
Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439-4801 ANL--9 1/3 2-.kev • 2

DE93 008087

ANL-91/32
Revision 2

Parallel Programming with PCN

by

Ian Foster and Steven Tuecke

Mathematics and Computer Science Division

January 1993

This work was supported in part by the National Science Foundation under Contract NSF CCR-8809615,

by the Offic_ of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38, by
the Air Fot_._Office for Scientific Research under Contract AFOSR-91-0070, by the Office for Naval Re-
search under Contract ONR-N00014-89-J-3201, and by the Defense Advanced Research Projects Agency

under Contract DARPA-N00014-87-K-0745.
(..,; -

Preface

The PCN system is the product of the efforts of many people at Argonne National
Laboratory, the California Institute of Technology, and the Aerospace Corporation,
including Sharon Brunett, Mani Chandy, Ian Foster, Steve Hammond, Carl Kessel-
man, Tal Lancaster, Dong Lin, Jan Lindhiem, Robert Olson, Steve Taylor, alLd
Steven Tuecke. The Upshot trace analysis tool was provided by Ewing Lusk. The
expanded BNF syntax for PCN was provided by John Thornley. The two-point
boundary value application was provided by Steve Wright.

111

iv

Contents

Abstract ix

I A Tutorial Introduction 1

1 Program Composition 1

1.1 Core Programming Notation 1
1.2 Toolkit 2
1.3 Cross Reference 3

2 Getting Started 4

3 An Example Program 4
3.1 Compiling a Program 5
3.2 Linking a Program 5
3.3 Running a Program 6
3.4 The main() Procedure 7

4 The PCN Language 8
4.1 Concurrent Programming Concepts 9
4.2 PCN Syntax 11
4.3 Sequential Composition and Mutable Variables 13
4.4 Parallel Composition and Definitional Variables 14
4.5 Choice Composition 17
4.6 Definitional Variables as Communication Channels 19

4.7 Specifying Repetitive Actions 20
4.8 Tuples 22
4.9 Stream Communication 26

4.10 Advanced Stream Handling 29
4.11 Interfacing Parallel and Sequential Code 33
4.12 Review 36

5 Programming Examples 36
5.1 List and Tree Manipulation 37
5.2 Quicksort 39
5.3 Two-Point Boundary Value Problem 42

6 Modules 45

7 The C Preprocessor 45

8 Integrating Foreign Code 47
8.1 PCN/Foreign Interface 47
8.2 Compiling with Foreign Code 48
8.3 Linking with Foreign Code 49

8.4 Multilingual Programming 50
8.5 Deficiency of Foreign Interface 50

9 Higher-Order Programs Using Metacalls 50

10 Process Mapping 52

11 Port Arrays 56

12 Reuse of Parallel Code 57

13 Using Multiple Processors 59

14 Debugging PCN Programs 60
14.1 Syntax Errors 60
14.2 Logical Errors 61
14.3 Performance Errors 61

II Reference Material 63

15 PDB: A Symbolic Debugger for PCN 63
15.1 The PCN to Core PCN Transformation 63

15.2 Obtaining Transformed Code 65
15.3 Naming Processes 66
15.4 Using the Debugger 66
15.5 Examining the State of a Computation 67
15.6 Breakpoints 69
15.7 Debugger Variables 69
15.8 Miscellaneous Commands 71

15.9 Dynamic Loading of .para Files 72
15.10Orphan Processes 72

16 The Gauge Execution Profiler 73
16.1 Linking a Program for Profiling 73
16.2 Profile Data Collection 73

16.3 Snapshot Profiles 74
16.4 Data Exploration 74
16.5 The Host Database 75
16.6 X Resources 76

17 The Upshot Trace Analyzer 76

17.1 Instrumenting a Program 77
17.2 Compiling and Linking the Instrumented Program 77
17.3 Collecting a Log 78
17.4 Analyzing a Log 78

vi

18 Standard Libraries 79

18.1 System Utilities 79
18.2 Standard I/O 82

18.2.1 Reference 82

18.2.2 Examples 85

19 Cross-CompUing 88

20 Inte| LPSC/860 Specifics 88

21 Intel Touchstone DELTA Specifics 89

22 Sequent Symmetry Specifics 90

23 Network Specifics 90
23.1 Using rsh 90
23.2 Specifying Nodes on the Command Line 91
23.3 Using a PCN Startup File 92
23.4 Stazting net-PCN without tsh 93
23.5 Ending a Computation 93
23.6 Limitations of net-PCN 93

24 Further Reading 94

III Advsnced Topics 96

25 pcncomp and the PCN linker 06

26 Makeflle 96

27 Run-Time System Debuuing Options 99

IV Appendices 101

A Obtaining the PCN Software 101

B Supported Machines 102

C Reserved Words 103

D Deprecated and Incompatible Features 104

E Common Questions 105

F PCN Syntax 106

Index 111

vii

@OB

VIII

Parallel Programming with PCN

Ian Foster and Steven Tuecke

Abstract

PCN is a system for developing and executing parallel programs. It comprises
a high-level programming language, tools for developing and debugging programs
in this language, and interfaces to Fortran and C that allow the reuse of existing
code in multilingual parallel programs. Programs developed using PCN are portable
across many different workstations, networks, and parallel computers.

This document provides ali the information required to develop p_ratlel programs
with the PCN programming system. It includes both tutoriM and reference materiM.
It also presents the basic concepts that underlie PCN, particularly where these are
likely to be unfamiliar to the reader, and provides pointers to other documentation
on the PCN language, programming techniques, and tools.

PCN is in the public domain. The latest version of both the software and this
manual tau be obtained by anonymous rtp from Argonne National Laboratory in
the directory pub/pen at info.men, anl.gov (cf. Appendix A).

This version of this document describes PCN version 2.0, a major revision of the
PCN programming system. It supersedes earlier versions of this report.

ix

Part I

A Tutorial Introduction

1 Program Composition

Program Composition Notation (PCN) is both a programming language and a par-
al]el programming system. As the name suggests, both the language and the pro-
gramming system center on the notion of program composition.

Most programming languages emphasize techniques used to develop individual
components (blocks, procedures, modules). In PCN, the focus of attention is the
techniques used to put components together (i.e., to compose them). This is illus-
trated in the following figure, which shows a combining form being used to compose
three programs.

_

N I I]
This focus on combining forms is important for several reasons. First, it encour-

ages reuse of parallel code: a single combining form can be used to develop many

different parallel programs. Second, it facilitates reuse of sequential code: parallel

programs can be developed by composing existing modules written in languages such
as Fortran and C. Third, it simplifies development, debugging, and optimization, by

exposing the basic structure of parallel programs.
It appears likely that a large proportion of all parallel programs can be devel-

oped with a relatively small number of combining forms. However, PCN does not
attempt to enumerate potential combining forms. Instead, it provides a core set of

three primitive composition operators -- parallel, sequential, and choice composi-

tion -- in a core. programming notation. This is a simple, high-level programming

language. More sophisticated combining forms (providing, for example, divide-and-

conquer, self-scheduling, or domain decomposition strategies) can be implemented
as user-defined extensions to this core notation. Such extensions are referred to as

templates or user-defined composition operators. Program development, both with

the core notation and with templates, is supported by a portable toolkit. These three

components of the PCN system are illustrated in Figure 1.
This tutorial provides a detailed description of the core programming notation

: and toolkit, and an introduction to the use of templates in parallel programming.

1.1 Core Programming Notation

The core PCN programming notation is a simple, high-level language that pro-
vides three basic composition operators: parallel, sequential, and choice. The

Application-specific
compositionoperators

''/
/'"

PortableToolkit

Figure1:PCN System Structure

language provides two types of variable: conventional, or mutable variables, and
single-assignment, or definitional variables. Other distinctive features of the lan-
guage include extensive use of recursion, support for both numeric and symbolic
computin_ &hd an interface to sequential languages such as Fortran and C. The
syntax is s'.rnilar to that of C.

1.2 Tooikit

The PCN toolkit provides support for each stage of the parallel program develop-
ment process. It comprises a compiier, linker, foreign language interface, standard
libraries, process mapping tools, programmable transformation system, symbolic
debugger, execution profiler, and trace analyzer. These facilities are ali machine
independent and can run on a wide variety of uniprocessors, multiprocessors, and
multicomputers. They are supported by a run.time system that provides basic
machine-dependent facilities.

Compiler The compiler translates PCN programs to a machine-independent, low-
level form (PCN object code). An interface to the C preprocessor allows macros,
conditional compilation constructs, and the like to be used in PCN programs.

Linker and Foreign Language Interface The PCN linker combines PCN ob-
ject code (i.e., PCN compiler output), foreign object code that is called from PCN

(i.e., C or Fortran compiler output), libraries, and the PCN run-time system into
a single executable program. This permits C and Fortran procedures to be inte-
grated seamlessly into PCN programs, and PCN programs to be executed similar to

programs written in other languages.

Standard libraries A set of standard libraries provides access to Unix facilities

(e.g., I/O) and other capabilities.

Virtual Topology tools These support process mapping on a variety of virtual
machines, and templates for writing reusable parallel code.

PDB PDB is the PCN symbolic debugger. It includes specialized support for
debugging of concurrent programs.

Gauge Gauge is an execution profiler for programs written in PCN and other

languages. It includes run-time system support for collecting and saving profiles,
and an X windows based graphical tool for interactive exploration of profile data.

Upshot Upshot is a trace analysis tool for programs written in PCN and other

languages. It includes run-time system support for collecting and saving traces, and

an X windows based graphical tool for interactive exploration of trace data.

1.3 Cross Reference

The basic, constructs of the PCN language are described in the following sections.

• Syntax: § 4.2 and Appendix F.

• Sequential composition: § 4.3.

• Mutable Variables: § 4.3.

• Parallel composition: § 4.4.

• Definitional Variables: § 4.4.

• Choice composition: § 4.5.

The components of the PCN toolkit are described in the following sections.

• Compiler: § 3.1, § 7.

• Foreign interface and linker: § 8.

• Process mapping tools: § 10.

• Templates: § 12.

• Debugging facilities: § 14.

• PDB: § 15.

. Gauge: § 16.

. Upshot: § 17.

• Standard libraries: § 18.

Machine-specific aspects of the PCN toolkit are described in §§ 19-23. Additional
documentation on the PCN language, toolkit, and applications is cited in § 24.

The host-control program, a utility for managing execution of PCN programs
on networks, is described in a separate document. See § 24 for more information.

2 Getting Started

We assume that PCN is already installed on your computer. (If it is not, read the
documentation provided with the PCN software release.) You will need to know
where PCN is installed. Normally, *.his will be/usr/local/pcn, but some systems
may piace PCN in a different location.

Before you can use PCN, you must tell your Unix environment where to find the
PCN software. If you are usi_ the standard Unix C-shell (csh), you add one line
to the end of the file .cshrc _ _._ _r home directory. If PCN has been installed in
/usr/local/pcn, this line is

set path = ($path /usr/local/pcn/bin)

The envir_ument variable pal;h tells the Unix shell where to find the various PCN

programs (compiler, linker, etc.). This shell command adds the directory containing
the various PCN executables to your shell's search path.

If you use either the Bourne shell (sh) or the Korn shell (ksh) then you will
need to add the following commands to the end of the file .profile in your home
directory.

FATHffiSPATH:/usr/local/pcn/bin

export PATH

You may have to log out and log in again for these changes to take effect.

3 An Example Program

We are now ready to compile and run our first PCN program. The syl_tax of PCN
is similar to that of the C programming language in many respects. Hence, it is
appropriate that our first program print "Hello world." (the first C program in
several well-known texts does just this).

iModule progranl, pen]

main (argc, argv, exiZ.cod_
_; stdio:prinZf("Hello world.\n"0 _, d),

oxil;_codo - 0 :

A PCN program consists of one or more modules. Each module is contained in
a separate file with a .pcn suffix. Our example program consists of a single module,
progranl, contained in a file program1, pca. (We'll learn more about modules later.)

This example program has one procedure, main. Its three arguments are the
number of command line arguments (argc), a list of those arguments (argv), and
a variable to be used for a return code (exit_code). These are described in more
detail in § 3.4.

This procedure makes what is called an intermodule call: it calls the prinzf
procedure in the sZdio module to print "Hello world ." The szdio module is
distributed with the PCN system; it provides many of the functions of the Uni_
"standard I/O x library (§ 18.2).

3.1 Compiling a Program

The PCN compiler, pcncomp, is used to compile a PCN module. In general, the
PCN compiler is invoked very much like most Unix based C and Fortran compilers.

Because our program is contained in a file program1 .pen, we type

pcncomp -c programl.pcn

When compiling programl, pen, the PCN compiler will produce the file programl, pan.
The .pan file contains PCN object code. These .para files are analogous to the .o
files that are produced by most C and Fortran compilers. However, unlike . o object
files, the .pan files are completely machine independent: the PCN object code that
is compiled for one machine will work on any other machine without recompilation.

3.2 Linking a Program

Now that we have progranl .pm which contains the PCN object code for our ex-
ample program, we must use the PCN linker to combine this .para file with libraries
of procedures such as the stdio module and with the PCN run-time system. The
result of running the PCN linker will be an executable program.

The PCN linker will be run by pcncomp when the =c argument is not passed to
pcnconp. This is the same convention as is used in most C and Fortran compilers
to invoke the Unix linker (ld).

To link the example program, myprogran, we type

pcnconp progrBl .para -o nyprogram -mm progranl

As with most C and Fortran compilers, the -o specifies that the name of the
executable produced by the linker will be named myprogram. For the moment,
ignore the -mmprogram1 flag. This will be descussed in (§ 3.4).

The !C-N linker is relatively slow. During program development you may wish
to use PCN's dynamic loading capability. This feature allows you to avoid having
to relink a program when PCN files are changed. It is described in § 15.9.

For information on linking PCN programs that call C or Fortran procedures, see
§ 8. For more information on _sing the PCN compiler and linker }n general, see § 25.

3.3 Running a Program

To execute a PCN program, you can just run it like any other program. For example,
to run myprogram you would type the following, where Z is the Unix shell prompt:

myprogram
Hello world.

%

In the subsequent examples, text typed by the user is written in italic and pro-
gram output in romaL.

Command line arguments can be passed to PCN programs as they would be to
a C program. For example, the following program prints out the first few command
line arguments.

[Module progrm2, pen[

main(argc, axgv, exit_code)
47 axgc -- 3, argv ?- [al, a2, a3] ->

4; stdio:printf("Y.s\n_s\n_s\n",_al, a2, a3_, _),
exit_code = 0

>.
default -> 4; exit_code - I }

>

After this program is compiled as described above, it can be run as follows:

program?, arg?, "another arg"
prograu_.
arg2
anothor arg
%

The PCN run-time system has a number of run-time configurable parameters
that can be controlled by command line arguments. In order to keep these run-time
system's arguments from interfering with the program's arguments, all arguments
up to but not including the first -pcn argument will be passed to the program.
All arguments after the -pcn argument will be passed to the run-time system. For
example, suppose you run a PCN program as follows:

my.program my_argl my_arg2 -pen -n 2

T__,i would _:ause my_argl and my_arg2 to be passed to the PCN program, and -n
and 2 to the run-time system.

A complete list of these run-time system parameters, and a brief description of
their meaning, can be obtained by using the -h argument, for example:

my.program -pen -h

3.4 The main() Procedure

Every program must have an entry point. This is the procedure that is initially
called when a program is executed. In PCN, this entry point is modeled after C.

By default, the following PCN procedure is called when a PCN program is exe-
cuted:

main:main(argc, argv, exit_code)

where:

• argc is the argument count (an integer), as in C.

• argv is a list of the arguments. As in C, each argument is a string. A list is
a PCN data type, which is described in § 4.8.

• exit_code is undefined. The program should set this to an integer exit status

before terminating.

As with C programs, this exit status can be used by a Unix shell script or makefile
to determine whether execution "succeeded" (exit_code = 0) or "failed" (exit_code

#0).
By default, a procedure named main, in a module named main, will be called to

start execution of the program. An alternate main module and/or main procedure
can be specified when linking by using the -mm and -mp flags, respectively. For

example, if you wish p:my_main(...) to be the entry point, you might link your

program by running

pcncomp p.pam -o my_program -mm p -mp my.main

The -mm p flag says to use p as the main module, and the -mp my_main flag says to

use my.main as the main procedure.

When running on multiple PCN nodes, this main procedure is only called on
node 0. It is the responsibility of the PCN program to run procedures on other
nodes. This issue is discussed in section § 10.

Getting started with PCN:

• PCN programs are contained in flies with a .pcn suffix; compila-
tion produces a file with a .para suffix. This .para file contains the

PCN object code for this program, and is machine independent.

• We compile programs by running pcacomp -c file.pca.

• We link programs by running pcncomp file.para -mm file -o
program.

• PCN programs are executed just like other programs.

• The default entry point to a PCN program is the main() proce-

dure in the main module (i.e., main.pcn). The -mmand -mp linker
arguments can be used to change the main module and main pro-

cedure, respectively.

• Command line arguments that come before the -pca argument
are passed to the PCN program via the argc and argv arguments

to the main procedure. Arguments after the -pcn argument are
passed to the PCN run-time system.

• The last argument to the main procedure should be set to an

integer exit status by the program.

4 The PCN Language

The programming language Program Composition Notation (PCN) is an integral

part of the PCN programming system: it is used to express concurrent algorithms

and to compose code written in sequential languages. Like any programming lan-
guage, PCN has a distinct syntax that must be mastered in order to write programs.

However, the key to understanding PCN is understanding the concurrent program-

ming model that it implements. Before presenting the PCN language, we introduce
this model and the fundamental concurrent programming concepts on which it is
based.

4.1 Concurrent Programming Concepts

Parallel programming is often considered "hard." However, experience shows that
programming models that adhere to the following principles can significantly reduce
the complexity of parallel programming.

First-Class Concurrency: Concurrent execution should be a first-class citizen in
a programming model, not something appended to a sequential model.

Controlled nondeterminism: The result computed by a procedure should be
fully determined by the procedure's inputs, except when explicitly specified
otherwise by the programmer.

Compositionality: It shoald be easy to understand both isolated program com-
ponents and larger programs formed by the concurrent composition of these
components.

Mapping independence: The way in which components of a concurrent computa-
tion are mapped to a parallel computer should not change the result computed.

PCN uses four simple ideas to realize a parallel programming model based on
these principles. Definitional variables provide an abstract, machine-independent
model of both communication and synchronization. Concurrent composition is the
fundamental mechan'sm used to build up complex programs from simpler compo-
nents. Nondeterministic choice is used to specify nondeterministic actions when
required. Encapsulation of stale change allows state change to be integrated into
concurrent computations _,: _out compromising deterministic execution.

Deflnitlona! Variables. A single mechanism is provided for the exchange of in-
formation between concurrently executing program components (processes): the
definitional variable. A definitional variable is initially undefined, can be assigned
at most a single value, and subsequently cannot change. A process that requires
the value of a definitional variable waits (suspends) until the variable is defined. If
a process tries to assign a value to a definitional variable that is already defined, a
run-time warning will be generated, and the assignment will fail.

Definitional variables can be used both to communicate values and to synchronize
actions. If two concurrent prGcesses, a producer and a consumer, share a definitional

variable, then a value provided by the producer for this variable is automatically
communicated to the consumer. Execution of the consumer is blocked until the

value is provided.
The definitional variable has several benefits for concurrent programming. First,

it avoids the nondeterminism that is so often associated with concurrency: choices
made within program components on the basis of definitional variables cannot
change. This means that components can be understood in isolation, as errors caused
by time-dependent interactions cannot arise. Second, shared definitional variables
provide a clearly defined aitd delineated interface between concurrently executing

processes: interaction can occur only if processes share variables. Third, the defini-
tional variable provides for mapping independence: processes sharing a definitional
variable may interact irrespective of their location in a parallel computer.

Concurrent Composition. Complex programs are developed by the concurrent
composition of simpler components. Hence, an application can be viewed as consist-
ing of a (pdtentially large) number of lightweight execution threads. These execute
concurrently, communicate via definitional variables, and block when required data
is unavailable.

It is often desirable that the number of threads be larger than the number of

processors, as this can allow the compiler and run-time system to adopt flexible
scheduling strategies that overlap computation and communication, thus masking
latency and improving parallel efficiency.

Nondeterministic Choice. The use of definitional variables as a communication

mechanism avoids errors arising from time-dependent interactions: a choice made on
the basis of a definitional variable cannot change. Hence, concurrent computations
are deterministic. This is an important property that greatly simplifies parallel

programming.
Nevertheless, it is sometimes useful to be able to specify nondeterministic exe-

cution, particularly in reactive applications. Nondeterminism is integrated into the
programming model in a tightly controlled way. A form of guarded command is used
to define the conditions under which a process may perform various actions. Only
if the conditions associated with two or more actions are not mutually exclusive is
execution nondeterministic.

Encapsulation of State Change. The familiar concepts of state change and
sequencing that underlie sequential languages such as Fortran and C are also im-
portant in parallel programming: many algorithms are most efficiently specified in
these terms. However, state change must be carefully controlled if we are to avoid
introducing unwanted nondeterminism.

The approach adopted in PCN is to insist that state change be encapsulated
within sequential threads. Data structures that may be subject to state change
cannot be shared by concurrently executing program components. This restriction
prevents concurrent updates to state, which in turn avoids the possibility of time-
dependent behavior.

Programming Model Summary. Execution of a parallel program forms a set
of concurrently executing lightweight processes (threads) which communicate and
synchronize by reading and writing shared definitional variables. Individual threads
may apply the usual sequential programming techniques of state change and se-
quencing. Execution is deterministic, unless specialized operators are invoked to
make nondeterministic choices.

10

Key concurrent programming concepts:

• Definitional variables

• Concurrent composition

• Controlled nondeterministic choice

• Encapsulation of state change

4.2 PCN Syntax

The syntax of PCN is modeled on that of the C programming language. In addition,
the C preprocessor is applied to programs, so macros, conditional compilation, and
file inclusion constructs can be used as in C (§ 7). In the following, we make frequent
reference to C when explaining features of PCN. However, these references are for
illustrative purposes only, and a familiarity with C is not required to understand this
material. A complete BNF grammar for the PCN syntax is provided in Appendix F.

Data Types. PCN's three simple data types m character, integer, and double-
precision floating-point number (char, inr, and double) -- are as in C. One-
dimensional arrays of these data types are also supported. Arrays are indexed from
zero, as in C. There is also a complex data type, the tuple. This is introduced in
§ 4.8. A distributed variant of the tuple, the port, is described in § 11.

Constants. PCN uses the same character, integer, double precision floating point,
and string constant conventions as ANSI C. Please consult your favorite ANSI C ref-
erence (e.g. The C Programming Language, Second Edition, Kernighan and Ritchie,
1988, pp. 193-194) for more specifics on these conventions.

Strings. Strings are represented as character arrays, as in C. A character array
A representing a string S of length k contains the ASCII representation of the
charact_s of S in A[O]..A[k- 1] and the null character (\0) in A[k]. A constant
string is denoted by the characters of the string between quotes; for example, "PCN"
is a string consisting of the three characters: P, C, and N (followed by the null
character). The empty string is denoted by "".

Expressions. Arithmetic expressions are as in C, except that the only operators
are modulus, addition, subtraction, multiplication, and division (%, +, -, ,, and
/). The lengl;h function returns the number of elements in an array or 1 (one) if
applied to a single number or character. User defined functions (see below) can also
be called, except in guard expressions. The following are ali valid expressions.

(1 + x)Y,y i * length(g) 29- x/g

11

Operator precedence and associativity are as in C. The following table summarizes

precedence and associativity rules. Operators on the same line have the same prece-
dence, while rows are in order of decreasing precedence. Parentheses () can be used
to override these default rules.

Operators Associativity

- (negation of numbers) length right to left
, / % left to right

+ - left to right

Variable Names. Variable names are as in C. A variable name is a character

string formed from the set {a-z,A-Z,0-9,_} and starting with a letter or an under-

score ("_'). Case is significant and there is no maximum length. The following are
ali valid variable names.

value _2 Last_Item x

See Appendix C for a list of reserved words that cannot be used as variable names.

