

80  
9-13-78

489

DOE/JPL/954343-11

PROCESS FEASIBILITY STUDY IN SUPPORT OF SILICON  
MATERIAL TASK I

Quarterly Technical Progress Report (XI)

By  
C. S. Fang  
Keith C. Hansen  
Joseph W. Miller, Jr.  
Carl L. Yaws

June 1978

Work Performed Under Contract No. NAS-7-100-954343

Lamar University  
Chemical Engineering Department  
Beaumont, Texas

MASTER

U.S. Department of Energy



Solar Energy

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$4.50  
Microfiche \$3.00

PROCESS FEASIBILITY STUDY IN SUPPORT OF  
SILICON MATERIAL TASK I

QUARTERLY TECHNICAL PROGRESS REPORT (XI)

JUNE, 1978

C. S. Fang, Keith C. Hansen,  
Joseph W. Miller, Jr. and Carl L. Yaws

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

LAMAR UNIVERSITY  
Chemical Engineering Department  
P. O. Box 10053  
Beaumont, Texas 77710

JPL Contract No. 954343

MASTER

Contractual Acknowledgement

The JPL Low-Cost Silicon Solar Array Project is sponsored by the U. S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DoE.

Approval Signature Carl L. Yaws

9

ACKNOWLEDGEMENT

The authors wish to acknowledge the valuable help and contributions of the following in the performance of this work:

Faculty-Staff

LARRY L. DICKENS  
L. WAYNE SANDERS  
FRED H. PITTS

Graduate-Student Assistants

JOHN HERA, JR.  
KAREN S. HYATT  
LESLIE A. LANDRY  
PRABODH M. PATEL  
PRAFUL N. SHAH  
JOHN R. SITZMAN  
CHOLTICHA RUNGAROONTHAIKUL

## ABSTRACT

Major activities focused on process system properties, chemical engineering and economic analyses during this reporting period.

Analysis of process system properties was continued for silicon source materials. Primary efforts centered on data collection, analysis, estimation and correlation. Property data for silicon tetrachloride are reported for critical constants (temperature, pressure, volume, compressibility factor); vapor pressure; heat of vaporization; gas heat capacity and liquid heat capacity. Silicon tetrachloride is the source material in several processes under consideration for solar cell grade silicon production.

Final experimental values for gas phase thermal conductivity of the silicon source materials silane, dichlorosilane, trichlorosilane, tetrachlorosilane, and tetrafluorosilane are reported in the temperature range 25°C to 350°C. These final values reflect a refinement of previously reported preliminary values after complete calibration of the temperature measuring apparatus.

Chemical engineering analysis of the Union Carbide silane process (Case C-Revised Process) was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions, process flow diagram, reaction chemistry and equipment design. Current engineering design is in progress for the several distillation columns which separate the liquid chlorosilanes and provide purified silane product.

## TABLE OF CONTENTS

|                                                     | <u>Page</u> |
|-----------------------------------------------------|-------------|
| I. PROCESS SYSTEM PROPERTIES ANALYSES (TASK 1)..... | 1           |
| A. SILICON TETRACHLORIDE PROPERTIES.....            | 1           |
| B. THERMAL CONDUCTIVITY INVESTIGATION.....          | 8           |
| II. CHEMICAL ENGINEERING ANALYSES (TASK 2).....     | 21          |
| A. SILANE PROCESS (UNION CARBIDE).....              | 21          |
| B. OTHER PROCESSES.....                             | 30          |
| III. SUMMARY - CONCLUSIONS.....                     | 31          |
| IV. PLANS.....                                      | 32          |
| REFERENCES.....                                     | 33          |
| MILESTONE CHART                                     |             |

## I. PROCESS SYSTEM PROPERTIES ANALYSES (TASK 1)

### A. SILICON TETRACHLORIDE PROPERTIES

Analysis of process system properties was continued during this reporting period for silicon source materials under consideration for solar cell grade silicon production. Primary activities focused on property data for silicon tetrachloride which is the source material for silicon in several processes.

#### Critical Properties (Table IA-1)

Experimental results for the critical temperature, pressure and volume of silicon tetrachloride are available (B5, B8, B9, B11, B32, B33, B35, B36, B44, B50, B56, B59, B82, B83). The results among the several investigators are in general agreement. Deviations from the selected values are 1.71%, 0.5%, and 10.8% respectively for critical temperature, pressure and volume.

The critical compressibility factor,  $Z_C$ , was calculated using the following equation:

$$Z_C = P_C V_C / R T_C \quad (\text{IA-1})$$

Also given in the table are values for the acentric factor,  $\omega$  which is defined by:

$$\omega = -\log P_r - 1.000 \quad (\text{at } T_r = 0.70) \quad (\text{IA-2})$$

The acentric factor is an important parameter in generalized thermodynamic correlations involving virial coefficients, compressibility factor, enthalpy and fugacity.

#### Vapor Pressure (Figure IA-1)

Experimental vapor pressure data for silicon tetrachloride are available (B7, B22, B24, B27, B30, B32, B43, B53, B78, B103) from slightly above the melting point (mp) to boiling point (bp) and at the critical point (cp). Available data were extrapolated using the YSSP vapor pressure correlation (B102):

$$\log P_v = A + \frac{B}{T} + C \log T + DT + ET^2 \quad (\text{IA-3})$$

where

$P_v$  = vapor pressure of saturated liquid, mm of Hg

A, B, C, D, E = correlation constants for chemical compound

T = temperature, °K

The correlation constants (A, B, C, D and E) were determined using a generalized least squares computer program for minimizing deviation of

calculated and experimental data values screened from the literature. Average absolute deviation was about 0.7% for the fifty-eight data points.

#### Heat of Vaporization (Figure IA-2)

Heat of vaporization data for silicon tetrachloride are available only at the boiling point (B5, B11, B22, B30, B36, B65, B82, B86). Watson's correlation was used to extend the heat of vaporization over the entire liquid phase:

$$\Delta H_v = \Delta H_{v1} \left[ \frac{T_c - T}{T_c - T_1} \right]^n \quad (\text{IA-2})$$

where  $\Delta H_{v1}$  is the heat of vaporization at the boiling point ( $T_1$ ) and  $n = 0.38$ .

#### Heat Capacity (Figures IA-3 and IA-4)

Heat capacity data for silicon tetrachloride as ideal gas at low pressure are available (B3, B10, B17, B20, B28, B32, B34, B43, B45, B52, B67, B73, B76, B82, B84, B86, B91). The values, which are primarily based on structural and spectral measurements, are in close agreement.

The heat capacity data for the gas phase were correlated by a series expansion in temperature

$$C_p = A + BT + CT^2 + DT^3 \quad (\text{IA-3})$$

where  $C_p$  - heat capacity of ideal gas at low pressure, cal/(g-mol)(°K); A, B, C and D = characteristic constants for the chemical compounds; and T = temperature, °K. Average absolute deviation is about 0.6%.

Liquid heat capacity data are available (B5, B22, B28, B30, B26, B43, B52, B60, B65, B76, B77, B82, B104) in the mp-bp temperature interval. The data were extended to cover the entire liquid phase with the relation;

$$\text{liquid heat capacity} \times \text{density} = \text{constant} \quad (\text{IA-4})$$

The constant value was 0.3054. Testing of the relationship with the available data produced average deviation of 4%.

TABLE IA-1 CRITICAL CONSTANTS AND PHYSICAL PROPERTIES OF SILICON TETRACHLORIDE

| Identification                                           | Silicon Tetrachloride |
|----------------------------------------------------------|-----------------------|
| Formula                                                  | SiCl <sub>4</sub>     |
| State (Std. Cond.)                                       | Liquid                |
| Molecular Weight, M                                      | 169.90                |
| Boiling Point, T <sub>b</sub> , °C                       | 57.3                  |
| Melting Point, T <sub>m</sub> , °C                       | -69.4                 |
| Critical Temp., T <sub>c</sub> , °C                      | 234.0                 |
| Critical Pressure, P <sub>c</sub> , atm                  | 37.0                  |
| Critical Volume, V <sub>c</sub> , cm <sup>3</sup> /grmol | 326.3                 |
| Critical Compressibility Factor, Z <sub>c</sub>          | 0.290                 |
| Critical Density, ρ <sub>c</sub> , gr/cm <sup>3</sup>    | 0.5207                |
| Acentric Factor, ω                                       | 0.2556                |




