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Lie-Poisson Bifurcations for
the iVlaxwell-Bloch Equations

D. David
l%eaetical Divisionand Center for Nonlinear Studies

L06Ahtnos Fhtionid Laboratory

hi Atamos, NM 87545

Wepresenta studyof thesetofh&xweil-Blocheq~tjons on R3fromthepointof viewofHamilto-
niandynamics. These equationsare shown to be bi-Harniltonian, on the one hand, and to possess
WV- inqtivdent Lie-poisson s~t~es, on the OIJWXtUMI&parametrized by the group SL(2,R).
Each suucture is characterizedby a parucular distin~ished function. The level setsof this function
provide two-dimensional surkes onto which the motion takes various sympkctic forms.
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Short title: Lie-Poissonstructuresof theMaxwell-Bloch quationa

L Introduction and reduction to the three.dimemional system

In this note, we provide an example of a system that exhibits a multiplicity of Lie-Poisson

structures. Under varying sL(2, 11)-va]ttcdpwamctcrs, these structures un&rgo bifurcations, This

property is certainly trUCof any bi-Ha,rniltonian systcm on R3 tttat can bc put in the form

x = VH, XVH2, (1,1)

where the ~amiltoniw, functions H] and I+zwc qu~atic in their ar~ments, The general case is

presently un&r investigation by the author and will IX pmscntcd elscwhcrc, Here, wc show how

this occurs for the travclling-wave three-dimensional Maxwc1l-BloclI system. This systcm is of

wc in the field of nonlinear OptiCS 1]] and arises from the following 2:1:1 resonant system on C3:

(1.2)

U, = -iu2u3, da = -iul~3, U3 = -iuli+.

H is the Hamiltonian function for the Systcm, x}{ is thc associated Harrtiltonian vector field, and

the equations of the motion arc ob~aincd, as usual, as tim = X,l (a) . The function H is invariant

.————.-—-. .-.. . ___ -——— .-... . . . . . . .. ..-- ---—.. . . ... .- - .- - .- .-—-—-----,.--———--. -.-—-—-----.,- ..
Jurw ?7, IWO I



under the U(1) action (ul, U2,us) -+ (e 2ieu1, eieu~, ei8u3) and has the following two conserved
quantities:

c = ply+ 11;2[3, K = lu*/2-E[u312,

Introduce a new set of coordinate functions on the dynamical space:

x, = 2Re(u3), xz = 2/m(uliiz), X3 = Iu,[z - IU*I?

YI = 2frn(u3), Y2 = 2Re(u1ti2), Y3 = C.

Then the system for the variables (xl, Xz,X3)forms an invariant subsystem, with

H1=1X2 12
3( 2+X:), Hz = X3+2X1,

d= VH, XVH2,

x, = X2, X2 = x*x3, x3 = (-X,X2).

(1.3)

([.4)

(1 .5)

(1 .6)

(1,7)

The travelling-wave maxwell-Blwh equations consist of equaticns ( 1,7), As can be seen from

(1.6), the functions HI and Hz provide two admissible Hamiltonian structures for the system; thus

it is bi-Hamiltonian. Moreover, both the~ functions are quadratic in their arguments and therefore

automatically induce an additional Lie-Poisson structure for the system. Geometrically, (1.7) irn-

plks that the dynamics takes piace on intersections of level sets of the functions HI and H2 in the

space R3.

2. Classification oft he Lie+oisam stiictur~.,.

The three-dimensional Maxwell-Bloch system of equations possess a multiplicity of Lie-

poisson stmctures, In fact, we may Characterin them by a thme-parameter family of function

ptirs (H, C) where H is an admissible Hamiltonian function, and C an associated admissible dis-

tinguished (or Casimir) function. Thc set P of till su~,h pairs forms a representation of the Lie

group SL(2t R) and arises as the rwult of the invariance of the nght-han:~ side of equation (1.7);

the group homomorphism defining the representation is

SL(2, R) +P: (2.1)

Invwiance of equation ( 1 7) yields the following

.,___ -.._ ._.___ .,,______,__,.,___---- .-._,,----.,______ ..... . ... - -.,.”,____..,____ --- _______ .....
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Proposition. Consider the two functions H = Ha$ = aH1 + ~H2 and C = H~v = WHI + VH2,with

av-~~= 1. Then equation (1.7) is equivalent to 1 = V H x V C = VHWB)Z V/fY’v For the

proof, it suffices to compute

x = V (a/-/l+ ~lf2) x v (NfI +v~2)
(2.2)

= (av-~~)VH1 xVH2=VH1x VH2.

