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Preface

The PCN system is the product of the efforts of many people at Argonne National
Laboratory, the California Institute of Technology, and the Aerospace Corporation,
including Sharon Brunett, Mani Chandy, Ian Foster, Steve Hammond, Carl Kessel-
man, Tal Lancaster, Dong Lin, Jan Lindhiem, Robert Olson, Steve Taylor, and
Steven Tuecke. The Upshot trace analysis tool was provided by Ewing Lusk. The
expanded BNF syntax for PCN was provided by John Thornley. The two-point
boundary value application was provided by Steve Wright.
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Parallel Programming with PCN

Ian Foster and Steven Tuecke

Abstract

PCN is a system for developing and executing parallel programs. It comprises
a high-level programming language, tools for developing and debugging programs
in this language, and interfaces to Fortran and C that allow the reuse of existing
code in multilingual parallel programs. Programs developed using PCN are portable
across many different workstations, networks, and parallel computers.

This document provides all the information required to develop parallel programs
with the PCN programming system. It includes both tutorial and reference material.
It alsoc presents the basic concepts that underlie PCN, particularly where these are
likely to be unfamiliar to the reader, and provides pointers to otker documentation
on the PCN language, programming techniques, and tools.

PCN is in the public domain. The latest version of both the software and this
manual caun be obtained by anonymous ftp from Argonne National Laboratory in
the directory pub/pcn at info.mcs.anl.gov (cf. Appendix A).

This version of this document describes PCN version 2.0, a major revision of the
PCN programming system. It supersedes earlier versions of this report.
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Part 1
A Tutorial Introduction

1 Program Composition

Program Composition Notation (PCN) is both a programming language and a par-
allel programming system. As the name suggests, both the language and the pro-
gramming system center on the notion of program composition.

Most programming languages emphasize techniques used to develop individual
components (blocks, procedures, modules). In PCN, the focus of attention is the
techniques used to put components together (i.e., to compose them). This is illus-
trated in the following figure, which shows a combining form being used to compose
three programs.

This focus on combining forms is important for several reasons. First, it encour-
ages reuse of parallel code: a single combining form can be used to develop many
different parallel programs. Second, it facilitates reuse of sequential code: parallel
programs can be developed by composing existing modules written in languages such
as Fortran and C. Third, it simplifies development, debugging, and optimization, by
exposing the basic structure of parallel programs.

It appears likely that a large proportion of all parallel programs can be devel-
oped with a relatively small number of combining forms. However, PCN does not
attempt to enumerate potential combining forms. Instead, it provides a core set of
three primitive composition operators — parallel, sequential, and choice composi-
tion — in a core programming notation. This is a simple, high-level programming
language. More sophisticated combining forms (providing, for example, divide-and-
conquer, self-scheduling, or domain decomposition strategies) can be implemented
as user-defined extensions to this core notation. Such extensions are referred to as
templates or user-defined composition operators. Program development, both with
the core notation and with templates, is supported by a portable toolkit. These three
components of the PCN system are illustrated in Figure 1.

This tutorial provides a detailed description of the core programming notation
and toolkit, and an introduction to the use of templates in parallel programming.

1.1 Core Programming Notation

The core PCN programming notation is a simple, high-level language that pro-
vides three basic composition operators: parallel, sequential, and choice. The



Application-specific
composition operators

Core Programming Notation

Portable Toolkit

Figure 1: PCN System Structure

language provides two types of variable: conventional, or mutable variables, and
single-assignment, or definitional variables. Other distinctive features of the lan-
guage include extensive use of recursion, support for both numeric and symbolic
computing, aad an interface to sequential languages such as Fortran and C. The
syntax is similar to that of C.

1.2 Toolikit

The PCN toolkit provides support for each stage of the parallel program develop-
ment process. It comprises a compiier, linker, foreign language interface, standard
libraries, process mapping tools, programmable transformation system, symbolic
debugger, execution profiler, and trace analyzer. These facilities are all machine
independent and can run on a wide variety of uniprocessors, multiprocessors, and
multicomputers. They are supported by a run-time system that provides basic
machine-dependent facilities.

Compiler The compiler translates PCN programs to a machine-independent, low-
level form (PCN object code). An interface to the C preprocessor allows macros,
conditional compilation constructs, and the like to be used in PCN programs.

Linker and Foreign Language Interface The PCN linker combines PCN ob-
ject code (i.e., PCN compiler output), foreign object code that is called from PCN
(i.e., C or Fortran compiler output), libraries, and the PCN run-time system into
a single executable program. This permits C and Fortran procedures to be inte-
grated seamlessly into PCN programs, and PCN programs to be executed similar to



programs written in other languages.

Standard libraries A set of standard libraries provides access to Unix facilities
(e.g., I/0) and other capabilities.

Virtual Topology tools These support process mapping on a variety of virtual
machines, and templates for writing reusable parallel code.

PDB PDB is the PCN symbolic debugger. It includes specialized support for
debugging of concurrent programs.

Gauge Gauge is an execution profiler for programs written in PCN and other
languages. It includes run-time system support for collecting and saving profiles,
and an X windows based graphical tool for interactive exploration of profile data.

Upshot Upshot is a trace analysis tool for programs written in PCN and other
languages. It includes run-time system support for collecting and saving traces, and
an X windows based graphical tool for interactive exploration of trace data.

1.3 Cross Reference

The basic constructs of the PCN language are described in the following sections.

e Syntax: § 4.2 and Appendix F.

Sequential composition: § 4.3.

Mutable Variables: § 4.3.
¢ Parallel composition: § 4.4.
o Definitional Variables: § 4.4.

e Choice composition: § 4.5.

The components of the PCN toolkit are described in the following sections.

Compiler: § 3.1, § 7.

Foreign interface and linker: § 8.

Process mapping tools: § 10.

Templates: § 12.

Debugging facilities: § 14.
PDB: § 15.



¢ Gauge: § 16.
e Upshot: § 17.
e Standard libraries: § 18.

Machine-specific aspects of the PCN toolkit are described in §§ 19-23. Additional
documentation on the PCN language, toolkit, and applications is cited in § 24.

The host-control program, a utility for managing execution of PCN programs
on networks, is described in a separate document. See § 24 for more information.

2 Getting Started

We assume that PCN is already installed on your computer. (If it is not, read the
documentation provided with the PCN software release.) You will need to know
where PCN is installed. Normally, this will be /usr/local/pcn, but some systems
may place PCN in a different location.

Before you can use PCN, you must tell your Unix environment where to find the
PCN software. If you are usin., the standard Unix C-shell (csh), you add one line
to the end of the file .cshrc . +2 ‘v home directory. If PCN has been installed in
/usr/local/pcn, this line is

set path = ($path /usr/local/pcn/bin)

The envir¢nment variable path tells the Unix shell where to find the various PCN
programs (compiler, linker, etc.). This shell command adds the directory containing
the various PCN executables to your shell’s search path.

If you use either the Bourne shell (sh) or the Korn shell (ksh) then you will
need to add the following commands to the end of the file .profile in your home
directory.

PATH=$PATH:/usr/local/pcn/bin
export PATH

You may have to log out and log in again for these changes to take effect.

3 An Example Program

We are now ready to compile and run our first PCN program. The syntax of PCN
is similar to that of the C programming language in many respects. Hence, it is
appropriate that our first program print “Hello world.” (the first C program in
several well-known texts does just this).



Module programi .pcn

main(argc,argv,exit_cod.
{; stdio:printf("Hello world.\n", {}, d),
exit_code = 0 ‘

}

A PCN program consists of one or more modules. Each module is contained in
a separate file with a .pcn suffix. Our example program consists of a single module,
programi, contained in a file programi.pcn. (We’'ll learn more about modules later.)

This example program has one procedure, main. Its three arguments are the
number of command line arguments (argc), a list of those arguments (argv), and
a variable to be used for a return code (exit_code). These are described in more
detail in § 3.4.

This procedure makes what is called an intermodule call: it calls the printf
procedure in the stdio module to print “Hello world .” The stdio module is
distributed with the PCN system; it provides many of the functions of the Unix
“standard I/0” library (§ 18.2).

3.1 Compiling a Program

The PCN compiler, pencomp, is used to compile a PCN module. In general, the
PCN compiler is invoked very much like most Unix based C and Fortran compilers.
Because our program is contained in a file programi.pcn, we type

pcncomp -c programil.pcn

When compiling programi .pcn, the PCN compiler will produce the file program1 . pam.
The .pam file contains PCN object code. These .pam files are analogous to the .o
files that are produced by most C and Fortran compilers. However, unlike .o object
files, the .pam files are completely machine independent: the PCN object code that
is compiled for one machine will work on any other machine without recompilation.

3.2 Linking a Program

Now that we have programi.pam which contains the PCN object code for our ex-
ample program, we must use the PCN linker to combine this .pam file with libraries
of procedures such as the stdio module and with the PCN run-time system. The
result of running the PCN linker will be an executable program.

The PCN linker will be run by pcrcomp when the -c argument is not passed to
pcncomp. This is the same convention as is used in most C and Fortran compilers
to invoke the Unix linker (1d).

To link the example program, myprogram, we type

pcncomp programi.pam -o myprogram -mm programi



As with most C and Fortran compilers, the -o specifies that the name of the
executabie produced by the linker will be named myprogram. For the moment,
ignore the -mm programi flag. This will be descussed in (§ 3.4).

The F’N linker is relatively slow. During program development you may wish
to use PCN’s dynamic loading capability. This feature allows you to avoid having
to relink a program when PCN files are changed. It is described in § 15.9.

For information on linking PCN programs that call C or Fortran procedures, see
§ 8. For more information on :sing the PCN compiler and linker in general, see § 25.

3.3 Running a Program

To execute a PCN program, you can just run it like any other program. For example,
to run myprogram you would type the following, where % is the Unix shell prompt:

% myprogram
Hello world.

%

In the subsequent examples, text typed by the user is written in italic and pro-
gram output in romar.

Command line arguments can be passed to PCN programs as they would be to
a C program. For example, the following program prints out the first few command
line arguments.

Module program2.pcn

main(argc, argv, exit_code)
{? argc == 3, argv 7= [ a1, a2, a3 ] ->
{; stdio:printf("“¥s\n¥%s\n¥%s\n", {a1, a2, a3}, .),
exit_code = 0
3,
default -> {; exit_code = 1 }

After this program is compiled as described above, it can be run as follows:

% program?2 arg2 “another arg”
program2

arg2

another arg

%




The PCN run-time system has a number of run-time configurable parameters
that can be controlled by command line arguments. In order to keep these run-time
system’s arguments from interfering with the program’s arguments, all arguments
up to but not including the first -pcn argument will be passed to the program.
All arguments after the -pcn argument will be passed to the run-time system. For
example, suppose you run a PCN program as follows:

my.program my.argl my.-arg2 -pcn -n 2

Tt would ¢ause my_argl and my.arg2 to be passed to the PCN program, and -n
and 2 to the run-time system.

A complete list of these run-time system parameters, and a brief description of
their meaning, can be obtained by using the -h argument, for example:

my.program =-pcn -h

3.4 The maii() Procedure

Every program must have an entry point. This is the procedure that is initially
called when a program is executed. In PCN, this entry point is modeled after C.

By default, the following PCN procedure is called when a PCN program is exe-
cuted:

main:main(argc, argv, exit_code)
where:

e argc is the argument count (an integer), as in C.

e argv is a list of the arguments. As in C, each argument is a string. A list is
a PCN data type, which is described in § 4.8.

e exit_code is undefined. The program should set this to an integer exit status
before terminating.

As with C programs, this exit status can be used by a Unix shell script or makefile
to determine whether execution “succeeded” (exit-code = 0) or “failed” (exit_code
# 0).

By default, a procedure named main, in a module named main, will be called to
start execution of the program. An alternate main module and/or main procedure
can be specified when linking by using the -mm and -mp flags, respectively. For
example, if you wish p:mymain(...) to be the entry point, you might link your
program by running

pcncomp p.pam -0 my_program -mm p -mp my-main



The -mm p flag says to use p as the main module, and the -mp my.main flag says to
use my_main as the main procedure.

When running on multiple PCN nodes, this main procedure is only called on
node 0. It is the responsibility of the PCN program to run procedures on other
nodes. This issue is discussed in section § 10.

I Getting started with PCN:

¢ PCN programs are contained in files with a .pcn suffix; compila-
tion produces a file with a .pam suffix. This .pam file contains the
PCN object code for this program, and is machine independent.

e We compile programs by running pcncomp -c file.pcn.

o We link programs by running pcncomp file.pam -mm file -o
program.

o PCN programs are executed just like other programs.

e The default entry point to a PCN program is the main() proce-
dure in the main module (i.e., main.pcn). The -mm and -mp linker
arguments can be used to change the main module and main pro-
cedure, respectively.

e Command line arguments that come before the -pcn argument
are passed to the PCN program via the argc and argv arguments
to the main procedure. Arguments after the -pcn argument are
passed to the PCN run-time system.

e The last argument to the main procedure should be set to an
integer exit status by the program.

4 The PCN Language

The programming language Program Composition Notation (PCN) is an integral
part of the PCN programming system: it is used to express concurrent algorithms
and to compose code written in sequential languages. Like any programming lan-
guage, PCN has a distinct syntax that must be mastered in order to write programs.
However, the key to understanding PCN is understanding the concurrent program-
ming model that it implements. Before presenting the PCN language, we introduce

this model and the fundamental concurrent programming concepts on which it is
based.



4.1 Concurrent Programming Concepts

Parallel programming is often considered “hard.” However, experience shows that
programming models that adhere to the following principles can significantly reduce
the complexity of parallel programming.

First-Class Concurrency: Concurrent execution should be a first-class citizen in
a programming model, not something appended to a sequential model.

Controlled nondeterminism: The result computed by a procedure should be
fully determined by the procedure’s inputs, except when explicitly specified
otherwise by the programmer.

Compositionality: It should be easy to understand both isolated program com-
ponents and larger programs formed by the concurrent composition of these
components.

Mapping independence: The way in which components of a concurrent computa-
tion are mapped to a parallel computer should not change the result computed.

PCN uses four simple ideas to realize a parallel programming model based on
these principles. Definitional variables provide an abstract, machine-independent
model of both communication and synchronization. Concurrent composition is the
fundamental mechanism used to build up complex programs from simpler compo-
nents. Nondeterministic choice is used to specify nondeterministic actions when
required. Encapsulation of state change allows state change to be integrated into
concurrent computations v’ hout compromising deterministic execution.

Definitiona! Variables. A single mechanism is provided for the exchange of in-
formation between concurrently executing program components (processes): the
definitional variable. A definitional variable is initially undefined, can be assigned
at most a single value, and subsequently cannot change. A process that requires
the value of a definitional variable waits (suspends) until the variable is defined. If
a process tries to assign a value to a definitional variable that is already defined, a
run-time warning will be generated, and the assignment will fail.

Definitional variables can be used both to communicate values and to synchronize
actions. If two concurrent prccesses, a producer and a consumer, share a definitional
variable, then a value provided by the producer for this variable is automatically
communicated to the consumer. Execution of the consumer is blocked until the
value is provided.

The definitional variable has several benefits for concurrent programming. First,
it avoids the nondeterminism that is so often associated with concurrency: choices
made within program components on the basis of definitional variables cannot
charge. This means that components can be understood in isolation, as errors caused
by time-dependent interactions cannot arise. Second, shared definitional variables
provide a clearly defined aud delineated interface between concurrently executing



processes: interaction can occur only if processes share variables. Third, the defini-
tional variable provides for mapping independence: processes sharing a definitional
variable may interact irrespective of their location in a parallel computer.

Concurrent Composition. Complex programs are developed by the concurrent
composition of simpler components. Hence, an application can be viewed as consist-
ing of a (potentially large) number of lightweight execution threads. These execute
concurrently, communicate via definitional variables, and block when required data
is unavailable.

It is often desirable that the number of threads be larger than the number of
processors, as this can allow the compiler and run-time system to adopt fiexible
scheduling strategies that overlap computation and communication, thus masking
latency and improving parallel efficiency.

Nondeterministic Choice. The use of definitional variables as a communication
mechanism avoids errors arising from time-dependent interactions: a choice made on
the basis of a definitional variable cannot change. Hence, concurrent computations
are deterministic. This is an important property that greatly simplifies parallel
programming.

Nevertheless, it is sometimes useful to be able to specify nondeterministic exe-
cution, particularly in reactive applications. Nondeterminism is integrated into the
programming model in a tightly controlled way. A form of guarded command is used
to define the conditions under which a process may perform various actions. Only
if the conditions associated with two or more actions are not mutually exclusive is
execution nondeterministic.

Encapsulation of State Change. The familiar concepts of state change and
sequencing that underlie sequential languages such as Fortran and C are also im-
portant in parallel programming: many algorithms are most efficiently specified in
ihese terms. However, state change must be carefully controlled if we are to avoid
introducing unwanted nondeterminism.

The approach adopted in PCN is to insist that state change be encapsulated
within sequential threads. Data structures that may be subject to state change
cannot be shared by concurrently executing program components. This restriction
prevents concurrent updates to state, which in turn avoids the possibility of time-
dependent behavior.

Programming Model Summary. Execution of a parallel program forms a set
of concurrently executing lightweight processes (threads) which communicate and
synchronize by reading and writing shared definitional variables. Individual threads
may apply the usual sequential programming techniques of state change and se-
quencing. Execution is deterministic, unless specialized operators are invoked to
make nondeterministic choices.

10



Key concurrent programming concepts:
e Definitional variables
¢ Concurrent composition

o Controlled nondeterministic choice

¢ Encapsulation of state change

4.2 PCN Syntax

The syntax of PCN is modeled on that of the C programming language. In addition,
the C preprocessor is applied to programs, so macros, conditioral compilation, and
file inclusion constructs can be used as in C (§ 7). In the following, we make frequent
reference to C when explaining features of PCN. However, these references are for
illustrative purposes only, and a familiarity with C is not required to understand this
material. A complete BNF grammar for the PCN syntax is provided in Appendix F.

Data Types. PCN’s three simple data types — character, integer, and double-
precision floating-point number (char, int, and double) — are as in C. One-
dimensional arrays of these data types are also supported. Arrays are indexed from
zero, as in C. There is also a complex data type, the tuple. This is introduced in
§ 4.8. A distributed variant of the tuple, the port, is described in § 11.

Constants. PCN uses the same character, integer, double precision floating point,
and string constant conventions as ANSI C. Please consult your favorite ANSI C ref-
erence (e.g. The C Programming Language, Second Edition, Kernighan and Ritchie,
1988, pp. 193-194) for more specifics on these conventions.

Strings. Strings are represented as character arrays, as in C. A character array
A representing a string S of length k contains the ASCII representation of the
characte:s of § in A[0]..A[k — 1] and the null character (\0) in A[k]. A constant
string is denoted by the characters of the string between quotes; for example, "PCN"
is a string consisting of the three characters: P, C, and N (followed by the null
character). The empty string is denoted by "*".

Expressions. Arithmetic expressions are as in C, except that the only operators
are modulus, addition, subtraction, multiplication, and division (%, +, —, *, and
/). The length function returns the number of elements in an array or 1 (one) if
applied to a single number or character. User defined functions (see below) can also
be called, except in guard expressions. The following are all valid expressions.

1+ x)%y i * length(g) 29 - x/g

11



Operator precedence and associativity are as in C. The following table summarizes
precedence and associativity rules. Operators on the same line have the same prece-
dence, while rows are in order of decreasing precedence. Parentheses () can be used
to override these default rules.

Operators Associativity
- (negation of numbers) length | right to left
* [ % left to right
+ - left to right

Variable Names. Variable names are as in C. A variable name is a character
string formed from the set {a-z,A-Z,0-9,_} and starting with a letter or an under-
score (“.”). Case is significant and there is no maximum length. The following are
all valid variable names.

value 2 Last.Item x

See Appendix C for a list of reserved words that cannot be used as variable names.
Comments. A comment begins with /* and ends with */, as in C.

Procedures. A procedure definition consists of a heading followed by a declara-
tion section followed by a block. The heading is the procedure name and a list of
arguments (i.e., formal parameters), as in C. All arguments are passed by reference,
unlike in C where arguments can be passed by value. The declaration section is
a set of declarations for arguments and local variables. The scope of a variable is
the procedure in which it appears: all variables appearing in a procedure are either
arguments or local variables of the procedure. In particular, there is no notion of a
global variable.

The body of a procedure consists of a composition of blocks.  The block is
the basic component from which procedures are constructed. A block is either a
composition, an assignment statement, a definition statement, an implication, or a
procedure call. These constructs will be defined shortly.

Functions. A function consists of the keyword function followed by a function
definition. A function definition has the same syntax as a procedure definition,
except that it may include calls to the primitive return(r) to specify a return
value, r. The return value of a function must be a definitional variable. Functions
cannot be used within guards.

Delimiters The blocks within a composition must be separated by either a comma
(,) or a semicolon (;). In addition, trailing delimiters (i.e., delimiters after the last
block in a composition) are legal.

12



Declarations. A declaration consists of a type (char, int, or double) followed
by one or more variable names, each with an optional suffix to denote an array.
An array suffix for a local variable has the form [size]l, where size is an integer, a
constant integer expression, or a variable from the procedure’s argument list (i.e.,
the array size will be determined at run-time). An array suffix for a variable that
is one of the procedure’s arguments has the form [J. The following are all valid
declarations. :

int a[size]; double b[10], c[1, d; char c;

We shall see that declarations are not provided for all variables: the definitional
variables used in PCN for communication and synchronization are distinguished by
a lack of declaration.

4.3 Sequential Composition and Mutable Variables

We now explore the PCN language proper. We shall view PCN as providing three
related sets of constructs. First, there are the composition operators — parallel,
sequential, and choice — which encode three fundamental ways of putting program
components together. Second, there are two types of variables: conventional or
mutable variables , and single-assignment or definitional variables. Third, there are
specialized language features introduced to support symbolic processing: tuples and
recursion.

We first introduce the two components that will be most familiar to many readers:
sequential composition and mutable variables.

The sequential composition operator is used to specify that a set of statements
should be executed sequentially, in the order written in the program. In languages
such as Fortran and C, this is of course the normal mode of execution. However, as
PCN also allows for other sorts of composition, we distinguish it by a special syntax.
A sequential composition has the general form

{ ; blockg, ..., blocky }

where “;” is the sequential composition operator and blocky, ..., blocky are other
blocks.

If no composition operator is used for a block, then the PCN compiler will
interpret this as a sequential block..