Figure IA-1 Vapor Pressure vs Temperature for Silicon Tetrachloride

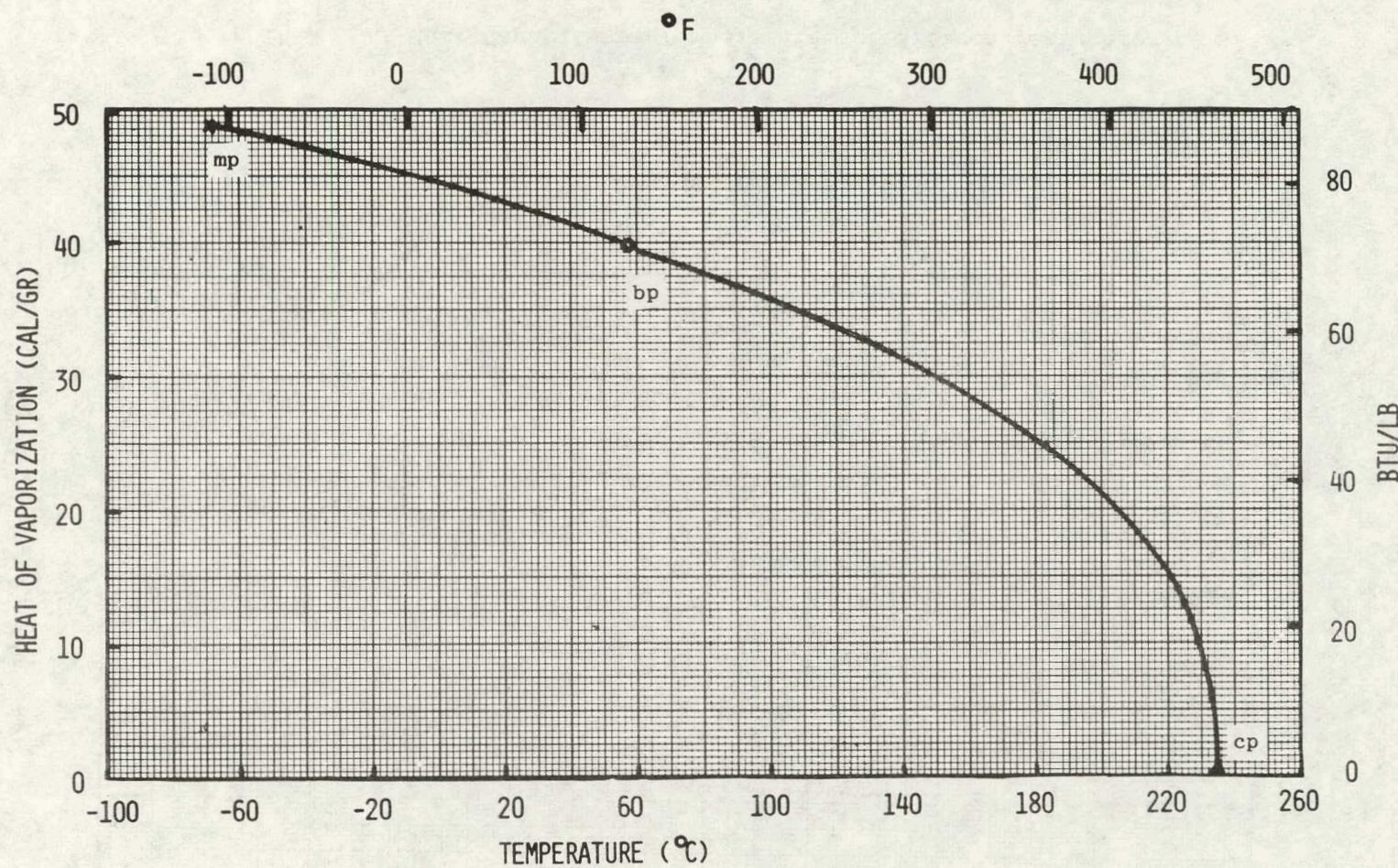



Figure IA-2 Heat of Vaporization vs Temperature for Silicon Tetrachloride

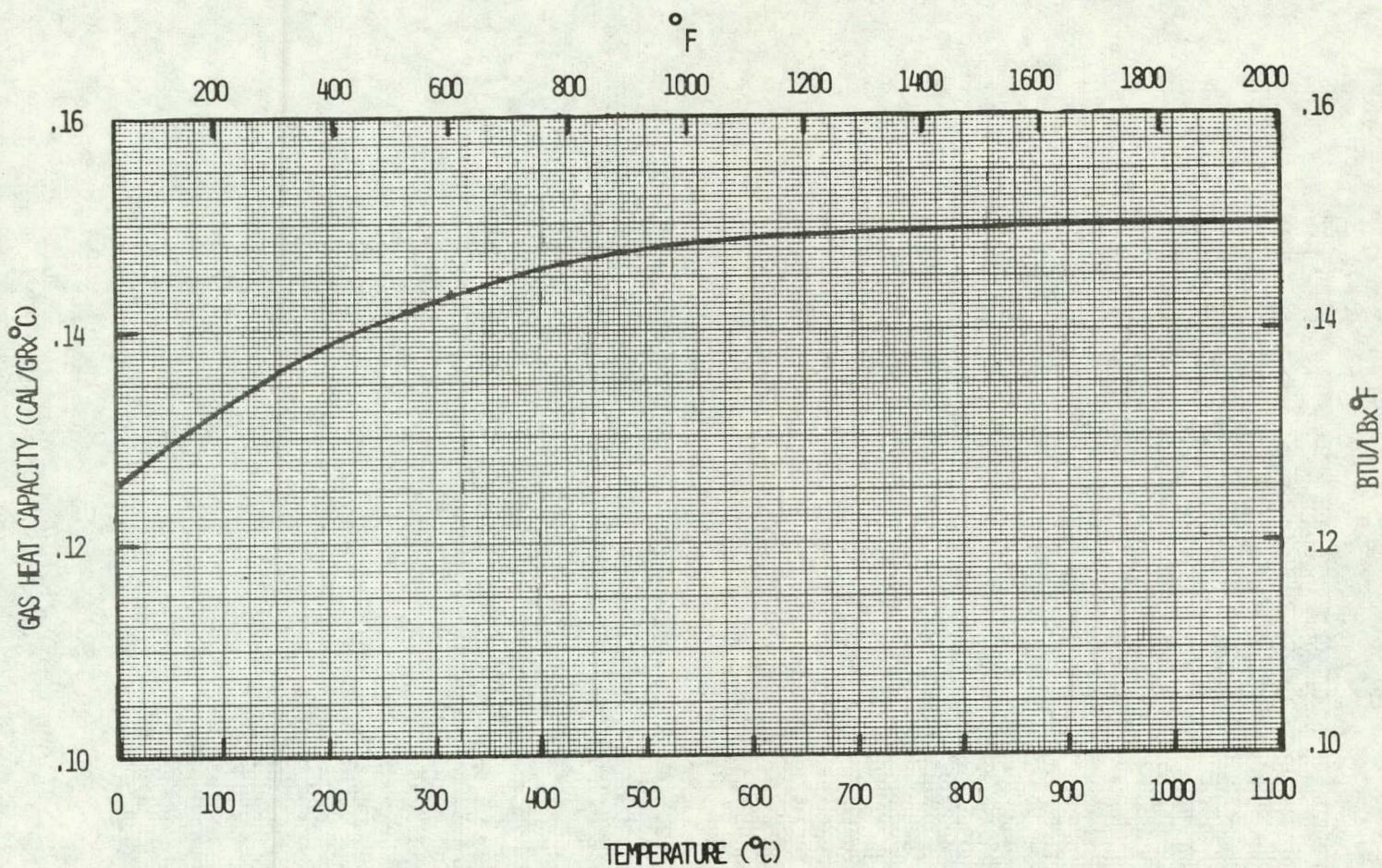



Figure IA-3 Gas Heat Capacity vs Temperature for Silicon Tetrachloride



Figure IA-4 Liquid Heat Capacity vs Temperature for Silicon Tetrachloride

## B. THERMAL CONDUCTIVITY INVESTIGATION

In progress reports submitted since October, 1977; preliminary experimental values for gas phase thermal conductivity of the silicon source materials silane ( $\text{SiH}_4$ ), dichlorosilane ( $\text{SiH}_2\text{Cl}_2$ ), trichlorosilane ( $\text{SiHCl}_3$ ), tetrachlorosilane ( $\text{SiCl}_4$ ), and tetrafluorosilane ( $\text{SiF}_4$ ) have been reported. These reported values were in the temperature range 25°C to 400°C. The values reported were designated as preliminary because final calibration of the temperature measuring apparatus had not been completed. The thermocouples (type K) used to monitor the temperature of the thermal conductivity cell have now been calibrated using materials of known melting points throughout the temperature range of the study (25°C to 400°C). The EMF of the thermocouples was measured with a Leeds and Northrup, Model 8686, millivolt potentiometer which was calibrated and certified at the factory. The temperatures now reported for the thermal conductivity values are considered to be accurate to  $\pm 1^\circ\text{C}$ .

Final experimental thermal conductivity values for the silicon source materials are now reported in the following tables and figures.

| <u>Compound</u>                              | <u>Table</u> | <u>Figure</u> |
|----------------------------------------------|--------------|---------------|
| Silane ( $\text{SiH}_4$ )                    | IB-6         | IB-9          |
| Dichlorosilane ( $\text{SiH}_2\text{Cl}_2$ ) | IB-7         | IB-10         |
| Trichlorosilane ( $\text{SiHCl}_3$ )         | IB-8         | IB-11         |
| Tetrachlorosilane ( $\text{SiCl}_4$ )        | IB-9         | IB-12         |
| Tetrafluorosilane ( $\text{SiF}_4$ )         | IB-10        | IB-13         |

The final data reported is not significantly different from the preliminary values previously reported. The principle difference is more accurate reporting of the temperature for each data point. The final data for all compounds is summarized in Figure IB-14.

There have been no previously reported experimental values for gaseous thermal conductivity of silane, dichlorosilane, or trichlorosilane. There has been one report of experimental thermal conductivity values (ref. 42) for tetrachlorosilane in the temperature range 70°C to 300°C. Those values were approximately 10% lower than the values determined in this study. There has been one previous report of experimental thermal conductivity

values for tetrafluorosilane (ref. 40) in the temperature range 60°C to 430°C. The experimental values determined in this study for tetrafluorosilane agree with the literature values to within 2% throughout the temperature range.

Table IB-6 Gaseous Thermal Conductivity Values of Silane

| <u>Temperature</u><br><u>°C</u> | <u>Gaseous Thermal Conductivity</u>       |                                                             |                                                            |
|---------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
|                                 | <u>mW cm<sup>-1</sup> °K<sup>-1</sup></u> | <u>Cal cm<sup>-1</sup> sec<sup>-1</sup> °C<sup>-1</sup></u> | <u>BTU hr<sup>-1</sup> ft<sup>-1</sup> °F<sup>-1</sup></u> |
| 28.0                            | 0.234                                     | 56.02 X 10 <sup>-6</sup>                                    | 13.54 X 10 <sup>-3</sup>                                   |
| 45.7                            | 0.249                                     | 59.44 X 10 <sup>-6</sup>                                    | 14.37 X 10 <sup>-3</sup>                                   |
| 94.7                            | 0.297                                     | 70.96 X 10 <sup>-6</sup>                                    | 17.15 X 10 <sup>-3</sup>                                   |
| 139.4                           | 0.345                                     | 82.34 X 10 <sup>-6</sup>                                    | 19.90 X 10 <sup>-3</sup>                                   |
| 184.1                           | 0.400                                     | 95.67 X 10 <sup>-6</sup>                                    | 23.13 X 10 <sup>-3</sup>                                   |
| 227.4                           | 0.449                                     | 107.24 X 10 <sup>-6</sup>                                   | 25.93 X 10 <sup>-3</sup>                                   |
| 269.5                           | 0.497                                     | 118.86 X 10 <sup>-6</sup>                                   | 28.73 X 10 <sup>-3</sup>                                   |

