

30
12-8-82
JW

I-6794

(1)

S-CUBED

FORMERLY

Systems, Science and Software

SSS-R-82-5516

DOE/ID/12067-13

**INVERSION MODELING OF MULTIPLE GEOPHYSICAL
DATA SETS FOR GEOTHERMAL EXPLORATION:
APPLICATION TO ROOSEVELT HOT SPRINGS AREA**

J. M. Savino

W. L. Rodi

J. F. Masso

MASTER

FINAL REPORT

DO NOT MICROFILM
COVER

April 1982

Prepared for:

DEPARTMENT OF ENERGY

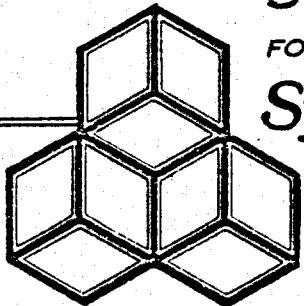
Idaho Operations Office

Under Contract No. DE-FC07-79ID12067

P. O. Box 1620
La Jolla, California
92038

(714)453-0060

DISCLAIMER


This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

S-CUBED

FORMERLY

Systems, Science and Software**SSS-R-82-5516****DOE/ID/12067-13****INVERSION MODELING OF MULTIPLE GEOPHYSICAL
DATA SETS FOR GEOTHERMAL EXPLORATION:
APPLICATION TO ROOSEVELT HOT SPRINGS AREA****J. M. Savino****W. L. Rodi****J. F. Masso****DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

FINAL REPORT**NOTICE****April 1982****PORTIONS OF THIS REPORT ARE ILLEGIBLE. It****has been reproduced from the best available
copy to permit the broadest possible avail-
ability.****Prepared for:****MN ONLY****DEPARTMENT OF ENERGY****Idaho Operations Office****Under Contract No. DE-FC07-79ID12067**

*P. O. Box 1620
La Jolla, California
92038*

(714)453-0060

fp

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
I. INTRODUCTION	1
II. THEORETICAL DEVELOPMENT FOR LOCAL EARTHQUAKE ARRIVAL-TIME INVERSION.	4
2.1 INTRODUCTION.	4
2.2 ARRIVAL-TIME DATA FUNCTIONALS	4
2.3 LINEARIZATION OF DATA FUNCTIONALS	7
2.4 RAY TRACING IN GRADIENT LAYER MODELS.	9
2.5 LINEAR INVERSE FORMULATION.	14
2.6 DENUISANCING.	17
2.7 LINEAR INVERSE ALGORITHM.	20
III. SEISMIC AND GRAVITY DATA	24
3.1 LOCAL SEISMIC DATA-ROOSEVELT HOT SPRINGS	24
3.1.1 RHS Seismic Data Culling	30
3.2 RHS GRAVITY DATA.	46
3.2.1 Data Processing.	46
3.3 LEACH HOT SPRINGS	53
IV. MODEL RESULTS.	55
4.1 MODEL GRID.	55
4.2 INVERSION MODELS.	58
4.3 DATA FITS	70
4.4 DISCUSSION OF MODELING RESULTS.	74
V. REFERENCES	84
APPENDIX A: LISTING OF LOCAL EARTHQUAKE TRAVEL-TIME MODELING PROGRAMS	87
APPENDIX B: VELOCITY PERTURBATIONS IN FINAL JOINT INVERSION MODEL (NDF = 74).	107

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1. Ray path notation		6
2. Schematic of initial velocity model		10
3. Circular ray paths through a medium of constant velocity gradient g.		12
4. Station locations for 1974 through 1975 surveys in the Roosevelt Hot Springs area . . .		25
5. Epicenter map of the Roosevelt Hot Springs-Cove Fort, Utah area from earthquake surveys in 1974 and 1975.		26
6a. Observed travel times for events with focal depths between 0 and 1 km		36
6b. Observed travel times for events with focal depths between 1 and 2 km		37
6c. Observed travel times for events with focal depths between 2.0 and 3.5 km		38
6d. Observed travel times for events with focal depths between 3.5 and 7.0 km		39
6e. Observed travel times for events with focal depths between 7.0 and 26.0 km.		40
7a. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 0 to 1 km.		41
7b. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 1 to 2 km.		42
7c. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 2.0 to 3.5 km.		43
7d. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 3.5 to 7.0 km.		44
7e. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 7 to 26 km		45

LIST OF ILLUSTRATIONS (continued)

<u>Figure</u>		<u>Page</u>
8.	Locations of 1468 gravity stations at which observed gravity data used in this study were measured	47
9.	Contours of observed gravity data interpolated to a regular 1 km spaced grid	49
10.	Gravity data, low-pass filtered with a 3.0 km bandwidth Gaussian filter.	50
11.	Gravity data, low-pass filtered, decimated to 3 km grid spacing.	51
12.	Gravity data but zero-meaned and detrended for the inversion	52
13.	Model grid, seismic stations and earthquake epicenters.	56
14.	Trade-off curves for travel-time inversion and joint travel-time/gravity inversion	61
15a.	Contour map of velocity perturbations in Layer 1 (0 - 1 km) of the final joint inversion model for NDF = 74.	65
15b.	Layer 2 (1 - 2 km) of joint inversion model for NDF = 74.	66
15c.	Layer 3 (2.0 - 3.5 km) of joint inversion model for NDF = 74.	67
15d.	Layer 4 (3.5 - 7.0 km) of joint inversion model for NDF = 74.	68
15e.	Layer 5 (7 - 26 km) of joint inversion model for NDF = 74.	69
16.	Comparison of observed travel-time and model-predicted values for the final joint inversion model (NDF = 74)	71
17.	Comparison of observed and predicted gravity data from joint inversion model	73
18.	The Mineral Mountains region, southwest Utah. .	75

LIST OF ILLUSTRATIONS (concluded)

<u>Figure</u>		<u>Page</u>
19.	Contour plots of velocity in model Layer 2 of the joint inversion and seismic-only inversion	78
20.	Contour plots of velocity in model Layer 3 of the joint inversion and seismic only inversion	79
21.	Contour plots of velocity in model Layer 4 of the joint inversion and seismic-only inversion	81
22.	Contour plots of velocity in model Layers 4 (NDF = 116) and 5 (NDF = 160) of the joint inversion	82

LIST OF TABLES

I. INTRODUCTION

A geothermal area is often characterized by the anomalous behavior of several geophysical parameters at depth; such as density, seismic velocity, electrical conductivity and porosity. Thus, the goal of an ideal geothermal exploration method is to determine all of the relevant subsurface parameters based on an integrated interpretation of several geophysical data sets measured at the earth's surface. As a step toward this goal, several staff members at Systems, Science and Software (S³) have been involved during the past several years in the development of a joint inversion modeling program that incorporates multiple geophysical data sets in order to produce a unified interpretation of the three-dimensional subsurface structure. Such a combined interpretation is an extremely cost-effective approach to geothermal exploration.

Our earliest joint inversion projects were funded by a combination of external (i.e., government and commercial) and internal (S³) sources. The initial step taken was an S³ funded internal research effort wherein Jordan (1975) formulated the generalized linear inverse problem and defined the inversion algorithms necessary for future modeling projects. Subsequently, under three externally funded projects we further developed the inversion modeling procedure, including the requisite forward modeling algorithms, and applied it to joint interpretations of teleseismic travel-time and Bouguer gravity data from three areas in the western United States: the Imperial Valley, California, in a Department of Energy (DOE) sponsored study (Savino, et al., 1977); Yellowstone National Park, in a study supported by the University of Utah (Evoy, 1978); and the Columbia Flood Basalts in eastern Washington, under a project supported by the Washington Public Power Supply System (WPPSS), reported by Savino, et al., 1979a and

1979b. As evidenced from the final inversion models obtained for each of these three study areas, both data sets, when jointly interpreted, were observed to be good indicators of deep seated structural features.

These early applications of the joint inversion modeling technique were for delineation of relatively large scale subsurface features. In each case, this was dictated by the inherent resolution of the particular data sets used rather than the modeling procedure iteself. In order to increase the modeling resolution, we next directed our efforts to developing the capability (i.e., forward modeling algorithms) for incorporating travel-time data from local seismic events in the joint inversion procedure. This effort was simultaneously performed under this DOE sponsored study and a project funded by WPPSS. Our first results from a joint inversion of local seismic travel-times (i.e., first arrival P waves) and Bouguer gravity data were obtained for the Columbia Flood Basalts region in eastern Washington (Rodi, et al., 1980a and 1980b).

In the following section of this report, Section II, we describe the theoretical basis for modeling the arrival times of local earthquake P waves at a network of seismic stations. Of particular importance is a description of a technique for separating the dependence of network arrival times on velocity structure from the dependence on the earthquake location parameters. Commented computer listings of the forward modeling algorithms developed in part under DOE support are given in Appendix A.

In Section III we describe the local earthquake arrival time and Bouguer gravity data sets that we acquired for the Roosevelt and Leach Hot Springs areas. As noted in this section, the seismic data from Leach Hot Springs, Nevada were found to be inadequate (i.e., in terms of numbers of events,

stations and ray paths) for inversion modeling. Thus, the emphasis in Section III is on the editing and processing of the Roosevelt Hot Springs data sets prior to inversion.

Finally, in Section IV we describe the inversion model for the Roosevelt Hot Springs area obtained from a joint inversion of seismic and gravity data. The more robust features of the final model are discussed in light of the known geology and geophysics of the area and are compared to results obtained from related studies (e.g., Robinson and Iyer, 1981).

II. THEORETICAL DEVELOPMENT FOR LOCAL EARTHQUAKE ARRIVAL-TIME INVERSION

2.1 INTRODUCTION

In this section we describe the theoretical basis for the modeling of the arrival times of local earthquake P waves at a network of seismic stations. Using geometrical ray theory we establish the relationship among the P wave arrival time at a station, the origin time and location of the earthquake, and the P velocity distribution within the earth. This relationship defines the arrival time "data functional." The linearization of this functional, required for the application of linear inversion, is then described and the relevant formulae for a one-dimensional initial model with constant gradient layers are presented. Finally, we describe the application of linear inverse theory to the inversion of local earthquake arrival times. The joint inversion of arrival time and gravity data is described in a DOE report by Savino, et al. (1977).

2.2 ARRIVAL-TIME DATA FUNCTIONALS

According to geometrical ray theory, a seismic wave travels along a path - the geometrical raypath - which minimizes the source-receiver travel time. The travel time along a raypath is defined as the integral of the medium slowness (reciprocal velocity) along the path. This is the high frequency approximation in which the raypath is taken to have infinitesimal width. Geometrical ray theory thus predicts that the arrival time t^a of a seismic wave traveling from an earthquake to a station is the following functional of the medium slowness u and earthquake origin time t^0 :

$$t^a = t^0 + \int_{\Gamma} ds u \quad (1)$$

where s is distance along the raypath, and Γ symbolizes integration along the raypath trajectory (see Figure 1).

We gain mathematical precision later if we parameterize the raypath in terms of a nondimensional dummy variable η defined on the unit interval. Denoting the raypath as $\vec{r}(\eta)$, $0 \leq \eta \leq 1$, we can rewrite Equation (1) as

$$t^a = t^0 + \int_0^1 d\eta \left| \frac{d\vec{r}}{d\eta} \right| u(\vec{r}(\eta)) . \quad (2)$$

We have used

$$ds = d\eta \left| \frac{d\vec{r}}{d\eta} \right| . \quad (3)$$

The earthquake location (hypocenter) is $\vec{r}(0)$ and the station location is $\vec{r}(1)$. Therefore, Equation (2) implicitly defines the dependence of arrival time on the endpoints of the raypath.

The geometrical ray \vec{r} obeys the differential equation

$$\frac{d}{d\eta} [u\vec{t}] = \left| \frac{d\vec{r}}{d\eta} \right| \nabla u . \quad (4)$$

Here \vec{t} is the unit vector tangent to the ray:

$$\vec{t} = \frac{d\vec{r}}{d\eta} / \left| \frac{d\vec{r}}{d\eta} \right| . \quad (5)$$

Equation (4) is equivalent to

$$\int_0^1 d\eta \left| \frac{d\vec{r}}{d\eta} \right| u(\vec{r}) = \text{minimum w.r.t. } \vec{r}(\eta) ,$$

given that the endpoints of the ray are fixed. This is Fermat's principle.

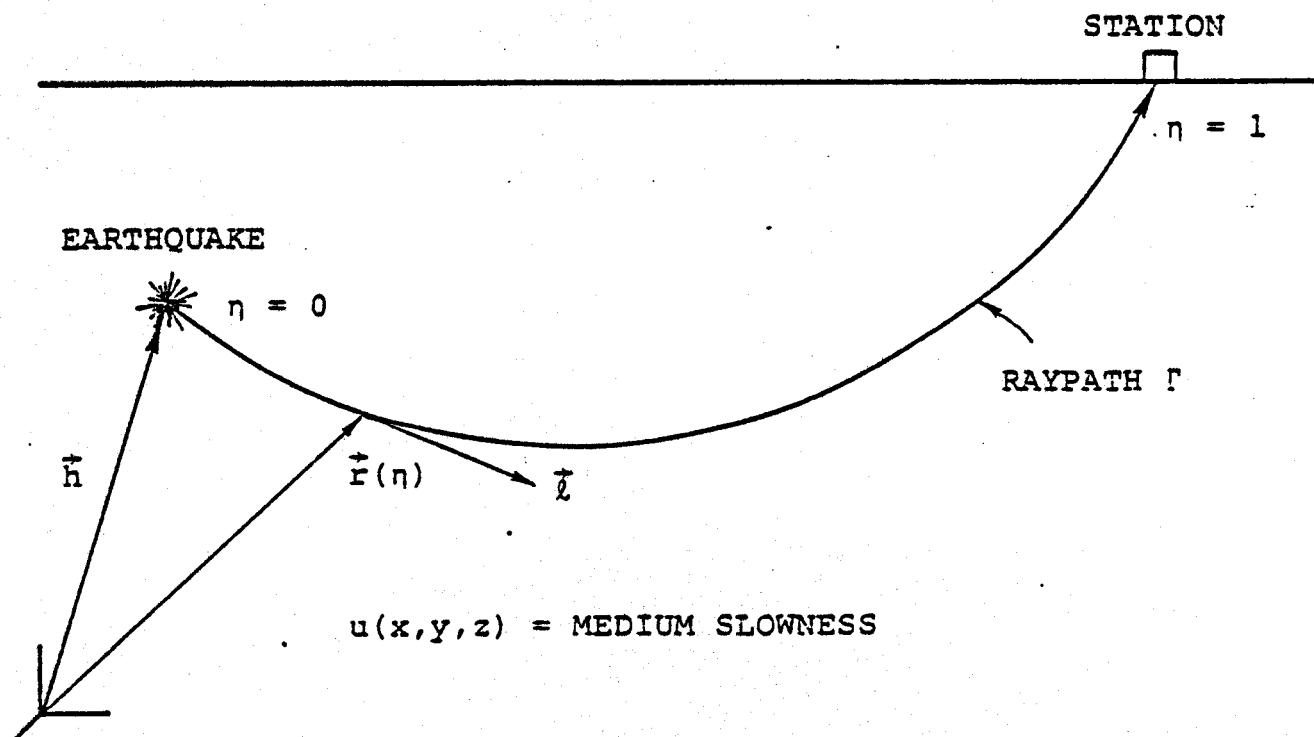


Figure 1. Raypath notation.

2.3 LINEARIZATION OF DATA FUNCTIONALS

The arrival-time functional in Equation (1) is nonlinear with respect to the slowness distribution u , by virtue of the dependence of the raypath on u through Equation (4). It must be expanded to first order about an initial slowness model u_0 for linear inverse theory to be applicable.

We shall consider u and $r(\eta)$ to be perturbed from initial values u_0 and $r_0(\eta)$:

$$u = u_0 + \delta u$$

$$\vec{r} = \vec{r}_0 + \delta \vec{r} . \quad (6)$$

It is assumed that \vec{r}_0 is the least time geometrical raypath through u_0 ; i.e., u_0 and \vec{r}_0 obey Equation (4).

To first order in δu and $\delta \vec{r}$, the travel time along the perturbed ray is given by

$$\begin{aligned} \int_{\Gamma} ds u &= \int_{\Gamma_0} ds u_0 + u_0(\vec{r}_0(1)) \vec{t}_0(1) \cdot \delta \vec{r}(1) \\ &\quad - u_0(\vec{r}_0(0)) \vec{t}_0(0) \cdot \delta \vec{r}(0) . \end{aligned} \quad (7)$$

where Γ_0 symbolizes the unperturbed raypath, $\vec{r}_0(\eta)$. The first term is the integral of the slowness along the unperturbed raypath \vec{r}_0 . The second and third terms, respectively, represent the effects of perturbing the endpoints of the ray.

Let \vec{h} denote the hypocenter and \vec{p} the slowness vector of the ray:

$$\vec{h} = \vec{r}(0)$$

$$\vec{p} = u(\vec{r}(0)) \vec{t}(0) . \quad (8)$$

The direction of the slowness vector is the ray takeoff direction and its magnitude is the medium slowness at the hypocenter. If we ignore perturbations to the station location (i.e., $\delta\vec{r}(1) = 0$), then Equations (1), (7) and (8) imply (to first order)

$$t^a = \int_{\Gamma_0} ds u - \vec{p}_0 \cdot \delta\vec{h} + t^0 \quad (9)$$

where \vec{p}_0 is the slowness vector for the unperturbed raypath and $\delta\vec{h}$ denotes the perturbation of \vec{h} from the initial hypocenter $\vec{h}_0 = \vec{r}_0(0)$.

From Equation (9) we see that the Frechet kernel (continuous partial derivative of a functional) of arrival time with respect to slowness is a singular function concentrated along the unperturbed raypath. Therefore, the partial derivatives with respect to the velocities of homogeneous blocks in the earth are found by tracing rays through the initial model and calculating the length of the raypath segment intersecting each block. The partial derivatives of the arrival time with respect to the hypocenter components are the components of the unperturbed slowness vector. Of course, t^a is a linear function of the origin time t^0 .

Letting t^a be an observed arrival time and t_0^0 be an initial estimate of the earthquake origin time, we define an observed travel-time residual as

$$\delta t = t^a - t_0^0 - \int_{\Gamma_0} ds u_0 \quad (10)$$

Equations (6), (9) and (10) imply

$$\delta t = \int_{\Gamma_0} ds \delta u - \vec{p}_0 \cdot \delta\vec{h} + \delta t^0 + e \quad (11)$$

where e is the observational error and δt^0 is the error in the initial origin time ($\delta t^0 = t^0 - t_0^0$).

2.4 RAY TRACING IN GRADIENT LAYER MODELS

We restrict the initial velocity model to be a one-dimensional model with depth dependent velocity but no lateral variations. We lack sufficient prior knowledge of the lateral velocity variations in our study region to justify the development and production costs of two- or three-dimensional ray tracing.

Our ray tracing algorithm is designed for a rather general one-dimensional velocity model. The velocity function is assumed continuous with depth and consists of L segments or layers, each having a constant velocity gradient with depth. The gradient may be negative, zero, or positive. Thus, the model is specified by $L+1$ values of velocity and depth, v_l , z_l , $l = 1..L+1$, where $z_1 = 0$ (the surface) and z_{L+1} is the deepest point in the model (see Figure 2). The model is taken to be a "flat earth" model in which the earth's curvature is ignored. This is adequate for the source-receiver distances of concern (< 500 km).

The geometrical raypath through a medium of constant velocity gradient describes an arc of a circle. Let us write the velocity-depth function as

$$v = v_a + g(z - z_a) \quad . \quad (12)$$

This makes the velocity at a depth z_a equal to v_a and makes $dv/dz = g$. We will consider the raypath for the case $g \neq 0$. With little loss of generality, we assume the ray is confined to the plane $y = 0$. Let (x_a, z_a) be its starting point and θ_a

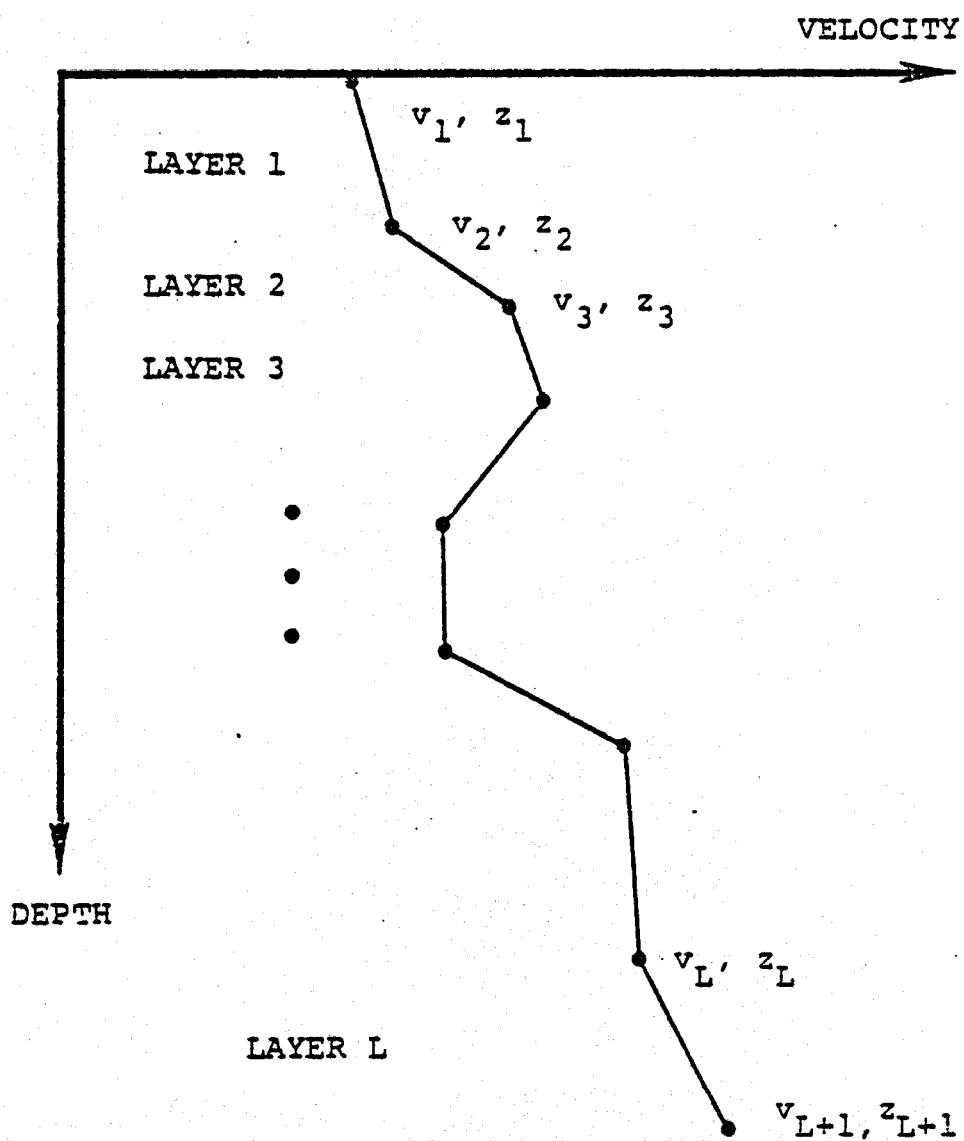


Figure 2. Schematic of initial velocity model.

its starting direction, measured as the angle from vertically down. Then the trajectory of the ray (x, z) is given by

$$p = \frac{\sin \theta_a}{v_a} = \frac{\sin \theta}{v} \quad (13)$$

$$x = x_a - (pg)^{-1} (\cos \theta - \cos \theta_a) \quad (14)$$

$$z = z_a + (pg)^{-1} (\sin \theta - \sin \theta_a)$$

Here v and θ are the velocity and tangent angle at any point on the ray. The constant p is the ray parameter and is the x component of the slowness vector used earlier. We note that Equations (13) and (14) are a solution of Equation (4). This can be verified after making the substitution $\eta = \theta \operatorname{sgn}(g)$.

Figure 3 illustrates the geometry of the raypath implied by Equation (14). The raypath is concave upward for $g > 0$ and concave downward for $g < 0$. (For $g = 0$, the path degenerates to a straight line.) The radius of the circular path is $(p|g|)^{-1}$. For the case $g > 0$, the path "bottoms" or turns at the depth where $v = p^{-1}$.

From Equations (12) through (14) one can derive the following formulae for the horizontal distance traveled (Δx), travel time (Δt), and length (Δs) of a ray traveling from the depth z_a to a depth z_b :

$$\Delta x = (pg)^{-1} (\cos \theta_a - \cos \theta_b)$$

$$\Delta t = g^{-1} \log \left[\frac{v_b (1 + \cos \theta_a)}{v_a (1 + \cos \theta_b)} \right]$$

$$\Delta s = (pg)^{-1} (\theta_b - \theta_a) \quad (15)$$

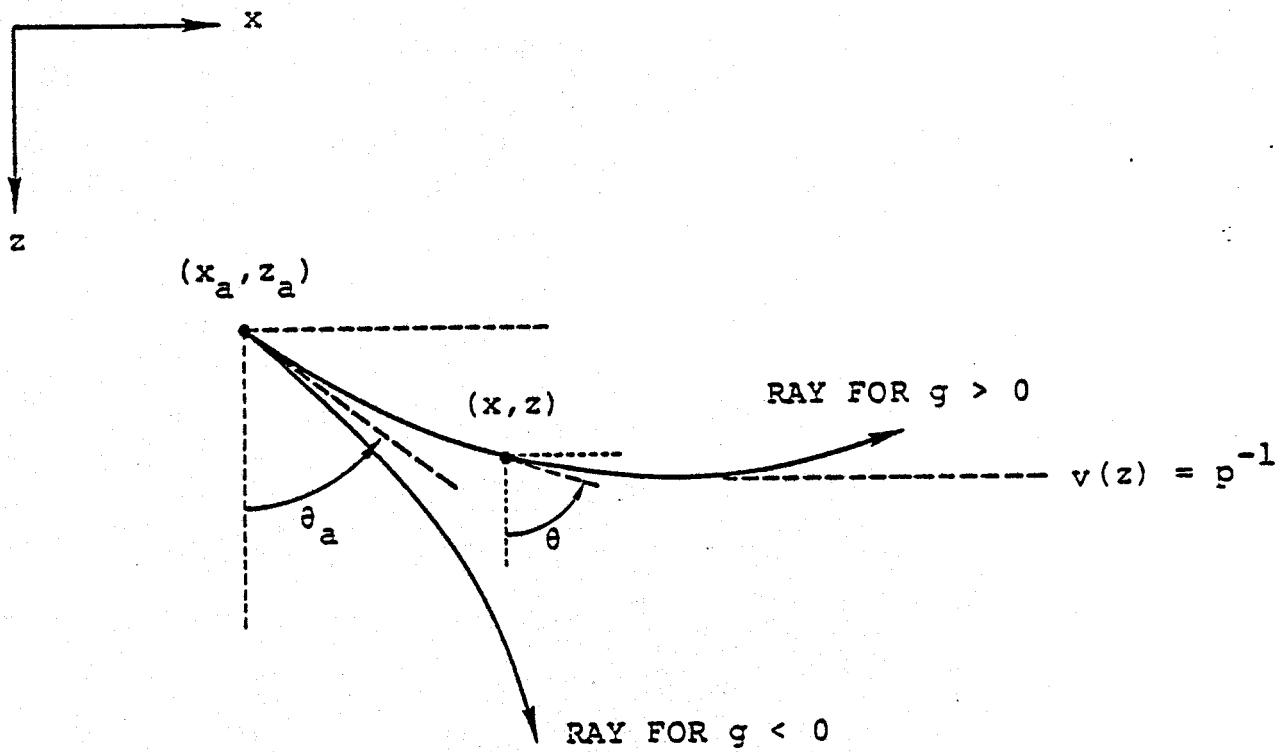


Figure 3. Circular raypaths through a medium of constant velocity gradient g .

where θ_b is determined from Equation (13) as

$$\theta_b = \sin^{-1} (p v_b) . \quad (16)$$

The expressions for the case $g = 0$, in which case the raypath is a straight line, are very simple and not shown.

One can apply Equations (14) and (15) layer by layer in a multilayered gradient model to obtain the entire ray trajectory, horizontal distance, and total travel time from an event hypocenter at depth to a station at the surface. One can thus evaluate for the initial velocity model the predicted travel time for each event-station path and, by determining the length of the raypath segment that traverses each block in the inversion model grid, the partial derivatives of the travel-time with respect to the block slowness perturbations.

The ray tracing equations we have developed assume that the takeoff angle (θ) at the hypocenter is known. Equivalently, one may specify the ray parameter p and the sense of takeoff: diving ($\theta < 90^\circ$) or "emerging" ($\theta > 90^\circ$). However, it is required that the ray be traced between fixed endpoints, representing the station location and an initial estimate of the event hypocenter. Therefore, p must be determined indirectly.

To determine the ray parameter of a given path, we first generate tables of distance (X) and travel time (T) versus ray parameter appropriate to the event focal depth. Tables are generated for both diving and emerging rays: $X_d(p)$, $T_d(p)$ and $X_e(p)$, $T_e(p)$. They are sampled at closely spaced values of p spanning the range of possible values determined from the velocities in the ray tracing model. The tables are used to estimate the ray parameters predicting the

known event-station distance. The estimate or estimates are then refined by an iterative root-finding procedure. Either a single emerging ray or a possible multiplicity of diving rays arrive at a given distance. The multiplicity results from triplications caused by large velocity gradients in the model. In this case, we choose the first-arrival ray parameter; i.e., the ray with the earliest travel time.

2.5. LINEAR INVERSE FORMULATION

Given travel-time residuals (δt) from several stations and events, and a three-dimensional block model representation of the slowness perturbation $\delta u(x, y, z)$, we can express Equation (11) as a discrete linear inverse problem of the form (E denotes expectation and Var denotes variance)

$$E[d] = Am + Bn$$

$$\text{Var}[d] = \Sigma \quad (17)$$

where d is the data vector containing the observed travel-time residuals, m a model parameter vector containing the block values of δu , and n a "nuisance" parameter vector containing the hypocenter mislocations (δh) and origin time errors (δt^0) of the events. The Matrix Σ is the covariance matrix of the observational errors (e), which are assumed to have zero mean.

