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SUMMARY 

Th i s  paper de r i ves  a  c losed- form equat ion  f o r  r o o t  mean square (rms) va lue  

o f  v e l o c i t y  change (gus t  r i s e )  t h a t  occurs over  t h e  swept area o f  wind t u r b i n e  

r o t o r  systems and an equat ion  f o r  rms va lue  o f  v e l o c i t y  change t h a t  occurs a t  

a  s i n g l e  p o i n t  i n  space. These formulas c o n f i r m  t h e  i n t u i t i v e  assumption t h a t  

a  l a r g e  system w i l l  encounter a  l e s s  severe environment than a  smal l  system 

when bo th  a r e  p laced a t  t he  same l o c a t i o n .  That  i s ,  because o f  a  s p a t i a l -  

averaging e f f e c t  t h e  wind c h a r a c t e r i s t i c s  t h a t  e n g u l f  a  l a r g e  system a r e  l e s s  

severe than those f o r  a  smal l  system. Assuming a  normal p r o b a b i l i t y  d e n s i t y  

f u n c t i o n  f o r  t h e  v e l o c i t y  d i f f e r e n c e s ,  an equat ion  i s  g i ven  f o r  c a l c u l a t i n g  t h e  

expected number o f  v e l o c i t y  d i f f e r e n c e s  t h a t  w i l l  occur  i n  1  h r  and w i l l  be 

l a r g e r  than an a r b i t r a r y  value. A  formula i s  presented t h a t  g ives  t h e  expected 

number o f  v e l o c i t y  d i f f e r e n c e s  l a r g e r  than an a r b i t r a r y  va lue  t h a t  w i l l  be 

encountered d u r i n g  t h e  des ign l i f e  o f  a  wind t u r b i n e .  I n  a d d i t i o n ,  a  method 

f o r  c a l c u l a t i n g  t h e  l a r g e s t  v e l o c i t y  d i f f e r e n c e  expected d u r i n g  t h e  l i f e  o f  a  

t u r b i n e  and a  formula f o r  e s t i m a t i n g  t h e  r i s k  o f  exceeding a  g iven  v e l o c i t y  

d i f f e r e n c e  d u r i n g  t he  l i f e  o f  t h e  s t r u c t u r e  a r e  g iven.  The equat ions presented 

a re  based upon general  atmospheric boundary- layer c o n d i t i o n s  and do n o t  i nc l ude  

i n f o r m a t i o n  rega rd ing  events such as tornados, hur r i canes ,  e t c .  
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INTRODUCTION 

I n  many cases, t h e  w ind - tu rb i ne  des ign engineer,  needs t o  know wind charac- 

t e r i s t i c s  t h a t  e n g u l f  a l l  o r  p a r t  o f  t h e  t u r b i n e  r o t o r  system because a  s p a t i a l -  

f i l t e r i n g  e f f e c t  caused by t h e  s i z e  o f  t h e  wind t u r b i n e  r o t o r  system must be 

accounted f o r  i n  o rde r  t o  p rov ide  wind c h a r a c t e r i s t i c  des ign i n p u t s .  One such 

i n p u t  i s  t h e  w ind ' s  v e l o c i t y  change, [u(t+-r) - u ( t ) ] ,  which occurs over  t ime  

( )  V e l o c i t y  change, which i s  averaged over  t h e  swept area o f  a  r o t o r  system, 

i s  l e s s  severe than t h e  maximum v e l o c i t y  change o c c u r r i n g  a t  a  s i n g l e  p o i n t .  

That  i s ,  w i t h i n  t h e  swept area o f  t h e  r o t o r ,  areas o f  v e l o c i t y  change g rea te r  

than t h e  average v e l o c i t y  change as w e l l  as areas o f  l e s s e r  v e l o c i t y  change 

occur  s imul taneously .  Th i s  paper presents  formulas f o r  e s t i m a t i n g  t h e  v e l o c i t y  

change encountered over  t h e  swept area o f  t h e  r o t o r  system. The formulas a r e  

gener ic  and may be used f o r  any s i z e  o f  wind t u r b i n e  system ope ra t i ng  i n  t h e  

n e u t r a l  atmospheric boundary 1  ayer .  A mete r -k i  logram-second (mks) system o f  

u n i t s  i s  used i n  t h i s  r e p o r t .  