A mutable variable in PCN, like a variable in Fortran or C, is declared to have
some type (char, int, or double), initially has some arbitrary (unknown) value,
and can be modified many times during its lifetime, by means of an assignment
statement. An assignment statement is represented as follows,

variable := expression

where variable is a mutable variable or an element of a mutable array.
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Example. The procedure swap exchanges the values stored at the ith and jth
positions of an integer array. Its three arguments — array, i, and j — are declared
to be an integer array and single integers, respectively. A local variable temp is also
declared. The three assignments are placed in a sequential composition, to ensure
that they execute in the correct order.

The procedure swaptest can be used to execute swap. This procedure declares
a local integer array a[3] and local integer variables i and j; initializes the array
to contain the integers 0, 1, 2, i to contain 1, and j to contain 2; calls a pro-
cedure stdio:printf to display the contents of a; calls swap to exchange the ith
and jth components; and finally calls stdio:printf again to display the modified
array. Note that since procedure arguments are passed by reference, the array a in
swaptest is the same data structure as array in swap. Note also that in swaptest,
the sequential composition operator ensures that both the assignments to a and the
calls to stdio:printf occur in the correct order.

svap(array,i,j)

int array(], i, j, temp;

{; temp := arrayl[jl,
array[j] := array(i],
array[i] := temp

}

svaptest()

int a(3], i, j;
{; af0] :=0, a[1] := 1, a[2] := 2,
i=1,j:=2,
stdio:printf("Before: %d %d %d\n",{a[0],al1],al2]},.),
swap(a,i,j),
stdio:printf("After: ¥%d %d %d\n",{al0],a[1],a[2]},.)

Role of Sequential Composition. The example illustrates the two primary ap-
~'plications of sequential composition in PCN: sequencing of updates to mutable vari-
ables and sequencing of I/O operations.

4.4 Parallel Composition and Definitional Variables

We now consider two related constructs that may be unfamiliar to some readers:
parallel composition and definitional variables.

The parallel composition operator specifies that a set of statements are to be
executed concurrently. A parallel composition has the general form

{ Il blocko, ..., blockk}
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where || is the parallel composition operator and blocky, ..., blocky are other blocks.
Execution within a parallel composition is fair: that is, it is guaranteed that exe-
cution of each block will eventually progress (unless that block has terminated).
Execution of a parallel composition terminates when all of its constituent blocks
have terminated.

Concurrent computations initiated within a parallel composition must be able to
exchange data and synchronize their activities. It is important to understand that
this cannot be achieved by using mutable variables (at least not without the intro-
duction of complex locking mechanisms), as the order of read and write operations
in a parallel composition, and hence the result of such operations, is not in general
well defined.

Concurrent computations communicate and synchronize by means of definitional
or single-assignment variables. We have already come across definitional variables
in the introduction to this chapter. Here, we consider them in more detail.

Definitional variables are represented in the same way as mutable variables, with
one exception: a solitary underscore character (“_") is used to represent an anony-
mous definitional variable. Each occurrence of “_” represents a unique variable.

Definitional variables are not declared. Any variable occurring in a procedure
that is not explicitly declared in the procedure’s declaration section is a definitional
variable. Definitional variables initially have a special undefined value. They can be
defined once, by means of a definition statement, and then cannot be modified. The
definition statement is represented as

variable = expression,

where variable is a definitional variable., Note that a definition of the form x =
y is allowed; this establishes y as an alias for x, so that any prior or subsequent
definition for y also applies to x.

Example: Simple Divide and Conquer. The following program implements a
simple divide-and-conquer strategy. As none of the variables in this procedure are
declared, we see that all are definitional. Variables prob and soln are arguments;
the rest are local to the procedure. When executed, procedure div_and.conq im-
mediately executes a parallel composition containing four procedure calls. These
execute concurrently, with execution order constrained only by availability of data.
Variable prob is input and soln output. Procedure split consumes prob and hence
will block until an input value is available. Likewise, the solve procedures block
until 1_prob and r_prob are defined by split. Once the two calls to solve produce
values for 1_soln and r_soln, the combine procedure can proceed to produce soln.
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div_and_conq(prob,soln)

{I| split(prob,l_prob,r_prob),
solve(l_prob,l_soln),
solve(r_prob,r_soln),
combine(l_soln,r_soln,soln)

Properties of Definitional Variables |
¢ Have as initial value a special “undefined” value.

o Read operations block until the variable is given a value.

Are defined (“written”) by the definition operator (“=").

¢ Once defined, cannot be modified.

o Can be shared by procedures in a parallel composition.
o Are not explicitly declared.

e Can take on values of type char, int, double, or tuple.

It is instructive to compare mutable and definitional variables, as in the following
table.

| | Definitional [ Mutable |
Initial value Special “undefined” value | Arbitrary value
Defined by Definition operator (=) Assignment operator (:=)
Read operaton Blocks if undefined Always succeeds
Can be written Once Many times
Parallel composition | Can share Cannot share
Explicitly declared | No Yes
Types tuple, int, double, char int, double, char

Role of Parallel Composition. It is important to understand the distinct roles
of the parallel and sequential composition operators. Parallel composition exposes
opportunities for concurrent execution; sequential composition constrains execution
order so as to sequence I/O operations or assignments to mutable variables. In
general, it is a good idea to expose as much concurrency as possible in an application,
as this provides the compiler and run-time system with maximum flexibility when
making scheduling decisions. In particular, they cun seek to reduce the cost of
remote data accesses by overlapping computation and communication.
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4.5 Choice Composition

The third and final composition operator that we consider is the choice composition
operator, “?”. A choice composition has the general form
{ ? guardp —> blockg, ..., guardy —> blocki}

where each guard; is a sequence of one or more tests. Valid tests include

a<b,a>b,a<=b,a>=0b: arithmetic comparison
a == b, a '=b : equality and inequality tests

int(ae), char(a), double(a), tuplela) : type tests
data(a) : synchronization test

?=: tuple match

default : default action

We refer to a single “guard — > block” as an implication.

Choosing between Alternatives. Choice composition provides a mechanism for
choosing between alternatives. In this respect it may be regarded as a parallel if-
then-else or guarded command. Each guard specifies the conditions that must be
satisfied for the associated block to be executed. At most one of these blocks will
be executed; which one depends on the result of guard evaluation.

A choice composition is executed as follows. Each guard is evaluated from left
to right. A guard succeeds if all of its tests succeed. If one or more guards succeed,
exactly one of the corresponding blocks is chosen to be executed.

For example, the procedure max executes either z = x or z = y, depending on
the value of x and y, and hence defines z to be the larger of x and y.

Module max.pcn: Version 1

max(x,y,z)

{? x>y ->z=x,
x< y=>z=y

}

Synchronization. Choice composition also provides a synchronization mecha-
nism. A test suspends when evaluated if it requires the value of an undefined
definitional variable (e.g., x < 3, where x is undefined). Otherwise, it succeeds
or fails depending on the value of its arguments.

A guard is evaluated from left to right. If any test suspends, the guard suspends.
If any test fails, the guard fails. If all tests succeed, the guard succeeds.
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If some guards suspend and all other guards fail, execution of the choice com-
position is suspended until more data is available. If all guards fail, execution of
the choice composition terminates without doing anything. Hence, a call to the
procedure max given above will suspend until both x and y have values, and then
proceed as follows. If both x and y are numbers, the procedure executes either the
first or second implication, depending on the values of x and y. If either x or y is
not a number, the procedure terminates without doing anything.

The guard test default succeeds only if all other guards in a choice compo-
sition fail. For example, consider the following alternative formulation of the max
procedure.

Module max.pcn: Version 2

max(x,y,z)

{? x>y ->z-=rx,
default -> z = y

}

The two versions of max give the same behavior if x and y are numbers. If either x or
y is not a number, however, the first program terminates without executing either
implication, while the second program selects the second implication.

Choice composition rules:

o Evaluate each guard left to right.

If any test suspends/fails, guard suspends/fails.

If all tests succeed, guard succeeds.

If all guards fail, process terminates.

If no guards succeed and some suspend, process suspends.

If some guards succeed, execute one implication body.

If all other tests fail, the default guard test succeeds.

Nondeterministic Choice. Choice composition also provides a mechanism by
which nondeterminism is introduced into PCN programs. Nondeterministic choice
is rarely required in parallel programming. However, it can be important in reactive
applications.

We first illustrate the use of nondeterministic choice with a trivial example.
We may rewrite the max procedure giver earlier as follows. Note that the two
implications are not mutually exclusive. If x == y, either implication may be taken.
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This program is nondeterministic in the sense that the action that it performs is
not determined solely by its input, although of course the answer computed is still
determined precisely by the input.

max(x,y,z)
{? x> y->2z=x,
X< y->z=y

}

We now consider a reactive programming example. A procedure switch has
two definitional iaputs corresponding to the outputs of two sensors in a mechanical
device. If either sensor is activated, the corresponding input variable will be given a
value. The switch nrocedure is to return a result value if either sensor is activated,
with the value speciiying which sensor was activated.

switch(sensori,seuscr2,alarm)
{7 Jdata(sensori) -> alarz = {,
data(sensor2) -> alarm = 2

}

The guard test data succeeds as soon as its argument has a value. Hence, the output
variable alarm takes value 1 if sensor1 is activated and 2 if sensor2 is activated.
It can take either value if both are activated.

| Choice Composition is used for three purposes:

e Choosing between alternatives.

e Synchronization.

e Nondeterminist.c choice.

4.6 Definitional Variables as Communication Channels

Consider two procedure calls (processes), a producer and a consumer, that share a
definitional variable, x.

producer(x), consumer(x)

The two processes can use the shared variable to communicate data, simply by
performing read and write operations on the variable. For example, assume that the
producer is defined to write the variable, as follows.
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producer(x)
{ll x = "hello" }

The definition x = "hello" has the effect of communicating the message "hello"
to the consumer. The consumer receives this value simply by reading (examining)
the variable. For example, the following consumer procedure checks to see whether
x has the value hello. Note the use of choice composition and the default guard.

consumer (x)

{? x == “hello" — > stdio:printf("Hello",{},.),
default — > stdio:printf("Huh?",{},.)

}

The shared definitional variable x is used here to both communicate a value be-
tween the producer and consumer and to synchronize the actions of these processes.
The shared definitional variable can be thought of as a communication channel.

The use of definitional variables to specify communication has two advantages.
First, it avoids the distinction that is made in many parallel languages between inter-
processor and intraprocessor communication. This means that no special “packing”
or “unpacking” operations need be performed when communicating. This in turn
facilitates the retargetting of programs to different parallel computers. Second, it
provides great flexibility in the communication strategies that can be specified. In
particular, it is possible (as we shall see below) to include variables in data structures
and hence to establish dynamic communication structures.

An apparent difficulty of this formalism is that each definitional variable can be
used only to communicate a single value. Fortunately, this is not the case. We show

in § 4.9 below how a single shared variable can be used to communicate a stream of
messages between processes.

4.7 Specifying Repetitive Actions

We have now encountered the constructs used in PCN to express concurrent and
sequential execution, communication between concurrent computations, and state
change within sequential computations. We need one more construct before we can
build large programs, namely, a mechanism for specifying repeated actions.

You are probably familiar with the use of iteration to specify repetition. For
example, in Fortran we may write do i=1,10 to specify 10 repetitions of a loop,
with i ranging from 1 to 10. PCN provides a similar construct, called quantification.
A quantification has the general form

{ op i over low .. high :: block }
and specifies that block should be executed once for each i in the range low. .high,
either concurrently (if op = ||) or sequentially (if op = ;).

A quantification s useful when specifying iterative computations involving mu-
table variables (or ports - see § 11). However, the most commonly used iterative
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construct in PCN is recursion. You will be familiar with recursion if you have used
C (or Prolog, Strand, or Lisp); it tends to be more verbose than iteration, but
has the advantages of allowing richer repetition structures and of working well with
definitional variables.

We introduce the use of recursion in PCN with a simple example. Consider
the following procedure, which computes the sum of the elements with indices in the
range from. .to in array. This procedure is defined in terms of a choice composition
with a parallel composition as the body of the first implication and a simple definition
statement as the body of the second implication.

Module sumarray.pcn: Version 1

sum_array(from,to,array,sum)
{? from <= to ->
{l| sum_array(from+1,to,array,sumrest),
sum = array[from] + sumrest
}’

from > to -> sum = 0

The first implication states that if from <= to, then the sum of elements from. .to
is the value of element array([from] plus the sum of elements from+1..to. The
second implication defines the sum to be 0 in the case when from > to.

This procedure uses recursion to repeat the summation over all the elements
of the array. A recursive procedure normally specifies two alternative courses of
action: continuation and termination. These are combined in a choice composition
with guards specifying associated continuation and termination conditions.

In the example, the continuation action consists of summing array[index] and
sumrest, and making a recursive call to sum_array to compute sumrest; these
actions are to be performed if from <= to. The termination action consists of
defining sum = O; this is to be performed if from > to.

Recursive procedure specifies:
e Termination condition and actions.

o Continuation condition and actions.

Parallel algorithms based on divide-and-conquer techniques frequently make mul-
tiple recursive calls to the same procedure. For example the following program
implements a divide-and-conquer algorithm for summing the elements of an array.
The task of summing an array is recursively decomposed into the tasks of summing
the left and right subarrays.
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Module sumarray.pcn: Version 2

sum_array(from,to,array,sum)
{? from < to =>
{1l sum_array(from, (from+to)/2,array,sumleft),
sum_array((from+to)/2+1,to,array,sumright),
sum = sumleft + sumright
}l

from == to -> sum = array[from]

This example makes apparent the advantages of recursion as a repetition con-
struct in a parallel language: the doubly recursive formulation of sum.array exposes
concurrency that is not directly available in an iterative solution.

4.8 Tuples

The programs presented thus far have all dealt with simple data structures: charac-
ters, integers, double precision numbers, and arrays of the same. These data struc-
tures will be familiar to most readers from sequential languages such as Fortran and
C. PCN also provides another sort of data structure called the tuple. Similar data
structures are used in symbolic languages such as Prolog, Strand, or Lisp.

A tuple is a definitional data structure used to group together other defiritional
data structures. A tuple has the general form

{ termp, ..., termy_; } (k>0)

where termy, ..., termi_; are definitional data structures. The following are all valid
tuples.

{a,p} {vabe"} {} {12,{13,{}}} {5.2,"def"}

Note that tuples can be nested: in the fourth tuple on the preceding line, the
tuple {} is nested inside the tuple {13,{}}, which is in turn nested inside the tuple
{12,{13,{}}}. Note also that tuples can contain elements of different types.

It is useful to think of tuples as representing trees. A tuple {to, ..., ti-1}
represents a tree with a root and k offspring.

{ /5w s\}
t:/ .\tk,l

The tuples listed above can be drawn as follows.
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Building Tuples. Tuples can be written in a program, either as an argument to
a procedure call or as the right-hand side of a definition statement. For example,
the block

{ll proc(1,{x,y.{2}}), x = "abe", y = {123} }

invokes a procedure proc with the tuple {"abc", {123}, {z}} as its second argument.
Alternatively, the primitive operation make_tuple can be used to build a tuple
of specified size, with each argument a definitional variable. For example, the call

make_tuple(3,tup)

defines tup to be the three-tuple {-, -, -}.

Accessing Tuples. Tuple elements can be referenced in the same way as array
elements: [i] is element ¢ of a tuple ¢, for 0 < i < length(t). Hence, the statements

make_tuple(3,tup), tup[0] = "abc", tup[1] = {123}, tup[2] = {z}

produce the tuple passed as an argument to proc previously.
The guard test “?=" (match) can be used to decompose a tuple into its con-
stituent components. A match has the general form

tup ?= {to, ..., i1},

where the t; are either new definitional variables or nonvariable terms. A match
succeeds if tup has arity k and each of its arguments matches the corresponding
t;, suspends if tup is not defined or if one of the matches with a t; suspends,
and fails otherwise. A new definitional variable t; is created with the value of the
corresponding tup argument.

For example, the match

tup ?= {"abc", a, {b}}

succeeds if tup = {"abc",{123},{z}}, defining a = {123} and b = z. It suspends
if tup = {x,{123},{z}}, as the first element of the matching typle is "abc", but the
first element of tup is the undefined variable x. It fails if tup = {"def",{123},{z}},
as the first element of the right-hand tuple ("abc") does not match the first element
of tup ("def").
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The match operator does not perform unification. That is, if the term on the
left-hand side of the match contains undefined variables, those variables will not be
defined to the values that appear in the same location on the right-hand side of the
match. The only definitional variables that will be given values during a match are
the new definitional variables that appear on the right-hand side of the match.

Variables that appear in right-hand side of match must be new definitional vari-
ables. They may not be definitional variables that already exist outside of this
implication (i.e., the choice of the choice block that contains this match). The scope
of these new definitional variables is the implication in which this match resides
- they cannot be used outside of this implication. Therefore, to propogate a new
variable that is created during the match to a definitional variable that is outside
of the implication in which the match appears, you must assign the new variable
to the outside definitional variable from within the body of the implication. This
is illustrated in the following example which uses a match operator to extract the
elements of the tuple, t. Those tuple elements are then used outside the scope of
the implication in which the match appears.

Procedure tuplel

tuplei(t)
{1
{?" t ?= {tmp_a, tmp_b} ->
{Il a=tmp_a, b = tmp_b },
default ->
{Illa=0,b=01}
}l
r(a,b)

Comparing Tuples. The guard tests == and != can be used to compare tuples
as well as strings, numbers, and arrays. An equality test x == y succeeds if x and
y are tuples with the same arity and corresponding subterms are also equal. The
equality test is applied to subterms left to right, depth first; if any subterm test fails
or suspends, the overall test also fails or suspends, respectively. The test also fails if
x and y have different arities. An inequality test x != y succeeds if x == y would
fail, fails if x == y would succeed, and suspends otherwise.

List Notation. A list is a two-tuple in which the first element represents the
head of the list and the second element the tail. By convention, the zero-tuple ({})
represents the empty list. For example, the structure {1,{2,{3,{}}}} is the list
containing the numbers 1, 2, and 3.

This notation is clumsy, so PCN provides an alternative syntax: a list {h,t}
may be written as [h|t], the empty list as [ 1, a list such as {1,{2,{3,{}}}} as
[1, 2, 3], and a list such as {1,{2,{3,tail}}} as [1, 2, 3|taill.
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Example: List Length. The procedure listlen computes the length len of a
list 1. For example, a call 1astlen([1,2,3,4],1len) gives the result 1en = 4. Note
the use of an auxiliary procedure 1istlenl, which accumulates the length so far in
acc and then returns the final result as len.

listlen(l,len)
{1l listlen1(1,0,len)}

listlen1(l,acc,len)
{? 1 7= [_111] -> listlen1(11,acc+1,len),
default -> len = acc

}

Example: Building a List. The procedure buildlist builds a list 1 of length
len. For example, a call buildlist(4,1) gives the result 1 = [4,3,2,1].

buildlist(len,l’
{? 1len > 0 ->
{11 1 = [lenli11],
buildlist(len-1,11)
}’
default -> 1 = []

Example: List Transducer. The procedure listadd is an example of what
is called a list transducer. It traverses one list and constructs another containing
the result of applying a simple operation to each element in the first list: in this
case, the operation is simply to add one to each element. For example, a call
listadd([1,2,3,4],nl) gives the result nl = [2,3,4,5].

listadd(1l,nl)
{7 1 7= [ell1] >
{Il n1 = [e+1|nl1],
listadd(11,nl1)
}’
default -> nl = []
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4.9 Stream Communication

We have seen how two or more concurrent computations that share a definitional
variable can use that variable to exchange data. The producer of the data simply
defines the shared variable to be the data to be communicated (e.g., x = "hello").
The consumer(s) of the data can then use the data in computation.

A shared definitional variable would not be very useful if it could be used only to
exchange a single value. Fortunately, there are simple techniques that allow a single
definitional variable to be used to communicate many values. The most important
of these is the stream. A stream is a data structure that permits communication of
a sequence of messages from a producer to one or more consumers. A stream acts
like a queue: the producer places elements on one end, and the consumer(s) take
them off the other.

By convention, stream communication is implemented in PCN in terms of list
structures. Imagine a producer and a consumer sharing a variable x. The producer
defines x = [msg|xt] and the consumer matches x ?= [msg|xt]. The effect of these
operations is to both communicate msg to the consumer and create a new shared
variable xt that can be used for further communication. This process can be re-
peated arbitrarily often to communicate a stream of messages from the producer to
the consumer. Hence, a stream is a list structure, incrementally constructed by a
producer and deconstructed by a consumer. The empty list ([]) is used to represent
the end of a stream.

Example: Summing Squares. Weillustrate the stream communication protocol
in a program that computes the sum of the squares of the integers from 1 to N. We
decompose this problem into two subproblems: constructing a stream of squares
and summing a stream of numbers. The first subproblem is solved by the procedure
squares, which recursively produces a stream (i.e., list) of messages N2, (N-1)2,
..., 1. The second subproblem is solved by the procedures sum and sumi, which
recursively consume this stream (list). The auxiliary procedure sumi accumulates
the sum so far in sofar and returns the final result as sum.

Note the structure of the producer (squares) and consumer (sumi) procedures in
the following program. Both are recursively defined. In the producer, the recursive
case incrementally constructs a list sqs of squares by defining sqs = [n*n|sqs1]
and calling squares to compute sqs1; the termination case defines sqs = []. In the
consumer, the recursive case deconstructs a list ints of integers by matching ints
?= [iJints1] and calling sum1 to consume the rest of the messages; the termination
case returns a result.
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Module sumsquares.pcn

sum_squares (N,sum)
{I| squares(N,sqs), sum(sqs,sum) }

squares(n,sqs) /* Producer: x/
{? n>0->{ll sqs = [n*nlsqs1], /* Produce element, */
squares(n-1,sqsl) /* & recurse */
},
n==0->sqs = [] /* Close list. */
}
sum(ints,sum)

{l] sumi(ints,0,sum)}

sumi(ints,sofar,sum) /* Consumer: */
{? ints ?= [ilints1] -> /* Consume element, */
sumi (intsi,sofar+i,sum), /* & recurse x/
ints ?= [] -> sum = sofar /* End of list: stop*/

}

Send/Receive Operations. Some readers may find it useful to think of a stream
as an abstract data type on which four operations are defined: send, close, recv,
and closed. The first two are procedure calls used by a stream producer, and
the latter two are guard tests used by a stream consumer. All take a definitional
variable (8) as an argument; send and recv also return a new definitional variable
(81) representing a new stream to be used for the next communication.

send(s,msg,s1): Send msg on stream s, returning as si a
new stream for subsequent communication.

close(s): Close stream s.

recv(s,msg,s1): Succeed if a message is pending on stream
s, defining msg to be the message and si the new
stream.

closed(s): Succeed if stream s has been closed.