The separation of the unknown parameters into two vectors is done to distinguish the parameters of primary interest (slowness perturbations) from those of ancillary interest (event location parameters). The Matrices A and B , respectively, contain the partial derivatives of the travel-time residuals with respect to the block slownesses and event parameters. From Equation (11) we see that the derivative of a residual with respect to the slowness of a block is the

length of the raypath segment intersecting the block. A given raypath intersects very few of the blocks so most elements in A are zero. Also from Equation (11), we see that B contains ones, zeroes and the slowness vectors from the various initial raypaths. A given residual depends on the parameters of only one event, so with a proper ordering of the data in d , B has a block diagonal structure.

We should mention that in setting up the problem in this form, there is no requirement that the data set be complete; i.e., that a residual exist for every event-station pair. Nonetheless, the system represented by Equation (17) is quite large in the present study. After data culling the data set consists of 601 residuals observed from 93 events. The model grid we designed (Section IV) contains 1050 blocks. Therefore, the system contains 601 equations and 1422 unknowns (1050 in m and 372 in n). The 372 event locations parameters, however, are not of interest.

Instead of applying generalized linear inverse techniques directly to a system this large, we first employed a technique that reduces the system to a simpler and smaller one; i.e., a "denuisancing" technique, which eliminates the nuisance vector n from the system by constructing an equivalent inverse problem involving only m . Before describing this technique and the inversion algorithm itself, let us define the optimality criterion we use to obtain a solution to Equation (17).

We define a solution to Equation (17) as estimates \tilde{m} and \tilde{n} which satisfy the damped least squares criterion

$$(d - A\tilde{m} - B\tilde{n})^T \Sigma^{-1} (d - A\tilde{m} - B\tilde{n}) + \theta \tilde{m}^T W^{-1} \tilde{m} + \phi \tilde{n}^T Z^{-1} \tilde{n}$$

is minimum (18)

where θ and ϕ are scalar trade-off parameters and W and Z are specified parameter weighting matrices, both assumed positive definite. This criterion is equivalent to the optimality criteria defined by Backus and Gilbert (1970) and Jordan (1973), but we have expressed it in terms of two parameter vectors instead of the usual one.

The first term in Equation (18) is a measure of the "misfit" between the observed data, d , and the data predicted by the solution (\tilde{m}, \tilde{n}) . The second and third terms are norms of \tilde{m} and \tilde{n} , respectively. These terms stabilize the solution by damping components of \tilde{m} and \tilde{n} that do not contribute much to fitting the data, but which may cause the solution to become physically implausible.

In the travel-time problem, it is useful to interpret the product $\phi^{-1}Z$ as a prior variance assigned to n :

$$\text{Var}[n] = \phi^{-1}Z \quad . \quad (19)$$

Thus, ϕ and Z assign an uncertainty to the initial origin times and error ellipsoids to the initial hypocenters. Making the prior variance sufficiently large allows \tilde{n} to adjust freely to fit the data.

In selecting θ and W for the damping of \tilde{m} , the prior variance interpretation is not very useful. Instead, we set up the model norm to be a measure of the roughness of the velocity structure. That is, we construct W^{-1} as a non-diagonal matrix such that the model norm is a discrete approximation to the following integral:

$$\tilde{m}^T W^{-1} \tilde{m} \doteq \int dx \int dy \int dz [(\partial_x \delta \tilde{v})^2 + (\partial_y \delta \tilde{v})^2 + \lambda^{-2} (\delta \tilde{v})^2] . \quad (20)$$

where $\delta \tilde{v}$ is the velocity perturbation ($\delta \tilde{v} = -u_0^2 \delta \tilde{u}$). With this definition, $\tilde{m}^T W^{-1} \tilde{m}$ is sensitive to lateral gradients in

$\delta\tilde{v}$ of a scale smaller than λ , which we set to a large value (200 km). In this way, θ allows us to control a trade-off between the smoothness of the velocity model and the fit it provides to the data. The best value of θ cannot be determined in advance. Rather, it must be selected on the basis of examining models and their predicted data computed with several values of θ .

In the following developments, we will use some abbreviations to simplify expressions. We will use a circumflex above symbols to denote that quantities have been normalized by the factor $\Sigma^{-\frac{1}{2}}$. Thus,

$$\begin{aligned}\hat{d} &= \Sigma^{-\frac{1}{2}} d \\ \hat{A} &= \Sigma^{-\frac{1}{2}} A \\ \hat{B} &= \Sigma^{-\frac{1}{2}} B\end{aligned}\quad (21)$$

We will also apply this notation to quantities defined later, without further explanation.

2.6 DENUISING

An example of denuisancing is the zero-meaning of teleseismic travel-time residuals and their partial derivatives, derived by Aki, et al. (1977) as a way to eliminate the effects of baseline errors from the inverse problem. This basic denuisancing technique has been extended and generalized by Savino, et al. (1977), Pavlis and Booker (1980), Spencer and Gubbins (1980) and Minster, et al. (1981). Here we summarize the algorithm of Minster, et al. (1981) in the context of solving Equations (17) and (18).

To begin, we note that Equation (18) is equivalent to the coupled normal equations:

$$(\hat{A}^T \hat{A} + \theta W^{-1}) \tilde{m} + \hat{A}^T \hat{B} \tilde{n} = \hat{A}^T \hat{d} \quad (22a)$$

$$\hat{B}^T \hat{A} \tilde{m} + (\hat{B}^T \hat{B} + \phi Z^{-1}) \tilde{n} = \hat{B}^T \hat{d} \quad (22b)$$

Solving Equation (22a) for \tilde{n} we obtain

$$\tilde{n} = \hat{B}^- (\hat{d} - \hat{A} \tilde{m}) \quad (23)$$

where

$$\hat{B}^- = (\hat{B}^T \hat{B} + \phi Z^{-1})^{-1} \hat{B}^T \quad (24)$$

The matrix \hat{B}^- is a damped generalized inverse of \hat{B} . Now we define the symmetric matrix Q_B by

$$Q_B = I - \hat{B} \hat{B}^- \quad (25)$$

Then substituting \tilde{n} in Equation (23) into Equation (22a) gives

$$(\hat{A}^T Q_B \hat{A} + \theta W^{-1}) \tilde{m} = \hat{A}^T Q_B \hat{d} \quad (26)$$

We can simplify this with the following substitutions:

$$\hat{A}_v = Q_B^{\frac{1}{2}} \hat{A} \equiv \Sigma^{-\frac{1}{2}} A_v \quad (27a)$$

$$\hat{d}_v = Q_B^{\frac{1}{2}} \hat{d} \equiv \Sigma^{-\frac{1}{2}} d_v \quad (27b)$$

Then Equation (26) becomes

$$(A_v^T \Sigma^{-1} A_v + \theta W^{-1}) \tilde{m} = A_v^T \Sigma^{-1} d_v \quad (28)$$

Equation (28) is the normal equation that results from

the minimization condition

$$(d_v - A_v \tilde{m})^T \Sigma^{-1} (d_v - A_v \tilde{m}) + \theta \tilde{m}^T W^{-1} \tilde{m} \text{ is minimum.} \quad (29)$$

Comparing to Equations (17) and (18), we see that \tilde{m} is a solution to an equivalent inverse problem that does not involve the nuisance vector \tilde{n} ; namely,

$$E[d_v] = A_v m$$

$$\text{Var}[d_v] = \Sigma \quad . \quad (30)$$

Equations (29) and (30) are a standard linear inverse problem and we discuss its solution in Section 2.7.

We call the operator $Q_B^{\frac{1}{2}}$ in Equation (27) a denuisancing operator, and d_v and A_v denuisanced data and partial derivatives, respectively. It is convenient for computation to evaluate $Q_B^{\frac{1}{2}}$, and the damped generalized inverse \hat{B}^- , in terms of the singular value decomposition (SVD) of \hat{B} (Lanczos, 1961; Wiggins, 1972).

Let

$$\hat{B}^{\frac{1}{2}} = S \Gamma T^T \quad (31)$$

where the columns of S and T are orthonormal eigenvectors and Γ is a diagonal matrix of positive eigenvalues:

$$S^T S = T^T T = I$$

$$\Gamma = \text{diag} (\gamma_1, \gamma_2, \dots) > 0 \quad . \quad (32)$$

Then we have

$$\begin{aligned}\hat{B}^{-1} &= z^T \Gamma^2 (\Gamma^2 + \phi I)^{-1} S^T \\ Q_B &= I - S \Gamma^2 (\Gamma^2 + \phi I)^{-1} S^T \\ Q_B^{\frac{1}{2}} &= I - S [I - \phi^{\frac{1}{2}} (\Gamma^2 + \phi I)^{-\frac{1}{2}}] S^T\end{aligned}\quad (33)$$

When $\phi \ll \gamma_k^2$, which is the case for the value of ϕ we selected for the Roosevelt Hot Springs inversion, $Q_B^{\frac{1}{2}}$ approximates an orthogonal projection operator:

$$Q_B^{\frac{1}{2}} \underset{\phi \approx 0}{\approx} I - S S^T. \quad (34)$$

Denuisancing then removes the projections of d and A onto the range space of B .

In the local travel-time residual problem, B has a block diagonal structure. The denuisancing operator $Q_B^{\frac{1}{2}}$ then reduces to a block diagonal matrix, and the denuisancing algorithm becomes particularly efficient.

2.7 LINEAR INVERSE ALGORITHM

We have reduced the teleseismic residual problem to a standard linear inverse problem of the form:

$$\begin{aligned}E[\hat{d}] &= \hat{A} m \\ \text{var}[\hat{d}] &= I\end{aligned}\quad (35)$$

where m represents the slowness perturbation δu and \hat{d} represents the (denuisanced) travel-time residuals. A solution \tilde{m} to Equation (35) has been defined by

$$(\hat{d} - \hat{A}\tilde{m})^T (\hat{d} - \hat{A}m) + \theta \tilde{m}^T W^{-1} \tilde{m} = \text{minimum} . \quad (36)$$

This defines \tilde{m} as a linear estimator of the form

$$\tilde{m} = \hat{A}^{-1} \hat{d} \quad (37)$$

where \hat{A}^{-1} is the damped generalized inverse of \hat{A} .

The algorithm we use to obtain \hat{A}^{-1} is very similar to the algorithm described in Section 2.6 for obtaining \hat{B}^{-1} . In this case, we factor the weighting matrix as

$$W^{-1} = H^T H \quad (38)$$

where H is a square nonsingular matrix. (We actually specify H instead of W^{-1} .) Then we obtain the SVD

$$\hat{A} H^{-1} = U \Lambda V^T , \quad (39)$$

where

$$U^T U = V^T V = I$$

$$\Lambda = \text{diag} (\lambda_1, \lambda_2, \dots, \lambda_K) > 0 . \quad (40)$$

Even after denuisancing, \hat{A} is a very large matrix (601 by 1050) so the SVD requires a core-to-disk computer algorithm. The inverse \hat{A}^{-1} is then obtained as

$$\hat{A}^{-1} = H^{-1} V \Lambda (\Lambda^2 + \theta I)^{-1} U^T . \quad (41)$$

Since Λ is diagonal this expression is readily evaluated for varying θ .

Equations (35) and (37) imply

$$E[\tilde{m}] = \mathcal{R}m$$

$$\text{Var}[\tilde{m}] = \mathcal{V} \quad (42)$$

where

$$\mathcal{R} = \hat{A}^{-1} \hat{A} = H^{-1} V \Lambda^2 (\Lambda^2 + \theta I)^{-1} V^T H$$

$$\mathcal{V} = \hat{A}^{-1} \hat{A}^{-T} = H^{-1} V \Lambda^2 (\Lambda^2 + \theta I)^{-2} V^T (H^{-1})^T \quad (43)$$

\mathcal{R} is the resolution matrix and \mathcal{V} the covariance matrix of the model \tilde{m} . These matrices provide a means for assessing the uniqueness of \tilde{m} . Equation (43) states that \tilde{m} is an estimate of m "filtered" by \mathcal{R} , and not of m itself. With \tilde{m} as a three-dimensional block model of the earth, each component \tilde{m}_i estimates a spatial average of the true structure; the i 'th row of \mathcal{R} is a discrete three-dimensional function which shows the spatial extent of the averaging or filtering. In addition to the filtering, \tilde{m} is also contaminated by a random error whose variance is \mathcal{V} .

The quantities \mathcal{R} and \mathcal{V} aid in selecting a "best" single model among the family of models $\tilde{m}(\theta)$ defined over $0 < \theta < \infty$. Backus and Gilbert (1970) showed that as θ increases $(I - \mathcal{R})$ increases (resolution degrades) and \mathcal{V} decreases, thus giving a trade-off between resolution and variance. One should attempt to choose θ such that $(I - \mathcal{R})$ and \mathcal{V} are both acceptably small.

The parameter θ also controls a trade-off between model roughness and data misfit, as one can see from the minimization criterion, Equation (36). The quantity ϵ , given by

$$\epsilon^2 = \frac{1}{N} (d - A \tilde{m})^T \Sigma^{-1} (d - A \tilde{m}) , \quad (44)$$

where N is the number of data, ϵ is the r.m.s. misfit between the observed (denuisanced) data and the data predicted by \tilde{m} , $A \tilde{m}$. The squared model norm, $\tilde{m}^T \Sigma^{-1} \tilde{m}$, measures the total "roughness" of the model. As a function of increasing θ , ϵ increases and the model norm decreases. While these scalar quantities are useful, it is desirable to visually examine the smoothness of the entire model and to compare the full observed and predicted data sets, in selecting and assessing a final model.

It is convenient to convert the trade-off parameter to a dimensionless quantity which is the effective number of degrees of freedom (NDF) in the model $\tilde{m}(\theta)$. NDF is defined as

$$NDF = \sum_{k=1}^K \lambda_k^2 / (\lambda_k^2 + \theta) \quad (45)$$

and equals the rank of \mathcal{R} .

III. SEISMIC AND GRAVITY DATA

3.1 LOCAL SEISMIC DATA-ROOSEVELT HOT SPRINGS

The local seismic data set for the Roosevelt Hot Springs (RHS) area was obtained from Dr. Robert Smith at the University of Utah. This data set consisted of 870 arrival time estimates of P-waves recorded at a network of up to 20 seismographs from 163 events. Figure 4 shows the locations of the seismograph stations and Figure 5 the seismic events recorded during surveys conducted in 1974 and 1975 by Olson and Smith (1976). In Table 1 we list the locations of the 20 seismograph stations depicted in Figure 4. The last column in this table gives estimates of the average velocity of intervening material beneath the station and the common datum plane, which in this study was taken at 2 km above sea level. These estimates are based on station elevation-correction velocities determined by Robinson and Iyer (1981) for a set of stations located throughout the region of interest in this study. Hypocentral information for the 163 events plotted in Figure 5 is given in Table 2.

Some general comments based on Figures 4 and 5 are the following:

1. The actual number of seismograph stations operating during any one time period, and thus for a particular event, is less than 20.
2. The distribution of stations is quite inhomogeneous with a concentration of sites in the Cove Fort area.
3. The spatial distribution of seismic events is also inhomogeneous with concentrations of activity in a few areas of the study region.

○ = 1974 STATION SITE
 □ = 1975 STATION SITE
 ◇ = 1974-75 STATION SITE

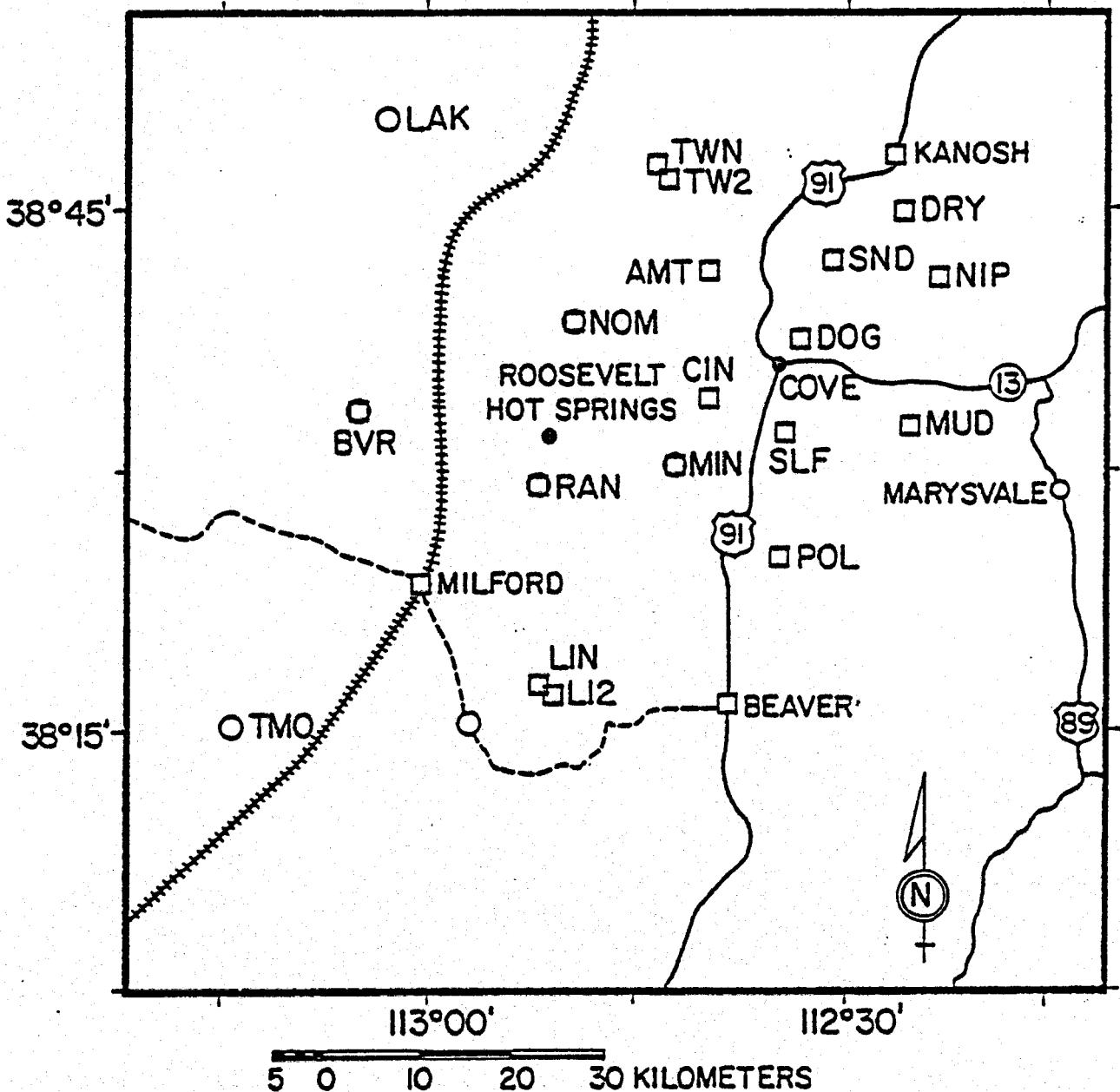


Figure 4. Station locations for 1974 through 1975 surveys in the Roosevelt Hot Springs area.

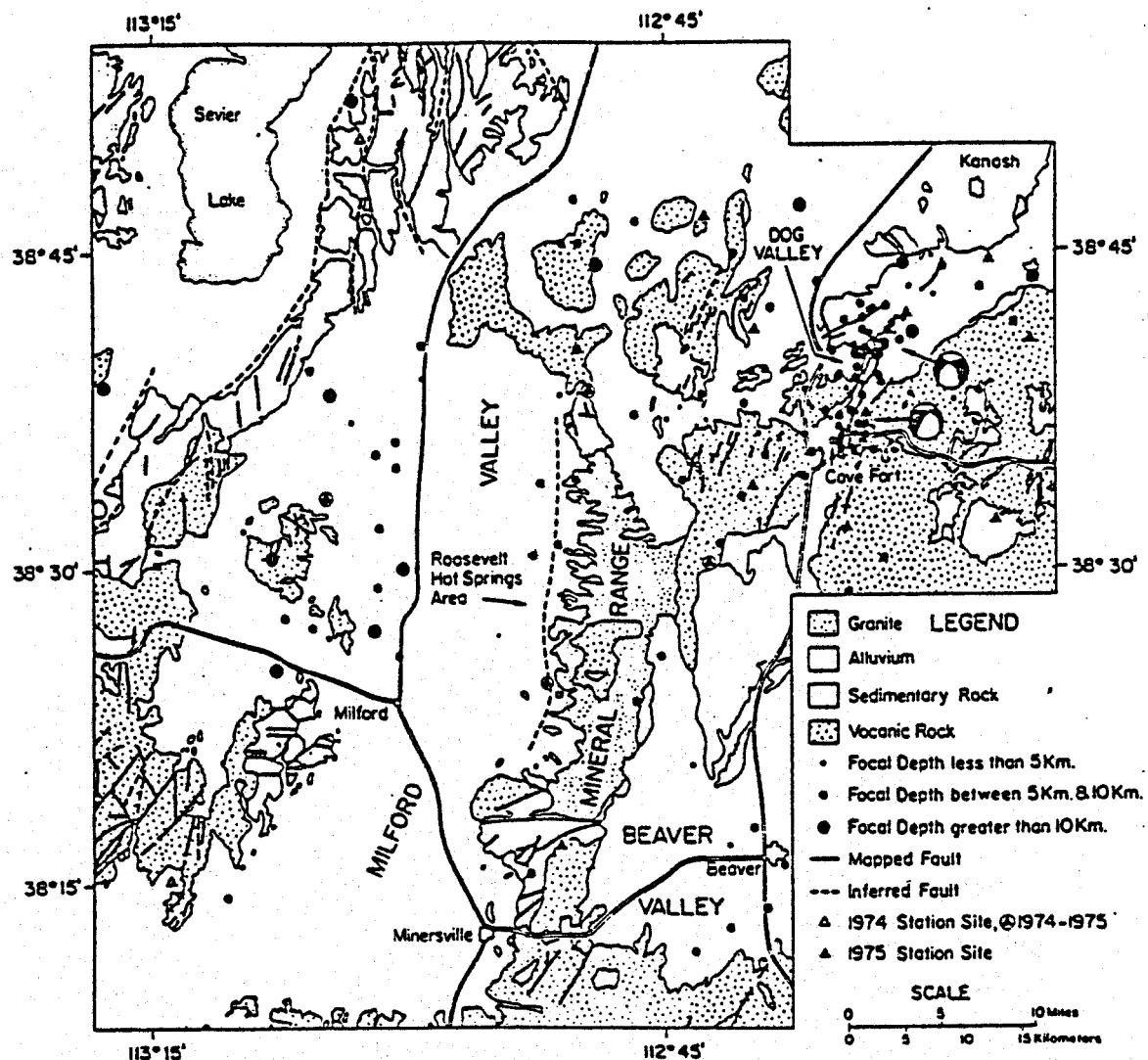


Figure 5. Epicenter map of the Roosevelt Hot Springs-Cove Fort, Utah area from earthquake surveys in 1974 and 1975.

TABLE 1
STATION LOCATIONS

Station Name (Code)	Longitude	Latitude	Elevation (meters)	Elevation Correction Velocity (km/s)
Antelope Valley (ANT)	112°38.36'	38°39.12'	1871.9	3.0
Beaver Lake Mountains (BVR)	113°04.66'	38°31.89'	1658.5	2.0
Cinder Crater (CIN)	112°38.27'	38°34.39'	1973.2	3.0
Dog Valley (DOG)	112°33.36'	38°38.43'	1964.0	3.0
Dry Wash (DRY)	112°28.06'	38°45.16'	1707.8	3.0
Lincoln Gulch (LIN)	112°52.22'	38°16.57'	2098.2	4.5
Lincoln II (LI2)	112°51.62'	38°16.59'	2147.0	4.5
Mine (MIN)	112°41.27'	38°29.75'	2055.5	3.0
Mud Springs (MUD)	112°24.58'	38°32.08'	2214.1	3.0
Mary's Nipple (NIP)	112°25.69'	38°40.95'	2217.1	3.0
North Mineral (NOM)	112°49.71'	38°37.91'	1762.7	4.5
North Mineral II (NM2)	112°50.23'	38°37.64'	1834.0	4.5
Pole Canyon (POL)	112°32.54'	38°25.03'	2409.3	3.0
Ranch Canyon (RAN)	112°50.85'	38°25.65'	1982.3	4.5
Sandstone (SND)	112°31.72'	38°40.75'	1970.1	3.0
Sevier Lake (LAK)	113°02.44'	38°52.90'	1590.0	-
Sulphur Creek (SLF)	112°33.85'	38°32.69'	2098.2	3.0
Thermo (TMO)	113°17.62'	38°15.27'	1590.0	-
Twin Peaks (TWN)	112°44.35'	38°46.89'	1622.5	4.5
Twin Peaks II (TW2)	112°44.63'	38°44.96'	1616.4	4.5

TABLE 2
EARTHQUAKE LOCATION INFORMATION

Event	Date	0-Time	Lat(N)	Long(W)	Depth*	Depth ^m	Depth ^b
	YrMoDy	HrMn Sec	DgMnSec	DgMnSec	(km)		
*0098	750626	1230	44.88	3830	4.8-113 0 2.4	16.57	4.19
*0010	740913	15441	39.98	3838	9.6-1125042.6	1.16	1.75
*0036	750612	2044	41.32	3844	10.0-1124829.4	12.94	1.18
*0037	750612	2225	36.97	3835	10.2-1123834.2	2.06	1.44
*0070	750617	07259	31.89	3816	4.6-11241 1.2	2.57	1.59
*0073	750619	11000	42.26	3825	3.4-113 7 3.2	14.33	3.93
*0075	750620	20559	19.80	3844	2.0-11240 3 3.6	1.96	2.16
*0131	750628	09448	23.77	3836	1.8-113 0 2.5	8.82	3.19
*0113	750630	12448	24.65	3815	4.6-1123747.4	5.00	2.02
*0001	740907	19352	19.69	3834	5.6-11247 3 3.0	5.00	1.55
*0002	740907	20555	19.26	3835	2.5-113 1 3.3	5.00	1.81
*0005	740911	16005	11.58	3834	4.6-11249 8 6	5.00	1.12
*0006	740912	20553	36.10	3833	5.9.4-1125157.6	5.00	1.98
*0007	740912	21208	59.74	3830	3.4-1124310.8	5.00	1.63
*0009	740913	08008	16.79	3823	2.0-1124232.0	5.00	1.46
*0011	740913	18100	33.69	3824	1.0-1124133.4	5.00	1.74
*0012	740913	18554	27.64	3838	2.5-1124632.7	5.00	1.60
*0013	740913	19155	47.86	3839	1.4-1124618.0	5.00	1.27
*0014	740913	20200	27.98	3823	3.2-1124624.2	5.00	1.60
*0015	740913	20240	68.45	3822	3.6-1124331.1	5.00	1.24
*0016	740913	21202	15.58	3822	5.5-1124555.8	5.00	1.29
*0017	740914	00159	55.09	3822	2.0-1124026.4	5.00	1.42
*0018	740914	04444	54.58	3822	1.4-1124155.8	5.00	1.08
*0021	740915	1747	57.16	3818	1.4-113 1 145.6	5.00	1.11
*0022	740915	18244	13.50	3818	1.4-1131034.8	5.00	0.83
*0025	740916	15443	79.99	3832	3.6-1125853.4	5.00	1.14
*0025	740916	18250	28.96	3831	6.6-1125057.0	5.00	1.21
*0026	740916	19349	14.80	3829	1.2-1124132.4	5.00	1.37
*0028	740919	1937	3.76	3838	3.3-1124217.4	5.00	1.28
*0030	740920	23400	57.64	3827	1.7-113 1 2526.4	5.00	1.42
*0031	740922	10122	53.51	3828	6.5-1125330.0	5.00	1.69
*0032	740923	13009	74.86	3835	7.3-112519.8	5.00	1.76
*0033	740923	2004	50.95	3838	7.3-112519.7	5.00	1.59
*0038	740924	20104	50.54	3838	3.0-113 1 419.4	14.50	1.71
*0035	750611	211555	54.81	3838	3.0-113 1 714.4	18.00	2.29
*0038	750613	082254	54.89	3846	5.0-1124612.0	5.00	1.95
*0040	750613	082254	48.20	3846	5.0-1124613.5	5.00	1.31
*0041	750613	08227	36.36	3812	5.1-11249 2.4	5.00	2.50
*0055	750614	2214	12.08	3812	5.1-11249 2.4	5.00	2.50
*0056	750615	08119	18.46	3812	5.1-1123850.4	5.00	1.75
*0065	750617	00008	77.04	3838	3.2-1125034.2	5.00	1.26
*0072	750617	14357	8.27	3738	7.0-1125157.0	7.00	2.44
*0077	750621	16329	67.44	3845	5.2-11249 31.8	5.00	1.42
*0079	750624	201551	45.16	3837	2.1-11249 25.4	5.00	2.10
*0080	750624	201551	36.36	3837	2.1-11249 25.4	5.00	1.96
*0083	750622	06219	9.26	3852	1.6-1124425.6	5.00	3.57
*0087	750622	193143	17.70	3844	4.0-1124855.2	5.00	1.16
*0096	750625	223244	10.62	3840	3.6-1124127.0	5.00	2.35
*0124	750703	0322	45.30	3831	5.8-1124327.0	5.00	1.45
*0150	750703	0417	24.44	3836	1.7-1124721.0	10.00	1.82
*0106	750630	0417	11.61	3847	2.5-1124254.7	9.50	1.95
*0027	740917	2006	47.70	3837	1.3-1124254.7	9.50	1.11
*0053	750614	12247	46.54	3838	3.1-1124313.4	4.00	1.26
*0078	750621	20247	46.54	3838	3.1-1124313.4	4.00	1.17
*0091	750623	18217	23.56	3835	3.8-112427.0	9.00	1.12
*0093	750623	18219	10.23	3836	4.4-112427.0	9.00	1.12
*0107	750630	0445	19.73	3836	4.4-112427.0	9.00	1.68
*0110	750630	0451	50.99	3836	3.0-112427.6	4.00	2.29
*0111	750630	0451	10.31	3836	3.0-112427.6	4.00	1.79
*0114	750630	02211	6.46	3842	3.7-112433.6	6.00	1.23
*0135	750704	0206	71.61	3836	1.7-1124350.4	3.00	1.89
*0145	750706	0106	71.61	3836	1.7-1124350.4	3.00	1.89
*0146	750706	16329	16.10	3842	2.0-1124222.8	6.00	1.74
*0157	750737	0247	47.53	3842	2.0-1124222.8	6.00	1.47
*0053	750614	12247	46.54	3835	3.4-112333.6	5.60	1.38
*0078	750621	20247	46.54	3843	3.4-112333.6	5.60	1.10
*0093	740909	1716	36.61	3843	4.5-1122246.8	10.00	2.27
*0099	740920	14568	49.46	3835	9.0-1121639.6	10.00	2.27
*0032	750613	0350	52.66	3837	5.4-1123457.6	10.00	2.77
*0042	750613	2034	59.46	3836	1.6-1123636.4	1.00	1.40
*0046	750614	0457	7.46	3842	3.4-1123026.4	1.00	0.93
*0047	750614	0559	39.97	3835	4.0-1123217.0	1.00	0.93
*0048	750614	0742	57.97	3843	1.1-1122841.0	1.00	0.93
*0049	750614	1031	32.00	3836	0.6-112341.0	1.00	0.88
*0051	750614	1031	46.08	3836	0.6-112341.0	1.00	0.88
*0052	750614	1116	28.24	3826	18.6-11234.6	1.00	0.88
*0054	750614	1456	57.54	3841	57.0-112357.6	1.00	0.88

* Measured from datum plane at
2 km above sea level.