CONCLUSIONS 

A closed-form solution f o r  the  rms value of velocity d i f ference,  A U ( T )  = 

[ u ( t + ~ )  - u ( t ) ] ,  encountered over the disk of ro ta t ion  of a wind turbine i s  

derived i n  equation (13) of t h i s  report .  Assuming t h a t  the probabil i ty density 

function f o r  the  veloci ty  d i f ference i s  normal, equation (14) estimates the  

expected hourly number of veloci ty  changes t h a t  exceed a given value. To com- 

pute the  expected number of veloci ty  changes t h a t  exceed a given level during 

the 1 i f e  of a machine, equation (15) ,  which includes the  hourly mean longitu- 

dinal wind veloci ty  climatology f o r  the turbine s i t e ,  i s  given. If  the designer 

wishes t o  estimate the once-in-10, 30, 100 y r  e t c . ,  velocity change, equa- 

t ion (15) should be evaluated according t o  a s e t  number of years f o r  various 

values of X unt i l  NT 1 ,  where N T  equals the to ta l  number of expected posi t ive  

velocity changes, g rea te r  than X ,  which occur in a given number of years.  The 

value of X t h a t  y ie lds  NT = 1 would be the value of A u  t h a t  can be expected t o  

be exceeded once in a given number of years ( Y ) .  To evaluate the r i sk  of 

exceeding a pa r t i cu la r  value of A u  during the  l i f e t ime  of a turbine,  a  Poisson 

model, a s  seen in equation ( 1  6 ) ,  i s  used. 





EVALUATING RMS OF VELOCITY DIFFERENCE 

This sec t i on  der ives an expression fo r  the  r o o t  mean square (rms) value o f  

t he  l o n g i t u d i n a l  v e l o c i t y  change encountered over the  d i s k  o f  r o t a t i o n  o f  a  

wind tu rb ine .  

The rms o f  change i n  l o n g i t u d i n a l  v e l o c i t y  component i s  def ined by the 

f o l l o w i n g  equat ion: 

where 

u  = 1  ongi t u d i n a l  wind component f l u c t u a t i o n  

( f l  uc tua t i on  o f  wind component para1 1  e l  t o  

the  mean wind d i r e c t i o n )  

a ( T )  = rms of  v e l o c i t y  change o f  l o n g i t u d i n a l  Au 
v e l o c i t y  component 

T = t ime over which the  v e l o c i t y  d i f f e rence  takes place 

T  = t ime pe r iod  f o r  d e f i n i n g  turbulence (genera l l y  

considered between 10 min t o  1  h r )  

t = t ime 
T 

I 

- = $  ) d t .  

Equation ( 1 )  may be expanded and w r i t t e n  as: 



I n  equat ion (2 ) ,  t he  f i r s t  and second term on the  r i g h t  a re  each equal t o  the  

var iance o f  t he  u component. The l a s t  term i s  equal t o  t he  a u t o c o r r e l a t i o n  of 

t he  u component. Equation (2 )  may now be w r i t t e n  i n  i t s  spec t ra l  equ iva len t  

form as: 

a nu (TI = 1 2  d u ( f ) d f  - 2 d u ( f )  cos 2 n f r  d f  I" 

where 

f = frequency (Hz) 

mU(f)  = power spectrum o f  the  u component. 

Any standard atmospheric spectra model can be used i n  equat ion (3 )  t o  

so lve f o r  aAu( r ) .  However, t he  r e s u l t s  would on l y  be app l i cab le  f o r  a system, 

sensing a small volume (e.g., anemometer systems). When systems sample l a r g e r  

volumes o f  space, equat ion ( 3 )  must be mod i f ied  t o  a d j u s t  f o r  the  s p a t i a l -  

f i l t e r i n g  e f f e c t  o f  averaging over a l a r g e r  volume o f  space. 

