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Abstract

The two-dimensional steady-state pgppaga*i%n of electrostatic
waves is governed by av/dT +2°v/3E° +3(|v|® vI/3E = 0, the
Complex Modified Korteweg-DeVries equation. The properties of -

“his eguation are studied.
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Some anisotropic media, e.g. & magnevized plasmz, can support propagating
electros™atic waves. We wish to study the disrersion and nonlinear sgli-
modulation of such waves when The system is two-dimensional (x and y, x
being the principal axis) and hes reached a steady state [all fielc quanti-
ties ~ expl(- iwt) , w = constant]. We wil! take the medium fo be homogeneous
and non-dissipative, and will assume that The dielectric Tensor depends on

the electric field amp!itude squared. The a3uation for ths complex elec-
tric cotential, ¢, is

VAR(Y,(Ve]Ty W =0 (0

=
We expand K about

2
V=20, [V =0 (the long-wavelength, linear 1imit)
= 2 = = = 2
Kv, |Vl ) =K + £(1/2) (3" R/ava0) ;79 + E(3K/3|Ve! \[vmlz , (23

whers € is a formal expansion parameter. Assuming Ky > 0 > Kg then tfo

2 2 2
order £° (1) becomes the wave equation - |Kuy|d ¢/3x" + Kyy® 978y = 0.
Zxpanding ¢ abtout the right-going soluficn we let ¢ = ¢(1, E), where

172
Ty and £« % = (lrgo(l/*g/y) y and 3¢/BE = O(1), 3¢/dT = Qg) . To
order £ we obtain

\Y

, 2
Vo Ve ¥ (hvi™w)

E=O' (3)

where v = 3¢/8E , and subscripts dencote differentistion. We call (3) the
Compiex Moditied Korteweg-deVries equation [ 1],

2. Constants of the Motion

Only four constants of the motion are known. This Is in contrast to eguz-
tions soluble by the inverse scaftering method which have an infinite num-
ber of constants of the motion. The four constants are:

0o

© 2
I, = J vdE , (4) l.=J |v| ¢t , (53
1 o z o
© o 2 o z
b, = I_MM /z - [v£| dt (6) to= ,r_wM fedw . o



In {7) k is The Fourier-fransform variable conjugate To £ . Three of
these constants have physicail inferpretations. 1; = const. staftes that the
electric field is derivable from a potential. |, = const. and |, = const.
give the conservation of momentum and energy, i.e. the force and power ba-
|ances.

3. Saolublc Limits

Alftnougn (3) is not analytically scluble, it is closely related To the
modi fied fortaweq-deVriss esquation,
2
v_tvo+k|v] vo =0, (8)
T UEgE g
which is soluble by the inverse scattering method [2]. To see this relation
we rewrite (3) in two ways,

2 2
VRTINS § 2V VI EFIVI vd. , {2
T Tans 2 ‘ 5
1 2 2
v_ s Hiv] T v, = .|V, (1o
T LR g g
wnere 2 = ara(v) . In the linits of slow and ranid phase variation, The

right nand sides of (9) and (10) raspectively are negligible and in these
limits (3} reduces to (8), althocugh *he strength of the noniinear Term, «,
is different. when neither limit apnlies, we must solve (3) numerically.

4. Humerical Soluticn

We choose initial conditions of The form,

vi{T=0, &) = Asech(BlexplikyS) . [QRD]
Figs. | and 2 show two examples of the evolution. We see That there are
two types of solitary pulses produced; one nad 2 constant phase (Fig. |,

whiie the other is an envelope pulse (Fig. 2).

5. Constant Phase Pulses

The constant pnase pulses are a special cass of The solitons of (8). Their
form is

v =z asechCa(i-Eo—a:‘r)]exp(ieo) . {1z)

The area of these pulses is vZn. However, these pulses do not behave as
solitons in (3), Fig. 3 shows the colltision of two of these pulses which
have different phases, 6_, wWe see that after the ccllision the phase and
amp | itude of the pulses Shave changed and some "radiation" is produced.

6. Envelope Pulses

The general form of the envelope pulses Is v(T, 5} = V(Dlexp(ik,§ - lw T},
where V is comnlex, § =& -¢1, ¢ = a2 - Skz, and w = k_(3a% - K°).
[e] [o} Q o}

Here a is the decay rate of V as |z} »=. Vv satisfies
2 \2 2
(Voo v vty ik BV L+ Ty -3t = 0
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For &k, = C

o , we recover the constant phase pulses. Numerically integrating

{(13), we find that for 0 < Ikol < 0.5&, V does not form 2 pulse, while for
]koi > 0.5 we do obtain a pulse. The asymptotic form of the pulse for e
farge is

V = JEasech(ar){! + ic tanh(ar) + £ [tanh’ (ag) - 172073+ 0(. %)),  (1&)
whare € = a/k_. In tne limiT & - 0 we recover Tne soliton of (&) {(wifn
¢ = 3), The "absolute' area of V is (cf. the arez of the constant pnase
culses)

2
I V) dp = Bl +e /8+0(eM] . (15)
-

-
7

Transition From Envejope to Constant Phase Pulses

Since solitary pulses do not exist for the full range of k,/a it Is clear
that there cannct be a continuous transition from envelope to constant phase
pulses. |f we Take an envelope pulse and alter the initial conditions in such
a way That Ikol < 0.5a, .we see from (15) that it has sufficient ares to break
up into about 3 constant phase puises. For initial conditions of the form of
(I'1) this happens when A = Zk, (see Fig. 4). Fig. 5 shows schematically what
pulses are produced for different initial conditions. The equivalent figure
for (6) would consist of @ single set cf lines et A{x/6)¥2= N - 1/2.
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Figure Captions

™)

Evolution of (3) with initial conditions given by (il) with
A=3, RO = | . The sclid tine, long dashes, and shorf dashes
denote [v] , Re(v), and Im(v) raspectivelv

Same as Fig. i, except A = 35, ko =3
Collision of two constant phase pulses

Same as Fig. 2, axcept A =6

Schematic showing numbers and types of pulses produced with initial
conditions given by ({1}
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Fig. 2. 782166



e’

15

{p)

==

PR Loy
—
———
~———

-9

4

o

=13

782164

Fig. 3.



Ma. fth

I

|

b

=l

782163

Fig. 4.



\
5 Constant Phase
3
. :
2

3 ISR

N4

e

/6

s 118y

I Envelope

ro|os

/6

AN

~|—

O (Radiation)

ko

Fig. 5. 782159