These operations can be defined by the following macros.

| File sendrecv.h |

#define send(s,msg,s1) s = [msg|s1]

#define close(s) s =[]
#define recv(s,msg,s1) s ?= [msg|si] /* Guard test #/
#define closed(s) s ==[] /* Guard test */
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These definitions can be placed in a file (e.g., sendrecv.h) and included in your
programs, if you prefer to think in terms of send and recv operations instead of
definition and match operations on streams. For example, the squares and sum1
procedures presented previously (module sumsquares.pcn) can be rewritten as fol-
lows.

#include "sendrecv.h" /* Include macros */

squares(n,sqs)
{? n > 0 -> {l| send(sqs,n*n,sqs1),
squares(n-1,sqsi)

},
n == 0 -> close(sqgs)
}
sumi(ints,sofar,sum)
{? recv(ints,i,ints1) -> sumi(ints1,sofar+i,sum),
closed(ints) -> sum = sofar
}

However, it would be a mistake to think of lists as simply a clumsy notation for
streams, and to restrict your use of streams to the four basic operations provided in
sendrecv.h. The fact that streams are data structures that can be manipulated in
the same way as any other data structure provides enormous flexibility.

Example: Stream Filter. We illustrate this flexibility with a list transducer
that filters a stream x, generating a stream y identical to x but with no consec-
utive duplicates. (For example, a call filter([1,1,4,3,5,5,2],y) defines y =
(1,4,3,5,2].)

This is not a complex example. However, it illustrates several stream-processing
strategies. Note in particular the use of the match operator to check for two pend-
ing messages (as follows: x?=[msg1,msg2|x1]), the pushing of unused elements back
onto the stream in the recursive calls {(e.g., filter([msg2|x1],y)), and the defini-
tion of y to be all remaining elements of x in the termination case (y = x).
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tfilter(x,y)
{? x ?= [ms3i,msg2ix1] ->

{? msgl == msg2 -> filter([msg2ix1],y),

default -> {|| y = [msgily1],
filter([msg2ix1],y1)
}
},
default -> y = x /* x is [msg]l or [] */

4.10 Advanced Stream Handling

The stream construct provides direct support for one-to-one communication, that is,
communication between a single producer and a single consumer. It also supports
broadcast communication, that is, generation of a single stream to be received by
several consumers. For example, in the composition

{l| producer(s), consumer(s), consumer(s) },

both consumers receive any values generated by the producer.

Three other communication patterns are also important in practical applications:
many-to-one, one-to-many, and bidirectional. The first and second are supported
in PCN by specialized primitives. The third is achieved by means of a specialized
programming technique.

Mergers: Many-to-One Communication. A mergeris a PCN system program
that allows the construction of an output stream that is the nondeterministic inter-
leaving of a dynamically varying number of input streams. (The merger is hence
the second sonrce of nondeterminism in PCN, with choice composition being the
first.) The only constraint on message order in the output stream is that the order
of messages from individual input streams be preserved. A merger is created with a
procedure call of the form

sys:merger(in,out),

where in is an initial input stream and out is the output stream. An additional
input stream newin is registered with the merger by appending a message of the
form {"merge",newin} to any open input stream. An input stream is closed in
the usual way (8 = [J); the output stream is closed automatically when all input
streams are closed.

The following code fragment illustrates the use of the merger. This organizes
communication between two producer processes and a single consumer, so that the
consumer receives on instream an intermingling of the streams generated by the
two producers.
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{l| producer(si), producer(s2)
instream = [{"merge",s1},{"merge",s2}],
sys:merger{instream,outstream),
consumer (outstream)

}

Note that the merger must be able to determine whether each input message is
a {"merge",.} term. Hence, messages of the form var or {var,term} (where var is
an undefined variable) should not be sent to a merger: these will cause the merger
to delay until var is given a value.

Distributors: One-to-Many Communication. A distributor is a PCN system
program that routes each message received on its input stream to one of several
output streams. A message of the form {N,Msg)} causes the distributor to route Msg
to the Nth output stream. A distributor is created with a call of the form

sys:distribute(N,In),

where N is the number of output streams needed and Inis the input stream. Messages
can then be sent to the distributor to register output streams. We register a stream
S as the Nth output stream by sending a message with the form

{rattach",N,S,Done},

w'h+re Done is a definitional variable that is defined by the distributor to signal that
the stream S has been registered.

We request the distributor to route a message Msg to the Nth output stream by
sending the following message:

{N, Msg}

We request the distributor to broadcast a message Msg to all output streams by
sending the following message:

{"al1", Msg}

It is important to ensure that a stream has been registered before requesting
that a message be routed to that stream. One way of doing this is to register all
streams with the distributor before sending any messages. The following program
achieves this. A call make distributor(in,ss) creates a distributor with ss as
its output streams. (The number of streams in 8s is computed by the procedure
sys:list_length defined in § 18.1.) The input stream in is passed to this distrib-
utor only after all output streams have been registered.
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make_distributor(in,ss)

{l| sys:list_length(ss,len),
sys:distribute(len,tod),
register(0,ss,tod,in)

}

register(i,ss,tod,in)
{? 88 7= [slss1] ->
{ll tod = [{"attach",i,s,done}|todl],
data(done) -> register(i+i,ssi,todl,in)
},

g8 ?= [] -> tod = in

If the input stream to the distributor is closed (In = [J), then the distributor
closes all registered output streams and shuts down.

Two-Way Communication. Many parallel algorithms require two-way commu-
nication between concurrently executing processes. In some cases, this can be
achieved by defining two communication streams, one for use in each direction.
However, it is also possible to achieve two-way communication with a single defini-
tional variable, by using a technique called an incomplete message.

We introduce the incomplete message technique with a simple example. Con-
sider a program input capable of providing boundary conditions for two different
numerical models (e.g., spectral and finite difference). This can be composed with
a procedure implementing a particular numerical model, as follows.

input(xs), model(xs)

The definitional variable xs will be used to implement a stream.

The first thing that input does is to query the program it is composed with, to
determine that program’s input requirements. It does this by sending a message of
the form

{"what_input",response},

where response is an undefined definitional variable. The other program (which
of course must be ready to accept such a message) defines response to specify the
required input type, allowing the first program to read response and generate the
appropriate input data.

Possible definitions for input and model are as follows. In this example, the
model procedure specifies that it expects input in terms of spectral coefficients by
defining response = "spectral”. This communication causes the input procedure
to execute spectral.input.
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input(x)
{I! x = [{"vhat_input",response}|xs],
{? response == "spectral" -> spectral_input(xs),
response == "finite_diff" -> fd_input(xs)
}
}

model (x)
{? x ?= [{"what_input",response}{xs] ->
{1l response = "spectral",
process_input(xs)

}

In this example, a single shared variable, xs, has been used to achieve two-way
communication. This is a simple example of a very powerful programming technique
that can be used to establish a wide variety of communication patterns. The key
idea is for one process to define a shared variable to be a tuple containing “holes”
(undefined variables). Consumer(s) of this tuple can then fill in these holes (define
the variables) to communicate additional values to the original producer or even to
other consumers.

We use a more complex example to strengthen understanding of the incomplete
message technique. Consider the problem of exploring a large search space with a
heuristic search method. Assume that it is possible to define multiple searchers,
each capable of exploring part of the search space, and that individual searchers can
improve their efficiency by exploiting global information about the best-known par-
tial solution. We collect and disseminate global information by defining a controller
process to which each searcher periodically sends information about its current best
partial solution. The controller responds to each such message by updating its view
of the best partial solution and returning the best known partial solution.

A PCN implementation of this search method provides each searcher with a
stream to the controller and uses a merger to combine the multiple searcher streams
into a single controller input stream. For example, the following code links two
searchers and a controller.

{1l searcher(s1), searcher(s2),
sys:merger([{"merge",s1},{"merge",s2}],s),
controller(s)

}

The searcher is defined as follows. A call to first_attempt yields an initial
approximate solution (value), which is passed to the recursively defined procedure
search. The search procedure sends the approximate local solution to the con-
troller in a {value,response} tuple, where response is an undefined definitional
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variable used to communicate information back from the controller to the searcher.
Depending on t}= response received from the controller, the searcner either termi-
nates or calis rext_attempt and repeats the process.

The controller receives a stream of approximate solutions from the workers. It
processes each message by calling improve_estimate to improve its own estimate
of the global best solution, and returning either this estimate or the signal “stop"
(indicating that a solution has been found) to the searcher.

searcher(trials)

{Il tirst_attempt(value),
search(trials,value)

}

search(trials,value)
{11! trials = [{value,response}|trialsi],
{? response == "stop" -> trialsi = (],
default ->
{I| next_attempt(value,response,next_valus),
search(trialsi,next_value)

}
}

controller(trials,bound)
trials ?= [{value,response}itriaisi] ->
{l| improve_estimate(bound,valve newbound,rssul-.),
{? result == "golution" -> z.sponse = "stop",
default -> response = newbound
},

controller(trialsi,newbound)

Specialized Communication Structures:
e Many-to-one: merger.
e One-to-many: distributor.

o Bidirectional: incomplete message.

4.11 Interfacing Parallel and Sequential Code

The two worlds of parallel and sequential, definitional and mutable, have so far been
regarded as distinct. In practice, the two worlds must interact whenever a sequential
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program component is integrated into a concurrent program. Such interactions
are governed by three simple rules. The first restricts the way in which mutable
variables can be used within parallel blocks, while the second and third specify
copying operations performed by the PCN compiler when data is transferred between
the definitional and mutable worlds by defining a definition in terms of a mutable,
or vice versa. This copying avoids aliasing between state maintained in different
sequential threads, and hence ensures that state change within individual threads
does not lead to time-dependent interactions with concurrently executing processes.

Mutable Variables and Parallel Composition. Mutable variables may occur
in parallel compositions, but only if their usage obeys the following rule.

| Rule 1: A mutable variable can be shared by blocks in a parallel com-
I position only if no block modifies the variable.

This restriction prevents errors resulting from time-dependent, nondeterministic
updates to a mutable variable (i.e., race conditions). The restriction is not currently
enforced by the compiler, and so the programmer must be careful to ensure that all
programs are valid.

Note that there is no similar restriction on the use of definitional variables within
sequential blocks.

Mutable — Definition. The following rule states what happens when a defini-
tional variable is defined in terms of a mutable variable.

Rule 2: When a mutable occurs on the right-hand side of a definition
statement, the current value of the mutable is snapshotted (copied), and
the definition then proceeds as if a definitional value were involved.

For example, in the following code,c = § and d = 4 when computation is com-
plete.

proci(c,d)

int a;

i a:=3,
c= 24+ a,
a := 4
d=a

}

Snapshotting a mutable array creates a definitional copy of the array that can be
read but not modified. For example, in the following, c is defined to be a copy of the
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mutable array a. Subsequent changes to a do not affect the value of the definitional
array c.

proc2(c,d)

int a[s];

{; initialize(a),
c = a,

Definition — Mutable. The following rule states what happens when a mutable
variable is assigned an expression involving a definitional variable.

an assignment, the assignment suspends until the variable has a value

Rule 3: When a definitional variable occurs on the right-hand side of
and then proceeds.

For example, if ¢ is a definition with value 3 in the following program, then a
has value 5 after the assignment.

proc3(a,c)

int a, b;

{; b:=2
a:=b+c

}

Note that if the right-hand side of the assignment is not an expression, then the
assignment will copy the definitional value into the mutable variable. For example,
in the following code fragment, the definitional value c is copied into the mutuble
array a. The array a can be modified subsequently without affecting c.

int a[8];
a:=¢

Example. The following example illustrates the use of copying to avoid aliasing.
The procedure proc has two definitional arguments: it produces as output the result
of applying a transformation solve to input. It calls the procedure solve to effect
the transformation; this is defined to operate on mutable data structures. Hence,
proc declares a local mutable array temp, assigns temp the value input, applies
solve to temp, and then defines output to be the updated value of temp. Two
copying operations take place, from input to temp and from temp to output.
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proc(input,output)

double temp[SIZE];

{; temp := input,
solve(temp),
output = temp

4.12 Review

PCN encourages a compositional approach to parallel programming, in which com-
plex programs are built up by the parallel compusition of simpler components. Pro-
gram components composed in parallel execute concurrently. They communicate
by reading and writing definitional (single-assignment) variables. The use of defini-
tional variables avoids time-dependent interactions, allowing individual components
to be understood in isolation. In addition, read and write operations on definitional
variables can be implemented efficiently on both shared-memory and distributed-
memory parallel computers. Hence, parallel composition and definitional variables
address three of the concerns listed at the beginning of this chapter: concurrency,
compositionality, and mapping independence.

The choice operator is used to encode conditional execution and synchronization.
It also provides a means of introducing controlled nondeterminism into programs.
(The merger is the other mechanism used to specify nondeterministic actions in PCN
programs.)

The sequential composition operator and mutable variables together provide a
mechanism for integrating state change into definitional programs. This state change
may be performed in PCN or in lower-level sequential languages.

A final aspect of PCN which may be unfamiliar to some readers is its use of
tuples and recursion. These constructs provide support for symbolic processing.
They augment arrays, iteration, and other language constructs provided by lan-
guages such as Fortran and C for numeric processing. An increasing number of
applications have both numeric (regular, fioating-point) and symbolic (irregular,
rule-based) components. PCN’s symbolic processing capabilities are intended to
support such mixed-mode applications.

5 Programming Examples

We present PCN programs that solve programming problems concerned with list
and tree manipulation, sorting, and a two-point boundary value problem.
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5.1 List and Tree Manipulation

Membership in a List. Develop a program member with arguments e, 1, and r,
where 1 is a list, and at termination of execution of the program, r = TRUE if and
only if e appears in list 1. Assume that FALSE = 0 and TRUE = 1, to be consistent
with C.

#define TRUE 1
#define FALSE O

member(e,l1,r)

{? 1 7= [vlil1], v == e -> r = TRUE,
1 ?= [v|11], v != e -> member(e,l1,r),
1 7= []J -> r = FALSE

Membership in a List (Mutables). Now consider a program with the same
specification, except that e and r are now mutables. The mutable r is to be set to
TRUE or FALSE; e (and of course 1) should not be changed.

#define TRUE 1
#define FALSE O

member(e,1,r)

int e, r;

{? 1 7= [v|11], v == e => r := TRUE,
1 ?= [v|11], v !'= e -> member(e,l1,r),
1 ?7= [] -> r := FALSE

The only difference between the two programs is the addition of the type declarations
and the substitution of the := operator.

Reversal of a List. Develop a program reverse with arguments x, b, and e,
which defines b to be the list of elements in x, in reverse order, concatenated with
e. For example, if x = ["A","B"] and e = ["C","D"], then b is to be defined as
(B","A","C","D"]. (The name b stands for the beginning of the reversed list, and
e stands for the end of the reversed list.)
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reverse(x,b,e)
{? x ?= [vixs] -> reverse(xs,b,[vlel]),
x? [] ->be=oe

}

This program can be used to simply reverse a list by calling it with e = []. For
example, a call reverse([1,2,3],b,[]) yields b = [3,2,1].

The reverse procedure illustrates an important programming technique called
the difference list. A call to reverse constructs a list b consisting of the values
computed by reverse followed by the values provided as e. This allows lists con-
structed in several computations to be concatenated without further computation.
For example, the calls

reverse([1,2,3],b,e), reverse([4,5,6],e,[])
construct the list [3,2,1,6,5,4].
Height of a Binary Tree. Develop a program height with arguments t and z,
where t is a binary tree, and z is to be defined to be the height of the tree. A tree t

is either the empty tuple, {}, or a 3-tuple {left, val, right }, where left and
right are the left and right subtrees of t.

height(t,z)
{? t ?= {left, _, right} ->
{Il height(left, 1), height(right, r),
{? 151 ->2z=1+1,
1< r ->2z=r+l
}
}D
t?={}->z2=0

The program can be read as follows. The height of a nonempty tree is 1 plus the
larger of the heights of the left and right subtrees. (The heights of the subtrees are
determined by two recursive calls to height.) The height of an empty tree is 0.

Preorder Traversal of a Binary Tree. Develop a program preorder with ar-
guments t, b, and e, where t is a binary tree, and b and e are lists. Binary trees are
represented using tuples, as in the last example. List b is to be the list consisting of
the val of all nodes of the tree in preorder, concatenated with list . (A traversal of
a tree in preorder visits the root, then the left subtree, and finally the right subtree.)
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preorder(t,b,e)
{? t ?= {left,val,right} ->
{1 v = [valimi],
preorder(left,mi,m2),
preorder(right,m2,e)
}’
t?7 {}->b=oe

The program uses the difference list technique introduced previously in the reverse
example: each call to preorder constructs a list b consisting of the elements in its
subtree t followed by the supplied list e.

5.2 Quicksort

We present an implementation of the well-known quicksort algorithm, gsortD, which
uses lists of definitional variables; later, we provide an in-place quicksort, qsortM,
that uses mutable arrays. It is instructive to compare the two programs: the defi-
nitional program is significantly shorter and easier to understand than the mutable
program. However, it makes less efficient use of memory.

Definitional Quicksort. Program gsortD has twoinput arguments, x and e, and
one output argument, b: x and e are definitional variables that are not defined by
the program, and b is a definitional variable that is defined by the program. All three
are lists of numbers. The output b is specified to be the list x sorted in increasing
order, concatenated with list e. For example if e = [5, 4] and x = [2, 1], then
b= [1, 2, 5, 4]. If e is the empty list, then b is x sorted in increasing order.
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qsortD(x,b,e)
{? x 7= [midlxs] ->
{l! part(mid,xs,left,right),
gsortD(left,b, [mid(m]),
qsortD(right,m,e)
},
x?=[] ->b=e

¥

part(mid,xs,left,right)
{? xs ?= [hdltl] ->
{? hd <= mid ->
{|| left = [hdl1ls], part(mid,tl,1s,right) },
hd > mid ->
{1l right = [hd|rs], part(mid,tl,left,rs) }
1},
xs 7= [J -> {I| left = [], right = [] }

The qsortD procedure operates as follows. If x is nonempty, let mid be its first
element and let xs be the remaining elements. The call part(mid,xs,left,right)
defines left to be the list of values of xs that are at most mid, and right to be
the list of values of xs that exceed mid. Call gsortD(right,m,e), thus defining m
to be the sorted list of right appended to e. Call gsortD(left,b, (midim]), thus
defining b to be the sorted list of left followed by mid followed by m. Otherwise, if
x is the empty list, then define b to be e.

The part procedure operates as follows. If xs is not empty, then let hd and t1 be
the head and tail (respectively) of xs. If hd is at most mid, define 1s and right by
part(mid,tl,1s,right), and define left as hd followed by 1s. If hd exceeds mid,
define 1eft and rs by part(mid,tl,left,rs), and define right as hd followed by
rs. If xs is the empty list, define left and right to be empty lists.

In-Place Quicksort. Program gsortM has two input parameters, 1, and r, both
of which are definitional variables, and one input-output parameter C, which is a
one-dimensional mutable array of integers. Let C™™* be the initial value of C, and
let /™! be the value of C on termination of the program. Then ¢/ is to be
a permutation of C™™¢, where ¢/™e/[1, ..., r] is C'™![1, ..., r] in increasing
order, and the other elements of C are to remain unchanged. (If 1 > r then cfinal
is cim't.)
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gsortM(1,r,C)
int C[J;
{7 1<r =>
{; split(1,r,C,mid),
qsortM(1,mid-1,0),
qsortM(mid+1,r,C)
}
}
split(1,r,C,mid)
int C[], left, right, temp;
{? 1<=1 >
{; left := 141, right := r, 8 = C[1],
parti(l,r,C,s,left,right), temp := 1,
swap(temp,right,C), mid = right
}
}
parti(l,r,C,s,left,right)
int C[], left, right;
{? 1left <= right ->
{; left_rightwards(r,C,s,left),
right_leftwards(l+1,C,s,right),
{? 1left <= right ->
{; swap(left,right,C),
left := left + 1,
right := right - 1
}
}’
parti(l,r,C,s,left,right)
}
}
left_rightwards(r,C,s,left)
int C[], left;
{? 1left <=r, C[left] <=8 >
{; left := left+l, left_rightwards(r,C,s,left) }
}
right_leftwards(l,C,s,right)
int C[], right;
{? right >=1, C[right] > s ->
{; right := right-1, right_leftwards(l,C,s,right) }
}
swap(i,j,C)
int i, j, C[], temp;
{; temp := C[i], c[i] := C[j], c[j] := temp }
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Execution of split(1,r,C,mid) permutes C and assigns a value to mid such that
1 < mid < r,and such that all elements in C[1, ..., mid-1] are at most C[mid],
and all elements in C[mid+1, ..., r] exceed C[mid].

The program qsortM operates as follows. If 1 > r, then qsortM takes no action,
leaving C unchanged. If 1 < r, then split is called, and after split terminates
execution, C[1, ..., mid-1] and C[mid+1, ..., r] are sorted independently.

The split program operators as follows. If 1 > r, then split terminates exe-
cution without taking any action. If 1 < r, then program split(l,r,C,mid) calls
part1(l,r,C,s,left,right) after setting left = 141, right = rand s = C[1];
program part leaves 8 unchanged, modifies 1eft and right, and permutes elements
of C[1+1, ..., r] so that, at termination of parti, left = right +1, and all ele-
ments in C[1+1, ..., right] are at most s, and all elements in C[right+1, ...,
r] exceed s.

After termination of part1, program swap is called to exchange C[1] (which
is 8) with C[right]. After the swap, all elements in C[1, ..., right-1] are at
most 8, and C[right] = s, and all elements in C[right+1, ..., r] exceed s. The
program terminates after mid is defined as right.

Program parti moves left rightwards and right leftwards until they cross (i.e.,
left = right+1).

5.3 Two-Point Boundary Value Problem

Our last programming example is a solution to a more substantial numerical prob-
lem. The problem that we consider arises when solving the linear boundary value
problem in ordinary differential equations, namely,

v =Mt)y+4qt), te€lab], yeR",
such that B,y(a) + Byy(b) = d.
In most algorithms designed to solve this problem, the most computationally inten-

sive task is the construction and solution of a linear algebraic system of equations,
which typically has the form

[ B, BBl mn 1 [ d]
A G Y2 h
A2 O vs | =1 f2

] A Ce J Ly ] L Je ]

Here each of the blocks has dimension n x n, and k is often substantially larger
than n. Construction of this system is trivially parallelizable. A more substantial
challenge is to solve it in a parallel computing environment. It is important that the
solution process be stable in a numerical sense; otherwise, the computed answer may
be hopelessly inaccurate. Simple algorithms such as block elimination are therefore
not appropriate. The algorithm described here uses a “structured orthogonal factor-
ization” technique, in which orthogonal transformations are used to compress each
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two successive block rows of the linear system into a single block row. This produces
a “reduced” system that has the same structure as the original system, but is half
the size. The compression process can be applied recursively until a small system

-l?a ?b % _ ‘!
A G k1 | | A
remains.