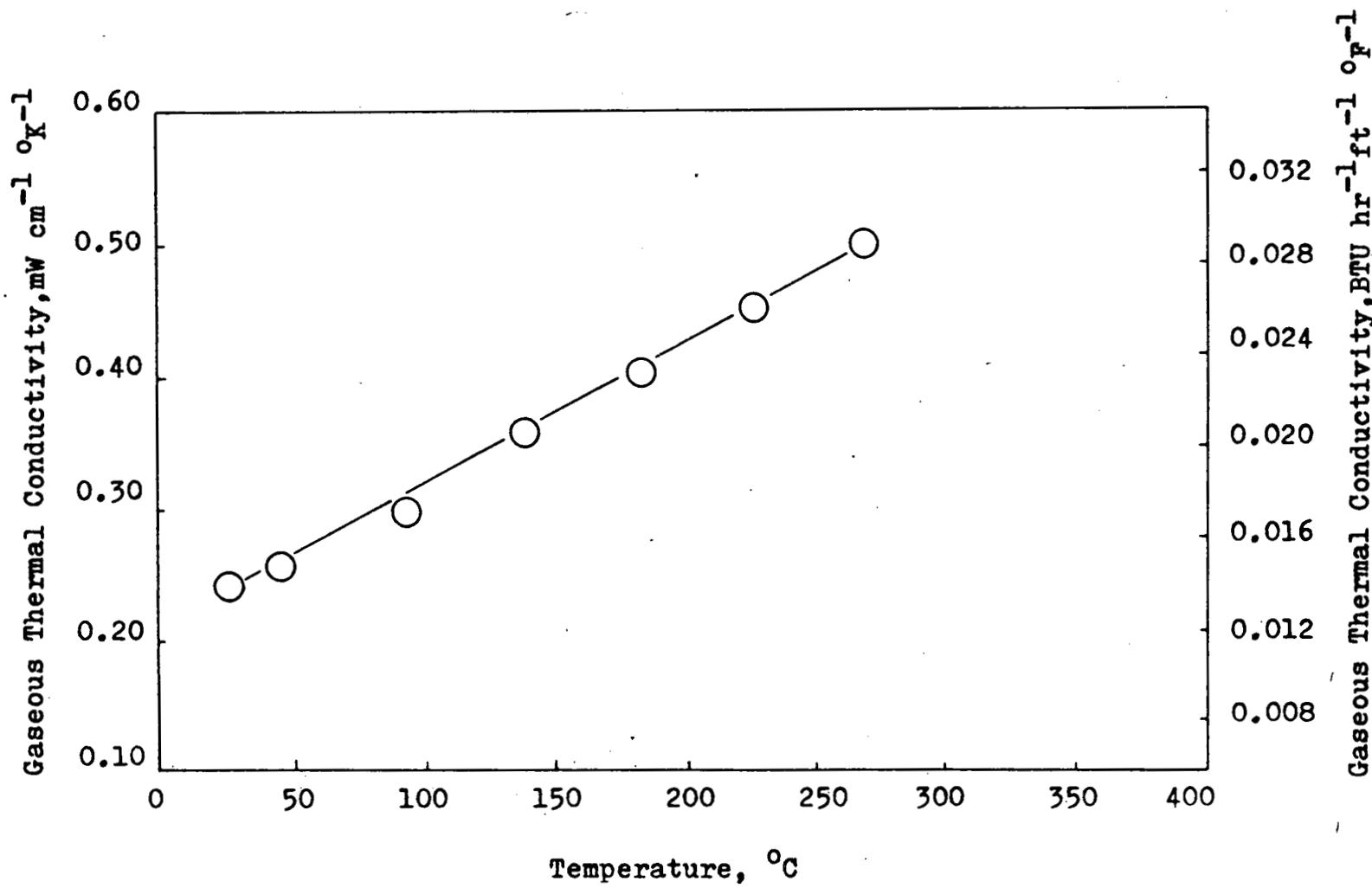



Figure IB-9 Gaseous Thermal Conductivity of Silane

Table IB-7 Gaseous Thermal Conductivity Values of Dichlorosilane

| <u>Temperature</u><br><u>°C</u> | <u>Gaseous Thermal Conductivity</u>       |                                                             |                                                            |
|---------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
|                                 | <u>mW cm<sup>-1</sup> °K<sup>-1</sup></u> | <u>cal cm<sup>-1</sup> sec<sup>-1</sup> °C<sup>-1</sup></u> | <u>BTU hr<sup>-1</sup> ft<sup>-1</sup> °F<sup>-1</sup></u> |
| 28.0                            | 0.102                                     | 24.43 X 10 <sup>-6</sup>                                    | 5.91 X 10 <sup>-3</sup>                                    |
| 45.7                            | 0.108                                     | 25.72 X 10 <sup>-6</sup>                                    | 6.22 X 10 <sup>-3</sup>                                    |
| 94.7                            | 0.129                                     | 30.86 X 10 <sup>-6</sup>                                    | 7.46 X 10 <sup>-3</sup>                                    |
| 139.4                           | 0.148                                     | 35.42 X 10 <sup>-6</sup>                                    | 8.56 X 10 <sup>-3</sup>                                    |
| 184.1                           | 0.169                                     | 40.37 X 10 <sup>-6</sup>                                    | 9.76 X 10 <sup>-3</sup>                                    |
| 227.4                           | 0.194                                     | 46.46 X 10 <sup>-6</sup>                                    | 11.23 X 10 <sup>-3</sup>                                   |
| 269.5                           | 0.217                                     | 51.79 X 10 <sup>-6</sup>                                    | 12.52 X 10 <sup>-3</sup>                                   |
| 311.3                           | 0.243                                     | 58.15 X 10 <sup>-6</sup>                                    | 14.06 X 10 <sup>-3</sup>                                   |
| 350.6                           | 0.267                                     | 63.70 X 10 <sup>-6</sup>                                    | 15.40 X 10 <sup>-3</sup>                                   |

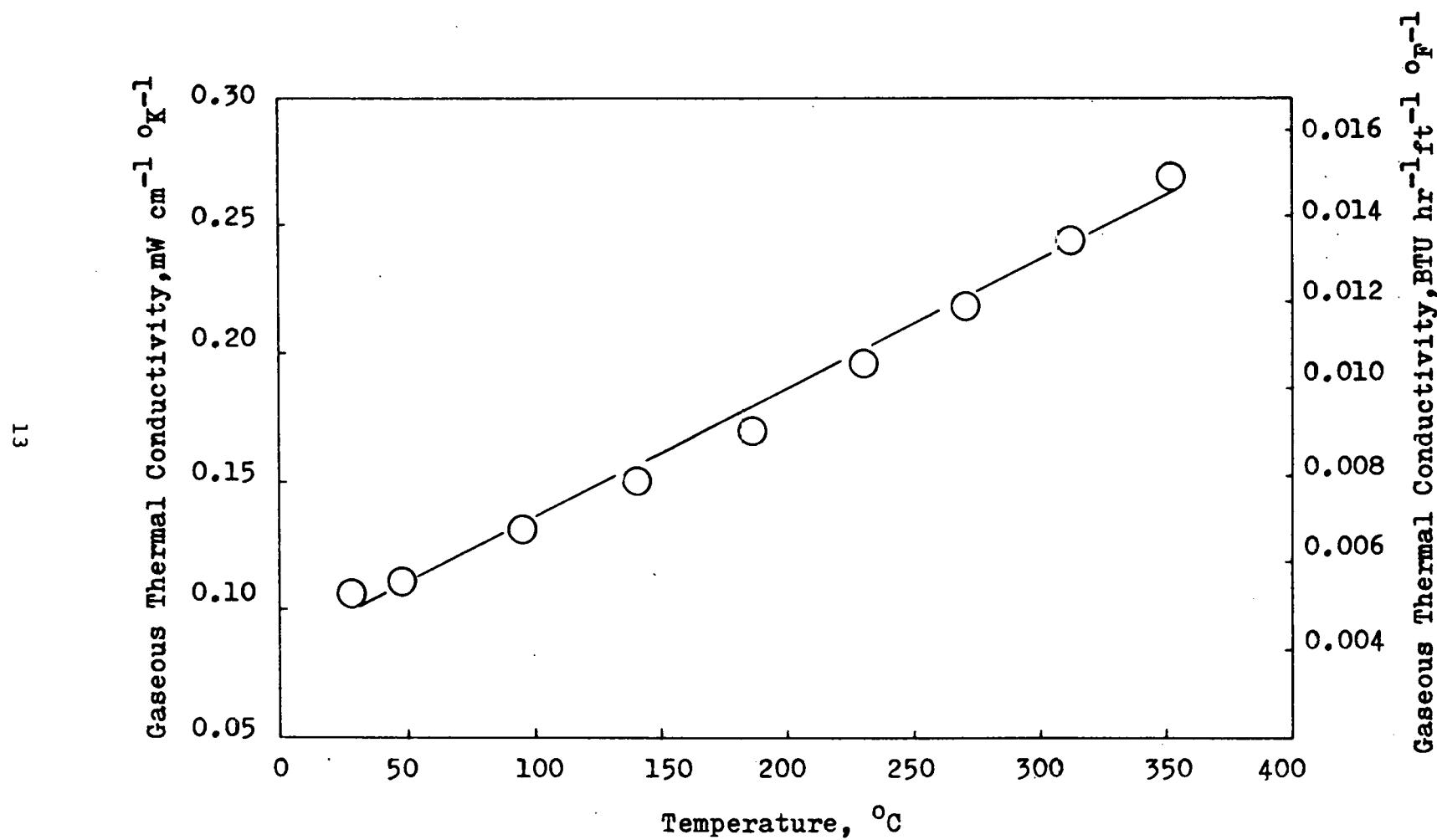



Figure IB-10 Gaseous Thermal Conductivity of Dichlorosilane

Table IB-8 Gaseous Thermal Conductivity Values of Trichlorosilane

| <u>Temperature</u> | <u>Gaseous Thermal Conductivity</u>       |                                                             |                                                            |
|--------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| <u>°C</u>          | <u>mW cm<sup>-1</sup> °K<sup>-1</sup></u> | <u>Cal cm<sup>-1</sup> sec<sup>-1</sup> °C<sup>-1</sup></u> | <u>BTU hr<sup>-1</sup> ft<sup>-1</sup> °F<sup>-1</sup></u> |
| 45.7               | 0.093                                     | 22.13 X 10 <sup>-6</sup>                                    | 5.35 X 10 <sup>-3</sup>                                    |
| 94.7               | 0.110                                     | 26.22 X 10 <sup>-6</sup>                                    | 6.34 X 10 <sup>-3</sup>                                    |
| 139.4              | 0.126                                     | 30.16 X 10 <sup>-6</sup>                                    | 7.29 X 10 <sup>-3</sup>                                    |
| 184.1              | 0.144                                     | 34.35 X 10 <sup>-6</sup>                                    | 8.30 X 10 <sup>-3</sup>                                    |
| 227.4              | 0.161                                     | 38.55 X 10 <sup>-6</sup>                                    | 9.32 X 10 <sup>-3</sup>                                    |
| 269.5              | 0.180                                     | 43.05 X 10 <sup>-6</sup>                                    | 10.41 X 10 <sup>-3</sup>                                   |
| 311.3              | 0.198                                     | 47.24 X 10 <sup>-6</sup>                                    | 11.42 X 10 <sup>-3</sup>                                   |
| 350.6              | 0.216                                     | 51.58 X 10 <sup>-6</sup>                                    | 12.47 X 10 <sup>-3</sup>                                   |