Comments. A comment begins with/* and ends with */, as in C.

Procedures. A procedure definition consists of a heading followed by a declara-
tion section followed by a block. The heading is the procedure name and a list of
arguments (i.e., formal parameters), as in C. Ali arguments are passed by reference,
unlike in C where arguments can be passed by value. The declaration section is
a set of declarations for arguments and local variables. The scope of a variable is
the procedure in which it appears: all variables appearing in a procedure are either
arguments or local variables of the procedure. In particular, there is no notion of a
global variable.

The body of a procedure consists of a composition of blocks. The block is
the basic component from which procedures are constructed. A block is either a
composition, an assignment statement, a definition statement, an implication, or a
procedure call. These constructs will be defined shortly.

Functions. A function consists of the keyword function followed by a function

definition. A function definition has the same syntax as a procedure definition,
except that it may include calls to the primitive return(r) to specify a return
value, r. The return value of a function must be a definitional variable. Functions

cannot be used within guards.

Delimiters The blocks within a composition must be separated by either a comma
(,) or a semicolon (;). In addition, trailing delimiters (i.e., delimiters after the last
block in a composition) are legal.

12

Declarations. A declarationconsistsof a type (char,inr,or double)followed
by one or more variablenames, each with an optionalsuffixto denotean array.

An arraysuffixfora localvariablehastheform [size],where sizeisan integer,a

constantintegerexpression,or a variablefrom theprocedure'sargumentlist(i.e.,
thearraysizewillbe determinedat run-time).An arraysuffixfora variablethat
isone of the procedure'sargumentshas theform []. The followingareallvalid
declarations.

inr a[size]; double b[lO], c[], d; char c;

We shallseethatdeclarationsare not providedforallvariables:the definitional

variablesusedin PCN forcommunicationand synchronizationaredistinguishedby
a lackofdeclaration.

4.3 Sequential Composition and Mutable Variables

We now explore the PCN language proper. We shall view PCN as providing three

related sets of constructs. First, there are the composition operators -- parallel,
sequential, and choice -- which encode three fundamental ways of putting program

components together. Second, there are two types of variables: conventional or
mutable variables , and single-assignment or definitional variables. Third, there are
specialized language features introduced to support symbolic processing: tuples and
recursion.

We first introduce the two components that will be most familiar to many readers:
sequential composition and mutable variables.

The sequential composition operator is used to specify that a set of statements
should be executed sequentially, in the order written in the program. In languages
such as Fortran and C, this is of course the normal mode of execution. However,
PCN also allows for other sorts of composition, we distinguish it by a special syntax.
A sequential composition has the general form

{ ; blocko, ..., blockk }

where ";" is the sequential composition operator and blocko, ..., blockk are other
blocks.

If no composition operator is used for a block, then the PCN compiler will
interpret this as a sequential block..

A mutable variable in PCN, like a variable in Fortran or C, is declared to have
some type (char, inr, or double), initially has some arbitrary (unknown) value,
and can be modified many times during its lifetime, by means of an assignment
statement. An assignment statement is represented as follows,

variable := expression

where variable is a mutable variable or an element of a mutable array.

13

Example. The procedure swap exchanges the values stored at the ith and j th
positions of an integer array. Its three arguments -- array, i, and j -- are declared

to be an integer array and single integers, respectively. A local variable temp is also
declared. The three assignments are placed in a sequential composition, to ensure
that they execute in the correct order.

The procedure swaptest can be used to execute swap. This procedure declares
a local integer array a [3] and local integer variables i and j; initializes the array

to contain the integers 0, 1, 2, i to contain 1, and j to contain 2; calls a pro-
cedure stdio:printf to display the contents of a; calls swap to exchange the ith
and j th components; and finally calls stdio:printf again to display the modified

array. Note that since procedure arguments are passed by reference, the array a in
swaptest is the same data structure as array in swap. Note also that in swaptest,
the sequential composition operator ensures that both the assignments to a and the
calls to stdio :printf occur in the correct order.

swap(array,i,j)
inr array[J, i, j, temp;
_:; reap :- array[j],

array[ii := array[i],
array[ii := temp

s.aptest()
inr a[3], i, j;
{; a[O] := O, a[l] := I, a[2] := 2,

i := I, j :" 2,
stdio:printf("Before: Y,d Y,d Y,d\n",_a[O] ,ai1] ,a[2]}._),
swap(a, i,j),
stdio:prin_f("After:7,d Y,dY.d\n",_a[O],a[l],a[2]},_)

}

Role of Sequential Composition. The example illustrates the two primary ap-
....pli-cations of sequential composition in PCN: sequencing of updates to mutable vari-

ables and sequencing of I/0 operations.

4.4 Parallel Composition and Definitional Variables

We now consider two related constructs that may be unfamiliar to some readers:
parallel composition and definitional variables.

The parallel composition operator specifies that a set of statements are to be

executed concurrently. A parallel composition has the general form

{11 blocko, ..., blockk}

14

where II is the parallel composition operator and block0, ..., blockk are other blocks.
Execution within a parallel composition is fair: that is, it is guaranteed that exe-
cution of each block will eventually progress (unless that block has terminated).
Execution of a parallel composition terminates when all oi its constituent blocks
have terminated.

Concurrent computations initiated within a parallel composition must be able to
exchange data and synchronize their activities. It is important to understand that
this cannot be achieved by using mutable variables (at least not without the intro-
duction of complex locking mechanisms), as the order of read and write operations
in a parallel composition, and hence the result of such operations, is not in general
well defined.

Concurrent computations communicate and synchronize by means of definitional

or single-assignment variables. We have already come across definitional variables
in the introduction to this chapter. Here, we consider them in more detail.

Definitional variables are represented in the same way a8 mutable variables, with
one exception: a solitary underscore character ("J') is used to represent an anony-
mous definitional variable. Each occurrence of "" represents a unique variable.

Definitional variables are not declared. Any variable occurring in a procedure
that is not explicitly declared in the procedure's declaration section is a definitional

variable. Definitional variables initially have a special undefined value. They can be
defined once, by means of a definition statement, and then cannot be modified. The
definition statement is represented as

variable = expression,

where variable is a definitional variable. Note that a definition of the form x ,,

y is allowed; this establishes y as an alias for x, so that any prior or subsequent
definition for y also applies to x.

Example: Simple Divide and Conquer. The following program implements a
simple divide-and-conquer strategy. As none of the variables in this procedure are
declared, we see that all are definitional. Variables prob and soln are arguments;
the rest are local to the procedure. When executed, procedure div_and_conq im-
mediately executes a parallel composition containing four procedure calls. These
execute concurrently, with execution order constrained only by availability of data.
Variable prob is input and soln output. Procedure split consumes prob and hence
will block until an input value is available. Likewise, the solve procedures block
until l_prob and r_prob are defined by split. Once the two calls to solve produce
values for l_soln and r_soln, the combine procedure can proceed to produce soln.

15

div.and_conq(prob,soln)
_[[split(prob,l_prob,r_prob),

solve(l_prob,l_soln),
solve(r_prob,r_soln),
combine(1_soln,r_soln,soln)

Properties of Definitional Variables

• Have as initial value a special "undefined" value.

• Read operations block until the variable is given a value.

• Are defined ("written") by the definition operator ("-").

• Once defined, cannot be modified.

• Can be shared by procedures in a parallel composition.

• Are not explicitly declared.

• Can take on values of type char, inr, double, or tuple.

It is instructive to compare mutable and definitional variables, as in the following
table.

Definitional Mutable

Initial value Special "undefined" value Arbitrary value
Defined by Definition operator (=) Assignment operator (:=-)
Read operat'on Blocks if undefined Always succeeds
Can be written Once Many times

Parallel composition Can share Cannot share
Explicitly declared No Yes
Types tuple, int, double, char int, double, char

Role of Parallel Composition. It is important to understand the distinct roles
of the parallel and sequential composition operators. Parallel composition exposes
opportunities for concurrent execution; sequential composition constrains execution
order so as to sequence I/O operations or assignments to mutable variables. In
general, it is a good idea to expose as much concurrency as possible in an application,
as this provides the compiler and run-time system with maximum flexibility when
making scheduling decisions. In particular, they can seek to reduce the cost of
remote data accesses by overlapping computation and communication.

16

4.5 Choice Composition

The third and final composition operator that we consider is the choice composition
operator, "?". A choice composition has the general form

{ ? guardo -> blocko, ..., guardk -> blockk)

where each guard_ is a sequence of one or more tests. Valid tests include

a < b, a > b, a <= b, a >= b : arithmetic comparison

a == b, a !- b : equality and inequality tests

inr(a), char(a), double(a), tuple(a) • type tests

data(a) : synchronization test

? = • tuple match

default : default action

We refer to a single "guard - > block" as an implication.

Choosing between Alternatives. Choice composition provides a mechanism for
choosing between alternatives. In this respect it may be regarded as a parallel if-

then-else or guarded command. Each guard specifies the conditions that must b_
satisfied for the associated block to be executed. At most one of these blocks will

be executed; which one depends on the result of guard evaluation.
A choice composition is executed as follows. Each guard is evaluated from left

to right. A guard succeeds if all of its tests succeed. If one or more guards succeed,
exactly one of the corresponding blocks is chosen to be executed.

For example, the procedure max executes either z = x or z ffi y, depending on
the value of x and y, and hence defines z to be the larger of x and y.

]Module max.pcn: Version 1]

max(x,y,z)
(? x >--- y -> z = x,

x< y->zffiy
].

Synchronization. Choice composition also provides a synchronization mecha-
nism. A test suspends when evaluated if it requires the value of an undefined
definitional variable (e.g., x < 3, where x is undefined). Otherwise, it succeeds

or fails depending on the value of its arguments.
A guard is evaluated from left to right. If any test suspends, the guard suspends.

If any test fails, the guard fails. If ali tests succeed, the guard succeeds.

17

If some guards suspend and all other guards fail, execution of the choice com-
position is suspended until more data is available. If all guards fail, execution of
the choice composition terminates without doing anything. Hence, a call to the
procedure max given above will suspend until both x and y have values, and then
proceed as follows. If both x and y are numbers, the procedure executes either the
first or second implication, depending on the values of x and y. If either x or y is
not a number, the procedure terminates without doing anything.

The guard test default succeeds only if ali other guards in a choice compo-
sition fail. For example, consider the following alternative formulation of the max
procedure.

[Module max. pc,n: Version 2 I

max(x,y,z)
_? x >= y -> z = x,

default -> z = y

The two versions of max give the same behavior if x and y are numbers. If either x or
y is not a number, however, the first program terminates without executing either
implication, while the second program selects the second implication.

Choice composition rules:

• Evaluate each guard left to right.

• If any test suspends/fails, guard suspends/fails.

• If Ml tests succeed, guard succeeds.

• If all guards fail, process terminates.

• If no guards succeed and some suspend, process suspends.

• If some guards succeed, execute one implication body.

• If all other tests fail, the default guard test succeeds.

Nondeterministic Choice. Choice composition also provides a mechanism by
which nondeterminism is introduced into PCN programs. Nondeterministic choice
is rarely required in parallel programming. However, it can be important in reactive
applications.

We first illustrate the use of nondeterministic choice with a trivial example.
We may rewrite the max procedure giver earlier as follows. Note that the two
implications are not mutually exclusive. If x ffi= y, either implication may be taken.

18

This program is nondeterministic in the sense that the action that it performs is
not determined solely by its input, although of course the answer computed is still
determined precisely by the input.

mx(x,y,z)
_? x >= y -> z = x,

x <= y -> z 8 y
}

We now consider a reactive programming example. A procedure switch has
two definitional iaputs corresponding to the outputs of two sensors in a mechanical
device. If either sensor is activated, the corresponding input variable will be given a

value. The switch procedure is to return a result value if either sensor is activated,

with the value specilying which sensor was activated.

suitch (sensor I, s_usor2, alaza)
(7 da_a(sensort) -> alarm = 1,

ds_a(sensor2) -> alazm = 2
}

The guard test da_a succeeds as soon as its argument has a value. Hence, the output
variable alaz3t takes value 1 if seasorl is activated and 2 if semsor2 is activated.
It can take either value if both are activated.

Choice Composition is used for three purposes:

, Choosing between alternatives.

. Synchronization.

, Nondeterminist_c choice.

4.6 Deflni¢ional Variables as Communication Channels

Consider two procedure calls (processes), a producer and a consumer, that share a
definitional variable, x.

producer (x), consumer(x)

The two processes can use the shared variable to communicate data, simply by
performing read and write operations on the variable. For example, assume that the
producer is defined to write the variable, as follows.

19

producer(x)
{IIx- "hello" }

The definitionx = "hello" has theeffectofcommunicatingthemessage"hello"

to theconsumer.The consumer receivesthisvaluesimplyby reading(examining)

the variable.For example,thefollowingconsumerprocedurecheckstoseewhether
x hasthe valuehello. Note theuseofchoicecompositionand thedefault guard.

consumer(x)

{? x == "hello" --> stdio:printf("Hello",{},_),

default - > stdio:printf("Huh?",{},J
}

The shared definitional variable x is used here to both communicate a value be-

tween the producer and consumer and to synchronize the actions of these processes.
The shared definitional variable can be thought of as a communication channel.

The use of definitional variables to specify communication has two advantages.
First, it avoids the distinction that is made in many parallel languages between inter-
processor and intraprocessor communication. This means that no special "packing"

or "unpacking" operations need be performed when communicating. This in turn
facilitates the retargetting of programs to different parallel computers. Second, it
provides great flexibility in the communication strategies that can be specified. In
particular, it is possible (as we shall see below) to include variables in data structures
and hence to establish dynamic communication structures.

An apparent difficulty of this formalism is that each definitional variable can be
used only to communicate a single value. Fortunately, this is not the case. We show
in § 4.9 below how a single shared variable can be used to communicate a stream of
messages between processes.

4.7 Specifying Repetitive Actions

We have now encountered the constructs used in PCN to express concurrent and
sequential execution, communication between concurrent computations, and state
change within sequential computations. We need one more construct before we can
build large programs, namely, a mechanism for specifying repeated actions.

You are probably familiar with the use of iteration to specify repetition. For
example, in Fortran we may write do i=l, 10 to specify 10 repetitions of a loop,
with i ranging from 1 to 10. PCN provides a similar construct, called quantification.
A quantification has the general form

{ op i over low .. high :: block }

and specifiesthatblock shouldbe executedonceforeachi intherangelow..high,
eitherconcurrently(ifop = [I)orsequentially(ifop = ;).

A quantificationisusefulwhen specifyingiterativecomputationsinvolvingmu-

tablevariables(orports- see§ 11).However,themost commonly usediterative

20

construct in PCN is recursion. You will be familiar with recursion if you have used

C (or Prolog, Strand, or Lisp); it tends to be more verbose than iteration, but
has the advantages of allowing richer repetition structures and of working well with
definitional variables.

We introduce the use of recursion in PCN with a simple example. Consider

the following procedure, which computes the sum of the elements with indices in the
range from., to in array. This procedure is defined in terms of a choice composition
with a parallel composition as the body of the first implication and a simple definition

statement as the body of the second implication.

__rray.pcn: Version 1]

sum_array(from,to,array,sum)
_? from <= to ->

lI sum_array(from+l,to,array,sumrest),
sum = array[from] . sumrest

Y,
from > to -> sum = 0

The first implication states that if from < = to, then the sum of elements from..to
is the value of element array[from] plus the sum of elements from+l..to. The
second implication defines the sam to be 0 in the case when from > to.

This procedure uses recursion to repeat the summation over ali the elements
of the array. A recursive procedure normally specifies two alternative courses of
action: continuation and termination. These are combined in a choice composition
with guards specifying associated continuation and termination conditions.

In the example, the continuation action consists of summivg array [index] and
sumrest, and making a recursive call to sum_array to compute sumrest; these
actions are to be performed if from <= to. The termination action consists of
defining sum = O; this is to be performed if from > to.

Recursive procedure specifies:

• Termination condition and actions.

• Continuation condition and actions.

Parallel algorithms based on divide-and-conquer techniques frequently make mul-

tiple recursive calls to the same procedure. For examplc the following program
implements a divide-and-conquer algorithm for summing the elements of an array.

The task of summing an array is recursively decomposed into the tasks of summing
the left and right subarrays.

21

sum_array(from.to,array,sum)
{? from < to ->

{11 sum_array(from.(from+to)/2,array,sumleft),

sum_array((from+to)/2+1,to,arrayssumright).

sum- sumleft . sumriEht
}.

from == to -> sum = array[from]
}

This example makes apparent the advantages of recursion as a repetition con-
struct in a parallel language: the doubly recursive formulation of sum_array exposes
concurrency that is not directly available in an iterative solution.

4.8 Tuples

The programs presented thus far have all dealt with simple data structures: charac-
ters, integers, double precision numbers, and arrays of the same. These data struc-
tures will be familiar to most readers from sequential languages such as Fortran and
C. PCN also provides another sort of data structure called the tuple. Similar data
structures are used in symboUc languages such as Prolog, Strand, or Lisp.

A tuple is a definitional data structure used to group together other definitional
data structures. A tuple has the general form

{t,rmo,...,) (k>_o)

wheretermo,...,termk_1aredefinitionaldatastructures.The followingareallvalid

tuples.

{a,b} {"abc"} {} {12,{13,{}}} {5.2,"del"}

Note that tuplescan be nested:in the fourthtupleon the precedingline,the

tuple{} isnestedinsidethetuple{13,{)},whichisinturnnestedinsidethe tuple

{12,{13,{))).Note alsothattuplescan containelementsofdifferenttypes.
Itisusefulto thinkoftuplesas representingtrees.A tuple{to, ..., tk-l)

representsa treewitha rootand/coffspring.

{/,.../
t o • . . tk.1

The tuples listed above can be drawn as follows.

t"* _"

22

,
a b "abc" 12 {/ , \} 5.2 "def"

/ \
13 { }

Building Tuples. Tuples can be written in a program, either as an argument to
a procedure call or as the right-hand side of a definition statement. For example,
the block

{il proc(1,{x,y,{z}}), x = "abc", y = {123} }

invokes a procedure proc with the tuple {"abc", {123}, {z} } as its second argument.
Alternatively, the primitive operation make_tuple can be used to build a tuple

of specified size, with each argument a definitional variable. For example, the call

make_tuple (3, tup)

defines tup to be the three-tuple {_, _, _}.

Accessing Tuples. Tuple elements can be referenced in the same way as array
elements: t[i] is element i of a tuple t, for 0 <_i < length(t). Hence, the statements

make_tuple(3,tup),tup[O] = "abc", rup[l] ffi{123}, Zup[2] = {z}

producethetuplepasseda_ an argumenttoproc previously.

The guard test "?=" (match) can be used to decompose a tuple into its con-
stituent components. A match has the general form

tupz= {to,...,tk__},

where the I;i are either new definitional variables or nonvariable terms. A match

succeeds if tup has arity k and each of its arguments matches the corresponding
ti, suspends if tup is not defined or if one of the matches with a ti suspends,
and fails otherwise. A new definitional variable ti is created with the value of the

corresponding tup argument.
For example, the match

tup ?= {'°abc'',a, {b}}

succeedsiftup ffi{"abc",{123},{z}},defininga = {123} and b = z.Itsuspends

if1;upffi{x,{123},{z}},asthefirstelementofthematchingtypleis"abc",but the

firstelementoftup istheundefinedvariablex.ltfailsiftup = {"def",{123},{z}},
asthefirstelementoftheright-handtuple("abc")doesnot match thefirstelement

of tup ("def").

23

The match operator does not perform unification. That is, if the term on the
left-hand side of the match contains undefined variables, those variables will not be

defined to the values that appear in the same location on the right-hand side of the

match. The only definitional variables that will be given values during a match are

the new definitional variables that appear on the right-hand side of the match.
Variables that appear in right-hand side of match must be new definitional vari-

ables. They may not be definitional variables that already exist outside of this

implication (i.e., the choice of the choice block that contains this match). The scope
of these new definitional variables is the implication in which this match resides

- they cannot be used outside of this implication. Therefore, to propogate a new
variable that is created during the match to a definitional variable that is outside

of the implication in which the match appears, you must assign the new variable
to the outside definitional variable from within the body of the implication. This

is illustrated in the following example which uses a match operator to extract the

elements of the tuple, t. Those tuple elements are then used outside the scope of
the implication in which the match appears.

[Proceduretuplsl]

tuplel(t)

{? t ?,,_:tmp.a,trap_b}->
"III a - trap_a, b - 't:mp_b],,

default ->

_ll a =o, b =0 } _
Y,
r(a.b)

}

Comparing Tuples. The guard tests =ffiand != can be used to compare tuples

as well as strings, numbers, and arrays. An equality test x _= y succeeds if x and
y are tuples with the same arity and corresponding subterms are also equal. The
equality test is applied to subterms left to right, depth first; if any subterm test fails
or suspends, the overall test also fails or suspends, respectively. The test also fails if
x and y have different arities. An inequality test x !ffi y succeeds if x _- y would
fail, fails if x _= y would succeed, and suspends otherwise.

List Notation. A list is a two-tuple in which the first element represents the
head of the list and the second element the tails By convention, the zero-tuple ({})
represents the empty list. For example, the structure {1, {2, {3, {}}}} is the list
containing the numbers 1, 2, and 3.

This notation is clumsy, so PCN provides an alternative syntax: a list {h,1;}
may be written as [h[t], the empty list as [3, a list such as {1,{2,{3,{}}}} as

[1, 2, 3], and a list such as {1, {2 , {3 ,tail}) } as [1, 2, 31tail].

24

Example: List Length. The procedure listlen computes the length 1en of a
list 1. For example, a call l_tlen([1,2,3,4] ,1en) gives the result len ffi 4. Note
the use of an auxiliary procedure listlenl, which accumulates the length so far in
acc and then returns the final result as 1en.

listlen(1.1en)

{ii listlen1(1,0,1en)}

lietlenl(1,acc,1en)
{7 1 ?= [_111] -> listlenl(ll,acc+l,len),

default -> len ffiacc

>

Example: Building a List. The procedure buildlist builds a list 1 of length
len. For example, a call buildlist(4,1) gives the result i = [4,3,2,1].

buildlist(len,1}

{? 1en > 0 ->

{li z = [ZenlZi],
buildlist(len-l,ll)

},
default -> I = []

}

Example: List Transducer. The procedure listadd is an example of what
is called a list tr, nsducer. It traverses one list and constructs another containing
the result of applying a simple operation to each element in the first list: in this
case, the operation is simply to add one to each element. For example, a call
listadd([1,2,3,4],nl)gives the result nl = [2,3,4,5].

listadd(1,nl)
{? z ?ffi [elzi] ->

{llnl = [e+llnll],

listadd(ll,nll)
},
default -> nl = []

}

25

4.9 Stream Communication

We have seen how two or more concurrent computations that share a definitional
variable can use that variable to exchange data. The producer of the data simply

defines the shared variable to be the data to be communicated (e.g., x = "hello").
The consumer(s) of the data can then use the data in computation.

A shared definitional variable would not be very useful if it could be used only to
exchange a single value. Fortunately, there are simple techniques that allow a single
definitional variable to be used to communicate many values. The mo_,_timportant
of these is the stream. A stream is a data structure that permits comw_unication of
a sequence of messages from a producer to one or more consumers. A stream acts
like a queue: the producer places elements on one end, and the consumer(s) take
them off the other.

By convention, stream communication is implemented in PCN in terms of list
structures. Imagine a producer and a consumer sharing a variable x. The producer

defines x ffi [msg]xt] and the consumer matches x ?ffi [msglxc]. The effect of these
operations is to both communicate msg to the consumer and create a new shared
variable xc that can be used for further communication. This process can be re-
peated arbitrarily often to communicate a stream of messages from the producer to
the consumer. Hence, a stream is a list structure, incrementally constructed by a
producer and deconstructed by a consumer. The empty llst ([]) is used to represent
the end of a stream.