The PCN code that implements this algorithm creates a set of k processes con-
nected in a tree structure. A wave of computation starts at the k/2 leaves of the tree
and proceeds up the tree to the root. The leaves perform the initial compression
described above, while at the higher levels of the tree the compression is applied
recursively, and at the root the small system above is solved. Finally, computation
propagates down the tree to recover the remaining elements of the solution vector.

Input to the PCN code is provided at each leaf i (0 < i < k/2) as twon x n
blocks (A; and C;) and one n vector (f;), and at the root as two n X n blocks (B,
and Bp) and one n vector (d).

The PCN code consists of two main parts. The first part is the code that creates
the process tree. This creates a root process and calls a doubly recursive tree
procedure to create k/2 leaf processes and k/2 —1 nonleaf processes. Shared defi-
nitional variables (strm, left, right) establish communication channels between
the nodes in the tree.

solve(k,t0,t1)

{1! root(strm),
tree(strm,{t0,t1},1,k/2)

}

tree(strm,as,from,to)
{? from == to -> leaf(from*2,strm,as),
from < to ->
{1} mid=from+(to-from)/2,
nonleaf (left,right,strm),
tree(left,as,from,mid),
tree(right,as,mid+1,to)

The second part of the program defines the actions performed by the leaf,
nonleaf, and root processes. We consider the leaf process first. A single leaf
process initializes two sets of blocks — a1, c1, £1) and (a2, ¢2, £2 — and then
calls compress to produce a, c, f. It sends a message to its parent containing the
computed values and slots for return values (ybot, ytop) which will be computed

by its parent. The recover procedure delays until values are received for ybot and
ytop, and then computes the solution, y.
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leaf(id,parent,as)

double ai[MM],c1[MM],f1[M],a2[MM],c2[MM],£f2([M],
a[MM],c[MM],£[M],y[M], r[HH].

{? as ?= {t0,t1} -> -

{; init_(id-1,al,c1,f1,t0 tl),
init_(id,a2,c2,f2,t0,t1),
compress_(al,c1,f1,a2,c2,f2,a,c,f,r),
parent={a,c,f,ybot,ytop},
recover(al,ci,f1,r,ybot,ytop,y)

The nonleaf procedure receives messages from left and right offspring. It calls
compress to compress the a1, c1, f£1 and a2, c2, f£2 received from its offspring,
producing a,c,f. These newly compressed values are communicated to the parent
in the prccess tree. Once values for ytop and ybot are produced by the parent, the
recover operation can proceed, producing ymid; values are then returned to the left
and rigat offspring by the four definition statements.

nonleaf(lefs,right,parent)

double ymid{M],a[MM],c[MM],f[M],r[MM];

{? left 7= {al,ci,fi,yboti,ytopl),

right 7= {a2,c2,f2,ybot2,ytop2} ->
{; compress_(al,ci,f1,a2,c2,f2,a,c,f,r),

parent={a,c,f,ybot,ytop},
recover_(al,cl,f1,r,ybot,ytop,ymid, ,
yboti=ymid, ytopi=ytop,
ybot2=ybot, ytop2=ymid

The root process receives a single message containing the completely reduced
blocks. It calls comp_root to perform the final computation, producing ybot1 and
ytopl which it returns to its offspring with two definitions.
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root(child)
double ybot1[M],ytop1[M],ba[MM],bb[MM] ,brhs[M];
{? child ?= {a,c,f,ybot,ytop} ->
{; init_rocot_(m,ba,bb,brhs),
comp_root_(a,c,f,ba,bb,brhs,ybotl,ytopl),
ytop=ytopl, ybot=ybotl

6 Modules

Recall from § 3 that a PCN program consists of one or more modules. Each module
is contained in a separate file with a .pcn suffix. A module contains zero or more
procedures.

Procedures in one module can invoke procedures in other modules by means of
intermodule calls. An intermodule call has the following general form.

module:procedure name(arge, ..., arg,)

A procedure can be invoked by an intermodule call only if it has been ezported
by the module in which it is defined. By default, all procedures in a module are
exported. However, you can specify that only a subset of the procedures in a module
are to be exported, by providing one or more -exports directives. An exports
directive has the general form

-exports(procg, ..., procg)

and specifies that the module in which it appears exports procedures named by the
strings procy, ..., procy. For example, the directive -exports("procA","procB")
names procA and procB as exported.

In general, it is good practice to provide an -exports statement in each module,
and to export only those procedures that are called from other modules. This allows
the compiler to generate more compact object code.

7 The C Preprocessor

The PCN compiler applies the C language preprocessor (cpp) to each PCN module
before compiling it. Hence, PCN programs can make use of cpp’s capabilities, such
as include files, macros, and conditional compilation. All three of these capabilities
are used in the following example program.
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Module cpp-ex.pcn

-exports("go")

#include <pcn\_stdio.h>
8define ARRAY_SIZE 10

go()
double a[ARRAY_SIZE];
G
#ifdef OLD_VERSION

stdio:printf("01d version\n",{},.),
#else

stdio:printf("New version\n",{},.),
#endift

do_something_with_array(a)

}

When the PCN compiler applies cpp to a PCN program, it automatically defines
the symbol “PCN” and a symbol that represents the target architecture for which
you are compiling (i.e., sun4, rs6000, next040, ipsc860, etc). These symbols can
be used for conditional compilation. For example, the following header file can be
used in both PCN and C components of a program, hence ensuring that the symbol
ARRAY_SIZE is defined in the same manner everywhere. The #ifndaf means that
the declaration of my_c_procedure() is used only in the C compilation.

File cpp_ex.h

#define ARRAY_SIZE 10
#ifndef PCN

#ifdef sun4

#include "sun4_only_hdr.h"
gendif /* sun4d */

extern void my_c_procedure();
#endif /# PCN */

In this example, ARRAY_SIZE will be defined to be the value 10 in both PCN
and C programs that include this header file. Also, if the C program is compiled
using pcncomp (i.e., pcncomp -c file.c), the procedure my_c_procedure() will be
declared in the C program, and the header file sun4_only_hdr.h will be included in
the C program when compiling for a sun4 architccture.

We can pass additional arguments to cpp when compiling PCN programs. For
example, suppose we wish OLD_VERSION to be defined when compiling the program
cpp-ex.pcn shown above. This can be achieved by using the -D flag when compiling
with pcncomp as follows:
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pcncomp -c cpp-ex.pcn -DOLD_VERSION

8 Integrating Foreign Code

Programming examples presented thus far have focused on the use of PCN to com-
pose procedures written in PCN. Exactly the same syntax and techniques can also
be used to compose procedures written in other (“foreign”) languages. Fortran and
C are currently supported.

We deal here with the PCN/foreign interface, the mechanism used to import
foreign procedures, and the mechanism used to link foreign object code with the
PCN run-time system.

8.1 PCN/Foreign Interface
The PCN/foreign interface is defined as follows:

o The actual parameters in a call to a foreign program can be mutables or
definitional variables of type char, int, or double, or arrays of these types.

o Execution of a foreign procedure delays until all definitional arguments have
values.

o All parameter passing is by reference.

o A foreign procedure cannot modify definitional arguments.

The last restriction is not currently enforced by the compiler, so the programmer
must be careful to ensure that all programs satisfy this constraint.

Note that a consequence of this definition is that all output generated by a
foreign procedure must be returned in mutable arguments. Sufficient storage must
be allocated for these mutables prior to calling the foreign procedure.

Two important differences exist between the execution of PCN and foreign proce-
dures called from PCN. First, PCN procedures can execute even if not all definitional
arguments do have values. Indeed, they can compute valu:s for definitional argu-
ments. In contrast, foreign procedure calls delay until all definitional arguments
have values, and can modify mutable arguments only. Second, PCN procedures can
be passed tuples as arguments, whereas foreign procedures can be passed simple
types only.

C. As parameter passing is by reference, arguments to a C procedure called from
PCN must be declared as pointers. That is, the PCN types char, int, and double
correspond to the C language types char *, int *, and double *.
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Fortran. The PCN types char, int, and double correspond to the Fortran types
CHARACTER, INTEGER, and DOUBLE. As Fortran also passes arguments by reference,
no special treatment of arguments is required. It is necessary to append the suffix
‘.’ to the nam.e of a Fortran procedure called from PCN.

For example, the foliowing PCN procedure calls a C procedure natural log(a,b)
to compute b = 1n(a) and a Fortran procedure power(a,b,c) to compute ¢ = ab.
Note the ‘.’ suffix on the call to power and the use of a local mutable tmp for the
result of the natural_log computation.

Module foreign.pcn

proc(a,b,c)
double a,b,c,tmp;
{; natural_log(a,tmp), power_(tmp,b,c)}

The C and Fortran procedures invoked by this program can be written as follows.

[File cfile.c|

#include <math.h>

void natural_log(a,b)
double *a,*b;
{ *b = log(*a); }

|File ffile.fl

SUBROUTINE POWER(A,B,C)
DOUBLE PRECISION A,B,C
C = A»»B

RETURK

END

8.2 Compiling with Foreign Code

When compiling PCN code that contains calls to foreign procedures, you need not do
anything special to distinguish the foreign calls from normal PCN procedure calls.
Instead, the PCN compiler assumes that any nonintermodule calls (i.e., calls that do
not specify a module) to procedures not defined in that module are calls to foreign
procedures. For example, this is what you see when you compile the foreign.pcn
program shown above:
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% pcncomp -c foreign.pcn
Notice: Call to foreign procedure - natural._log
Notice: Call to foreign procedure - power.

%

The C and Fortran source files can be compiled as normal to produce object files
(.o files). Alternatively, pcncomp can be used to compile Fortran and C programs.
For example:

pcncomp -c cfile.c
and
pcncomp -c ffile.f

The use of pcncomp to compile C and Fortran source files is recommended, since
this compile command will work on any machine, no matter what the actual names
of the C and Fortran compilers on the particular machines. In addition, pcncomp
knows how to deal with Fortran programs that use C preprocessor directives (i.e.,
#define, #include, etc.). These source files should use a .F suffix. Some Fortran
compilers know how to deal with .F files directly, in which case pcncomp just runs
the Fortran compiler on the .F file. However, if a Fortran compiler cannot handle a
.F file, pcncomp will first run the file through cpp before calling the Fortran compiler.

8.3 Linking with Foreign Code

Once all of your PCN source files are compiled to PCN object (. pam) files, and your
C and Fortran source files are compiled to foreign object (.o) files, you must use
pcncomp to link everything into an executable program.

To do this, simply add the .o files to the pcncomp link line, for example

pcncomp pcncode.pam ccode.o -o myprogram -mm pcncode

In addition, if you are linking Fortran object code, you must also add a -fortran
flag to the link command. This ensures that Fortran initialization code is added to
the executable program. For example, to link the example program above, you type:

pcncomp foreign.pam cfile.o ffile.o -o foreign -mm foreign -fortran

Like most compilers, pcncomp will also accept foreign libraries, which can be
specified either by adding the appropriate .a file to the link line, or by using the -1
and -L flags, for example:

pcncomp pencode.pam ccode.o -o myprogram -mm pcncode libmine.a -1g
For a complete list of the arguments to pcncomp, type:

pcncomp -h
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8.4 Multilingual Programming

This simple foreign interface allows sequential code (currently, Fortran and C are
supported) to be integrated into PCN programs as procedure calls, indistinguishable
for most purposes from calls to PCN procedures. Thus, we do not need to throw
away the many years of investment in sequential code and compiler development
when moving to parallel computers. Fortran and C are good sequential languages
but are less well suited to parallel programming. Experience suggests that PCN is a
good parallel language; nevertheless, it cannot compete with Fortran and C in code
base and compiler technology. Multilingual programming permits us to take the best
from each approach, using PCN for mapping, communication, and scheduling, and
Fortran and C for sequential computation.

8.5 Deficiency of Foreign Interface

A deficiency of the Fortran interface is that no special allowance is made for “com-
mon” data (in Fortran programs) or “global” variables (in C programs). Each phys-
ical processor has a single copy of all common/global data declared in an application
program, and every process on a processor has access to that data. Hence, while
PCN data structures are encapsulated in processes to prevent concurrent access, the
same protection is not provided for common/global data. It is the programmer’s
responsibility to avoid errors arising from concurrent access. Experience shows that
programmers deal with this problem in one of two ways.

First, if an application is of moderate size, or is being developed from scratch,
they often choose to eliminate common/global data altogether. This may be achieved
by allocating arrays in PCN and passing them to the different foreign procedures.
Although this approach requires substantial changes to the application, the bulk of
the existing foreign code can be retained, and the full flexibility of PCN is available
to the programmer.

Second, if substantial rewriting of an application is not possible, programmers
maintain common/global data in its usual form and use PCN to organize operations
on this data in a way that avoids nondeterminate interactions. Although certain
operations are then more difficult (e.g., process migration is complicated, and the
programmer must check for race conditions manually), other benefits of the PCN
approach still apply.

9 Higher-Order Programs Using Metacalls

PCN provides simple support for higher-order programming. In particular, it allows
module and procedure names in procedure calls to be substituted with variables,
which can then be defined to be strings at run time. Variables are distinguished
from strings in procedure calls by the use of enclosing back quotes, as follows.

vy fopt(lL), .. /* op is a variable */
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o, mifop‘(..l), ... /* op is a variable */
vey ‘modf:f(...), ... /* mod is a variable */
voy ‘mod‘:fopf(...), ... /* mod & op are variables */

This sort of call is termed a metacall.

We illustrate the use of these higher-order features with a procedure map_list
that applies a supplied operator to each element of a list, collecting the results of
these computations in an output list. The supplied operator is assumed to be a
procedure name (e.g., "£"); the map.1ist procedure invokes this procedure with
two arguments (e.g., f(e,v)).

map_list(op,list,vals)
{? 1list 7= [el|ll] =>
{1l ‘op‘(e,v),
vals = [v|vi],
map_list(op,11,v1)
}I
list ?= [J -> vals = []

For example, if the procedure square is defined as
square(e,v) {|| v = e*e }

then a call map_list("square",[1,2,3],vals) will define vals to be the list
[1,4,9].

The map.1list procedure will work correctly only if the supplied operator (op) is
located in the same module as map_list. The following program is more general: it
allows the supplied operator to be a mod:proc(arg) term. Note the use of quoting
in the match operation.

map_list2(op,list,vals)
{? 1list ?= [ell1], op ?= ‘mod‘:‘proc‘(arg) ->
{Il ‘mod‘:‘proc‘(arg,e,v),
vals = [vivi],
map_list2(op,11,vl)
}l
list ?= [J -> vals = []

Metacalls present a small problem to the PCN linker. The PCN linker normally
includes in the executable program only those PCN procedures that it can determine
will be called. However, since metacalls are procedure calls for which you do not
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specify the call target until run-time, the linker may not be able to determine that
a metacalled procedure is called and therefore will not link in that procedure. To
handle this situation, two additional PCN source directives are supported:

-metacalls(modl:proci, modi:proc2, ...): This tells thelinker that if the mod-
ule containing this directive is included in the executable, then so should
mod1:proci(), mod1:proc2(), etc.

-proc_metacalls(source_proc, modl:proci, modi:proc2, ...): This tells the
linker that if the procedure source_proc() is included in the executable, then
8o should mod1:proci(), mod1:proc2(), etc.

10 Process Mapping

Parallel compositions define concurrent processes; shared definitional variables de-
fine how these processes communicate and synchronize. Together with the sequential
code executed by the different processes, these components define a concurrent al-
gorithm that can be executed and debugged on a uniprocessor computer. However,
we do not yet have a parallel program: we must first specify how these processes are
to be mapped to the processors of a parallel computer.

Important features of PCN are that the mapping can be specified by the pro-
grammer and that the choice of mapping affects only the performance, not the
correctness, of the program. In other words, the process mapping strategy applied
in an application can change performance but cannot change the result computed.
(The only exceptions to this rule are if foreign code uses global variables — e.g.,
common blocks — or if PCN code includes nondeterministic procedures.)

For this reason, it is common to develop PCN programs in two stages. First,
program logic is developed and debugged on a workstation, without concern for
process mapping. Second, a process mapping strategy is specified and its efficiency
is evaluated on a parallel computer, typically by using the Gauge execution profiler.

The following language features are used when writing code to define process
mappings.

Information Functions. When defining mappings, we sometimes require infor-
mation about the computer on which a process is executing. This information is
provided by the primitive functions topology(), nodes(), and location().

topology(): Returns a tuple describing the type of the computer, for example
"mesh",16,32} or {"array",512}.

nodes(}: Returns the number of nodes in the computer.

location(): Returns the location uf the process on the computer.
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Location Functions. Mapping is specified by annotating procedure calls with
system- or user-defined location functions, using the infix operator “@”. These func-
tions are evaluated to identify the node on which an annotated call is to execute;
unannotated calls execute on the same node as the procedure that called them. For
example, the following two function definitions implement the location functions
node(i) and mesh node(i,j), which compute the location of a procedure that is to
be mapped to the ith node of an array and the (i, j)th node of a mesh, respectively.
Note the use of a match (?=) to access the components of the mesh topology type.
The per cent character, “%”, is the modulus operator.

Example location functions: loc.pcn |

function node(i)
{1l return( i%nodes() ) }

function mesh_node(i, j)

{? topology() ?= {"mesh", rows, cols} ->
return( (i*rows + j)%nodes() ),

default -> error()

¥

The following composition uses the function node(i) to locate the procedure
calls p(x) and c(x).

{Il p(x) @ node(10), c(x) @ node(20)}

Location functions are often used in the iterative construct called quantification
(see § 4.7).

The following two procedures use quantifications and the location functions de-
fined previously to execute the procedure work in every node of an array and mesh,
respectively. For example, a call to array on a 1024-processor computer will create
1024 instances of work(), one per processor. (In practice, we may choose to use a
more efficient tree-based spawning algorithm on a large machine.)
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[Exa.mples of quantification

array()

{l] i over 0 .. nodes()-1 ::
work() @ node(i)

}

mesh()

{? topology() ?= {"mesh", rows, cols} ->
{Il i over 0 .. rows-1 ::
{Il j over 0 .. cols-1 ::
work() € mesh_node(i, j)
}
},

default -> error()

Virtual Topologies and Map Functions. The ability to specify mapping by
means of location functions would be of limited value if these mappings had to be
specified with respect to a specific computer. Not only might this computer have a
tapology that was inconvenient for our application, but the resulting program would
not be portable.

PCN overcomes this difficulty by allowing the programmer to define mappirgs
with respect to convenient virtual topologies rather than a particular physical topol-
ogy. A virtual topology consists of one or more virtual processors or nodes, plus
a type indicating how these nodes are organized. For example, 512 nodes may be
organized as a one-dimensional array, a 32 x 16 mesh, etc.

The embedding »f a virtual topology in another physical or virtual topology is
specified by a system- or user-defined map function. A map function is evaluated
in the context of an existing topology; it returns a tuple containing three values:
the type of the new embedded topology, the size of the new topology, and the
function that is to be used to locate each new topology node in the existing topology.
For example, the following function embeds a mesh of size rowsXxcols in an array
topology; the mapping will be performed with the location function node provided
previously in program loc.pcn. Note that the map function does not check whether
the new topology “fits” in the old topology. It is quite feasible to create a virtual
topology with more nodes than the physical topology on which it will execute.
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[Example Map Function]

function mesh_in_array(rows, cols)
{? topology 7= {"array", n} ->
{Il type = {"mesh", rows, cols},
size = rowsxcols,
map_fn = {"call" ’{ll : n . "IOC" , nnoden}' [] , [J}.
return( {type, size, map_fn} )
}l

default -> error()

The assignment to the variable map_fn defines the function (in this case, loc:node())
that is to be used to compute the location of each new virtual node. The syntax for
this is

var = {"call",{":",module,procedure}, [argo,...,arg,],[1}

and specifies that the location function module:procedure(argy,...,arg,) is to
be used. The procedure arguments supplied in this “call” tuple will be prepended to
the arguments that are supplied when the metacall using this “call” tuple is made.

This ugly syntax is due to a current limitation in the compiler that will be
remedied in a future release.

We use the infix operator “in” to specify the map functions that will generate
the virtual topologies used in different components of a program. For example, if
the mesh procedure specified previously is executed on an array computer, we may
invoke it as follows.

mesh() in mesh_in_array(rows,cols)

This map function, mesh_in_array, embeds a virtual mesh computer of size rows xcols
in the array computer.

Virtual topologies and map functions allow us to develop applications with re-
spect to a convenient and portable virtual topology. When moving to a new machine,
it is frequently possible to obtain adequate performance with just a naive embedding
of this virtual topology. For example, our applications invariably treat all computers
as linear arrays, regardless of their actual topology, and nevertheless achieve good
performance. If communication locality were important (for example, if we moved
to a machine without cut-through routing), we would probably have to develop a
map function that provides a more specialized embedding. This can generally be
achieved without changing the application code.
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11 Port Arrays

Recall that individual processes communicate by reading and writing shared defini-
tional variables, as in the composition {|| producer(x), consumer(x)}. The port
array provides a similar mechanism for use when composing sets of processes.

A port array is an array of definitional variables that has been distributed across
the nodes of a virtual topology. A declaration “port A[N];” creates a port array
A with N elements, distributed blockwise across the nodes of the virtual topology in
which the port array is declared. (That is, elements are located on virtual topology
nodes in contiguous, equal-sized blocks.) N must be an integer multiple of nodes().
Elements of a port array are accessed by indexing, in the same way as ordinary
arrays; the elements can be used as ordinary definitional variables. Each element of
a port array can only be accessed via indexing twice. This restriction allows memory
occupied by port arrays to be reclaimed automatically.

The following procedure uses port arrays for two purposes: first, to provide each
ring.node() process with definitional variables for use as input and output streams;
and second, to establish internal communication streams between neighboring pro-
cesses, so that each process has two streams, one shared with each neighbor. The
ith node of this structure is given elements I[i] and 0[i] of the two port arrays
I and O passed as parameters (for communication with the outside world), and two
elements of the local port array S. As in the C programming language, the dimension
of an array passed as an argument is not specified. Notice the use of the informa-
tion function, nodes() (§ 10), to define a port array with one element per virtual
topology node.

Example of Ports: ring.pcn

ring(I, 0)
port S[nodes()], I[], 0[];
{Il i over 0 .. nodes()-1 ::
ring_node(I[i], 0[il, S[i], S[(i+1)%nodes()]) @ node(i)
}

The process structure created by a call to this procedure in a four-processor vir-
tual topology can be represented as follows, with the solid lines indicating external
port connections and the dotted lines internal streams. The box separates the inter-
nals of the process structure from what is visible to other processes. The ring node
procedure executed by each process can use the four definitional variables passed as
arguments to communicate with other processes.
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12 Reuse of Parallel Code

The ability to reuse existing code is vital to productive programming. The PCN
system supports two forms of reuse: reuse of sequential code written in C or Fortran,
and reuse of parallel code written in PCN. The former, which is discussed in § 8,
is important when migrating existing sequential applications to parallel computers;
the latter is Becoming increasingly important as our parallel code base grows.