TABLE 2 (continued)

As we will note in more detail in the following section of this report, the particular station and event distributions in the intended study region impacts the final inversion model in very specific and, in fact, negative ways. This situation is typical of most of our modeling projects conducted to date and mainly reflects the lack of seismic networks dedicated (i.e., more dense, evenly spaced stations) to the type of study we are interested in.

3.1.1 RHS Seismic Data Culling

The first step in the RHS data culling procedure was to delete poorly recorded events from the data base. To accomplish this, we adopted the following rejection criteria:

1. For an event in any part of the general study region, reject it if there are less than five stations reporting a P-wave arrival time and no stations reporting an S-wave arrival time, or if there are less than four stations reporting P times in the case where one or more report S times.
2. For an event in the Cove Fort area, where there is an abundance of events, reject it if less than six stations report P times and no stations report an S time, or if there are less than five stations reporting P times in the case where one or more report S times.
3. Reject any events located north of 38.9°N or south of 38.0°N . Such events, in addition to being outside the intended model region, are located well outside the local network and, thus, are very poorly located.

4. Reject events with reported focal depths
greater than 25 km.

Application of these four rejection criteria resulted in a reduction of the original 163 events to 99 events (i.e., 64 events rejected). The breakdown by criterion is: 49 events by Criterion 1; 11 events by Criterion 2; 3 events by Criterion 3; and 1 event by Criterion 4. In addition, after applying these rejection criteria to the data base we found that two stations, LAK and TMO (refer to Figure 4, Table 1), located well outside the central portion of the intended model region, contributed a very small number of arrival time data. In view of these circumstances we deleted stations LAK and TMO from the station set. Thus, at the conclusion of this culling step the resultant data base consisted of 620 P-wave arrival times for 99 events recorded at a subset of 18 stations.

The final step in the culling procedure was to compare observed and predicted travel times corresponding to the remaining 620 station-event ray paths and reject obvious outliers (i.e., observed travel times that differ by more than ten percent from predicted values). Application of this culling procedure required the adoption of a plane-layered initial velocity model for the general study region shown in Figure 1. To accomplish this, we started with the velocity model used in HYPO 71 by Olson and Smith (1976; Figure 4b, Page 15) to locate the 163 earthquakes listed in Table 2. While this model, which consisted of three layers over a half-space, provides a good fit to the travel time versus distance data (as expected since it was 'used' for the location of the events in question), the particular layering adopted by Olson and Smith (1976) does not provide an adequate parameterization for an inversion modeling procedure. More specifically, the Olson and Smith (1976) model does not yield an adequate distribution of ray paths in the different layers. An additional consideration is the fact that

we used different station elevation correction velocities determined, as mentioned previously, from the work of Robinson and Iyer (1981). The initial velocity model that we arrived at by trial and error is given in Table 3.

Based on the velocity model in Table 3, we calculated travel-times for the 620 event-station ray paths in the seismic data set and used these results for final screening of the data, invoking the ten percent rule mentioned previously. The final data set consists of 601 P-wave travel times from 93 of the original 163 earthquakes. The location information for these 93 earthquakes is given in Table 4.

Figures 6a through 6e are plots of the observed reduced travel times (symbols), after all screening, for events with focal depths reported within the respective layers (e.g., events with focal depths between 0 and 1 km are plotted in Figure 6a). The observed times in each figure are corrected to be for a common focal depth, taken to be the depth of the midpoint of the respective layers, except Layer 1 which is taken at 0 km. The data are also corrected to a common station elevation of 2 km above sea level. The theoretical travel-time curves shown in Figures 6a through 6e were computed from the initial velocity model in Table 3 for event focal depths equal to the appropriate common depths for the five different layers.

The reduced travel-times shown in Figures 6a through 6e were subsequently denuisanced with respect to event hypocenters; assuming prior standard deviations of 4 km on epicenter, 2 km on focal depth and 100 seconds on origin time. The use of prior standard deviations on earthquake location parameters was discussed in Section 2.5 of this report. The resulting denuisanced travel-time data are shown in Figures 7a through 7e. The format of this series of figures is the same as for Figures 6a through 6e. An important point about these data is that the r.m.s. of the observed, denuisanced residuals (i.e., the scatter of the symbols about the theoretical curves in Figures 7a through 7e)

TABLE 3
INITIAL VELOCITY MODEL

Layer	Depth* to Bottom of Layer (km)	Layer Thickness (km)	Velocity (km/s)
1	1.0	1.0	4.5
2	2.0	1.0	5.4
3	3.5	1.5	5.6
4	7.0	3.5	5.75
5	26.0	19.0	6.05

* Measured from datum plane at
2 km above sea level.

TABLE 4
LOCATION INFORMATION FOR FINAL EVENT SET

Event	Date YrMoDy	0-Time HrMn Sec	Lat(N) Dg Mn Sec	Long(W) Dg Mn Sec	Depth m (km) b
0098	7506126	12000	44° 08.88	10° 00.00	16.57 0.19
0036	7506122	2044	44° 08.32	12000	20.94 0.18
0037	7506122	2058	44° 08.97	12000	20.57 0.44
0070	7506117	2900	44° 08.26	12000	20.57 0.59
0073	7506119	1355	44° 08.26	12000	20.57 0.93
0075	7506120	0946	44° 08.40	12000	20.57 1.19
0110	7506130	1919	44° 08.55	12000	20.57 1.44
00101	7409013	1818	44° 08.69	12000	20.67 1.44
00113	7409113	2119	44° 08.69	12000	20.67 1.60
00211	7409115	1818	44° 08.69	12000	20.67 1.60
00222	7409119	2119	44° 08.69	12000	20.67 1.60
00300	7409220	1923	44° 08.66	12000	20.67 1.60
00311	7409222	2310	44° 08.65	12000	20.67 1.60
00332	7409223	2000	44° 08.65	12000	20.67 1.60
00335	7409224	1914	44° 08.65	12000	20.67 1.60
00410	7506113	0822	44° 08.65	12000	20.67 1.60
00555	7506113	0822	44° 08.65	12000	20.67 1.60
00656	7506115	0828	44° 08.65	12000	20.67 1.60
00777	7506121	1616	44° 08.65	12000	20.67 1.60
00879	7506121	2123	44° 08.65	12000	20.67 1.60
00968	7506125	2322	44° 08.65	12000	20.67 1.60
01241	7507033	0842	44° 08.67	12000	20.67 1.63
00566	7506114	0842	44° 08.67	12000	20.67 1.63
00915	7506123	1818	44° 08.67	12000	20.67 1.63
00937	7506125	0842	44° 08.67	12000	20.67 1.63
01107	7506130	0842	44° 08.67	12000	20.67 1.63
01111	7506130	0842	44° 08.67	12000	20.67 1.63
01144	7507034	0842	44° 08.67	12000	20.67 1.63
01355	7507066	1616	44° 08.67	12000	20.67 1.63
0115527	7507067	1616	44° 08.67	12000	20.67 1.63
0116299	7507080	1616	44° 08.67	12000	20.67 1.63
005670	7506114	1010	44° 08.67	12000	20.67 1.63
0056127	7506114	1010	44° 08.67	12000	20.67 1.63
005527	7506115	0919	44° 08.67	12000	20.67 1.63
00558	7506115	0919	44° 08.67	12000	20.67 1.63
00666	7506117	1303	44° 08.67	12000	20.67 1.63
00711	7506119	1313	44° 08.67	12000	20.67 1.63
00888	7506126	1212	44° 08.67	12000	20.67 1.63
00997	7506128	0101	44° 08.67	12000	20.67 1.63
01000	7506128	0102	44° 08.67	12000	20.67 1.63
01023	7506129	1414	44° 08.67	12000	20.67 1.63
01055	7506130	0842	44° 08.67	12000	20.67 1.63
01099	7506130	0842	44° 08.67	12000	20.67 1.63
01122	7506130	0842	44° 08.67	12000	20.67 1.63
01166	7507031	0800	44° 08.61	12000	20.67 1.63
01188	7507031	0117	44° 08.61	12000	20.67 1.63
01199	7507032	0117	44° 08.61	12000	20.67 1.63
01222	7507032	0106	44° 08.61	12000	20.67 1.63
01226	7507033	0107	44° 08.61	12000	20.67 1.63

TABLE 4 (continued)

Event	Date			O-Time			Lat(N)			Long(W)			Depth		
	Yr	Mo	Day	Hr	Mn	Sec	Dg	Mn	Sec	Dg	Mn	Sec	(km)	m	b

0127	75	07	03	02	49	2.90	36	8	0	51	0	0	112	10	45.6	6.02	.63
0128	75	07	03	09	49	2.78	36	8	0	51	0	0	112	10	48.4	2.92	.43
0129	75	07	03	09	49	47.12	36	8	0	51	0	0	112	10	55.7	.78	
0131	75	07	03	13	05	48.98	36	8	0	51	0	0	112	10	55.7	.61	
0133	75	07	04	04	04	34.04	36	8	0	51	0	0	112	10	55.7	.97	
0136	75	07	04	11	10	40.07	36	8	0	51	0	0	112	10	55.7	.79	
0137	75	07	04	11	24	40.07	36	8	0	51	0	0	112	10	55.7	.73	
0138	75	07	04	12	50	31.71	36	8	0	51	0	0	112	10	55.7	.40	
0140	75	07	04	13	06	37.32	36	8	0	51	0	0	112	10	55.7	1.17	
0141	75	07	04	22	02	43.37	36	8	0	51	0	0	112	10	55.7	.72	
0143	75	07	05	08	12	52.67	36	8	0	51	0	0	112	10	55.7	.61	
0146	75	07	06	01	07	40.07	36	8	0	51	0	0	112	10	55.7	.61	
0147	75	07	06	02	46	29.34	36	8	0	51	0	0	112	10	55.7	1.02	
0149	75	07	06	06	17	8.46	36	8	0	51	0	0	112	10	55.7	.76	
0151	75	07	06	06	21	41.84	36	8	0	51	0	0	112	10	55.7	1.06	
0153	75	07	07	01	10	19.52	36	8	0	51	0	0	112	10	55.7	1.18	
0154	75	07	07	01	50	33.52	36	8	0	51	0	0	112	10	55.7	1.06	
0155	75	07	07	04	56	31.62	36	8	0	51	0	0	112	10	55.7	1.06	
0156	75	07	07	04	56	31.39	36	8	0	51	0	0	112	10	55.7	1.06	
0161	75	07	08	03	56	4.27	36	8	0	51	0	0	112	10	55.7	1.14	

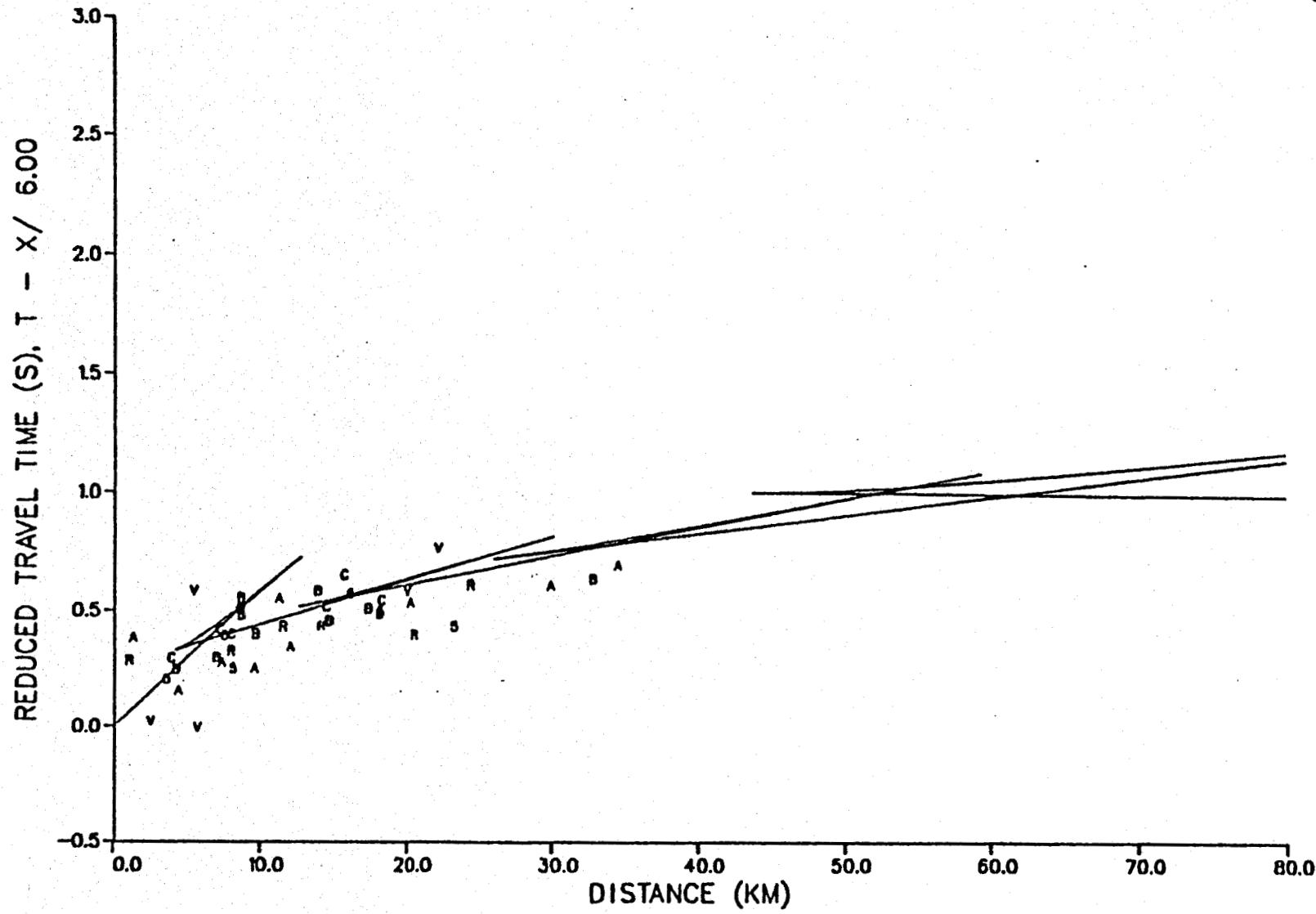


Figure 6a. Observed travel times (symbols) for events with focal depths between 0 and 1 km. Times have been corrected to a common focal depth of 0 km. Theoretical travel-time curve shown (focal depth = 0 km) was computed from initial model in Table 3.

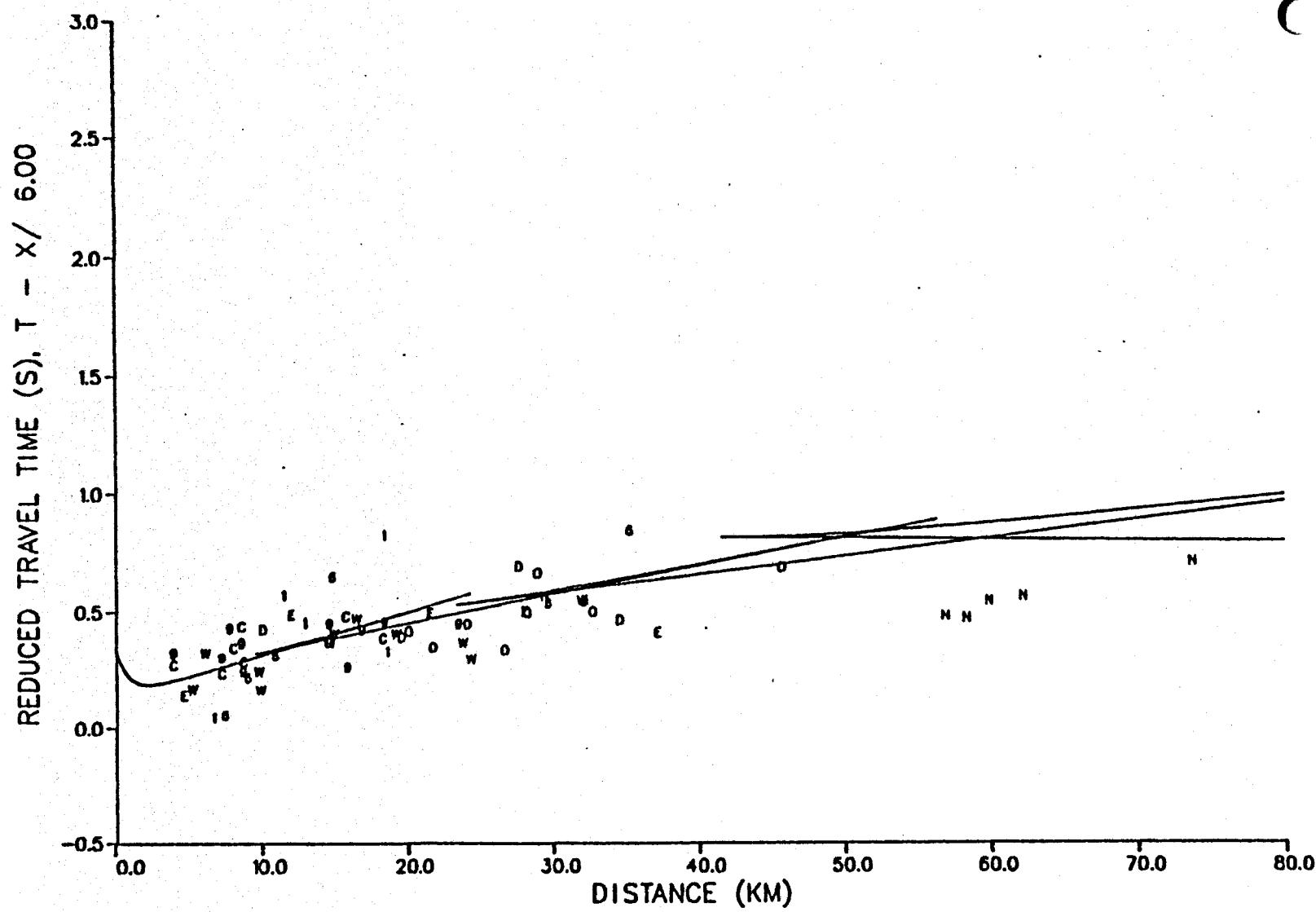


Figure 6b. Observed travel times for events with focal depths between 1 and 2 km. Times have been corrected to a common focal depth of 1.5 km. Theoretical travel-time curve computed for focal depth of 1.5 km.

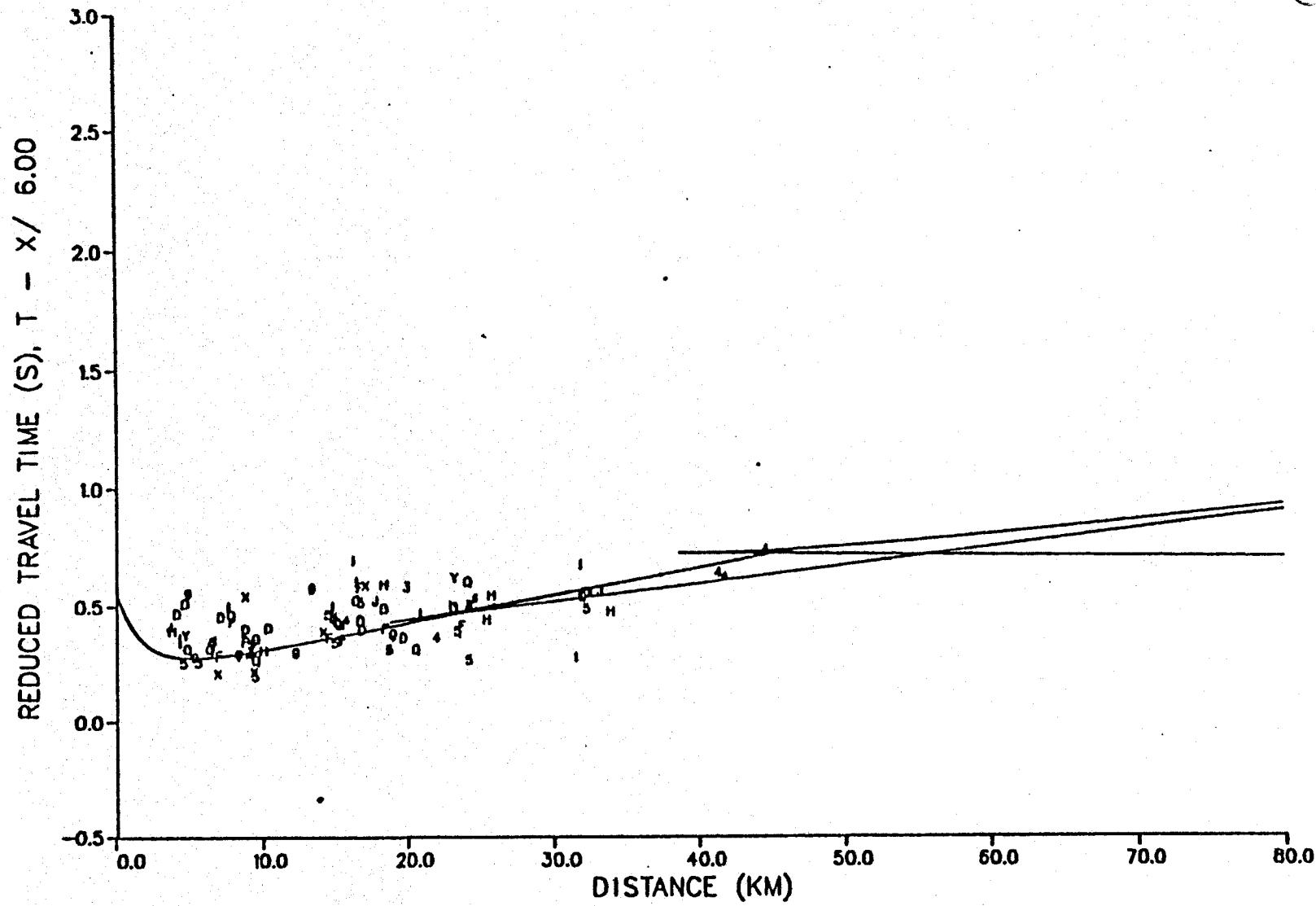


Figure 6c. Observed travel times for events with focal depths between 2.0 and 3.5 km. Times have been corrected to a common focal depth of 2.75 km. Theoretical travel-time curve computed for focal depth of 2.75 km.

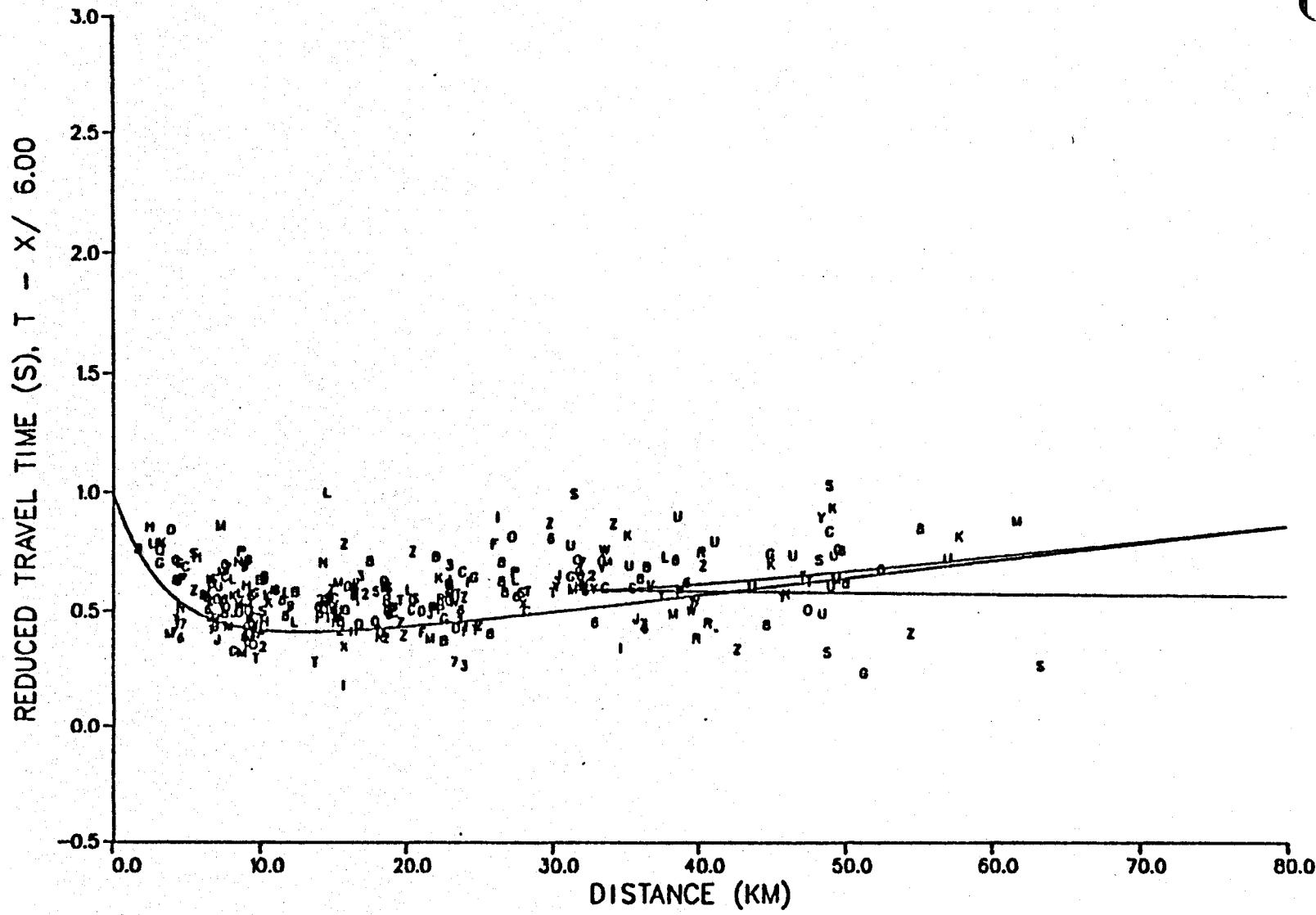


Figure 6d. Observed travel times for events with focal depths between 3.5 and 7.0 km. Times have been corrected to a common focal depth of 5.25 km. Theoretical travel-time curve computed for focal depth of 5.25 km.

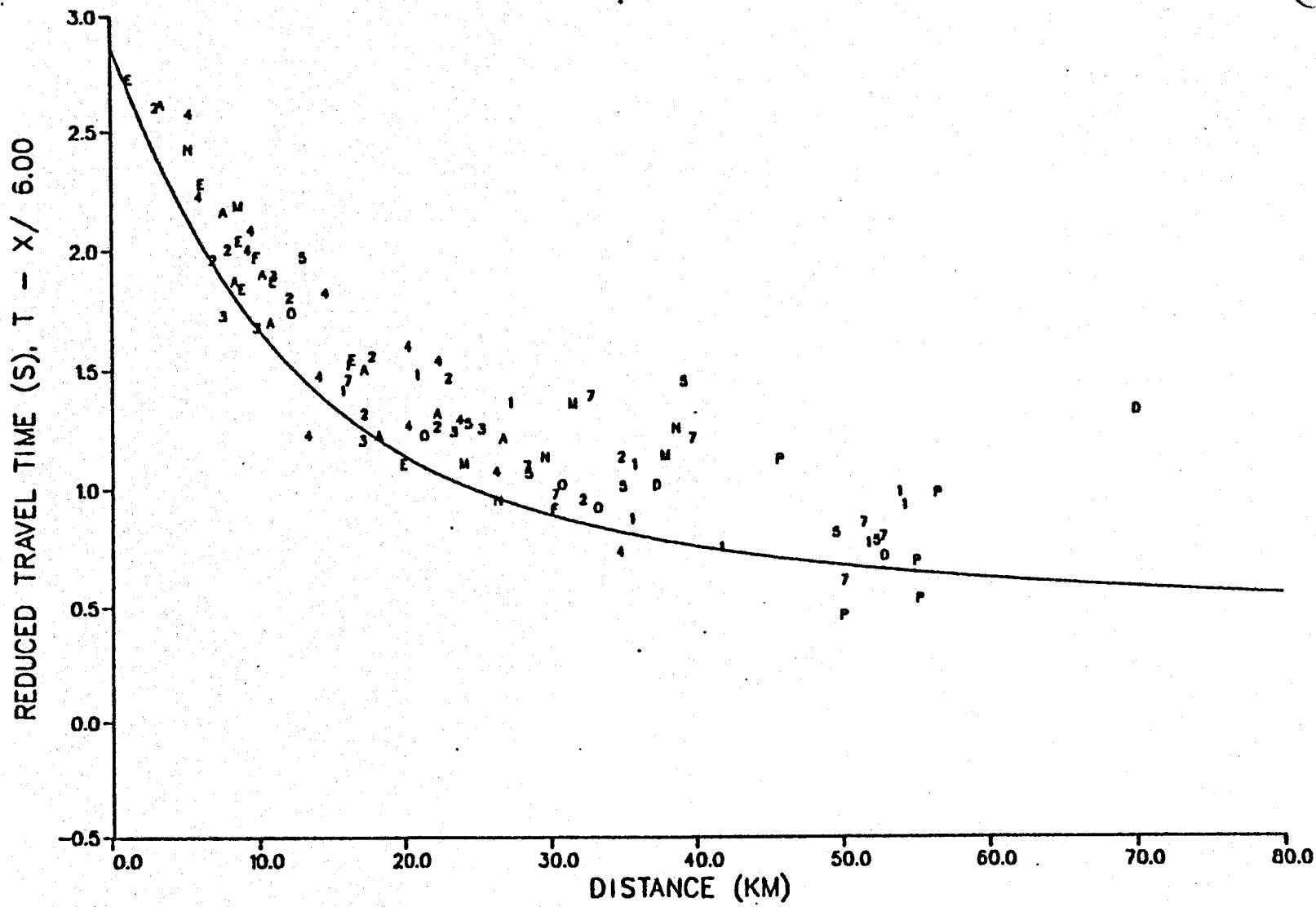


Figure 6e. Observed travel times for events with focal depths between 7.0 and 26.0 km. Times have been corrected to a common focal depth of 16.5 km. Theoretical travel-time curve computed for focal depth of 16.5 km.