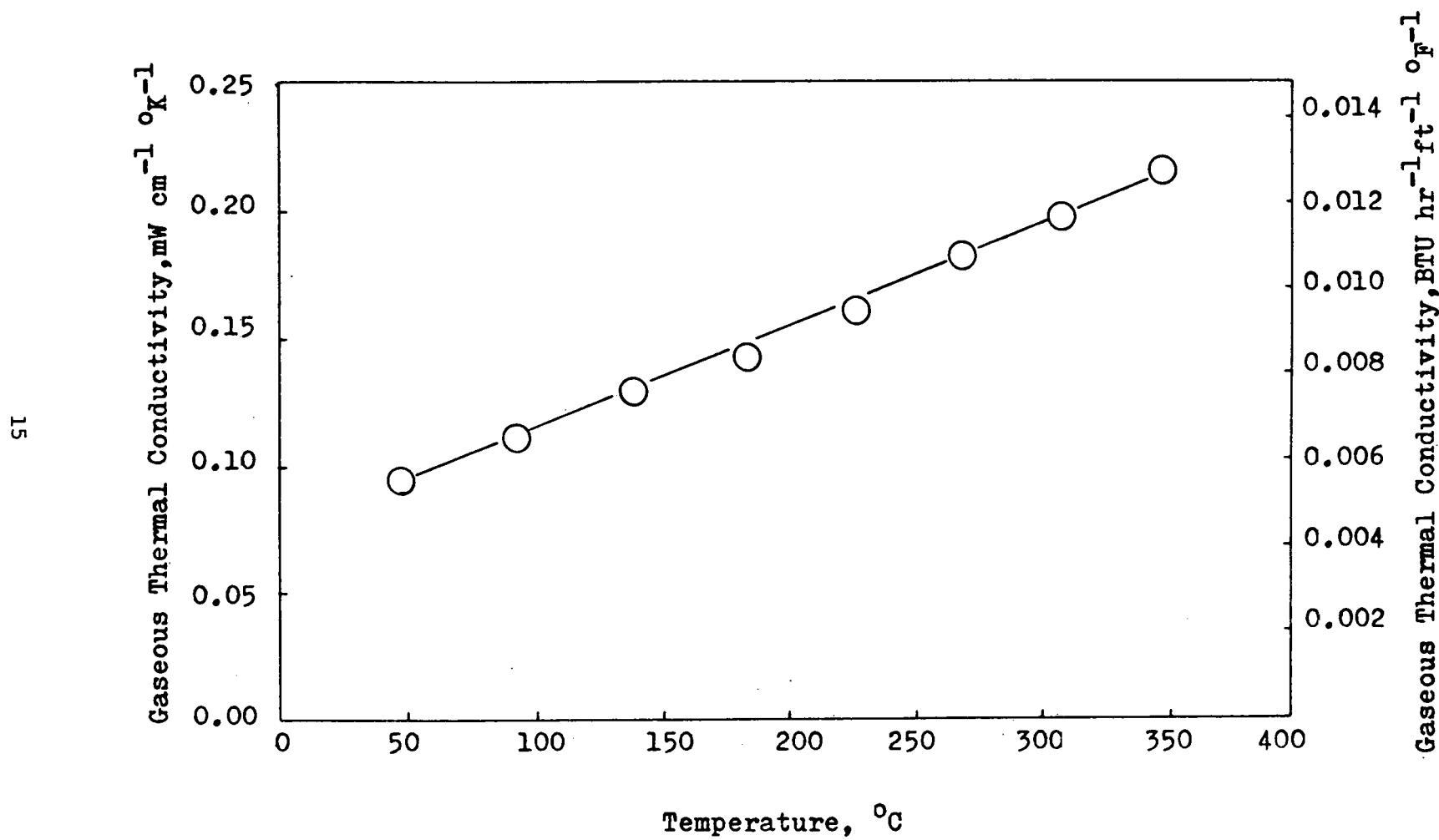



Figure 1B-11 Gaseous Thermal Conductivity of Trichlorosilane

Table IB-9 Gaseous Thermal Conductivity Values of Tetrachlorosilane

| <u>Temperature</u><br><u>°C</u> | <u>Gaseous Thermal Conductivity</u>       |                                                             |                                                            |
|---------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
|                                 | <u>mW cm<sup>-1</sup> °K<sup>-1</sup></u> | <u>Cal cm<sup>-1</sup> sec<sup>-1</sup> °C<sup>-1</sup></u> | <u>BTU hr<sup>-1</sup> ft<sup>-1</sup> °F<sup>-1</sup></u> |
| 94.7                            | 0.100                                     | 23.93 X 10 <sup>-6</sup>                                    | 5.78 X 10 <sup>-3</sup>                                    |
| 139.4                           | 0.111                                     | 26.43 X 10 <sup>-6</sup>                                    | 6.39 X 10 <sup>-3</sup>                                    |
| 184.1                           | 0.124                                     | 29.59 X 10 <sup>-6</sup>                                    | 7.15 X 10 <sup>-3</sup>                                    |
| 227.4                           | 0.138                                     | 32.89 X 10 <sup>-6</sup>                                    | 7.95 X 10 <sup>-3</sup>                                    |
| 269.5                           | 0.153                                     | 36.59 X 10 <sup>-6</sup>                                    | 8.85 X 10 <sup>-3</sup>                                    |
| 311.3                           | 0.169                                     | 40.39 X 10 <sup>-6</sup>                                    | 9.76 X 10 <sup>-3</sup>                                    |
| 350.6                           | 0.193                                     | 46.13 X 10 <sup>-6</sup>                                    | 11.15 X 10 <sup>-3</sup>                                   |

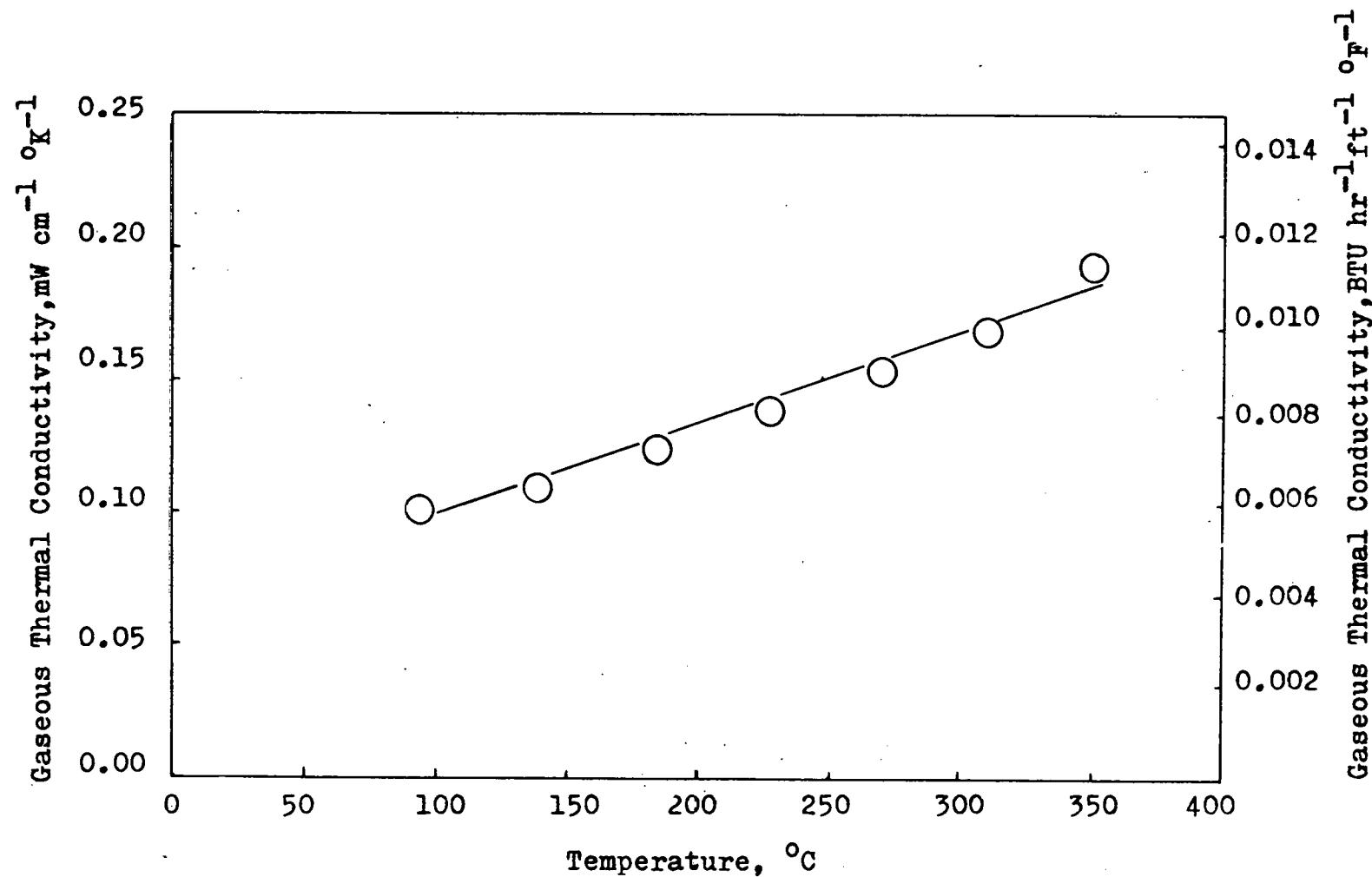



Figure IB-12 Gaseous Thermal Conductivity of Tetrachlorosilane

Table IB-10 Gaseous Thermal Conductivity Values of Tetrafluorosilane

| <u>Temperature</u><br><u>°C</u> | <u>Gaseous Thermal Conductivity</u>       |                                                             |                                                            |
|---------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
|                                 | <u>mW cm<sup>-1</sup> °K<sup>-1</sup></u> | <u>Cal cm<sup>-1</sup> sec<sup>-1</sup> °C<sup>-1</sup></u> | <u>BTU hr<sup>-1</sup> ft<sup>-1</sup> °F<sup>-1</sup></u> |
| 29.0                            | 0.150                                     | 35.95 X 10 <sup>-6</sup>                                    | 8.69 X 10 <sup>-3</sup>                                    |
| 45.7                            | 0.158                                     | 37.79 X 10 <sup>-6</sup>                                    | 9.13 X 10 <sup>-3</sup>                                    |
| 94.7                            | 0.189                                     | 45.24 X 10 <sup>-6</sup>                                    | 10.94 X 10 <sup>-3</sup>                                   |
| 139.4                           | 0.215                                     | 51.43 X 10 <sup>-6</sup>                                    | 12.43 X 10 <sup>-3</sup>                                   |
| 184.1                           | 0.241                                     | 57.67 X 10 <sup>-6</sup>                                    | 13.94 X 10 <sup>-3</sup>                                   |
| 227.4                           | 0.274                                     | 65.46 X 10 <sup>-6</sup>                                    | 15.83 X 10 <sup>-3</sup>                                   |
| 269.5                           | 0.291                                     | 69.55 X 10 <sup>-6</sup>                                    | 16.81 X 10 <sup>-3</sup>                                   |
| 311.3                           | 0.316                                     | 75.55 X 10 <sup>-6</sup>                                    | 18.26 X 10 <sup>-3</sup>                                   |
| 350.6                           | 0.345                                     | 82.34 X 10 <sup>-6</sup>                                    | 19.90 X 10 <sup>-3</sup>                                   |

