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Lie-Poisson Bifurcations for
the Maxwell-Bloch Equations

D. David
Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

We present a study of the set of Maxwell-Bloch equations on R? from the point of view of Hamilto-
nian dynamics. These equations are shown to be bi-Hamiltonian, on the one hand, and to possess
several inequivalent Lie-Poisson structures, on the other hand, parametrized by the group SL(2,R).
Each structure is characterized by a particular distinguished function. The level sets of this function
provide two-dimensional surfaces onto which the motion takes various symplectic forms.
Keywords: Maxwell-Bloch equations, Lie-Poisson bifurcations, Bi-Hamiltonian system

Short title: Lie-Poisson structures of the Maxwell-Bloch equations

1. Introduction and reduction to the three-dimensional system.

In this note, we provide an example of a system that exhibits a multiplicity of Lie-Poisson
structures. Under varying SL(2, R)-valued paramcters, these structures undergo bifurcations. This
property is certainly true of any bi-Hamiltonian system on R? that can be put in the form

i=VH xVH,, (L

where the Hamiltoniar functions H, and H, are quadratic in their arguments. The general case is
presently under investigation by the author and will be presented elsewhere. Here, we show how
this occurs for the travelling-wave three-dimensional Maxwell-Bloch system. This system is of
use in the field of nonlinear optics (1) and arises from the following 2:1:1 resonant system on C:

H:C? 5 R: (uy, Uy, uy) = (208, Uyt + 2uylyily)

X _i(9H _aH 9
0= 3 (Bagre S0

o

(1.2)
ul = -i“2“3’ uz = —iulﬁ3. d3 = ‘i“laz.

H is the Hamiltonian function for the system, X, is the associated Hamiltonian vector field, and
the equations of the motion are obrained, as usual, as 4, = X, (a). The function H is invariant
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under the U(1) action (u,, uy, uy) — (ez'eul, e'euz, e’eu3) and has the following two conserved
quantities:

C=|uy|*+|iy)>, K = |y +]ug|2. (1.3)

Introduce a new set of coordinate functions on the dynamical space:

Xy = 2Re(uy),  xy = 2m(uiy).,  xy = |uy}-|uy? 4
y1 = 2Im(uy), Yy = 2Re (uyu,), y; = C.
Then the system for the variables {x,, x;, X3} forms an invariant subsystem, with
H, = %(X%-f-x%), H, = x3+%xf, (1.5)
Xx=VH,xVH,, (1.6)
X, = X, Xy = X;X3, X3 = (=X1x,). (.7

The travelling-wave maxwell-Bloch equations consist of equaticns (1.7). As can be seen from
(1.6), the functions H, and H, provide two admissible Hamiltcnian structures for the system; thus
it is bi-Hamiltonian. Moreover, both these functions are quadratic in their arguments and therefore
automatically induce an additional Lie-Poisson structure for the systern. Geometrically, (1.7) im-

plies that the dynamics takes piace on intersections of level sets of the functions H, and H, in the
space R3.

2, Classification of the Lie-Poisson structurc...

The tnree-dimensional Maxwell-Bloch system of equations possess a multiplicity of Lie-
Poisson structures. In fact, we may characterize them by a three-parameter family of function
pairs (H, C) where H is an admissible Hamiltonian function, and C an associated admissible dis-
tinguished (or Casimir) function. The set P of all such pairs forms a representation of the Lie
group SL(2, R) and arises as the result of the invariance of the right-han:. side of equation (1.7);
the group homomorphism defining the representation is

SL(2,R) —p:|® B 5 [aB] |3, 2.1
BV (nv [y

Invariance of equation (1 7) yields the following

June 27, 1990 2



Proposition. Consider the two functions H = HP = aH, + BH, and C = H*Y = uH, + VH,, with

av - Bu = 1. Then equation (1.7) is equivalent to x = VA VC = VH“'ﬂ:' V H*V For the
procf, it suffices to compute

x=V (aH;+BH,) xV (LH, +VH,)

2.2

The above proposition implies the invariarce of the intersections of level surfaces of the functions
H and C under the SL(2, R) action (2.1); in other words, it implies that the dynamics (the geomet-
ric loci of the solutions) remains unchanged in R* under these group deformations.