Example: Summing Squares. We illustrate the stream communication protocol
in a program thRt computes the sum of the squares of the integers from 1 to li. We
decompose this problem into two subproblems: constructing a stream of squares
and summing a stream of numbers. The first subproblem is solved by the procedure
squares, which recursively produces a stream (i.e., list) of messages N2, (N-l) 2,
..., 1. The second subproblem is solved by the procedures sum and sum1, which
recursively consume this stream (list). The auxiliary procedure suml accumulates
the sum so far in sofar and returns the final result as sum.

Note the structure of the producer (squares) and consumer (sum1) procedures in
the following program. Both are recursively defined. In the producer, the recursive
case incrementally constructs a list sqs of squares by defining sqs = [n*nlsqsl]
and calling squares to compute sqsl; the termination case defines sqs ffi []. In the
consumer, the recursive case deconstructs a list ints of integers by matching ines

?= [ilinCsl]and calling suml to consume the rest of the messages; the termination
case returns a result.

26

I Module sumsquares, pcn 1

sum_squares(N,sum)
_II squares(N,sqs), sum(sqs,sum)

squares (n, sqs) /, Producer: */
_? n > 0 oo> _[I sqs - [n,nJsqsl], /* Produce element, */

squares(n-l,sqsl) /* & recurse */
7,

n == 0 -> sqs = [3 /, Close list. */

sum(ints, sum)
I I aural (ints,O, sum)

suml (ints, solar, sum) /* Consumer: */
{? inZs ?= [ilinZsl] -> I, Consume element, *I

suml(inisi,sofar+i,sum), /* _ recurse */

inis ?= [] -> sum = solar /, End of list: stop*/

Send/Receive Operations. Some readers may find it useful to think of a stream
as an abstract data type on which four operations are defined: send, close, recv,
and closed. The first two are procedure calls used by a stream producer, and

the latter two are guard tests used by a stream consumer. Ali take a definitional

variable (s) as an argument; send and recv also return a new de_r_itional variable
(sl) representing a new stream to be used for the next communication.

send(s,msg,sl): Send msg on stream s, returning as si a
new stream for subsequent communication.

close(s): Close stream s.

recv(s ,msg,sl): Succeed if a message is pending on stream
s, defining ms$ to be the message and sl the new
stream.

closed(s): Succeed if stream s has been closed.

These operations can be defined by the following macros.

IFile sendrecv .hl

#define send(s,msg,sl) s ffi [msglsl]
#define close(s) s ffi []

#define recv(s,msg,sl)s ?= [msglsl] /, Guard test */
#define closed(s) s == [] /, Guard test */

27

These definitions can be placed in a file (e.g., sendrecv.h) and included in your
programs, if you prefer to think in terms of send and recv operations instead of
definition and match operations on streams. For example, the squares and sum1

procedures presented previously (module sumsquares .pcn) can be rewritten as fol-
lows.

#include "sendrecv.h" /* Include macros */

squares(n,sqs)
{? n > 0 -> {li send(sqs,n*n,sqsl),

squares(n-l.sqsl)
},

n as 0 -> close(sqs)
}

suml(ings,sofar,sum)

{? recv(ints,i,intsl) -> suml(intsl,sofar+i,sum),
¢losed(ings) -> sum = solar

>

However, it would be a mistake to think of lists as simply a clumsy notation for
streams, and to restrict your use of streams to the four basic operations provided in
sendrecv.h. The fact that streams are data structures that can be manipulated in
the same way as any other data structure provides enormous flexibility.

Example: Stream Filter. We illustrate this flexibility with a list transducer
that filters a stream x, generating a stream y identical to x but with no consec-
utive duplicates. (For example, a call filter([1,l,4,3,5,S,2] ,y) defines y =
[I,4,3,5,2].)

This is not a complex example. However, it illustrates several stream-processing
strategies. Note in particular the use of the match operator to check for two pend-
ing messages (as follows: x?= [msgl ,msg2[xl]), the pushing of unused elements back
onto the stream in the recursive calls (e.g., filter([msg2lxl] ,y)), and tlie defini-
tion of y to be ali remaining elements of x in the termination case (y = x).

28

filter(x,lr)

{? x ?--[ms_l,msg21xl]->

{? msgl --=msg2 -> filter([msg2[xl],y),
default -> {[[y = [msg1[yl],

filter([msg2[xl]_yl)
)

default-> y = x I* x is [msg] or [] ,I
)

4.10 Advanced Stream Handling

The stream construct provides direct support for one-to-one communication, that is,
communication between a single producer and a single consumer. It also supports
broadcast communication, that is, generation of a single stream to be received by
several consumers. For example, in the composition

{li producer(s), consumer(s), consumer(s) },

both consumersreceiveany valuesgeneratedby theproducer.
Threeothercommunicationpatternsarealsoimportantinpracticalapplications:

many-to-one,one-to-many,and bidirectional.The firstand secondare supported

in PCN by specializedprimitives.The thirdisachievedby means ofa specialized
programming technique.

Mergers: Many-to-One Communication. A mergerisa PCN systemprogram

thata/low_theconstructionofan outputstreamthatisthenondeterministicinter-

leavingofa dynamicallyvaryingnumber ofinputstreams.(The merger ishence
the secondsourceof nondeterminismin PCN, with choicecompositionbeingthe

first.)The onlyconstrainton messageorderintheoutputstreamisthattheorder

ofmessagesfrom individualinputstreamsbe preserved.A mergeriscreatedwitha
procedurecalloftheform

sys :merger(in, out),

where in is an initial input stream and out is the output stream. An additional

input stream newin is registered with the merger by appending a message of the
form {"merge" ,newin} to any open input stream. An input stream is closed in
the usual way (s = [3); the output stream is closed automatically when ali input
streams are closed.

The following code fragment illustrates the use of the merger. This organizes
communication between two producer processes and a single consumer, so that the
consumer receives on instream an intermingling of the streams generated by the
two producers.

29

_II producer(sl), producer(s2)

instream " [_"merge",sl>,_"merge",s2].],
sye:merger(instream,outstream),
consumer(outstream)

Y

Note that the merger must be able to determine whether each input message is
a ("merge" ,_) term. Hence, messages of the form var or {var,term} (where var is
an undefined variable) should not be sent to a merger: these will cause the merger
to delay until var is given a value.

Distributors: One-to-Many Communication. A distributor is a PCN system
program that routes each message received on its input stream to one of several
output streams. A message of the form {H,Hsg} causes the distributor to route Msg
to the Hth output s_ream° A distributor is created with a call of the form

_ys:distribute(ii, In),

whereH isthenumber ofoutputstreamsneededand Inistheinputstream.Messages
can thenbe sentto thedistributortoregisteroutputstreams.We registera stream

S astheNth outputstreamby sendinga messagewiththe form

{" attach", N, S, Done },

'.l:!_'eDone is a definitional variable that is defined by the distributor to signal that
the stream S has been registered.

We request the distributor to route a message Hsg to the Nth output stream by

sending the following message:

{'.",s}

We requestthedistributortobroadcasta messageHsg toalloutputstreamsby

sendingthefollowingmessage:

{"a11"...g}

Itisimportantto ensurethata stream has been registeredbeforerequesting

thata message be routedto thatstream.One way ofdoingthisisto registerall
streamswith thedistributorbeforesendingany messages.The followingprogram
achievesthis.A cml make_distributor(In,sD)createsa distributorwith ss a_

itsoutputstreams.(The number ofstreamsin ss iscomputed by the procedure

Dye:lisl;_lengthdefinedin§ 18.1.)The inputstreamin ispassedto thisdistrib-
utoronlyafteralloutputstreamshavebeen registered.

30

make_distributor(in.ss)

{[[sys:list_length(ss.len).

sys:distribute(len._od).

register(O.ss.tod.in)
}

register(i,ss,tod,in)
_? ss ?= leiss1] ->

{11 zed : [{"aZtach".i.s.done>Itodl].

data(done) -> register(i+l.ssl.todl.in)
).

ss ?" _ -> ted = in
>

If the input stream to the distributor is closed (In = ['J), then the distributor
closes all registered output streams and shuts down.

Two-Way Communication. Many parallel algorithms require two-way commu-
nication between concurrently executing processes. In some cases, this can be
achieved by defining two communication streams, one for use in each direction.
However, it is also possible to achieve two-way communication with a single defini-
tional variable, by using a technique called an incomplete message.

We introduce the incomplete message technique with a simple example. Con-
sider a program input capable of providing boundary conditions for two different
numerical models (e.g., spectral and finite difference). This can be composed with
a procedure implementing a particular numerical model, as follows.

inpuZ(xs), model(xs)

The definitional variable xs will be used to implement a stream.
The first thing that inpul: does is to query the program it is composed with, to

determine that program's input requirements. It does this by sending a message of
the form

{"what_inpuZ".response},

where response is an undefined definitional variable. The other program (which
of course must be ready to accept such a message) defines response to specify the
required input type, allowing the first program to read response and generate the
appropriate input data.

Possible definitions for input and model are as follows. In this example, the
model procedure specifies that it expects input in terms of spectral coefficients by
defining response : "speczral". This communication causes the inpuZ procedure
toexecutespectral_input.

31

input(x)
"[_IX ffi[{"what_input".response_xs].

{? response _ffi"spectral" -> spectral_input(xs).
response -= "finite_dill" -> fd_input(xs)

}
}

model(x)
? x ?'.[[",hat_input".response>Ixs]-->

{ll response - "spectral".

process_input(xs)
}

}

In this example, a single shared variable, xs, has been used to achieve two-way
communication. This is a simple example of a very powerful programming technique
that can be used to establish a wide variety of communication patterns. The key
idea is for one process to define a shared variable to be a tuple containing "holes"

(undefined variables). Consumer(s) of this tuple can then fill in these holes (define
the variables) to communicate additional values to the original producer or even to
other consumers.

We use a more complex example to strengthen understanding of the incomplete

message technique. Consider the problem of exploring a large search space with a
heuristic search method. Assume that it is possible to define multiple searchers,
each capable of exploring part of the search _pace, and that individual searchers can
improve their efficiency by exploiting global information about the best-known par-
tial solution. We collect and disseminate global information by defining a controller
process to which each searcher periodically sends information about its current best
partial solution. The controller responds to each such message by updating its view
of the best partial solution and returning the best known partial solution.

A PCN implementation of this search method provides each searcher with a
stream to the controller and uses a merger to combine the multiple searcher streams

into a single controller input stream. For example, the following code links two
searchers and a controller.

{ii searcher(sl), searcher(s2),

sys :merger([{"merEe".s1>.{"merE•".s2}].s),
controller(s)

>

The searcherisdefinedas follows.A callto first_attemptyieldsan initial

approximate solution (value), which is passed to the recursively defined procedure
search. The search procedure sends the approximate local solution to the con-
troller in a {value,response} tuple, where response is an undefined definitional

32

variable used to communicate info-mation back from the controller to the searcher.

Depending on tb__response received from the controller, the searcher either termi-
nates or calls n_xt.atteapt and repeats the process.

The coutroller receives a stream of approximate solutions from the workers, lt
processes each message by calling iaprove_utiaate to improve its own estimate
of the global best solution, and returning either this estimate or the signal "stop"

(indicating that a solution has been found) to the searcher.

nLrchor Ctri_s)

'CII first_attmpt (valuo),
narchCtrials .v_uo)

)

_oarchCtrials, valuo)

_11 trials = [_valuo,rosponso)Itrialst].
{? rosponso == "stop" -> tri_ut = Q,

dofault ->

{ l [nox_.attoapt (value, r_sponso 0nex__val,a_),
soarch (tr ials 1, noxt_value)

}
}

}

controllor (trials, bound)

trials ?= [_valuo,rosponse} [trialst] ->
[[iaprovo_os1: lJnato (bound, va_v.e :_aowbound, resul:),

_? rosult == "solution" -> :oBponBo = "stop",
dofault -> rosponso = nowbound

},
cont roller (trial s 1, nowbound)

}

Specialized Communication Structures:

• Many-to-one: morgor.

• One-to-many: distributor.

• Bidirectional: incomplete message.

4.11 Interfacing Parallel and Sequential Code

The two worlds of parallel and sequential, definitional and mutable, have so far beeu

regarded as distinct. In practice, the two worlds must interact whenever a sequential

33

program component is integrated into a concurrent program. Such interactions
are governed by three simple rules. The first restricts the way in which mutable
variables can be used within parallel blocks, while the second and third specify
copying operations performed by the PCN compiler when data is transferred between
the definitional and mutable worlds by defining a definition in terms of a mutable,
or vice versa. This copying avoids aliasing between state maintained in different
sequential threads, and hence ensures that state change within individual threads
does not lead to time-dependent interactions with concurrently executing processes.

Mutable Variables and Parallel Composition. Mutable variables may occur
in parallel compositions, but only if their usage obeys the following rule.

1 ' Rule I: A mutable variable can be shared by bl°cks in a parallel c°m" 1i position only if no block modifies the variable.

This restriction prevents errors resulting from time-dependent, nondeterministic
updates to a mutable variable (i.e., race conditions). The restriction is not currently
enforced by the compiler, and so the programmer must be careful to ensure that all
programs are valid.

Note that there is no similar restriction on the use of definitional variables within

sequential blocks.

Mutable --- Definition. The following rule states what happens when a defini-
tional variable is defined in terms of a mutable variable.

Rule 2: When a mutable occurs on the right-hand side of a definition li
statement, the current value of the mutable is snapshotted (copied), and lithe definition then proceeds as if a definitional value were involved.

For example, in the following code, ¢ = S and d = 4 when computation is com-

plete.

proof (c,d)
inr a;
{; a := 3,

C= 2+ a,

a :=4
d=a

}

Snapshotting a mutable array creates a definitional copy of the array that can be
read but not modified. For example, in the following, c is defined to be a copy of the

34

mutable array a. Subsequent changes to a do not affect the value of the definitional

array c.

proc2(c,d)
inr ai5];

{; inizializs(a),

C t a_

• s s

}

Definition --. Mutable. The following rule states what happens when a mutable
variable is assigned an expression involving a definitional variable.

Rule 3: When a definitional variable occurs on the right-hand side of
an assignment, the assignment suspends until the variable has a value
and then proceeds.

For example, if c is a definition with value 3 in the following program, then a
has value 5 after the assignment.

proc3(a.c)
inZ a, b;
{; b := 2

a :=b+c

Note that if the rightuhand side of the assignment is not an expression, then the
assignment will copy the definitional value into the mutable variable. For example,
in the following code fragment, the definitional value c is copied into the mutable
array a. The array a can be modified subsequently without affecting c.

in1;ai.I;
a :t C

Example. The following example illustrates the use of copying to avoid aliasing.
The procedure proc has two definitional arguments: it produces as out;put the result
of applying a transformation solve to input. It calls the procedure solve to effect
the transformation; this is defined to operate on mutable data structures. Hence,
proc declares a local mutable array tamp, assigns 1;emp the value input;, applies
solve to zemp, and then defines ou1;pul: to be the updated value of 1;emp. Two
copying operations take place, from input; to 1;emp and from 1;emp to out;put;.

35

proc (input, output)
double temp[SIZE] ;

(; temp := input,
solvoCremp),
output = t_r_p

].

4.12 Review

PCN encourages a compositional approach to parallel programming, in which com-
plex programs are built up by the parallel composition of simpler components. Pro-
gram components composed in parallel execute concurrently. They communicate
by reading and writing definitional (single-assignment) variables. The use of defini-
tional variables avoids time-dependent interactions, allowing individual components
to be understood in isolation. In addition, read and write operations on definitional

variables can be implemented efficiently on both shared-memory and distributed-
memory parallel computers. Hence, parallel composition and definitional variables

address three of the concerns listed at the beginning of this chapter: concurrency,
compositionality, and mapping independence.

The choice operator is used to encode conditional execution and synchronization.
lt also provides a means of introducing controlled nondeterminism into programs.
(The merger is the other mechanism used to specify nondeterministic actions in PCN

programs.)

The sequential composition operator and mutable variables together provide a

mechanism for integrating state change into definitional programs. This state change
may be performed in PCN or in lower-level sequential languages.

A final aspect of PCN which may be unfamiliar to some readers is its use of

tuples and recursion. These constructs provide support for symbolic processing.
They augment arrays, iteration, and other language constructs provided by lan-

guages such as Fortran and C for numeric processing. An increasing number of

applications have both numeric (regular, floating-point) and symbolic (irregular,
rule-based) components. PCN's symbolic processing capabilities are intended to
support such mixed-mode applications.

5 Programming Examples

We present PCN programs that solve programming problems concerned with list
and tree manipulation, sorting, and a two-point boundary value problem.

36

5.1 List and Tree Manipulation

Membership in a List. Develop a program member with arguments e, 1, and r,
where 1 is a list, and at termination of execution of the program, r = TRUEif and
only if e appears in list 1. Assume that FALSE ffi 0 and TRUE ffi 1, to be consistent
with C.

Sdefine TRUE I
Sdefine FALSE 0

member(e,i,r)

{? 1 ?ffi[rill], v == e -> r = TRUE,

1 ?= [villi, v != e -> member(e,ll,r),
1 ?= D -> r = FALSE

>

Membership in a List (Mutables). Now consider a program with the same
specification, except that e and r are now mutables. The mutable r is to be set to
TRUEor FALSE;e (and of course 1) should not be changed.

#define TRUE 1
tdefine FALSE 0

member(e,I,r)
inr e, r;

{? 1 ?= [rill], v =ffi • -> r := TRUE,
i 7- [vi11]. v :ffi• -> member(e,lt,r),

1 ?= D -> r :ffiFALSE

>

The only difference between the two programs is the addition of the type declarations
and the substitution of the := operator.

Reversal of a List. Develop a program reverse with arguments x, b, and e,
which defines b to be the list of elements in x, in reverse order, concatenated with
e. For example, if x ffi ['°A","B"] and • ffi ["C '°..°D'°], then b is to be defined as

["B","A", "C", "D"]. (The name b stands for the beginning of the reversed list, and
• stands for the end of the reversed list.)

37

reverse(x,b,e)
{? x ?= [v[xs] -> reverse(xs,b,[v[e]),

x ?= [] -> b = e
}

This program can be used to simply reverse a list by calling it with • = []. For
example, a call reverse([1,2,3] ,b, D) yields b = [3,2,1].

The reverse procedure illustrates an important programming technique called
the difference list. A call to reverse constructs a list b consisting of the values
computed by reverse followed by the values provided as e. This allows lists con-
structed in several computations to be concatenated without further computation.
For example, the calls

reverse([l,2,3] ,b,e), reverse([4,5,6] ,e, [])

construct the list [3,2, I, 6,5,4].

Height of a Binary Tree. Develop a program height with arguments t and z,
where t is a binary tree, and z is to be defined to be the height of the tree. A tree t

is either the empty tuple, {}, or a 3-tuple {left, val, right }, where left and
right are the left and right subtrees of t.

height(t,z)
{? t ?= {left,., right} ->

{11 height(left, i), height(right, r),
{? 1 >= r -> z ffi1+I,

1 < r -> z = r+l

}
>,
t?fO->z=O

}

The program can be read as follows. The height of a nonempty tree is 1 plus the
larger of the heights of the left and right subtrees. (The heights of the subtrees are
determined by two recursive calls to height.) The height of an empty tree is 0.

Preorder Traversal of a Binary Tree. Develop a program preorder with ar-
guments 1:,b, and e, where t is a binary tree, and b and e are lists. Binary trees are
represented using tuples, as in the last example. List b is to be the list consisting of
the va1 of ali nodes of the tree in preorder, concatenated with list e. (A traversal of
a tree in preorder visits the root, then the left subtree, and finally the right subtree.)

38

preorder(t,b,e)
{? t ?= {left,val,right}->

(II b - [vallml],
preorder(left,ml,m2),
preorder(right,m2,e)

z ?= {> -> b = e
}

The program usesthedifference listtechnique introduced previously in the reverse
example: each call to preorder constructs a list b consisting of the elements in its
subtree t followed by the supplied list e.

5.2 Quicksort

We present an implementation of the well-known quicksort algorithm, qsorzD, which
uses lists of definitional variables; later, we provide an in-piace quicksort, qsorzH,
that uses mutable arrays. It is instructive to compare the two programs: the defi-
nitional program is significantly shorter and easier to understand than the mutable
program. However, it makes less efficient use of memory.

Definitional Quicksort. Program qsorzD has two input arguments, x and e, and
one output argument, b: x and e are definitional variables that are not defined by
the program, and b is a definitional variable that is defivLedby the program. Ali three
are lists of numbers. The output b is specified to be the list x sorted in increasing
order, concatenated with list e. For example if e = [5, 4] and x = [2, 1], then
b = [1, 2, 5, 4:]. If • is the empty list, then b is x sorted in increasing order.

39

qsortD (x ,b, e)
{? x ?= [mid[xsl ->

{[[part (mid, xs, left ,right),

qsortD (left ,b, [mid lm]),

qsorrV (right ,m,e)

>.
x ?ffi [1 -> bffie

>

part (mid, xs, left, right)
{? xs ?= lhd[ill ->

{? hd <= mid ->

{[[left = [hd[ls], part(mid,tl,ls,right) }, _:
hd > mid ->

{I[right = [hd[rs], part(mid,tl,lcft,rs) }

},
xs ?= [] -> {II left = [1, right = [1 }

}

The qsortD procedure operates as follows. If x is nonempty, let mid be its first

element and let xs be the remaining elements. The call part(mid,xs,left,right)

defines left to be the list of values of xs that are at most mid, and right to be

the list of values of xs that exceed mid. Call qsortD(right,m,e), thus defining m

to be the sorted list of right appended to ¢. Call qsortD(lcft,b, [midlml), thus

defining b to be the sorted list of left followed by mid followed by m. Otherwise, if

x is the empty list, then define b to be ¢.

The part procedure operates as follows. If xs is not empty, then let hd and tl be

the head and tail (respectively) of xs. If hd is at most mid, define ls and right by

part(mid,tl,ls ,right), and define left as hd followed by ls. If hd exceeds mid,

define left and rs by part(mid,tl, left,rs), and define right as hd followed by

rs. If xs is the empty list, define left and right to be empty lists.

In-Piace Quicksort. Program qsortM has two input parameters, I, and r, both

of which are definitional variables, and one input-output parameter C, which is a

one-dimensional mutable array of integers. Let Ci"it be the initial value of C, and

let Cyi'_al be the value of C on termination of the program. Then Cyi'_at is to be

a permutation of Cinit, where CyinaI[1, ..., r] is Ci'_it [1, ..., r] in increasing

order, and the other elements of C are to remain unchanged. (If i _> r then Cli"at

is Ci"it.)

4O

qsortM(1,r,C)
inr C[] ;

{7 1 < r ->

{; split (l,r,C,mid),

qsorrM (i ,mid-1,C),

qsortM (mid+ I,r,C)

}
}
split (l,r,C,mid)

inr CII, left, right, temp;

{? I <- r ->
{; icf% := I.I, righ% := r, s = C[l],

part1(l,r,C,s,left,right), temp :- I,

swap(temp,right,C), mid - right
}

}
partl (1,r,C,s,left ,right)

inr C[], left, right;

{? left <= right ->

{; left_righzwards (r,C,s,left),

right_leftwards (I+I,C,s,right),

{? left <= right ->

{ ; swap(left ,right ,C),
left := left . I,

right := right - I

}
},

partl (1 ,r,C,s,left ,right)

}
}
left_rightwards (r,C,s,left)

inr CD, left;

{? left <= r, C[left] <= s ->

{; left := left+l, left_rightwards(r,C,s,left) }

}

right_leftwards (i,C,s,right)

inr C_, right;

{? right >= I, C[right] > s ->

{; right := right-l, right_leftwards(l,C,s,right) }

}
swap(i,j ,C)

inr i, j, CII, remp;

{; temp := Cii], Cii] := CIi], C[j] := temp }

41

Executionofsplit(i,r,C,mid)permutesC and assignsa valuetomid suchthat
I < mid < r,and suchthatallelementsinC[1, ...,mid-l] areatmost C[mid],
and allelementsinC[mid+l, ...,r] exceedC[mid].