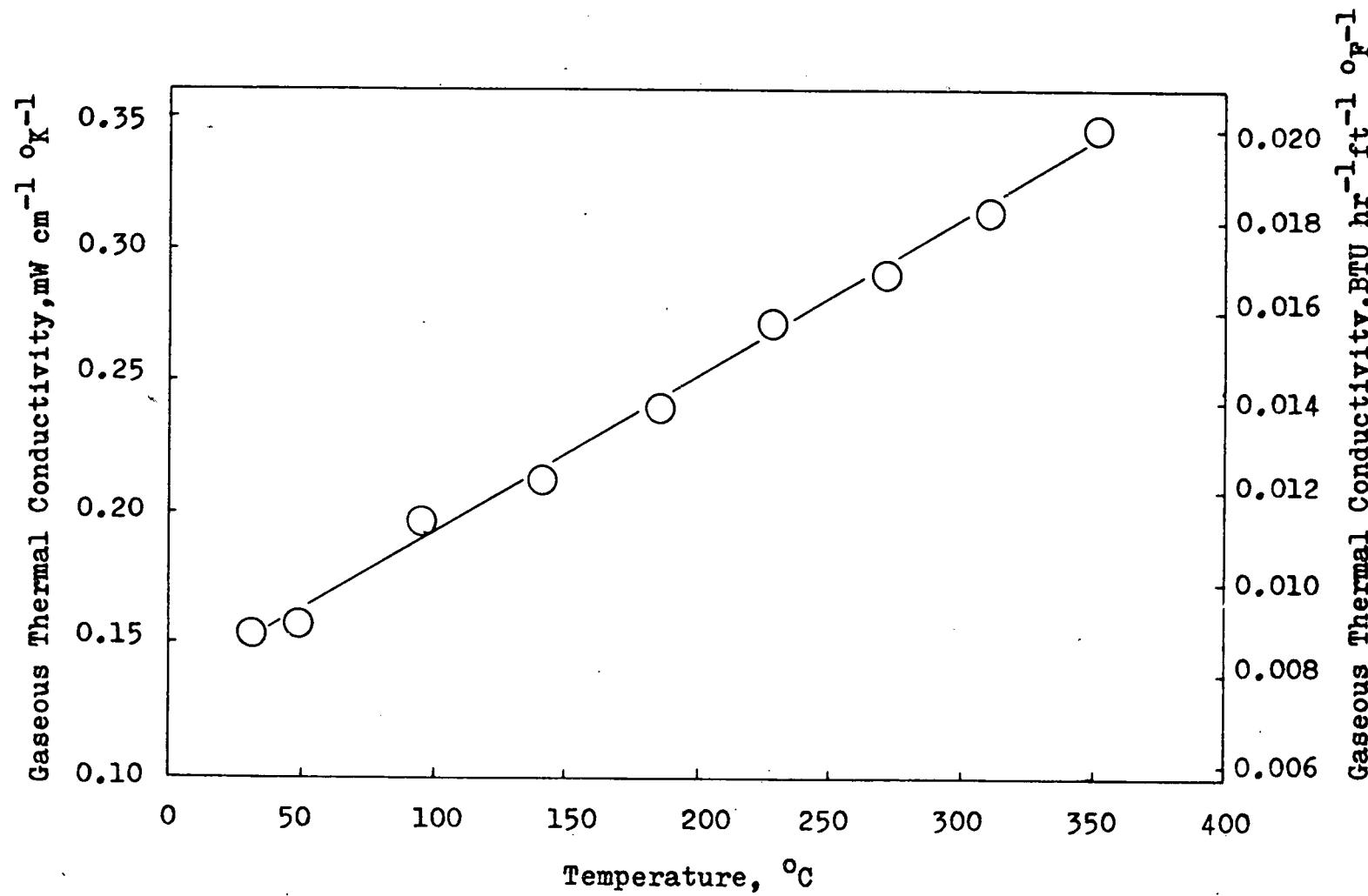



Figure IB-13 Gaseous Thermal Conductivity of Tetrafluorosilane

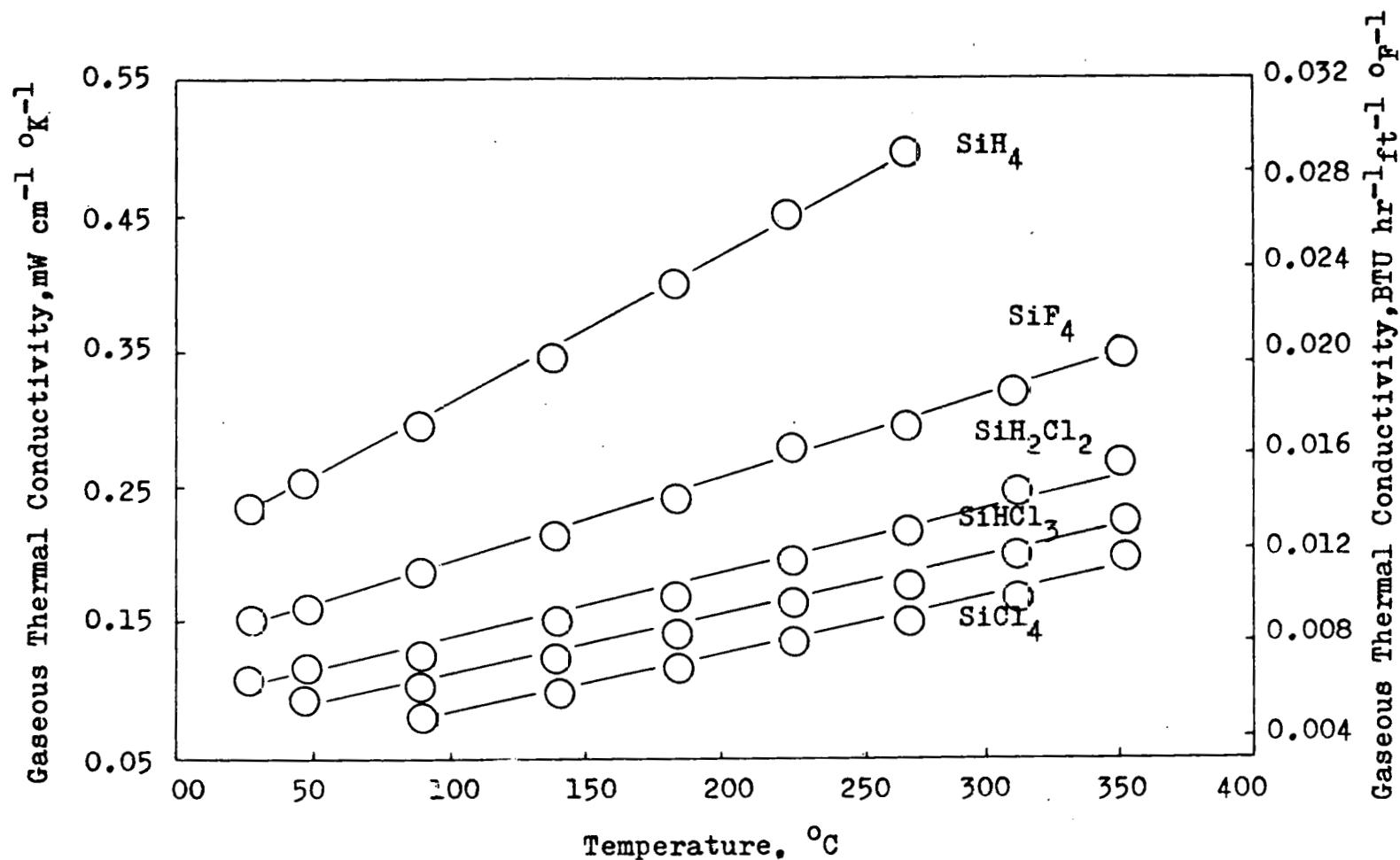



Figure IB-14 Gaseous Thermal Conductivity of Silane and Some Halogenated Silanes

## II. CHEMICAL ENGINEERING ANALYSES (TASK 2)

### A. SILANE PROCESS (UNION CARBIDE)

Major efforts were continued during this reporting period on the preliminary process design for the Union Carbide silane process (Case C-Revised Process). The status, including progress since the last reporting period, for the process design is given below for key guideline items:

|                       | <u>Prior</u> | <u>Current</u> |
|-----------------------|--------------|----------------|
| .Base Case Conditions | 25%          | 95%            |
| .Reaction Chemistry   | 10%          | 95%            |
| .Process Flow Diagram | 10%          | 90%            |
| .Material Balance     | 10%          | 50%            |
| .Energy Balance       | 10%          | 50%            |
| .Property Data        | 10%          | 50%            |
| .Equipment Design     | 0%           | 30%            |

The detailed status sheet is shown in Table IIA-1.0C in order to present the items that make up the preliminary process design. The process flow-sheet received from Union Carbide for Case C-Revised Process is given in Figure IIA-1.0C.

The summarized results for the preliminary process design are presented in a tabular format to make it easier to locate items of specific interest. The guide for these tables is given below:

- .Base Case Conditions.....Table IIA-1.1C
- .Reaction Chemistry.....Table IIA-1.2C
- .Redistribution Equilibrium.....Figure IIA-1.1C

In current activities, material balance, energy balance and equipment design are in progress for the mass transfer equipment. This includes engineering design of several distillation columns which separate the liquid chlorosilanes for recycle and provide the purified silane product.

CASE C

TABLE IIA-1.0C CHEMICAL ENGINEERING ANALYSES:  
PRELIMINARY PROCESS DESIGN ACTIVITIES FOR SILANE PROCESS-CASE C (UNION CARBIDE)

| <u>Prel. Process Design Activity</u>            | <u>Status</u> | <u>Prel. Process Design Activity</u>                     | <u>Status</u> |
|-------------------------------------------------|---------------|----------------------------------------------------------|---------------|
| 1. Specify Base Case Conditions                 | 0             | 7. Equipment Design Calculations                         | 0             |
| 1. Plant Size                                   | 0             | 1. Storage Vessels                                       | 0             |
| 2. Product Specifics                            | 0             | 2. Unit Operations Equipment                             | 0             |
| 3. Additional Conditions                        | 0             | 3. Process Data (P, T, rate, etc.)                       | 0             |
| 4. Additional                                   | 0             | 4. Additional                                            | 0             |
| 2. Define Reaction Chemistry                    | 0             | 8. List of Major Process Equipment                       | 0             |
| 1. Reactants, Products                          | 0             | 1. Size                                                  | 0             |
| 2. Equilibrium                                  | 0             | 2. Type                                                  | 0             |
| 3. Process Flow Diagram                         | 0             | 3. Materials of Construction                             | 0             |
| 1. Flow Sequence, Unit Operations               | 0             | 6a. Major Technical Factors<br>(Potential Problem Areas) | 0             |
| 2. Process Conditions (T, P, etc.)              | 0             | 1. Materials Compatibility                               | 0             |
| 3. Environmental                                | 0             | 2. Process Conditions Limitations                        | 0             |
| 4. Company Interaction<br>(Technology Exchange) | 0             | 3. Additional                                            | 0             |
| 4. Material Balance Calculations                | 0             | 9. Production Labor Requirements                         | 0             |
| 1. Raw Materials                                | 0             | 1. Process Technology                                    | 0             |
| 2. Products                                     | 0             | 2. Production Volume                                     | 0             |
| 3. By-Products                                  | 0             | 10. Forward for Economic Analysis                        | 0             |
| 5. Energy Balance Calculations                  | 0             |                                                          |               |
| 1. Heating                                      | 0             |                                                          |               |
| 2. Cooling                                      | 0             |                                                          |               |
| 3. Additional                                   | 0             |                                                          |               |
| 6. Property Data                                | 0             | 0 Plan                                                   |               |
| 1. Physical                                     | 0             | 0 In Progress                                            |               |
| 2. Thermodynamic                                | 0             | 0 Complete                                               |               |
| 3. Additional                                   | 0             |                                                          |               |