Cells. Our approach to the reuse of parallel code is based on what we term a
software cell: a set of processes created within a virtual topology to perform some
distinct function such as a reduction or a mesh computation, and provided with
one or more port arrays for communication with other program components. We
have already seen several examples of cells: for instance, the procedure ring in the
preceding section implements a cell that performs ring pipeline computations.

The interface to a PCN cell consists simply of the port arrays and definitional
variables that are its arguments. A cell definition does not name the processors on
which it will execute, the processes with which it will communicate, or the time
at which it expects to execute. These decisions are encapsulated in the code that
composes cells to create parallel programs: a virtual topology specifies the number
and identity of processors, port arrays specify communication partners, and the PCN
compiler handles scheduling. As we will see in subsequent examples, the simplicity
of this interface allows cells to be reused in many different contexts.

Templates. The ring cell would be more useful if the code to be executed at each
node could be specified as a parameter. This is possible through the use of metacalls
(§ 9), and in this case we refer to the cell definition as a template, as it encodes a
whole family of similar cells. For example, the following is a template version of
ring. The procedure to be executed is passed as the parameter op, which is quoted
in the body to indicate that it is used as a variable.
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Example Template I

ring(op, I, 0)
port S[nodes()], I(J, 00J;
{Il i over 0 .. nodes()-1 ::
‘op‘(I[i), 0[il, S[(i+1)%nodes()], S[il) @ node(i)
}

'L his template invokes the supplied procedure with four definitional variables as
additional arguments. For example, if op has the value nbody(p), then a proce-
dure call nbody(p,d1,d2,d3,d4) (d1..d4 being the variables from the port array)
is invoked on each node of the virtual topology. All parameters to op must be def-
initional variables; it is the programmer’s responsibliity to ensure that the number
and type of these parameters match op’s definition.

Example. We illustrate how cells and templates are composed to construct com-
plete applications. We make use of the ring template and also the following simple
input and output cells: load reads values from a file and sends them to successive
elements of the port array P; store writes to a file values received on successive
elements of port array Q. Both use the sequential composition operator to sequence
I/O operations.

load(file, P)
port P[];
{; i over 0 .. nodes()-1 ::
{; read(file, stuff),
P[i] = stuff
}
}

store(file, Q)

port Q[J;

{; i over 0 .. nodes()-1 ::
write(file, Q[i])

}

We compose the three cells to obtain a procedure compose that reads data from
infile, executes a user-supplied function in the ring pipeline (e.g., a naive N-body
algorithm), and finally writes results to outfile. Note that although we use a
parallel composition, data dependencies will force the three stages to execute in
sequence. However, if 1load were to output a stream of values rather than a single
value per node, then the three stages could execute concurrently, as a pipeline.
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4

compose(param, infile, outfile)

port Pi[nodes()], P2[nodes()];

{ll load(infile, P1),
ring(nbody(param), P1, P2),
store(outfile, P2)

Data flows from load to ring via port array P1 and from ring to store via
port array P2. This is illustrated in the following figure, which shows the process
structure created in a four-node topology.

The complete program executes in an array topology (“compose(param,if,of) in array()”)
and will create a ring with one process per node of that topology.

13 Using Multiple Processors

A PCN program annotated with process mapping directives will execute correctly
on a single processor. However, in order for the mapping directives to improve (or
degrade!) performance, it is necessary to run the program on multiple processors.

The syntax used to start PCN on multiple processors varies according to the type
of parallel computer. On multicomputers, we are generally required first to allocate
a number of nodes and then to load the program in these nodes. For example, on
the Intel iPSC/860, we must log into the host computer (System Resource Manager:
SRM) and type the following commands to allocate 64 nodes, run the program, and
finally free the allocated nodes.
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% getcube -t 64

% load myprogram ; waitcube
% killcube

% relcube

On multiprocessors (e.g., a shared-memory Sun multiprocessor), we generally
need only to add a -n flag to the command line when running the program. For
example, to run on 4 processors, we type the following.

% myprogram myargs -pcn -n 4

The -pcn argument tells the run-time system that all subsequent arguments are
run-time system arguments (not arguments meant for the user’s program). The -n
4 run-time system argument says to run this program on 4 processors.

The -n option can also be used to spawn multiple communicating PCN nodes
on a uniprocessor workstation. This is not normally useful, however, as all nodes
will just multitask on that workstation’s simple processor. However, this option can
be useful for debugging purposes under certain circumstances.

When running on a network, we generally need to either list on the command
line the names of the computers on which to run nodes, or provide a configuration
file indicating the names of the computers on which PCN is to run. See § 23 for
more information about running PCN on networks.

For details about how to use PCN on your computer, turn to the discussion of
machine dependencies in §§ 19-23.

14 Debugging PCN Programs

PCN provides a rich set of facilities for locating syntactic, logical, and performance
errors in programs.

14.1 Syntax Errors

Syntaz errors are detected and reported by the compiler. An error message consists
of the file name, a line number, and a message indicating the type of error.

Warning messages are also generated by the compiler to indicate type mis-
matches between procedure definitions and calls, etc. It is good programming prac-
tice to write programs that do not generate warnings.
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14.2 Logical Errors

Support for detection of logical errors is provided by the debugging version of the
PCN run-time system. To use this version, you must add a -pdb argument to the
pencomp link line. Use of this version is recommended during program development.
This debugging version provides a wide range of capabilities, including

1. Bounds checking is performed on all array and tuple accesses.
2. Checks are made for circular references, such as would be caused by {||A=B,B=A}.

3. The data immediately preceding and following data structures that are passed
to foreign procedures are checked for validity upon return from the foreign
procedure. This can help in locating array bounds violations in foreign code.

4. If you add a -gc after foreign as a run-time system command line argu-
ment (i.e., after the -pcn argument), a “garbage collection” (a technique for
reclaiming unused storage) is invoked immediately after every foreign proce-
dure call. This can help in tracking down fc eign code that is corrupting PCN’s
internai data structures. A garbage collection involves a full consistency check
of PCN’s data structures. Since pure PCN code should never corrupt these
data structures, a garbage collection failure while using this feature normally
indicates that the previously called foreign procedure wrote outside its proper
bounds. If the run-time system crashes with this feature turned on, the fatal
error message that is printed will contain the name of the last foreign procedure
that was called.

5. PCN object files (i.e., .pam files) can be dynamically loaded into an executable
at run-time. This feature eliminates the need to relink your program each time
you modify a PCN source file, and therefore can greatly speed the debug cycle
of PCN programs. See § 15.9 for the details of this feature.

6. Typing Control-C (*C) during program execution provides access to the PCN
symbolic debugger, PDB (§ 15).

Additional, low-level logical debugging support is provided by command line
arguments that cause the PCN run-time system to print detailed information about
individual procedure calls. These facilities are described in § 27; their use is not
recommended in normal circumstances. This low-level debugging support can also
be accessed through PDB variables.

14.3 Performance Errors

We use the term performance error to refer to programs that compute correct an-
swers but for some reason do not make efficient use of available computer resources.
Two tools are integrated with the PCN system to assist in the detection of perfor-
mance errors: Gauge and Upshot. These are described in § 16 and § 17, respectively.
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Gauge is an execution profiler: it collects information about the amount of time
that each processor spends in different parts of a program. It also collects procedure
call counts, message counts, and idle-time information. Two properties of Gauge
make it particularly useful: profiling information is collected automatically, without
any programmer intervention, and the volume of information collected does not
increase with execution time. A powerful data exploration tool permits graphical
exploration of profile data.

Upshot is a more low-level tool that can provide insights into the fine-grained
operation »f parallel programs. Upshot requires that the programmer instrument
a program with calls to event logging primitives. These events are recorded and
written to a file when a program runs. A graphical trace analysis tool then allows
the programmer *o identify temporal dependencies between events.
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Part 11
Reference Material

15 PDB: A Symbolic Debugger for PCN

Debuggers play an important role when programming in any language, including
PCN. However, PCN is considerably different from sequential languages such as C
and Fortran. For example, PCN uses both light weight processes and dataflow syn-
chronization extensively. Therefore, a PCN debugger must have special capabilities
designed to meet PCN’s atypical requirements.

PDB, the PCN debugger, fits this bill. It incorporates features found in most
debuggers, such as the ability to set breakpoints on procedures, interrupt execu-
tion, and examine program arguments. In addition, it incorporates capabilities that
support atypical features of PCN, such as light weight processes and dataflow syn-
chronization. In particular, PDB allows you to examine enabled and suspended
processes and to control the order in which processes are scheduled for execution. -

15.1 The PCN to Core PCN Transformation

The operation of PDB is complicated by the fact that the PCN run-time system
does not support PCN directly, but rather a simpler language called core PCN,
which lacks sequential composition and nested blocks. The PDB debugger operates
on core PCN rather than PCN; hence, some understanding of the transformations
used by the compiler to translate PCN to core PCN is necessary before PDB can be
used effectively.

Nested Blocks. Nested blocks within PCN programs (except for sequential or
parallel blocks nested in a top-level choice block) are replaced with calls to separate
auziliary procedures that contain these blocks. An auxiliary procedure is given the
name of the procedure from which it was extracted, followed by an integer suffix.
The choice of integer suffix is somewhat arbitrary; in general, however, suffixes are
assigned in the order in which the corresponding auxiliary procedure calls appear in
the original procedure.

Sequential Composition. Additional auxiliary procedures may be introduced as
“wrappers” on operations occurring in sequential compositions. A wrapper delays
execution of an operation until previous computations in the sequential composition
have completed.

Wrappers are also generated to encode calls to primitive operations for which
arguments may not be available at run time. Such wrappers delay computation
until definitional arguments are defined. For example, a wrapper for the assignment
x:=y, where y is a definition, will delay execution until y has a value.

Wrappers are named in the same manner as other auxiliary procedures: with a
procedure name followed by a number.
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Sequencing Variables. Every procedure has two additional variables added to
its argument list. These variables are used for sequencing of procedure calls. They
are commonly referred to as the Left and Right sequencing variables. A procedure
will suspend until its Left variable is defined. When the procedure and its offspring
have completed execution, Right is defined to be the same as Left. These variables
often (but not always) occur at the end of the argument list.

Within a sequential block, the Right variable of one procedure call is the same as
the Left variable of the next. This ensures that procedures execute in strict sequence.
For example, the sequential block

Example of a sequential block

pO

4 q0),
r(),
s()

}

is transformed to a procedure similar to the following.

Example of a transformed sequential block

p(L,R)
data(L) ->
{11 q(L,M1),
r(M1i,M2),
s(M2,R)
}

Within a parallel block, all procedure calls use the parent procedure’s Left vari-
able as their own Left, and a temporary variable as their Right. The temporary
Right variables are passed to a barrier procedure which defines the Right variable
for the parallel block when all of the temporary variable have been defined. For
example, the parallel block

Example of a parallel block

pQ)

{11 q0),
r(Q),
s()

}

is transformed to a procedure similar to the following (where p.1 is the barrier
procedure).
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Example of a transformed parallel block

p(L,R)
data(L) ->
{Il q(L,M1),
r(L,M2),
s(L,M3),
p-1(M1,M2,M3,R)
}

p.i(Hl.H2.H3.R)
data(M1), data(M2) -> R = M3

Barrier Processes. As demonstrated in the preceding example, the PCN com-
piler sometimes generates calls to special barrier procedures. These are used to orga-
nize synchronization of procedures in a parallel block. These auxiliary programs are
named in the same manner as other auxiliary procedures created by the compiler.
However, they can usually be distinguished by the fact that all but one of their
arguments are the Right synchronization variables of other procedures. Fortunately,
these auxiliary barrier procedures can generally be ignored when debugging.

Wildcards. A procedure name is a mod:procedure pair. Some PDB commands
that take procedure names as arguments allow the use of a limited form of a wildcard
facility to specify a set of procedures. An asterisk (*) placed at the end of a procedure
name designates all procedures that begin with the specified name. For example,
mod : programi* designates all procedures in module mod whose names begin with
programl. The degenerative case of a procedure wildcard is simply a * (e.g., mod: *).
In this case, all procedures within the appropriate module are specified.

Module names can also be specified with this limited wildcard facility. For
example, a module wildcard of env* designates all modules whose names start with
env, and a simple * designates all loaded modules.

15.2 Obtaining Transformed Code

As described in § 15.1, a PCN program is transformed to core PCN before execution.
When debugging programs with PDB it is often helpful to have this transformed
version of the code available for reference, since that transformed version is really
the code that is being executed.

When compiling your PCN program, you can have the compiler dump the trans-
formed version of your program simply by adding a -dumpafter basic flag to the
pcncomp compile line. Assuming the original PCN program is named prog.pcn, a
file named prog.basic.dump wi’" be created that contains a nicely formatted rep-
resentation of the transformed PCN program.
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15.3 Naming Processes

Execution of a PCN program can create a large number of lightweight processes.
Each process executes a PCN procedure — either a procedure named in the original
source, or an auxiliary procedure introduced by the transformation to core PCN.

In order to simplify the task of distinguishing between the many processes that
may be created during execution of a program, PDB associates three distinct labels
with each process.

1. The name of the procedure that the process is executing (nonunique).
2. An instance number (unique).

3. The process reduction in which the process was created (nonunique).

Note: A reduction is one completed execution of a process. The run-time system
keeps a reductions counter that it increments after each reduction.

As we shall see in §15.5, PDB also provides information about the status of a
process, for example, whether it is able to execute or is waiting for data.

15.4 Using the Debugger

Linking with PDB run-time system. To use PDB, you must link your program
with the PDB version of the run-time system. This is accomplished by simply adding
a -pdb argument to the pcncomp link command.

-pdb command line argument. When you run your program, if you add a
-pdb run-time system command line argument (i.e., after the -pcn argument), your
program will be interrupted and control passed to PDB before any PCN procedures
are executed.

Control-C. Once your program is running, you can enter PDB by interrupting the
program with an interrupt signal. This signal is typically invoked by typing Control-
C (=C). If you interrupt your program while it is executing a foreign procedure, that
foreign procedure will be completed before control is passed to PDB.

Once control is passed to the debugger, PDB commands can then be used to
examine the state of the computation, set breakpoints on PDB procedures, en-
able/disable debugging on procedures, or resume execution of the PCN program.
Once resumed, normal PCN execution continues until you interrupt the program
execution again or until a breakpoint is encountered, causing control to revert back
to the debugger. It is also possible to specify that control pass to the debugger if the
active queue becomes empty. This is accomplished by setting the debugger variable
empty queue break (§ 15.7).

.pdbrc When a program that is linked with the PDB version of the run-time
system starts up, it searches for a .pdbrc file in the current directory, and then in
your home directory (“). Any PDB commands found in such a file are executed.
This feature allows the state of PDB to be initialized every time PDB is run.
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Abbreviating PDB Commands. PDB commands can be abbreviated to the
shortest string that uniquely identifies the command. (There are a few exceptions
to this rule. For example, since the show command is typically used extensively, it
can be abbreviated to s, even though s does not uniquely identify this command.)

To find out the shortest abbreviation for PDB commands, use the PDB help
facility by typing help at the PDB command prompt.

Help. PDB has extensive online help — type help at the PDB command prompt
for more information.

15.5 Examining the State of a Computation

We now describe the PDB commands used to examine the state of a PCN compu-
tation. For you to understand how these commands work, we need to say a little
bit about how the PCN run-time system manages execution of PCN programs.

Queues. The PCN run-time system manages the execution of processes created to
execute procedure calls in parallel blocks. Like a simple computer operating system,
it selects processes from an active queue and executes them either until they block
because of a read operation on an undefined definitional variable or until a timeslice
is exceeded. In the former case, the process is moved to a variable suspension queue
associated with the undefined definitional variable (unless the process requires two
or more variables, in which case it is moved to a global suspension queue). In the
latter case (a timeslice), the process is moved to the end of the active queue. PDB
also maintains a fourth pending queue. This is used to hold processes from the active
queue that the user has indicated are to be delayed (i.e., removed from consideration
by the PCN scheduler).

In summary, every PCN process is to be found on one of the following four
queues:

active The active queue contains processes that may be scheduled for execution.

pending The pending queue contains processes that the user has tagged to be de-
layed. These cannot be executed until returned to the active queue.

globsusp The global suspension queue contains processes that are suspended on
more than one variable.

varsusp The variable suspension queue contains processes that are suspended on
just one variable.

When describing commands, we shall use the notation <queue> to represent a
queue selector— one of active, pending, globsusp, and varsusp; or suspension
~(both globsusp and varsusp) and all (all process queues).

We shall also use the notation <process> to represent a process specification;
this is one of the following:
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e n: n is an integer, representing an index into a process queue;

m — n: m and n are integers, representing a range of indices into a process
queue;

e #n: n is an integer, representing a process instance number;

e “n: n is an integer, representing the reduction during which a process was
created;

e Uh: h is a hexadecimal number, representing an undefined variable that is
somewhere in a process’s argument list;

e modulename:blockname, representing all processes of a given name;
e all.

As noted in § 15.1, a limited wildcard facility allows a singie < process> specifier to
represent several processes.

Examining Queue Contents. The summary, list, and show commands allow
the user to examine the four process queues at increasing levels of detail. These
commands (and the queue-manipulation commands described in the next section)
operate only on processes executing procedures for which debugging is enabled. The
set of enabled procedures is initially all procedures; the set can be modified by using
the debug and nodebug PDB commands.

In the following descriptions, all arguments that are listed within square brackets
([ ]) are optional:

summary [<queue>] [<process>): prints a summary of the contents of the des-
ignated <process> on the designated <queue>. This includes module and
procedure names (sorted by module and then procedure) and the number of
occurrences of each procedure on each queue.

1list [<queue>] [<process>]: prints a short listing of the processes specified by
<process> on the specified <queue>.

show [<queue>] [<process>]: prints a detailed description of the processes specified
by <process> in the specified <queue>. If the process is on the variable
suspension queue, the variable that it requires in order to continue execution
is also shown.

Modifying Queues. The move and switch commands are used to control how
processes in the active queue are selected for execution. They can be applied only
to the active and pending queues.

move <queue> <process> [<where>]: This moves zero or more designated pro-
cesses in a designated queue (active or pending) to immediately before po-
sition where in the same queue. If where is end, then the designated processes
are moved to the end of the queue. By default, <where> is end.
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switch <queue> <process> [<where>]: This moves zero or more designated pro-
cesses from a designated queue (active or pending) to the other queue (i.e.,
pending or active, respectively), inserting them immediately before position
where. If where is end, the designated processes are placed at the end of the
queue. By default, <where> is end.

15.6 Breakpoints

PDB allows breakpoints to be set on PCN procedures. When a process that is
executing a procedure for which a breakpoint is set is scheduled for execution, the
run-time system will interrupt the program and pass control to PDB.

Note that a process may be scheduled for execution several times before it is
able to complete. For example, a process may be scheduled but will subsequently
suspend because of an undefined variable. When that variable is later defined, the
process will again be scheduled. A breakpoint on that process’s procedure will cause
a break into PDB each time the process is scheduled.

The break, delete, enable, and disable commands control breakpoints, and
status prints information about breakpoints.

break [<module>:<procedure> ..]: Set a breakpoint on the specified procedure.
If no procedures are given, then all current breakpoints are listed.

delete [<breakpoint number> ..]: Delete the specified breakpoint number. The
breakpoint number can be determined by running the break command with
no arguments. If no breakpoints are given, then all breakpoints will be deleted.

disable <breakpoint number> ...: Disable (but do not delete) the specified break-
point.

enable <breakpoint number> ...: Enable the specified breakpoint.

status [<module>:<procedure> ...]: Print breakpoint status information about
the specifed procedure(s).

15.7 Debugger Variables

PDB maintains a number of internal variables that can be included in some PDB
commands and, in some cases, modified by the programmer. PDB variables are
distinguished in expressions by a prefix $.

Modifiable Variables. The following variables can be used to control aspects of
PDB’s behavior. They can be modified within PDB by using the “=” command.

$print array size: An integer representing the maximum size (i.e., number of
elements) of an array displayed by print.

$print tuple depth: An integer representing the maximum depth of a tuple dis-
played by print.
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$print tuple width: An integer representing the maximum width (i.e., number of
elements) of a tuple displayed by print.

$emulator dl: An integer representing the emulator debug level. This turns on
the printing of debugging information in the main emulator loop. It takes an
integer value between 0 and 9, where 0 is no debugging and 9 is the most
debugging. See § 27 for more information on this variable.

$gc d1: An integer representing the garbage collection debug level. This turns on
the printing of debugging information in the garbage collector. It takes an
integer value between 0 and 9, where 0 is no debugging and 9 is the most
debugging. See § 27 for more information on this variable.

$parallel dl: An integer representing the parallel code debug level. This turns on
the printing of debugging information in the parallel emulator code. It takes
an integer value between 0 and 9, where 0 is no debugging and 9 is the most
debugging. Sce § 27 for more information on this variable.

$global d1: An integer representing the global debug level. This turns on the
printing of debugging information not covered by the $emulator di, $gc di,
or $parallel dl debug setting. It takes an integer value between 0 and 9,
where 0 is no debugging and 9 is the most debugging. See § 27 for more
information on this variable.

$reduction break: An integer representing the next reduction at which to break
into PDB.

$empty queue break: A Boolean value. When this value is set to yes, the system
will break into PDB whenever the process queues are empty, and therefore
there are no schedulable processes. When this value is set to no, the system
will not break into PDB whenever the process queues are empty.

$print orphaned: A Boolean value. When this value is set to yes, the system will

print out a warning when it encounters an orphan process (§ 15.10) during a
garbage collection.

Read-Only Variables. The following variables contain information about various
aspects of the state of the computation. They can be included in expressions but
cannot be modified directly.

$module: The name of the current module (i.e., first process on the active queue).

$procedure: The name of the current procedure (i.e., first process on the active
queue).

$args: The arguments of the current process. Note that this variable is defined only
at the entry to a block.

$instance: The instance number of the current process.
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$reduction : The reduction during which the current process was created.

$current reduction: The current reduction number.

15.8 Miscellaneous Commands

This section describes miscellaneous debugger commands that were not described in
other parts of this manual.