The programqsortg operatesasfollows.Ifi > r,thenqsortM takesno action,
leavingC unchanged•Ifi < r, then split iscalled,and aftersplit terminates
execution,C[1, ...,mid-li and C[mid+l, ...,r] aresortedindependently•

The split program operatorsasfollows.IfI > r,thensplit terminatesexe-
cutionwithouttakingany action•Ifi < r,thenprogram split(1,r,C,mid)calls

partl(l,r,C,s,left,right)aftersettingleft - l+l,right = rand s ,,C[1];
program part leaves s unchanged, modifies loft and right, and permutes elements
of C[1+i, ..., r] so that, at termination of part1, loft = right +1, and ali ele-
ments in C[1.1, ..., right] are at most s, and ali elements in C[right+10 ...,
r] exceed s.

After termination of partl, program swap is called to exchange C[1] (which

is s) with C[right]. After the swap, ali elements in C[1, ..., right-l] are at
most n, and C[right] ffi s, and ali elements in C[right+l, ..., r] exceed n. The
program terminates after mid is defined as right.

Program paxtl moves left rightwaxds and right leftwards until they cross (i.e.,
loft = r£ght+1).

5.3 Two-Point Boundary Value Problem

Our last programming example is a solution to a more substantial numerical prob-
lem. The problem that we consider arises when solving the linear boundary value
problem in ordinary differential equations, namely,

y_ = M(t)y + q(t), t E [a,b], y E R a,

such that Bay(a) + Bby(b) = d.

In most algorithms designed to solve this problem, the most computationally inten-
sive task is the construction and solution of a linear algebraic system of equations,

which typically has the form

Ba Bb Yl " d"

Ai C1 Y2 fl

A2 C2 Y3 = f2 .

Ak Ck Yk+l fk

Here each of the blocks has dimension n x n, and k is often substantially larger
than n. Construction of this system is trivially parallelizable. A more substantial

challenge is to solve it in a parallel computing environment. It is important that the
solution process be stable in a numerical sense; otherwise, the computed answer may
be hopelessly inaccurate. Simple algorithms such as block elimination are therefore
not appropriate. The algorithm described here uses a "structured orthogonal factor-
ization" technique, in which orthogonal transformations are used to compress each

42

two successive block rows of the linear system into a single block row. This produces

a "reduced" system that has the same structure as the original system, but is half
the size. The compression process can be applied recursively until a small system

d

remNns.

The PCN code that implements this algorithm creates a set of k processes con-
nected in a tree structure. A wave of computation starts at the k/2 leaves of the tree

and proceeds up the tree to the root. The leaves perform the initial compression
described above, while at the higher levels of the tree the compression is applied
recursively, and at the root the small system above is solved. Finally, computation
propagates down the tree to recover the remaining elements of the solution vector.

Input to the PCN code is provided at each leaf i (0 __ i < k/2) as two n × ,
blocks (Ai and Ci) and one n vector (fi), and at the root as two n x n blocks (Ba

and Bb) and one n vector (d).
The PCN code consists of two main parts. The first part is the code that creates

the process tree. This creates a root process and calls a doubly recursive tree

procedure to create k/2 leaf processes and k/2- 1 nonleaf processes. Shared defi-
nitional variables (strm, left, right) establish communication channels between
the nodes in the tree.

solve(k,tO,1:l)
I I root (strm),

tree(sirra,{tO,tI},I,k/2)
>

tree(strm,as,from,I;o)
{? from =- to -> leaf(from*2,strm,as),

from < "co->

{JJ mid=from+(to-from)/2,

nonleaf(left,right,sirra),
tree(left,as,from,mid),

tree(right,as,mid+I,I;o)
>

>

The second part of the program defines the actions performed by the leaf,
nonleaf, and root processes. We consider the leaf process first. A single leaf
process initializes two sets of blocks -- al, cl, fl) and (a2, c2, f2 -- and then

calls compress to produce a, c, f. It sends a message to its parent containing the

computed values and slots for return values (ybot, ytop) which will be computed
by its parent. The recover procedure delays until values are received for ybot and

ytop, and then computes the solution, y.

43

leaf (id,parent, as)

double al [MM],cl[MM],fllM] ,a2[MM],c2 [MM],f2[M],

a[MM],cIRR],f[M],y [M],r [MM];

{? as ?-"{zO,tl}-> _
{; init_ (id-I ,al,c1,li,tO,tl),

init_ (iU,a2,c2,f2,tO, tI),

compress_ (al,cl,fl,a2, c2 ,f2,a,c ,f,r),

parent={a, c,f,ybot, ytop},

recover (al,c1,fI,r,ybot, ytop, y)

}
}

°

The nonleaf procedure receives messages from left and right offspring. It calls

compress to compress the al, cl, fl and a2, c2, f2 received from its offspring,

producing a,c,f. These newly compressed values are communicated to the parent

in the prc,cess tree. Once values for ytop and ybot are produced by the parent, the

recover operation can proceed, producing ymid; values are then returned to the left

and rig'at offspring b_ the four definition statements.
)r

nonleaf (left,right ,parent)

double },midIN],aINN],c[MM],f IN],r INN];

{? left ?ffi{al,cl,fl,ybotl,ytopl},

right ?: {a2,c2,f2,ybot2,ytop2}->

{; compress_ (al ,cl ,fl,a2,c2,f2, a,c,f,r),

parent={a, c, f, ybot, ytop},

recover_ (al ,c1 ,fl ,r,ybot, ytop,ymid,,

ybot1=ymid, ytopl=ytop,

ybot2=ybot, ytop2=ymid
}

}

The root process receives a single message containing the completely reduced

blocks. It calls comp_root to perform the final computation, producing ybotl and

y¢opl which it returns to its offspring with two definitions.

44

root (child)
double ybot i [Ml, ytop I [Ml, ba [MM],bb [MM],brhs [Ml ;
4? child ?= {a,c,f,ybot,ytop} ->

4; init_root_(m,ba,bb,brhs),
comp_root. (a, c ,f, ba,bb ,brhs, ybot I, ytopl),
ytop=ytopl, ybot=ybotl

6 Modules

Recall from § 3 that a PCN program consists of one or more modules. Each module
is contained in a separate file with a .pcn suffix. A module contains zero or more
procedures.

Procedures in one module can invoke procedures in other modules by means of
intermodule calls. An intermodule call has the following general form.

module:procedure-name(argo,..., arg,)

A procedure can be invoked by an intermodule call only if it has been ezported

by the module in which it is defined. By default, ali procedures in a module are
exported. However, you can specify that only a subset of the procedures in a module
are to be exported, by providing one or more -exports directives. An exports
directive has the general form

-exports(proc0, ..., prock)

and specifies that the module in which it appears exports procedures named by the
strings proc0, ..., prock. For example, the directive -exports("procA","procB")
names proca and procB as exported.

In general, it is good practice to provide an -exports statement in each module,
and to export only those procedures that are called from other modules. This allows
the compiler to generate more compact object code.

7 The C Preprocessor

The PCN compiler applies the C language preprocessor (cpp) to each PCN module
before compiling it. Hence, PCN programs can make use of cpp's capabilities, such
as include files, macros, and conditional compilation. Ali three of these capabilities
are used in the following example program.

45

IModule cpp_ex,pcnI

-exports('°go°°)

#include <pcn_stdio. h>
#define ARRAY_SIZE I0

go()
double a[ARRAY_SIZE];

I:;
#ifdef OLD_VERSION

stdio:printf("Old version\n",(},_),
#else

stdio:printf("New version\n",{},_),
#endif

do_something_with_array(a)
)

1

When the PCN compiler applies cpp to a PCN program, it automatically defines
the symbol "PCN" and a symbol that represents the t.arget architecture for which

you are compiling (i.e., sun4, rs6000, next040, ipsc860, etc). These symbols can
be used for conditional compilation. For example, the following header file can be
used in both PCN and C components of a program, hence ensuring that the symbol
ARRAY.SIZEisdefinedin the same manner everywhere.The #ifndef means that

thedeclarationofmy_c_procedure()isusedonlyintheC compilation.

IFile cpp-ex .h I

#define ARRAY_SIZE 10
#ifndef POll
#ifdef sun4

$include "sun4_only_hdr. h"
#endif /* sun4 */

extern void my_c_procedure();
#endif /* PCN */

In this example, AP_AY_SIZE will be defined to be the value 10 in both PCN

and C programs that include this header file. Also, if the C program is compiled
using pcncomp (i.e., pcncomp -c file. c), the procedure my_c_procedure() will be
declared in the C program, and the header file sun4_only_hdr.h will be included in
the C program when compiling for a sun4 architecture.

We can pass additional arguments to cpp when compiling PCN programs. For
example, suppose we wish 0LD_VERSIONto be defined when compiling the program
cpp_ex, pen shown above. This can be achieved by using the -D flag when compiling
with pcncomp as follows:

46

pc.ncomp --¢ cpp_sx, pcn --DOLD_VEI_ION

8 Integrating Foreign Code

Programming examples presented thus far have focused on the use of PCN to com-
pose procedures written in PCN. Exactly the same syntax and techniques can also
be used to compose procedures written in other ("foreign")languages. Fortran and
C are currently supported.

We deal here with the PCN/foreign interface, the mechanism used to import
foreign procedures, and the mechanism used to link foreign object code with the
PCN run-time system.

8.1 PCN/Foreign Interface

The PCN/foreign interface is defined as follows:

. The actual parameters in a call to a foreign program can be mutables or
definitional variables of type char, inr, or double, or arrays of these types.

. Execution of a foreign procedure delays until all definitional arguments have
values.

, Ali parameter passing is by reference.

, A foreign procedure cannot modify definitional arguments.

The last restriction is not currently enforced by the compiler, so the programmer
must be careful to ensure that all programs satisfy this constraint.

Note that a consequence of this definition is that all output generated by a
foreign procedure must be returned in mutable arguments. Sumcient storage mast
be allocated for these mutables prior to calling the foreign procedure.

Two important differences exist between the execution of PCN and foreign proce-
dures called from PCN. First, PCN procedures can execute even if not all definitional

arguments do have values. Indeed, they can compute values for definitional argu-
ments. In contrast, foreign procedure calls delay until all definitional arguments
have values, and can modify mutable arguments only. Second, PCN procedures can
be passed tuples as arguments, whereas foreign procedures can be passed simple
types only.

C. As parameter passing is by reference, arguments to a C procedure called from
PCN must be declared as pointers. That is, the PCN types char, inr, and double
correspond to the C language types char ,, inr ,, and double *.

47

Fortran. The PCN typeschar,inr,and double correspondtotheFortrantypes

CHARACTER,IJTEGER,and DOUBLE.As Fortranalsopassesargumentsby reference,
no specialtreatmentofargumentsisrequired,ltisnecessaryto append thesumx

'_'tothenarr,e ofa Fortranprocedurecalledfrom PCN.

Forexample,thefollowingPC N procedurecallsa C procedurenatural_.1og(a,b)

to computeb ,,in(a) and a Fortranprocedurepower(a,b,c)tocompute c = ab.
Note the'_'suffixon thecalltopower and the useofa localmutableimp forthe

resultofthenatural_logcomputation.

[Module foreiEn.pcn l

proc(a,b,c)
double a,b,c,tmp;
_; natural_log(a,tmp), pouer_(tmp,b,c)}

The C and Fortran procedures invoked by this program can be written as follows.

[File cfile, c]

#include <math.h>

void natural_log(a,b)
double *a,*b;

{ *b" log(*a); }

"-_File ffile.f]

SUBROUTINEPONER(A,B,C)
DOUBLE PRECISION A,BoC
C " A**B

END

8.2 Compiling with Foreign Code

When compiling PCN code that contains calls to foreign procedures, you need not do
anything special to distinguish the foreign calls from normal PCN procedure calls.
Instead, the PCN compiler assumes that any nonintermodule calls (i.e., calls that do
not specify a module) to procedures not defined in that module are calls to foreign
procedures. For example, this is what you see when you compile the foreign.pcn
program shown above:

48

pcncomp -c foreign.pen

Notice: Call to foreign procedure - natural_log

Notice: Call to foreign procedure - power_

The C and Fortran source flies can be compiled as normal to produce object flies

(.o flies). Alternatively, pcncomp can be used to compile Fortran and C programs.
For example:

pcncomp -c cfile.c

and

pcncomp -c ffile.f

The useofpcncomp tocompileC and Fortransourcefliesisrecommended,since

this compile command will work on any machine, no matter what the actual names
of the C and Fortran compilers on the particular machines. In addition, pcncomp
knows how to deal with Fortran programs that use C preprocessor dir_:ctives (i.e.,

#define, #include, etc.). These source files should use a .F suffix. Some Fortran
compilers know how to deal with . F files directly, in which case pcncomp just runs
the Fortran compiler on the . F file. However, if a Fortran compiler cannot handle a

•F file, pcncorap will first run the file through cpp before calling the Fortran compiler.

8.3 Linking with Foreign Code

Once ali of your PCN source files are compiled to PCN object (. para) flies, and your

C and Fortran source files are compiled to foreign object (.o) files, you must use
pcncomp to link everything into an executable program.

To do this, simply add the . o files to the pcncomp link line, for example

pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode

In addition, if you are linking Fortran object code, you must also add a -fortran
flag to the link command. This ensures that Fortran initialization code is added to

the executable program. For example, to link the example program above, you type:

pcncomp foreign.pam cfile.o ffile.o -o foreign -mm foreign -fortran

Like most compilers, pcncomp will also accept foreign libraries, which can be

specified either by adding the appropriate . a file to the link line, or by using the -1

and -L flags, for example:

pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode libmine.a -Ig

For a complete list of the arguments to pcncomp,type:

pcncomp -h ,_

49

8.4 Multilingual Programming

This simple foreign interface allows sequential code (currently, Fortran and C 4re
supported) to be integrated into PCN programs as procedure calls, indistinguishable
for most purposes from calls to PCN procedures. Thus, we do not need to throw
away the many years of investment in sequential code and compiler development
when moving to parallel computers. Fortran and C are good sequential languages

but are less well suited to parallel programming. Experience suggests that PCN is a
good parallel language; nevertheless, it cannot compete with Fortran and C in code
base and compiler technology. Multilingaal programming permits us to take the best
from each approach, using PCN for mapping, communication, and scheduling, and
Fortran and C for sequential computation.

8.5 Deficiency of Foreign Interface

A deficiency of the Fortran interface is that no special allowance is made for "com-
mon" data (in Fortran programs) or "global" variables (in C programs). Each phys-
ical processor has a single copy of ali common/global data declared in an application
program, and every process on a processor has access to that data. Hence, while
PCN data structures are encapsulated in processes to prevent concurrent access, the
same protection is not provided for common/global data. It is the programmer's
responsibility to avoid errors arising from concurrent access. Experience shows that
programmers deal with this problem in one of two ways.

First, if an application is of moderate size, or is being developed from scratch,

they often choose to eliminate common/global data altogether. This may be achieved
by allocating arrays in PCN and passing them to the different foreign procedures.
Although this approach requires substantial changes to the application, the bulk of
the existing foreign code can be retained, and the full flexibility of PCN is available
to the programmer.

Second, if substantial rewriting of an application is not possible, programmers
maintain common/global data in its usual form and use PCN to organize operations
on this data in a way that avoids nondeterminate interactions. Although certain
operations are then more difficult (e.g., process migration is complicated, and the
programmer must check for race conditions manually), other benefits of the PCN
approach still apply.

9 Higher-Order Programs Using Metacalls

PCN provides simple support for higher-order programming. In particular, it allows
module and procedure names in procedure calls to be substituted with variables,

which can then be defined to be strings at run time. Variables are distinguished
from strings in procedure calls by the use of enclosing back quotes, as follows.

..., 'op'(...), ... /* op is a variable ,/

5O

•.., m:'op'(...), ... /* op is a variable */
..., 'mod':f(...), ... /* roodis a variable ,/

..., 'mod':Cop'(...), ... /* mod _ op are variables ,/

This sort of call is termed a metacall.

We illustrate the use of these higher-order features with a procedure map.list
that applies a supplied operator to each element of a list, collecting the results of
these computations in an output list. The supplied operator is assumed to be a

procedure name (e.g., °°f"); the map_list procedure invokes this procedure with
two arguments (e.g., f(e,v)).

map.list (op, list, vals)
{? 1isr ?= [ellt] ->

(II 'op'(e,v),
vals = [v[vl],

map_list(op,11,vl)
>,
list ?ffi[] -> vals =

>

For example, if the procedure square is defined as

square(e,v) ([[v = e*e }

then a callmap_list("square",[l,2,3],vals) willdefinevals to be the list
[I,4,9].

The map..list procedure will work correctly only if the supplied operator (op) is
located in the same module as map_list. The following program is more general: it
allows the supplied operator to be a mod:proc(arg) term. Note the use of quoting
in the match operation.

map_lisr2(op,list,vals)

{? list ?= [e[ll], op ?= 'mod':'proc'(arg) ->
_[['moU':'proc'(arg,e,v),

vals ffi[vivl],

map_list2(op,11,vl)
),
list ?= [] -> vals = []

}

Metacallspresenta smallproblemtothePCN linker.The PCN linkernormally
includesintheexecutableprogramonlythosePCN proceduresthatitcandetermine

willbe called.However,sincemetacallsareprocedurecallsforwhich you do not

51

specify the call target until run-time, the linker may not be able to determine that
a metacalled procedure is called and therefore will not link in that procedure. To

handle this situation, two additional PCN source directives are supported:

-metacalls (modl :procl, modl :proc2, ...): This tells the linker that if the mod-

ule containing this directive is included in the executable, then so should
rood1:procl(), modl :proc2(), etc.

-proc_metacalls(source_proc, modl :procl, modl:proc2, ...): This tells the

linker that if the procedure source_proc() is included in the executable, then
soshouldmodl :procI(),roodI:proc2(),etc.

10 Process Mapping

Parallel compositions define concurrent processes; shared definitional variables de-

fine how these processes communicate and synchronize. Together with the sequential
code executed by the different processes, these components define a concurrent al-

gorithm that can be executed and debugged on a uniprocessor computer. However,
we do not yet have a parallel program: we must first specify how these processes are
to be mapped to the processors of a parallel computer.

Important features of PCN are that the mapping can be specified by the pro-
grammer and that the choice of mapping affects only the performance, not the
correctness, of the program. In other words, the process mapping strategy applied

in an application can change performance but cannot change the result computed.
(The only exceptions to this rule are if foreign code uses global variables -- e.g.,

common blocks -- or if PCN code includes nondeterministic procedures.)
For this reason, it is common to develop PCN programs in two stages. First,

program logic is developed and debugged on a workstation, without concern for

process mapping. Second, a process mapping strategy is specified and its efficiency

is evaluated on a parallel computer, typically by using the Gauge execution profiler.
The following language features are used when writing code to define process

mappings.

Information Functions. When defining mappings, we sometimes require infor-

mation about the computer on which a process is executing. This information is
provided by the primitive functions topology(), nodes(), and location().

topology(): Returns a tuple describing the type of the computer, for example

{"mesh",16,32}or {"array",Sl2}.

nodes(): Returnsthenumber ofnodesisthecomputer.

location():Returnsthelocationoftheprocesson thecomputer.

52

...................................... r"........ q...... 'r .. -- .. ,,.l-,-,.m__., .m.w

Location Functions. Mapping is specified by annotating procedure calls with
system- or user-defined location functions, using the infix operator "@". These func-
tions are evaluated to identify the node on which an annotated call is to execute;
unannotated calls execute on the same node as the procedure that called them. For
example, the following two function definitions implement the location functions
node(i) and mesh_node(i ,j), which compute the location of a procedure that is to
be mapped to the ith node of an array and the (i ,j)th node of a mesh, respectively.
Note the use of a match (?=) to access the components of the mesh topology type.
The per cent character, "7,", is the modulus operator.

[Example location functions: loc.pcn]

function node(i)
{li return(i_nodes()))

function mesh_node(i, j)

{? topology() ?= {"mesh", rows, cols>->
return((i,rows + j)_nodes() 1,

default -> error()

The following composition uses the function node(i) to locate the procedure
calls p(x) and c(x).

{[[p(x) Q node(10), c(x) @ node(20)}

Location functions are often used in the iterative construct called quantification
(see§4.7).

The following two procedures use quantifications and the location functions de-

fined previously to execute the procedure work in every node of an array and mesh,
respectively. For example, a call to array on a 1024-processor computer will create
1024 instances of work(), one per processor. (In practice, we may choose to use a

more efficient tree-based spawning algorithm on a large machine.)

53

array()
_[[i over 0 .. nodes()-I ::

cork () @ node (i)

mesh()
_? topology() ?= _"mesh", toes, cols_->

_[[i over 0 .. roes-1 ::

[[j over 0 .. ¢ols-1 ::
cork() @ mesh_node (i0 j)

default -> error()

Virtual Topologies and Map Functions. The ability to specify mapping by

means of location functions would be of limited value if these mappings had to be
specified with respect to a specific computer. Not only might this computer have a
topology that wa_ inconvenient for our application, but the resulting program would
riot be portable.

PCN overcomes this difficulty by allowing the programmer to define mappings
with respect to convenient virtual topologies rather than a particular physical topol-
ogy. A virtual topology consists of one or more virtual processors or nodes, plus
a type indicating how these nodes are organized. For example, 512 nodes may be
organized as a one-dimensional array, a 32 x 16 mesh, etc.

The embedding of a virtual topology in another physical or virtual topology is
specified by a system- or user-defined map function. A map function is evaluated
in the context of an existing topology; it returns a tuple containing three values:
the type of the new embedded topology, the size of the new topology, and the
function that is to be used to locate each new topology node in the existing topology.
For example, the following function embeds a mesh of size rows x cols in an array
topology; the mapping will be performed with the location function node provided
previously in program lot.pen. Note that the map function does not check whether
the new topology "fits" in the old topology. It is quite feasible to create a virtual
topology with more nodes than the physical topology on which it will execute.

54

"' IExample Map Functionl

function mesh.in_array(rows, cols)

47 topology ?= {"array", n} ->

4[[type = {"mesh", rows, cols},
size - rows*colsp

map_fn = {"call",{":","loc","node"},[] ,[]},
return({type, size, map_fn>)

).
default-> error()

}

The assignment to the variable map_fn defines the function (in this case, loc: node ())
that is to be used to compute the location of each new virtual node. The syntax for
this is

var = {"call", {" :" ,module,procedure}, [argo,... ,argn], [] }

and specifie_ that the location function module:procedure(arg0,... ,argn) is to
be used. The procedure arguments supplied in this "call" tuple will be prepended to
the arguments that are supplied when the metacall using this "call" tuple is made.

This ugly syntax is due to a current limitation in the compiler that will be
remedied in a future release.

We use the infix operator "in" to specify the map functions that will generate
the virtual topologies used in different components of a program. For example, if

the mesh procedure specified previously is executed on an array computer, we may
invoke it as follows.

mesh() in mesh_in_array(rows,cols)

This map function, mesh_in_array, embeds a virtual mesh computer of size rows x cols
in the array computer.

Virtual topologies and map functions allow us to develop applications with re-
spect to a convenient and portable virtual topology. When moving to a new machine,

it is frequently possible to obtain adequate performance with just a naive embedding

of this virtual topology. For example, our applications invariably treat ali computers
as linear arrays, regardless of their actual topology, and nevertheless achieve good
performance. If communication locality were important (for example, if we moved
to a machine without cut-through routing), we would probably have to develop a

map function that provides a more specialized embedding. This can generally be
achieved without changing the application code.