One approach f o r  a d j u s t i n g  equat ion ( 3 )  i s  t o  assume t h a t  systems w i l l  

respond t o  a frequency w i t h  a value equal t o  uh/D, where uh equals mean l o n g i -  

t u d i n a l  wind v e l o c i t y  a t  hub he igh t  and D equals c h a r a c t e r i s t i c  diameter o f  t he  

machine. A second approach i s  t o  assume t h a t  sampling o f  the  l a r g e r  system 

ac ts  as a f i l t e r  w i t h  the  3-db (half-power) p o i n t  se t  a t  a frequency comrnen- 

sura te  w i t h  machine s ize.  A closed-form s o l u t i o n  may be obta ined i n  the  

l a t t e r  technique whereas t h e  f i r s t  technique leaves an i n t e g r a l  t h a t  must be 

numer ica l l y  in tegra ted .  Therefore, the  second technique was selected f o r  t h i s  

r e p o r t .  

The Dryden spectra( ' )  g iven by the  f o l l o w i n g  equat ion was used t o  ob ta in  

the  closed-form so l  u t i on .  



where 
2 -2 

o2 = var iance o f  l o n g i t u d i n a l  wind component, m sec u  
- 
Uh = mean wind speed a t  hub he igh t ,  m sec" 

L , (~ )  = t u r b u l e n t  l eng th  scale, m, as g iven by t h e  f o l l o w i n g  equat ion: 

2 C = EXP [-0.025 (en zo) + 0.17 en zo - 0.81 

0 
= sur face  roughness, e.g., 

z = 0.005 m (smooth t e r r a i n )  
0 

z = 0.05 m (moderate t e r r a i n )  
0 

zo = 0.34 m (rough t e r r a i n )  

Zh 
= he igh t  o f  measurement, m (hub he igh t  o f  wind t u r b i n e  f o r  the  wind 

t u r b i n e  case).  

The f i l t e r  f u n c t i o n  used t o  account f o r  t he  phys ica l  s i z e  o f  t he  system 

i s  g iven by: 

The 3-db (hal f -power)  p o i n t  f o r  G ( f )  occurs when f = uh/D. 

( a )  The value g iven  f o r  i s  t he  au thors '  emp i r i ca l  curve f i t  t o  curves g iven 
f o r  Lu by Couni han (2b! 



Equation ( 3 )  as mod i f ied  by equat ion ( 6 )  t o  account f o r  t he  s i z e  o f  t h e  

sensing system, becomes: 

I nco rpo ra t i ng  equat ion ( 4 )  f o r  $,(f) i n t o  equat ion ( 7 )  y i e l d s  : 

The s o l u t i o n  t o  equat ion (8)  i s :  

When the  diameter ( D )  o f  t he  system goes t o  zero, t he  f o l l o w i n g  c l a s s i c a l  

r e s u l t  i s  obta ined.  



A use fu l  eng ineer ing  v a r i a t i o n  o f  equa t ion  ( 9 )  i s  ob ta ined  us ing  t h e  

n e u t r a l  -boundary-l ayer  1  og p r o f  i 1 e g iven  by 

and t h e  approx imat ion t h a t  ou = 2.5 u , (~) ,  where 

u* = 

r = su r f ace  shear s t r e s s  

p = d e n s i t y  o f  a i r  

k = Von Karmans constant ,  0.4. 

Thus, ou i s  now expressed as: 

and equat ion  ( 9 )  becomes: 

- 
(NOTE: oAu i s  a  f u n c t i o n  o f  zo, Uh and r ) .  