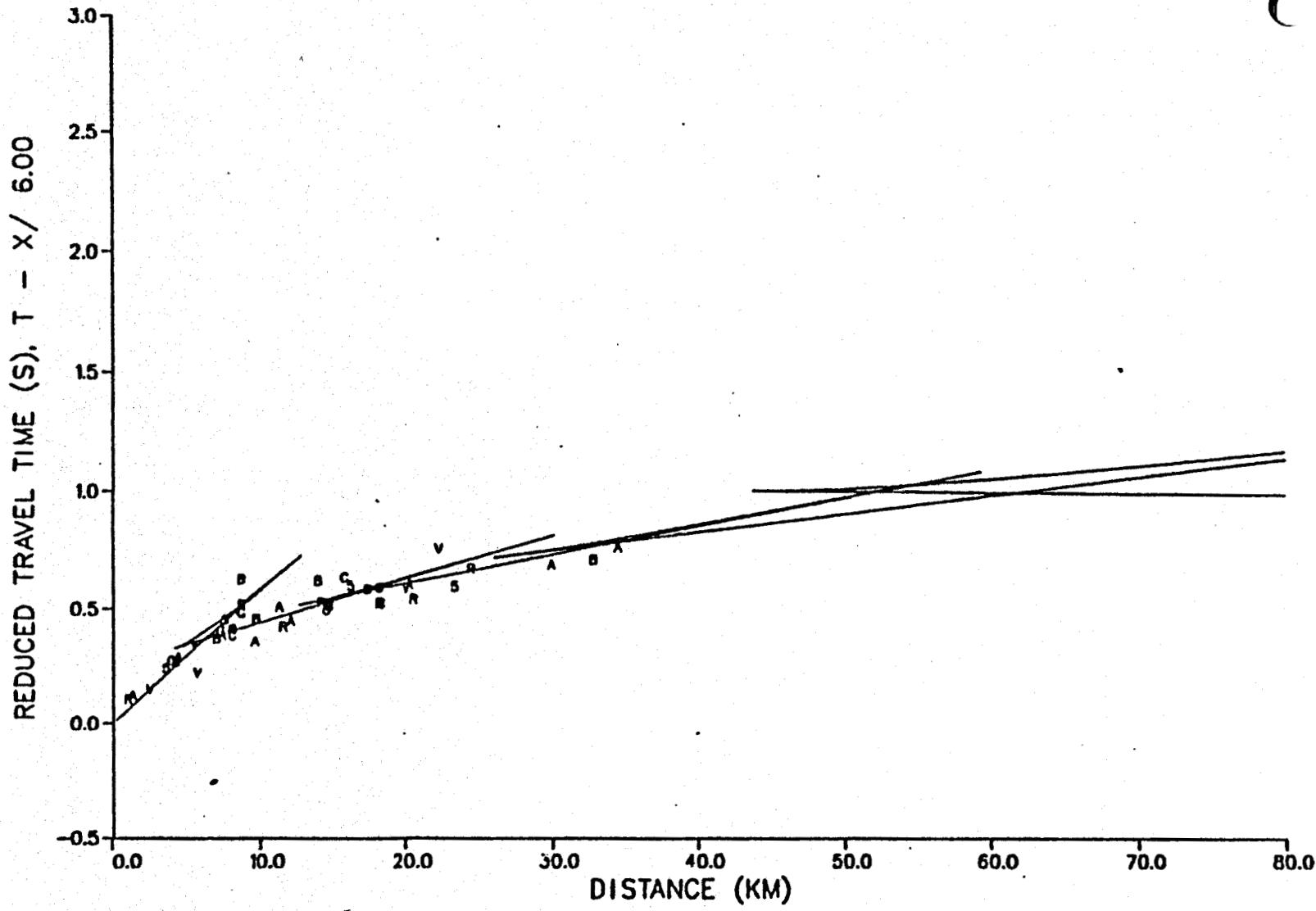


Figure 7a. Observed travel times, denuisanced with respect to event hypocenters (see text). Focal depth range is 0 to 1 km. Focal depth for theoretical curve is 0 km.

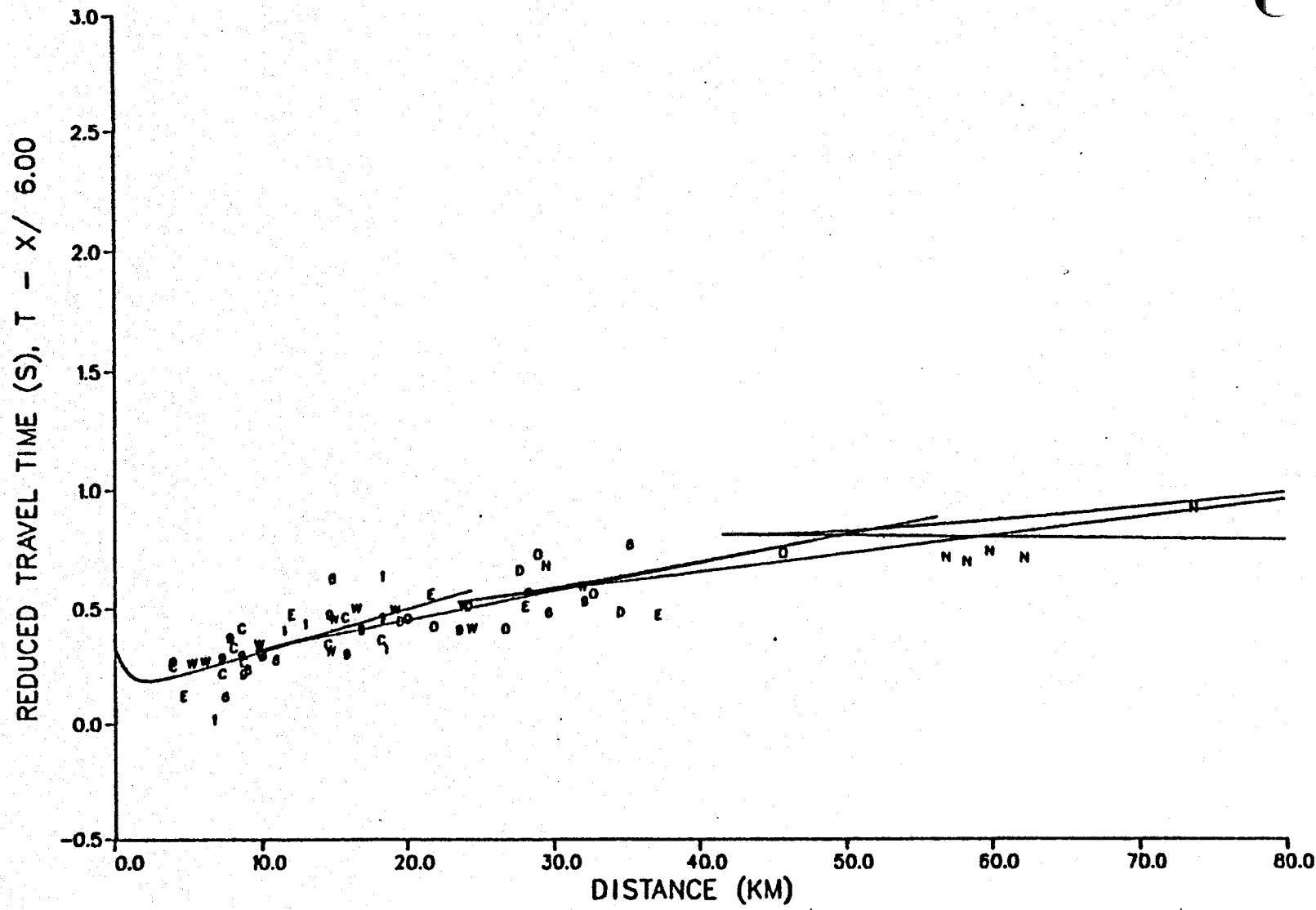


Figure 7b. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 1 to 2 km. Focal depth for theoretical curve is 1.5 km.

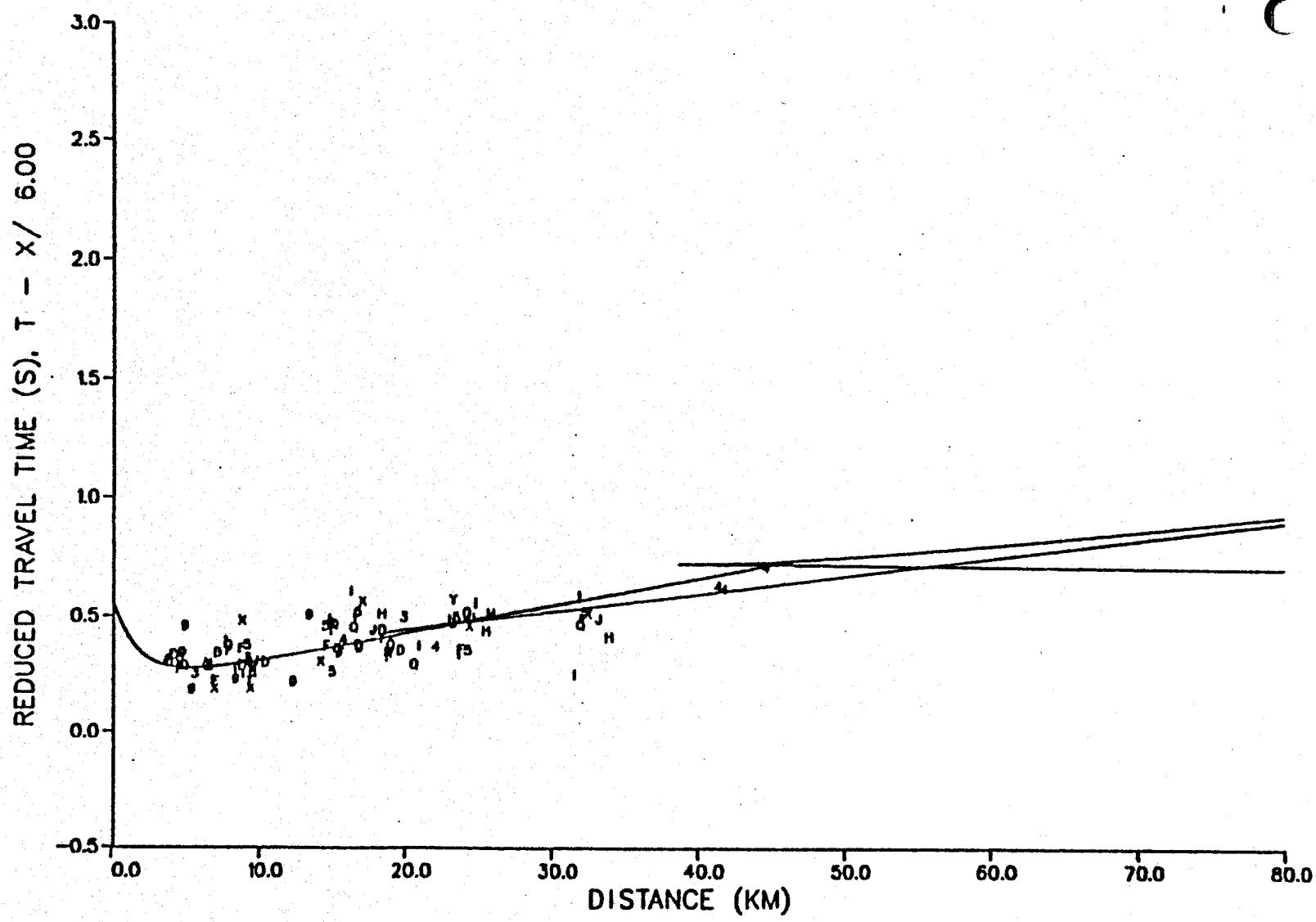


Figure 7c. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 2.0 to 3.5 km. Focal depth for theoretical curve is 2.75 km.

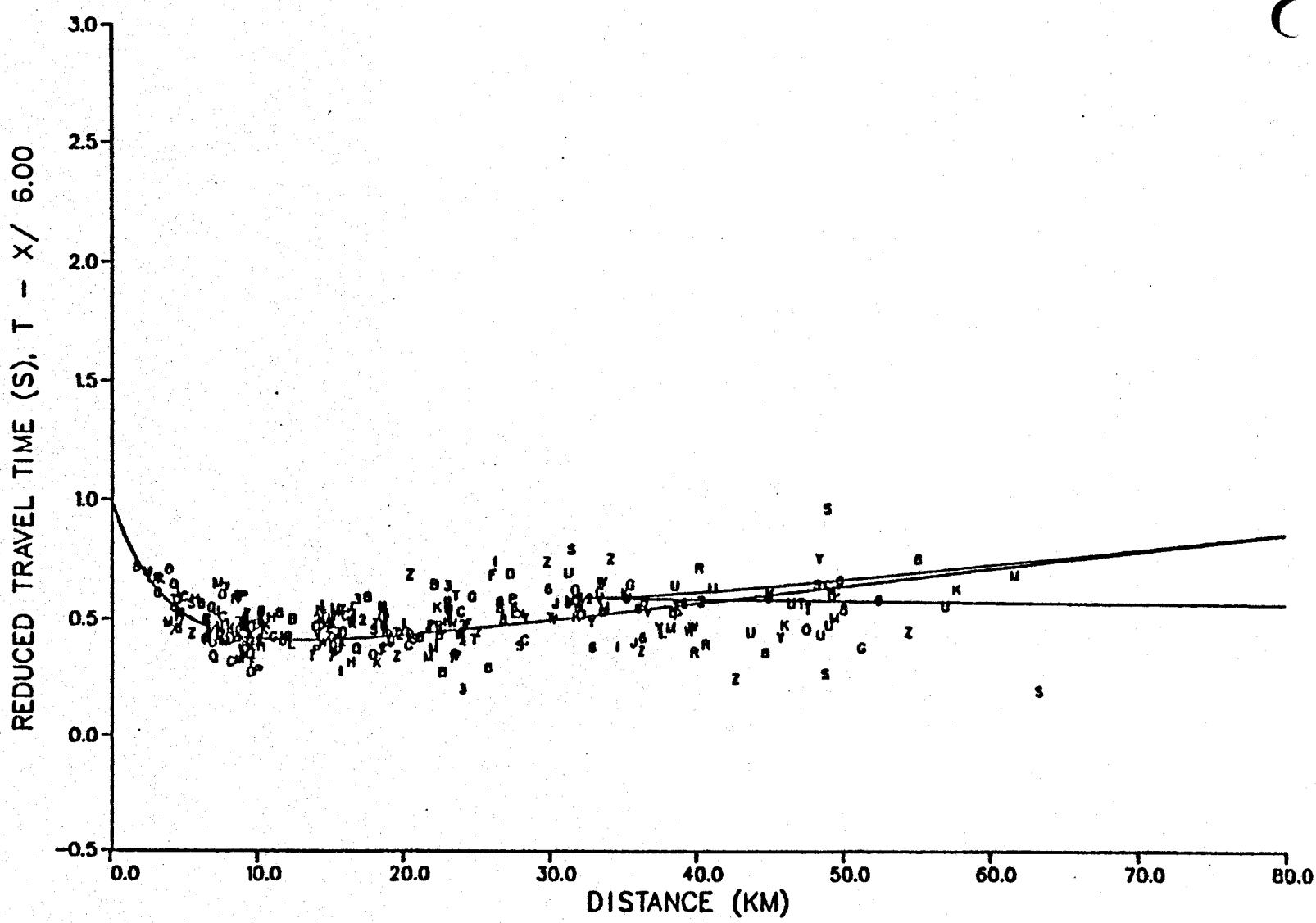


Figure 7d. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 3.5 to 7.0 km. Focal depth for theoretical curve is 5.25 km.

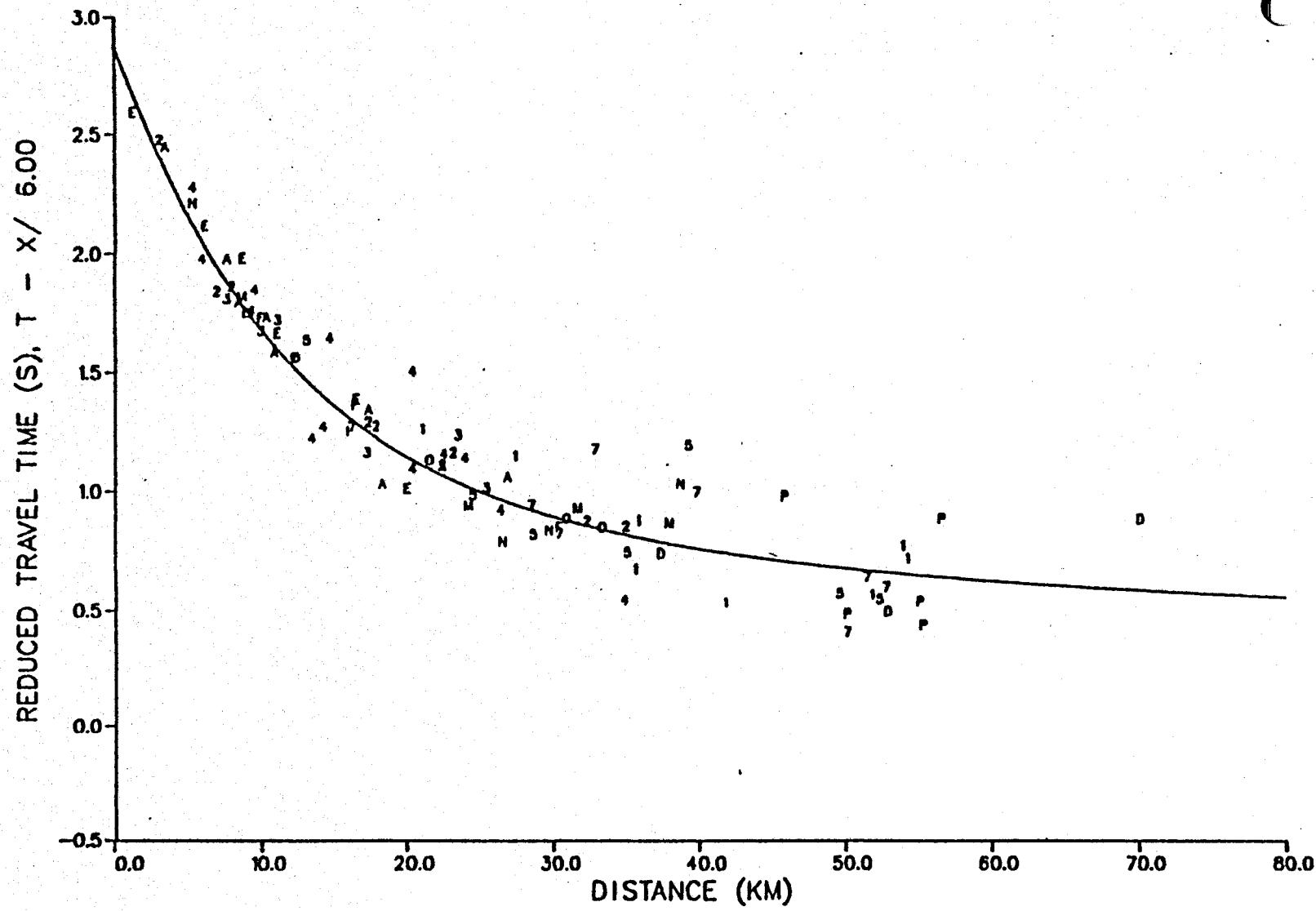


Figure 7e. Observed travel times, denuisanced with respect to event hypocenters. Focal depth range is 7 to 26 km. Focal depth for theoretical curve is 16.5 km.

is only 0.1 seconds. This value is clearly not much greater than the "noise level" associated with these data. The data in Figures 7a through 7e, consisting of 601 arrival times from 93 events, comprise the seismic data set used in subsequent inversions.

The fact that the seismic data may have a low r.m.s. signal-to-noise ratio suggests the possibility that an inversion model obtained from these data will also have a low signal-to-noise ratio; i.e., the statistical uncertainties in the model velocity perturbations ($\delta\tilde{v}$) will exceed the magnitude of the perturbations themselves, indicating that the model fits primarily the noise. However, because our inversion algorithm is based on the joint optimization of data fit and model smoothness (and of variance and resolution), the signal-to-noise ratio in the inversion model is controllable through the parameter NDF (see Section 2.7). We will see in Section IV that the inversion models for our preferred values of NDF are not seriously contaminated by noise. Assuming the highest reasonable noise level in the data (0.1 s), the model uncertainties are less than one-third the major model perturbations.

3.2 RHS GRAVITY DATA

The gravity data for the RHS study region, consisting of 1468 terrain-corrected Bouguer anomaly values, was obtained from Dr. Kenneth L. Cook of the University of Utah. Figure 8 shows the locations at which the original gravity measurements were taken. The areal extent of the data is approximately 63 km by 43 km and is outlined by the dotted rectangle.

While somewhat premature, in Figure 8 we have superposed the model grid (i.e., the solid intersecting lines) used in the subsequent joint inversion to be discussed in Section IV. Our reasons for including the grid at this time are two-fold. First,

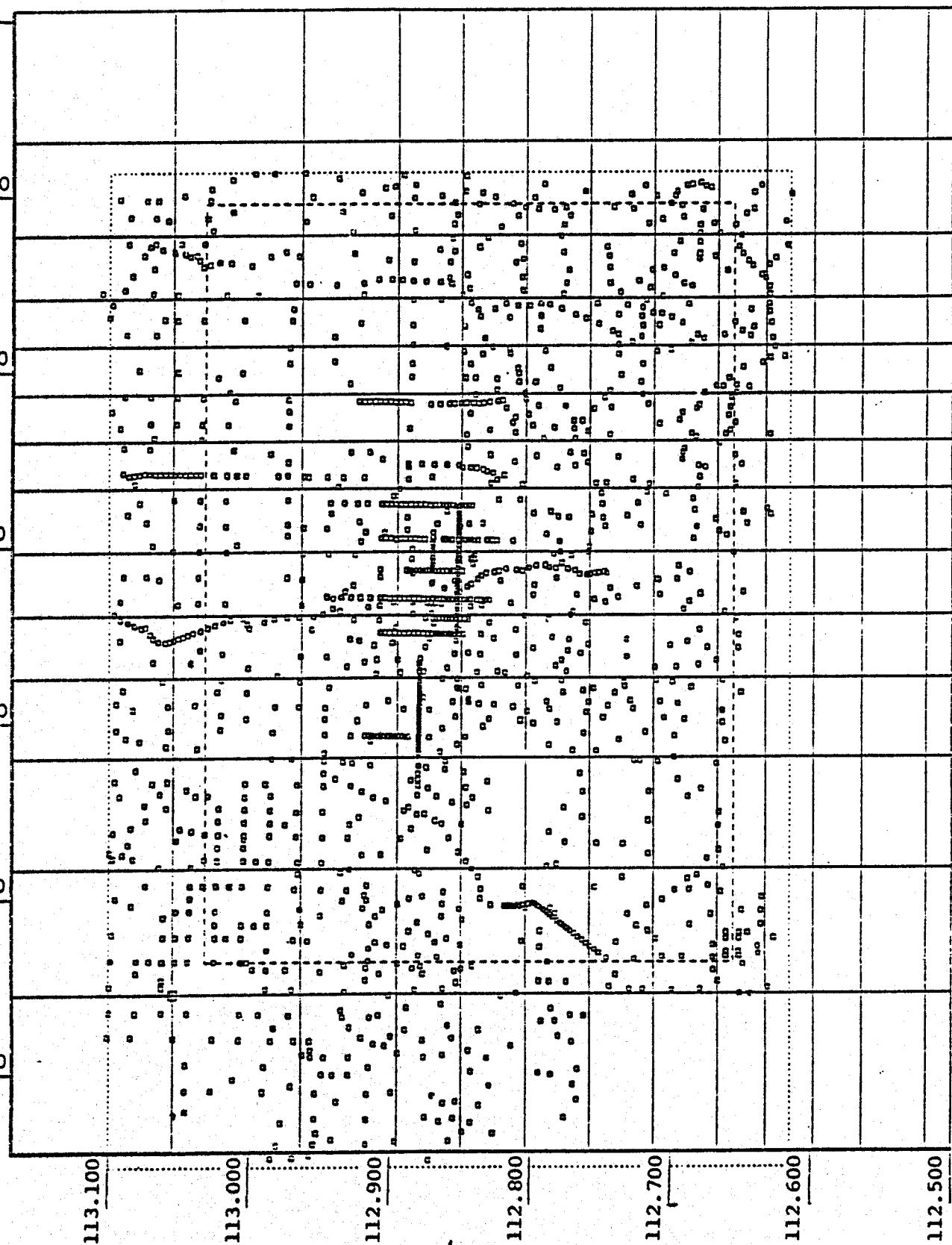


Figure 8. Locations of 1468 gravity stations (boxes) at which observed gravity data used in this study were measured. The solid intersecting lines show the model grid used in the inversion. The dotted box outlining stations is shown for later reference. The dashed box outlines the subset of data inverted.

the grid makes it easier for the reader to ascertain the density of gravity observations. For instance, the smallest grid cells are 3 km by 3 km and in several cases contain as many as ten gravity stations. The second reason is to emphasize a limitation imposed by the areal coverage of the gravity data. Note that the stations cover approximately 60 percent of the intended model grid which was designed to accommodate both seismic and gravity data. The influence of this limitation on the modeling results is discussed in the following section of this report.

3.2.1 Data Processing

The original gravity data were converted to a regular rectangular grid of 2709 values, spaced 1 km apart, by a least-squares quadratic surface interpolation technique (Savino, et al., 1977). A contour map of the interpolated values is shown in Figure 9. The frame of this figure corresponds to the dotted rectangle in Figure 8.

Figures 10 through 12 show the cumulative effects of the remaining series of processing operations that we applied to the gravity data in order to produce a final data vector to be inverted. In Figure 10 we contour the interpolated gravity data after low-pass filtering with a Gaussian filter having a half-width of 1.5 km; i.e., convolution with an operator of the form

$$(\text{const}) \exp \left[-\frac{1}{2} (x^2 + y^2) / (1.5)^2 \right],$$

where x and y are UTM coordinates. Figure 11 shows the results of decimating the filtered, interpolated data to a 3 km grid spacing and truncating gravity values located on the periphery of the original data grid to conform to the dashed rectangle in Figure 8. Truncating the data was necessary in order to

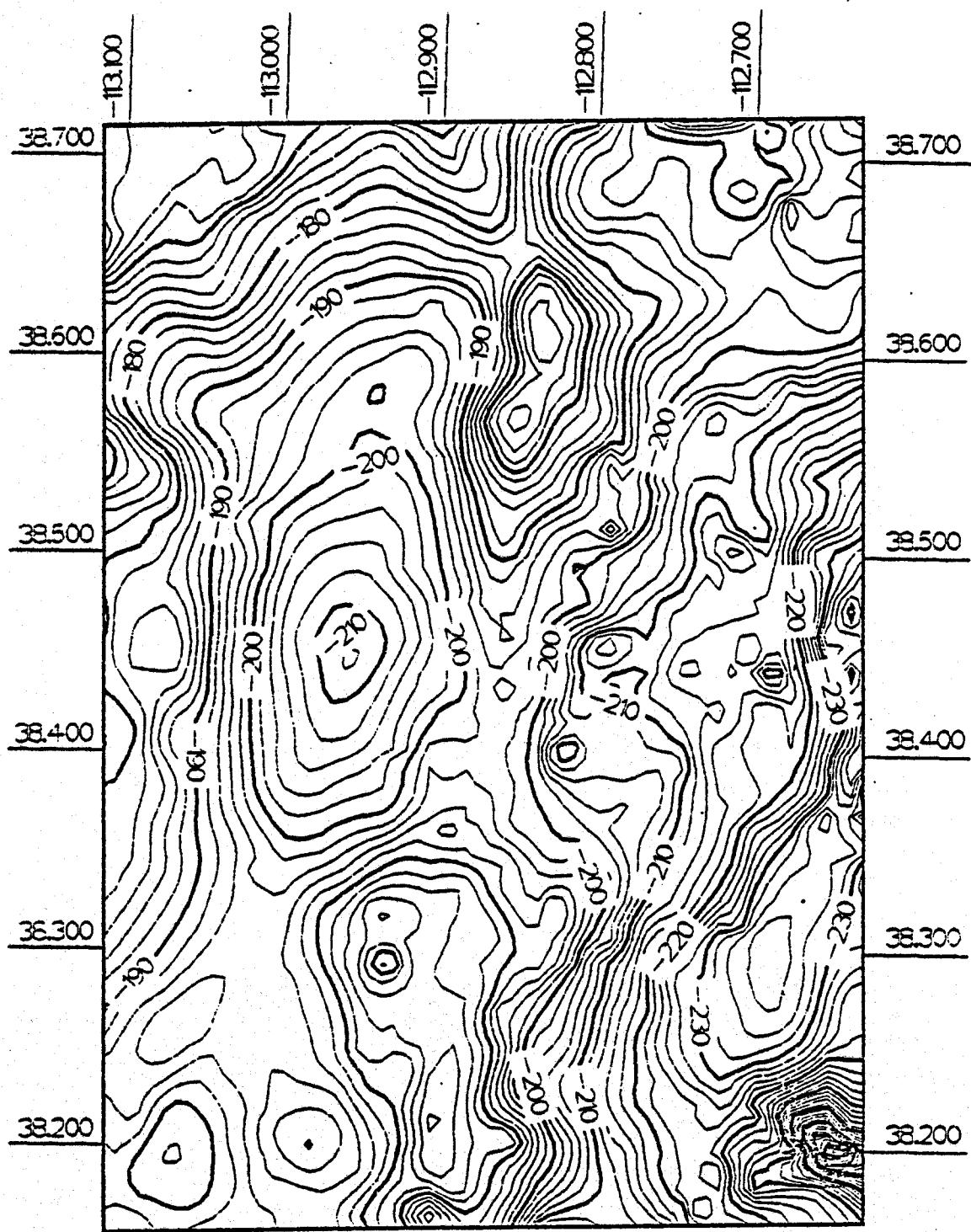


Figure 9. Contours of observed gravity data interpolated to a regular 1 km spaced grid (frame of figure is dotted box in Figure 8). Contour interval is 2 mgals.