The above proposition implies the invariw.ce of the intersections of level surfaces of the functions

H and C under the SL(2, R) action (2.1); in other words, it implies that the dynamics (the geomet-

ric loci of the solutions) remains unchanged in R3 under these group deformations.

Let us now examine the Lie-Poisson structure of our system. Consequent to the invariance of

equation (1. 1) under the SL(2, R) action, this structure will not be unique, and in fact presents bi-

fumations as we move along paramemc curves in SL(2, R). We use Hamiltonian vector fields;

arty dynamical quantity Q thus evolves with time according to the equation

() = XHQ, (2.3)

and the correspondence with Poisson brackets ~. given through the following identity:

XHF = -X~H = {F, H} . (2.4)

The equations governing the flow of X~ are the Hamilton equations for H, In view of (1,5-7) it is

then clear that for all C2 functions G : R3 + R, exist associated vector fields

x~ = (V GXVC). V. (2.5)

In component form, these are expressed as

(2,6)

We remark that expression (2,6) depends explicitly on the parameters p and V, through its

dependence on the distinguished function C, as prescribed by the preposition, To determine the

structure of the Lie algebra underlying the Poisson structure of the system, we first calculate the

Lie bracket for the Hamihonian vector fields associated to the coordinate functions x,,

.—— . . . . . .._. ___ ——— — —— —... . . . .--.. --..——...-.—-—.—,.—— —— .—. —— . . ------.
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xl =Xxl = px2a3- (v+- 1.tx3)f32,

X2~xx,= (v+px~)al -Vxpy
X3=Xx,= vx*a2 -- @,,

where ~i = ~/~xi. The non-vanishing commutators defining the Lie structure ~

(2.7)

[X*,X*1 = -MX3! [X2> X31 = -vX*,[X3, xl] = -9X2. (2.8)

clearly, the Lie algebra spanned by the vector fields Xi also depends on the parameters ~ and V.

This depen&nce is correlated with classes of orbits in the group SL(2, R) as follows.

Case 1. ~ = O,v # O.Define Y, = -vXl, k’2= Xz, Y3 = X3.Then the struchlre of the algebra is

[y,, YJ = o,[Y~,I’J = Y~, [Y~, Y,] = 0. (2.9)

This algebra is the well known Hcisenberg algebra.

Case 2. p * O,v = O.Define Y, = -X1/p, Yz= X2, Y3 = XJ. Then the commutators become

[y~>Y*1= Yy[Y~,YJ = o, [Y3, Y~] = Yz. (2,10)

This solvable algebra is isomorphic to the Euclidean algebra of the plane.

Case 3. p * O= ~, v # O= q, with en = Sign(a). We define Y: = -qJIPl, YZ= XJ(MI lvl)in~ Y3 =

XJ(IVI M)’n. Then the structure of the algebra is

u’,! YJ = EY3, [l’Z, Y3] = Y~, [Y3, Yll = EY2 (2+11)

where G= eWv= Sign(~v). ‘WO subcases arise.

Subcase 3.1. e = 1. This algebra is isomorphic to so(3).

Subwe 3.2.&= -1. This algebra is isomorphic toSO(2,1)andSO(13.

Each of the above cases is associated with a particular family of distinguished functions C.

We also point out that the groups co~sponding to these a]gcbras arc compact if, and only if, the

level sets of C are themselves compact sets, These functions areas follows.

Case 1. v = O,v #0, The Icvel sets are parabolic cylinders along the xz-axis,

c=‘[XMI (2,12)

—— .—.— .- ——. .-. .--- —------- .—---— —.— —. .-— —- ———. . ... .. >.-.
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Case 2. v # O,v = O.The level sets are circular cylinders about the xl-axis; they are defined when-

ever C/v >0,

c= +P(x;++” (2.13)

Case 3a. ~ #O, v #0, with gv >0. l%e level sets am ellipsoids of revolution, with semi-major

axis rl = r, r2 = r3= (V@)l%, centered at (O,O,-v/y); they are defined whenever 4PC + V2>0.

