, 6.57) Calibration 1630 1.00 0.00
i Calibration 1215 1.25 0.00
Single Prec. 1630 1.00 0.00
¥ Single Prec. 954 1.84 0.07
Double Prec. 1242 1.37 0.00
$ Double Prec. 982 1.86 0.01

COs
cos(x) vs 4cos(x/33-3cos(x/3) | (=, 7.5%) Calibration 1600 0.9 0.00
b3 Calibration 1243 1.15 0.00
Single Prec. 1600 099 0.00
i Single Prec. 1053 1.53 0.00
Double Prec. 1230 1.35 0.00
1 Double Prec. 1082 1.58 0.00

with a clear error message when both arguments are negative, but the Intel library terminates with a “Seg-
mentation violation™ error message that confuses at best.

Error statistics for the SIN/COS functions all appear normal. The Weitek single-precision results
are slightly worse than the Calibration results, especially in the first test. The differences are not enough
to cause concemn, but the routine could be “tuned” a little. The programs also pass all tests for parity and
small-argument approximations. Small-argument tests for the Intel single-precision SIN reveal that a
double-precision function value is retumned and used in intermediate results. This is contrary to expecta-
tions and should be corrected, in our opinion. The Intel routines continue normal execution when given
arguments large enough that perhaps half of the significance should be lost during argument reduction.
The single-precision routines can do this safely because internal computations are done in higher preci-
sion. That is not the case for the double-precision programs, and we believe that a warning should be
given for arguments greater than, say, 10° in magnitude. The Weitek routines take a different, but flawed
approach for large arguments. SIN retumns a value correct to only about two decimal digits for an argu-
ment of 108. Both SIN and DSIN terminate execution for arguments of 101, The error message for DSIN
correctly identifies the problem as too large an argument, but that for SIN is an overflow message.

Table 4. ELEFUNT Test Results for i80387 (Continued)

-15.

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
SINH

sinh(x) vs Taylor Series 0, 172) Calibration 1982 0.98 0.00
Calibration 1979 0.98 0.00
Single Prec. 1982 0.98 0.00
Single Prec. 1979 0.98 0.00
Double Prec. 1969 0.99 0.00
sink (x) vs [Sinh Q3 IS =11 | (3, in (xmax)-112) Calibration 999 143 0.04
Calibration 956 1.57 0.15
Single Prec. 1014 1.39 0.04
Single Prec. 956 1.57 0.15
Double Prec. 934 1.67 0.16
Double Prec. 126 1294 11,05

COSH
cosh(x) vs Taylor Series ©, 12) Calibration 1967 0.96 0.00
Single Prec. 1967 0.96 0.00
Double Prec. 1952 0.99 0.00
Double Prec. 1765 1.00 0.00
cosh(x) vs Lcosh(ayTibeoshx=D] | (3, in (xmax)-1/2) Calibration 999 140 0.04
Calibration 960 1.61 0.15
Single Prec. 991 1.40 0.04
Single Prec. 960 1.61 0.15
Double Prec. 983 1.62 0.16
Double Prec. 122 1296 11.07

Unfortunately, the overflow message is also returned for much larger arguments in DSIN. We find much
to complain about here. First, a message is warranted when accuracy degenerates as it does in SIN, say
for arguments greater than about 104 in magnitude. Second, if a message is to be given, it should be the

correct message and it should identify the offending program.

Error statistics for SINH/COSH are nominal except those for the double-precision Weitek programs.
There are no obvious explanations for the inaccuracies for large arguments, because the Weitek DEXP
program appears to be good. The accuracy of the Weitek DSINH/DCOSH is clearly unsatisfactory.