CASE C

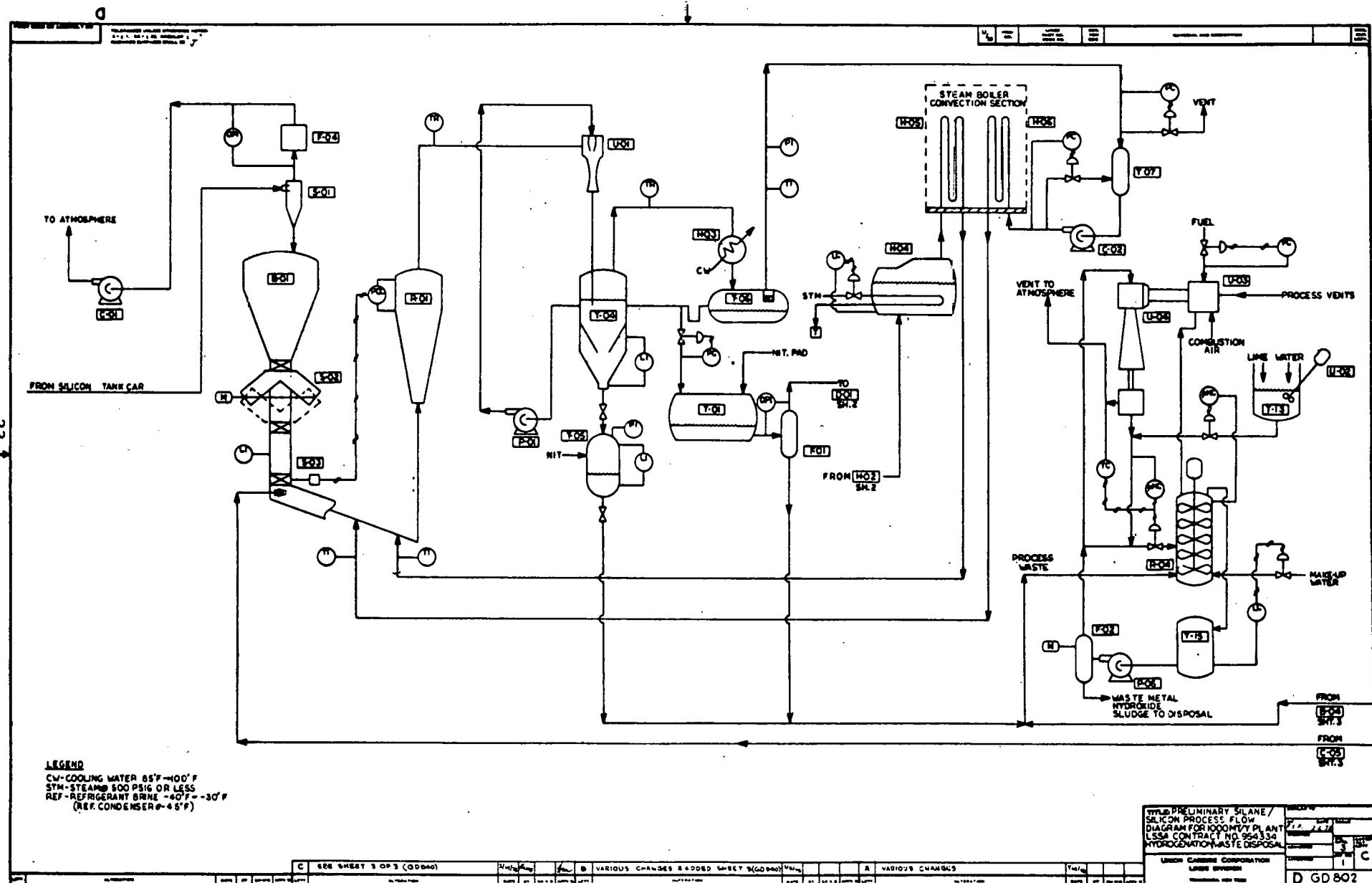



Figure IIA-1.0C Process Flow Sheet for Silane Process - CASE C (Revised Process)

**CASE C**

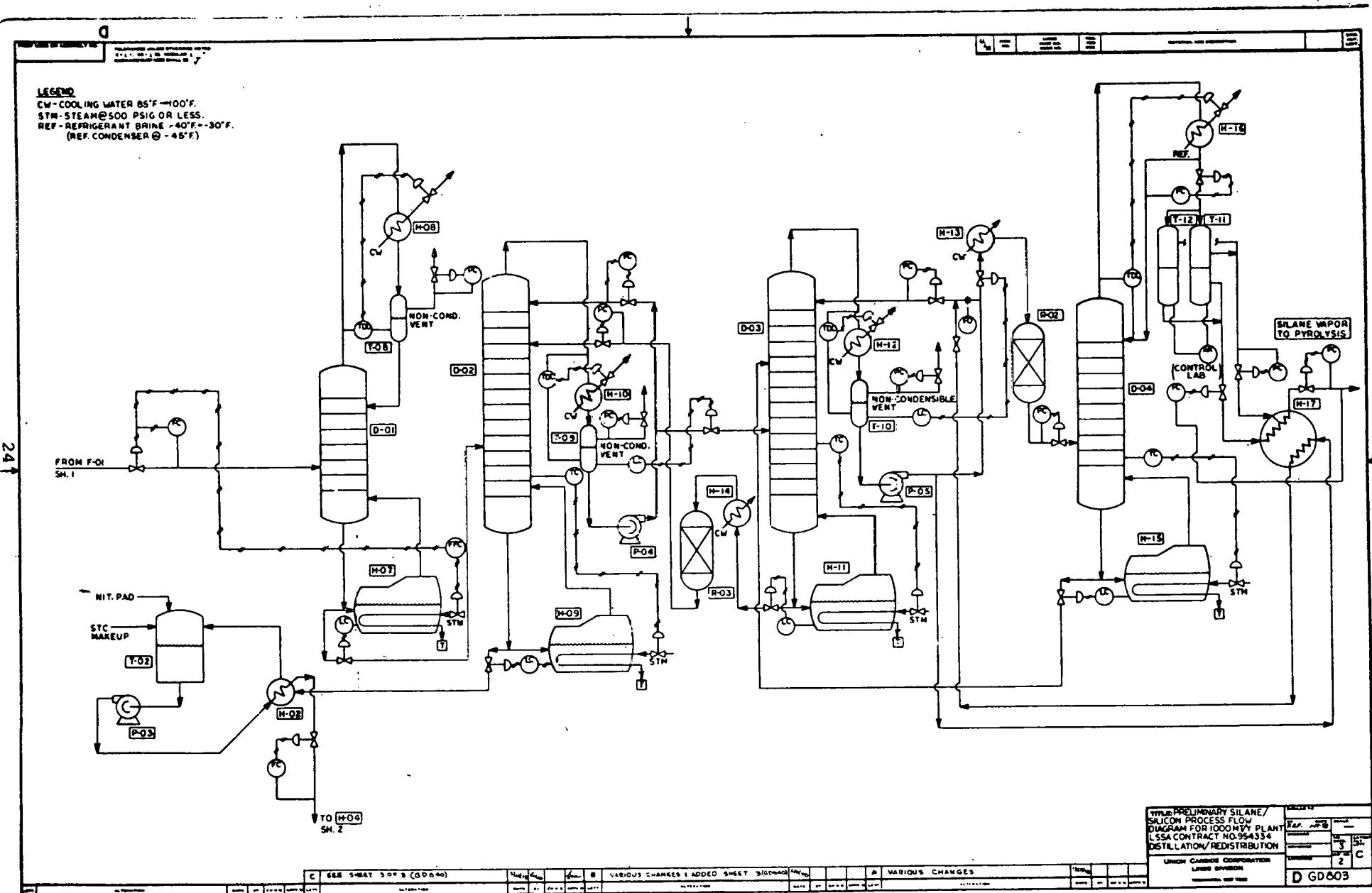
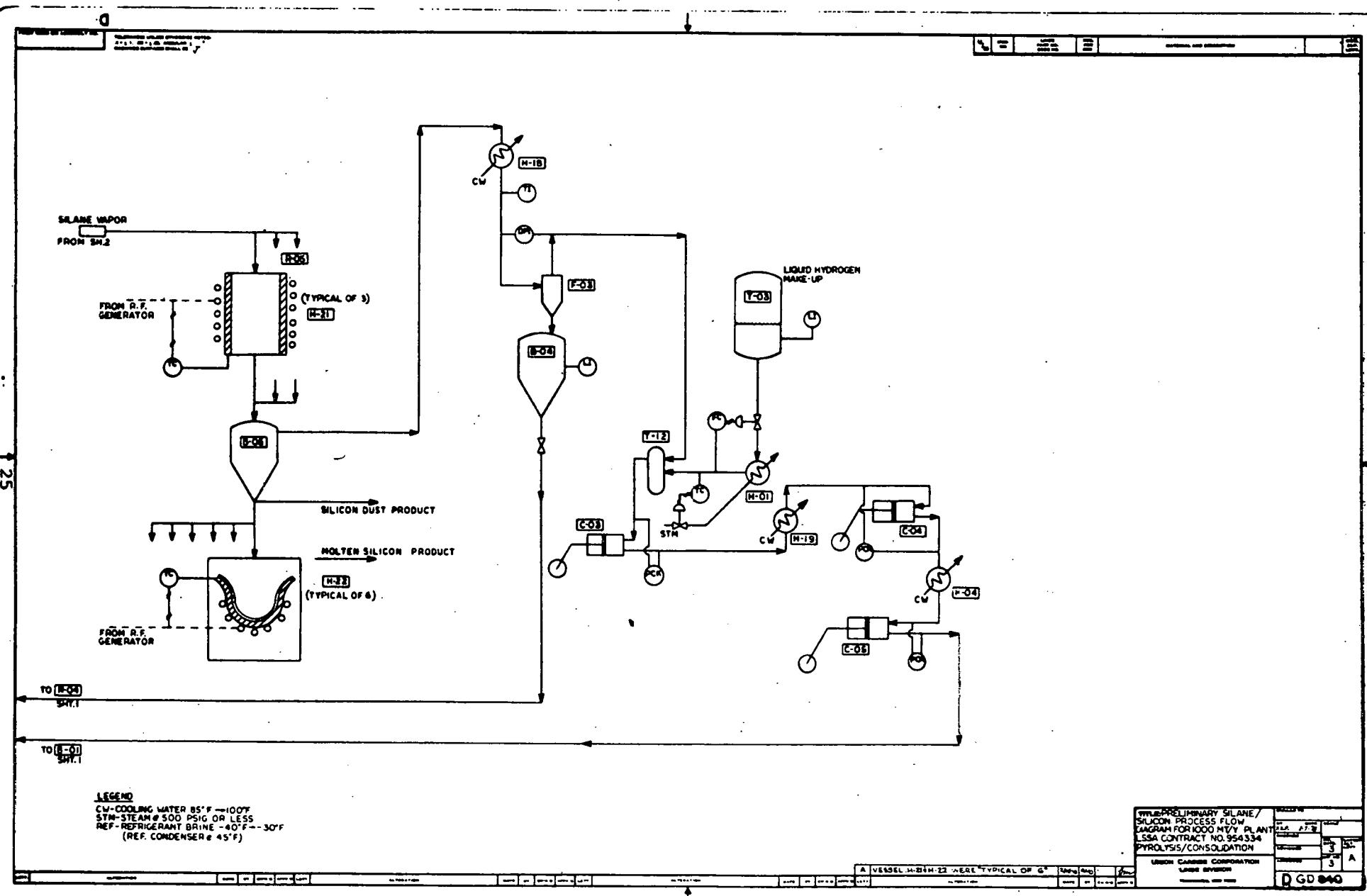




