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OBJECTIVE 

The objective of the acoustic emission (AE)/flaw characterization program i s to 
provide an exper imen ta l feasibility eval uation of using t he AE method on a 
continuous basis to detect and analyze flaw growth in reactor pressure boundaries. 
This effort is based on the philosophy that AE offers the potential of being a 
valuable addition to current NDI methods with unique capability for continuous 
monitoring, high sens i t i vity, and remote fla w location . It is not viewed as a 
replacement for current methods, at least in the foreseeable future . 

LICENSING AND SAFETY ISSUE 

This program addresses the following areas of significance: 

• Older reactors where effective inspection of the vessel by con­

ventional methods is extremely difficult. AE can potentially 
be used to monitor these vessels to detect and locate active 
flaws, facilitate an estimate of severity based on AE, and 
localize shielding penetration location(s) for f l aw inspection 
by conventional methods. 

• Monitor vessel areas such ~s nozzles where conventional NOT is 
difficult and expensive. AE could detect the presence of an 
active flaw and maintain surveillance of flaw growth to minimize 
the need for conventional NDI. 

• As a secondary benefit, AE systems provide a sensitive detector 
of leaks as well as crctcking in piping. They can also be 
adapted to sensing flow - no flow in critical valves. 

SCOPE 

The program scope is described by three primary areas of effort: 
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"'' • Develop a method to identify crack· growth AE signals as unique 

from other innocuous but similar acoustic signals . 

• Develop a relationship between measured AE and crack growth l'lhich 
will enable an estimate of flaw severity based on measured AE 
information. 

• Demonstrate the total concept through off-reactor vessel tests and 
finally, on-reactor monitoring. This includes developing the 
necessary instrumentation system. 

The program is structured to start with testing laboratory specimens to determine 
fundamental feasibility. Since theoret.ical transfer of these results to a full 
size structure is very questionable in this case, the next phase calls for 
testing on a heavy section (> 4 inch wall) vessel to establish criteria more 
directly relateable to a reactor vesel. Vessel testing is to include a simu­
lation of pertinent reactor environment conditions (background noise, fl~ws 
exposed to pressurized and heated water, etc.) excluding nuclear radiation. 
The final phase requires installation and operation of a prototypic AE monitor 

sytem on an operating reactor on a test basis. 

One of the important sub-phases in the general program calls for measuring and 
analyzing AE from HSST program tests - vessel fracture and irradiated fracture 

specimen tests. 

All test work has by intent focused on ASTM A533 Grade B, Class 1 steel. 

RESULTS 

Major accomplishments to date include: 

Completion of laboratory testing from which we: 

(a) showed the feasibility of separating crack growth 
AE signals from other transient signals using 

pattern recognition methods 
(b) developed an.AE/fracture mechanics relationship 

for flaw interpretation 
(c) measured and analyzed AE data from HSST vessel tests 

with positive results 
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Established a 1 ocati on and facilities for performing simulated 

reactor vessel monitoring. 

Are negotiating for installation of an AE sensing system on a 
reactor. 

Expanding on the accomplishments: 

Identification of Crack Growth AE 

Pattern recognition was tested as a means of ·identifying crack growth AE using 
a sample of about 225 AE signals from a growing crack in a laboratory test 
specimen and assorted noise signals. Figure 1 shows an example of the overt 
similarity between many of these signal types. Ten pattern recognition features 
were examined. Out of these, auto-correlation produced the most definitive 
result (Figure 2). Applying this as a decision rule to sort the data resulted 
in _a 96% correct classification as shown in Figure 3. This same technique 
was subsequently tested on a data sample from a 3 inch wall cylindircal bend 
specimen with equally definitive results. 

AE/Fracture Mechanics Relationship - Flaw Interpretation 

In Figure 4, a composite of AE/crack growth data measured from laboratory specimens 
is presented. The two diagonal lines are "worst case" slope lines for room 
temperature and 550°F test conditions. Figure 5 shows the concept for using the 
experimental data as a base for estimating flaw si~nificance using AE measured 
on a reactor. As can be noted, the laboratory data is in terms AE and crack 
gro~tith per cycle. \!Je are presently evaluating whether a "per cycle" or a time 
base represents the most realistic approach to applying the concept to a reactor 
circumstance. The format selected ~t1ill be evaluated on a vessel test to be per­
formed at MPA, Stuttgart, Germany in the first quarter of FY-81. The vessel test 
will attempt to simulate reactor environment with the exception of nuclear radi­

ation. 

HSST Test Results 

Two intermediate vessel tests at OR~ll under the HSST program have been monitored 
for AE and the results analyzed. Figure 6 gives a composite of the results in 
terms of AE versus stress intensity factor "K". Considering the differences 

in test conditions for the two cases (200°F versus -5°F and different flaw 
sizes), these results are viewed as being very encouraging. Both of these tests 
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Figure 1. · Sample Digitized Waveforms from Pattern 
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Fi.gure 2. Autocorrelations for AE and Noise Waveforms. 
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Figure 3. Results of Pattern Recognition Analysis of 
Valid AE and Noise (96% Successful Classification). 
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Figure 5. Schematic Procedure: Determination of Flaw 
Severity During Operation. 
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Figure 6. AE Results - HSST Vessel Tests. 
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involved montonic loading to failure at a machined flaw. A concept for applying 

these results to evaluate flaws using AE data from a hydrotest circumstance 
is shown in Figu·re 7. 

Simulated Reactor Vessel Test 

After comparing three options for a vessel test (two in the U.S. and ~ne in 
Germany), vessel testing at MPA, Stuttgart, West Germany was selected as the 
site for this work. There are advantages from the standpoint of both cost and 
time schedule. An additional incentive is the opportunity to monitor two vessel 
tests at MPA. The vessels are about 5 inch wall, 70 inch 0.0. and 110 inches long. 
Present plans call for the testing to start in October, 1980. 

Reactor Installation 

Potential for installing an AE monitoring system on an operating reactor is 
currently being discussed with Philadelphia Electric and Commonwealth Edison. 
The objective is to install three AE sensing arrays on a reactor by the end of 

. FY-80. 

KEY ~1ILESTONES 

FY-80 

• Complete Lab Testing 

• Develop Application Relationships 

• Prepare Demonstration Instrument System 

• Arrange for Off-Reactor Vessel Test 

• Insta 11 Sensing System on a Reactor 

FY-81 

• Complete Off-Reactor Vessel Test 

• Refine Relationships 

• Install Demonstration AE Instrument System on Reactor 

FY-82 

• Complete First Year Reactor Monitoring 

• Fabricate Prototypic AE ~~onitor System 

• Install Prototype on a Reactor 
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Figure 7. Schematic Procedure: Determination of Flaw 
Severity During Hydrotest. 

KEY MILESTONES ~ Continued 

FY-82 - Continued 

• Prepare Code Case 

• Characterize Piping Material 

FY-83 

• Complete System Modification 

• Complete Technology Transfer 

• Obtain Code Acceptance 
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