(2.14)

Case 3b. y #O, v # O,with WVc O. Here, the level sets, here, are non-compact surfaces. namelY

two-sheeted hyperboloids of revolution if 4@ - V2<0, one-sheeted hyperboloids if 4p.C + V* >0,

or cones whenever 4~C + VZ= O.The two varieties of hyperboloids con-espond to the two choices

of the algebra, either SO(2,1) or SO(1,2), respectively.

Note that for each case, the level sets provkk foliations of’the space R3 (in fact, these are

symplecac foliations). Each of the above classes thUSdefines admissible pairs (f-f,C) prescribed

by (2.1) where the appropriate SL(2,R) matrices given as follows:

Casel: gl = g3~w=O=
[1

l/v@ ~=5+pff2,

o v’ v

[1

a -l/u 1-f’
cMe2: g*= d“=’= ~ () ‘ H= UH,--J (2.15)

Clearly, the locus of the Hamiltonmn function }/ depends on the parameters a or ~ and can

bifurcate as we vary them. For instance, a change in sign may transform the topology of a level

surface of energy from that of an ellipsoid to that of a hyperboloid, We note that the intersections

of the level surfaces of C and H arc unaffected by thege bifurcations; in fact, they do not depend

on ct or ~ at ail, However, the representation of the dynamics ubes depend on the choice of ct or ~,

since the Hamiltonian function itself depends on these

next section where we show, for example, that ~ = Oin

while a = Oin Case 2 yields pendulum dynamics.

parameters, as will be made explicit in the

Case 1 yields Duffing oscillator dyrwnics,

.— —.—— .-. .-. —.—— -— . ... –---,,
JUM 27, 191M) s



3. Reductions tothetw@timensional level se@ofthe distinguished functiom

Each of the cases presented in Section 2 yields a distinct reduction of tie initial MaxweH-

Bloch system (1.5-6) to a symplectic system on a two-dimensional manifold specified by a level

set of the distinguished functions C. These redactions however give different coordinate represen-

tations of the sume solutions in R3. We now examine each reduction to a symplectic system and

briefly &scribe the qualitative features. For more details about the nature of geometric reduction,

the reader is referred to [2] and [3].

CU 1. L = O,v # O.The distinguished function C is given by (2. 12) and the Hamiltonian function

is, as prescrhed by (2.1),

We introduce a new basis of cootinate functions (suggested by l). Helm]

x = xl, Y = X2,
z= IX3++XJ

In terms of these coordinates, XHand the equations of the motion therefore reduce to

(3.1)

(3.2)

(3.3)

This system is a Duffing oscillator and it possesses the following three critical points: (x, y) = (0,

O), (*L, O) . A linear stability ~~ysis shows that the first one is unstable, and the two others

= stable centers, The phase portrait is naturally the USUd one, with the figure-eight pattern, but

drawn on the parabolic cylinder in place of the flat plane.

C* 2. 1A* O,v = 0. For this case, the distinguished function C is given by (2. 13) and the Hamil-

tonian function is

(3.4)

Wc introduce a new basis of cootinate functions. Since the level sets of C are circular cylinders,

it inappropriate to choose the usual cylindrical coordinates,

r .—
x, = z, X2 = rcos(l, X3 = rsin(l; r = 2c/~,

In temls of these coordinates, the distinguished and Harniltonian functions become

(3.5)

..—. .- — —. ——. —. —.-. —.— -- .-—.. -—— ——-——----
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C=$

The geometric locus of the level sets

x2-axis. Thus the orbits of the motion

( )H= ~ aC-$z2-rsin6 . (3.6)
u

of the Hamiltonian is that of a parabolic cylinder along the

are the intersection of such parabolic cylinders with a circu-

lar cylinder about the z-axis. These intersections are non-trivial only when @ - aC <r. Therefore

the orbits on the phase cylinder are periodic, except in the limit when one of the parabolic cylin-

ders becomes tangent with the interior of the circular cylinde~ when this occurs, a pair of homo-

clinic loops appears which partitions the phase cylinder into three distinct families of periodic

orbits. The reduced vector field XHand the reduced equations of motion are

(3.7)

These equations possess exactly two fixed points, (e, Z) = (~2, 0). The critical point (7c/2,O) is

stable whereas (-n/2, O) is unstable (i.e., is a saddle point), In these cocmlinates, the motion on the

reduced phase cylinder is precisely the dynamics of a pendulum.