In the following, <expr> denotes either a PCN variable name (to be interpreted
in the context of the current process) or a constant.

abort: Abort execution of the PCN run-time system. See also continue, next, and
quit.

continue: Continue with next process (head of the active queue). See also abort,
next and quit.

debug <module>:<procedure> ...: Enable debugging in the specified module: procedure.
See also nodebug.

help [<topic> :] Give help for topic. If topic is left off, then general help will be
given.

load < filename>: Load the .pam file, filename, into the run-time system.

modules: List the names of the modules that are currently loaded in the system,
indicating for each whether it was compiled in debug mode (in the current
PCN release, this column always says “n”) and whether debugging is enabled.

next: Execute the next process (head of the active queue), and then break into the
debugger again when it has completed. See also abort, continue, and quit.

nodebug <module>: Disable debugging in the specified module:procedure. See also
debug.

print <expr>: Print the given expression. An expression is a variable, integer,
real, or string. <expr> is either a single expression or a comma-separated list
of expressions that is enclosed in parentheses.

procedures <module>:<procedure> ...: Print various information about the spec-
ified procedure(s).

quit: Quit from the debugger; disable debugging on all modules. See also abort,
continue, and next,

source < filename>: Execute the PDB commands that are in the file filename.

vars: List the names and values of all PDB variables.
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15.9 Dynamic Loading of .pam Files

The PCN linker is relatively slow. In order to accelerate the modify-compile-link-
test program development cycle, PDB supports dynamic loading of PCN object files
(i.e., .pam files), which eliminates the link step from this cycle when PCN files are
modified.

When a .panm file is dynamically loaded irto a running program, the procedures
in that file simply replace previously linked versions of those procedures. If there
are procedures in this .pam file that did not previously exist in the executable, then
they will be added.

The -pdb flag must be passed to the linker (via pcncomp) if dynamic loading is
to be used. The -1ink all flag is also recommended. The latter flag tells the linker
to include all procedures in all modules named on the command line, rather than
just those procedures reachable from the entry point. This ensures that standard
libraries, such as sys and stdio, are included in their entirety. Thus, you can dy-
namically load code that calls library procedures that were not called in the original
program.

For example, you might link your program with the command:

pcncomp -pdb -link all mymodi.pam mymod2.pam -mm mymodl -o myprogram
There are two ways in which .pam files can be dynamically loaded:

From the command line: You can use the -load command line argument to

cause a set of .pam files to be dynamically loaded before any PCN procedures
are executed. For example, the command

myprogram myargs -pcn -load mymodi.pam:mymod?2.pai

will dynamically load the procedures in mymodi.pam and mymci?2.pam into
myprogram, overwriting those provided at link time.

From the PDB prompt.: The 1load command descibed in § 15.8 will dynamicly
load .pam files into the executable. This, of course, means that you can dy-
namically load .pam files from a .pdbrec file, which is a useful feature if you are
repeatedly running the program and do not wish to type the -load command
line argument each time.

15.10 Orphan Processes

An orphan is a process suspended on a variable for which there are no potential
producers (more precisely, a variable to which no other process possesses a reference).
Such a process can never be scheduled for execution. A program that generates
orphan processes is not necessarily erroneous. However, it is good programming
practice to ensure that orphans are not generated (i.e., that all processes in a program
terminate).
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Orphan processes can be detected by the garbage collector invoked by the PCN
run-time system to reclaim space occupied by inaccessible data structures. Normally,
the garbage collector destroys these processes silently. However, the PDB version of
the PCN run-time system prints a warning message for each orphan encountered.

The PDB variable, $print orphaned, can be used to disable these orphai. pro-
cess messages (see § 15.7).

16 The Gauge Execution Profiler

Gauge is an execution profiler for PCN programs. It collects profile data such as the
time spent in each procedure on each node, the number of times each procedure is
called, idle times, and internode message counts and volumes. This profile data can
subsequently be graphically displayed by using an interactive data exploration tool.

16.1 Linking a Program for Profiling

In order to collect a Gauge profile on a program, you must first link your program
with a version of the run-time system that supports profiling. To do this, simply
add a -profile to your pcncomp link command, for example:

pcncomp myprogram.pam -0 myprogram -mm myprogram -profile

By default, only procedures from the the user’s modules, the stdio library, and sys
library are profiled; the system modules used to implement process mapping, etc.,
are ignored. However, you have full control over which modules will be profiled,
through the use of linker arguments:

-no nmp: Turns on full profiling, including system modules.

-nmp <module>: Turns off profiling on the module. (NMP stands for No Module
Profile.)

16.2 Profile Data Collection

A profile is generated by executing your program with a -gauge and /or -gauge file
command line argument. The profile will be performed on all nodes, and on all
modules for which profiling was enabled during linking. If the -gauge flag is used,
the profile will be written into the file profile.cnt. The -gauge file flag allows
a different filename to used. For example, the following command runs myprogram
and writes a profile into the file myprof.cnt.

myprogram -pcn -gauge file myprof.cnt
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16.3 Snapshot Profiles

By default, a profile will be taken only at the end of the run and is cumulative
for the entire run. However, it is sometimes useful to examine several profiles of

your program collected at various stages of execution. This can be accomplished by
calling

profile snapshot(snapshot name)

in your program, where snapshot name is a string that will be used to name the
snapshot. A call to this foreign procedure on any node will cause a snapshot profile
to be generated on all nodes. (Note that this means that it is a serious mistake
to call profile snapshot() on every node; this will generate P snapshots, each
involving all P processors.) Each snapshot is cumulative ~ the profile is not reset
after a snapshot, so procedure executions times, etc., include the times from previous
snapshots.

A call to profile snapshct() has no effect unless you have linked with the
profiling version of the run-time system (i.e., used the -profile flag when linking),
and you have enabled profiling (i.e., used the -gauge or -gauge file command line
flag). Hence, calls to profile snapshot() can be maintained in a program and
enabled when required from the command line.

16.4 Data Exploration

Gauge provides an X-windows-based graphical interactive tool for exploring profile -
data collected by using the methods described above. This tool combines three sorts
of data to provide detailed information about execution time on a per-procedure and
per-processor basis, idle time, number of messages, volume of messages and other
program execution statistics. These data are

e instruction counts collected by the compiler,
o profile data collected by the run-time system when a profile is taken, and

¢ information about the computer on which the program was run.

The Gauge analysis tool gets the first and second of these from the .cnt file that
is produced by the run-time system when a profile is taken. The third is taken from
the host file which may need to be specified by the user {see §16.5).

The data exploration tool is invoked by typing the following Unix command:

gauge

This creates a top-level window with three parts. The top section of the window is
a command window. You can click the lefi mouse button on one of the commands
to obtain help, to exit, or to invoke the gauge analysis window. The middle section
indicates the current directory. The bottom window gives a list of .cnt and .cnt.Z
(compressed .cnt) files and directories in the current directory. Files are selected
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by pressing the left mcuse button while the pointer is over the file name. If you wish
to change selections, just press the left n.ouse button over a different file, or no file
if you want to eliminate all selections.

The directory window serves two purposes. If you select a .cnt file in the
directory window using the left mouse button and then select the Gauge command
from the top row of buttons, ¢ :ge is invoked on that file. Gauge can also be
invoked on a .cnt or .cnt.Z file by double-clicking on its name in the directory
window. Double-clicking on a directory name opens that directory, thus allowing
navigation of the directory system.

Gauge has an online help facility. To use it, select the “help” button on any
window. Either the scroll bar or the page-down (Conirol-v) and page-up (Meta-v)
commands can be used to position the help text within the help window. When
finished, you can dismiss the help screen using the close button on the bottom of
the screen. If you leave the screen up, it will be reused to display the next help
message.

Occasionally something might go wrong, and Gauge will generate a warning
message in a popup window. Nothing else can be done until this window is dismissed
by clicking the left mouse button in it.

The only command-line arguments recognized by Gauge are those recognized by
the X Toolkit Intrinsics. This means that X-windows arguments such as -icon can
be used.

16.5 The Host Database

When you invoke Gauge on a .cnt or .cnt.Z file, a warning message may be dis-
played indicating that your machine does not appear in the host database. (Click
on the warning window to make it disappear.) This means that you must add the
machine on which your application was run to the host database that Gauge accesses
to determine various machine characteristics when displaying performance data.

The program pcnhoest is provided to simplify the task of adding entries to the
host database. A call to this program has the form

pcnhost machinntype
or
pcnhost -h hostname machinetype

The machinetype argument specifies an architecture type for machine computer
hostname. If a host name is not specified, the name of the machine on which the
pcnhost command is executed is added to the database. The following machine
types are currently supported:

¢ symmetry-b, symmetry: Sequent Symmetry Rev. B
e sparcstation-1, ssi, sun4: A Sun SPARCstation 1

e sun3: A Sun 3 workstation
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¢ next040: A NeXT workstation

e iris: An SGI Iris workstation

¢ 82010: A Symult s2010 multicomputer

e rs6000: An IBM RS/6000 workstation

¢ ipsc860: An Intel iPSC/8F0 (i860 processing nodes)

¢ ipscii: An Intel iPSC/II (386 nodes)

Note that updates to the database are not synchronized. If more than one update
is being made simultaueously, information can be lost.
16.6 X Resources

Gauge requires a resource file to operate properly. This should be in
$ (INSTALL DIR)/1ib/app-defaults/gauge

where $(INSTALL DIR) is the directory where gauge has been installed (typically,
/usr/local/pcn). The command

xrdb -merge $(INSTALL DIR)/lib/app-defaults/gauge

should be added to one’s .xinitrc or .xsession file. If a color workstation is being
used,

xrdb -merge $(INSTALL DIR)/1ib/app-defaults/gauge.server

is also needed. Of course, any customized resource files could be used.
Alternatively, you can run xrdb gauge before running gauge. The xrdb gauge
program simply executes the two xrdb commands shown above.

17 The Upshot Trace Analyzer

Upshot is a trace collection and analysis tool. There are three steps that you need
to perform in order to use Upshot with PCN:

1. Instrument a program.

2. Run your instrumented program and collect a log.

3. Analyze the log.

The last step requires that you obtain and install the X windows based Upshot
log event analysis tool. You can obtain it by anonymous ftp from:

info.mcs.anl.gov
in the directory

pub/upshot
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17.1 Instrumenting a Program

You instrument your program by adding calls to procedures which, when executed,
log a timestamped event. An event consists of a type and an optional task identifier
and data value. You can instrument PCN, C, and Fortran code.

To instrument your program, you must first add:

#include "pcn upshot.h"

to PCN and C source files that will contain event logging calls.
Then, the following calls can be added to your PCN, C, and/or Fortran source
to log Upshot events:

e LOG EVENT(event type)
e LOG TASK EVENT(task id, event type)

e LOG TASK EVENT DATA(task id, event type, data val)

In these calls, task id and event type are positive integers, and data val is an
integer. None of these calls return a value.
17.2 Compiling and Linking the Instrumented Program

In PCN and C code, the above-mentioned LOG* calls are actually macros that call
the correct procedures if the C preprocessor variable UPSHOT is defined, and which
do nothing if it is not. Therefore, when compiling your PCN and C source with
these calls, you need to add a ~DUPSHOT argument to have them take effect:

pencomp -¢ pcnsource.pcn ~DUPSHOT
pencomp -c csource.c ~DUPSHOT

In Fortran, the above-mentioned LOG* calls are just calls to procedures that
are defined in the run-time system. Therefore, you can compile your instrumented
Fortran source as usual:

pcncomp -¢ fsource.f

When linking a program that contains event logging calls, you must add a
-profile flag to the pcncomp link command:

pcncomp pcnsource.pam csource.o -mm pcnsource -profile -o myprogram
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17.3 Collecting a Log

A program that contains event logging calls stores events in memory when it is
executed. When it completes execution, it writes these events to files, one per
processor.

A program only collects a log if the -upshot command line argument is specified.
For example:

myprogram myargs -pcn -upshot

This causes a log file to be written for each node on which the program is running.
These files are called log.0, log.1, etc. The prefix of the log filename can be
changed by using the -upshot file flag.

By default, a program only allocates memory for 10,000 events. An error is
reported if more than this number of events are logged. The maximum number of
log events can be changed by using the ~upshot log size flag.

The following example collects a log during the execution of myprogram, puts
the logs in files with a mylog prefix, and can record a maximum of 20,000 log events:

myprogram myargs -pcn -upshot file mylog -upshot log size 20000

17.4 Analyzing a Log

As previously mentioned, execution of a program with the -upshot argument pro-
duces one log file for eact node, for example, log.0, log.1, etc. These files must
be merged by using the Unix command mergelogs to create a single log file, for
example,

mergelogs log.* > log

We can then call the Upshot visualization program to display a set of time lines,
one per processor, with the various events logged by our program displayed on the
appropriate time lines:

upshot -1 log

Frequently, we are not interested in the events themselves but rather in execution
states defined in terms of starting events and ending events. For exampie, we might
define a “busy” state as starting when an event is logged indicating that a message
has been received on a stream, and ending when an event is logged indicating that
a response has been sent. We define states in a states file, specifying each state in
terms of a unique integer identifier, a starting and an ending event type, a color,
and a label, for example:

File my.sts
1 10 11 blue init_ico
2 12 13 red init_rh
3 14 1S pink init_geo
4 16 17 yellow get_side
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Upshot does not support nested states. That is, it is not meaningful for a trace
to include sequences in which two start state events occur without an intervening
end state event.

The name of any state file is specified to Upshot by means of the -s command
line option, as follows.

upshot -1 log -s my.sts

18 Standard Libraries

The sys and stdio modules are distributed with the PCN system and may be called
from within user programs to invoke a variety of useful functions. They are invoked
via intermodule calls.

In the following discussion, the notations | and { on program arguments denote
input and output arguments, respectively.

18.1 System Utilities

The sys module provides the following general utility procedures.

merger(Is|,0s?) merges messages appearing on input stream Is to produce output
stream Os. If the input stream Is contains a message of the form {"merge",S},
then the stream S is also merged with 0s. The output stream 0s is closed when
all merged input streams are closed. (Cf. § 4.10 for more details.)

distribute(N|,Is|) distributes messages received on input stream Is to N output
streams; output streams are numbered 0 to N-1. (Cf. § 4.10 for more details.)
The distributor may receive three types of message on input stream Is:

{"attach",N1|,S|,D1} causes stream S to be attached to output stream num-
bered N1; D is defined when the action is complete to signify that messages
may subsequently be forwarded to stream S.

{N2|,M|} causes the message M to be appended to output stream numbered
N2,

{"al1",M|} causes the message M to be appended to all of the output streams.
(Le., Broadcast the message to all output streams.)

When the input stream Is is closed, all output streams are closed. (Cf. § 4.10
for more details.)

hash(N|,Is|) creates a hash table of size N and receives messages on input stream
Is. Four messages may be sent to a hash table:
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{"add",K|,V],St} causes the value V to be added to the hash table under key
K; if there was already an entry for key K, then status S=0; otherwise S=1.

{"1ookup",K|,V1,S1} causes alookup operation on key K. If there is an entry
for key K, then V is the associated value and status S=1; otherwise S=0,

{"del",K|,V1} deletes the entry for key K and returns the value V associated
with the entry if one existed; otherwise returns ~1.

{"dump",L7,D{} dumps the contents of the hash table into a list L and defines
D when the operation is complete.

integer to 1ist(I|,Lbf,Le|) difference list Lb-Le is defined to be the list con-
taining the integers of the ASCII representation of integer I.

list to integer(L]|,IT) I is defined to be the integer that is represented by the
ASCII values (integers) in the list L.

integer to string(I|,St) Sis defined to be the string that represents the integer
I.

string to integer(S],I{) I is defined to be the integer that is represented by the
string S. '

double to 1list(D|,Lbf,Lel) difference list Lb-Le is defined to be the list contain-
ing the integers of the ASCII representation of the double D.

list to double(L],DT) D is defined to be the double that is represented by the
ASCII values (integers) in the list L.

double to string(D},S]) S is defined to be the string that represents the double
D.

string to double(S],Df) D is defined to be the double that is represented by the
string S.

list to string(L|,ST) S is defined to be the string that is represented by the
ASCII values (integers) in the list L.

string to list(S|,Lbf,Le|) difference list Lb~Le is defined to be the list contain-
ing the integers of the ASCII characters in the string S.

list to tuple(L],TT) T is defined to be the tuple with elements specified by list
L.

tuple to 1list(T|,LbT,Le|) differencelist Lb-Le is defined to be the list containing
the arguments of tuple T.

integer to double(I|,DT) D is defined to be the double cast of the integer I.

double to integer(D|,IT) I is defined to be the integer cast of the double D.
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list length(L|,Len]) Len is defined to be the length (integer) of the list L.

list concat(L1|,L2],Lout!) Lout is defined to be the concatenation of list L1
followed by list L2.

list member(element|,list|,status]) status is defined to be the integer 1 if
element is a member of the list 1ist, and the integer 0 if it is not.

left shift(Src|,N|,Dest]) Dest is defined to be the integer Src left shifted N
bits. (Dest = Src << N)

right shift(Src|,N|,Dest]) Dest is defined to be the integer Src right shifted N
bits. (Dest = Src >> N)

ones complement(Src|,Dest) Dest is defined to be the one’s complement of the
integer Src. (Dest = ~Src)

bitwise and(Src1|,Src2]|,Dest]) Dest is defined to be the bitwise and of integers
Srci and Src2. (Dest = Srcl & Src2)

bitwise or(Srci|,Src2],Dest() Dest is defined to be the bitwise inclusive or of
integers Src1 and Src2. (Dest = Srci | Src2)

bitwise xor(Srci|,Src2|,Dest]) Dest is defined to be the bitwise exclusive or of
integers Srci and Src2. (Dest = Srci ~ Src2)

double cast(From|,Tol) Tois defined to be the double cast of the integer or double
From.

integer cast(From|,Tol) To is defined to be the integer cast cf the integer or
double From.

abs(From|,Tol) To is defined to be the absolute value of From. If From is a double,
then To will be a double. If From is an integer, then To will be iu integer.

string length(S],Lenl) Len is defined to be the length (integer) of 1l.> string S.

string concat(S1},S2],Sout{) Sout is defined to be the string thai iz the con-
catenation of string S1 followed by string S2.

string list concat(string list|,separator|,Sout]) string list is a list of
strings, and separator is a string. Sout is defined to be the siring that is
the concatenation of the strings in string list wiih the renarutor between
each.

find substring(string|,substring|,index?) index is :l:iined w0 be the integer
location (starting with 0) of the first occurence of thie string, substring in the
string string, or -1 if substring is not a substring of string.
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find substring reverse(string|,substring]|,index?) indexis defined to be the
integer location (starting with 0) of the last occurance of the string substring
in the stringy string, or -1 if substring is not a substring of string.

substring(string|,start|,len},substringl) substring is defined to be the
substring of string starting at location start (numbering starts with 0) with
the length len. If 1en is -1, then the substring starting at start through the
end of string will be extracted.

18.2 Standard I/O

The stdio module provides a set of PCN procedures that are analogous to the
C language standard input/output (stdio) library. It is important to realize that
calls to stdio are sequenced only if they occur within a sequential block. Output
generated by parallel calls to printf or other output procedures may be interleaved.

Most of the stdio procedures take an output argument, status. This argument
should be an undefined variable when the call is made. It will be defined by the
stdio procedure to an appropriate return code. This argument can be used both to
check the status of the I/O call and to sequence subsequent execution if necessary.

The stdio procedures that deal with files rather than the keyboard or screen
require a file pointer (fp) argument. This argument should be a mutable of type
FILE (defined in the C header file pcn_stdio.h).

18.2.1 Reference

We now summarize the procedures provided by the stdio module. The arguments to
all of these procedures follow as closely as possible their corresponding C procedures.
Please refer to a C programming manual for more complete descriptions.

fopen(filename|,type|,fpT,status]) opens the file named filename. The file is
opened for the given type of I/O operation, where type is a string containing
an appropriate combiration of "r", "w", "a’’, and "+". The mutable £p is
assigned to be the file pointer. status is defined to be 0 if the open succeeds;
otherwise it will be set to the error number (C errno).

freopen(filename|,type|,fp]],status]) like fopen(),except that it substitutes
the named file in place of the open stream, £p. This is typically used to attach
the preopened stdin, stdout, and stderr to specified files.

fdopen(fildes|,typel,fpl,status]) opens the file with the integer file descriptor
fildes. The other arguments are the same as for fopen().

fclose(fp],status]) closes the file designated by fp. status is defined to be EOF
if there is an error.

fflush(fp|,status?) flushes all buffered data for the output file designated by fp
to be written to that file. The file remains open. status is defined to be EOF
if there is an error.
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putc(cl,fpl,status]) appends the character c to the designated output stream
fp. status is defined to be the character written, or EOF if there is an error.

fputc(cl,fp|,status]) is the same as putc().
putchar(c|,status]) is the same as putc() to standard output (the screen).

puts(s],fpl,status]) appends the string s followed by a newline to standard
output. status is defined to be EOF if there is an error.

fputs(s|,fpl,status]) appends the string s (not followed by a newline) to the
designated output stream fp. status is defined to be EOF if there is an error.

printf (format|,args|,status?) prints formatted output tostandard output. The
format string accepts the same format as the C language’s printf () proce-
dure, with two additions: it can contain a %t, which means to print a grounded
term, and %1lt, which means to print an ungrounded term. The %t and %41t
can also take an integer immediately after the %, which means to print only to
that depth. The args argument is a tuple of all the arguments to printf, as
required by the format. (Since PCN procedures cannot take a variable num-
ber of arguments, as in C, all of the data arguments must be combined into a
single argument using a PCN tuple.) status is defined to be the number of
characters written, or EOF if there is an error.

fprintf(fp|,format|,args|,status]) is the same as printf(), except that out-
put will go to £p rather than to standard output.

sprintf(bufl,format|,args|,status]) is the same as printf(), except that the
output is placed into the definitional variable buf.

getc(fpl,cl) gets one character from the input stream fp and defines it to c. cis
defined to be EOF on end of file or an error.

fgetc(fpl,cl) is the same as getc().
getchar(cl) is the same as getc() from standard input (the keyboard).

ungetc(c|,fp|,status]) pushes the character c back onto the input stream £p.
status is defined to be the pushed character, or EOF if there is an error.

gets(sT,status]) reads a string from standard input and defines it to s. The
string is terminated by a newline character, which is replaced in s by a null
character. status is defined to be the number of characters read, or EOF
upon end of file.

fgets(sf,n|,fp|,status]) reads n — 1 characters, or up through a newline char-
acter, whichever comes first, from the stream fp and defines it to s as a string.
The newline is not removed as in gets{). status is defined to be the number
of characters read, or EOF upon end of file.
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scanf (format|,args],status]) is similar to the scanf () procedure in C. It takes
its input from standard input and places the values that it reads in the defi-
nitional variables contained in the tuple args. Note: This procedure does not
support the %t argument for term scanning,.

fscanf(fp|,format|,argsf,statusf) is the same as scanf(), except that the
input comes from the passed stream, £p.

sscanf (buf| ,format|,args],status]) is the same as scanf(), except that the
input comes from the passed buffer, buf.

stdout (fpf) assigns the mutable fp to be the file pointer for standard output
(stdout).

stdin(fp]) assigns the mutable £p to be the file pointer for standard input (stdin).
stderr(fpl) assigns the mutable £p to be the file pointer for standard error (stderr).

fseek(fp|,offset|,vhencel,statusf) calls the C fseek function with the fp,
offset, and whence arguments to set the position for the next input or output
operation on this file. The status argument is defined to be 0 if the operation
completes successfully, or -1 if it fails.

ftell(fpl,offset]) calls the C £tell function with the £fp argument. The offset
argument is defined to be the offset from the beginning of the file to the current
position, or -1 if there is an error.

rewind(fp]) calls the C rewind function with the £p argument to set the position
to the beginning for the next input or output operation on this file. This is
equivalent to fseek(£fp,0,0,.).

fread(buf{,size|,nitems|,fp|,status]) reads nitems of data, each of size
bytes in length, from the stream fp. buf is defined to a character array con-
taining this data. status is defined to be the number of items actually read,
or 0 upon EOF or error.

fwrite(buf|,size},nitems|,fp|,statust) writes nitems of data, each of size
bytes in length, to the stream £p. buf is a character array containing the data
to be written. status is defined to be the number of items actually written,
or 0 upon EOF or error.

access(path|,mode|,status]) checks the given file, path for accessibility accord-
ing to mode. mode is the inclusive or of the bits R.-OK, W_OK, and X_OK -
read, write, and execute (search) permissions, respectively. A mode of F_OK
(i.e., 0) tests whether the directories leading to the file can be searched and
the file exists. status is defined it 0 if the file is accessible.

remove(filename|,status]) removes the specified filename. status is defined
to 0 if the operation succeeded.
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rename (oldname| ,newname},status]) rename the file oldname to newname. status
is defined to 0 if the operation succeeded.