55

11 Port Arrays

Recallthatindividualprocessescommunicateby readingand writingshareddefini-

tionalvariables, as in the composition {1[producer(x), consumer(x)). The port

array provides a similar mechanism for use when composing sets of processes.
A port array is an array of definitional variables that has been distributed across

the nodes of a virtual topology. A declaration "port A[li] ;" creates a port array
A with li elements, distributed blockwise across the nodes of the virtual topology in
which the port array is declared. (That is, elements are located on virtual topology
nodes in contiguous, equal-sized blocks.) II must be an integer multiple of nodes().
Elements of a port array are accessed by indexing, in the same way as ordinary
arrays; the elements can be used as ordinary definitional variables. Each element of
a port array can only be accessed via indexing twice. This restriction allows memory
occupied by port arrays to be reclaimed automatically.

The following procedure uses port arrays for two purposes: first, to provide each
ring_node () process with definitional variables for use as input and output streams;
and second, to establish internal communication streams between neighboring pro-
cesses, so that each process has two streams, one shared with each neighbor. The
ith node of this structure is given elements I [ii and 0 [i] of tile two port arrays
I and 0 passed as parameters (for communication with the outside world), and two
elements of the local port array S. As in tile C programming language, the dimension
of an array passed as an argument is not specified. Notice the use of the informa-
tion function, nodes() (§ I0), to define a port array with one element per virtual
topology node.

[Example of Ports: ring.pcn]

ring(I, O)
port S[nodes()], III, 0[];
{[[i over 0 .. nodes()-t ::

ring_node(I[i], O[i], S[i], S[(i.t)Znodes()]) @ node(i)
)

The process structure created by a call to this procedure in a four-processor vir-
tual topology can be represented a_sfollows, with the solid lines indicating external
port connections and the dotted lines iaternal streams. The box separates the inter-

nals of the process structure from what is visible to other processes. The ring_node
procedure executed by each process can use the four definitional variables passed as

arguments to communicate with other processes.

56

I[0] I[1] 112] 113]

o[o] o[1] 0[2] o[3]

12 Reuse of Parallel Code

The ability to reuse existing code is vital to productive programming. The PCN
system supports two forms of reuse: reuse of sequential code written in C or Fortran,
and reuse of parallel code written in PCN. The former, which is discussed in § 8,
is important when migrating existing sequential applications to parallel computers;
the latter is _ecoming increasingly important as our parallel code base grows.

Cells. Our approach to the reuse of parallel code is based on what we term a
soJ'twa_ cell: a set of processes created within a virtual topology to perform some
distinct function such as a reduction or a mesh computation, and provided with
one or more port arrays for communication with other program components. We
have already seen several examples of cells: for instance, the procedure ring in the
preceding section implements a cell that performs ring pipeline computations.

The interface to a PCN cell consists simply of the port arrays and definitional

variables that are its arguments. A cell definition does not name the processors on
which it will execute, the processes with which it will communicate, or the time
at which it expects to execute. These decisions are encapsulated in the code that

composes cells to create parallel programs: a virtual topology specifies the number
and identity of processors, port arrays specify communication partners, and the PCN
compiler handles scheduling. As we will see in subsequent examples, the simplicity
of this interface allows cells to be reused in many different contexts.

Templates. The ring cell would be more useful if the code to be executed at each
node could be specified as a parameter. This is possible through the use of metacaJls
(§ 9), and in this case we refer to the cell definition as a template, as it encodes a
whole family of similar cells. For example, the following is a template version of
ring. The procedure to be executed is passed as the parameter op, which is quoted
in the body to indicate that it is used as a variable.

57

Example TemplateI

ring(op, I, 01
port S[nodes()], IQ, 0[];
{ll i over 0 .. nodes()-i ::

'op'(I[i], O[i], S[(i+l)Znodes()], S[i]) Q node(i)

'i his template invokes the supplied procedure with four definitional variables as
additional arguments. For example, if ep has the value nbody(p), then a proce-
dure call nbody (p,dl, d2, d3,d4) (dl.. d4 being the variables from the port array)
is invoked on each node of the virtual topology. Ali parameters to ep must be def-

initional variables; it is the programmer's responsib_iity to ensure that the number
and type of these parameters match op's definition.

Example. We illustrate how cells and templates are composed to construct com-
plete applications. We make use of the ring template and also the following simple
input and output cells: load reads values from a file and sends them to successive
elements of the port array P; store writes to a file values received on successive
elements of port array Q. Both use the sequential composition operator to sequence
I/O operations.

load(file, P)

port P[] ;
•C; i over 0 .. nodes()-1 ::

; read(file, sZuff),
P[i] = stuff

)
>

store(file, Q)

portQD;
{; i over 0 .. nodes()-1 ::

write(file, Gill)

>

We compose the threecellstoobtaina procedurecomposethatreadsdatafrom

infile,executesa user-suppliedfunctionintheringpipeline(e.g.,a naiveN-body

algorithm),and finallywritesresultsto ouzfile. Note that althoughwe use a
parallelcomposition,data dependencieswillforcethe threestagesto executein

sequence.However,ifload were tooutputa streamofvaluesratherthan a single

valueper node,then thethreestagescouldexecuteconcurrently,as a pipeline.

58

.4

compose(param, infile, outfile)
port Pl[nodes()], P2[nodes()];
{il load(infile, Pl),

ring(nbody(param), Pl, P2),
store(outfile, P2)

>

Data flows from load to ring via port array Pl and from ring to store via
port array P2. This is illustrated in the following figure, which shows the process
structure created in a four-node topology.

Pl

The complete program executes in an array topology ("compose (param, if, of) in array ()')
and will create a ring with one process per node of that topology.

13 Using Multiple Processors

A PCN program annotated with process mapping directives will execute correctly
on a single processor. However, in order for the mapping directives to improve (or
degrade!) performance, it is necessary to run the program on multiple processors.

The syntax used to start PCN on multiple processors varies according to the type
of parallel computer. On multicomputers, we are generally required first to allocate
a number of nodes and then to load the program in these nodes. For example, on
the Intel iPSC/860, we must log into the host computer (System Resource Manager:
SRM) and type the following commands to allocate 64 nodes, run the program, and
finally free the allocated nodes.

59

getcube -t 64

load myprogram ; waitcube
% klllcube

relcube

On multiprocessors (e.g., a shared-memory Sun multiprocessor), we generally
need only to add a -n flag to the command line when running the program. For
example, to run on 4 processors, we type the following.

myprogrammyargs -pcn -n 4

The -pcn argument tells the run-time system that ali subsequent arguments are
run-time system arguments (not arguments meant for the user's program). The -n
4 run-time system argument says to run this program on 4 processors.

The -n option can also be used to spawn multiple communicating PCN nodes
on a uniprocessor workstation. This is not normally useful, however, as ali nodes
will just multitask on that workstation's simple processor. However, this option can
be useful for debugging purposes under certain circumstances.

When running on a network, we generally need to either list on the command
line the names of the computers on which to run nodes, or provide a configuration
file indicating the names of the computers on which PCN is to run. See § 23 for
more information about running PCN on networks.

For details about how to use PCN on your computer, turn to the discussion of
machine dependencies in §§ 19-23.

14 Debugging PCN Programs

PCN provides a rich set of facilities for locating syntactic, logical, and performance
errors in programs.

14.1 Syntax Errors

Syntaz errors are detected and reported by the compiler. An error message consists

of the file name, a line number, and a message indicating the type of error.
Warning messages are also generated by the compiler to indicate type mis-

matches between procedure definitions and calls, etc. It is good programming prac-
tice to write programs that do not generate warnings.

6O

14.2 Logical Errors

Support for detection of logical errors is provided by the debugging version of the
PCN run-time system. To use this version, you must add a -pdb argument to the

pcncomp link line. Use of this version is recommended during program development.
This debugging version provides a wide range of capabilities, including

1. Bounds checking is performed on ali array and tuple accesses.

2. Checks are made for circular references, such as would be caused by {[[AffiB,BfA}.

3. The data immediately preceding and following data structures that are passed
to foreign procedures are checked for validity upon return from the foreign
procedure. This can help in locating array bounds violations in foreign code.

4. If you add a -gc after foreign as a run-time system command line argu-
ment (i.e., after the -pcn argument), a "garbage collection" (a technique for

reclaiming unused storage) is invoked immediately after every foreign proce-
dure call. This can help in tracking down ft eign code that is corrupting PCN's

internal data structures. A garbage collection involves a full consistency check
of PCN's data structures. Since pure PCN code should never corrupt these

data structures, a garbage collection failure while using this feature normally
indicates that the previously called foreign procedure wrote outside its proper
bounds. If the run-time system crashes with this feature turned on, the fatal
error message that is printed will contain the name of the last foreign procedure
that was called.

5. PCN object flies (i.e., .para flies) can be dynamically loaded into an executable

at run-time. This feature eliminates the need to relink your program each time
you modify a PCN source file, and therefore can greatly speed the debug cycle
of PCN programs. See § 15.9 for the details of this feature.

6. Typing Control-C ('C) during program execution provides access to the PCN
symbolic debugger, PDB (§ 15).

Additional, low-level logical debugging support is provided by command line

arguments that cause the PCN run-time system to print detailed information about
individual procedure calls. These facilities are described in § 27; their use is not

recommended in normal circumstances. This low-level debugging support can also
be accessed through PDB variables.

14.3 Performance Errors

We use the term performance error to refer to programs that compute correct an-

swers but for some reason do not make efficient use of available computer resources.
Two tools are integrated with the PCN system to assist in the detection of perfor-

mance errors: Gauge and Upshot. These are described in § 16 and § 17, respectively.

61

Gauge is an execution profiler: it collects information about the amount of time
that each processor spends in different parts of a program. It also collects procedure
call counts, message counts, and idle-time information. Two properties of Gauge
make it particularly useful: profiling information is collected automatically, without
any programmer intervention, and the volume of information collected does not
increase with execution time. A powerful data exploration tool permits graphical

exploration of profile data.
Upshot is a more low-level tool that can provide insights into the fine-grained

operation ,_f parallel programs. Upshot requires that the programmer instrument
a program with calls to event logging primitives. These events are recorded and
written to a file when a program runs. A graphical trace analysis tool then allows
the programmer _,oidentify temporal dependencies between events.

62

Part II

Reference Material

15 PDB: A Symbolic Debugger for PCN

Debuggers play an important role when programming in any language, including
PCN. However, PCN is considerably different from sequential languages such as C
and Fortran. For example, PCN uses both light weight processes and dataflow syn-
chronization extensively. Therefore, a PCN debugger must have special capabilities

designed to meet PCN's atypical requirements.
PDB, the PCN debugger, fits this bill. It incorporates features found in most

debuggers, such as the ability to set breakpoints on procedures, interrupt execu-
tion, and examine program arguments. In addition, it incorporates capabilities that
support atypical features of PCN, such as light weight processes and dataflow syn-
chronization. In particular, PDB allows you to examine enabled and suspended
processes and to control the order in which processes are scheduled for execution.

15.1 The PCN to Core PCN Transformation

The operation of PDB is complicated by the fact that the PCN run-time system
does not support PCN directly, but rather a simpler language called core PCN,
which lacks sequential composition and nested blocks. The PDB debugger operates

on core PCN rather than PCN; hence, some understanding of the transformations
used by the compiler to translate PCN to core PCN is necessary before PDB can be
used effectively.

Nested Blocks. Nested blocks within PCN programs (except for sequential or
parallel blocks nested in a top-level choice block) are replaced with calls to separate
auxiliary procedures that contain these blocks. An auxiliary procedure is given the
name of the procedure from which it was extracted, followed by an integer sumx.
The choice of integer sumx is somewhat arbitrary; in general, however, suffixes are
assigned in the order in which the corresponding auxiliary procedure calls appear in
the original procedure.

Sequential Composition. Additional auxiliary procedures may be introduced as
"wrappers" on operations occurring in sequential compositions. A wrapper delays
execution of an operation until previous computations in the sequential composition
have completed.

Wrappers are also generated to encode calls to primitive operations for which
arguments may not be available at run time. Such wrappers delay computation
until definitional arguments are defined. For example, a wrapper for the assignment
x:--y, where y is a definition, will delay execution until y has a value.

Wrappers are named in the same manner as other auxiliary procedures: with a
procedure name followed by a number.

63

Sequencing Variables. Every procedure has two additional variables added to
its argument list. These variables are used for sequencing of procedure calls. They
are commonly referred to as the Left and Right sequencing variables. A procedure
will suspend until its Left variable is defined. When the procedure and its offspring
have completed execution, Right is defined to be the same as Left. These variables
often (but not always) occur at the end of the argument list.

Within a sequential block, the Right variable of one procedure call is the same as
the Left variable of the next. This ensures that procedures execute in strict sequence.
For example, the sequential block

Example of a sequential block

p()
_; q(),

r(),
s()

is transformed to a procedure similar to the following.

Example of a transformed sequential block

p(L,R)
data(L) ->

_ll q(L,MI),
r(MI,M2),

sCM2,R)
>

Within a parallelblock,allprocedurecallsusetheparentprocedure'sLeftvari-
ableas theirown Left,and a temporaryvariableas theirRight.The temporary

Rightvariablesarepassedto a barrierprocedurewhich definesthe Rightvariable

forthe parallelblockwhen allof the temporaryvariablehave been defined.For
example,theparallelblock

Example ofa parallelblock

p()
•CI I q().

rC),
s()

)

is transformed to a procedure similar to the following (where p. 1 is the barrier
procedure).

64

Example of a transformed parallel block

p(L,R)
data(L) ->

•[II q(L,MI),
r(L,M2),
s(L,M3),

p.1(MI,M2,M3,R)
>

p.1(Ml,M2,M3,R)
data(Ml), data(M2) -> R = M3

Barrier Processes. As demonstrated in the preceding example, the PCN com-

piler sometimes generates calls to special barrier procedures. These are used to orga-
nize synchronization of procedures in a parallel block. These auxiliary programs are
named in the same manner as other auxiliary procedures created by the compiler.
However, they can usually be distinguished by the fact that ali but one of their
arguments are the Right synchronization variables of other procedures. Fortunately,
these auxiliary barrier procedures can generally be ignored when debugging.

Wildcards. A procedure name is a rood:procedure pair. Some PDB commands
that take procedure names as arguments allow the use of a limited form of a wildcard
facility to specify a set of procedures. An asterisk (*) placed at the end of a procedure
name designates ali procedures that begin with the specified name. For example,
rood:program1, designates all procedures in module rood whose names begin with
program1. The degenerative case of a procedure wildcard is simply a * (e.g., rood: *).
In this case, ali procedures within the appropriate module are specified.

Module names can also be specified with this limited wildcard facility. For
example, a module wildcard of env* designates all modules whose names start with
env, and a simple * designates ali loaded modules.

15.2 Obtaining Transformed Code

As described in § 15.1, a PCN program is transformed to core PCN before execution.
When debugging programs with PDB it is often helpful to have this transformed
version of the code available for reference, since that transformed version is really
the code that is being executed.

When compiling your PCN program, you can have the compiler dump the trans-
formed version of your program simply by adding a -dumpafter basic flag to the
pcncomp compile line. Assuming the original PCN program is named prog.pcn, a
file named prog.basic.dump wi'" be created that contains a nicely formatted rep-
resentation of the transformed PCN program.

65

15.3 Naming Processes

Execution of a PCN program can create a large number of lightweight processes.
Each process executes a PCN procedure -- either a procedure named in the originM

source, or an auxiliary procedure introduced by the transformation to core PCN.
In order to simplify the task of distinguishing between the many processes that

may be created during execution of a program, PDB associates three distinct labels
with each process.

1. The name of the procedure that the process is executing (nonunique).

2. An instance number (unique).

3. The process reduction in which the process was created (nonunique).

Note: A reduction is one completed execution of a process. The run-time system
keeps a reductions counter that it increments after each reduction.

As we shall see in §15.5, PDB also provides information about the status of a

process, for example, whether it is able to execute or is waiting for data.

15.4 Using the Debugger

Linking with PDB run-time system. To use PDB, you must link your program
with the PDB version of the run-time system. This is accomplished by simply adding
a -pdb argument to the pcncomp link command.

-pdb command line argument. When you run your program, if you add a
-pdb run-time system command line argument (i.e., after the -pcn argument), your
program will be interrupted and control passed to PDB before any PCN procedures
are executed.

Control-C. Once your program is running, you can enter PDB by interrupting the
program with an interrupt signal. This signal is typically invoked by typing Control-
C ('C). If you interrupt your program while it is executing a foreign procedure, that
foreign procedure will be completed before control is pa.ssed to PDB.

Once control is passed to the debugger, PDB commands can then be used to
examine the state of the computation, set breakpoints on PDB procedures, en-

able/disable debugging on procedures, or resume execution of the PCN program.
Once resumed, normal PCN execution continues until you interrupt the program
execution again or until a breakpoint is encountered, causing control to revert back
to the debugger. It is also possible to specify that control pass to the debugger if the
active queue becomes empty. This is accomplished by setting the debugger variable
empty queue break (§ 15.7).

.pdbrc When a program that is linked with the PDB version of the run-time
system starts up, it searches for a .pdbrc file in the current directory, and then in
your home directory ('). Any PDB commands found in such a file are executed.
This feature allows the state of PDB to be initialized every time PDB is run.

66

Abbreviating PDB Commands. PDB commands can be abbreviated to the
shortest string that uniquely identifies the command. (There are a few exceptions
to this rule. For example, since the show command is typically used extensively, it

can be abbreviated to s, even though s does not uniquely identify this command.)
To find out the shortest abbreviation for PDB commands, use the PDB help

facility by typing help at the PDB command prompt.

Help. PDB has extensive online help -- type help at the PDB command prompt
for more information.

15.5 Examining the State of a Computation

We now describe the PDB commands used to examine the state of a PCN compu-
tation. For you to understand how these commands work, we need to say a little
bit about how the PCN run-time system manages execution of PCN programs.

Queues. The PCN run-time system manages the execution of processes created to
execute procedure calls in parallel blocks. Like a simple computer operating system,
it selects processes from an active queue and executes them either until they block
because of a read operation on an undefined definitional variable or until a timeslice
is exceeded. In the former case, the process is moved to a variable suspension queue

associated with the undefined definitional variable (unless the process requires two
or more variables, in which case it is moved to a global suspension queue). In the
latter case (a timeslice), the process is moved to the end of the active queue. PDB
also maintains a fourth pending queue. This is used to hold processes from the active
queue that the user has indicated are to he delayed (i.e., removed from consideration
by the PCN scheduler).

In summary, every PCN process is to be found on one of the following four
queues:

active The active queue contains processes that may be scheduled for execution.

pending The pending queue contains processes that the user has tagged to be de-

layed. These cannot be executed until returned to the active queue.

globsusp The global suspension queue contains processes that are suspended on
more than one variable.

varsusp The variable suspension queue contains processes that are suspended on
just one variable.

When describing commands, we shall use the notation <queue> to represent a

queue selector-- one of active, pending, globsusp, and varsusp; or suspension
(bothglobsusp and varsusp)and all (allprocessqueues).

We shallalsouse thenotation<process> to representa processspecification;

thisisone ofthefollowing:

67

• n: n is an integer, representing an index into a process queue;

• m - n: m and n are integers, representing a range of indices into a process
queue;

• #n: n is an integer, representing a process instance number;

• *n: n is an integer, representing the reduction during which a process was
created;

• Uh: h is a hexadecimal number, representing an undefined variable that is
somewhere in a process's argument list;

• modulename:blockname, representing ali processes of a given name;

• all.

As noted in § 15.1, a limited wildcard facility allows a sir, gie <process> specifier to
represent several processes.

Examining Queue Contents. The summary, list, and show commands allow
the user to examine the four process queues at increasing levels of detail. These
commands (and the queue-manipulation commands described in the next section)
operate only on processes executing procedures for which debugging is enabled. The
set of enabled procedures is initially ali procedures; the set can be modified by using
the debug and nodebug PDB commands.

In the following descriptions, all arguments that are listed within square brackets
([]) are optional:

summary [<queue>] [<process>]: prints a summary of the contents of the des-
ignated <process> on the designated <queue>. This includes module and
procedure names (sorted by module and then procedure) and the number of
occurrences of each procedure on each queue.

list [<queue>] [<process>]: prints a short listing of the processes specified by
<process> on the specified <queue>.

show [<queue>] [<process>]: prints a detailed description of the processes specified
by <process> in the specified <queue>. If the process is on the variable
suspension queue, the variable that it requires in order to continue execution
is also shown.

Modifying Queues. The move and switch commands are used to control how
processes in the active queue are selected for execution. They can be applied only
to the active and pending queues.

move <queue> <process> [<where>]: This moves zero or more designated pro-
cesses in a designated queue (active or pending) to immediately before po-
sition where in the same queue. If where is end, then the designated processes

are moved to the end of the queue. By default, <where> is end.

68

switch <queue> <process> [<where>]: This moves zero or more designated pro-

cesses from a designated queue (active or pending) to the other queue (i.e.,

pending or active, respectively), inserting them immediately before position
where. If where is end, the designated processes are placed at the end of the

queue. By default, <where> is end.

15.{i Breakpoints

PDB allows breakpoints to be set on PCN procedures. When a process that is

executing a procedure for which a breakpoint is set is scheduled for execution, the

run-time system will interrupt the program and pass control to PDB.
Note that a process may be scheduled for execution several times before it is

able to complete. For example, a process may be scheduled but will subsequently

suspend because of an undefined variable. When that variable is later defined, the
process will again be scheduled. A breakpoint on that process's procedure will cause
a break into PDB each time the process is scheduled.

The break,delete,enable,and disable commands control breakpoints, and

status prints information about breakpoints.

break [<module>:<procedure> ...]: Set a breakpoint on the specified procedure.
If no procedures are given, then aU current breakpoints are listed.

delete [<breakpoint number> ...]: Delete the specified breakpoint number. The
breakpoint number can be determined by running the break command with
no arguments. If no breakpoints are given, then ali breakpoints will be deleted.

disable <breakpoint number> ...: Disable (but do not delete) the specified break-
point.

enable <breakpoint number> ...: Enable the specified breakpoint.

status [<module>:<procedure> ...]: Print breakpoint status information about
the specifed procedure(s).

15.7 Debugger Variables

PDB maintains a number of internal variables that can be included in some PDB

commands and, in some cases, modified by the programmer. PDB variables are
distinguished in expressions by a prefix $.

Modifiable Variables. The following variables can be used to control aspects of
PDB's behavior. They can be modified within PDB by using the "=" command.

Sprint array size: An integer representing the maximum size (i.e., number of
elements) of an array displayed by print.

Sprint 1;uple depl;h: An integer representing the maximum depth of a tuple dis-
played by print.

69

Sprint tuple width: An integer representing the maximum width (i.e., number of

elements) of a tuple displayed by print.

$eraulator dl: An integer representing the emulator debug level. This turns on
the printing of debugging information in the main emulator loop. It takes an

integer value between 0 and 9, where 0 is no debugging and 9 is the most
debugging. See § 27 for more information on this variable.

Sgc dl: An integer representing the garbage collection debug level. This turns on
the printing of debugging information in the garbage collector. It takes an

integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging. See § 27 for more information on this variable.

$parallel dl: An integer representing the parallel code debug level. This turns on
the printing of debugging information in the parallel emulator code. It takes

an integer v'_lue between 0 and 9, where 0 is no debugging and 9 is the most

debugging. S_e § 27 for more information on this variable.

Sglobal dl: An integer representing the global debug level. This turns on the
printing of debugging information not covered by the $emulator dl, $g¢ dl,

or $parallel dl debug setting. It takes an integer value between 0 and 9,
where 0 is no debugging and 9 is the most debugging. See § 27 for more
information on this variable.

Sreduction break: An integer representing the next reduction at which to break
into PDB.

Sempty queue break: A Boolean value. When this value is set to yes, the system

will break into PDB whenever the process queues are empty, and therefore
there are no schedulable processes. When this value is set to no, the system

will not break into PDB whenever the process queues are empty.