CALCULATING DISTRIBUTION OF VELOCITY DIFFERENCES 

Assuming t h a t  v e l o c i t y  d i f f e r e n c e s  a r e  Gaussian d i s t r i b u t e d ,  t h e  f o l l o w -  

i n g  formula (14)  g i ves  t he  approximate number (N) o f  v e l o c i t y  changes, 

u ( t + ~ )  - u ( t )  = AU(T ) ,  pe r  hour t h a t  exceed a g i ven  value, X. The number ( N )  

represen ts  t h e  p o s i t i v e  A U ( T ) ' s ;  t h i s  number should be doubled i f  negat i ve  

AU (T  ) ' s  a r e  inc luded .  

(NOTE: N i s  a  f u n c t i o n  o f  oAu(7) ,  T and X) 

where 

T i s  i n  seconds 

and o A u ( r )  i s  c a l c u l a t e d  us ing  equat ion  (13) .  

The f i r s t  te rm on t h e  r i g h t  s i d e  o f  t h e  equa t ion  i s  t h e  t o t a l  number o f  

p o s i t i v e  A U ( T ) ' s  t h a t  occur  pe r  hour, t h a t  i s ,  3 6 0 0 / ~  events  pe r  hour spaced 
ii: 

T seconds apa r t ,  h a l f  be ing  p o s i t i v e  and h a l f  be ing  negat i ve .  





COMPUTING THE TOTAL NUMBER OF EVENTS DURING THE LIFE OF THE TURBINE 

The f o l l o w i n g  equat ion  may be used t o  compute t h e  expected number (NT) o f  

l o n g i t u d i n a l  v e l o c i t y  changes (which exceed a g i ven  va lue)  t h a t  occur  over  a  

g iven  number o f  years  (Y) .  

NT(nu(-r)>X) = (8766) (Y) N p(uh)duh d 
where 

N~ = t o t a l  number o f  expected p o s i t i v e  v e l o c i t y  changes, 

g r e a t e r  than X, which occur  i n  Y 

8766 = number o f  h r  i n 1 yea r  

Y = number o f  years  

p (uh)  = t h e  p r o b a b i l i t y  d e n s i t y  d i s t r i b u t i o n  o f  h o u r l y  mean l o n g i t u d i n a l  

wind v e l o c i t y  t h a t  occurs a t  wind t u r b i n e  hub he igh t .  

I f  o n l y  v e l o c i t y  changes t h a t  occur  w h i l e  t h e  t u r b i n e  i s  ope ra t i ng  a r e  o f  

i n t e r e s t  t h e  1 i m i  t s  o f  i n t e g r a t i o n  f o r  equa t ion  (15)  should be f rom t h e  t u r b i n e  

c u t - i n  v e l o c i t y  t o  t h e  t u r b i n e  c u t o u t  v e l o c i t y  r a t h e r  than  f rom 0 t o  w. 

The t o t a l  number o f  v e l o c i t y  changes o f  a  g iven  magnitude t h a t  may occur  d u r i n g  

a t u r b i n e ' s  l i f e  can be used i n  f a t i g u e  and c o n t r o l  analyses. 

EXPECTED MAXIMUM VELOCITY DIFFERENCE 

To es t imate  a v e l o c i t y  change, AU(T)  t h a t  has a reoccurrence i n t e r v a l  o f  

Y, equa t ion  (1  5) i s  so lved  us ing  i n c r e a s i n g l y  l a r g e r  va lues o f  X u n t i l  t h e  X 

va lue se lec ted  r e s u l t s  i n  a  va lue  f o r  NT = 1. I n  t h i s  way, est imates of t he  

expected reoccurrence i n t e r v a l  s  o f  maximum AU(T )  can be ca l cu la ted .  That i s ,  

est imates o f  t h e  once-in-10, 30, 100 y r  etc . ,  AU(T )  may be computed. 



RISK OF EXCEEDANCE ANALYSIS 

To assess t h e  r i s k  o f  exceeding a l a r g e  AU(T ) ,  a Poisson exceedance model 

i s  recommended as f o l l o w s :  ( 1  

where 

F~ 
= p r o b a b i l i t y  t h a t  a va lue  o f  AU(T )  w i l l  be 

exceeded w i t h i n  a g i ven  p e r i o d  o f  t ime  

TL = des ign  l i f e  o f  t u r b i n e  

M = expected reoccurrence i n t e r v a l  o f  AU(T ) ,  i . e. , 30 yr, e t c .  