All programs passed parity tests and tests with small arguments. The Intel programs and the Weitek
COSH/DCOSH programs also correctly terminated execution with a meaningful error message when sup-
plied large arguments. The Weitek SINH/DSINH programs failed this test, however, continuing

-16-

Table 4. ELEFUNT Test Results for i80387 (Continued)

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS

SQRT
x vs Yexx a1z, 1 Calibration 2000 0.00 0.00
’ Single Prec. 2000 0.00 0.00
¥ Single Prec. 1217 1.4 000
Double Prec. 2000 0.00 0.00
t DoublePrec. 1841 050 0.00
a,2) Calibration 2000 0.00 0.00
Single Prec. 2000 0.00 0.00
1 Single Prec. 1543 1.00 0.00
Double Prec. 2000 0.00 0.00
t DoublePrec. 1998 1.00 0.00

TAN

tan (x) vs U%%% ©, 7/4) Single Prec. 1 101 000

t Single Prec. 1078 1.74 0.01
Double Prec. 1113 192 003
i DoublePrec. 1093 192 003

(7r/8, 91/8) Single Prec. 0 1.27 0.00
¥ Single Prec. 1299 1.50 0.00

Double Prec. 1266 1.24 0.00
¥ Double Prec. 1122 1.88 0.00

(6w, 6.25m) Single Prec. 1 1.18 0.00
$ Single Prec, 1075 1.77 0.02

Double Prec. 1085 1.99 0.04
1 Double Prec. 1067 1.83 0.05

execution after delivering the result 1.0. Such performance is unbelievable.

Test results for the Intel SQRT/DSQRT are all nominal, but the reported MRE for the Weitek SQRT
is too large in the first test. On the other hand, the Weitek routines correctly respond to negative argu-
ments with a meaningful error message and program termination, while the Intel routines abort execution
with a “Floating invalid operation” message.

Error statistics for the TAN/DTAN routines are reasonable. The low frequency of exact results for
the Intel Tan tests is caused by the way the compiler handles some intermediate results at a crucial point.
This is a weakness in the test program itself. Slightly modifying the test source results in a count of exact
results consistent with the other TAN tests. The MRE values also degenerated slightly, but not

-17-

Table 4. ELEFUNT Test Results for i80387 (Continued)

1 denotes results for Weitek 1167

Test Interval Precision Exact MRE RMS
TANH
tanh (x) vs Jlfanh(c-118)ctanh (L8 (178, In[312) SinglePrec. 1615 099 0.00
i Single Prec. 1077 1.50 0.00
Double Prec. 426 3.97 1.57
¥ Double Prec. 1086 1.65 0.00
(1/8+in[31/2, 59 In [2)/2) SinglePrec. 1588 0.76 0.00
t SinglePrec. 924 113 0.00
DoublePrec. 663 2.08 0.39
§ DoublePrec. 834 1058 6.16

significantly. We report the results for the unmodified tests to be consistent with previous reports.

Tests of parity and tests with special arguments uncovered no problems. As with the SIN/COS pro-
grams, the Intel TAN/DTAN programs accepted large arguments without complaint, whereas the Weitek
programs terminated execution with an appropriate error message for arguments greater than about 10¢ in
magnitude. The online documentation for TAN claims that results are garbage for arguments greater than
about 231, This is probably the threshold built into the Weitek programs, but we found the Intel DTAN to
be accurate well beyond that point. Nevertheless, we cannot believe that the Intel results for arguments
like 1020, let alone 10200, have any significance at all, and strongly recommend some sort of error return for
arguments beyond some sensible threshold. The documentation also claims that the TAN routines return
large values at their “singular points.” Of course, there are no “singular points” in the computer, so this
statement is nonsense and should be removed from the documentation.

There are no COT routines, but the Fortran standard does not require any.

The MRE values for the Intel DTANH in the first test and the Weitck DTANH in the second test are
the largest we can recall for these functions in our series of tests on various machines. Because they occur
for moderate arguments, we suspect blunders in the programs. All of the TANH family of programs per-
formed satisfactorily with extreme arguments.