Let us now examine the Lie-Poisson structure of our system. Consequent to the invariance of
equation (1.1) under the SL(Z, R) action, this structure will not be unique, and in fact presents bi-
furcations as we move along parametric curves in SL(2, R). We use Hamiltonian vector fields;
any dynamical quantity Q thus evolves with time according to the equation

Q = X,0, (2.3)
and the correspondence with Poisson brackets i. given through the following identity:
XyF = =X;H = {F,H}. (2.4)
The equations governing the flow of X,; are the Hamilton equations for H. In view of (1.5-7) it is
then clear that for all C2 functions G : R? — R, exist associated vector fields
X; = (VGxVC() -V, (2.5)
In component form, these are expressed as
oG G 5 9G 2
3 3

Xo=(v+ ) a—aGa-+VI
o= e (- k) v 5, B 26

sur (268 _9% 3
M3 9x T 9n3x )
We remark that expression {2.6) depends explicitly on the parameters . and v, through its
dependence on the distinguished function C, as prescribed by the proposition. To determine the

structure of the Lie algebra underlying the Poisson structure of the system, we first calculate the
Lie bracket for the Hamiltonian vector tields associated to the coordinate functions x;,
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X,=X, = (V+Hx3) 0, - vx, 05, @2.7)
X3=X, =vx)0,-ux,9,,

where 9, = 0/dx;. The non-vanishing commutators defining the Lie structure are
[Xp Xz] = ""“-X:;: [Xz’ X3] = "pr [X3a X]] = -“Xz- 2.8)

Clearly, the Lie algebra spanned by the vector fields X; also depends on the parameters p and v.
This dependence is correlated with classes of orbits in the group SL(2, R) as follows.

Case 1. 1 = 0, v # 0. Define Y, = -vX,, Y, = X, Y3 = X;. Then the structrre of the algebra is

[Yp Yz] = 0) [Y2r Y3] = Yl’ [Y3, YI] = 0. (29)

This algebra is the well known Heisenberg algebra.
Case 2. u 20, v = 0. Define ¥, = -X,/i, Y3 = X,, Y3 = X5. Then the commutators become

(Y. ¥,] = ¥y [V V3] = 0, [Y3,1,] =1, 2.10)

This solvable algebra is isomorphic to the Euclidean algebra of the plane.

Case 3. u 20 =¢,, v # 0=¢,, with &, = Sign(c). We define ¥, = £ X U, Y, = Xy/(ul V)2, Y5 =
X3/(ul Iv)!2, Then the structure of the algebra is

(Y, Y,] = €Yy, (Yo V3] = Y, (Y3, Y] =¢Y, @.11)
where € = €, = Sign(uv). Two subcases arise.
Subcase 3.1. € = 1. This algebra is isomorphic to so(3).
Subcase 3.2. € = -1. This algebra is isomorphic to so(2,1) and so(1,2).

Each of the above cases is associated with a particular family of distinguished functions C.
We also point out that the groups corresponding to these algebras are compact if, and only if, the
level sets of C are themselves compact sets. These functions are as follows.

Case 1. u =0, v # (. The level sets are parabolic cylinders along the x;-axis,

C= v(x3+%.tf ] (2.12)
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Case 2. u #0, v=0. The level sets are circular cylinders about the x,-axis; they are defined when-
ever C/u >0,

1
= 3H (x% +x§) . (2.13)

Case 3a. u =0, v # 0, with uv > 0. The level sets are ellipsoids of revolution, with semi-major
axis r; =1, 15 = 1y = (V) 1, centered at (0, 0, -v/)); they are defined whenever 4uC + v > 0.

) vZ] _2C, v _ 2
x1+;[x2+(x3+':)]-——v—+ﬁ—r (2.14)
Case 3b. u # 0, v # 0, with v < 0. Here, the level sets, here, are non-compact surfaces, namely
two-sheeted hyperboloids of revolution if 4uC + v2 < 0, one-sheeted hyperboloids if 4uC + v? > 0,
or cones whenever 4uC + v2 = 0. The two varieties of hyperboloids correspond to the two choices
of the algebra, either so(2,1) or so(1,2), respectively.