I f  a p a r t i c u l a r  A U ( T )  has a reoccurrence i n t e r v a l  equal t o  t h e  des ign l i f e  

o f  t h e  s t r u c t u r e ,  equa t ion  (16)  shows t h a t  a 63% chance o f  exceeding t h a t  va lue  

o f  AU(T )  e x i s t s .  

EXAMPLE PROBLEM 

Suppose a des igner  wants t o  know how many t imes (NT) h i s  wind t u r b i n e  w i l l  

exper ience dynamic l o a d i n g  caused by a 1-sec r i s e  i n  l o n g i t u d i n a l  wind v e l o c i t y ,  

over  t h e  d i s k  o f  r o t a t i o n ,  t h a t  exceeds 1, 2, 4, 6, 8, 10, 12, 14 and 16 m sec-' 

f o r  c u t o u t  l o n g i t u d i n a l  wind v e l o c i t y  of  20 m sec-I  , 30 i sic - '  and no c u t o u t  

as w e l l  as which 1-sec r i s e  i n  l o n g i t u d i n a l  wind v e l o c i t y  should be expected 

t o  be exceeded o n l y  once d u r i n g  t h e  30 yr, i .e . ,  t h e  1-sec r i s e  i n  wind speed 

w i t h  an expected 30-yr  reoccurrence i n t e r v a l .  

The w ind - tu rb i ne  c h a r a c t e r i s t i c s  and environment f o r  t h e  example problem 

a re  as f o l  lows : 

hub h e i g h t  = 40 m 

b l  ade d iameter  = 60 m 

"A 
= annual mean wind, 10 m sec-' 

*o = 0.05 m 

Expected 1 i f e  o f  t u r b i n e  = 30 y r  

Lu (From equat ion  5)  = 184 m 



The Rayle igh d i s t r i b u t i o n  f o r  p(gh)  i s  as f o l l o w s :  

Using t h e  above d i s t r i b u t i o n  and N f rom equat ion  (14)  i n  equa t ion  (15),  t he  

f o l l o w i n g  t a b u l a r  r e s u l t s  a r e  ob ta ined  f o r  T = 1 sec. 

TABLE 1. Number o f  Expected V e l o c i t y  Changes (NT) 
(Gust R ise)  f o r  Example Problem 

T 
Cutout -1 ( a >  

Cutout, -l 
AU, m sec-' No c u t o u t  30 m sec 20 m sec 

14.0 1.5 x l o - '  - - 
16.0 1.4 x lo- '  - - 

Au f o r  1.1 2.5 m sec-' 1.9.3 m sec-' ~ 5 . 3  m sec-' 
1 occurrence 
d u r i n g  1 i f e  
o f  t u r b i n e  

( a )  Dashes i n d i c a t e  values below those cons idered i n  t h i s  example. 

Therefore,  t h e  1-sec r i s e  i n  l o n g i t u d i n a l  wind v e l o c i t y  expected t o  be 
, -  exceeded o n l y  once d u r i n g  t h e  30-yr  p e r i o d  i s  21 2.5 m sec-' . The probabi 1 i t y  

o f  exceeding t h i s  va lue  d u r i n g  t h e  l i f e  of t h e  t u r b i n e  i s  approx imate ly  63% 



as seen i n  equa t ion  (16) .  A l a r g e r  va lue  o f  Au must be used i f  t h e  des igner  

wishes t o  lower  t h e  r i s k  o f  exceeding t h e  des ign value. For i ns tance  t h e  

p r o b a b i l i t y  o f  exceeding a Au o f  14 m sec" i s  o n l y  14%, u s i n g  equat ion  (16) .  

