skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

Technical Report ·
DOI:https://doi.org/10.2172/6681399· OSTI ID:6681399

Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO/sub 3/-NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-26
OSTI ID:
6681399
Report Number(s):
ORNL/TM-7501; TRN: 81-002884
Country of Publication:
United States
Language:
English