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Abstract 

The two-dimensional steady-state propagation of electrostatic 
waves is governed by 2V/3T + 3 3v/3£ 3 +3"(|v|2 v)/3? = 0 , the 
Comdex Modified Korteweg-DeVries equation. The oroperties of 
this eauation are studied. 
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Some a n i s o t r o p i c med ia , e . g . a magnet ized p lasma, can suppor t p r o p a g a t i n g 
e l e c t r o s t a t i c waves. We wish t o s tudy The d i s r p r s i o n and n o n l i n e a r s e l f -
modu la t i on o f such waves when t h e system i s two-d imens iona l (x and y , x 
oe ing t h e p r i n c i p a l a x i s ) and has reached a s teady s t a t e [ a l l f i e l d q u a n t i ­
t i e s - e x p ( - iurt) , w = c o n s t a n t j . We w i 1 ' t a k e t h e medium t o be homogeneous 
and n o n - d i s s i p a t i v e , and w i l l assume t h a t t h e d i e l e c t r i c t e n s o r deoends on 
t h e e l e c t r i c f i e l d a m p l i t u d e squared. The e q u a t i o n f o r t h e complex e l e c ­
t r i c p o t e n t i a l , c£> , i s 

V • K(V , JV>|"> • V<(s = 0 . ( I ) 

We expand K about V = 0 , |7<t>| = 0 ( t h e I ong-wave l e n g t h , l i n e a r l i m i t ) 

^ ( V , )V i j . | 2 ) = 1 + E ( I / 2 ) 0 Z K / 3 V 3 ^ ) : W + E O K / 3 ] V ( t ! ' ' , ( i 7 0 | 2 , (25 

where e i s a fo rmal expans ion parameter . Assuming K v v > 0 > K x > . t hen t o 
2 2 2 2 

o r d e r e ° ( I ) becomes t h e wave equa t ion - | K X > . | 3 <t>/3x + KL.,3 cp/3y = 0 . 

Expanding $ about t h e r i g h t - g o i n g s o l u t i o n we l e t $ = <Mt , E) , where 

T « y and % <* x - 11 K x x | / fC, ) y and 3<J/3E = 0 (1 ) , 3<J>/3T = C(£) . To 

o r d e r e we o b t a i n 
v T + V ^ ? + ( ] v | 2 v ) s = 0 , (5) 

where v = 3<p/a^ > and s u b s c r i p t s denote d i f f e r e n t i a t i o n . We c a l l (3) t h e 
Complex M o d i f i e d K o r t e w e g - d e V r i e s e q u a t i o n C l J . 

2 . Cons tan ts o f t h e M o t i o n 

Only f o u r c o n s t a n t s o f t h e mot ion a re known. T h i s Is in c o n t r a s t t o equa­
t i o n s s o l u b l e by t h e i n v e r s e s c a t t e r i n g method which have an i n f i n i t e num­
ber o f c o n s t a n t s o f t h e m o t i o n . The f o u r c o n s t a n t s a r e : 

I , = / vdE , M ) | = / | v | dE , (5) 
1 -<x -̂  - c o 

i , = F |v|"/2 - | v J dE , (6) I = F l - l ' /kdK . <1) 
a -co t t _ ' 



In (7) k is the F o u r i e r - t r a n s f o r m v a r i a b l e con jugate t o g . Three of 
t hese cons tan ts have p h y s i c a l i n t e r p r e t a t i o n s . I j = c o n s t , s t a t e s t h a t the 
e l e c t r i c f i e l d i s d e r i v a b l e from a p o t e n t i a l . I = cons t , and I ^ = cons t , 
g i v e the conse rva t i on o f momentum and energy , i . e . the f o r c e and power ba-
Iances. 