4. Summary

The libraries tested on the Sequent Symmetry offer extreme contrasts in quality. Some routines are
excellent, some are terrible. We uncovered a number of major problems in this exercise:

(1) formatted print statements fail whenever the exponent is greater than 99 in magnitude;
(2) 0.0/0.0 evaluates to 1.0 in both the Intel and Weitek environments;
(3) PB-2minexr generates overflow in the Weitek environment;

-18-

(4) the Weitek ANINT routines fail for arguments like f-1;
(5) the Intel DEXP routine is unacceptably inaccurate for large arguments;

(6) double-precision exponentiation is unacceptably inaccurate in both environments, and the Intel pro-
gram seems to have an internal inconsistency;

(7) the Intel single-precision SIN retumns and uses double-precision values (is this the only culprit in the
Intel library?);

(8) the Intel SIN/DSIN and TAN/DTAN programs need error returns for large arguments;

(9) the error returns in the Weitek SIN/DSIN programs are wrong;

(10) the Weitck DSINH/DCOSH programs are unacceptably inaccurate for large arguments;

(11) the Weitek DSINH program returns 1.0 and continues execution for out-of-range arguments;

(12) both the Intel and the Weitek DTANH programs' are unacceptably inaccurate for large arguments;
and

(13) many of the error messages for faulty arguments to Intel routines (EXP/DEXP, LOG/DLOG,
exponentiation, SQRT/DSQRT) are totally misleading (overflow, invalid operation, etc.) and do not
identify the offending routine.

Some of these errors are so blatant that we are surprised they were not discovered during product testing.

Many are significant enough that they may undermine confidence in scientific computation on and mili-

tary use of the Sequent Symmetry. We urge that they be remedied quickly.

The remaining problems, accuracy of the Weitek ATAN and EXP routines and incorrect documenta-

tion for ASIN/ACOS and TAN, are minor. We suggest that they be corrected, but not at the expense of
correcting the major problems.

5. Epilogue

Systems people at Sequent who reviewed a draft of this report have stated privately that the
deficiencies uncovered by our tests will be corrected in a forthcoming software release. Based on our past
experiences with Sequent, we confidently expect improved software soon.

References

ANSI [1978). American National Standard Programming Language FORTRAN. ANSI X3.9-1978. New
York: American National Standards Institute, Inc.

W. J. Cody [1986a). An Alternative Library under 4.2 BSD UNIX on a VAX 11/780. Argonne National
Laboratory Report ANL-86-10.

W. J. Cody [1986b]. ELEFUNT Test Results under X1.4 on the Encore Multimax. Technical Memoran-
dum ANL/MCS-TM-68, Argonne National Laboratory.

W. J. Cody [1986¢c). ELEFUNT Test Results under FX/FORTRAN Version 1.0 on the Alliant FX/8.
Technical Memorandum ANL/MCS-TM-78, Argonne National Laboratory.

.19.
W. J. Cody [1986d]. ELEFUNT Test Results under NS32000 Fortran V2.5.3 on the Sequent Balance.

Technical Memorandum ANL/MCS-TM-80, Argonne National Laboratory.

W. J. Cody [1988a]. "Algorithm 665. MACHAR: A subroutine to dynamically determine machine
parameters." ACM Trans. on Math. Soft. 14, pp. 303-311.

W. J. Cody [1988b]. ELEFUNT Test Results under FORTRAN-PLUS on the Active Memory Technology
DAP 510-8. Technical Memorandum ANL/MCS-TM-125, Argonne National Laboratory.

W. J. Cody [1989]. ELEFUNT Test Results Using Titan Fortran under Ardent UNIX 2.0 on the Titan.
Technical Memorandum ANL/MCS-TM-129, Argonne National Laboratory.

W. J. Cody and W. Waite [1980]. Software Manual for the Elementary Functions. Englewood Cliffs,
N.J.: Prentice-Hall.

IEEE [1985]. IEEE Standard for Binary Floating-Point Numbers. ANSI/IEEE Std 754-1985. New York,
IEEE.

R. Karpinski [1985]. "PARANOIA: A floating-point benchmark." BY7E 10, no. 2.