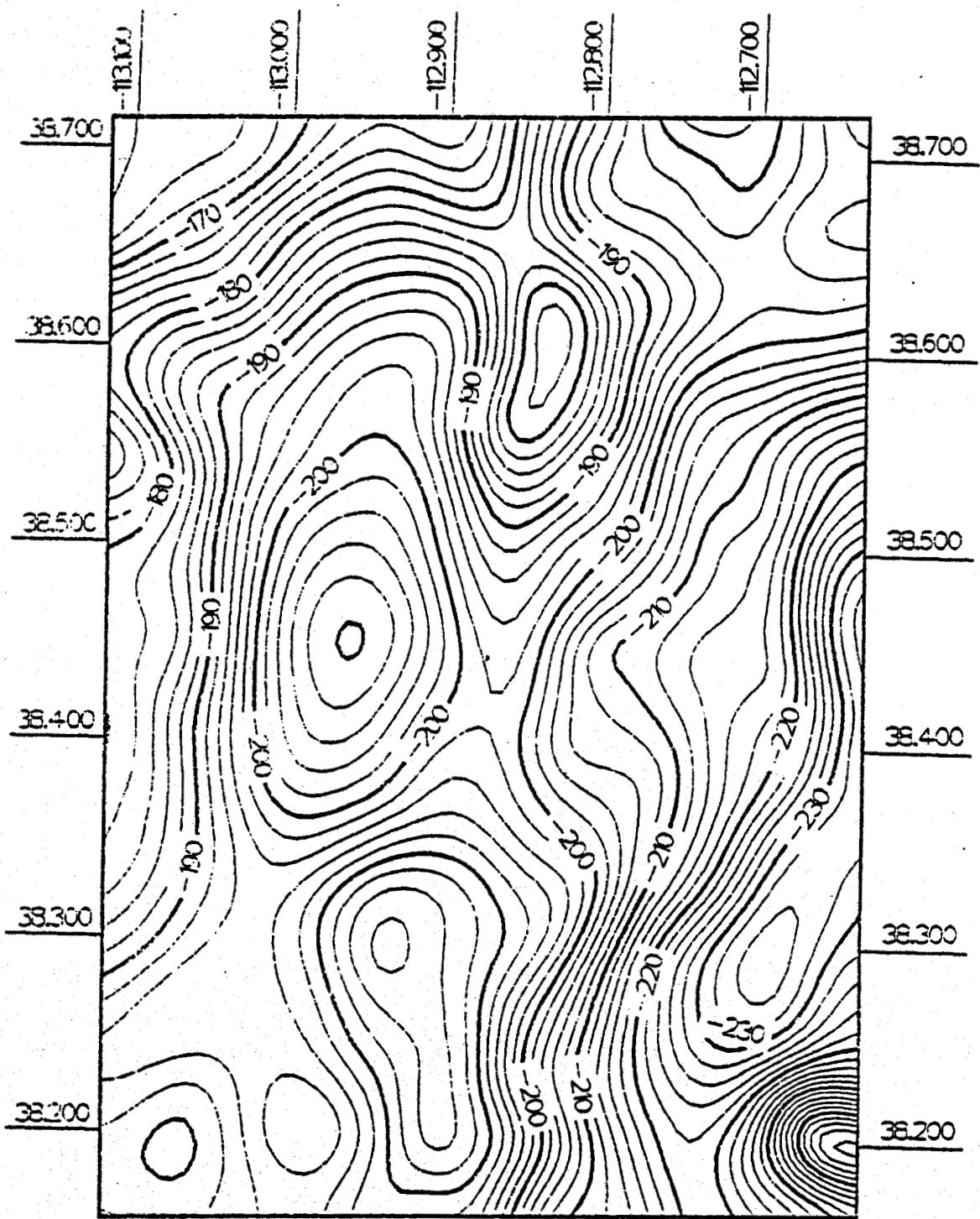


Figure 10. Gravity data, low-pass filtered with a 3.0 km bandwidth Gaussian filter.

Figure 11. Gravity data, low-pass filtered (same as in Figure 10), decimated to 3 km grid spacing and truncated to limits of the dashed box in Figure 8.

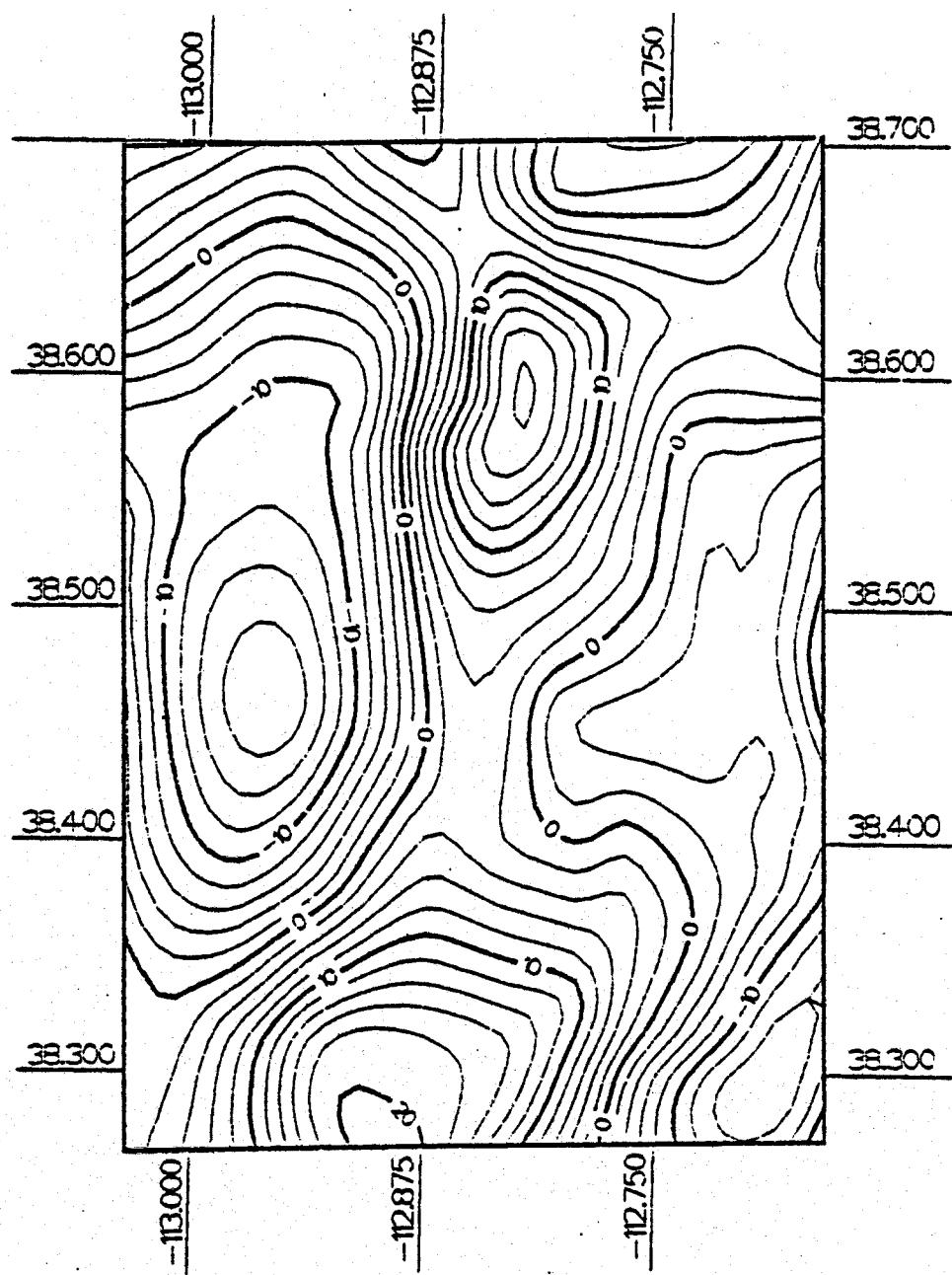


Figure 12. Gravity data (same as in Figure 10) but zero-meaned and detrended for the inversion.

avoid both edge effects and areas of poor data coverage such as the extreme southeastern corner of the region outlined by the dotted box in Figure 8. Given that the minimum horizontal block dimension of our inversion model is 3 km, our choice of filter and decimation parameters probably does not affect our inversion results.

The effects of deep structure on the gravity data (i.e., the regional field due to structure below the model grid) were treated as nuisance parameters. To accomplish this we parameterized the regional field as a constant plus a linear trend given by

$$g_{\text{reg}}(x, y) = g_0 + ax + by ,$$

where the constants g_0 , a and b are treated as nuisance parameters. Denuisancing the data, then, corresponds to detrending and demeaning the data (Savino, et al., 1977). A contour plot of the detrended and demeaned data is shown in Figure 12. This is the final gravity data set to be used in the inversion and consists of 204 values on a regular spaced grid (spacing equal to 3 km).

3.3 LEACH HOT SPRINGS, NEVADA

As mentioned in the introduction to this report, we were originally interested in applying this modeling approach to seismic and gravity data from a second geothermally active region, namely the Leach Hot Springs area in northwestern Nevada. The data sets for this area were located at the Lawrence Berkeley Laboratory and with the cooperation of several people there, we acquired all the available local earthquake travel-time and Bouguer gravity data.

A comparison of the seismic data sets available for the Roosevelt and Leach Hot Springs areas revealed an insurmountable problem concerning the data set for the latter area. The number of seismic travel-time data available for Roosevelt Hot Springs consisted of 601 arrival times. These data were shown in Figures 7a through 7e. Processing of the available data for Leach Hot Springs, on the other hand, indicated that the final data base was too small to attempt a worthwhile inversion. For instance, during the time period that a 13 station seismic network was operating in the Leach Hot Springs area, only 19 events were recorded at 7 or more stations. This compares with approximately 50 events recorded at 7 or more stations operating in the Roosevelt Hot Springs area. Our modeling experience to date convinced us that the spatial sampling of local earthquake ray paths, one of the most critical aspects of the data, in the Leach Hot Springs area is totally inadequate for inversion modeling. As a result, we placed our emphasis on the Roosevelt area.

IV. MODEL RESULTS

4.1 MODEL GRID

The vertical layering used in all inversions performed in this study was introduced in Section 3.1.1 and listed in Table 3. As noted, it consists of five horizontal layers extending to a depth of 26 km and provides a good fit to the observed travel-time data (Figures 7a through 7e) and an optimal parameterization in terms of the vertical distribution of ray paths.

The next task is to design a horizontal rectangular grid capable of representing lateral velocity and density variations across the region of interest. Our design must meet with the following constraints:

1. The grid samples the entire area covered by both the seismic event and gravity data sets retained for modeling with a minimal waste of unsampled blocks.
2. Grid elements are smaller in areas well sampled by seismic events and gravity data.
3. The grid consists of two parts: an inner grid of finite blocks, containing most of the data, surrounded by a buffer zone of semi-infinite elements (the outer grid), for which structural modeling is necessarily imprecise and unreliable due to poor parameterization.

A 12 by 13 element inner grid was adopted for the inversion modeling. This inner grid, together with the associated outer grid, is shown in Figure 13 on a background of geographical coordinates. Also shown are the 93 local



Figure 13. Model grid (intersecting lines), seismic stations (triangles) and earthquake epicenters (crosses). Boundaries of raw gravity data and inverted gravity data are shown by dotted and dashed boxes, respectively.

earthquakes (crosses), 18 seismograph stations (triangles) and the boundaries of the raw gravity data (dotted box) and the final processed gravity data (dashed box). The actual dimensions of the model grid elements are listed in Table 5.

4.2 INVERSION MODELS

Three-dimensional models of the crustal velocity structure in the Roosevelt Hot Springs area were obtained from two inversions: a joint inversion of the seismic travel-time and gravity data (Figures 7 and 12), and an inversion of the travel-time data by themselves. Both inversions solve for a velocity perturbation in each block of the three-dimensional grid described in Section 4.1. The perturbations are with respect to the initial plane-layered velocity model given in Table 3.

In the joint inversion, density perturbations were treated as constrained parameters. The density perturbation, $\delta\rho$, of each block was tied to the velocity perturbation, δv , by

$$\delta\rho = 0.3 \delta v .$$

This relationship approximates that determined by Birch (1961) for crustal igneous and metamorphic rocks. We note that the density perturbation $\delta\rho$ is defined with respect to a plane-layered model, $\rho_0(z)$, which is not specified. Since the gravity data and their partial derivatives are demeaned as a result of denuisancing (see Section 2.6), $\rho_0(z)$ is inconsequential; i.e., the inversion neither requires ρ_0 as input nor determines ρ_0 from the data.

A constant ratio between velocity and density contrasts, as we have assumed, does not necessarily apply to the variety of subsurface materials encountered throughout our model region (e.g., Gertson and Smith, 1979). For the known hard

TABLE 5
HORIZONTAL GRID DIMENSIONS

Block Index (S-N)	Block Width (km)	Block Index (W-E)	Block Width (km)
1	10*	1	10*
2	8	2	8
3	7	3	6
4	5	4	4
5	4	5	4
6	4	6	4
7	4	7	4
8	3	8	4
9	3	9	3
10	3	10	3
11	3	11	3
12	4	12	4
13	6	13	4
14	10*	14	6
		15	10*

*For plotting only; edge blocks
are assumed to be semi-infinite
in the actual modeling.

rock geology of the area, the ratio we assumed is reasonable. This includes the granitic rocks of the Mineral Mountains, and the metamorphic rocks believed to underlie the Milford Valley (Ward, et al., 1978). Our ratio may be less appropriate for the contrast of these rocks with the known Quaternary basalts east of the Mineral Mountains, but the gravity data barely extend this far eastward. The only serious question about our assumed velocity-density relation arises with existence of alluvial fill in the Milford and Beaver Valleys. In the case of the Milford Valley, Gertson and Smith (1979) suggest a rather small density contrast between Tertiary sediments and bedrock: ~ 0.2 gm/cc compared a velocity contrast of ~ 1.5 km/s. However, they note that a larger sediment-bedrock density contrast might be required by the gravity data, and in fact Ward, et al. (1978) were able to fit the gravity along a profile over Milford Valley by assuming a density contrast of 0.5 gm/cc. This latter value would support our assumed velocity-density ratio.

The only known violation of our density-velocity law, then, occurs with the surface fill of very low velocity (~ 1.8 km/s) recent sediments in the Milford Valley. For these, in comparison to bedrock, our coefficient 0.3 is too high. But these superficial sediments have limited areal extent over our model and, because of their limited depth extent and expected small density contrast with the underlying Tertiary sediments, probably do not contribute much to the gravity data. We have corrected the travel-time data at station BVR for these sediments; if it could be shown that they have a significant effect on the gravity data, we would prefer to do a gravity correction as well. However, a sufficiently accurate three-dimensional model of the recent sediments is not available.

Both the joint gravity/seismic inversion and seismic-only inversion produced a family of models corresponding to

a trade-off between data misfit and model roughness, as described in Section 2.7. The trade-off is parameterized by the scalar parameter θ , or equivalently by the number of degrees of freedom NDF (see Equation (45)). In each inversion, we generated models for six values of θ : 30, 10, 3, 1, 0.3, and 0.1. The corresponding values of NDF ranged from 45 to 259 in the joint inversion, and from 14 to 150 in the seismic only inversion. Figure 14 displays the data misfit/model roughness trade-off curves obtained in the two inversions. The points resulting from the six computed models are labeled on the figure; the curves shown were interpolated between these points. The data misfit plotted is defined as the sum of squared residuals (observed minus predicted data), normalized by the assumed data standard deviations (0.1 second for travel times, 2 mgal for gravity). The squared model norm is the discrete approximation to the integral defined in Equation (20). It measures the average spatial "roughness" of the velocity perturbation, $\delta\tilde{v}(x,y,z)$, as reflected both by the magnitude of $\delta\tilde{v}$ and its wavenumber content; i.e., large variations in $\delta\tilde{v}$ on a small spatial scale imply a high degree of roughness.

A model generated with any NDF is optimal in the sense that the data misfit and model roughness are jointly minimized; i.e., each quantity is minimum given a fixed value of the other (Backus and Gilbert, 1970). However, the models for extreme values of NDF are not very useful representations of the earth. For a too low NDF, the model is so spatially smooth that it does not adequately represent real variations in the earth's velocity which are required by the data. For too high an NDF, the model possesses spurious small-scale variations which attempt to fit the noise in the data.

The parameter NDF also controls a trade-off between the variance of the inversion model and its spatial resolution (see Section 2.7). We examined this trade-off for the joint

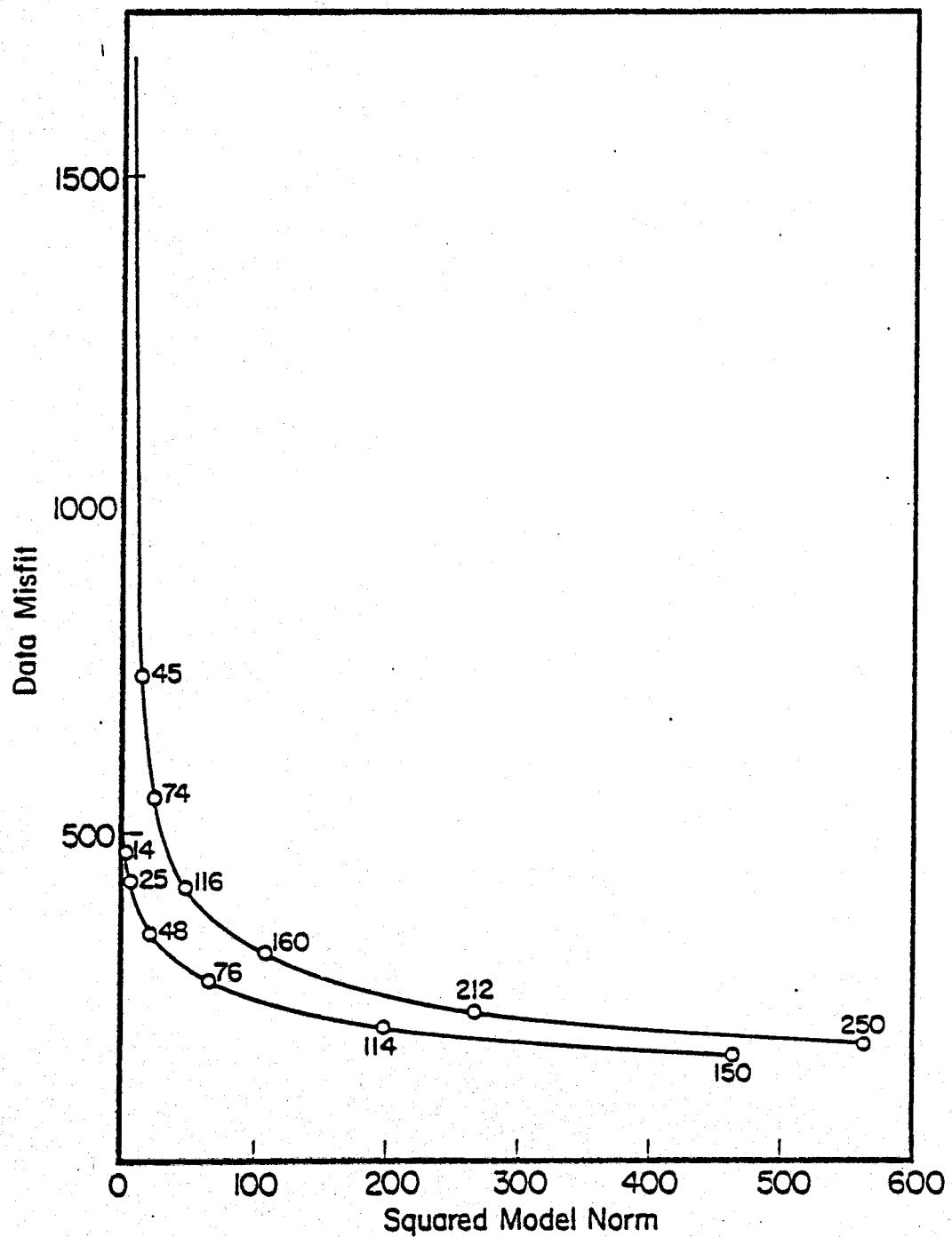


Figure 14. Trade-off curves for travel-time inversion (bottom line) and joint travel-time/gravity inversion (top line). Ordinate ("data misfit") is the sum of squared differences between observed and predicted data (normalized by data variances). Abscissa is a measure of model "roughness." Points on trade-off curves corresponding to various numbers of degrees of freedom (NDF) are labeled.

inversion model family. A separate variance-resolution trade-off curve exists for each block of the model, but our analysis showed that the trade-off curves varied significantly only with depth; for a given NDF, the variance obtained for a block and, to a lesser extent, the resolution did not vary greatly within a given layer (inside the inner grid).

Table 6 shows the trade-off between variance and spatial resolution - determined from the joint seismic/gravity inversion - for the column of model blocks that most nearly lies beneath Roosevelt Hot Springs; i.e., block index (6,5) of each layer (refer to Figure 13). The upper part of the table lists, for each layer and NDF, the standard deviation of the velocity perturbation estimated for the particular block. The "normalized resolution measure" listed in the lower table is a dimensionless quantity which reflects the extent to which the velocity perturbation is spatially averaged over blocks surrounding the target block, (6,5), in a given layer. A value of one for this quantity would imply the best possible spatial resolution - i.e., the velocity in the target block is determined independently of all other blocks - while a value of zero is the worst possible resolution. Since this resolution measure is normalized, it cannot be converted to a measure of "resolving length" as defined by Backus and Gilbert (1970). It can be compared between NDF's, but unfortunately it is difficult to relate its value among different model blocks.

To select a "best" model among the six joint inversion models that we computed, we were swayed to a great extent by the standard deviations in Table 6. It is desirable to have the standard deviation of $\delta\tilde{v}$ in a layer be only a fraction - say, less than one-third - of the principal extrema of $|\delta\tilde{v}|$ in the layer (adjusted for the average $\delta\tilde{v}$ of the layer). Otherwise, the noise-contributed component of $\delta\tilde{v}$ causes a significant distortion in contours of the block velocities and in the location of velocity highs and lows. Only the

TABLE 6

VARIANCE-RESOLUTION TRADE-OFF FOR BLOCK (6,5)
 IN FIVE LAYERS OBTAINED FROM THE
 JOINT SEISMIC/GRAVITY INVERSION

Standard Deviation of Velocity Perturbation

NDF

Layer	45	74	116	160	212
1	0.06	0.15	0.34	0.60	0.91
2	0.11	0.16	0.22	0.30	0.46
3	0.07	0.09	0.15	0.22	0.31
4	0.04	0.06	0.09	0.13	0.20
5	0.03	0.04	0.05	0.07	0.11

Normalized Resolution Measure (see text)

NDF

Layer	45	74	116	160	212
1	0.39	0.53	0.70	0.82	0.89
2	0.77	0.83	0.86	0.88	0.90
3	0.89	0.92	0.95	0.96	0.97
4	0.90	0.92	0.94	0.95	0.96
5	0.79	0.86	0.89	0.90	0.92

NDF = 45 and 74 models clearly meet a criterion of this type for all five layers. We note that in applying this rule, we are free to scale the model standard deviations up or down by revising the assumed data standard deviations. The fits of the models to the observed data (discussed below) suggest revising our assumed data variances downward, but not by very much.

In Table 6 we see that the model standard deviations tend to decrease with depth (increasing layer number). This is also true of the standard deviations relative to the velocity extrema themselves. Applied on a layer-by-layer basis, our standard deviation criterion would, therefore, accept higher NDF's as we go to deeper layers. For this reason we will later examine the structure in some of the deeper layers of the high NDF models to aid in our interpretation of the inversion results. However, the noisy nature of the shallow layers of these models do not qualify them in our eyes as optimal models. Furthermore, we do not consider a composite model constructed from two or more NDF's to be a valid inversion model since it does not satisfy our data misfit/model norm minimization criterion (Equation (36)).

Between the joint inversion models for NDF = 45 and NDF = 74, we judged the latter to be a better model. Although the former model has smaller standard deviations, it also has poorer spatial resolution (see Table 6, bottom). Furthermore, the data misfit/model norm trade-off curve (Figure 14) shows that the NDF = 74 model provides a significantly improved fit to the data with a relatively minor increase in spatial roughness. We verified this by visually inspecting plots of the data fits and model velocity contours.

The joint inversion model for NDF = 74 is displayed in Figures 15a through 15e as a contour map of velocity perturbations (in km/s) for each of the five model layers. The contours

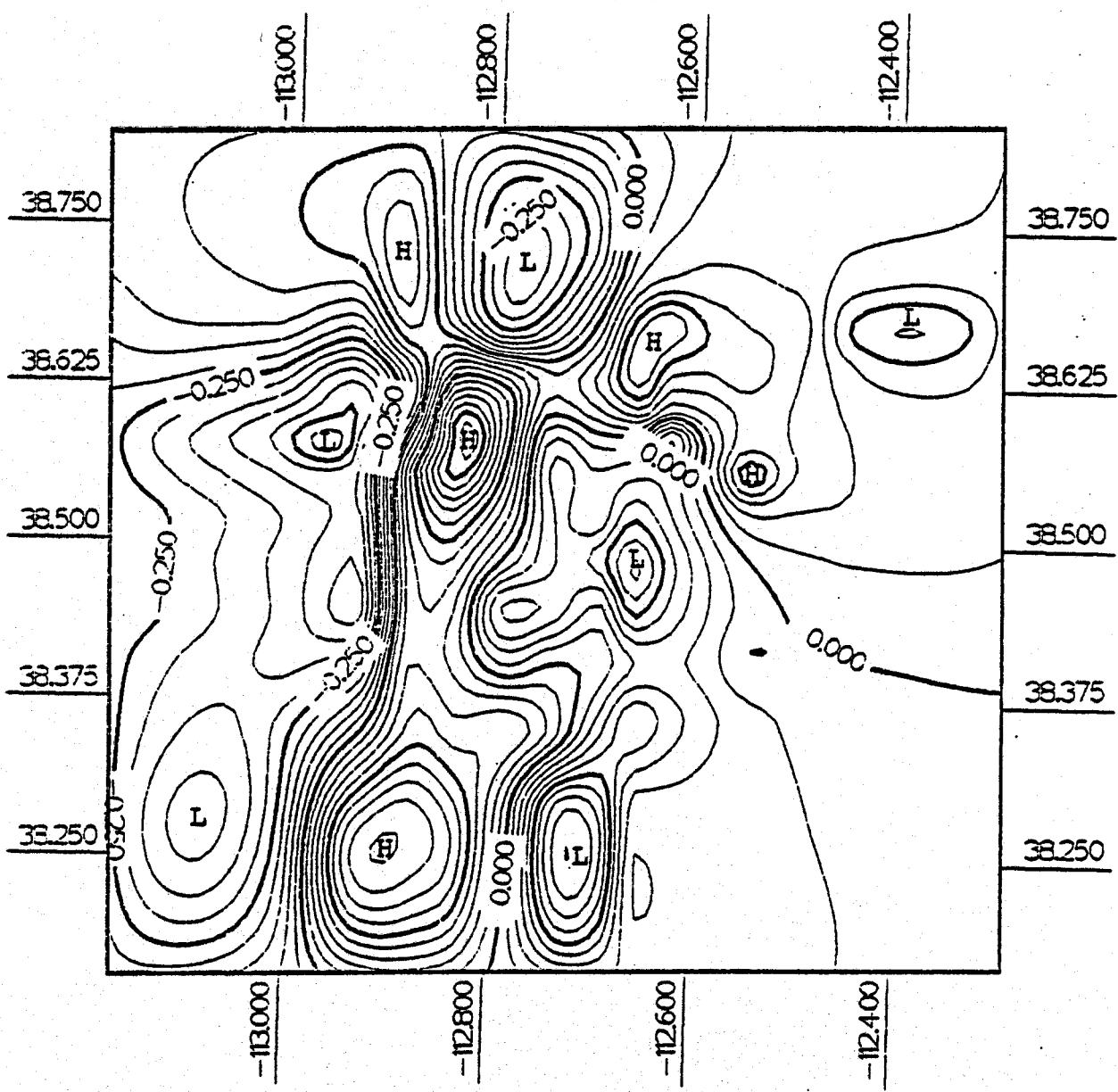


Figure 15a. Contour map of velocity perturbations in Layer 1 (0 - 1 km) of the final joint inversion model for NDF = 74. The contour interval is 0.05 km/s.