Note that for each case, the level sets provide foliations of the space R? (in fact, these are
symplectic foliations). Each of the above classes thus defines admissible pairs (H, C) prescribed
by (2.1) where the appropriate SL(2,R) matrices given as follows:

H
1 1
Case 1: g1=g3||“=0={f)v3:‘], H=7+BH2’
- H
Cie2: gy =8|, _, = [ﬁ 10/"] H = uH, - le (2.15)

Case3: g, l:a?’]. H = oH,+BH,, av-PBu = 1.

T}

Clearly, the locus of the Hamiltonian function / depends on the parameters o or 3 and can
bifurcate as we vary them. For instance, a change in sign may transform the topology of a level
surface of energy from that of an ellipsoid to that of a hyperboloid. We note that the intersections
of the level surfaces of C and H are unaffected by these bifurcations; in fact, they do not depend
on o or P at all. However, the representation of the dynamics does depend on the choice of o or B,
since the Hamiltonian function itself depends on these parameters, as will be made explicit in the

next section where we show, for example, that B = 0 in Case 1 yields Duffing oscillatur dyvamics,
while & = 0 in Case 2 yields pendulum dynamics.
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3. Reductions to the two-dimensional level sets of the distinguished functions

Each of the cases presented in Section 2 yields a distinct reduction of the inidal Maxwell-
Bloch system (1.5-6) to a symplectic system on a two-dimensional manifold specified by a level
set of the distinguished functions C. These red"ictions however give different coordinate represen-
tations of the same solutions in R?, We now examine each reduction to a symplectic system and
briefly describe the qualitative features. For more details about the nature of geometric reduction,
the reader is referred to [2] and [3].

Case 1. p =0, v #0. The distinguished function C is given by (2.12) and the Hamiltonian function
is, as prescribed by (2.1),

1.2 2 )
H= o (3+xd)+ BLx3+§le. 3.1

We introduce a new basis of coordinate functions (suggested by D. Holm)

1
X=X, y = Xy, z = [,c3+ 3% ], 3.2)

In terms of these coordinates, X, and the equations of the motion therefore reduce to

_ (9H 3y oH 5\ _ c_{,_ 12 3
XH —V(Tym“”-a;yy), X =Y, y= (Z ix )X. 33)

This sysiem is a Duffing oscillator and it possesses the following three critical points: (x, y} = (0,
0), (2422,0). A linear stability analysis shows that the first one is unstable, and the two others
are stable centers. The phase portrait is naturally the usual one, with the figure-eight pattern, but
drawn on the parabolic cylinder in place of the flat plane.

Case 2. 4 # 0, v = 0. For this case, the distinguished function C is given by (2.13) and the Hamil-
tonian function is

_ a 2 2 1 1 2
H = -2-(x2+X3) ‘E(X3+—2‘I1). (34)

We introduce a new basis of coordinate functions. Since the level sets of C are circular cylinders,
it isappropriate to choose the usual cylindrical coordinates,

Y =2z, X, = rcosB, Xy = rsin®; ra 2C/u, (3.5

In terms of these coordinates, the distinguished and Hamiltonian functions become

Juae 27, 1990 6



C = Ll_zr_ H = l[OLC—;zz—rsinGj. (3.6)

u

The geometric locus of the level sets of the Hamiltonian is that of a parabolic cylinder along the
x5-axis. Thus the orbits of the motion are the intersection of such parabolic cylinders with a circu-
lar cylinder about the z-axis. These intersections are non-trivial only when pH - aC <r. Therefore
the orbits on the phase cylinder are periodic, except in the limit when one of the parabolic cylin-
ders becomes tangent with the interior of the circular cylinder: when this occurs, a pair of homo-
clinic loops appears which partitions the phase cylinder into three distinct famiiies of periodic
orbits. The reduced vector field Xy and the reduced equations of motion are

oH 5 oH .
= —_— == |: = = 5 = i
XH u(az 3—9-+ 37682), e Z, V4 rCOSO. 3.7

These equations possess exactly two fixed points, (8, z) = (£r/2, 0). The critical point (/2, 0) is
stable whereas (-t/2, 0) is unstable (i.e., is a saddle point). In these coordinates, the motion on the
reduced phase cylinder is precisely the dynamics of a pendulum.