Sprint orphaned: A Boolean value. When this value is set to yes, the system will

print out a warning when it encounters an orphan process (§ 15.10) during a
garbage collection.

Read-Only Variables. The following variables contain information about various

aspects of the state of the computation. They can be included in expressions but
cannot be modified directly.

Smodule: The name of the current module (i.e., first process on the active queue).

Sprocedure: The name of the current procedure (i.e., first process on the active
queue).

Sargs: The arguments of the current process. Note that this variable is defined only
at the entry to a block.

$instance: The instance number of the current process.

7O

Sreduction : The reduction during which the current process was created.

$current reduction: The current reduction number.

15.8 Miscellaneous Commands

This section describes miscellaneous debugger commands that were not described in
other parts of this manual.

In the following, <expr> denotes either a PCN variable name (to be interpreted

in the context of the current process) or a constant.

abort: Abort execution of the PCN run-time system. See also continue, next, and

quit.

continue: Continue with next process (head of the active queue). See also abort,
next and quit.

debug < module> :<procedure> ...: Enable debugging in the specified module:procedure.
See also nodebug.

help [< topic> :] Give help for topic. If topic is left off, then general help will be
given.

load <filename>: Load the .para file, filename, into the run-time system.

modules: List the names of the modules that are currently loaded in the system,

indicating for each whether it was compiled in debug mode (in the current
PCN release, this column always says "n') and whether debugging is enabled.

next: Execute the next process (head of the active queue), and then break into the
debugger again when it has completed. See also abort, continue, and quit.

nodebug <module>: Disable debugging in the specified module:procedure. See also
debug.

print <expr>: Print the given expression. An expression is a variable, integer,
real, or string. <expr> is either a single expression or a comma-separated list
of expressions that is enclosed in parentheses.

procedures <module>:<procedure> ...: Print various information about the spec-
ified procedure(s).

quit: Quit from the debugger; disable debugging on ali modules. See also abort,
continue, and next.

source <filename>: Execute the PDB commands that are in the file filename.

vars: List the names and values of ali PDB variables.

71

15.9 Dynamic Loading of .para Files

The PCN linker is relatively slow. In order to accelerate the modify-compile-link-

test program development cycle, PDB supports dynamic loading of PCN object files
(i.e., .para flies), which eliminates the link step from this cycle when PCN files are
modified.

When a .para file is dynamically loaded into a running program, the procedures
in that file simply replace previously linked versions of those procedures. If there
are procedures in this .para file that did not previously exist in the executable, then
they will be added.

The -pdb flag must be passed to the linker (via pcncomp) if dynamic loading is
to be used. The -link all flag is also recommended. The latter flag tells the linker
to include ali procedures in ali modules named on the command line, rather than
just those procedures reachable from the entry point. This ensures that standard
libraries, such as sys and stdio, are included in their entirety. Thus, you can dy-
namically load code that calls library procedures that were not called in the original
program.

For example, you might link your program with the command:

pcncomp -pdb -link all mymodt.pam mymod2.pam -mm mymodt -o ,,yprogram

There are two ways in which .para files can be dynamically loaded:

From the command line: You can use the -load command line argument to
cause a set of .para flies to be dynamically loaded before any PCN procedures
are executed. For example, the command

myprogr_ myargs -pcn -load mymodl.para:mymod2,pam

will dynamically load the procedures in mymodl.pam and mymc_2.p_m into
myprogram, overwriting those provided at link time.

From the PDB prompt.: The load command descibed in § 15.8 will dynamicly
load .para flies into the executable. This, of course, means that you can dy-
namically load . parafiles from a . pdbrc file, which is a useful feature if you are
repeatedly running the program and do not wish to type the -load command
line argument each time.

15.10 Orphan Processes

An orphan is a process suspended on a variable for which there are no potential

producers (more precisely, a variable to which no other process possesses a reference).
Such a process can never be scheduled for execution. A program that generates
orphan processes is not necessarily erroneous. However, it is good programming
practice to ensure that orphans are not generated (i.e., that all processes in a program

terminate).

72

r,mp,,,,rr lp,

Orphan processes can be detected by the garbage collector invoked by the PCN

ru_-time system to reclaim space occupied by inaccessible data structures. Normally,

the garbage collector destroys these processes silently. However, the PDB version of
the PCN run-time system prints a warning message for each orphan encountered.

The PDB variable, Sprint orphaned, can be used to disable these orphan, pro-

cess messages (see § 15.7).

16 The Gauge Execution Profiler

Gauge is an execution profiler for PCN programs. It collects profile data such as the
time spent in each procedure on each node, the number of times each procedure is
called, idle times, and internode message counts and volumes. This profile data can
subsequently be graphically displayed by using an interactive data exploration tool.

16.1 Linking a Program for Profiling

In order to collect a Gauge profile on a program, you must first link your program
with a version of the run-time system that supports profiling. To do this, simply
add a -profile to your pcncomp link command, for example:

pcncomp myprogram.pam -o myprogram -mm myprogram -profile

By default, only procedures from the the user's modules, the stdio library, and sys
library are profiled; the system modules used to implement process mapping, etc.,
are ignored. However, you have full control over which modules will be profiled,
through the use of linker arguments:

-no nmp: Turns on full profiling, including system modules.

-nmp <module>: Turns off profiling on the module. (NMP stands for No Module

Profile.)

16.2 Profile Data Collection

A profile is generated by executing your program with a -gauge and/or -gauge file
command line argument. The profile will be performed on ali nodes, and on ali

modules for which profiling was enabled during linking. If the -gauge flag is used,
the profile will be written into the file profile, ent. The -gauge filo flag allows

a different filename to used. For example, the following command runs myprogram
and writes a profile into the file myprof, tnt.

myprogram -pen -gauge 'file myprof, cnt

73

16.3 Snapshot Profiles

By default, a profile will be taken only at the end of the run and is cumulative
for the entire run. However, it is sometimes useful to examine several profiles of

your program collected at various stages of execution. This can be accomplished by
calling

profile snapshot(snapshotname)
M

in your program, where snapshot name is a string that will be used to name the
snapshot. A call to this foreign procedure on any node will cause a snapshot profile
to be generated on ali nodes. (Note that this means that it is a serious mistake

to call profile snapshot() on every node; this will generate P snapshots, each

involving ali P processors.) Each snapshot is cumulative - the profile is not reset
after a snapshot, so procedure executions times, etc., include the times from previous
snapshots.

A call to profile snapshot() has no effect unless you have linked with the
profiling version of the run-time system (i.e., used the -profile flag when linking),

and you have enabled profiling (i.e., used the -gauge or -gauge file command line
flag). Hence, calls to profile snapshot() can be maintained in a program and
enabled when required from the command line.

16.4 Data Exploration

Gauge provides an X-windows-based graphical interactive teel for exploring profile
data collected by using the methods described above. This teel combines three sorts

of data to provide detailed information about execution time on a per-procedure and

per-processor basis, idle time, number of messages, volume of messages and other
program execution statistics. These data are

• instruction counts collected by the compiler,

• profile data collected by the run-time system when a profile is taken, and

• information about the computer on which the program was run.

The Gauge analysis teel gets the first and second of these from the .cnt file that
is produced by the run-time system when a profile is taken. The third is taken from

the host file which may need to be specified by the user (see §16.5).

The data exploration teel is invoked by typing the following Unix command:

gauge

This creates a top-level window with three parts. The top section of the window is
a command window. You can click the left mouse button on one of the commands

to obtain help, to exi'c, or to invoke the gauge analysis window. The middle section
indicates the current directoi_y. The bottom window gives a list of. cnt and . cnt. Z

(compressed .cnt) files and directories in the current directory. Files are selected

74

by pressing the left meuse button while the pointer is over the file name. If you wish

to change selections, just press the left mouse button over a different file, or no file
if you want to eliminate all selections.

The directory window serves two purposes. If you select a .tnt file in the
directory window using the left mouse button and then select the Gauge command
from the top row of buttons, (: Ige is invoked on that file. Gauge can also be

invoked on a . ent or . tnt .Z file by double-clicking on its name in the directory

window. Double-clicking on a directory name opens that directory, thus allowing
navigation of the directory system.

Gauge has an online help facility. To use it, select the "help" button on any

window. Either the scroll b_r or the page-down (Control-v) and page-up (Meta-v)
commands can be used to position the help text within the help window. When
finished, you can dismiss the help screen using the close button on the bottom of

the screen. If you leave the screen up, it will be reused to display the next help

message.
Occasionally something might go wrong, and Gauge will generate a warning

message in a popup window. Nothing else can be done until this window is dismissed
by clicking the left mouse button in it.

The only command-line arguments recognized by Gauge are those recognized by
the X Toolkit Intrinsics. This means that X-windows arguments such as -icon can
be used.

16.5 The Host Database

When you invoke Gauge on a . cnt or . ent. Z file, a warning message may be dis-
played indicating that your machine does not appear in the host database. (Click
on the warning window to make it disappear.) This means that you must add the
machine on which your application was run to the host database that Gauge accesses
to determine various machine characteristics when displaying performance data.

The program penhost is provided to simplify the task of adding entries to the
hostdatabase.A calltothisprogram has theform

pcnhost m_tchin_type

or

pcnhost -h hosl;namemachinetype

The machinetype argument specifies an architecture type for machine computer
hoscname. If a host name is not specified, the name of the machine on which the
pcnhost command is executed is added to the database. The following machine
types are currently supported:

• symmetry-b, symmetry: Sequent Symmetry Rev. B

• sparcstal;ion-1, ssl, sun4: A Sun SPARCstation 1

• sun3: A Sun 3 workstation

75

. next040:A NeXT workstation

• iris:An SGI Irisworkstation

• s2010:A Symult s2010multicomputer

• rs6000:An IBM RS/6000 workstation

• ipsc860:An InteliPSC/8f0 (i860processingnodes)

• ipscii:An InteliPSC/II(386nodes)

Notethatupdatestothedatabasearenotsynchronized.Ifmore thanone update

isbeingmade simultaiLeously,informationcan be lost.

16.6 X Resources

Gauge requiresa resourcefiletooperateproperly.Thisshouldbe in

$(INSTALL DIR)/lib/app-defaults/gauge

where $(INSTALL DIR) isthe directorywhere gauge has been installed(typically,
/usr/local/pcn).The command

xrdb -merge $(INSTALL DIR)llib/app-defaults/gauge

shouldbe added toone's.xinitrcor .xsessionfile.Ifa colorworkstationisbeing
used_

xrdb -merge $(INSTALLDXR)lliblapp-defaults/gauge,server

isalsoneeded.Of course,any customizedresourcefilescouldbe used.

Alternatively, you can run xrdb gauge before running gauge. The xrdb gauge
program simply executes the two xrdb commands shown above.

17 The Upshot Trace Analyzer

Upsho_ isa tracecollectionand analysistool.There arethreestepsthatyou need
toperforminordertouse UpshotwithPCN:

1.Instrumenta program.

2. Run your instrumentedprogram and collecta log.

3. Analyzethelog.

The laststeprequiresthatyou obtainand installtheX windows basedUpshot

logeventanalysistool.You canobtainitby anonymous rtpfrom:

info.mcs,anl.gov

inthedirectory

publupshol;

76

17.1 Instrumenting a Program

You instrument your program by adding calls to procedures which, when executed,
log a timestamped event. An event consists of a type and an optional task identifier
and data value. You can instrument PCN, C, and Fortran code.

To instrument your program, you must first add:

#include "pcn upshot.h"

to PCN and C sourcefilesthatwillcontaineventloggingcalls.

Then, the following calls can be added to your PCN, C, and/or Fortran source
to log Upshot events:

• LOGEVENT(event type)

• LOG TASK EVENT(task id, event type)

• LOG TASK EVErT DATA(I_askiU, event type, data val)

In thesecalls,task id and event type are positiveintegers,and data val isan

integer. None of thc:se calls return a value.

17.2 Compiling and Linking the Instrumented Program

In PCN and C code, the above-mentioned LOG, calls are actually macros that call
the correct procedures if the C preprocessor variable UPSHOTis defined, and which
do nothing if it is not. Therefore, when compiling your PCN and C source with
these calls, you need to add a -DUPSHOTargument to have them take effect:

pcncomp -c pcnsource.pcn -DUPSHOT
pcncomp -c csource.c -DUPSHOT

In Fortran, the above-mentioned LOG* calls are just calls to procedures that
are defined in the run-time system. Therefore, you can compile your instrumented
Fortran source as usual:

pcncomp -c fsource.f

When linking a program that contains event logging calls, you must add a
-profile flag to the pcncomp link command:

pcncomp pcnsource.pam csource.o -mm pcnsource -profile -o myprogram

77

17.3 Collecting a Log

A program that contains event logging calls stores events in memory when it is
executed. When it completes execution, it writes these events to files, one per
processor.

A program only collects a lo_ if the -upshot command line argument is specified.
For example:

myprogram myargs -pcn -upshot

This causes a log file to be written for each node on which the program is running.
These files are called log.0, log. 1, etc. The prefix of the log fi]ename can be
changed by using the -upshot file flag.

By default, a program only allocates memory for 10,000 events. An error is
reported if more than this number of events are logged. The maximum number of
log events can be changed by using the -upshot log size flag.

The following example collects a log during the execution of myprogram, puts
the logs in flies with a mylog prefix, and can record a maximum of 20,000 log events:

myprogram myaxgs -pcn -upshot file mylog -upshot log size 20000

17.4 Analyzing a Log

As previously mentioned, execution of a program with the -upshot argument pro-
duces one log file for eacl: node, for example, log.0, log. 1, etc. These files must
be merged by using the Unix command mergelogs to create a single log file, for
example,

mergelogs log.* > log

We can then call the Upshot visualization program to display a set of time lines,
one per processor, with the various events logged by our program displayed on the
appropriate time lines:

upshot -1 log

Frequently, we are not interested in the events themselves but rather in execution

states defined in terms of starting events and ending events. For examl_ie, we might
define a "busy" state as starting when an event is logged indicating that a message
ha_ been received on a stream, and ending when an event is logged indicating that
a response has been sent. We define states in a states file, specifying each state in
terms of a unique integer identifier, a starting and an ending event type, a color,
and a label, for example:

File my. sts

I I0 II blue init_ico

2 12 13 red init_rh

3 14 15 pink init_geo

4 16 17 yellow get_side

?8

Upshot does not support nested states. That is, it is not meaningful for a trace
to include sequences in which two start state events occur without an intervening
end state event.

The name of any state file is specified to Upshot by means of the -s command
line option, as follows.

upshot -I log -s my.sis

18 Standard Libraries

The sys and std£o modulesaredistributedwiththePCN systemand may be called
from withinuserprogramstoinvokea varietyofusefulfunctions.They areinvoked
viaintermodulecalls.

Inthefollowingdiscussion,thenotations̀[and T on program argumentsdenote

inputand outputarguments,respectively.

18.1 System Utilities

The sys module providesthefollowinggeneralutilityprocedures.

merger(Is,I,0sT) mergesmessagesappearingon inputstreamIs toproduceoutput

stream0s.IftheinputstreamIscontainsa messageoftheform{"merge",S},
thenthestreamS isalsomergedwith0s.The outputstream0s isclosedwhen

allmerged inputstreamsareclosed.(Cf.§ 4.10formore details.)

distribute(N`[,Is`[)distributesmessagesreceivedon inputstreamIs toN output

streams;outputstreamsarenumbered 0 to N-I.(Cf.§ 4.10formore details.)
The distributormay receivethreetypesofmessageon inputstreamIs:

{"attach",NI`[,S`[,DT}causesstreamS tobe attachedtooutputstreamnum-
beredNI;D isdefinedwhen theactioniscompletetosignifythatmessages
may subsequentlybe forwardedtostreamS.

{N21,M`[}causesthemessageM to be appended to outputstreamnumbered
N2.

{"all",MI} causesthemessageM tobe appended toalloftheoutputstreams.
(I.e.,Broadcastthemessagetoalloutputstreams.)

When theinputstreamIsisclosed,alloutputstreamsareclosed.(Cf.§ 4.10
formore details.)

hash(N_,Is`[)createsa hashtableofsizeN and receivesmessageson inputstream
Is.Four messagesmay be sentto a hash table:

79

{"add" ,IQ ,V_ ,ST} causes the value Vto be added to the hash table under key
I(; if there was already an entry for key K, then status S=O; otherwise S-i.

{"lookup" ,g_ ,VT ,sl'} causes a lookup operation on key g. If there is an entry
for key K, then V is the associated value and status $=1; otherwise S-O.

{"del",g_,VT} deletes the entry for key g and returns the value V associated

with the entry if one existed; otherwise returns -1.

{"dump" ,LT ,DT} dumps the contents of the hash table into a list L and defines
D when the operation is complete.

integer to list(II,LbT,Lel) difference list Lb-Le is defined to be the list con-
taining the integers of the ASCII representation of integer I.

list to integer(LI,IT) I is defined to be the integer that is represented by the
ASCII values (integers) in the list L.

integer to string(I_ .ST) S is defined to be the string that represents the integer
I.

string to integer(sl,IT) I is defined to be the integer that is represented by the

string S.

double to :l.ist(D_ ,LbT,Le_) difference list Lb-Le is defined to be the list contain-

ing the integers of the ASCII representation of the double D.

list to double(L_,DT) D is defined to be the double that is represented by the
ASCII values (integers) in the list L.

double to string(D_,ST) S is defined to be the string that represents the double
D.

string to double(S_,DT) D is defined to be the double that is represented by the
string $.

list to string(LI,ST) S is defined to be the string that is represented by the
ASCII values (integers) in the list L.

string to li.st (S_,LbT ,Le_) difference list Lb-Le is defined to be the list contain-

ing the integers of the ASCII characters in the string S.

list to tuple(L_,TT) T is defined to be the tuple with elements specified by list
L.

tuple to list (T_ ,LbT ,Le_) difference list Lb-Le is defined to be the list containing
the arguments of tuple T.

integer to double(I_,DT) D is defined to be the double cast of the integer I.

double to £ntager(D_,IT) I is defined to be the integer cast of the double D.

80

list length(LI,LenT) Len is defined to be the length (integer) of the list L.

list concat(Lll,L2l,LoutT) Lout is defined to be the concatenation of list LI

followed by list L2.

list member(element_,list_,statusT) status is defined to be the integer 1 if

element is a member of the list list, and the integer 0 if it is not.

left shift(Srcl,NI,DestT) Dest is defined to be the integer Src left shifted N

bits. (Dest = Src << N)

right shift(Src_,NI,DestT) Dest is defined to be the integer Src right shifted N

bits. (Dest = Src >> N)

ones complemen¢(Srcl,DestT) Dest is defined to be the one's complement of the

integer Src. (Dest = "Src)

bitwise and(Sr¢l_ ,Sr¢2_ ,DestT) Dest is defined to be the bitwise and of integers

Srcl and Src2. (Des¢ = Srcl & Src2)

bitwise or(Srcll,Src21,DestT) Dest is defined to be the bitwise inclusive or of

integers Srcl and Src2. (Desr = Srcl I Src2)

bitwise xor(Srcl_,Src21,DestT) Dest is defined to be the bitwise exclusive or of

integers Srcl and Src2. (Dest = Srcl " Src2)

double cast (From1 ,TOT) To is defined to be the double cast of the integer or double
From.

integer cast(From_,ToT) To is defined to be the integer cast ef the integer or
double From.

abs(From_ ,TOT) To is defined to be the absolute value of From. If From is a double,

then To will be a double. If From is an integer, then To will be _u integer.

string lengch(Sl,LenT) Len is defined to be the length (integer) of _).,_string S.

string concat(Sl_,S2_,SoutT) Sour is defined to be the string the:t i,:: the con-

catenation of string Sl followed by string $2.

string list concat(string list_,separator_,Sout'l') string list is a list of

strings, and separator is a string. Sour is defined to be the at.ring that is
the concatenation of the strings in string list :vith " '_,nr__e_re,_;or between
each.

find substring(string_,substring_ ,indexT) index is _<_li:_ed_o be the integer

location (starting with O) of the first occurence of the ._tri_5 substring in the
string string, or -1 if substring is not a substring of _ring.

81

find_substring_reverse(stringl,substringl,indexT) indexisdefinedtobe the

integerlocation(startingwithO)ofthelastoccuranceofthestringsubstring
in thestrint_string,or -Iifsubstringisnot a substringofstring.

substring(stringl,start1,1Gnl,substringT)substring isdefinedto be the
substringofstring startingatlocationstart (numberingstartswithO) with
thelength1en.If1en is-I,thenthesubstringstartingatstart throughthe

end of string will be extracted.

18.2 Standard I/O

The stdio module provides a set of PCN procedures that are analogous to the

C language standard input/output (stdio) library. It is important to realize that
calls to stdio are sequenced only if they occur within a sequential block. Output
generated by parallel calls to printf or other output procedures may be interleaved.

Most of the stdio procedures take an output argument, status. This argument
should be an undefined variable when the call is made. It will be defined by the
stdio procedure to an appropriate return code. This argument can be used both to
check the status of the I/0 call and to sequence subsequent execution if necessary.

The stdio procedures that deal with files rather than the keyboard or screen

require a file pointer (lp) argument. This argument should be a mutable of type
FILE (defined in the C header file pcn_stdio.h).

18.2.1 Reference

We now summarize the procedures provided by the stdio module. The arguments to
all of these procedures follow as closely as possible their corresponding C procedures.
Please refer to a C programming manual for more complete descriptions.

fopen(filenamel ,type1 ,rpT ,statusT) opens the file named filename. The file is
opened for the given type of I/0 operation, where type is a string containing

an appropriate combi_.ation of "r", "v", "a' ', and "+". The mutable fp is
assigned to be the file pointer, status is defined to be 0 if the open succeeds;

otherwise it will be set to the error number (C errno).

freopen (f ilenamel, type1, rpt 1, status T) like fopen (), except that it substitutes

the named file in place of the open stream, lp. This is typically used to attach
the preopened stdin, stdout, and stderr to specified files.

fdopen (f ildes l, type 1, rpT, sr atus _') opens the file with the integer file descriptor
fildes. The other arguments are the same as for fopen().

fclose(fpl ,statusT) closes the file designated by lp. status is defined to be E0F
if there is an error.

fflush(fpl ,statusT) flushes all buffered data for the output file designated by fp
to be written to that file. The file remains open. status is defined to be E0F
if there is an error.

82

putc(cl,fpl,statusT) appends the character c to the designated output stream

lp. status is defined to be the character written, or E0F if there is an error.

fputc(c_ ,fp_ ,status T) is the same as putc().

putchar(cl,statusT) is the same as putc() to standard output (the screen).

puts(sl,rpl,status1") appends the string a followed by a newline to standard
output. 8¢atus is defined to be E0F if there is an error.

fputs(al,fpl,statusT) appends the string s (not followed by a newline) to the

designated output stream lp. status is defined to be E0F if there is an error.

printf (forma¢_, argal, statusT) prints formatted output to standard output. The

format string accepts the same format as the C language's printf () proce-
dure, with two additions: it can contain a Xr, which means to print a grounded

term, and Xlt, which means to print an ungrounded term. The 7,t and Xlt
can also take an integer immediately after the X, which means to print only to

that depth. The args argument is a tuple of all the arguments to printf, as

required by the format. (Since PCN procedures cannot take a variable num-
ber of arguments, as in C, all of the data arguments must be combined into a

single argument using a PCN tuple.) status is defined to be the number of
characters written, or E0F if there is an error.

fprintf (rpl ,format_, args_, statusT) is the same as printf (), except that out-
put will go to fp rather than to standard output.

sprintf (bufT, format_, args_, status T) is the same as printf (), except that the
output is placed into the definitional variable bur.

getc(fp!,cT) gets one character from the input stream fp and defines it to c. c is
defined to be E0F on end of file or an error.

fgetc(fpl,cT) is the same as getc().

gecchar(cT) is the same as getc() from standard input (the keyboard).

ungetc(cl,fpl,statusT) pushes the character c back onto the input stream lp.
status is defined to be the pushed character, or E0F if there is an error.

gets(sl",statusT) reads a string from _tandard input and defines it to s. The
string is terminated by a newline character, which is replaced in s by a null
character, status is defined to be the number of characters read, or EOF

upon end of file.

fgets(sT ,ni ,lp1 ,statusT) reads n - 1 characters, or up through a newUne char-
acter, whichever comes first, from the stream fp and defines it to s as a string.