I f  t h e  des igner  would cons ider  o n l y  t h e  Au 's  o c c u r r i n g  when t h e  wind i s  between 

c u t - i n  and c u t o u t  f o r  t h e  l i m i t s  o f  i n t e g r a t i o n  o f  equa t ion  (15) ,  extreme 

va lues o f  Au would be somewhat l ess ,  depending on t h e  c u t o u t  v e l o c i t y .  

Comparing columns two, t h r e e  and f o u r  o f  Table 1 shows t h e  major  c o n t r i b u -  

t i o n  t o  l a r g e  va lues o f  Au (gus t  r i s e )  occurs when t he  mean l o n g i t u d i n a l  wind 

v e l o c i t y  i s  h igh.  Therefore,  t h i s  t ype  o f  a n a l y s i s  should be u s e f u l  n o t  o n l y  

f o r  f a t i g u e  a n a l y s i s  b u t  a l s o  f o r  expected maximum dynamic l o a d i n g  because o f  

gusts ;  t h a t  i s ,  t h e  a n a l y s i s  should be u s e f u l  i n  de te rmin ing  t h e  r i s k  assoc ia ted  

w i t h  encounte r ing  v a r i o u s l y  s i zed  gus ts  d u r i n g  t h e  l i f e  o f  t h e  s t r u c t u r e .  
h 
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PROCEDURE FOR CALCULATING VELOCITY DIFFERENCES 



I 
I PROCEDURE FOR CALCULATING VELOCITY DIFFERENCES 

I 

I The f o l l o w i n g  c r i t e r i a  should be used f o r  computing the  l o n g i t u d i n a l  
I 
I 
I 

v e l o c i t y  v a r i a t i o n s  encountered over t he  d i s k  of r o t a t i o n  o f  a  wind tu rb ine .  
I 
I 

V e l o c i t y  v a r i a t i o n  i s  def ined as t h e  d i f f e rence  i n  v e l o c i t y  a t  t ime ( t + ~ )  and 
I 

I t he  v e l o c i t y  a t  an e a r l i e r  t ime ( t ) ;  therefore,  v e l o c i t y  v a r i a t i o n  equals 
I 
I u(t+'C) - u ( t ) .  

I 
I The f o l  lowing formula g ives  t h e  approximate number (N)  o f  v e l o c i t y  changes 
I 
I ( u ( t + ~ )  - ~ ( t )  = u ( T ) )  per  hour t h a t  exceed a  g iven  value, X. The number (N) 
I 
I represents t h e  p o s i t i v e  AU(T)  ' s ;  t h i s  number should be doubled i f  negat ive  
I 
I AU(T)  ' s  a re  inc luded.  

I 
I 
I where 
I 

T i s  i n  seconds 



where 

D = diameter o f  wind tu rb ine ,  m 
- 
Uh = h o u r l y  mean l o n g i t u d i n a l  wind v e l o c i t y  a t  hub he igh t  

f o r  which the  computation i s  made, m sec-' 

zh = hub he igh t  o f  wind tu rb ine ,  m 

z  = sur face  roughness; e.g., 
0 

z  = 0.0005 m (smooth t e r r a i n )  
0 

z  = 0.05 m (moderate t e r r a i n )  
0 

0 
= 0.34 m (rough t e r r a i n )  

25zh c 
- Lu - - 0.4 

; L,, i n  meters 
z  
0 

2 c  = EXP [- 0.025 (en zo) + 0.17 An zo - 0 . 8 1  

To c a l c u l a t e  t h e  t o t a l  number o f  occurrences over  t he  l i f e  o f  the  wind 

tu rb ine ,  equat ion (15) i n  t h e  t e x t  should be used. The value o f  Au, which 

causes equat ion (15) t o  equal 1.0, i s  t h e  va lue o f  Au w i t h  a  reocurrence i n t e r -  

va l  equal t o  t h e  l i f e  o f  t h e  tu rb ine .  The r i s k  o f  encounter ing such a  Au 

d u r i n g  t h e  l i f e  o f  t h e  t u r b i n e  may be c a l c u l a t e d  us ing  equat ion (16) i n  t he  

t e x t .  
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