Case3a.pu 20, v =0, uv >0, 4uC + v? > 0. For this third case, the distinguished function C is
given by expression (2.14). Introducing the constant

r= E + —v—, 3.8)
v 24
and keeping in mind that the level sets of the distinguished function are ellipsoids of revolution

about the x,-axis, it is natural to introduce a new basis of coordinate functions as follows

x, = rcos8, x, = Jv/ursin@cos@, Xy = Jv/prsin®sing. (3.9

In terms of these coordinates, and using the fact that av — By = 1, the distinguished and Hamilto-
nian functions become

Y 5 _ 2 2 2
c- A v(2-av) +opvr’  rlcos8? Jgfsinesinq). 3.10)
4p 2 B

24 2u
Thus, a level set of C is a sphere of radius r. Notice that all the o and B dependence in the Hamil-
tonian is confined to the constant term (this actually occur for all cases). This implies that the
equations of the motion, in contrast, will exhibit no dependence whatsoever on these two parame-
ters. The geometric significance is that the orbits of the motion are invariant under SL(2, R) defor-
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mations of the functions C and H. Under the change of coordinate functions (3.9), the vector field
Xy and the equations of the motion are

S L (Mo ey p = ~coro(rsino - [fsine ).
X”‘r_si—fx—e(%a’é*’?ﬁ?(—p,’ 0 = J;cos(p, @ = —cotB| rsin9 ﬁsmq).(.)

These equations admit up to four distinct critical points, (6, ¢) = (%/2, £7/2), as well as the
pair (sin6, @) = [(v/ur?)2, n/2]; whenever r > Jv/|i. Linear stability analysis gives the following
information. The pcints (8, @) = (11/2, -1/2) and (sin@, @) = [(v/ur?)!”2, n/2] are always stable. As
for 8, 9) = (1/2, 7/2), this point is stable if r < JV/}L and is of saddle type whenever r> JV/.
Therefore, a Hamiltonian pitchfork bifurcation takes place at r = ./;_/_ﬁ i.e., when 4uC - v = 0.
We mention that such a bifurcation did not occur for the previous case. Indeed, it is clear that the
two homoclinic loops are not allowed to shrink to a point, due to the topology of the cylinder; this
is a consequence of whether we reduce to compact level sets of the distinguished function or not.

Case 3b. 0 20, v 0, pv < 0, 4uC + v? > 0. For this last case, the distinguished function C is giv-
en by an hyperbolic quadric. Thus we consider subcases corresponding to the three possible ge-
ometries of the level sets of the distinguished function,

4uC +v?
2uv

Xf— (-%) [X§+ (x3+v/p)? = R. (3.12)

Subcase 3b.1. 4uC + v? <0. Then R =12 > 0. For this first subcase, the level sets of the distin-
guished function are two-sheewed hyperboloids. A natural set coordinate functions is given by

x, = rcoshu, X, = J=v/prsinhucoso, Xy = —E+ f—_;/_ﬁrsinhusin(p. 3.13)

In terms of these, the distinguished function and the Hamiltonian function take the form

- 2uvre-v ’ H = V(2-ov) +ouvr®  ricoshu” _ ’_\_/rsinhusin(p- (3.14)

Again, only the constant term of the tlamiltonian function shows any dependence on the parame-
ter o; the geometry of the solutions in the unreduced phase space R? are therefore blind to this pa-
rameter. The equations of the motion on the reduced space are

__K (Hgy (3
H™ rsinhu |\ oude opou)

U= f?costp, ¢ = --comu(rsinhu+ﬁsin¢)‘

(3.15)
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These equations possess two critical points, (@, sinhu) = (n/2, - N }I/rj (on the bot-
tom sheet of the hyperboloid) and ‘@, sinhu) = (—7/2,./=v/p/r on the top sheet. Linear stability
analysis shows that both points are stable. Thus each sheet of the hyperboloidal reduced space is
foliated by a family of periodic orbits.