Figure IIA-1.0C (Continued)

CASE C



**CASE C**

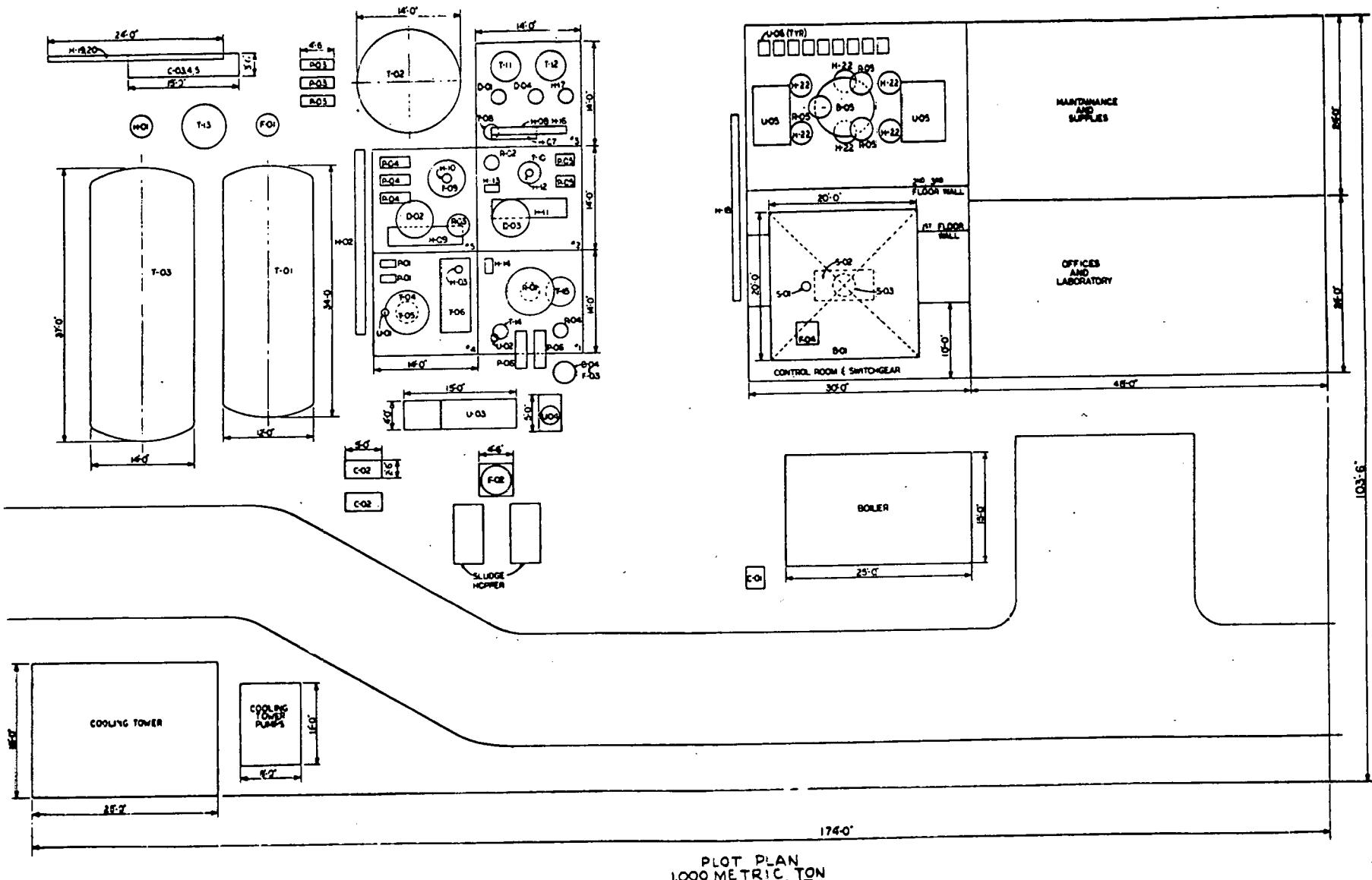
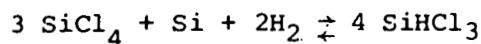



Figure IIA-1.OC (Continued)

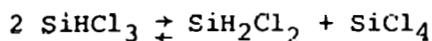
CASE C

TABLE IIA-1.1C

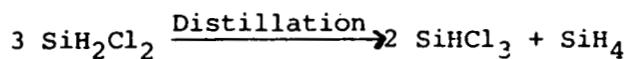
BASE CASE CONDITIONS FOR SILANE PROCESS-CASE C (Union Carbide)


1. Plant Size
  - Silicon produced from silane
  - 1000 metric tons/year of silicon
  - Solar cell grade silicon
2. Hydrogenation Reaction
  - Metallurgical grade silicon, hydrogen, and recycle silicon tetrachloride (TET) used to produce trichlorosilane (TCS)
  - Copper catalyzed
  - Fluidized bed
  - 500PC, 154.7 psia
  - 20% to 22.5% conversion of  $\text{SiCl}_4$  (example)
3. TCS Redistribution Reaction
  - TCS from hydrogenation produces dichlorosilane (DCS)
  - Catalytic redistribution of TCS with tertiary amine ion exchange resin
  - Liquid phase 85 psia, 140°F
  - Conversion a function of inlet concentration (Union Carbide equilibrium)
  - Conversion from pure TCS feed is about 9.5% to DCS (example)
4. DCS Redistribution Reaction
  - DCS produces  $\text{SiH}_4$  (silane)
  - Catalytic redistribution of DCS with tertiary amine exchange resin
  - Liquid phase 510 psia, 140°F
  - Conversion a function of inlet concentration (Union Carbide equilibrium)
  - Conversion from pure DCS feed is about 14% to Silane (example)
5. Recycles
  - Unreacted chlorosilanes separated by distillation and recycled
6. Silane Purification
  - Final purification by distillation
  - Designed to remove trace impurities ( $\text{B}_2\text{H}_6$ , example)
7. Operating Ratio
  - Approximately 85% utilization (on stream time)
  - Approximately 7445 hour/year production
8. Storage Consideration
  - Feed materials (several week supply, approx. 1 month)
  - Product (two shifts storage)
  - Process (several hours to 1 shift)

CASE C


TABLE IIA-1.2C

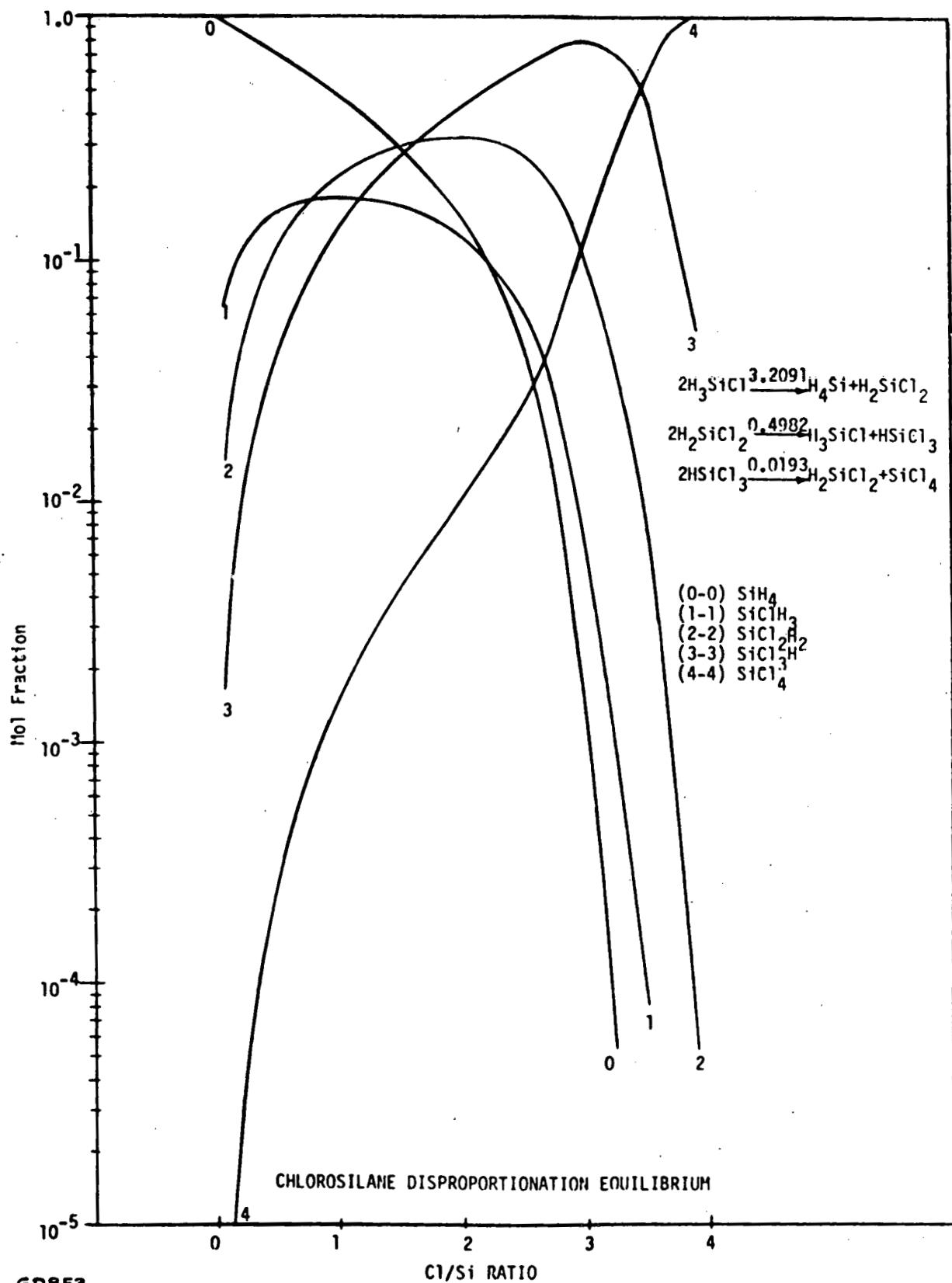
REACTION CHEMISTRY FOR SILANE PROCESS - CASE C (UNION CARBIDE)