18.2.2 Examples

Opening and Closing Files. The following examples illustrates the use of the
fopen, fclose, stderr, and fprintf procedures. Note the include statement for
pen_stdio.h, which includes a definition for FILE.

#include <pcn_stdio.h>

open_test(fname)
FILE fp, err;
{; stdio:fopen(fname, "r", fp, status),
{? status == 0 ->
{; stdio:printf("File \"Ys\" opened\n",{fname},_.),
/% ... %/
stdio:fclose(fp,.)
1,
default ->
{; stdio:stderr(err),
stdio:fprintf(err,
"Error opening \"%s\" for reading\n",{fname},.)

Writing to a File. This example opens a file ptest for writing, writes the char-
acters ABC to this file, and then closes the file.

#include <pcn_stdio.h>

putc_test()

FILE fp;

{; stdio:fopen("ptest","w",fp,.),
stdio:putc(’A’,fp,.),
stdio:putc(’B’,fp,.),
stdio:putc(’C’,fp,.),
stdio:fclose(fp,.)
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Writing to the Screen. This example writes the characters ABC followed by a
newline character to the screen (standard input).

#include <pcn_stdio.h>

putchar_test()

{; stdio:putchar(’A’,.),
stdio:putchar(’'B’,.),
stdio:putchar(’C’,.),
stdio:putchar(’\n’,.)

Printing to the Screen. The following program uses the printf command to
print a variety of terms of the screen. Note the use of the %t format command to
print arbitrary terms. When executed, the program acts as follows.

Str: A string

Real: -1.230000

List: ["A string" ,-1.230000,{"a",1,2,3}]
Tup: {"a",1,2,3}

The program can be modified to write the same text to a file by adding an fopen
call, substituting fprintf for printf throughout, and finally closing the file.

Module p_test.pcn

#include <pcn_stdio.h>

printf_test()
{; str = "A string",
r=0-1.23, /* No unary minus in PCN */

tup = {"a",1,2,3},
1s = [str,r,tup],
stdio:printf("Str: %s\nReal: %f\n",{str,r},.),
stdio:printf("List: %t\nTup: %t\n",{1ls,tup},.)

Creating Strings. We illustrate the use of the sprintf command to create a
string. When executed, the sprintf_tert procedure prints the string £ile.5.

“
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#include <pcn_stdio.h>

sprintf_test()

{; i=5,
stdio:sprintf (mystring,"file_%d",{i},.),
stdio:printf("mystring = %s\n",{mystring},.)

Reading Characters. This example shows the use of the stdin and getc proce-
dures to read a series of characters from the keyboard (standard input). The pro-
cedure getc_test prints a prompt, reads characters until an end of line is reached,
“nd then prints the result.

Enter line: my line

Line entered: my line

The program can also be written by using the getchar procedure (which reads
directly from standard input), avoiding the need for the call to stdin.

Module r_test.pcn

#include <pcn_stdio.h>

getc_test()

FILE fp;

{; stdio:stdin(fp),
stdio:printf("Enter line: ",{},.),
getc_testi(fp,ls),
sys:1list_to_string(ls,str),
stdio:printf("\nLine entered: %s\n",{str},.)

}

getc_testi(fp,ls)
FILE fp;
{; stdio:getc(fp,ch),
{? ch=="\n’->1=1[],
default ->
{; 1s = [chllsi],
getc_test1(fp,1s1)
}
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19 Cross-Compiling

Pcncomp supports cross-compilation. For example, if a Sun has the necessary C and
Fortran cross-compilers for the Intel iPSC/860, the Sun version of pcncomp can be
used to compile PCN programs for the iPSC/860.

To cross-compile PCN programs for some machine, add a ~target target.name
argument to pcncomp compile and link commands. For example, the following com-
mands compile and link a program containing C, Fortran, and PCN source on the
Intel iPSC/860:

% pcncomp -c myc.c -target ipsc860

% pcncomp -c myf.f -target ipsc860

% pcncomp -c my.pcn.pcn -target ipscB860

% pcncomp my._pcn.pam my.c.o my.f.o -mm my._pcn
-o myprogram -target ipsc860

Alternatively, the native C and Fortran cross-compiler (i.e., icc and i£77 on the
iPSC/860) can be used directly, instead of through pcncomp, to compile the Fortran
and C portions of the program. The advantage to using pcncomp is that you need
not know the cross-compiler’s name, location, and special arguments. Those details
are taken care of by pcncomp, based on the cross-compilation configuration when it
is installed.

Specifying a cross-compilation target of “default” (i.e., -target default) is
equivalent to not supplying a ~target argument at all. This can be useful in writing
portable Makefiles, as described in § 26.

20 Intel iPSC/860 Specifics

To compile a PCN program for the Intel iPSC/860, follow the cross-compilation
instructions in § 19, using a target of “ipsc860”.

The resulting iPSC/860 executable program can be run by logging into the
iPSC/860 host (SRM), allocating an appropriately sized cube, and loading the pro-
gram. Once PCN terminates, we free the cube. In the following example, we assume
that the host is called gamma:
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% rlogin gamma

% getcube -t 4

% load myprogram; waitcube
% killcube

% relcube

If you wish to supply arguments to your program, those arguments must be part
of the load command:

% load myprogram myargs -pcn -gauge; waitcube

21 Intel Touchstone DELTA Specifics

To compile a PCN program for the Intel Touchstone DELTA, follow the cross-
compilation instructions in § 19, using a target of “delta”.

Before you can run the resulting DELTA executable program, you must copy it
onto the DELTA’s CFS filesystem using either £tp or rcp.

Then you can log into the DELTA and run the program via the mexec com-
mand. This command specifies the height and width of the submesh to allocate,
and the executable to load on the nodes in the submesh. For example, the following
command would load myprogram onto a 4 by 8 node mesh:

% mexec "-t(4,8)" -f myprogram

If you wish to supply arguments to your program, those arguments must be part
of the -f flag:

% mexec "-t(4,8)" -f "myprogram myargs -pcn -gauge"
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22 Sequent Symmetry Specifics

Running PCN on the Sequent Syminetry is similar to running PCN on a workstation.
The pcncomp command, used for compiling and linking, is identical to that described
throughout this manual.

The -n run-time system command line argument is used to run PCN with several
nodes. For exariple, the following command runs myprogram on 10 nodes:

% myprogram -pcn -n 10

The Symmetry has two different C compilers that can be used to compile C
foreign code. They are cc and atscc. atscc should be used if it is available, as
it supposedly produces better code than the standard cc compiler. Fortran code
should be compiled by using the fortran compiler. However, if you use pcncomp to
compiler your C and Fortran code, then you need not worry about these details.

23 Network Specifics

The network version of PCN (net-PCN) uses Berkeley stream interprocess commu-
nication (TCP sockets) to communicate between nodes. A node can run on any
machine that supports TCP. Hence, a single PCN computation can run on several
workstations of a particular type, several workstations of diflering types, several
processors of a multiprocessor, or a mix of workstations and multiprocessor nodes.
Current restrictions are listed in § 23.6.

Net-PCN currently operates on the NeXT, Sun, DECstation, HP9000, IBM
RS/6000, and SGI Iris.

Using net-PCN is the same as using PCN on other platforms except that the user
must specify on which machines PCN nodes are to run and may also be required to
specify where on those machines PCN is to be found and the commands necessary
for running net-PCN nodes on the given machines.

There are several different ways of starting net-PCN, each appropriate for dif-
ferent types of network. We shall consider each of these in turn, starting with the
easiest. First, we provide some background information on the Unix remote shell
command rsh, which is used to start net-PC™ nodes.

23.1 Using rsh

The Unix remote shell command rsh is a mechanism by which a process on one
machine (e.g., my-host) can start a process on another machine (e.g., my-node). A
remote shell command can proceed only if my-host has been given permission to
start processes on my-node. There are two ways in which this permission can be
granted.
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e Thefile /etc/hosts.equiv exists on my-node and contains an entry for my-host.
This file must be created by the system administrator.

o The file .rhosts exists in the home directory of the user running the remote
shell on my-node and contains a line of the form

my-host username

where username is the name of the user login on my-host. This file is created
by the user.

Some sites disallow the use of .rhosts files. If .rhosts usage is disallowed and
the host machine is not in /etc/hosts.equiv, remote shells cannot be used to create
remote processes. Alternative mechanisms must be used, as described below.

The full syntax of the rsh command is as follows:

rsh hostname -1 username command arguments

The username here is the login to be used on the remote machine. If username is not
specified, it defaults to the login name of the user on the local machine. Furthermore,
if the login name used on the local machine is different from the login name on the
remote machine, the .rhosts file for the account on the remote machine must have
an entry allowing access for that account on the host machine.

23.2 Specifying Nodes on the Command Line

The simplest way to start PCN on a network of machines is to use the -nodes <nodelist>
command line argument, where nodelist is a colon-separated list of machine names
on which PCN nodes are to run. For example,

myprogram -pcn -nodes pelican:raven:plover

will run myprogram on four nodes, with one node on the machine from which this
command is run (the host) and one node on each of the machines named in the
nodelist: pelican, raven, and plover.

This startup method works only if

1. rsh (§ 23.1) works from the host to each machine in nodelist, and

2. each of the nodes shares a common filesystem with the host. The reason for
this is that the host runs each node in the directory in which pen is invoked.
If the host and a node have different filesystems, the rsh used to start up that
node is likely to fail.

If any of these conditions does not hold, then net-PCN must be started by using
one of the alternative methods described below.

Note that we can always create multiple nodes on a single processor by using the
-n command line flag. The command
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mypcn -pcn -n nnodes

forks nnodes - 1 nodes on the local machine (resulting in a total of nnodes pro-
cesses) wWhich communicate by using sockets. This feature can be useful for debug-
ging purposes, or on multiprocessing machines.

23.3 Using a PCN Startup File

The second net-PCN startup method that we consider can be used if nodes do not
share a common file system with the host. However, it still requires that rsh work
from the host to each node.

This method uses a startup file to define the locations of remote PCN node
processes. Lines in this file identify the machines on which nodes are to be started.

Startup File Syntax. A line of the form
fork n-nodes

causes n-nodes node processes to be started on the local machine. These nodes
communicate with the other nodes via sockets, even though they are on the same
machine as the host.

A line of the form

exec n-nodes: command -pcn $ARGSS$

causes command to be executed. command is the command that invokes PCN on
the appropriate machine. The host process replaces $4 RGS$ at run time with the
necessary arguments to PCN to cause it to start n-nodes node processes.

Blank lines in startup files and lines starting with whitespace, %, or # are ignored.

Examples of Startup Files. A startup file containing the lines

fork 1
exec 1: rsh fulmar myprogram -pcn $ARGSS$

starts one node on the local machine (in addition to the host node) and one node
on the host fulmar, using the PCN executable called myprogram.

A startup file containing the line
exec 1: rsh fulmar -1 bob myprogram -pcn $ARGS$

starts one node using the program called myprogram on host fulmar using the PCN
executable pcn and the account for username bob. If we assume the PCN host is
being run by user olson on host host-machine, then the .rhosts file in the home
directory of user bob on fulmar must contain the entry

host-machine olson
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A startup file containing the line
exec 3: rsh fulmar "cd /home/olson/pcn; ./myprogram -pcn $ARGS$"

runs three nodes on fulmar of the PCN executable myprogram after changing to the
directory /home/clson/pcn.

A startup file containing the line
exec 2: sh -c ’echo "myprogram -pcn $ARGS$ &" | rsh fulmar /bin/sh’

is a more complex example that starts up two nodes on fulmar. This example has the
desirable side effect that the rsh process exits after starting the PCN node, whereas
in the other examples the rsh will not complete until the node process completes.

Using a Startup File. We execute net-PCN with a startup filc pcn-startup by
using the -8 run-time system command line argument:

myprogram -pcn -s pcn-startup

23.4 Starting net-PCN without rsh

If your computer system does not support the use of rsh, you will need to start
remote nodes by hand or by using a utility called host-control. See the sepa-
rate manual: R. Olson, Using host-control, Argonne National Laboratory Technical
Memo ANL/MCS-TM-154.

23.5 Ending a Computation

Normally all nodes of a net-PCN computation will exit upon completion of the
computation or upon abnormal termination of PCN. If for some reason this is not
the case, you must log on to each machine that was executing a net-PCN node and
manually kill the PCN process.

23.6 Limitations of net-PCN

Number of Nodes. The number of nodes available in a net-PCN computation is
limited by the number of file descriptors available to a process (an operating system-
imposed limit). On modern versions of Unix, there are generally more than sixty
file descriptors available. Hence, in practice, the number of file descriptors is not
likely to be a major problem.

Heterogeneous Networks. Currently, no support exists for executing net-PCN
between machines with different byte orders and/or different floating-point repre-
sentations. Net-PCN does execute correctly between different machines if they use
the same byte-ordering and floating point representation (we have run net-PCN
successfully between Sun 3, Sun 4, and NeXT computers). However, you must be
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careful when using foreign code in this case because, for example, structure packing
in C may differ between different compilers.

24 Further Reading

PCN Language This text provides an introduction to the PCN language and a
discussion of techniques used to reason about PCN program:

M. Chandy and S. Taylor, An Introduction to Parallel Programming,
Jones and Bartlett, 1991.

This paper describes the PCN language, including recent extensions for process
mapping and templates, as well as surveying major applications:

I. Foster, R. Olson, and S. Tuecke, Productive Parallel Programming;:
The PCN Approach, Scientific Programming, Vol. 1, 1992, pp. 51-66.

Programming and Proof Techniques The following book provides a readable

and entertaining presentation of many of the basic parallel programming techniques
used in PCN:

I. Foster and S. Taylor, Strand: New Concepts in Parallel Program-
ming, Prentice Hall, Englewood Cliffs, N.J., 1989.

The proof theory for PCN is based in part on that for Unity, which is described in
detail in

M. Chandy and J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

Software cells, templates, and parallel software reuse are discussed in:

I. Foster, Information Hiding in Parallel Programs, Preprint MCS-
P290-0292, Argonne National Laboratory, 1992.

PCN Toolkit The Program Transformation Notation (PTN) tool is described in

I. Foster, Program Transformation Notation: A Tutorial, Technical
Report ANL-91/38, Argonne National Laboratory, 1991.

The host-control program used to manage network implementations of PCN is
described in

R. Olson, Using host-control, Technical Memo ANL/MCS-TM-154,
Argonne National Laboratory, 1992.
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PCN Implementation The techniques used to compile PCN for parallel com-
puters and to implement templates are described in

I. Foster and S. Taylor, A Compiler Approach to Scalable Concurrent
Program Design, Preprint MCS-P306-0492, Argonne National Labora-
tory, 1992.

A detailed description of the PCN run-time system can be found in

I. Foster, S. Tuecke, and S. Taylor, A Portable Run-Time System for
PCN, Technical Memo ANL/MCS-TM-137, Argonne National Labora-
tory, 1991.

The design, implementation, and use of the Gauge performance analysis system are
described in

C. Kesselman, Integrating Performance Analysis with Performance
Improvement in Parallel Programs, Ph.D. thesis, UCLA, 1991.

A description of the Upshot trace analyzer can be found in

V. Herrarte and E. Lusk, Studying Parallel Program Behavior with

Upshot, Technical Report ANL-91/15, Argonne National Laboratory,
1991.

Applications Papers desc}ibing PCN applications include

_I. Chern and I. Foster, Design and Parallel Implementation of Two
Methods for Solving PDEs on the Sphere, Proc. Conf. on Parallel Com-
putational Fluid Dynamics, Stuttgart, Germany, Elsevier Science Pub-
lishers B.V., 1992, pp. 83-96.

D. Harrar, H. Keller, D. Lin, and S. Taylor, Parallel Computation
of Taylor-Vortex Flows, Proc. Conf. on Parallel Computational Fluid
Dynamics, Stuttgart, Germany, Elsevier Science Publishers B.V., 1991,
pp. 193-206.

I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale

Model, Proc. 5th ECMWF Workshop on Parallel Processing in Meteo-
rology, ECMWF, Reading, England, 1992.
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Part III
Advanced Topics

25 pcncomp and the PCN linker
For a complete list of the arguments to pcncomp, run:
pcncomp -h

1a general, pcncomp tries to follow the normal Unix conventions for C and Fortran
compiler arguments.

PCN linker. The PCN linker, which is called by pcncomp, does not replace the
standard Unix linker, 1d. Instead, it operates at a higher level than 1d. The PCN
linker’s primary function is to coalesce the PCN object code contained in the .pam
files and turn it into machine object code that can be passed to 1d to be linked with
the run-time system, the user’s foreign object code, and system libraries.

This is accomplished by creating a C source file that contains initialized C data
structures with names known to the run-time system. This C file is then compiled
and linked with everything else to produce an executable program. The C file
is usually named with a “pcnt.” prefix, followed by the name of the executable
program that we are creating.

The PCN linker is a new feature of PCN version 2.0. Its advantages compared
to techniques used in earlier releases include a standalone executable, faster startup
on large parallel computers, faster intermodule calls, faster compilation, :nd greater
ease of use. A significant disadvantage is slower linking. This is a problem particu-
larly during the debugging stage of program development. To alleviate this problem,
a limited form of dynamic loading of .pam files is supported by PDB. This removes
the time-consuming link step from the debug cycle, yet preserves all of the advan-
tages of the PCN linker during production runs. See § 15.9 for details on dynamic
loading of .panm files, and § 26 on how to exploit the creation of the pcnt file to
reduce the link time when debugging foreign code.

26 Makefile

This section provides an example Makefile for use with PCN programs. We also
provide some discussion of the Makefile, including some “tricks” to reduce link times.
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[Example Makeﬁle_]

PAMS = pcncode.pam
OBJS = fcode.o ccode.o
PCNT = pcnt_myprogram

MAIN_MOD = pcncode
PROG_NAME = myprogram
FORTRAN = -fortran
FLAVOR =

PCN_BASE = /usr/local/pcn

TARGET = default
PCNCOMP = $(PCN_BASE)/bin/pcncomp
PCNCOMPFLAGS = $(FORTRAN) $(FLAVOR) -target $(TARGET)
all: $(PROG_NAME)
pams: $(PAMS)
objs: $(0BJS)
$(PCNT) .c: $(PAMS)
$(PCNCOMP) $(PCNCOMPFLAGS) $(PAMS) -o $(PCNT).c \
-pcnt -mm $(MAIN_MOD)
$(PROG_NAME) : $(PCNT).o $(0BJS)
$ (PCNCOMP) $(PCNCOMPFLAGS) $(PCNT).o $(0BJS) \
-0 $(PROG_NAME)
.SUFFIXES: .pcn .pam .c .o .f

.pcn.pam:
$ (PCNCOMP) $(PCNCOMPFLAGS) -c $*.pcn

C.0: '

$ (PCNCOMP) $(PCNCOMPFLAGS) -c $*.c
f.o

$ (PCNCOMP) $(PCNCOMPFLAGS) -c $%.f
clean:

rm -f *.pam *.mod *~ $(PROG_NAME) *.dump pcnt* *.o0
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Portability. Since pcncomp is used to compile the C and Fortran source files, this
Makefile is highly portable. The details of the actual C and Fortran compiler names,
their locations, special arguments that they take, etc., are handled automatically by
pcncomp.

Adaptability. The entire Makefile is parameterized by the first seven variables
at the top of the Makefile. It can be quickly adapted to different programs. In
addition, these variables can easily be overridden from the command line to create
PDB and/or profiling versions of the program. For example, to create a version of
the program that is linked with the PDB run-time system, you would run:

make FLAVOR=-pdb

Cross-compilation. Cross-compilation to different machines is simple with this
Makefile. (See § 19 for more on cross-compilation.) By default, it will compile
the program for whatever machine the make is running on. But by overriding the
TARGET variable from the command line, we can easily cross-compile the program

for different machines. For example, to cross-compile for the Intel iPSC/860, you
would run:

make TARGET=ipsc860

Debugging flexibility. Section § 25 discusses how the PCN linker operates. It
creates a pent .« file (a C source file) that contains all of the necessary information
from the .panm files. compiles that file to a pent.o file, and then links that pent.o
file with the run-time system, foreign object files, and system libraries to create an
executable program.

When debugging foreign code, you can exploit the fact that the PCN linker
creates this intermediate pcnt file to greatly reduce link times. If a foreign procedure
is modified, there is no need to create a new pcnt file before linking. Only changes
in the PCN code will affect the pent file. So, instead of creating a new pent file
each time foreign code is modified, the one from the previous link will suffice.

When working on PCN code, link a version with PDB by running:

make "FLAVOR=-pdb -link.all"
This will give you a version of the program that you can use with dynamic loading

to quickly debug your PCN code without having to relink after each change (see
§ 15.9).
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27 Run-Time System Debugging Options

The PDB version of the run-time system incorporates a variety of low-level execution
tracing facilities. These facilities are controlled through the following four debug-
level variables. The value of each variable can range from 0 to 9, with 0 meaning no
trace output and 9 maximum trace output.