CiUW 3a. ~ #O, v #O, UV> C, 4pC + V2>0. For this third case, the distinguished function C is

given by expression (2.14). Introducing the constant

/

2C
r = ~+1,

2y
(3.8)

and keeping in mind that the level sets of the distinguished function are ellipsoids of revolution

about the xI-axis, it is natural to introduce a new basis of coordinate functions as follows

xl s ~cose, X2 = firsinecostp, X3 = J~rsin9sing.

In terms of these coordinates, and using the fact that av - ~A = 1, the distinguish~

nia.nfunctions become

(3.9)

and Hamilto-

2p2r2-v2
c= H=

v (2- av) + apvr2

[

r2m(12 v r- —.— - ---sin(lsinq. (3.10)
—4~ ‘ 2M2 2~

Thus, a level set of C is a sphere of radius r. Notice that all the a and ~ &pendcnce in the Hamil-

tonian is confined to the constant term (this actually occur for all cases). This implies that the

equations of the motion, in contrast, will exhibit no dependence whatsoever on these two pamme-

ters, The geometric significance is that the orbits of the motion are invariant under W2, W defor-

—..
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.

mations of the functions C and H. Under the change of coordinate functions (3.9), the vector field

X~ and the equations of the motion are

P (i3H~ 3H3

) [
( ~ -/jsin(p).(3.llJXH = — ——+ —— ; 0 = - ~cosq, @ = -cot(l rsm9

rsin8 ~$i38 iM3ihp,

These equations admit up to four distinct critical points, (e, q) = (J@, fi~), as well as the

pair (sine, q)= [(v/@) ’n, x/2}; whenever r > ~. Linear stability analysis f@es the following

information. The pcints ((l, (p) = (n/2, -~) and (sine, q) = [(V/IAr’)ln,K/z]@ ~ww stabl~”AS

for (6, ~)= (n/2, 7c/2),this point is stablg if r c ~ and is of saddle type whenever ? > m.

Tlxmfore, a Hamiltonian pitchfork bifurcation takes place at r = ~, i.e., when 4vC - v’= ().

We mention that such a bifurcation did not occur for the previous case. Indeed, it is clear that the

two homoclinic loops ate not allowed to shrink to a point, due to the topology of the cylinder this

is a consequence of whether we reduce to compact level sets of the distinguished function or not.

Case 3b. p * O,v # O,pv <0, 4MC+ V2>0. For this last case, the distinguished function C is giV-

en by an hyperbolic quadric. T5USwe consider subcases corresponding to the tluwe possible ge-

ometries of the level sets of the distinguished function,

#- (-:) [x;+ (X3+WV)21=
4@+ V2

2pv
sR. (3.12)

Subcase 3b.1. 4pC + V2<O. Then R = # >0. For this first subcase, the level sets of the distin-

guished function are two-sheeted hyperboloids. A natural set coordinate functions is given by

xl = rcoshu, X2 = ~~rsinhucos(p, X3 = - ~ + &~rsinhu sinq. (3.13)

In terms of these, the distinguished function and the Hamiltonian function take the form

2~vr2 - v2
c= H=

v(2-av) + txvvr2

r
r2cosh U* ‘v

-— - —rsinhusin~, (3.14)
4p ‘ 2p* 2p w

Again, only the constant term of the ~kniltonian function shows any dependence on !he parame-

ter a, the geometry of the solutions in tie unteduced phase space R3 are therefore blind to this pa-

rameter. The equations of the motion on the reduced space are

XH=A (ill-la 3H8
rsinhu aim+ &pau )

——;

r-vu= ~cos(p, $= --cothu(rsinhu+ ~sin~)

(3.15)

June 27.1990 8



These equations possess two critical points, :9, sinhu) = (z/2, - ~~/r 1(on the bot-

tom sheet of the hyperboloid) and c(p,sinhu) = (–n/2, ~~/r ~on the top sheet. Linear stability

analysis shows that both points are stable. Thus each sheet of the hyperboloidal reduced space is

foliated by a family of periodic orbits.