1. Hydrogenation Reaction



2. Trichlorosilane Redistribution Reaction




3. Dishlorosilane Redistribution Reaction



Note

1. Reaction 1 Product contains  $\text{H}_2$ ,  $\text{SiCl}_4$ ,  $\text{SiHCl}_3$ ,  $\text{SiH}_2\text{Cl}_2$  (trace), other trace chlorides
2. Reaction 2 Product contains  $\text{SiHCl}_3$ ,  $\text{SiCl}_4$ ,  $\text{SiH}_2\text{Cl}_2$ ,  $\text{SiH}_3\text{Cl}$
3. Reaction 3 Product contains  $\text{SiH}_2\text{Cl}_2$ ,  $\text{SiHCl}_3$ ,  $\text{SiCl}_4$ ,  $\text{SiH}_3\text{Cl}$ ,  $\text{SiH}_4$

CASE C



GD853

Figure IIA-1.1C Redistribution Equilibrium For Silane Process-CASE C  
(Provided by Union Carbide)

## B. OTHER PROCESS

For other processes under consideration for solar cell grade silicon production, the following technical progress reports are being monitored:

1. Battelle Process ( $Zn/SiCl_4$ )
2. Motorola Process ( $SiF_4/SiF_2$ )
3. Westinghouse Process ( $Na/SiCl_4$ )
4. Dow Process ( $C/SiO_2$ )
5. SRI Process ( $Na/SiF_4$ )
6. Aerochem Process ( $H/SiCl_4$ )
7. J. C. Schumacher Co. ( $SiBr_4$ )

### III. SUMMARY - CONCLUSIONS

The following summary-conclusions are made as a result of major activities accomplished during this reporting period.

#### 1. Task 1

Analysis of process system properties was continued for silicon source materials. Property data for silicon tetrachloride are reported for critical constants (temperature, pressure, volume, compressibility factor); vapor pressure; heat of vaporization; gas heat capacity and liquid heat capacity. Silicon tetrachloride is the source material in several processes under consideration for solar cell grade silicon production.

The experimental determination of gaseous thermal conductivity values for silicon source materials is now finished with final values being reported in the temperature range 25°C to 350°C. Thermocouples used to monitor the temperature of the thermal conductivity cell were calibrated and these calibrated temperature values used to obtain final thermal conductivity values.

#### 2. Task 2

Chemical engineering analysis of the Union Carbide silane process (Case C-Revised Process) was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions, process flow diagram, reaction chemistry and equipment design. Current engineering design is in progress for the several distillation columns which separate the liquid chlorosilanes and provide purified silane product.

#### IV. PLANS

Plans for the next reporting period are summarized below:

1. Task 1

Continue analyses of process system properties for silicon source materials under consideration for solar grade silicon.

Initiate preliminary investigation for the measurement of gaseous viscosity of silicon source materials.

2. Task 2

Continue preliminary process design of the Union Carbide silane process (Case C-Revised Process).

3. Task 3

Initiate cost analysis of the Union Carbide silane process (Case C-Revised Process).

### References

1. Bauman, H. C., "Fundamentals of Cost Engineering In the Chemical Industry," Reinhold Publishing Corp., N.Y. (1964).
2. Chilton, C. H., ed., "Cost Engineering In the Process Industries," McGraw-Hill Book Co., N.Y. (1960).
3. Evans, F. L., Jr., "Equipment Design Handbook for Refineries and Chemical Plants," Vol. I and II, Gulf Publishing, Houston (1971 and 1974).
4. Guthrie, K. M., "Process Plant Estimating Evaluation and Control," Craftsman Book Company of America, Solana Beach, Calif. (1974).
5. Happel, J., and Jordan, D. G., "Chemical Process Economics," 2nd edition, Marcel Dekker, Inc., N.Y. (1975).
6. Perry, R. H., and Chilton, C. H., "Chemical Engineers' Handbook," 5th edition, McGraw-Hill Book Co., N.Y. (1973).
7. Peters, M. S., and Timmerhaus, K. D., "Plant Design and Economics for Chemical Engineers," 2nd edition, McGraw-Hill Book Co., N.Y. (1968).
8. Popper, H., ed., "Modern Cost-Engineering Techniques," McGraw-Hill Book Co., N.Y. (1970).
9. Winter, O., Ind. Eng. Chem., 61 (4), 45 (1969).
10. Perry, R. H., and Chilton, C. H., "Chemical Engineers' Handbook," 5th edition, McGraw-Hill, N.Y. (1973).
11. Jelen, F. C., "Cost And Optimization Engineering," McGraw-Hill, N.Y. (1970).
12. "Chemical Marketing Reporter," Schnell Publishing Company, New York (Jan. 1975).
13. "Wholesale Prices and Prices Indexes," U.S. Dept. of Labor, U.S. Government Printing Office, Washington D.C. (March 1975).
14. Anon. "Costs for Building and Operating Aluminum Producing Plants," Chem. Eng., 120 (Sept. 1963).
15. Zimmerman, O. T. and Lavine, I., "Cost Eng.," 6, 16, (July 1961).
16. "Monthly Labor Review," U.S. Dept. of Labor, Bureau of Labor Statistics, (June 1976).

17. del Valle, Eduardo G., "Evaluation of the Energy Transfer in the Char Zone During Ablution," Louisiana State University Ph.D. Thesis, December 15, 1974.
18. Balzhiser, R. E., Samuels, M. R. and Eliassen, J. D., Chemical Engineering Thermodynamics, Prentice-Hall, Inc., 1972.
19. Hunt, C. P. and Sirtl, E., J. Electrochem Soc., 119 (No. 12) 1741 (December 1972).
20. Bawa, M. S., Goodman, R. C., and J. K. Truitt, "Kinetics and Mechanism of Deposition of Silicon by Reduction of Chlorosilanes with Hydrogen," Chem. Vap. Dep. 4th Int. Conf. (1973).
21. Uhl, V.W. and Hawkins, A.W., "Technical Economics for Engineers", A.I.Ch.E. Continuing Education Series 5, A.I.Ch.E., New York (1976).
22. Woods, D. R., "Financial Decision Making in the Process Industry", Prentice Hall, Inc. (1975).
23. Ludwig, E. E., "Applied Project Management for the Process Industries", Gulf Publishing Co. (1974).
24. Guthrie, K.M., Chem. Eng., p.114 (March 24, 1969). Available as reprint "Capital Cost Estimating" from Chemical Engineering, N.Y.
25. Haselbarth, J.E., and J.M. Berk, Chem. Engr., p.158 (May 16, 1960).
26. Baasel, W.D., "Preliminary Chemical Engineering Plant Design", American Elsevier Publishing Company, Inc. (1976).
27. Garcia-Borras, T., Hydrocarbon Processing, 55 (12), 137 (Dec., 1976).
28. Holland, F.A., F.A. Watson, and J.K. Wilkinson, "Introduction to Process Economics", John Wiley & Sons, London (1974).
29. Winton, J.M., Chemical Week p.35 (Nov. 10, 1976).
30. Garcia-Borras, T., Hydrocarbon Processing, 56 (1), 171 (Jan. 1977).
31. Boggs, B.E., T.G. Digges, Jr., M.A. Drews, and C.L. Yaws, "High Purity Silicon Manufacturing Facility", Government Report AFML-TR-71-130, July 1971.
32. Breneman, W.C. and J.Y.P. Mui, Quarterly Progress Report, April 1976, JPL Contract 954334.

33. Blocher, J.M., Jr., M.F. Browning, W.J. Wilson, and D.C. Carmichael, Second Quarterly Progress Report (12/15/75 to 3/31/1976) April 8, 1976 of Battelle Columbus Laboratories.
34. Dr. Leon Crossman, Dow Chemical Company, Personal Communication, 1977.
35. Winton, J.M., "Plant Sites 1977", Chemical Week, 119. No. 19, P.35 (Nov. 10, 1976).
36. Touloukian, T.S. (Series Editor) and others, "Themphysical Properties of Matter", Volumes 1-13, 1st and 2nd editions, IKI/Plenum Press, New York (1970-1976).
37. Hansen, K.C., Miller, J.W., and Yaws, C.L., Quarterly Progress Report, June 1977, JPL Contract 954343.
38. Choy, P.G., "Thermal Conductivities of Some Polyatomic Gases at Moderately High Temperatures", Ph.D. Dissertation, St. Louis University, 1967.
39. Yaws, C.L. and others, Solid State Technology, 16, No.1, 39, January, 1973.
40. Choy, P., Ph.D. Dissertation, St. Louis University, 1967.
41. Prostov, V. N. and O. G. Popova, Russian Journal of Physical Chemistry, 49 (3), 366 (1975).
42. Timrot, D. L. V. N. Prostov, and V. E. Lyusternik, High Temperature, 1 (5), 824 (1967).

## MILESTONE CHART

| TASK                                     | 1975 |   |   | 1976 |   |   | 1977 |   |   | 1978 |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|------------------------------------------|------|---|---|------|---|---|------|---|---|------|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|                                          | O    | N | D | J    | F | M | A    | M | J | J    | S | O | N | D | J | F | M | A | M | J | J | A | S |  |
| 1. Analyses of Process System Properties |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 1. Prel. Data Collection                 |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 2. Data Analysis                         |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 3. Estimation Methods                    |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 4. Exp.-Corr. Activities                 |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 5. Prel. Prop. Values                    |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 2. Chemical Engineering Analyses         |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 1. Prel. Process Flow Diagram            |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 2. Reaction Chemistry                    |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 3. Kinetic Rate Data                     |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 4. Major Equip. Req.                     |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 5. Chem. Equil.-Exp. Act.                |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 6. Process Comparison                    |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 3. Economic Analyses                     |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 1. Cap. Invest. Est.                     |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 2. Raw Materials                         |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 3. Utilities                             |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 4. Direct Manuf. Costs                   |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 5. Indirect Costs                        |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 6. Total Cost                            |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 7. Process Comparison                    |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| Final Report                             |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |  |

PROCESS FEASIBILITY STUDY IN  
SUPPORT OF SILICON MATERIAL TASK I

JPL Contract No. 954343