Emulator Debug Level: This controls debugging information in the main pro-
cess scheduling loop. For example, level 2 causes all intermodule calls to be
printed, level 3 additionally prints the entry and exit of foreign procedures,
and level 9 prints a complete trace of the PCN abstract machine instruction
being executed.

Garbage Collector Debug Level: This controls debugging information in the
garbage collector. For example, level 2 causes a short summary to be printed
each time a garbage collection occurs.

Parallel Debug Level: This controls debugging information relating to the par-
allel aspects of the system. For example, level 5 causes debugging information
about the low-level message handling between nodes to be printed.

Global Debug Level: This controls debugging information not covered by the
other three variables. For example, level 1 causes startup parameters and
boot arguments to be printed.

The four debug levels can be manipulated in two ways. On a single node,
they can be modified through the use of the PDB variables ($emulator.dl, $gc_dl,
$parallel.dl, and $global.dl) described in § 15.7.

The debug levels can also be set from the command line. The following run-time
system command line arguments (i.e., they must appear after the -pcn argument)
set the various debug levels on all nodes, including the host.

-d <level> : This sets all debug levels.

-e <level> : This sets the emulator debug level. It overrides the level set by the
-d flag.

-g <level> : This sets the garbage collector debug level. It overrides the leve! set
by the -d flag.

-p <level> : This sets the parallel debug level. It overrides the level set by the
-d flag.

The foliowing argument enables low-level trace information after a specified num-
ber of procedure calls.

-r <reductionnumber> : Do not print any debugging output until the number
of procedure calls given by reduction number has been executed.
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The following command line arguments can be used to set debug levels selectively
in different nodes of a multiprocessor.

-node <node.number> : Apply the following node debug level flags only to a par-
ticular node, node_number. If this argument is not used or node number is -1,
then apply the following node debug level flags to all nodes.

-nd <level> : This sets all debug levels on the appropriate node(s).

-ne <level> : This sets the emulator debug level on the appropriate node(s). It
overrides the level set by the -nd flag.

-ng <level> : This sets the garbage collector debug level on the appropriate
node(s). It overrides the level set by the -nd flag.

-np <level> : This sets the parallel debug level on the appropriate node(s). It
overrides the level set by the -nd flag.

-nr <reduction.rumber> : Do not print any debugging output on the appropriate
node(s) until the reduction.number reduction has been reached.

For example, the following con:.and would set the emulator debug level to 3
and the garbage collector debug lev.. o ? on node 5 of a 10-node run.

myprogram -pcn -n 10 -ne 8 -ng 2 -node 5

All debugging messages are preceded by the node number from which the message
originated and reduction number on that node when the message was printed. When
debug levels are set on multiple nodes simultaneously the debugging output from
these nodes will be interleaved. The node and reduction number can help you sort
out these interleaved messages.

Interleaving problems can be avoided by telling the run-time system to log all
debugging messages to files, instead of to the screen, by putting a -log on the
command line. The system will then create a Logs directory into which all debugging
output will be printed. Further, the debugging output from each node will be put
in a separate file in this Logs directory.
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Part IV
Appendices

A Obtaining the PCN Software

The PCN software is available by anonymous FTP from Argonne National Labo-
ratory, in the pub/pcn directory on info.mcs.anl.gov. The latest version of this
document is also available at the same location. The following session illustrates
how to obtain the software in this way.

% ftp info.mcs.anl.gov

Connected to anagram.mcs.anl.gov.

220 anagram.mcs.anl.gov FTP server (Version 5.60+UA) ready.
Name (info.mcs.anl.gov:XXX): anonymous

331 Guest login ok, send ident as password.

Password: /* Type your user name here */

230- Guest login ok, access restrictions apply.

Argonne National Laboratory Mathematics & Computer Science Division
All transactions with this server, info.mcs.anl.gov, are logged.
230 Local time is Fri Kov 8 18:26:39 1992

ftp> cd pub/pen

250 CWD command successful.

fep> s

200 PORT command successful.

150 Opening ASCII mode data connection for file list.
pcn.v2.0.tar.2

README

pen.prog.ps.2

pen.prog.tar.Z

226 Transfer complete.

78 bytes received in 1.3¢-05 seconds (5.9e+03 Kbytes/s)
ftp> binary

200 Type set to I.

ftp> get pen_v2.0.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for pcn.v2.0.tar.Z (XXX bytes).
226 Transfer complete.

local: pcn.v2.0.tar.Z remote: pcn.v2.0.tar.Z

XXX bytes received in YY seconds (ZZ Kbytes/s)

ftp> quit

221 Goodbye.
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B Supported Machines

The following table lists the machines on which PCN is currently supported, along
with the archit_cture name.

Architecture | Machine name

delta Intel Touchstone Delta
ipsc860 Intel iPSC/860

iris Silicon Graphics Iris
next040 NeXT

rs6000 .IBM RS/6000

sun4 Sun 4 (SPARC based)

102



C Reserved Words

The following words may not be used as variable names or procedure names in PCN
programs.

append._stream
char
close.iream
data

de rement stream
default
directive
double
exports
foreign
init.recv
init_send

int

length
location
nodes

over

PCN

stream
stream_send
stream._recv
topology
tuple

-p-*

.pdb_*
PCN_*
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Deprecated and Incompatible Features

. Under v1.2.2, a common way to write a tuple that has a string in the first
element of the tuple as a label was to write it in prefix notation, such as
label(a,b). This is equivalent to writing the tuple in the infix notation,
{*‘1label’’,a,b}. However, in v2.0, writing tuples in this prefix form is
discouraged because its syntax is identical to that of functons, which are now
supported in v2.0. Instead, it is recommended that you always write tuples
using infix notation.

. The sys:list length() procedure (which was undocumented under v1.2.2
but sometimes used) has had its argument order changed between v1.2.2 and
v2.0, in order to make it follow the convention used in all other libraries that
the return argument is always the last argument.

. The stdio:scanf() procedure no longer supports %t for term scanning.

. The -foreign() directive is ignored under v2.0. All information about which
foreign object files and libraries to link must be specified on the command line
when linking with pcncomp.

. The PCN_PATH environment variable is ignored under v2.0. Since .pan files are
no longer loaded dynamically when they are first referenced, this is no longer
needed.

. The sizeof () command has been changed to length(). It returns the number
of elements in an array, or the arity of a tuple. (This change occurred in v1.2.2.)

. Meta operations now use ‘var* (matching back quotations) instead of ’var (un-
matched single quote) to denote a string that is to be interpreted as a variable
name. (This change occurred in v1.2.2.)
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E Common Questions

What does it mean when PCN prints an Illegal tag message? This usu-
ally means that PCN internal data structure has been corrupted somehow. The
usual way in which this happens is that user code writes past the beginning or end
of an array (either in PCN or foreign code).

To help detect this situation: If you use arrays in your PCN code then you can
do bounds checking by running the program under pcn.pdb. If you use arrays in
Fortran code, many Fortran compilers have a flag to turn on bounds checking (also
known as range checking).

See § 14 for information on debugging PCN programs.

Why is the PCN linker so slow? See § 25 for information on how the linker
works. Also, see § 15.9 and § 26 for tips on reducing link times when debugging.
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W

F PCN Syntax

The following syntactic conventions are employed in this expanded BNF:

nonterminal ::= production

(] Surround an optional element.

{} Surround an element that may occur zero or more times.
| Separates alternatives.

boldface Indicates reserved words.

“quotes” Indicate characters that appear literally.

The symbols unsigned-integer, unsigned-real, character-string, and identifier denote
terminal symbols and are not defined further here.

Comments are delineated by the start-comment symbol /* and the end-comment
symbol */.

Compilation Module

compilation-module

program-or-directive { program-or-directive }

program-or-directive ::= program-declaration | directive
Directive
directive := “.” directive-name “(” directive-arguments “)”

directive-name identifier
directive-arguments := { directive-argument { “,” directive-argument } ]
directive-argument := term

Program Declaration

]

program-declaration program-heading mutable-declarations program-body

i

program-heading program-heading-modifiers identifier “(” formal-parameters “)”
program-heading-modifiers::= [ identifier { “,” identifier } ]

formal-parameters [ formal-parameter { “,” formal-parameter } ]
formal-parameter identifier

i

mutable-declarations
mutable-type
mutable-declaration-list

{ mutable-type mutable-declaration-list “;” }
int | double | char | port
mutable-declaration { “,” mutable-declaration }
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mutable-declaration

program-body

Block

::= identifier [ “[” [ expression ] “]” |

::= sequential-composition |
parallel-composition |
choice-composition

block ::= assignment-statement |
definition-statement |

program-call |

sequential-composition |
parallel-composition |
choice-composition |

quantification

assignment-statement ::= variable “:=” expression

definition-statement ::

program-call =

function-call =

local-program-call
remote-program-call ::
remap-program-call ::
meta-program-call

simple-program-call ::

variable “=" term

local-program-call |
remote-program-call |
remap-program-call |
meta-program-call

local-program-call |
remote-program-call

simple-program-call

simple-program-call "@” simple-program-call
simple-program-call in simple-program-call

‘ identifier ¢

program-specifier “(” actual-parameters “)”
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program-specifier  ::= [ module-name “:” ] program-name

module-name 1= quoted-identifier
program-name ::= quoted-identifier
actual-parameters ::= [ actual-parameter { “,” actual-parameter } ]

actual-parameter ::= term
annotation ::= unsigned-integer | character-string | quoted-identifier
quoted-identifier 1= ‘identifier ¢ | identifier

Note: The single backquote characters in the preceding line indicate literally that character.

Quantification
quantification::= identifier over expression “..” expression “::” block
Sequential Composition
sequential-composition ::= “{” “;” block { “,” block } “}”
Parallel Composition
parallel-composition ::= “{” “||” block { “,” block } “}”
Choice Composition

choice-composition ::= guarded-block |
“{» “?” guarded-block { “,” guarded-block } “}”

guarded-block guards — block

guards = guard-list | default

guard-list := guard { conditional-and guard }

conditional-and = «7

guard = pattern-match | equality-test | relational-test | data-test
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pattern-match
pattern
tuple-pattern

list-pattern
pattern-elements

pattern-element-list
pattern-element

equality-test

equality-operand ::=

u:= identifier “7=" pattern
= tuple-pattern | list-pattern
u= “{” pattern-elements “}” |

identifier “(” pattern-elements “)”

u= “[” pattern-elements “}” |

“[* pattern-element-list “|” pattern-element “]”

u= [ pattern-element-list ]
::= pattern-element { “,” pattern-elemeni }
::= signed-number | character-string | identifier | pattern

equality-operand “==" equality-operand |

equality-operand “!=" equality-operand

empty-tuple u=

empty-list

relational-test

relational-operand ::

expression | character-string | empty-tuple | empty-list
u{” “}”

= u[” “]”

relational-operand “<” relational-operand |
relational-operand “>” relational-operand |
relational-operand “<=" relational-operand |
relational-operand “>=" relational-operand
expression

data-test ::= int “(” term “)” |
double “(” term “)” |
char “(” term “)” |
tuple “(” term “)” |
data “(” term “)”

Variable

variable ::= identifier [ “[” index “|” ]
index  ::= unsigned-integer | identifier
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Expression

expression = adding-expression

adding-expression ::= multiplying-expression |
adding-expression “+” multiplying-expression |
adding-expression “~" multiplying-expression

multiplying-expression ::= primary-expression |
multiplying-expression “*” primary-expression |
multiplying-expression “/” primary-expression |
multiplying-expression “%” primary-expression

primary-expression = signed-number |
variable |
length “(” identifier “)” |
function-call |
“(” expression “)”

signed-number

[”=" ] unsigned-integer |
[ ”=" ] unsigned-real

Term

term 1= expression |
character-string |
tuple-constructor |
list-constructor

tuple-constructor ::= “{” elements “}” |
identifier “(” elements “)”

list-constructor = “[” elements “]” |
“[* element-list “|” element “]”
elements = [ element-list ]

element { “,” element }

signed-number | character-string | variable |
tuple-constructor | list-constructor

element-list
element

ii

i
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-dumpafter basic, 65
-foreign() directive, 104
-gauge, 73
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-link_all, 72

-load, 72
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-nmp, 73

-no_nmp, 73

-nodes, 91

-pdb, 66

-profile, 73, 77

-upshot, 78
-upshot_file, 78
-upshot_log_size, 78
.pam file, 5

.pdbrc file, 66

abs(), 81

access to PCN software, 101
access(), 84

aliasing of variables, 34
anonymous definitional variables, 15
applications of PCN, 95
arge, 7

arguments, 6

argv, 7

arithmetic expressions, 11
arrays, 11

associativity of operators, 12
auxiliary procedures, 63

barrier processes, 65
bitwise_and(), 81

bitwise_or(), 81

bitwise_xor(), 81

block, 12

block of a procedure, 12

bounds checking, 61, 105
broadcast communication, 30
broadcasting with a distributor, 79

C, 11, see foreign language interface
C preprocessor, 2, 45
cell, 57
char() test, 17
character, see constants
data type, 11
choice composition, 1, 17, 36
execution order, 17
mechanism for choosing alternatives,
17
nondeterminism introduced with,
18
notation, 17
rules, 18
synchronization mechanism, 17
use, 19
circular reference checking, 61
code reuse, 1, 57-59
comments in PCN, 12
communication, 9, 10, 19, 26, 36
broadcast, 30
communications, 10
compiler, 5, 48, 49, 96
auxiliary procedures, 63
basic text for techniques, 95
toolkit overview, 2
composition, 1, 9, 10, 12
composition operators, 1, 13
basic, 1
choice, see choice composition
default, 13
parallel, see parallel composition
sequential, see sequential compo-
sition
user defined, 1
compositionality, 9, 36
concurrency, 9, 36, see parallelism
composition, 10
first-class, 9
programming concepts, 9
concurrent programming, see parallel
programming



conditional execution, 36
constants, 11
consumer, 9, 26
core PCN, 63
basic composition operators, 1
extensions, 1
features, 1
cpp, see C preprocessor

data types, 11
data() test, 17
debugging, 60-62, see PDB
command line arguments, 61
dynamic loading, see dynamic load-
ing
example Makefile, 98
foreign code, 98
of concurrent programs, 3
PDB, 63-73
performance errors, 61
run-time system debug levels, 99
declarations, 12, 13
default guard, 17, 20
definitional variable, 26
definitional variables, 2, 9, 10, 13-15,
34, 36
anonymous, 15
as communication channels, 19
benefits, 9
comparison with mutable, 16
example, 15
example use in quicksort, 39
interaction sequential code, 33
properties, 16
delimiters, 12
deprecated features, 104
determinism, see nondeterminism
difference list, 38, 39
distribute(), 79
distributor, 30
divide and conquer, 15
double
constants, see constants
data type, 11
double() test, 17

112

double_cast(), 81
double_to.integer( ), 80
double_toist(), 80
double_to_string(), 80
dynamic loading, 61, 72

entry point, 7
errors
logical, 61
performance, 61
example program, 4
examples
height of a tree, 38
membership in a list, 37
membership in a list with muta-
bles, 37
preorder traversal of a tree, 38
quicksort, 39
reversal of a list, 37
two-point boundary value problem,
42
exit_code, 7
exported procedure, 45
expressions, arithmetic, 11

fclose(), 82

fdopen(), 82

fllush(), 82

fgetc(), 83

fgets(), 83

find_substring(), 81

find substring_reverse(), 82
fopen(), 82

foreign language interface, 2, 47-50
Fortran, see foreign language interface
Fortran, with cpp directives, 49
fprintf(), 83

fputc(), 83

fputs(), 83

fread(), 84

freopen(), 82

fscanf(), 84

fseek(), 84

ftell(), 84

ftp, 101



functions, 12
further reading, 94
fwrite(), 84

Gauge, 73-76
basic text, 95
data exploration, 74
finding performance errors, 61
host database, 75
invocation, 74
snapshots, 74
toolkit overview, 3
X resource file, 76
gc-after _foreign, 61
getc(), 83
getchar(), 83
gets(), 83
global variables, 12
guard, 17
suspension, 17

hash(), 79

heap corruption checking, 61

higher-order programming, see meta-
calls

host-control, 4, 93, 94

illegal tag, 105
implication, 17, 18
incompatibilities, 104
incomplete message, 31
information functions, 52
installation of PCN, 4
int() test, 17
integer

constants, see constants

data type, 11
integer_cast(), 81
integer_to_double(), 80
integer_to list(), 80
integer_to_string(), 80
Intel iPSC/860 version, 88
intermodule call, 5, 45
iteration, see recursion

left shift(), 81
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length(), 104
libraries, 79

input-output, 82

sys, 79

toolkit overview, 3

utilities, 79
lightweight threads, see threads
linker, 5, 49, 96

how it works, 96

integrating foreign code, 47

toolkit overview, 2

with PDB, 66
list_concat(), 81
list length(), 81

incompatibility with previous re-

lease, 104

list_member(), 81
list_to_double(), 80
list_to_integer(), 80
list_to_string(), 80
list_to_tuple(), 80
lists, 24-25

example of membership, 37

example transducer, 25
location functions, 53
location(), 52
LOG_EVENTY(), 77
LOG.TASK_EVENT(), 77
LOG_TASK_EVENT_DATA(), 77

loops, see recursion

machines supporting PCN, 102

main() procedure, 7

Makefile example, 96

map functions, 54

mapping, see process mapping

mapping independence, 36

mapping processes, see process map-
ping

match, 17

match operator, 23

merger, 29

merger(), 79

metacalls, 50, 104

module, 5



modules, 45

multilingual programming, 50

mutable variables, 2, 13, 34, 36
comparison with definitional, 16
copying, 34
example use in quicksort, 40
interaction parallel code, 33
interaction with definitional vari-

ahles, 34

use in parallel blocks, 34

nested blocks, tranformation, 63
net-PCN, 90, 94
-nodes, 91
heterogeneous networks, 93
limitations, 93
number of nodes, 93
startup file examples, 92
startup file method, 92
startup with host-control, 93
network version, see net-PCN
nodes(), 52
nondeterminism, 9-10, 36
controlled, 9
in reactive applications, 18
merger as source, 29

object code, PCN, 2, 5
ones_.complement(), 81
operators
associativity, 12
precedence, 12
orphan processes, 72

parallel and sequential code
interaction, 33
parallel composition, 1, 14, 36
role, 16
parallel computation
on a network, 60
on multicomputers, 59
on multiprocessors, 60
parallel programming, 9
path for Unix shell, 4
PCN_PATH, deprecated use of, 104
pcncomp, see compiler
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pent files, 96
PDB, 61, 63-73, see debugging

$empty._queue_break, 70
$emulator.dl, 70

$gcdl, 70

$global dl, 70
$parallel.dl, 70
$print_array size, 69
$print_orphaned, 70
$print_tuple_depth, 69
$print_tuple_width, 70
$reduction_dl, 70

abbreviation of commands, 67

abort command, 71
active queue, 67
break command, 69
breakpoints, 69
continue command, 71
debug command, 71
delete command, 69
disable command, 69
enable command, 69

global suspension queue, 67

help, 67

help command, 71
interrupting a program, 66
load command, 71, 72
modules command, 71
move command, 68

next command, 71
nodebug command, 71
orphan process check, 72
pending queue, 67

print command, 71
procedures command, 71
queue examination, 68
queue modification, 68
queue types, 67

quit command, 71

show command, 68
source command, 71
status command, 69
summary command, 68
switch command, 69
toolkit overview, 3



variable suspension queue, 67
variables, 69
vars command, 71
performance error, 61
ports, 56
precedence of operators, 12
preprocessor, see C preprocessor
printf(), 83
procedures
components, 12
heading, 12
reserved names, 103
process mapping, 9, 52-55
process queues, see PDB
producer, 9, 26
profile_snapshot(), 74
profiling, see Gauge
program composition, 1
Program Transfcrmation Notatior, see
PTN
PTN, basic text, 94
pute(), 83
putchar(), 83
puts(), 83

quantification, 20, 53
queues, see PDB
quirksort example, 39

race condition avoidance, 34
range checking, see bounds checking
reactive applications, 10, 18
recursion, 20-22, 36
reduction
breaking to PDB at, 70
definition, 66
refe;ences, 94
remove(), 84
rename( ), 85
reserved words, 103
reuse of code, see code reuse
rewind(), 84
right shift(), 81
rsh, 90
run-time system
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basic text, 95

overview, 67

toolkit overview, 2
run-time system arguments, 7
running a program, 6

scanf(), 84
incompatibility with previous re-
lease, 104
search method in PCN, 32
send /receive, see stream
separators, 12
sequencing variables, 64
Sequent Symmetry, 90
sequential composition, 1, 13, 36
applications, 14
example, 14
role, 16
transformation, 63
single-assignament variables, see defi-
nitional variables
sizeof(), 104
snapshot profiles, see Gauge
snapshotting, 34
software cell, see cell
sorting example, 39
sprintf(), 83
sscanf(), 84
state change, 10, 36
stderr(), 84
stdin(), 84
stdio, 82-88
stdout(), 84
stream, 26-29
advanced usage, 29-33
end, 26
flexibility of, 28
implementation, 26
many-to-one communication, 29,
see merger
one-to-many communication, see
distributor
send /receive equivalents, 27
two-way communication, 31
string, 11



constants, see constants
creation with sprintf(), 86
string.concat(), 81
stringlength(), 81
string.list_concat(), 81
string_to_double(), 80
string_to.integer(), 80
string-tolist(), 80
subscripts, 13
substring(), 82
suspension, 9, 10, 17
Symmetry, 90
synchronization, 9, 10, 17, 20, 36
syntax, 11-13
comments, 12
data types, 11
declarations, 13
error detection, 60
errors, see debugging
expanded BNF, 106
expressions, 11
functions, 12
procedures, 12
string, 11
variable names, 12
sys, 79
system utilitie., 79

template, 1, 57
tests, 17
threads, 10
toolkit
components, 2
for program development, 1
topology(), 52
transformation
description, 63
obtaining code, 65
trees
example of finding height, 38
example of traversing, 38
tuple() test, 17
tuple_tolist(), 80
tuples, 22-25, 36
comparison of, 24
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deprecated use of, 104

list, 24

match operator, 17
type casting, 80, 81

undefined variable, 9, 15, 17
ungetc(), 83
unification, 24
Upshot, 76-79
analyzing a log, 78
collecting a log, 78
finding performance errors, 62
instrumenting a program, 77
merging logs, 78
toolkit overview, 3

variable types, 2

variables
debugger, 69
definitional, see definitional vari-

ables

global, see global variables
mutable, see mutable variables
names, 12
reserved words, 103

virtual topologies, 3, 54

warning messages, 60
wildcards, 65
wrapper procedures, 63

X resource file, 76
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