Subcase 3b.2. 4yC + V2>0. Then R = -P >0. For this second subcase, level sets of the distin-

guished function C are one-sheeted hyperboloids. We choose new coordinate functions as

x, = rsinhu, X2 = J~rcoshucosq, X3 = (3.16)

In terms of these, the distinguished function C and the Hamihonian function H become

c
= - (2~vr2+ v2) v (2- av) - CtILVr2 r2sinhu2

[

-V r
4~ ‘ ‘=

— – coshusintp. (3.!7)
2~2 - 2P - WV

The equations of the motion are consequently

(ilH 3 aH~ .
X“=L —

)rcoshu ~u~+ ~~u ‘

r

-,
U ~ ;Cosq), ~=-tanhu(rcoshu+ ~sinq).

(3.18)

‘hew equations admit up to four fixed points, (u, q) = (O, trc/2), M well as the pair (cosh

u, ~) = [&’/@)ln, -It/2]; the latter exist whenever r < ~~~. Linear stability analysis provides

us with the following information. The points (u, q) = (0, 7c/2) and (cosh u, q) = [~(v/@)ln, -rc/2]

are always stable, As for (u, (p)= (O,-x/2), this point is stable if r > j~~ and is of saddle type

whenever r c d~.

Subcase 3b.3. 49C + V2= O.Then R = O. For this last SUbCaSC, the level sets of the distinguished

function C are cones. We choose new coordinate functions as follows:

In terms of these, the distinguished function C and the Hamiltonian function H become

(3.19)

(3.20)

..—
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;

Once mom, we note that the a-dependence of the Hamiltonian function is only within the con-

stant term, so that it does not affect the dynamics, as far as the nature of the solutions is con-

cerned. The equations of the motion are

X/../ (a~a Wa

) r= 2~ ——+—— ; z= 2 ;Zcos(p, @ =
aza~ a~az

-2[z+~sin(p). (3.21)

These equations have three fixed points. One is (z, (p)= (O,O)= (O,z), located at the vertex

of the cone. The other two are (z, q) = (-~7K/2), (~-~, -z/2).Linear stability analysis
shows that the latter arc always stable, while the point at the vertex is unstable. The nature of the

phase portrait is as follows. TWOhomoclinic orbits are connected to z = O,one on each half of the

cone; these separate the halves into two regions foliated by a family of periodic orbits.

Rmuzrk. For cases 2 and 3, the phase Portraits are ch~acteri~d by a pair of homoclinic loops

connected to an unstable poin~ Under time-depen&nt Harniltonian perturbations, this configura-

tion is expected to break. If the pefi~ation is @o& and pmselves the distinguished level sur-

faces, the usual homoclinic tangle phenomenon yielding horseshoe chaos will occur on each level

set of the preserved distinguished function. If the perturbation does not preserve tk distinguished

level surfaces, the dynamic~ space ~omes again th~-dimensiona,l, and provided the unstable

point persists as either a saddle-sink or a s~e-so~e, Ha.mi]tonian Shilnikov chaos may take

place for some classes of Hamiltonian perturbations.

4. Conclusion

We investigated an invariant b-dimensional subsystem of the Maxwell-Bloch set of

equations. We have shown that the form of the equations of motion is group-invariant under SL(2,

R). This allowed us to classify the VariOUS Lie-poisson suwwcs admitted by the system, Each

structure is associated with a distinct I-@niltonian reduction on a quadratic surface defined as a

level se! of the second Hamiltonian function, emti in R3 as a phase space for a one-degree-

of-freedom system. On the reduced space, the symplectic motion is coordinate-dependent, e.g.,

the phase portrait can be made to correspond to the dynamics of either a pendulum, or a Duffing

oscillator. An extension of this work is in progress to invc,5tigate the whole class of bi-Harnilto-

nian dynamical systems on R3 which can be writtn in the form (!, 1) with general quadratic

Harniltonian functions. Clearly, the same S142, R) dynamical invariance holds for any such sys-

tem (see, e.g., ref. [4]), Thus, one CM a.lso classify these sy5tems accord,ig to admissible pairs of

Hamiltonian and distinguished functions. A sinlilar ~alysis can also be performed for multi-

Hatniltonian dynamical systems defined on higher dimensional manifolds.

—. —
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