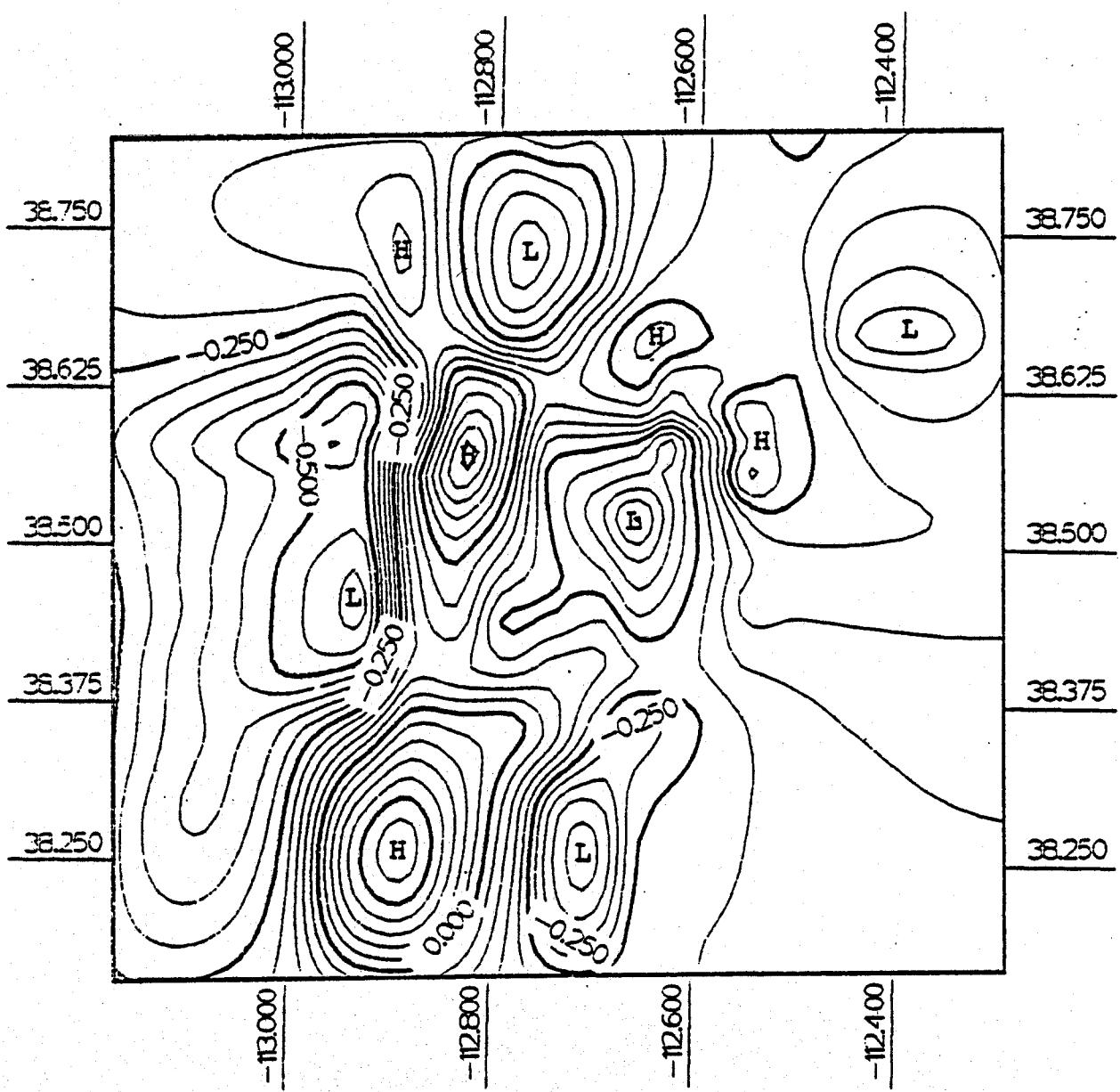


Figure 15b. Layer 2 (1 - 2 km) of joint inversion model for NDF = 74.

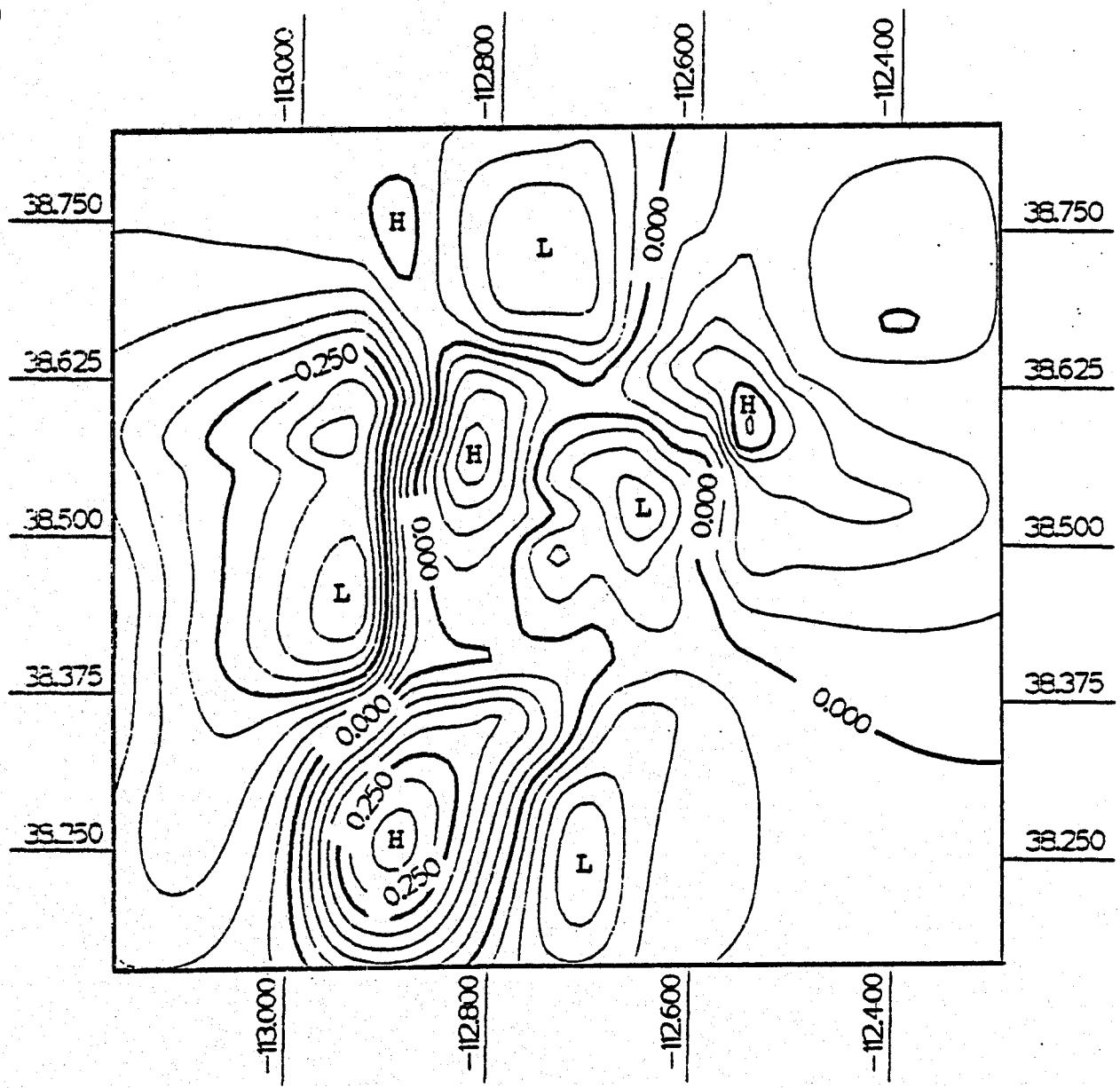


Figure 15c. Layer 3 (2.0 - 3.5 km) of joint inversion model for NDF = 74.

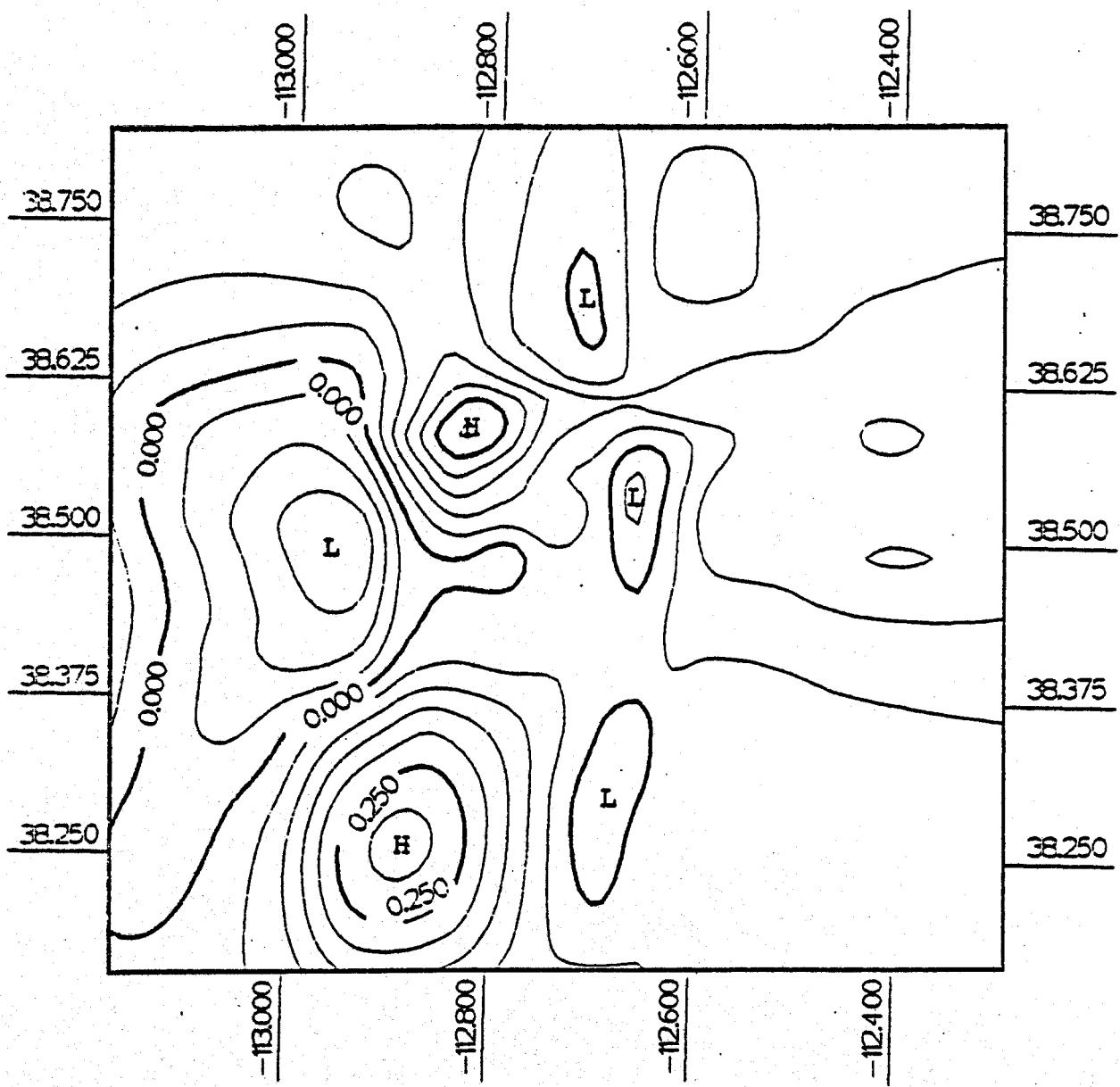


Figure 15d. Layer 4 (3.5 - 7.0 km) of joint inversion model for NDF = 74.

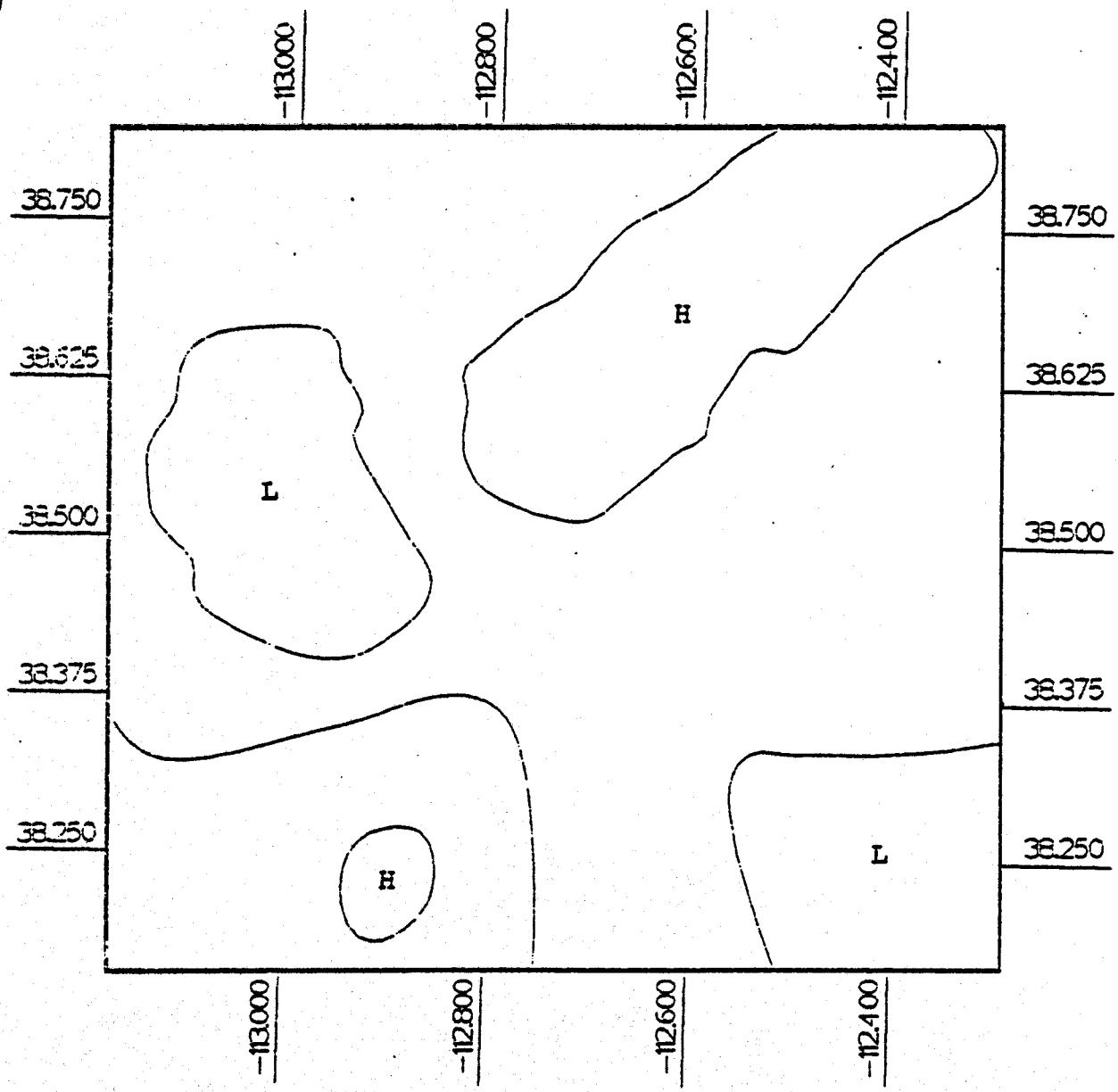
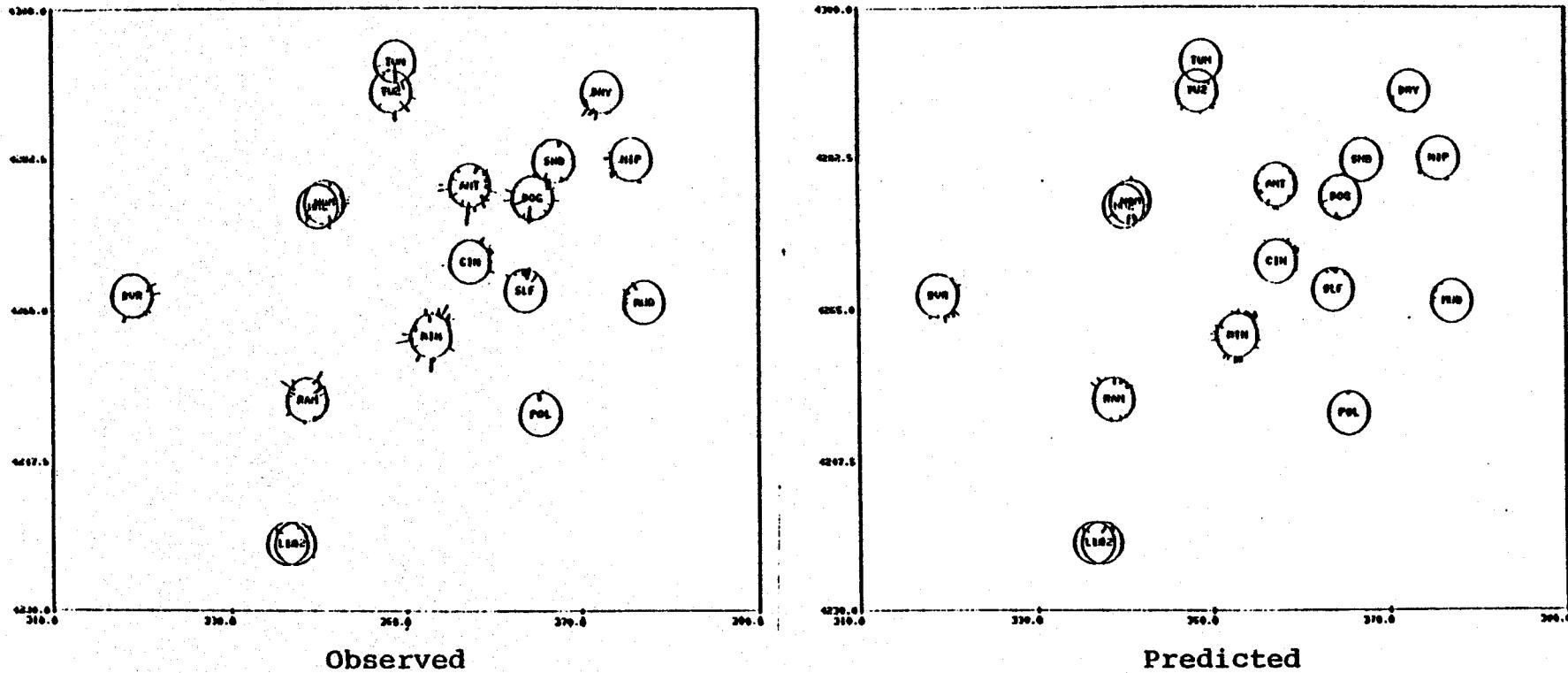


Figure 15e. Layer 5 (7 - 26 km) of joint inversion model for NDF = 74.


are interpolated from the individual block values of velocity. Absolute velocities can be obtained simply by adding the initial velocity of each layer (Table 3) to the velocity perturbations found by the inversion. We note that the contours in Figure 15 are displayed over the 14 by 15 array of "outer grid" blocks defined in Section 4.1.

For completeness, we present in Appendix B the discrete block version of the $NDF = 74$ joint inversion model. In the appendix, velocity perturbations are given and they are shown for the full 14 by 15 grid including edge blocks.

In the next section, we compare the observed gravity and travel-time data to the data predicted by our preferred joint inversion model (Figure 15), and evaluate the quality of fit. An interpretation of our model follows in the subsequent section. Because of the success of the joint inversion, we consider our inversion of the travel-time data to be a preliminary step in obtaining our final joint inversion model, as well as a corroboration of the assumed velocity-density systematics. We will, however, make use of some of the seismic-only inversion results in our interpretation (Section 4.4).

4.3 DATA FITS

A useful and informative test of our model lies in the comparison of predicted data functionals (namely, travel-time and gravity anomalies) with the observed values. The observed (Figures 7a through 7e) and predicted travel-time data based on the final joint inversion model (Figure 15) are shown in Figure 16. The format used for showing these data is the following. A circle is drawn around the location of each of the 18 seismograph stations used in this study. The circumference of each circle corresponds to a zero travel-time residual. Positive residuals are represented by lines extending out from the circumference at azimuths corresponding

Figure 16. Comparison of observed travel-times (left side) and model-predicted values (right side) for the final joint inversion model (NDF = 74) in Figure 15. Circle radii for observed data are 0.5 seconds, predicted data 0.25 seconds.

to the contributing events. Negative residuals are drawn in toward the center of a circle. The length of any particular line is scaled according to the size, or absolute value, of the residual.

While the form of data representation in Figure 16 has the advantage of showing the behavior - that is the sign, size and azimuthal distribution - of travel-time residuals over the model region, there are two important disadvantages that should be kept in mind when perusing these figures. First, residuals with values near zero seconds (i.e., ± 0.05 seconds) are hard to distinguish and, as a result, fits in this range tend to go unnoticed. Second, the magnitudes of the predicted residuals are in general significantly smaller than the observed values. One reason for this stems from the damping imposed on the inversion procedure which tends to limit the amplitude of lateral variations in the model, and hence to bias predicted residuals toward smaller values. In addition, the high noise level in the observed data acts to create a visual impression that the observations are underpredicted since larger (in general noisy) residuals in the plot of observed data are much more obvious to the eye than those with more average values, so that visual averaging can actually be quite misleading.

With these caveats in mind, we point out that some general features of the observed data set are indeed reflected in the model-predicted values (Figure 16). For instance, the transition from stations with predominantly positive observed residuals (e.g., MIN and CIN) to largely negative residual stations (ANT, DOG and SLF) is reproduced by the predicted residuals. The r.m.s. misfit of the travel-time residuals is 0.085 seconds.

In Figure 17, we compare the observed gravity data (i.e., the zero-meaned and detrended data shown in Figure 12)

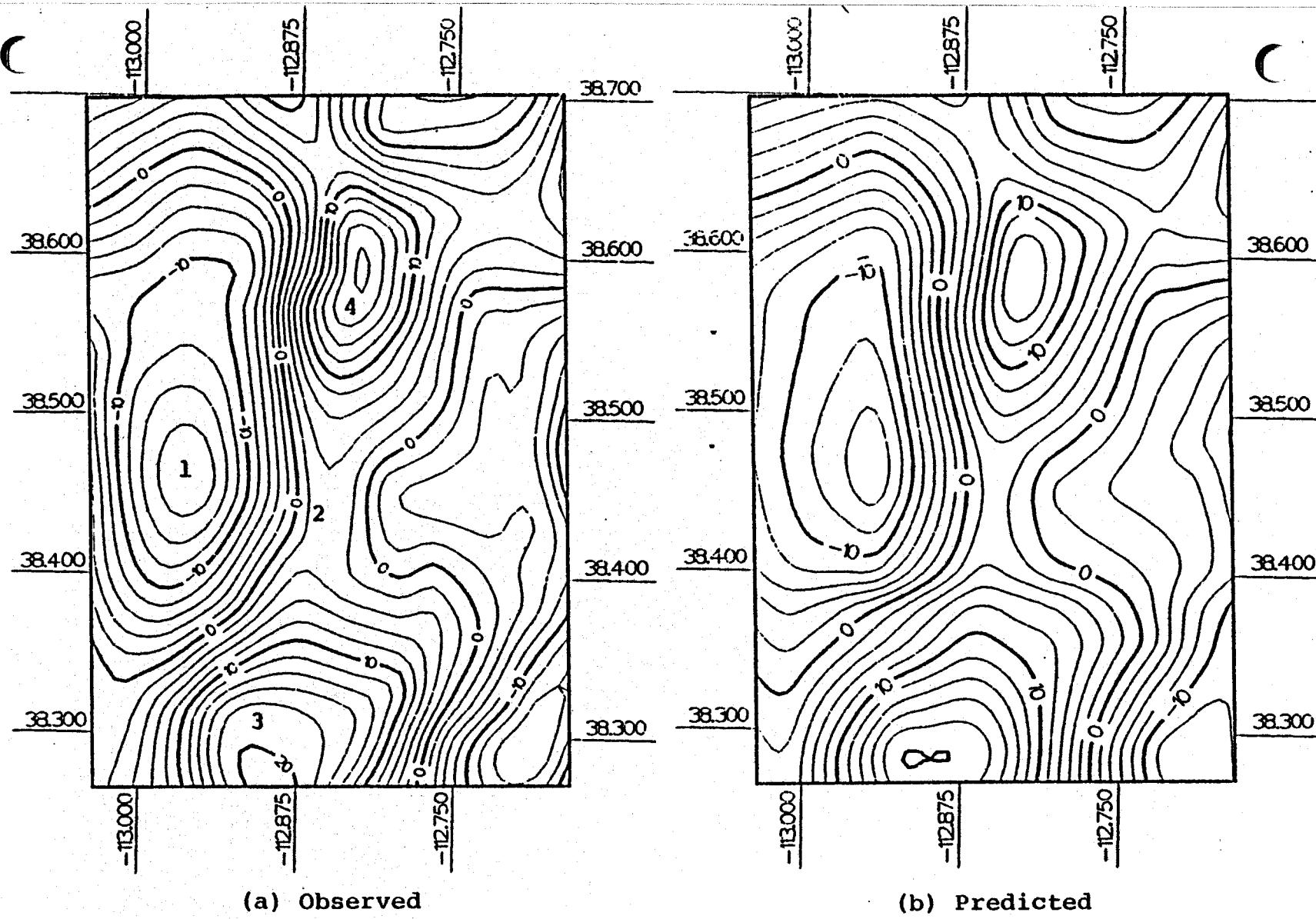


Figure 17. Comparison of observed and predicted gravity data from joint inversion model. Contour interval is 2 mgal.

and the model-predicted data. The data are contoured with a contour interval of 2 mgal. As is obvious the gravity field predicted by the joint inversion model shown in Figure 15 reproduces all of the significant features of the observed field. Of particular note are the Milford Valley gravity low (Number 1 in Figure 17a), the Ranch Canyon gravity saddle (Number 2), the southern Mineral Mountains gravity high (Number 3) and the central Mineral Mountains gravity high (Number 4). These gravity anomalies are identified in the report by Carter and Cook (1978). These patterns are naturally correlated with model features, and we shall discuss them in the framework of model interpretation in the next subsection of this report. Finally, we point out that the r.m.s. misfit to the data is 1.5 mgal.

4.4 DISCUSSION OF MODELING RESULTS

In order to facilitate the discussion of our inversion modeling results we begin this section with a base map of the general model region shown in Figure 18. This map is taken from the study by Robinson and Iyer (1981) and depicts in a simplified manner the major physiographic features of interest in this study. Dominating this region is the Mineral Mountains, a horst composed mainly of Tertiary granitic rocks (10 to 14 m.y. old) and flanked by alluvial valleys typical of the Basin and Range province (Milford Valley and Beaver Valley). Of particular interest in this modeling effort is the Roosevelt Hot Springs geothermal area (the starred symbol in Figure 18) which is located on the western flank of the Mineral Mountains.

The scale of the base map in Figure 18 is equivalent to the scale of all subsequent model plots. This greatly facilitates interpretation of the more robust features in the inversion models.

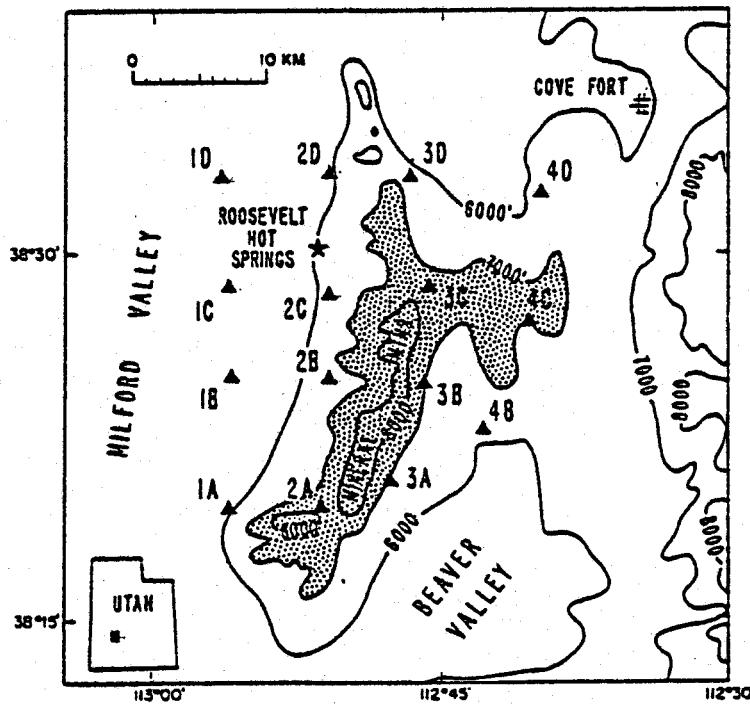


Figure 18. The Mineral Mountains region, southwest Utah. Seismograph stations used in the study by Robinson and Iyer (1981) are shown by triangles. The star indicates the location of the Roosevelt Hot Springs geothermal area. Contour interval is 1000 feet, the shaded region representing the Mineral Mountains. The scale of this map is the same as in Figures 19 through 22.

Before interpreting our model, a few words about resolution are in order. The similarity of the contours in Layers 1, 2 and 3 (Figures 15a, 15b and 15c) suggest that the vertical resolution available from the data in the upper two or three kilometers of the model is relatively poor. Given that Layers 1 and 2 are only 1 km thick, this makes physical sense from the standpoint of both the gravity data, whose horizontal spacing is 3 km, and the travel-times, whose ray paths sample relatively few blocks in Layers 1 and 2. Layer 1, in particular, contains very few horizontal ray paths which intersect two or more blocks. Given the nature of the data, shallow structure in our model may be vertically smeared across Layers 1 and 2 and, to a lesser extent, across Layers 2 and 3 (since some rays do turn in Layer 2; see Figure 7a).

An additional problem with Layer 1 is that the top of this layer is at the approximate mean elevation of the study region (2 km). True ground elevations differ from this datum plane by as much as 500 m, which is half the thickness of Layer 1. Therefore, in addition to modeling geology, Layer 1 has the role of absorbing errors due to elevation corrections made to the seismic data. Of course, such errors have been minimized by our choice of the datum plane. Because of this ambiguity of Layer 1 and the potential problems with depth resolution, we have chosen to ignore this layer in our discussion below.

Vertical resolution may be best in the depth range between Layers 3 and 4. Many rays turn in these layers (Figures 7a, 7b and 7c) and they also contain a large number of earthquake hypocenters (Figures 7c and 7d). Layer 4 is also deep enough to decouple from the highest wavenumber components of the gravity data.

Contour maps of velocity variations in Layers 2 and 3 for the joint inversion model (NDF = 74) and the seismic-only

inversion model (NDF = 48) are given in Figures 19 and 20, respectively. (See captions for contour intervals.) The more robust features seen in these layers, particularly in the case of the joint inversion, are the following. A very prominent ridge of high velocities can be seen trending generally northward from the southern limit of the model region between 112.8° and 113°W to as far north as 38.6°N . This ridge is flanked on the west by a narrow zone of steep velocity gradients grading to a pronounced velocity low further to the west.