3 . Soluble L i m i t s 

Altn.ougn (3) is not a n a l y t i c a l l y s o l u b l e , i t i s c l o s e l y r e l a t e d to the 
m o d i f i e d Kor teweg-deVr lss equa t i on , 

v + v - - , + K V *- = 0 , (8) 

which is soluble by the inverse scattering method [2j. To see this relation 
we rewrite (3) in two ways, 

v + v.-.-- -f- 5 i v I ~ v, = 2ilvl v9. . (9! 

v_ + v - ~ + i v | v , = - v | v 2 L , (10) 

wnere 9 = a rg ( v ) . In t h e I i n i t s o f slow and r a o i d phase v a r i a t i o n , the 
r i g h t nand s ides o f (9 ) and (10) i -espect i ve l y are n e g l i g i b l e and in these 
l i m i t s (3 ! reduces t o ( 8 ) , a l though "he s t r e n g t h of the n o n l i n e a r t e r n , K , 
i s d i f f e r e n t . When n e i t h e r l i m i t a p r l i e s , we must so lve (3) n u m e r i c a l l y . 

4 . Numerical S o l u t i o n 

We choose i n i t i a l c o n d i t i o n s of t he t o r n , 

v(T = 0 , £) = A s e c h ( ? ) e x p ( i k 0 £ ) , ( I D 

Figs. I and 2 show two examples of the evolution. We see that there are 
two types of solitary pulses produced; one had a constant phase (Fig. I), 
whiie the other is an envelope pulse (Fig. 2). 

5. Constant Phase Pulses 

The constanr pnase pulses are a special case of the solitons of (8). Their 
form i s 

v = /5~ a sechCa(£ - £ - a2T)]exp( iB ) . (12) 

The area of these pulses is •FLTI . However, these pulses do not behave as 
solitons in (3). Fig. 3 shows the collision of two of these pulses which 
have different phases, 9 . we see that after the collision the phase and 
amplitude of the pulses ^iave changed and same "radiation" is produced. 

6. Envelope Pulses 

The general form of the envelope pulses is v(x , Z) = V(5)exp( ik 5 - i<ii0T) 
where V is complex, C = 5 - ct , c = a 2 - 3k , and 10 = k (3a 2 - k"") . 

o o c 0 
Here a is the decay rate of V as |c| + " . V satisfies 

,2v . 2 (V + V V - a ' V ) , + ik (3V..+ VI V-3a'V; = C . (135 



For k = 0 , we recover the constant phase pulses. Numerically integrating 
(13), we find that for 0 < Ik I < 0.5a, V does not form a pulse, while for 

1 o' ~ 
|k j > 0.5a we do obtain a pulse. The asymptotic form of the pulse for k,. 
large is 

V = /6a sech(ac){l + ietanh(aS) + E 2[tanh 2(a5) - l/2]/3 + 0(^ 3)} , (14) 
where e = a/k . In tne limit E -*• 0 we recover tne sol iron o+ (&/ Cwitn 
< = 3). The 'Absolute" area of V is (cf. the area of the constant pnase 
pulses) 

f° |\'| d? = /6TT[I +eV<to(e 1')] . (15) 

7. Transition Froir, Envelope fo Constant Phase Pulses 
Since solitary pulses do not exist for the full range of kQ/a it is clear 
that there cannct be a continuous transition from envelope to constant phase 
pulses. If .we take an envelope pulse and alter the initial conditions in such 
a way that |k 0| < 0.5a, .we see from (15) that it has sufficient area to break 
up into abouT 3 constant phase pulses. For initial conditions of the form of 
(II) this happens when A = 2k 0 (see Fig. 4). Fig. 5 shows schematically what 
pulses are produced for different initial conditions. The equivalent figure 
for (6) would consist of a single set cf lines at A ( K / 6 ) 1 / 2 = N - 1/2. 
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Figure Captions 

Fig. I Evolution of (3) with initial conditions given bv (II) with 
A = 3 , k = I . The sclid line, long dashes, and short dashes 
denote ° |v| , Re(v! , and !m(v) respectively 

rig. 2 Same as i-ig. i, except A = 3 , k = 3 — - o 

Fig. 3 Collision of two constant phase pulses I 

Fig. 4 Same as Fig. 2, except A = 6 

Fig. 5 Schematic showing numbers and types of pulses produced with initial 
conditions given by ((I) 
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Fig. 1. 782165 
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Fig. 5. 782159 