The newline is not removed as in gets(), status is defined to be the number
of characters read, or EOF upon end of file.

83

scanf (format_, argsT, statusT) is similar to tile scanf () procedure in C. It takes
its input from standard input and places the values that it reads in the defi-
nitional variables contained in the tuple args. Note: This procedure does not
support the %t argument for term scanning.

fscanf(fp_,format_,argsT,status T) is the same as scanf(), except that the
input comes from the passed stream, fp.

sscanf(bufl,formatl,argsT,statusT) is the same as scanf(), except that the
input comes from the passed buffer, buf.

stdout(fpT) assigns the mutable fp to be the file pointer for standard output
(stdout).

stdin(fpT) assigns the mutable fp to be the file pointer for standard input (stdin).

stderr(fpT) assigns the mutable fp to be the file pointer for standard error (stderr).

fseek(fp_,offset_,whence_,status T) calls the C fseek function with the lp,
offset, and whence arguments to set the position for the next input or output
operation on this file. The status argument is defined to be 0 if the operation
completes successfully, or-1 if it fails.

ftell(fp_,offsetT) calls the C ftell function with the fp argument. The offset

argument is defined to be the offset from the beginning of the file to the current
position, or -1 if there is an error.

rewind(rpl) calls the C rewind function with the fp argument to set the position
to the beginning for the next input or output operation on this file. This is
equivalent to fseekCfp,0,0,_).

fread(bufT,sizel,nitemsl,fpl,statusT) reads nitems of data, each of size
bytes in length, from the stream lp. bur is defined to a character array con-
taining this data. status is defined to be the number of items actually read,
or 0 upon EOF or error.

fwrite(buf_ ,size_,nJ.tems_,fp_ ,statusT) writes nitems of data, each of size
bytes in length, to the stream lp. bur is a character array containing the data
to be written, status is defined to be the number of items actually written,
or 0 upon EOF or error.

access (path_ ,mode_, status T) checks the given file, path for accessibility accord-
ing to mode. mode is the inclusive or of the bits It_OK, W_OK, and X_OK -
read, write, and execute (search) permissions, respectively. A mode of F_OK
(i.e., 0) tests whether the directories leading to the file can be searched and
the file exists, status is defined it 0 if the file is _ccessible.

remove(filename_,status T) removes the specified filename, status is defined

to 0 if the operation succeeded.

84

rename(oldnamel ,newnamel ,statusT) rename the file oldname to newname, status

is defined to 0 if the operation succeeded.

18.2.2 Examples

Opening and Closing Files. The following examples illustrates the use of the

fopen, fclose, stderr, and fprincf procedures. Note the include statement for

pcn_stdio.h, which includes a definition for FILE.

#include <pcn_stdio. h>

open_test (fname)

FILE lp, err;

{; stdio:fopen(fname, "r", lp, status),
{? status .s 0 ->

{; stdio:printf("File \"Xs\" opened\n",{fname},_),

/* ... */
stdio :fclose (lp,_)

Y.
default ->

{; stdio:stderr(err),

stdio:fprintf (err,

"Error opening \"ks\" for reading\n",{fname},_)

)
}

}

Writing to a File. This example opens a file pl:est for writing, writes the char-

acters ABC to this file, and then closes the file.

#include <pcn_stdio. h>

putc_zesz()
FILE fp;

{; stdio:fopen("p_est","w",fp,_),

stdio:putc('A' ,lp,_),

stdio:putc('B' ,lp,_),

stdio:putc(_C _,lp,_),

stdio: fclose (lp,_)

}

85

Writing to the Screen. This example writes the characters ABC followed by a

newline character to the screen (standard input).

#include <pcn_stdio. h>

pul;char_t est ()

{; 8tdio:putchar('A' ,_),

stdio :putchar('B' ,.),

sl;clio :pul;char (' C' ,_),

stdio :putchar (' \n', _)

}

Printing to the Screen. The following program uses the princf command to

print a variety of terms of the screen. Note the use of the Xt format command to

print arbitrary terms. When executed, the program acts as follows.

Str: A string
Real : -1.230000

List: ["A string" ,-I.230000, {"a", 1,2,3}]

Tup: {"a",I,2,3}

The program can be modified to write the same text to a file by adding an fopen

call, substituting fprincf for printf throughout, and finally closing the file.

[Module p_test .pcn]

#include <pcn_stdio. h>

print f_test ()

{; str = "a string",

r = 0 - 1.23, /* No unary minus in PCN */

tup = {"a",1,2,3},

is = [str,r,rup],

stdio :printf ("Str: Y,s\nReal: _,f\n",{str,r}, _),

stdio:printf("Lisr: Y,t\nTup: Y,r\n",{is,tup},_)

}

Creating Strings. We illustrate the use of the sprintf command to create a

string. When executed, the sprintf_ter, t procedure prints the string file_5.

86

#include <pcn_stdio.h>

sprintf_test()

{; i = 5,

stdio:sprintf(mystring,"file_Xd",{i},_),

stdio:printf("mystrin E = _s\n",{mystring},_)

}

Reading Characters. This example shows the use of the stdin and getc proce-

dures to read a seriesof charactersfrom the keyboard (standardinput). The pro-

cedure getc_test printsa prompt, reads charactersuntilan end oflineisreached,

_d then printsthe result.

Enter line: my line

Line entered: my line

The program can also be written by using the getchar procedure (which reads

directly from standard input), avoiding the need for the call to stdin.

[Module r_test .pen)

#include <pcn_stdio.h>

getc__est ()

FILE fp;

{; stdio :stdin(fp),

stdio:printf("Enter line: ",{},_),

get c_test I(lp,Is),

sys :list_to_string (ls,str),

stdio :printf("\nLine entered: _,s\n",{str},_)

}

getc_testI(lp.is)
FILE fp;

{; stdio: getc (lp,cb),

{? cn == '\n'-> Is = _,

default ->

{; Is = [chllsl],

getc_test I(fp,IsI)
}

}
}

87

19 Cross-Compiling

Pcncomp supports cross-compilation. For example, if _t Sun has the necessary C and

Fortran cross-compilers for the Intel iPSC/860, the Sun version of pcncomp can be
used to compile PCN programs for the iPSC/860.

To cross-compile PCN programs for some machine, add a -target target_name
argument to pcncomp compile and link commands. For example, the following com-
mands compile and link a program containing C, Fortran, and PCN source on the
Intel iPSC/860:

X pcncomp -c my_c.c -target ipsc860

pcncomp -c my_.f -target ipsc860

pcncomp -c my_cn.pcn -target ipsc860
pcncomp my_pcn.pammy_c.o my-f.o -mm my_pcn

-o myprogram -target ipsc860

Alternatively, the native C and Fortran cross-compiler (i.e., icc and if77on the
iPSC/860) can be used directly, instead of through pcncomp, to compile the Fortran
and C portions of the program. The advantage to using pcncomp is that you need
not know the cross-compiler's name, location, and special arguments. Those details
are taken care of by pcncomp, based on the cross-compilation configuration when it
is installed.

Specifying a cross-compilation target of "default" (i.e., -target default) is
equivalent to not supplying a -target argument at all. This can be useful in writing
portable Makefiles, as described in § 26.

20 Intel iPSC/860 Specifics

To compile a PCN program for the Intel iPSC/860, follow the cross-compilation
instructions in § 19, using a target of "ipsc860".

The resulting iPSC/860 executable program can be run by logging into the
iPSC/860 host (SRM), allocating an appropriately sized cube, and loading the pro-
gram. Once PCN terminates, we free the cube. In the following example, we assume
that the host is called gamma:

88

]{ rlogin gamma
]{ getcube -_ 4
]{ load myprogram; waitcube
]{ killcube
]{ relcube

Ifyou wishtosupplyargumentstoyour program,thoseargumentsmust be part
ofthe load command:

load myprogram myargs -pcn -gauge; waitcube

21 Intel Touchstone DELTA Specifics

To compile a PCN program for the Intel Touchstone DELTA, follow the cross-
compilation instructions in § 19, using a target of "delta".

Before you can run the resulting DELTA executable program, you must copy it
onto the DELTA's CFS filesystem using either rtp or rtp.

Then you can log into the DELTA and run the program via the mexec com-
mand. This command specifies the height and width of the submesh to allocate,
and the executable to load on the nodes in the submesh. For exaanple, the following

command would load myprogram onto a 4 by 8 node mesh:

]{moxec "-t(4,8)" -f myprogram

If you wish to supply arguments to your program, those arguments must be part
of the -! flag:

]{ mexec "-t(4,8)" -f "myprogram myargs -pcn -gauge"

89

22 Sequent Symmetry Specifics

Running PCN on the Sequent Symmetry is similar to running PCN on a workstation.
The pcncoffip command, used for compiling and linking, is identical to that described
throughout this manual.

The -n run-time system command line argument is used to run PCN with several
nodes. For exag, ple, the following command runs myprogram on 10 nodes:

X myprogram -pen -n 10

The Symmetry has two different C compilers that can be used to compile C
foreign code. They are cc and atscc, atscc should be used if it is available, as

it supposedly produces better code than the standard cc compiler. Fortran code
should be compiled by using the fortran compiler. However, if you use pcncomp to
compiler your C and Fortran code, then you need not worry about these details.

23 Network Specifics

The network version of PCN (net-PCN) uses Berkeley stream interprocess commu-
nication (TCP sockets) to communicate between nodes. A node can run on any
machine that supports TCP. Hence, a single PCN computatioll can run on several

workstations of a particular type, several workstations of diflhring types, several
processors of a multiprocessor, or a mix of workstations and multiprocessor nodes.
Current restrictions are listed in § 23.6.

Net-PCN currently operates on the NEXT, Sun, DECstation, HPg000, IBM
RS/6000, and SGI Iris.

Using net-PCN is the same as using PCN on other platforms except that the user
must specify on which machines PCN nodes are to run and may also be required to
specify where on those machines PCN is to be found and the commands necessary
for running net-PCN nodes on the given machines.

There are several different ways of starting net-PCN, each appropriate for dif-
ferent types of network. We shall consider each of these in turn, starting with the
easiest. First, we provide some background information on the Unix remote shell
command rsh, which is used to start net-PC_ nodes.

23.1 Using rsh

The Unix remote shell command rsh is a mechanism by which a process on one
machine (e.g., my-host) can start a process on another machine (e.g., my-node). A
remote shell command can proceed only if my-host has been given permission to
start processes on my-node. There are two ways in which this permission can be
granted.

9O

• The file/etc/hosts,equivexistson my-nodeand containsanentryformy-host.

This filemust be createdby thesystemadministrator.

• The file.rhostsexistsinthehome directoryoftheuserrunningtheremote

shellon my-node and containsa lineoftheform

my-host username

whereusername isthename oftheuserloginon my-host.Thisfileiscreated
by theuser.

Some sitesdisallowtheuseof .rhostsfles.If.rhostsusageisdisallowedand

thehostmachineisnotin/ere/hosts,equiv,remoteshellscannotbe usedtocreate
remote processes.Alternativemechanismsmust be used,asdescribedbelow.

The fullsyntaxofthersh command isas follows:

rsh hostname -i username command arEuments

The username hereisthelogintobe usedon theremotemachine.Ifusernameisnot
specified,itdefaultstotheloginname oftheuseron thelocalmachine.Furthermore,

iftheloginname usedon thelocalmachineisdifferentfrom theloginname on the
remotemachine,the .rhosts filefortheaccounton theremotemachine must have

an entryallowingaccessforthataccounton thehostmachine.

23.2 Specifying Nodes on the Command Line

The simplestway tostartPCN on a networkofmachinesistousethe-nodes< ,odelist>

command lineargument,where nodelistisa colon-separatedlistofmachine names

on which PCN nodesareto run.Forexample,

myprogram -pcn -nodes pelican:raven:plover

will run myproEram on four nodes, with one node on the machine from which this
command is run (the host) and one node on each of the machines named in the
nodelist:pelican,raven,and plover.

This startupmethod worksonlyif

I.rsh (§23.1)worksfrom thehosttoeachmachineinnodelist,and

2. eachofthenodes sharesa common filesystemwiththe host.The reasonfor

thisisthatthehostrunseach node inthedirectoryin whichpcn isinvoked.
Ifthehostand a node have differentfilesystems,thersh usedtostartup that
node islikelytofail.

Ifany of theseconditionsdoesnot hold,then net-PCN must be startedby using
one of thealternativemethods describedbelow.

Note thatwe canalwayscreatemultiplenodeson a singleprocessorby usingthe

-n command linefl_g.The command

91

mypcn -pen -n nnodes

forks nnodes - 1 nodes on the local machine (resulting in a total of nnodes pro-
cesses) which _ommunicate by using sockets. This feature can be useful for debug-
ging purposes, or on multiprocessing machines.

23.3 Using a PCN Startup File

The second net-PCN startup method that we consider can be used if nodes do not
share a common file system with the host. However, it still requires that tsh work
from the host to each node.

This method uses a startup file to define the locations of remote PCN node
processes. Lines in this file identify the machines on which nodes are to be started.

Startup File Syntax. A line of the form

fork n-nodes

causes n-nodes node processes to be started on the local machine. These nodes
communicate with the other nodes via sockets, even though they are on the same
machine as the host.

A line of the form

exec n-nodes: command .pcn SARGS$

causes command to be executed, command is the command that invokes PCN on

the appropriate machine. The host process replaces SARGS$ at run time with the
necessary arguments to PCN to cause it to start n-nodes node processes.

Blank lines in startup files and lines starting with whitespace, _, or # are ignored.

Examples of Startup Files. A startup file containing the lines

fozk 1

exec 1: rsh fulmax myprogram -pcn SARGS$

starts one node on the local machine (in addition to the host node) and one node

on the host fulmar, using the PCN executable called myprogram.

A startup file containing the line

exec 1: tsh fulmar -I bob myprogram -pcn SARGS$

starts one node using the program called myprogram on host fulmar using the PCN
executable pcn and the account for username bob. If we assume the PCN host is
being run by user olson on host host-machine, then the .rhosts file in the home

directory of user bob on fulmar must contain the entry

host-machine olson

92

A startup file containing the Une

exec 3: rsh fulmar "cd /home/olson/pcn; ./myprogram -pcn $ARGS$"

runs three nodes on fulmar of the PCN executable myprogram after changing to the
directory/home/olson/pcn.

A startup file containing the line

exec 2: sh -c 'echo "myprogram -pcn $ARGS$ 6" [rsh fulNar /bin/sh'

is a more complex example that starts up two nodes on fulmar. This example has the
desirable side effect that the rsh process exits after starting the PCN node, whereas
in the other examples the tsh will not complete until the node process completes.

Using a Startup File. We execute net-PCN with a startup fiI_ pcn-startup by
using the -s run-time system command line argument:

my'program -pen -s pcn-startup

23.4 Starting net-PCN without tsh

If your computer system does not support the use of rsh, you will need to start
remote nodes by hand or by using a utility ca]led host-control. See the sepa-
rate manual:]%.0lson, Using hos_-con_rol, Argonne National Laboratory Technical
Memo ANL/MCS-TM-154.

23.5 Ending a Computation

Normally all nodes of a net-PCN computation will exit upon completion of the
computation or upon abnormal termination of PCN. If for some reason this is not
the case, you must log on to each machine that was executing a net-PCN node and
manually kill the PCN process.

23.6 Limitations of net-PCN

Number of Nodes. The number of nodes available in a net-PCN computation is
limited by the number of file descriptors available to a process (an operating system-
imposed limit). On modern versions of Unix, there are generally more than sixty
file descriptors available. Hence, in practice, the number of file descriptors is not
likely to be a major problem.

Heterogeneous Networks. Currently, no support exists for executing net-PCN
between machines with different byte orders and/or different floating-point repre-
sentations. Net-PCN does execute correctly between different machines if they use

the same byte-ordering and floating point representation (we have run net-PCN
successfully between Sun 3, Sun 4, and NeXT computers). However, you must be

93

careful when using foreign code in this case because, for example, structure packing

in C may differ between different compilers.

24 Further Reading

PCN Language This text provides an introduction to the PCN language and a
discussion of techniques used to reason about PCN program:

M. Chandy and S. Taylor, An Introduction to Parallel Programming,
Jones and Bartlett, 1991.

This paper describes the PCN language, including recent extensions for process
mapping and templates, as well as surveying major applications:

I. Foster, R. Olson, and S. Tuecke, Productive Parallel Programming:
The PCN Approach, Scientific Programming, Vol. 1, 1992, pp. 51-66.

Programming and Proof Techniques The following book provides a readable
and entertaining presentation of many of the basic parallel programming techniques
used in PCN:

I. Foster and S. Taylor, Strand: New Concepts in Parallel Program-
ming, Prentice Hall, Englewood Cliffs, N.J., 1989.

The proof theory for PCN is based in part on that for Unity, which is described in
detail iv

M. Chandy and J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

Software cells, templates, and parallel software reuse are discussed in:

I. Foster, Information Hiding in Parallel Programs, Preprint MCS-
P290-0292, Argonne National Laboratory, 1992.

PCN Toolkit The Program Transformation Notation (PTN) tool is described in

I. Foster, Program Transformation .Notation: A Tutorial, Technical

Report ANL-91/38, Argonne National Laboratory, 1991.

The host-control program used to manage network implementations of PCN is
described in

R. Olson, Using host-control9 Technical Memo ANL/MCS-TM-1549
Argonne National Laboratory, 1992.

94

PCN Implementation The techniques used to compile PCN for parallel com-

puters and to implement templates are described in

I. Foster and S. Taylor, A Compiler Approach to Scalable Concurrent

Program Design, Preprint MCS-P306-0492, Argonne National Labora-
tory, 1992.

A detailed description of the PCN run-time system can be found in

I. Foster, S. Tuecke, and S. Taylor, A Portable Run-Time System for

PCN, Technical Memo ANL/MCS-TM-137, Argonne National Labora-
tory, 1991.

The design, implementation, and use of the Gauge performance analysis system are
described in

C. Kesselman, Integrating Performance Analysis with Performance
Improvement in Parallel Programs, Ph.D. thesis, UCLA, 1991.

A description of the Upshot trace analyzer can be found in

V. Herrarte and E. Lusk, Studying Parallel Program Behavior with

Upshot, Technical Report ANL-91/15, Argonne National Laboratory,
1991.

Applications Papers describing PCN applications include

•I. Chern and I. Foster, Design and Parallel Implementation of Two
Methods for Solving PDEs on the Sphere, Proc. Conf. on Parallel Com-
putational Fluid Dynamics, Stuttgart, Germany, Elsevier Science Pub-
lishers B.V., 1992, pp. 83-96.

D. Harrar, H. Keller, D..Lin, and S. Taylor, Parallel Computation
of Taylor-Vortex Flows, Proc. Conf. on Parallel Computational Fluid

Dynamics, Stuttgart, Germany, Elsevier Science Publishers B.V., 1991,
pp. 193-206o

I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale
Model, Proc. 5rh ECMWF Workshop on Parallel Processing in Meteo-
rology, ECMWF, Reading, England, 1992.

95

Part III

Advanced Topics

25 pcncomp and the PCN linker

For a complete list of the arguments to pcncomp, run:

pcncomp -h

LI general, pcncomp tries to follow the normal Unix conventions for C and Fortran
compiler arguments.

PCN linker. The PCN linker, which is called by pcncomp, does not replace the
standard Unix linker, ld. Instead, it operates at a higher level than ld. The PCN
linker's primary function is to coalesce the PCN object code contained in the .para
files and turn it into machine object code that can be passed to ld to be linked with
the run-time system, the user's foreign object code, and system libraries.

This is accomplished by creating a C source file that contains initialized C data
structures with names known to the run-time system. This C file is then compiled
and linked with everything else to produce an executable program. The C file
is usually named with a "pcnt_" prefix, followed by the name of the executable
program that we are creating.

The PCN linker is a new feature of PCN version 2.0. Its advantages compared
to techniques used in earlier releases include a standalone executable, faster startup
on large paraUel computers, faster intermodule calls, faster compilation, and greater
ease of use. A significant disadvantage is slower linking. This is a problem particu-
larly during the debugging stage of program development. To alleviate this problem,
a limited form of dynamic loading of . parafiles is supported by PDB. This removes
the time-consuming link step from the debug cycle, yet preserves all of the advan-
tages of the PCN linker during production runs. See § 15.9 for details on dynamic
loading of .para files, and § 26 on how to exploit the creation of the pcnt file to
reduce the link time when debugging foreign code.

26 Makefile

This section provides an example Makefile for use with PCN programs. We also
provide some discussion of the Makefile, including some "tricks" to reduce link times.

96

I Example Makefile i

PANS = pcncode.pam
0BJS = fcode.o ccode.o

PCNT = pcnt_myprogram

NAIN_MOD = pcncode

PROG_NAME = myprogram
FORTRAN = -fortran

FLAVOR =

PCN_BASE = /usr/local/pcn

TARGET = default:

PCNCOMP = $(PCN_BASE)/bin/pcncomp

PCNCOMPFLAGS = $(FORTRAN) $(FLAVOR) -target $(TARGET)

all: $(PROG_NANE)

pams: $(PAMS)

objs : $(OBJS)

$(PCNT) .¢: $(PANS)

$(PCNCOMP) $(PCNCOMPFLAGS) $(PAMS) -o $(PCNT).c \

-pcnt -mm $(MAIN_MOD)

$(PROG_NAME) : $(PCNT).o $(OBJS)

$(PCNCOMP) $(PCNCOMPFLAGS) $(PCNT).o $(OBJS) \

-o $ (PROG_NAME)

•SUFFIXES: .pcn .pam .c .o .f

.pcn.pam:

$(PCNCOMP) $(PCNCOMPFLAOS) -c $,.pcn

.C.O:

$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.c

•f .o:

$(PCNCOMP) $(PCNCOMPFLAGS) -c $*.f

clean:

rm -f ,.pam *.rood," $(PROG_NAME) ,.dump pcnt, *.o

97

Portability. Since pcncomp is used to compile the C and Fortran source files, this

Makefile is highly portable. The details of the actual C and Fortran compiler names,
their locations, special arguments that they take, etc., are handled automatically by
pcncomp.

Adaptability. The entire Makefile is parameterized by the first seven variables
at the top of the Makefile. It can be quickly adapted to different programs. In

addition, these variables can easily be overridden from the command line to create
PDB and/or profiling versions of the program. For example, to create a version of
the program that is linked with the PDB run-time system, you would run:

make FLhVORffi-pdb

Cross-compilatlon. Cross-compilation to different machines is simple with this
Makefile. (See § 19 for more on cross-compilation.) By default, it will compile
the program for whatever machine the make is running on. But by overriding the
TARGETvariable from the command line, we can easily cross-compile the program
for different machines. For example, to cross-compile for the Intel iPSC/860, you
would run:

make TARGET=ipsc860

Debugging fle.,_bility. Section § 25 discusses how the PCN linker operates. It
creates a pent. c _le (a C source file) that contains ali of the necessary information
from the .para files compiles that file to a pcnt.o file, and then links that pcnt.o
file with the run-time system, foreign object flies, and system libraries to create an
executable program.

When debugging foreign code, you can exploit the fact that the PCN linker
creates this intermediate pcnt file to greatly reduce link times. If a foreign procedure
is modified, there is no need to create a new pcnl: file before linking. Only changes
in the PCN code will affect the pcnt file. So, instead of creating a new pcnt file
each time foreign code is modified, the one from the previous link will suffice.

When working on PCN code, link a version with PDB by running:

make "FLhVOR=-pdb-link-all"

This will give you a version of the program that you can use with dynamic loading
to quickly debug your PCN code without having to relink after each change (see

§ 15.9).