While these features are probably largely controlled by the terrain-corrected Bouguer gravity data included in the joint inversion (recall the disjoint spatial sampling of the gravity and seismic data in Figure 13 for instance), the local earthquake travel-time data do in fact delineate all three features, especially in Layer 3 (Figure 20, NDF = 48). An interpretation of these model features is taken from a study by Ward, et al. (1978). These authors analyzed a subset of the Bouguer gravity data that we inverted and interpreted the northward-trending gravity contours, with pronounced gradients over the alluvium adjacent to the western margin of the Mineral Mountains as indicating that the mountains are bounded on the west by Basin and Range faults; these faults form the eastern margin of the Milford Valley graben, which is reflected in the gravity low (Figure 17a) along the western portion of this region.

Ward, et al. (1978) further noted two northward-trending, elongate gravity highs extending over the region of interest here and pointed out that the northern gravity high does not coincide with the crest of the Mineral Mountains in this area but rather overlies the western margin of the mountains where granitic rocks are exposed. Referring to our model Layers 2 and 3 in Figures 19 and 20, especially for the joint inversion, we see that the velocity anomalies display a similar behavior;

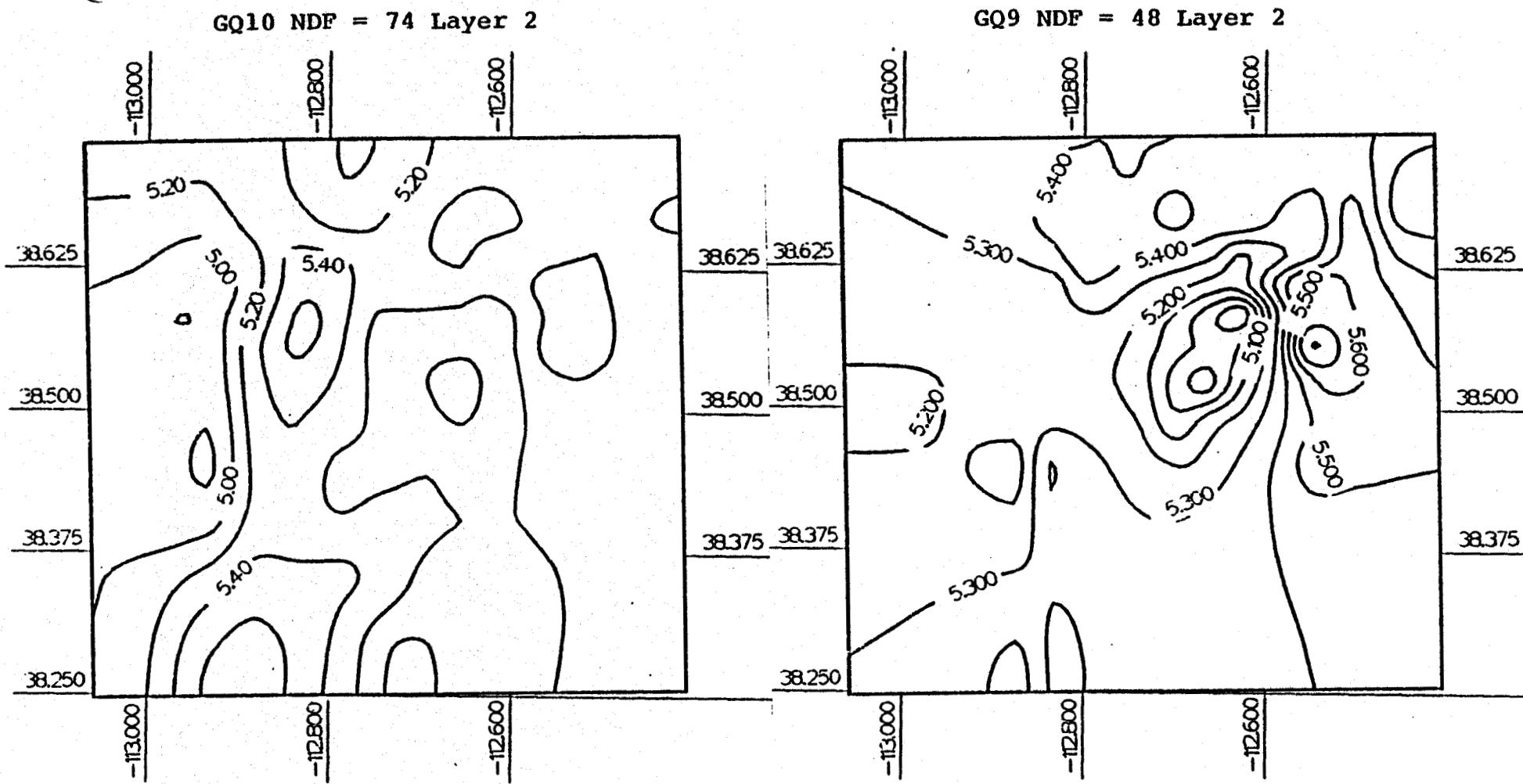
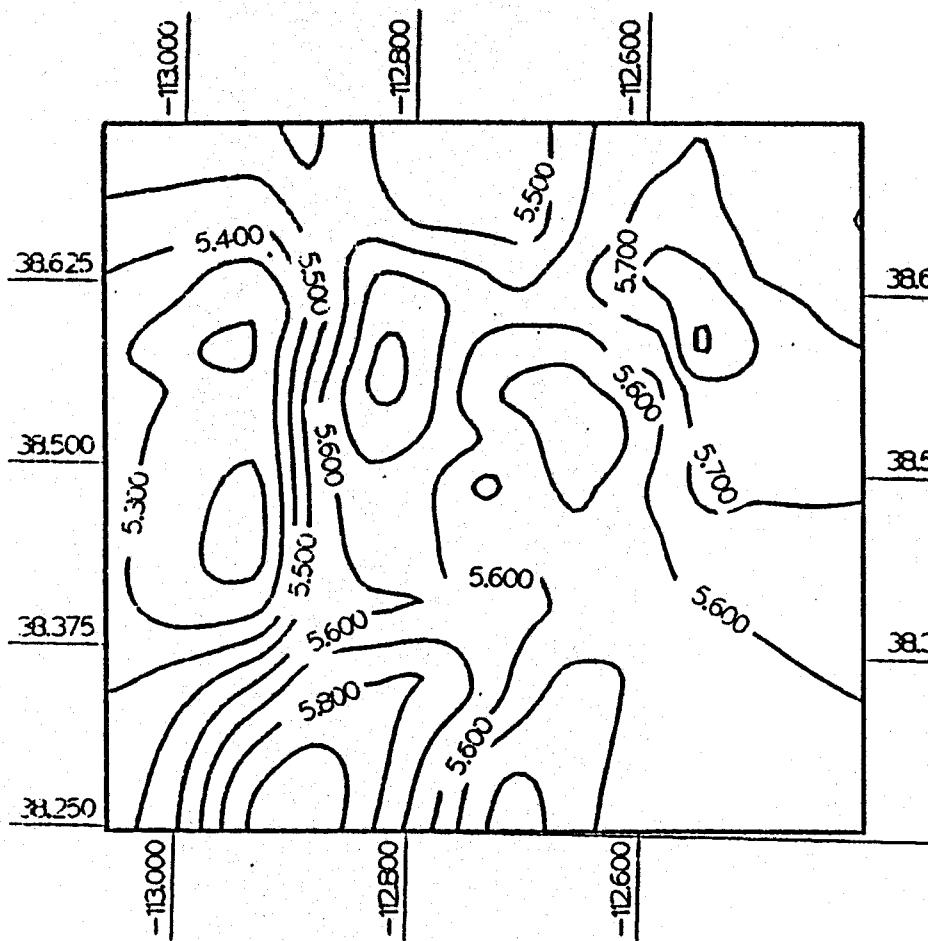



Figure 19. Contour plots of velocity in model Layer 2 of the joint inversion (left) and seismic-only inversion (right). The contour intervals are 0.2 km/s and 0.1 km/s for the joint and seismic-only model layers, respectively.

GQ10 NDF = 74 Layer 3

GQ9 NDF = 48 Layer 3

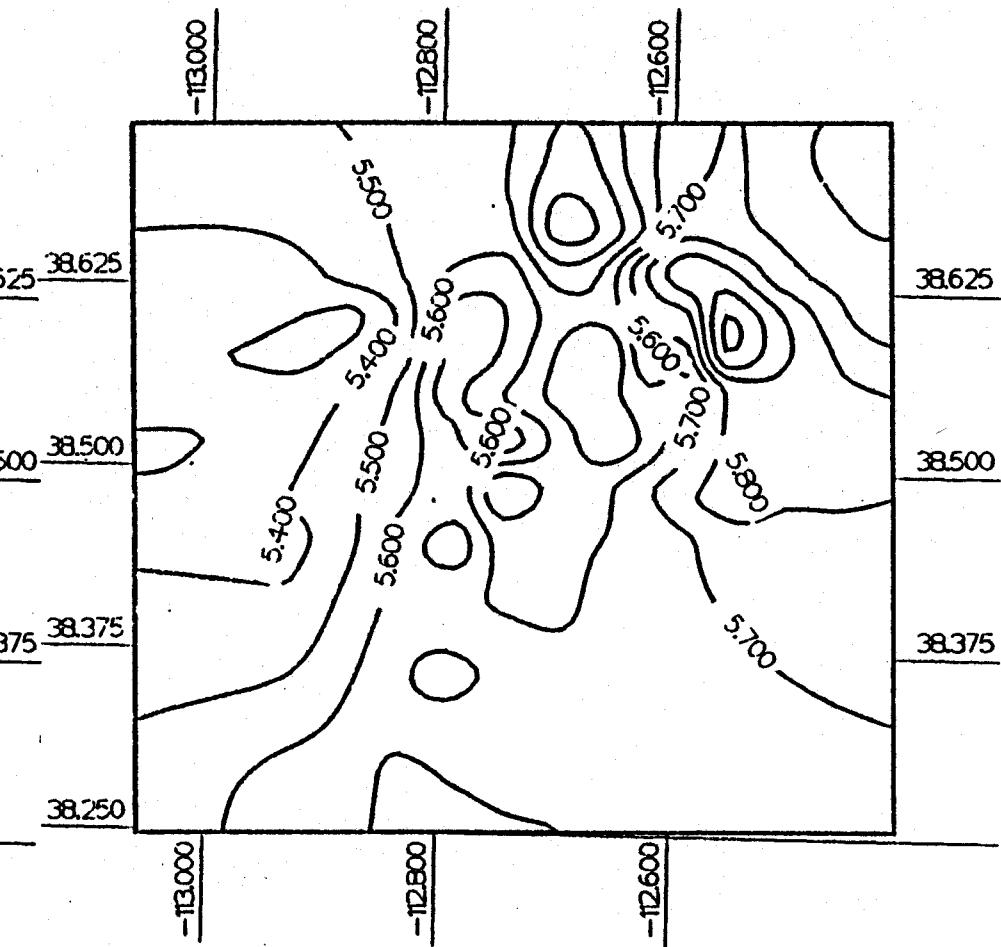
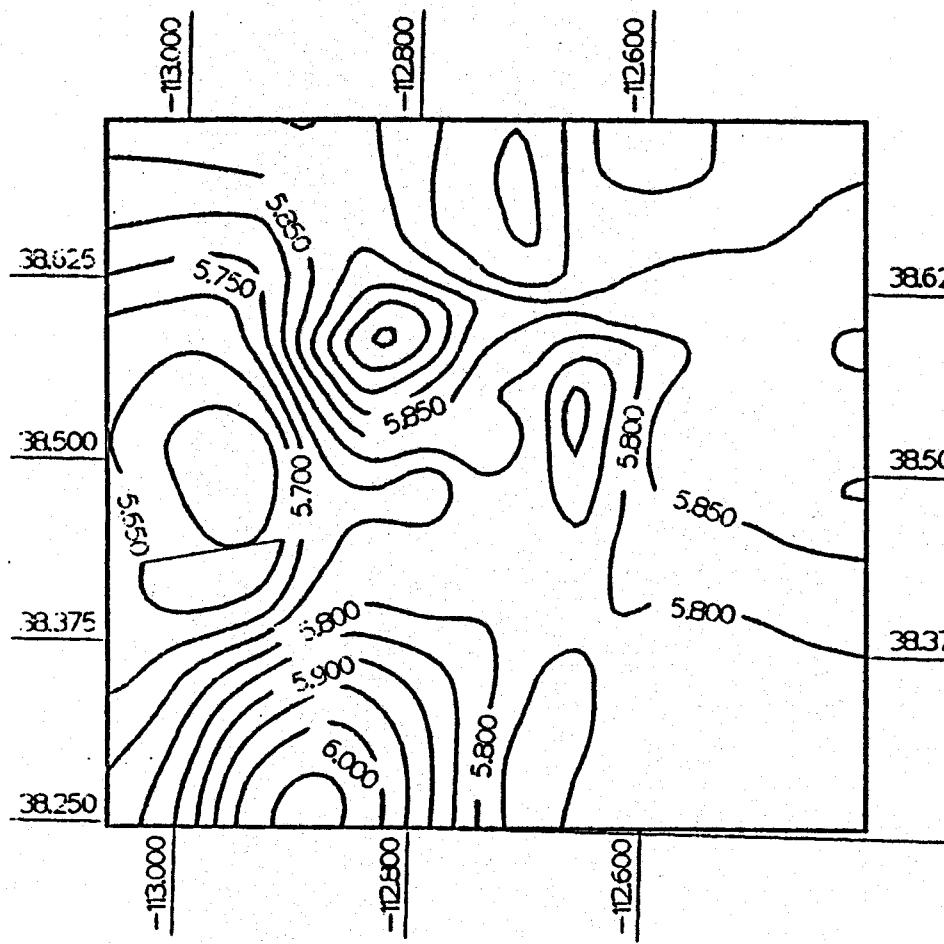


Figure 20. Contour plots of velocity in model Layer 3 of the joint inversion (left) and seismic-only inversion (right). The contour intervals are 0.1 km/s in both plots.


the ridge, with an intervening saddle in the Ranch Canyon area, of high velocity material diverges west of the crest of the mountains going from south to north over the model region.

Additional seismic evidence, supporting the model features in Figures 19 and 20, comes from a study by Robinson and Iyer (1981). These authors inverted teleseismic P-wave travel-times recorded at the stations (solid triangles) depicted in Figure 18 for three-dimensional velocity structure in the crust and upper mantle beneath our general study region. The model obtained by Robinson and Iyer (1981) consisted of four layers extending from 0 to 35 km. The pattern of velocity anomalies determined in their topmost model layer (0 to 5 km) correlates quite well with anomalies in Layers 2 and 3 of our inversion models - and includes the three features discussed above.

The inversion results for the deeper model layers are given in Figures 21 and 22. An extremely interesting feature appears in Layer 4 (Figures 21 and 22), for both the joint and seismic-only inversions, and persists into Layer 5 (Figure 22). The feature of interest is the east-west trending low velocity anomaly centered between approximately 38.45°N and 38.5°N . This anomaly extends beneath the axis of the Mineral Mountains, and, most importantly, underlies the Roosevelt Hot Springs KGRA. Once again, comparing our results with those of Robinson and Iyer (1981) we find that this low velocity anomaly is delineated by the teleseismic travel times between depths of 5 to 25 km, and furthermore is located very nearly in the same place as in our study (i.e., Figure 7b from Robinson and Iyer (1981) shows this anomaly extending beneath the Mineral Mountains just south of 38.5°N).

Robinson and Iyer (1981) stated that their results suggested a pipe-like feature of approximately five to seven

GQ10 NDF = 74 Layer 4

GQ9 NDF = 48 Layer 4

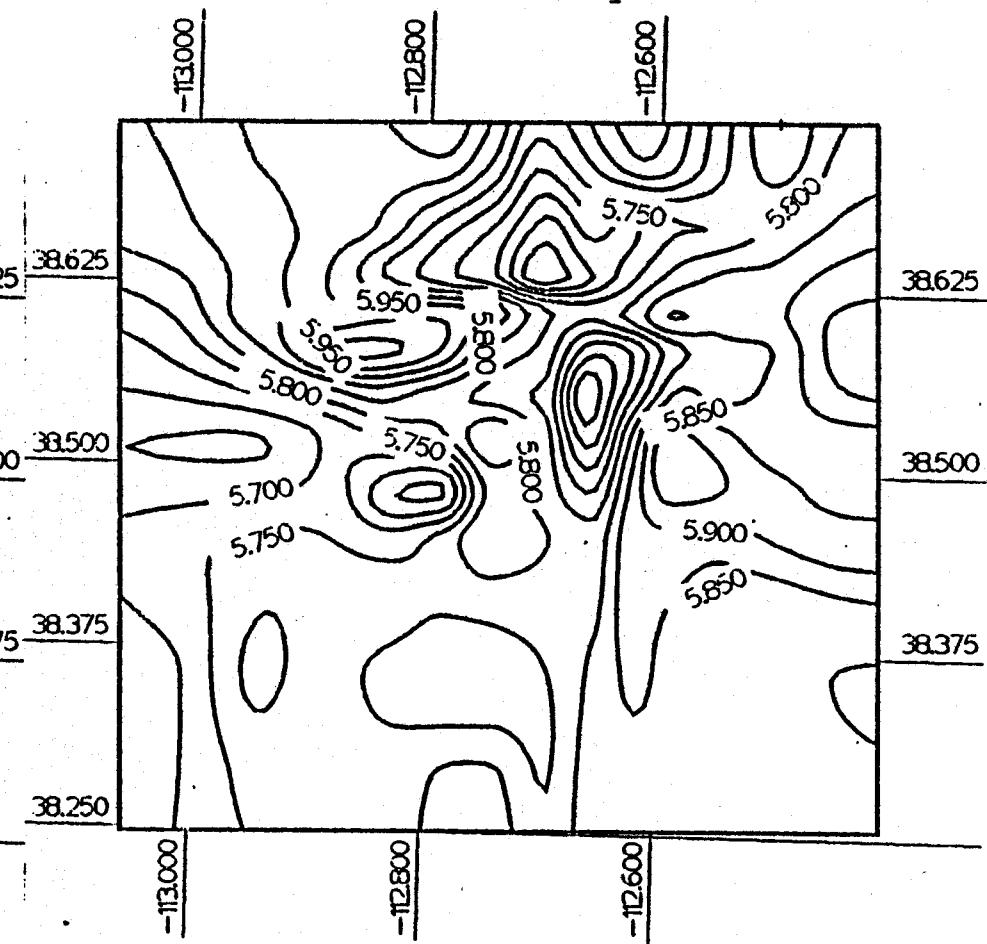


Figure 21. Contour plots of velocity in model Layer 4 of the joint inversion (left) and the seismic-only inversion (right). The contour intervals are 0.05 km/s in both plots.

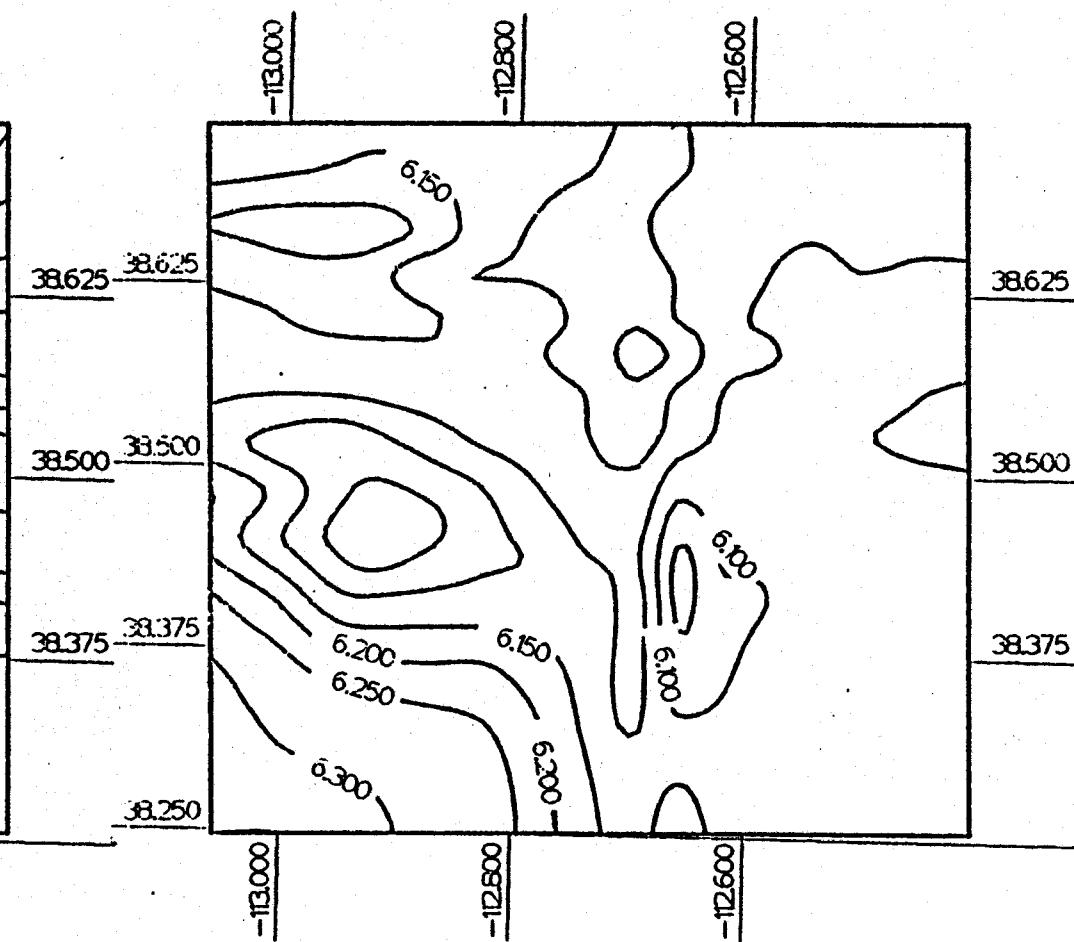
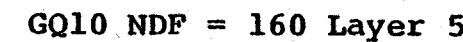
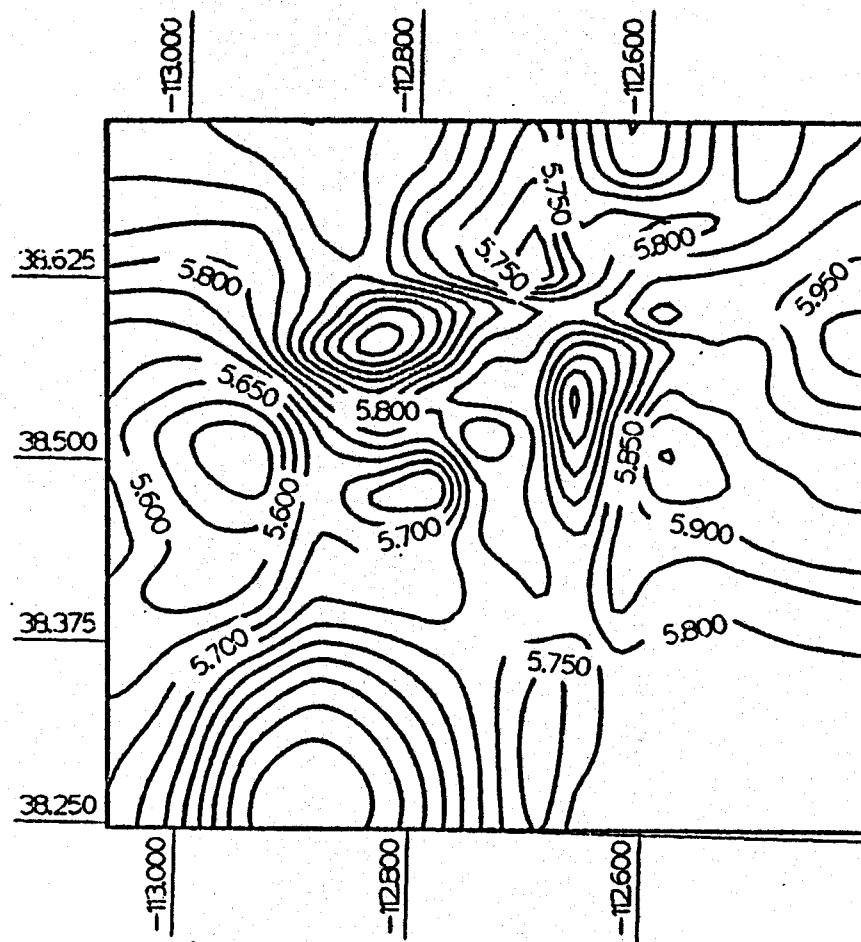
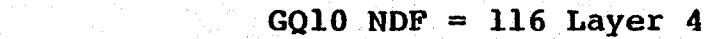





Figure 22. Contour plots of velocity in model Layers 4 (NDF = 116) and 5 (NDF = 160) of the joint inversion. Contour intervals are 0.05 km/s in both plots.

percent velocity contrast extending from about 5 km-depth down at least as far as the uppermost mantle, centered near the Roosevelt Hot Springs geothermal area but extending to the north and south at depth. While our inversion model lacks sufficient resolution in the deepest (i.e., 7 to 26 km) layer (i.e., in terms of defining the depth extent of this anomaly), we note that this low velocity anomaly is well-defined in our Layer 4 (3.5 to 7.0 km) and is thus probably shallower than 5 km.

The similar geological and geophysical picture painted by the various data set considered in this study lends strong support to the joint inversion approach we have described in this report. To a large extent, we were handicapped in this study by the relatively disjoint coverage afforded by the local seismic and gravity data and, in addition, by the poor distribution of seismic events and recording stations, and the small average number of stations recording each event. However, in spite of these circumstances we obtained structure models of considerable merit. Obviously, given a "dedicated" seismic experiment and overlapping gravity coverage, we would expect the joint inversion technique to prove to be a valuable exploration tool.

V. REFERENCES

Aki, K., A. Christoffersson and E. S. Husebye (1977), "Determination of the Three-Dimensional Seismic Structure of the Lithosphere," JGR, 82, pp. 277-296.

Backus, G. and F. Gilbert (1970), "Uniqueness in the Inversion of Inaccurate Gross Earth Data," Phil. Trans. Roy. Soc. (London), Ser. A., 266, pp. 123.

Birch, F. (1961), "The Velocity of Compressional Waves in Rocks to 10 Kilobars, 2," JGR, 66, pp. 2199-2224.

Evoy, J. A. (1978), "Precision Gravity Reobservations and Simultaneous Inversion of Gravity and Seismic Data for Subsurface Structure of Yellowstone," Masters Thesis, University of Utah.

Gertson, R. C. and R. B. Smith (1979), "Interpretation of a Seismic Refraction Profile Across the Roosevelt Hot Springs, Utah and Vicinity," University of Utah, Department of Geology and Geophysics Report IDO/78-1701.a.3 to DOE/DGE, Contract DE-AC07-78ET 28392.

Jordan, T. H. (1973), "Estimation of the Radial Variation of Seismic Velocities and Density in the Earth," Ph.D. Thesis, California Institute of Technology.

Jordan, T. H. (1975), "The Solution of Linear Inverse Problems," Systems, Science and Software Internal Report SSS-IR-75-2590.

Lanczos, C. (1961), Linear Differential Operators, Van Nostrand, New York.

Minster, J. B., J. M. Savino, W. L. Rodi, T. H. Jordan and J. F. Masso (1981), "Three-Dimensional Velocity Structure of the Crust and Upper Mantle Beneath the Nevada Test Site," Systems, Science and Software Final Technical Report submitted to the Advanced Research Projects Agency, SSS-R-81-5138, August.

Olson, T. L. and R. B. Smith (1976), "Earthquake Surveys of the Roosevelt Hot Springs and the Cove Fort Areas, Utah," University of Utah, Department of Geology and Geophysics Final Report to the National Science Foundation, Contract GI-43741.

Pavlis, G. L. and J. R. Booker (1980), "The Mixed Discrete-Continuous Inverse Problem: Application to the Simultaneous Determination of Earthquake Hypocenters and Velocity Structure," JGR, 85, pp. 4801-4810.

V. REFERENCES (continued)

Robinson, R. and H. M. Iyer (1981), "Delineation of a Low-Velocity Body Under the Roosevelt Hot Springs Geothermal Area, Utah, Using Teleseismic P-Wave Data," Geophysics, 46, No. 10, pp. 1456-1466.

Rodi, W. L., T. H. Jordan, J. F. Masso and J. M. Savino (1980a), "Determination of Three-Dimensional Structure of Eastern Washington Based on Inversion of Gravity and Local Earthquake Travel Time Data," Systems, Science and Software Final Report submitted to Weston Geophysical Corporation, SSS-R-80-4431, April.

Rodi, W. L., T. H. Jordan, J. F. Masso and J. M. Savino (1980b), "Determination of Three-Dimensional Structure of Eastern Washington from the Joint Inversion of Gravity and Earthquake Travel Time Data," Systems, Science and Software Final Report submitted to Weston Geophysical Corporation, SSS-R-80-4516, June.

Savino, J. M., W. L. Rodi, R. C. Goff, T. H. Jordan, J. H. Alexander and D. G. Lambert (1977), "Inversion of Combined Geophysical Data for Determination of Structure Beneath the Imperial Valley Geothermal Region," Systems, Science and Software Final Technical Report submitted to the Department of Energy, SSS-R-79-3412, September.

Savino, J. M., W. L. Rodi and J. F. Masso (1979a), "Determination of Three-Dimensional Geophysical and Geological Structure Beneath the Hanford Area of the Central Columbia Plateau," Systems, Science and Software Final Report submitted to Weston Geophysical Corporation, SSS-R-80-4166, September.

Savino, J. M., W. L. Rodi and J. F. Masso (1979), "Determination of Three-Dimensional Geophysical and Geological Structure Beneath the Hanford Area of the Central Columbia Plateau," Systems, Science and Software Interim Report submitted to Weston Geophysical Corporation, SSS-R-80-4300, December.

Spencer, C. and D. Gubbins (1980), "Travel-Time Inversion for Simultaneous Earthquake Location and Velocity Structure Determination in Laterally Varying Media," Geophys. J. R. astr. Soc., 63, pp. 95-116.

Ward, S. H., W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan and J. R. Bowman (1978), "A Summary of the Geology, Geochemistry, and Geophysics of the Roosevelt Hot Springs Thermal Area, Utah," Geophysics, 43, No. 7, pp. 1515-1542.

V. REFERENCES (concluded)

Wiggins, R. A. (1972), "The General Linear Inverse Problem: Implication of Surface Waves and Free Oscillations for Earth Structure," Rev. Geophys., 10, pp. 251-285.