Subcase 3b.2. 4uC +v2 > 0. Then R = -r2 > 0. For this second subcase, level sets of the distin-
guished function C are one-sheeted hyperboloids. We choose new coordinate functions as

¥y = rsinhu, X, = J-v/urcoshucose, X3 = —E+ —v/urcoshusing.  (3.16)

In terms of these, the distinguished function C and the Hamiltonian function H become

_ 2 2 _ _ 2 2.2 [T
- (Zu\;ruw ) yove a;)z apvr” r s;::w _Jzicoshusimp. 3.17)
W

The equations of the motion are consequently

__ K (Mg 9HyH)
H‘m(?a'm, ou )

. =V . V..
u = Ecosq), ¢ = ~tanhu(rcoshu+ /—Esmcp).

These equations admit up to four fixed points, (4, 9) = (0, £r/2), as well as the pair (cosh
u, 9) = [£(v/ur?)!2, —n/2]; the latter exist whensver r < J/-v/j. Linear stability analysis provides
us with the following information. The points (4, @) = (0. 7/2) and (cosh u, ) = [£(V/ur)!2, ~1/2]

are always stable. As for (u, @) = (0, —1/2), this point is stable if r > J/-v/u and is of saddle type
whenever 7 < J-v/ .

(3.18)

Subcase 3b.3. 4uC + v2 = 0. Then R = 0. For this last subcase, the level sets of the distinguished
function C are cones. We choose new coordinate functions as follows:

X, = 2, X, = —T/ﬁzcosq), Xy = — E + J-Vv/jzsingQ. (3.19)

In terms of these, the distinguished function C and the Hamiltonian function H become

2 v 2
-v v(2-av) -Vz 2

= ——, H= ——————_ —~ |— Zsin@— —. (3.20)
4u 2u2 TR T
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Once more, we note that the a-dependence of the Hamiltonian function is only witkin the con-

stant term, so that it does not affect the dynamics, as far as the nature of the solutions is con-
cerned. The equations of the motion are

_ oH 5 oH ) . —v . -v .
Xy = 2“(3{3—64' %E)’ Z= 2\/—;zcos¢, o =-2 (z+ «/—T—S’"("J' (3.21)

These equations have three fixed points. One is (z, ¢) = (0, 0) = (0, ), located at the vertex
of the cone. The other two are (z, @) = (—J—v/u.1t/2), (J=V/p, -n/2). Linear stability analysis
shows that the latter are always stable, while the point at the vertex is unstable. The nature of the
phase portrait is as follows. Two homoclinic orbits are connected to z = 0, one on each half of the
cone; these separate the halves into two regions foliated by a family of periodic orbits.

Remark. For cases 2 and 3, the phase portraits are characterized by a pair of homoclinic loops
connected to an unstable point. Under time-dependent Hamiltonian perturbations, this configura-
tion is expected to break. If the perturbation is periodic and preserves the distinguished level sur-
faces, the usual homoclinic tangle phenomenon yielding horseshoe chaos will occur on each level
set of the preserved distinguished function. If the perturbation does not preserve the distinguished
level surfaces, the dynamical space becomes again three-dimensional, and provided the unstable
point persists as either a saddle-sink or a saddle-source, Hamiltonian Shilnikov chaos may take
place for some classes of Hamiltonian perturbations.

4. Conclusion

We investigated an invariant three-dimensional subsystem of the Maxwell-Bloch set of
equations. We have shown that the form of the equations of motion is group-invariant under SL(2,
R). This allowed us to classify the various Lie-Poisson structures admitted by the system. Each
structure is associated with a distinct Hamiltonian reduction on a quadraiic surface defined as a
level set of the second Hamiltonian function, embedded in R? as a phase space for a one-degree-
of-freedom system. On the reduced space, the symplectic motion is coordinate-dependent, e.g.,
the phase portrait can be made to correspond to the dynamics of either a pendulum, or a Duffing
oscillator. An extension of this work is in progress to investigate the whole class of bi-Hamilto-
nian dynamical systems on R? which can be written in the form (!.1) with general quadratic
Hamiltonian functions. Clearly, the same SL(2, R) dynamical invariance holds for any such sys-
tem (see, ¢.g., ref. [4]). Thus, one can also classify these systems accordi.ig to admissible pairs of
Hamiltonian and distinguished functions. A similar analysis can also be perforraed for mulu-
Hamiltonian dynamical systems defined on higher dimensional manifolds.
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