98

27 Run-Time System Debugging Options

The PDB version of the run-time system incorporates a variety of low-level execution
tracing facilities. These facilities are controlled through the following four debug-
level variables. The value of each variable can range from 0 to 9, with 0 meaning no
trace output and 9 maximum trace output.

Emulator Debug Level: This controls debugging information in the main pro-
cess scheduling loop. For example, level 2 causes ali intermodule calls to be
printed, level 3 additionally prints the entry and exit of foreign procedures,
and level 9 prints a complete trace of the PCN abstract machine instruction
being executed.

Garbage Collector Debug Level: This controls debugging information in the
garbage collector. For example, level 2 causes a short summary to be printed
each time a garbage collection occurs.

Parallel Debug Level: This controls debugging information relating to the par-
allel aspects of the system. For example, level 5 causes debugging information
about the low-level message handling between nodes to be printed.

Global Debug Level: This controls debugging information not covered by the
other three variables. For example, level 1 causes startup parameters and
boot arguments to be printed.

The four debug levels can be manipulated in two ways. On a single node,
they can be modified through the use of the PDB variables ($emulator_dl, Sgc_dl,
$parallel_dl,and $global_dl)described in § 15.7.

The debug levels can also be set from the command line. The following run-time
system command line arguments (i.e., they must appear after the -pcn argument)
set the various debug levels on all nodes, including the host.

-d <level> : This sets all debug levels.

-e <level> : This sets the emulator debug level. It overrides the level set by the
-d flag.

-g <level> : This sets the garbage collector debug level. It overrides the level set
by the -d flag.

-p <level> : This sets the parallel debug level. It overrides the level set by the
-d flag.

The following argument enables low-level trace information after a specified num-
ber of procedure calls.

-r <reduction_number> : Do not print any debugging output until the number
of procedure calls given by reducl;ion.number has been executed.

99

The following command line arguments can be used to set debug levels selectively
in different nodes of a multiprocessor.

-node <node_number> : Apply the following node debug level flags only to a par-
ticular node, node_number. If this argument is not used or node_number is -1,
then apply the following node debug level flags to ali nodes.

-hd <level> : This sets ali debug levels on the appropriate node(s).

-he <level> : This sets the emulator debug level on the appropriate node(s). It
overrides the level set by the -nel flag.

-ag <level> : This sets the garbage collector debug level on the appropriate
node(s). It overrides the level set by the -hd flag.

-hp <level> : This sets the parallel debug level on the appropriate node(s). It
overrides the level set by the -hd flag.

-rtr <reduction_uumber> : Do not print any debugging output on the appropriate
node(s) until the reduction_number reduction has been reached.

For example, the following cor_r_and would set the emulator debug level to 3
and the garbage collector debug le_:, _:_?.on node 5 of a 10-node run.

myproftrarn -pen -n 10-ne 3-ng _ .node 5

Ali debugging messages _re preceded by the node number from which the message
originated and reduction number on that node when the message was printed. When

debug levels are set on multiple nodes simultaneously the debugging output from
these nodes will be interleaved. The node and reduction number can help you sort

out these interleaved messages.

Interleaving problems can be avoided by telling the run-time system to log ali
debugging messages to flies, instead of to the screen, by putting a -log on the
command line. The system will then create a Logs directory into which ali debugging

output will be printed. Further, the debugging output from each node will be put
in a separate file in this Logs directory.

I00

Part IV

Appendices

A Obtaining the PCN Software

The PCN software is available by anonymous FTP from Argonne National Labo-
ratory, in the pub/pen directory on info.mcs, anl .gov. The latest version of this
document is also availabh at the same location. The following session illustrates
how to obtain the software in this way.

%/tp in/o.mcs.anl.gov
Connected to anagr_.mcs.anl.gov.
220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.
Name (info.mcs. anl. gov: XXX): anonymous
331 Guest login ok, send ident as password.
Passeord: /* Ttlpe your user name here */
230- Guest login ok, access restrictions apply.
Argonne National Laboratory mathematics Jt Computer Science Division
All transactions with this server, info.mcs.anl.gov, ar_ lo_ed.
230 Local time is Frj Nov 8 18:26:39 1992

rtp> cd pub/pcn
250 CWDcommand successful.

rtp> Is
200 PORT command successful.

150 Opening ASCII mode data connecZion for file list.
pcn.v2. O.tar. Z
README

pcn.prog, ps. Z
pcn.prog, tar. Z
226 Transfer complete.
78 bytes received in 1.3s-05 seconds (5.9e+03 Kbytes/s)
rtp> binary

200 Type eel: 1;o I.
rtp> get pcn_v_.O.tar.Z
200 PORT coemand successful.

150 Opening BINARYmode data connection for pcn_v2.0.tar.Z (XXX bytes).
226 Transfer complete.
local: pcn_v2.0._ar.Z remote: pcn_v2.0.tar.Z
XXX bytes received in YY secovds (ZZ Kbytes/s)
rtp> quit

221 Goodbye.

101

B Supprted Machines

The following t_,ble lists the machines on which PCN is currently supported, along
with the ax_'_'__ture name.

Architecture Machine name
delta Intel Touchstone Delta

ipsc860 Intel iPSC/860
iris Silicon Graphics Iris
next040 NeXT

rs6000 . IBM RS/6000

sun4 Sun 4 (SPARC based)

102

C Reserved Words

The followingwordsmay notbe usedas variablenames orprocedurenames inPCN
programs.

append_stream
char

de__-ement_ream
default

directive
double

exports
foreign
init_recv
init_send
int

length
location
nodes

over
PCN
stream
stream_send
stream.recv

topology
tuple
p*
pdb*
PCN_*

103

D Deprecated and Incompatible Features

1. Under vl.2.2, a common way to write a tuple that has a string in the first
element of the tuple as a label was to write it in prefix notation, such as
label(a,b). This is equivalent to writing the tuple in the infix notation,
{c 'label",a,b}. However, in v2.0, writing tuples in this prefix form is
discouraged because its syntax is identical to that of functions, which are now
supported in v2.0. Instead, it is recommended that you always write tuples
using infix notation.

2. The sys:list-length() procedure (which was undocumented under vl.2.2
but sometimes used) has had its argument order changed between vl.2.2 and
v2.0, in order to make it follow the convention used in ali other libraries that
the return argument is always the last argument.

3. The stdio:scanf() procedure no longer supports Zt for term scanning.

4. The -foreign() directive is ignored under v2.0. Ali information about which
foreign object files and libraries to link must be specified on the command line
when linking with pcncomp.

5. The PCN.PATHenvironment variable is ignored under v2.0. Since .para files are
no longer loaded dynamically when they are first referenced, this is no longer
needed.

6. The sizeof () command has been changed to length(). It returns the number
of elements in an array, or the arity ofa tuple. (This change occurred in vl.2.2.)

7. Meta operations now use 'var' (matching back quotations) instead of 'var (un-
matched single quote) to denote a string that is to be interpreted as a variable
name. (This change occurred in v 1.2.2.)

104

E Common Questions

What does it mean when PCN prints an Illegal tag message? This usu-
ally means that PCN internal data structure has been corrupted somehow. The
usual way in which this happens is that user code writes past the beginning or end
of an array (either in PCN or foreign code).

To help detect this _ituation: If you use arrays in your PCN code then you can
do bounds checking by running the program under pcn.pdb. If you use arrays in
Fortran code, many Fortran compilers have a flag to turn on bounds checking (also
known as range checking).

See § 14 for information on debugging PCN programs.

Why is the PCN linker so slow? See § 25 for information on how the linker
works. Also, see § 15.9 and § 26 for tips on reducing link times when debugging.

105

F PCN Syntax

The following syntactic conventions are employed in this expanded BNF:

nonterminal ::= production

[] Surround an optional element.
{ } Surround an element that may occur zero or more times.
[Separates alternatives.
boldface Indicates reserved words.

"quotes" Indicate characters that appear literally.

The symbols unsigned-integer, unsigned-real, character-string, and identifier denote
terminal symbols and are not defined further here.

Comments are delineated by the start-comment symbol/* and the end-comment
symbol */.

Compilation Module

compilation-module ::= program-or-directive { program-or-directive }
program-or-directive ::= program-declaration[directive

Directive

directive ::= "-" directive-name "(" directive-arguments ")"
directive-name ::= identifier

directive-arguments ::= [directive-argument { "," directive-argument }]
directive-argument ::= term

Program Declaration

program-declaration ::= program-heading mutable-declarations program-body

program-heading ::= program-heading-modifiers identifier "(" formal-parameters ")"
program-heading-modifiers::= [identifier { "," identifier }]
formal-parameters ::= [formal-parameter { "," formal-parameter }]
formal-parameter ::= identifier

mutable-declarations ::= { mutable-type mutable-declaration-list ";" }
mutable-type ::= int]double [char]port
mutable-declaration-list ::= mutable-declaration { "," mutable-declaration }

106

mutable-declaration ::= identifier ["[" [expression] "]"]

program-body ::= sequential-composition[
parallel-composition I
choice-composition

Block

block ::= assignment-statement I

definition-statement I
program-call I
sequential-composition [
parallel-composition[
choice-composition I
quantification

assignment-statement ::= variable ":=" expression

definition-statement ::= variable "=" term

program-call ::= local-program-call[
remote-program-call[
remap-program-call [
meta-program-call

function-call ::= local-program-call I
remote-program-call

local-program-call ::= simple-program-call

remote-program-call ::= simple-program-call "@" simple-program-call

remap-program-call ::= simple-program-call in simple-program-call

meta-program-call ::= 'identifier '

simple-program-call ::= program-specifier "(" actual-parameters ")"

107

program-specifier ::= [module-name ":"] program-name
module-name ::= quoted-identifier
program-name ::= quoted-identifier
actuM-parameters ::= [actual-parameter { "," actual-parameter }]
actual-parameter ::= term

annotation ::= unsigned-integer I character-string I quoted-identifier

quoted-identifier ::= ' identifier '1 identifier

Note: The single backquote characters in the preceding line indicate literally that character.

Quantification

quantification::= identifier over expression ".." expression "::" block

Sequential Composition

sequential-composition ::= "{" ";" block { "," block } "}"

Parallel Composition

parallel-composition ::= "{" "lr' block { "," block } "}"

Choice Composition

choice-composition ::= guarded-block[
"{" "?" guarded-block { "," guarded-block } "}"

guarded-block ::= guards --, block
guards ":= guard-list [default
guard-list ":= guard { conditional-and guard }
conditional and "- " "

guard ":= pattern-match I equality-test I relational-test [data-test

108

pattern-match ::= identifier "?=" pattern
pattern ::= tuple-pattern I Ust-pattern
tuple-pattern ::= "_" pattern-elements ")" I

identifier "(" pattern-elements ")"
list-pattern ::= "[" pattern-elements "]" I

"[" pattern-element-list "1" pattern-element "]"
pattern-elements ::= [pattern-element-list]

pattern-element-list ::= pattern-element { "," pattern-element }
pattern-element ::= signed-number I character-string I identifier I pattern

equality-test ::= equality-operand "==" equality-operand I

equality-operand "!=" equality-operand
equality-operand ::= expression I character-string I empty-tuple I empty-list
empty-tuple ::= "{" "}"

empty-list ::= "[" "]"

relational-test ::= relational-operand "<" relational-operand I

relational-operand ">" relational-operand !
relational-operand "<=" relational-operand I

relational-operand "> =" relational-operand
relational-operand ::= expression

data-test ::= inr "(" term ")" I
double "(" term ")'1
char "(" term ")'1
tuple "(" term ")'1
data "(" term ")"

Variable

variable ::- identifier ["[" index "]"]
index ::= unsigned-integer I identifier

109

Expression

expression ::= adding-expression

adding-expression ::= multiplying-expression[

adding-expression "+" multiplying-expression [
adding-expression "-" multiplying-expression

multiplying-expression ::= primary-expression I

multiplying-expression "*" primary-expression I

multiplying-expression "/" primary-expression I
multiplying-expression "%" primary-expression

primary-expression ":= signed-number I
variable I

length "(" identifier ")"]
function-call I
"(" expression ")"

signed-number ::= ["-"] unsigned-integer I

["-"] unsigned-reM

Term

term ::= expression I

character-string I

tuple-constructor I
list-constructor

tuple-constructor ::= "{" elements "}"1
identifier "(" elements ")"

list-constructor ::-- "[" elements "]" I

"[" element-list "1" element "]"
elements "'= [element-list]
element-list ::= element { "," element }
element ::= signed-number I character-string I variable I

tuple-constructor I list-constructor

110

Index

-dumpafterbasic,65 C, 11,seeforeignlanguageinterface

-foreign()directive,104 C preprocessor,2,45
-gauge,73 cell,57
-gauge_file,73 char()test,17
-link_all,72 character,seeconstants

-load,72 datatype,11

-metacaUs()directive,52 choicecomposition,1,17,36
-mm, 7 executionorder,17

-mp, 7 mechanismforchoosingalternatives,

-nmp,73 17
-no_nmp,73 nondeterminismintroducedwith,

-nodes,91 18
-pdb,66 notation,17

-profile,73,77 rules,18

-upshot,78 synchronizationmechanism,17
-upshot_file,78 use,19

-upshot_log_size, 78 circular reference checking, 61
.para file, 5 code reuse, 1, 57-59
.pdbrc file, 66 comments in PCN, 12

communication, 9, 10, 19, 26, 36
abs(), 81 broadcast, 30
access to PCN software, 101 communications, 10
access(), 84 compiler, 5, 48, 49, 96
aliasing of variables, 34 auxiliary procedures, 63
anonymous definitional variables, 15 basic text for techniques, 95
applications of PCN, 95 toolkit overview, 2
argc, 7 composition, 1, 9, 10, 12
arguments, 6 composition operators, 1, 13
argv, 7 basic, 1
arithmetic expressions, 11 choice, see choice composition
arrays, 11 default, 13
associativity of operators, 12 parallel, see parallel composition
auxiliary procedures, 63 sequential, see sequential compo-

barrier processes, 65 sition
bitwise_and(), 81 user defined, 1

bitwise_or(), 81 compositionality, 9, 36
bitwise_xor(), 81 concurrency, 9, 36, see parallelism
block, 12 composition, 10
block of a procedure, 12 first-class, 9

programming concepts, 9
bounds checking, 61,105
broadcast communication, 30 concurrent programming, see parallel
broadcasting with a distributor, 79 programming

111

conditional execution, 36 double_cast(), 81
constants, 11 double_tointeger(), 80
consumer, 9, 26 double_to_list(), 80
core PCN, 63 double_to_string(), 80

basic composition operators, 1 dynamic loading, 61, 72
extensions, 1
features, 1 entry point, 7

cpp, see C preprocessor errors
logical, 61

data types, 11 performance, 61
data() test, 17 example program, 4
debugging, 60-62, see PDB examples

command line arguments, 61 height of a tree, 38
dynamic loading, see dynamic load- membership in a list, 37

ing membership in a list with mura-
example Makefile, 98 bles, 37
foreign code, 98 preorder traversal of a tree, 38
of concurrent programs, 3 quicksort, 39
PDB, 63-73 reversal of a list, 37
performance errors, 61 two-point boundary value problem,
run-time system debug levels, 99 42

declarations, 12, 13 exit_code, 7
default guard, 17, 20 exported procedure, 45
definitional variable, 26 expressions, arithmetic, 11
definitional variables, 2, 9, 10, 13-15,

34, 36 fclose(), 82
anonymous, 15 fdopen(), 82
as communication channels, 19 fltush(), 82
benefits, 9 fgetc(), 83
comparison with mutable, 16 fgets(), 83
example, 15 find_substring(), 81
example use in quicksort, 39 find_substring_reverse(), 82
interaction sequential code, 33 fopen(), 82
properties, 16 foreign language interface, 2, 47-50

delimiters, 12 Fortran, see foreign language interface
deprecated features, 104 Fortran, with cpp directives, 49
determinism, see nondeterminism fprintf(), 83
difference list, 38, 39 fputc(), 83
distribute(), 79 fputs(), 83
distributor, 30 fread(), 84
divide and conquer, 15 freopen(), 82
double fscanf(), 84

constants, see constants fseek(), 84
data type, 11 ftell(), 84

double() test, 17 ftp, 101

112

functions, 12 length(), 104
further reading, 94 libraries, 79
fwrite(), 84 input-output, 82

sys, 79
Gauge, 73-76 toolkit overview, 3

basic text, 95 utilities, 79

data exploration, 74 lightweight threads, see threads
finding performance errors, 61 linker, 5, 49, 96
host database, 75 how it works, 96
invocation, 74 integrating foreign code, 47
snapshots, 74 toolkit overview, 2
toolkit overview, 3 with PDB, 66

X resource file, 76 list_concat(), 81
gc_after.foreign, 61 list_length(), 81
getc(), 83 incompatibility with previous re-
getchar(), 83 lease, 104
gets(), 83 list_member(), 81
global variables, 12 list_to_double(), 80
guard, 17 list_to_integer(), 80

suspension, 17 list_to.string(), 80

hash(), 79 list_to_tuple(), 80
heap corruption checking, 61 lists, 24-25

example of membership, 37
higher-order programming, see meta-

example transducer, 25
calls location functions, 53

host-control, 4, 93, 94 location(), 52

illegal tag, 105 LOG.EVENT(), 77

implication, 17, 18 LOG_TASK_EVENT(), 77
incompatibilities, _L04 LOG_TASK_EVENT_DATA(), 77

incomplete message, 31 loops, see recursion

information functions, 52 machines supporting PCN, 102
installation of PCN, 4 main() procedure, 7

int() test, 17 Makefile example, 96
integer

constants, see constants map functions, 54
data type, 11 mapping, see process mapping

integer_cast(), 81 mapping independence, 36
integer_to_double(), 80 mapping processes, see process map-

ping
integer_to_list(), 80 match, 17

integer_to_string(), 80 match operator, 23
Intel iPSC/860 version, 88

merger, 29
intermodule call, 5, 45 merger(), 79
iteration, see recursion metacalls, 50, 104

left_shift(), 81 module, 5

113

modules, 45 pcnt files, 96

multilingual programming, 50 PDB, 61, 63-73, see debugging
mutable variables, 2, 13, 34, 36 $empty_queue_break, 70

comparison with definitional, 16 $emulator_dl, 70
copying, 34 $gc_dl, 70
example use in quicksort, 40 $global_dl, 70
interaction parallel code, 33 $parallel_dl, 70
interaction with definitional vari- Sprint_array_size, 69

abies, 34 Sprint.orphaned, 70
use in parallel blocks, 34 Sprint_tuple_depth, 69

Sprint_tuple_width, 70
nested blocks, tranformation, 63 Sreduction_dl, 70
net-PCN, 90, 94 abbreviation of commands, 67

-nodes, 91 abort command, 71

heterogeneous networks, 93 active queue, 67

limitations, 93 break command, 69
number of nodes, 93 breakpoints, 69
startup file examples, 92 continue command, 71
startup file method, 92 debug command, 71
startup with host-control, 93 delete command, 69

network version, see net-PCN disable command, 69
nodes(), 52 enable command, 69
nondeterminism, 9-10, 36 global suspension queue, 67

controlled, 9 help, 67
in reactive applications, 18 help command, 71
merger as source, 29 interrupting a program, 66

object code, PCN, 2, 5 load command, 71, 72
ones_complement(), 81 modules command, 71

move command, 68
operators nextcommand, 71

associativity, 12 nodebug command, 71
precedence, 12 orphan process check, 72

orphan processes, 72 pending queue, 67

parallel and sequential code print command, 71
interaction, 33 procedures command, 71

parallel composition, 1, 14, 36 queue examination, 68
role, 16 queue modification, 68

parallel computation queue types, 67

on a network, 60 quit command, 71
on multicomputers, 59 show command, 68
on multiprocessors, 60 source command, 71

parallel programming, 9 status command, 69
path for Unix shell, 4 summary command, 68
PCN_PATH, deprecated use of, 104 switch command, 69
pcncomp, see compiler toolkit overview, 3

114

variable suspension queue, 67 basic text, 95
'variables, 69 overview, 67
vars command, 71 toolkit overview, 2

performance error, 61 run-time system arguments, 7
ports, 56 running a program, 6
precedence of operators, 12

preprocessor, see C preprocessor scanf(), 84
printf(), 83 incompatibility with previous re-
procedures lease, 104

components, 12 search method in PCN, 32
heading, 12 send/receive, see stream
reserved names, 103 separators, 12

process mapping, 9, 52-55 sequencing variables, 64
process queues, see PDB Sequent Symmetry, 90
producer, 9, 26 sequential composition, 1, 13, 36
profile.snapshot(), 74 applications, 14
profiling, see Gauge example, 14
program composition, 1 role, 16

transformation, 63
Program Transfcrmation Notation, see

PTN single-assignament variables, see defi-

PTN, basic text, 94 nitional variables

putc(), 83 sizeof(), 104
putchar(), 83 snapshot profiles, see Gauge

puts(), 83 snapshotting, 34
software cell, see cell

quantification, 20, 53 sorting example, 39
queues, see PDB sprintf(), 83
quirksort example, 39 sscanf(), 84

state change, I0, 36
race condition avoidance, 34 stderr(), 84
range checking, see bounds checking stdin(), 84
reactive applications, 10, 18 stdio, 82-88
recursion, 20-22, 36 stdout(), 84
reduction stream, 26-29

breaking to PDB at, 70 advanced usage, 29-33
definition, 66 end, 26

refe,-ences, 94 flexibility of, 28
remove(), 84 implementation, 26
rename(), 85 many-to-one communication, 29,
reserved words, 103 see merger
reuse of code, see code reuse one-to-many communication, see
rewind(), 84 distributor

right.shift(), 81 send/receive equivalents, 27
tsh, 90 two-way communication, 31
run-time system string, 11

115

constants, see constants deprecated use of, 104
creation with sprintt(), 86 fist, 24

stringoconcat(), 81 match operator, 17
string.length(), 81 type casting, 80, 81
string.fist_concat(), 81
string_to.double(), 80 undefined variable, 9, 15, 17

string_to.integer(), 80 ungetc(), 83
string_to_list(), 80 unification, 24
subscripts, 13 Upshot, 76-79
substring(), 82 analyzing a log, 78
suspension, 9, 10, 17 collecting a log, 78
Symmetry, 90 finding performance errors, 62
synchronization, 9, 10, 17, 20, 36 instrumenting a program, 77
syntax, 11-13 merging logs, 78

comments, 12 toolkit overview, 3

data types, 11 variable types, 2
declarations, 13 variables

error detection, 60 debugger, 69
errors, see debugging definitional, see definitional vari-
expanded BNF, 106 abies

expressions, 11 global, see global variables
functions, 12
procedures, 12 mutable, see mutable variables

names, 12
string, 11 reserved words, 103
variable names, 12 virtual topologies, 3, 54

sys, 79

system utilitieo, 79 warning messages, 60

template, I, 57 wildcards, 65
tests, 17 wrapper procedures, 63

threads, 10 X resource file, 76
toolkit

components, 2
for program development, 1

topology(), 52
transformation

description, 63
obtaining code, 65

trees

example of finding height, 38
example of traversing, 38

tuple() test, 17
tuple_to.fist(), 80
tuples, 22-25, 36

comparison of, 24

116

Distribution for ANL-91/32, Revision 2

Internal:

J. M. Beumer (200)

I. T. Foster

F. Y. Fradin

G. W. Pieper

R. L. Stevens

S. J. Tuecke (400)

C. L. Wilkinson

ANL Patent Department
TIS File

External:

DOE-OSTI, for distribution per UC-405 (54)

ANL-E Library

ANL-W Library

Manager, Chicago Field Office, DOE

Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

B. L. Buzbee, National Center for Atmospheric Research

J. G. Glimm, State University of New York at Stony Brook

M. T. Heath, University of Illinois at Urbana

E. F. Infante, University of Minnesota

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research

F. Ho,es, Department of Energy - Energy Research

117