APPENDIX A

LISTING OF LOCAL EARTHQUAKE TRAVEL-TIME MODELING PROGRAMS

Program XTP computes local earthquake travel-times for buried sources in a flat-layered one-dimensional velocity model having continuous velocity versus depth and constant velocity gradient in each layer. It is written in ASCII FORTRAN, UNIVAC's version of FORTRAN 77. All input to the program is through NAMELIST reads in the main program (AAMAIN). The program produces printed output and a plot file generated by calls to the DISSPLA graphics library. The program accesses no other tape or disk files. The following program listing is complete except for subroutines in the copyrighted DISSPLA library, which is available from ISSCO, Incorporated, San Diego, California.

FOR * AAMAIN *

15 XTP,AAMAIN
15 ILT 881-S3C 57401C 04/17/82 11:36:40 (19)
15 XTP:

15 COMPUTE AND PLOT DISTANCE, TRAVELTIME, DELAYTIME, RAYPARAMETER TABLES
15 FOR MODEL WITH CONTINUOUS VELOCITY AND CONSTANT GRADIENT LAYERS

15 INPUT:

15 KRTM, ZRTM (1..NRTM), VRTM (1..NRTM) =
15 VELOCITY-DEPTH MODEL FOR RAYTRACING, ORDERED BY
15 INCREASING DEPTH (ZRTM(1) IS SURFACE).
15 NEVT, ZEVT (1..NEVT) = EVENT DEPTHS FOR WHICH TABLES ARE WANTED
15 VREDUC = VELOCITY FOR REDUCING TRAVELTIMES (T = X/VREDUC)
15 NTABE = NUMBER OF SAMPLES WANTED IN EMERGING BRANCH TABLES
15 NTABD = NUMBER OF SAMPLES WANTED IN DIVING BRANCH TABLES
15 MAXIT = NUMBER OF ITERATIONS ALLOWED FOR FINDING PIXI
15 LIST = LOGICAL FLAG FOR EXTRA PRINTING
15 DEBUG = LOGICAL FLAG FOR DEBUG PRINTING
15 IPRT = PRINT FLAG FOR RAYPATHS
15 > 0 FOR NO RAYPATHS
15 IPLOT = PLOT FLAG
15 > 0 NO PLOTS
15 > 1 PRINTER PLOTS
15 > 2 DISPLAY PLOTS
15 > 3 BOTH
15 FUNID = 24 CHARACTER RUN IDENTIFIER

15 RESULTS:

15 NTABD = INDEX OF FIRST DIVING BRANCH POINT
15 (EITHER 1 OR 1+NTABD)
15 NTAB = NUMBER OF TOTAL SAMPLES IN E & D TABLES
15 (EITHER NTABD OR NTABE+NTABD)
15 FTAB (1..NTAB) = RAYPARAMETERS
15 XTAB (1..NTAB) = DISTANCES
15 TTAB (1..NTAB) = TRAVELTIMES
15 ETAB (1..NTAB) = DELAY TIMES (TAU)
15 RTAB (1..NTAB) = REDUCED TIMES (T = X / VREDUC)
15 ACPIT = NUMBER OF CRITICAL APPARENT VELOCITIES
15 ACRIT (1..NCRIT) = CRITICAL APPARENT VELOCITIES
15 NARR = NUMBER OF ARRIVALS AT DIST
15 PARR (1..NARR) = RAYPARAMETERS OF ARRIVALS
15 TARR (1..NARR) = DISTANCES OF ARRIVALS
15 TARR (1..NARR) = TRAVELTIMES OF ARRIVALS
15 EXPARR (1..NARR) = EXP/DP OF ARRIVALS
15 AOIARR (1..NARR) = ANGLES OF INCIDENCE OF ARRIVALS
15 IDVARR (1..NARR) = IDIVE CODES OF ARRIVALS

15 INTEGER
15 . QRTM, QEVN, QTABE, QTABD, QARR, QDIST, QLAY, QTAB
15 . PARAMETER
15 . QRTM = 31, QEVN = 20, QTABE = 500, QTABD = 500,
15 . QARR = 20, QDIST = 101,
15 . QLAY = (QRTM+1)/2, QTAB = QTABE + QTABD
15 . DIMENSION
15 . ZRTM(QRTM), VRTM(QRTM), ACRIT(QRTM), ZEVT(QEVN),
15 . HLAY(QLAY), VLAY(QLAY),
15 . PTAB(QTAB), XTAB(QTAB), TTAB(QTAB), DTAB(QTAB), RTAB(QTAB),
15 . DIST(QDIST), PARR(QARR),
15 . XARR(QARR), TARR(QARR), EXPARR(QARR), AOIARR(QARR), IDVARR(QARR)
15 . CHARACTER
15 . H100*100 /* /*, H72*72 /* /*, H24*24 /* /*, RUNID*24 /* /*,
15 . PLAB*100 /* RAYPARAMETER IS/KM/S /*, XLAB*100 /* DISTANCE (KM)S /*,
15 . TLAB*100 /* TRAVEL TIME (S)S /*, DLAB*100 /* DELAY TIME (S)S /*,
15 . RLAB*100,
15 . VLAB*100 /* VELOCITY (KM/S)S /*, ZLAB*100 /* DEPTH (KM)S /*
15 . LOGICAL LIST, DEBUG

15 NAMELIST /INPUT/
15 . NLAY, HLAY, VLAY, FRACZ, FRACV,
15 . VREDUC, NTABE, NTABD, MAXIT, NDIST, DIST, CISERR,
15 . NRTM, ZRTM, VRTM, NEVT, ZEVT, LIST, DEBUG, IPRT, IPLOT, FUNID
15 . NAMELIST /DPLTL/
15 . NLEN, VLEN,

FOR : **• ADAMAIN •**

```

77.          VMIN, VMAX
78.          ZMIN, ZMAX
79.          PMIN, PMAX
80.          XMIN, XMAX
81.          TMIN, TMAX
82.          RMIN, RMAX
83.          OMIN, OMAX
84.          MARKS
85.
86.
87.          CCC READ INPUT & SET UP
88.          C
89.          TLAB = TLAB
90.          CALL S3SET (HLAY, CLAY, -1.)
91.          CALL S3SET (VLAY, CLAY, -1.)
92.          CALL S3SET (ZRTM, CRTM, -1.)
93.          CALL S3SET (VRTM, CRTM, -1.)
94.          CALL S3SET (ZEV, GEVT, -1.)
95.          CALL S3SET (ODIST, ODIST, -1.)
96.          NLAY = 0
97.          NRTM = 0
98.          NEVT = 1
99.          ZEV(1) = 0.
100.         NDIST = 0
101.         DISERR = .1
102.         VREDUC = .C.
103.         NTABE = 50
104.         NTABD = 100
105.         LIST = .TRUE.
106.         DEBUG = .FALSE.
107.         IPRT = 0
108.         IPLOT = 0
109.
110.         C READ 15, INPUT
111.         C
112.         CALL FILIST (CLAY, NLAY, HLAY)
113.         CALL FILIST (CLAY, NLAY, VLAY)
114.         CALL FILIST (CRTM, NRTM, ZRTM)
115.         CALL FILIST (CRTM, NRTM, VRTM)
116.         CALL FILIST (GEVT, NEVT, ZEV)
117.         CALL FILIST (ODIST, NODIST, DIST)
118.
119.         C INITIALIZE DISSPLA
120.         C
121.         IF (IPLOT.EQ.2 .OR. IPLOT.EQ.3) THEN
122.             HLEN = 9
123.             VLEN = 7
124.             MARKS = 0
125.             READ (5, OPLTL)
126.             CALL COMPRS
127.             CALL SIMPLX
128.             CALL NOCHECK
129.             CALL NOBNDR
130.             PAGEH = HLEN + 2.
131.             PAGEV = VLEN + 2.
132.             CALL PAGE (PAGEH, PAGEV)
133.             CALL FLATBC
134.             CALL HWSCL ('DOWN')
135.             CALL INTAXS
136.             CALL HEIGHT (1.2)
137.             IFRAPE = 0
138.         END IF
139.
140.         C CONVERT LAYERED MODEL TO GRADIENT MODEL, IF NECESSARY
141.         C
142.         IF (NLAY.GT.0) THEN
143.             C
144.             NRTM = 2*NLAY
145.             DO 20 K = 1, NLAY
146.                 IF (NLAY.EQ.1) THEN
147.                     DELV = VLAY(1)
148.                 ELSE IF (K.EQ.1) THEN
149.                     DELV = VLAY(2) - VLAY(1)
150.                 ELSE IF (K.EQ.NLAY) THEN
151.                     DELV = VLAY(NLAY) - VLAY(NLAY-1)
152.                 ELSE
153.                     DELV1 = VLAY(K) - VLAY(K-1)
154.                     DELV2 = VLAY(K+1) - VLAY(K)

```

FOR * AMAIN *

```
155.      15      IF (DELV1*DELV2.LE.0.) THEN
156.      15      DELV = 0.
157.      15      ELSE
158.      15      IF (DELV1.GT.0.) DELV = AMINI (DELV1,DELV2)
159.      15      IF (DELV1.LT.0.) DELV = AMAXI (DELV1,DELV2)
160.      15      END IF
161.      15      END IF
162.      15      VRTM(2*K-1) = VLAY(K) - FRACV*DELV
163.      15      VRTM(2*K) = VLAY(K) + FRACV*DELV
164.      20      CONTINUE
165.      15      C
166.      15      ZRTH(1) = 0.
167.      15      Z = 0.
168.      15      DO 40 K = 1,NLAY-1
169.      15      Z = Z + HLAY(K)
170.      15      DELZ = AMINI (HLAY(K),HLAY(K+1))
171.      15      ZRTH(2*K) = Z - FRACZ*DELZ
172.      15      ZRTH(2*K+1) = Z + FRACZ*DELZ
173.      40      CONTINUE
174.      15      ZRTH(NRTH) = Z + HLAY(NLAY)
175.      15      END IF
176.      15      C PRINT PRELIMINARY INFORMATION
177.      15      C
178.      15      2100  WRITE (6,2100) IL,ZRTH(L),VRTM(L),L=1,NRTH
179.      15      2100  FORMAT (1RAYTRACING MODEL:'//'
180.      15      .IX,'AYER' DEPTH 'VELOCITY'/(IX,15,1P2E14.6))
181.      15      2120  FORMAT (//IX,I4,'EVENT DEPTHS:/(IX,10G10.3))
182.      15      C DISSPLA PLOT VELOCITY MODEL
183.      15      C
184.      15      IF (IPLOT.EQ.2 .OR. IPLOT.EQ.3) THEN
185.      15      C
186.      15      ENCODE (2400,HL00) RUNID
187.      2400  FORMAT (A24,'$')
188.      15      C
189.      15      CALL TITLE (0,0,ZLAB,100,VLAB,100,HLEN,VLEN)
190.      15      CALL HEADDIN (H100,100,1,0,1)
191.      15      CALL GRACE (0,0)
192.      15      CALL YAXANG (0,0)
193.      15      CALL GRAF (2PIN,'SCALE',ZMAX,VMIN,'SCALE',VMAX)
194.      15      CALL CURVE (ZRTM,VRTM,NRTH,MARKS)
195.      15      IFRAME = IFRAME + 1
196.      15      CALL ENDPL (-IFRAME)
197.      15      END IF
198.      15      C **** MAIN LOOP OVER EVENT DEPTH **** **** ****
199.      15      C
200.      15      DO 600 IEV = 1,NEVT
201.      15      C GENERATE EMERGING AND DIVING BRANCHES OF X,T,D TABLES
202.      15      C
203.      15      CALL TABXTP
204.      15      . (NRTH,ZRTM,VRTM,ZEVT(IEV),NTABD,NTABD,LIST,IPRT,
205.      15      . ITABD,NTAB,PTAB,XTAB,TTAB,DTAB,AVMIN,NCRIT,AVCRIT)
206.      15      C FIND ARRIVALS AT SPECIFIED DISTANCES
207.      15      C
208.      15      IF (INDIST.GT.0) THEN
209.      15      C
210.      15      WRITE (6,2600)
211.      15      2600  FORMAT (1ARRIVALS....')
212.      15      C
213.      15      DO 200 IDST = 1,NCIST
214.      15      C
215.      15      CALL GETXTP
216.      15      . (NRTH,ZRTM,VRTM, ZEVT(IEV), ITABD,NTAB,PTAB,XTAB,TTAB,AVMIN,
217.      15      . DIST(IDST),DISERR,MAXIT,LIST,DEBUG,
218.      15      . NARR,PARR,XARR,TARR,DXPARR,SOIARP,IOVARR)
219.      15      C
220.      200  CONTINUE
221.      15      C
222.      15      ENC IF
223.      15      C REDUCE TRAVELTIME TABLES FOR PLOTTING
224.      15      C
225.      15      IF (IVREDUC.NE.0) THEN
226.      15      DO 300 I = 1,NTAB
227.      15      C
228.      15      C
229.      15      C
230.      15      C
231.      15      C
232.      15      C
```

```

FOR * AAMAIN *
233.      15    300      RTAB(I) = TTAB(I) - XTAB(I)/VREDUC
234.      15
235.      15    2700      ENCODE (2700,RLAB) VREDUC
236.      15      FORMAT ('T - X /',F7.3,' (S)S')
237.      15      END IF
238.      15
239.      15      C PRINTER PLOT X,T,D TABLES
240.      15
241.      15      IF (IPLOT.EQ.1 .OR. IPLOT.EQ.3) THEN
242.      15      ENCODE (2500,H24) RUNID
243.      15      FORMAT (A24)
244.      15      ENCODE (2530,H72) RUNID,ZEVT(IEV),XLAB,PLAB
245.      15      FORMAT (A16, /, EVT DEPTH =,F8.3, /, A12, ' VS ',A12,IX)
246.      15      CALL SPLOT (PTAB,XTAB,NTAB,H72,H24,0,NTAB,0,1)
247.      15      ENCODE (2530,H72) RUNID,ZEVT(IEV),TLAB,PLAB
248.      15      CALL SPLOT (PTAB,TTAB,NTAB,H72,H24,C,NTAB,0,1)
249.      15      ENCODE (2530,H72) RUNID,ZEVT(IEV),DLAB,PLAB
250.      15      CALL SPLOT (PTAB,DTAB,NTAB,H72,H24,C,NTAB,0,1)
251.      15      ENCODE (2530,H72) RUNID,ZEVT(IEV),RLAB,XLAB
252.      15      CALL SPLOT (XTAB,RTAB,NTAB,H72,H24,0,NTAB,0,1)
253.      15      END IF
254.      15
255.      15      C DISSPLA PLOT X,T,D TABLES
256.      15
257.      15      IF (IPLOT.EQ.2 .OR. IPLOT.EQ.3) THEN
258.      15
259.      17    2800      ENCODE (2800,H100) ZEVT(IEV),RUNID
260.      15      FORMAT ('EVT DEPTH =',F8.3,' KM / ',A24,'S')
261.      15
262.      15      CALL TITLE (0,0,PLAB,100,XLAB,100,HLEN,VLEN)
263.      15      CALL HEADIN (H100,100,1.0,1)
264.      15      CALL GRACE (0,0)
265.      15      CALL YAXANG (0,0)
266.      15      CALL GRAF (PMIN,'SCALE',PMAX,XMIN,'SCALE',XMAX)
267.      15      CALL CURVE (PTAB,XTAB,NTAB,MARKS)
268.      15      IFFAME = IFRAME + 1
269.      15      CALL ENOPL (-IFRAME)
270.      15
271.      15      CALL TITLE (C,0,PLAB,100,TLAB,100,HLEN,VLEN)
272.      15      CALL HEADIN (H100,100,1.0,1)
273.      15      CALL GRACE (0,0)
274.      15      CALL YAXANG (0,0)
275.      15      CALL GRAF (PMIN,'SCALE',PMAX,TMIN,'SCALE',TMAX)
276.      15      CALL CURVE (PTAB,TTAB,NTAB,MARKS)
277.      15      IFFAME = IFRAME + 1
278.      15      CALL ENOPL (-IFRAME)
279.      15
280.      15      CALL TITLE (0,0,PLAB,100,DLAB,100,HLEN,VLEN)
281.      15      CALL HEADIN (H100,100,1.0,1)
282.      15      CALL GRACE (0,0)
283.      15      CALL YAXANG (0,0)
284.      15      CALL GRAF (PMIN,'SCALE',PMAX,DMIN,'SCALE',DMAX)
285.      15      CALL CURVE (PTAB,DTAB,NTAB,MARKS)
286.      15      IFRAME = IFRAME + 1
287.      15      CALL ENOPL (-IFRAME)
288.      15
289.      15      CALL TITLE (0,0,XLAB,100,RLAB,100,HLEN,VLEN)
290.      15      CALL HEADIN (H100,100,1.0,1)
291.      15      CALL GRACE (0,0)
292.      15      CALL YAXANG (0,0)
293.      15      CALL GRAF (XMIN,'SCALE',XMAX,RMIN,'SCALE',RMAX)
294.      15      CALL CURVE (XTAB,RTAB,NTAB,MARKS)
295.      15      IFFAME = IFRAME + 1
296.      15      CALL ENOPL (-IFRAME)
297.      15
298.      15      END IF
299.      15    300      CONTINUE
300.      15
301.      15      C *** END MAIN LOOP
302.      15
303.      15      IF (IPLOT.EQ.2 .OR. IPLOT.EQ.3)
304.      15      * CALL DONEPL
305.      15      STOP
306.      15      END

```

FOR * FILIST *

3ELT LS XTP.FILIST
ELT 8R1-S3C S7401C 04/17/82 11:36:41 (4)

```
1.      02      SUBROUTINE FILIST (M,N,A)
2.      DIMENSION A(M)
3.
4.      C      IF (N.LT.1) GO TO 50
5.      C
6.      DO 20 I = 1,N
7.      VALUE = A(I)
8.      IF (VALUE.LT.0.) GO TO 30
9.      IF (VALUE.EQ.0.) GO TO 40
10.     A(I) = VALUE
11.
12.     30      IF (I.GT.1) GO TO 32
13.     A(1) = -VALUE
14.     I = 2
15.     IF (I.GT.N) RETURN
16.     32      DO 35 J = I,N
17.     A(IJ) = A(IJ-1) - VALUE
18.     RETURN
19.
20.     40      IF (I.GT.1) GO TO 42
21.     A(1) = 0
22.     I = 2
23.     IF (I.GT.N) RETURN
24.     42      VALUE = A(I-1)
25.     DO 45 J = I,N
26.     A(IJ) = VALUE
27.     RETURN
28.
29.     50      N = 0
30.     60      DO 60 I = 1,N
31.     IF (A(I).GE.0.) N = I
32.     RETURN
33.
34.     C      END
```

```

FOR * GETXTP *
BELT,LS XTP,GETXTP
ELT BR1-S3C S7401C 04/17/82 11:36:41 (19)
15 SUBROUTINE GETXTP
16 : (NRTM,ZRTM,VRTM,ZEVT,ITAB0,NTAB,PTAB,XTAB,TTAB,AVMIN,
17 : DIST,DISERR,MAXIT,LIST,DEBUG,
18 : NARR,PARR,XARR,TARR,DXPARR,AOIARR,IVARR)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

C FIND THE RAYPARAMETERS AND TRAVELTIMES OF VARIOUS ARRIVALS AT A GIVEN
C DISTANCE.
C ON ENTRY:
C
C NRTM, ZRTM (1..NRTM), VRTM (1..NRTM) =
C VELOCITY-DEPTH MODEL FOR RAYTRACING, ORDERED BY
C INCREASING DEPTH (ZRTM(1) IS SURFACE).
C ZEVT = EVENT DEPTH
C ITAB0 = INDEX OF FIRST POINT IN DIVING BRANCH OF X,T,P TABLES
C NTAB = NUMBER OF POINTS IN X,T,P TABLES
C PTAB (1..NTAB) = TABLE RAYPARAMETERS
C XTAB (1..NTAB) = TABLE DISTANCES
C TTAB (1..NTAB) = TABLE TRAVELTIMES
C AVMIN = MINIMUM APPARENT VELOCITY (HORIZONTAL TAKEOFF)
C CIST = GIVEN EVENT-STATION DISTANCE
C CISERR = ERROR ALLOWED IN DISTANCE (XARR - DIST).
C MAXIT = NUMBER OF ITERATIONS ALLOWED FOR FINDING PIX.
C LIST = PRINT REQUEST (.TRUE. OR .FALSE.)
C DEBUG = DEBUG PRINT REQUEST
C
C ON RETURNS:
C
C NARR = NUMBER OF ARRIVALS AT DIST
C FARR (1..NARR) = RAYPARAMETERS OF ARRIVALS
C XARR (1..NARR) = DISTANCES OF ARRIVALS
C TARR (1..NARR) = TRAVELTIMES OF ARRIVALS
C DXPARR (1..NARR) = DX/DP OF ARRIVALS
C AOIARR (1..NARR) = ANGLES OF INCIDENCE OF ARRIVALS
C IVARR (1..NARR) = IDIVE CODES OF ARRIVALS
C
C DIMENSION
C : ZRTM(NRTM), VRTM(NRTM),
C : PTAB(NTAB), XTAB(NTAB), TTAB(NTAB),
C : PARR(1), XARR(1), TARR(1), DXPARR(1), AOIARR(1), IVARR(1)
C : LOGICAL LIST, DEBUG, BRACK
C
C *** MAIN LOOP OVER TABLE ENTRIES ***
C
C NARR = 0
C DO 500 ITAB = 1,NTAB
C CHECK IF DIST BRACKETED
C
C IF (ITAB.EQ.NTAB) THEN
C   BRACK = XTAB(NTAB).EQ.DIST
C ELSE
C   BRACK = (DIST.GE.XTAB(ITAB) .AND. DIST.LT.XTAB(ITAB+1))
C   .OR. (DIST.LE.XTAB(ITAB) .AND. DIST.GT.XTAB(ITAB+1))
C END IF
C IF (.NOT.BRACK) GC TO 500
C
C NARR = NARR + 1
C PT1 = PTAB(ITAB)
C PT2 = PTAB(ITAB+1)
C XT1 = XTAB(ITAB)
C XT2 = XTAB(ITAB+1)
C TT1 = TTAB(ITAB)
C TT2 = TTAB(ITAB+1)
C
C IV1 = +1
C IV2 = +1
C IF (ITAB.GE.ITAB0) IV1 = -1
C IF (ITAB+1.GE.ITAB0) IV2 = -1
C
C IF (DEBUG) THEN
C   WRITE (6,300) NARR,ITAB,PT1,PT2,XT1,XT2,TT1,TT2,IV1,IV2

```

```

FOR * GETXTP *
77.
18. 3000  FORMAT ('0**** GETXTP: ARRIVAL',I8,' FOUND AFTER TABLE ENTRY',
18.   ' 16/ PT1,2 XT1,2 TT1,2 IDV1,2 =/ 5X,3(2E16.9,4X),2I4)
18.   END IF
15. C REFINE BRACKET WITH REGULA-FALSI METHOD
15.   CALL REFINE
15.   • (NRTM,ZRTM,VRTM,ZEVT,AVMIN,DIST,DISERR,MAXIT, DEBUG,
15.   • IDV1, IDV2,PT1,PT2,XT1,XT2,TT1,TT2, IERR)
15.   IF (IERR.NE.0) THEN
15.   WRITE (6,3100) IERR
3100  FORMAT ('0???? GETXTP ERROR ???? REFINE RETURNS IERR =',I3/)
15.   CALL FTNW8
15.   END IF
15. C PICK FINAL ARRIVAL DATA
15.   IF (ABS(XT1-DIST).LE.ABS(XT2-DIST)) THEN
15.   IDVARR(NARR) = IDV1
15.   PARR(NARR) = PT1
15.   XARR(NARR) = XT1
15.   TARR(NARR) = TT1
15.   ELSE
15.   IDVARR(NARR) = IDV2
15.   PARR(NARR) = PT2
15.   XARR(NARR) = XT2
15.   TARR(NARR) = TT2
15.   END IF
15.   AOIARR(NARR) = ASIN (PARR(NARR)*VRTM(1))
15.   DXPARR(NARR) = 0.
15.   IF (IDV1.EQ.IDV2)
15.   • DXPARR(NARR) = (XT2-XT1)/(PT2-PT1)
15. C500  CONTINUE
15. C **** END MAIN LOOP
15. C ORDER ARRIVALS IN TRAVELTIME
15. C   IF (NARR.GT.1) THEN
15.   DO 600 J = 2,NARR
15.   DO 600 I = NARR,J,-1
15.   IF (TARR(I).LT.TARR(I-1)) THEN
15.   • HOLD = PARR(I)
15.   • PARR(I) = PARR(I-1)
15.   • PARR(I-1) = HOLD
15.   • HOLD = XARR(I)
15.   • XARR(I) = XARR(I-1)
15.   • XARR(I-1) = HOLD
15.   • HOLD = TARR(I)
15.   • TARR(I) = TARR(I-1)
15.   • TARR(I-1) = HOLD
15.   • HOLD = DXPARR(I)
15.   • DXPARR(I) = DXPARR(I-1)
15.   • DXPARR(I-1) = HOLD
15.   • HOLD = IDVARR(I)
15.   • IDVARR(I) = IDVARR(I-1)
15.   • IDVARR(I-1) = HOLD
15.   ENO IF
600  CONTINUE
15.   END IF
15. C PRINT ARRIVAL DATA
15. C   IF (LIST.AND.NARR.GT.0) THEN
15.   WRITE (6,2600)
2600  FORMAT
15.   • '0      ZEVT      DIST      XAFT      TARR      PARR',
15.   • '      DARR      DXPARR      AOIARR      IDVARR'
15.   C
15.   • DO 700 I = 1,NARR
15.   • DARR = TARR(I) - PARR(I)*XARR(I)
15.   • AOI = AOIARR(I) * (180./3.141592654)
15.   • WRITE (6,2640) ZEVT,DIST
15.   •      I,XARR(I),TARR(I),PARR(I),DARR,DXPARR(I),AOI, IDVARR(I)
2640  FORMAT (1X,2F10.3,14,2F10.3,F10.6,F10.3,E12.4,F10.4,I8)
700  CONTINUE
15.   END IF
15. C
800  RETURN
ENO

```

FOR • • REFINING •

FOR * PEFINE *

FOR * RPGEN *

29
30. ELT 8R1-53C XTP.RPGEN 04/17/82 11:36:43 (33)
31. 29 SUBROUTINE PPGEN
32. 29 : (NRTH,ZRTH,VRTM,ZEVT,NTABE,NTABD,
33. 29 : AVMIN,NCRIT,AVCRIT,PTABE,PTABD, IERR)
34. 29
35. 29 C GENERATE ARRAYS OF GOOD RAYPARAMETERS AT WHICH TO
36. 29 CCC COMPUTE DISTANCE AND TRAVELTIME TABLES.
37. 29
38. 29 C ON ENTRY:
39. 29 CCC NRTH = NUMBER OF POINTS IN RAYTRACING MODEL (1 + NO. LAYERS)
40. 29 CCC ZRTH (1..NRTH) = DEPTHS IN RAYTRACING MODEL
41. 29 CCC VRTM (1..NRTH) = VELOCITIES IN RAYTRACING MODEL
42. 29 CCC ZEVT = DEPTH OF EVENT (SOURCE DEPTH)
43. 29 CCC NTABE = NUMBER OF WANTED SAMPLE POINTS IN EMERGING BRANCH
44. 29 CCC OF DISTANCE AND TIME VS RAYPARAMETER TABLES
45. 29 CCC NTABD = NUMBER OF WANTED SAMPLE POINTS IN DIVING BRANCH OF TABLES
46. 29
47. 29 C ON RETURN:
48. 29 CCC CCC AVMIN = MINIMUM APPARENT VELOCITY (HORIZONTAL TAKEOFF)
49. 29 CCC NCRIT = NUMBER OF CRITICAL APPARENT VELOCITIES (< NRTH)
50. 29 CCC AVCRIT (1..NCRIT) = CRITICAL APPARENT VELOCITIES
51. 29 CCC PTABE (1..NTABE) = RAYPARAMETER ARRAY FOR EMERGING BRANCH
52. 29 CCC PTABD (1..NTABD) = RAYPARAMETER ARRAY FOR DIVING BRANCH
53. 29 CCC IERR = ERROR FLAG (0 FOR NO ERROR, >0 FOR ERROR)
54. 29
55. 29 C DIMENSION
56. 29 : ZRTH(NRTH), VRTM(NRTH), AVCRIT(NRTH), PTABE(NTABE), PTABD(NTABD)
57. 29
58. 29 C FIND MINIMUM APPARENT VELOCITY AND SOURCE (EVENT) LAYER
59. 29
60. 29 : AVMIN = 0,
61. 29 : VBIG = VRTM(1)
62. 29 : LGO = 0
63. 29 : DO 100 L = 2,NRTH
64. 29 : IF (ZRTH(L).GE.ZEVT) THEN
65. 29 : IF (LGO.EQ.0) THEN
66. 29 : DV0Z = (VRTM(L) - VRTM(L-1)) / (ZRTH(L) - ZRTH(L-1))
67. 29 : VEV = VRTM(L) + DV0Z * (ZEVT - ZRTH(L))
68. 29 : AVMIN = AMAX1 (VEV,VBIG)
69. 29 : LGO = L
70. 29 : ENO IF
71. 29 : ENO IF
72. 29 : 100 VBIG = AMAX1 (VRTM(L),VBIG)
73. 29 : IF (LGO.EQ.0) THEN
74. 29 : IERR = 1
75. 29 : RETURN
76. 29 : ENO IF
77. 29
78. 29 C FIND CAUSTIC AND LVZ-LID APPARENT VELOCITIES
79. 29
80. 29 : IC = 1
81. 29 : AVCRIT(1) = AVMIN
82. 29
83. 29 : DO 150 L = LGO,NRTH
84. 29 : IF (VRTM(L).GT.AVCRIT(IC)) THEN
85. 29 : IC = IC + 1
86. 29 : AVCRIT(IC) = VRTM(L)
87. 29 : ELSE IF ((IC.GT.1) .NE. AVCRIT(IC-1)) THEN
88. 29 : IC = IC + 1
89. 29 : AVCRIT(IC) = AVCRIT(IC-1)
90. 29 : ENO IF
91. 29 : ENO IF
92. 29 : 150 CONTINUE
93. 29
94. 29 : IF (AVCRIT(IC).EQ.AVCRIT(IC-1)) IC = IC - 1
95. 29 : NCRIT = IC
96. 29 : IF (NCRIT.LT.2) THEN
97. 29 : IERR = 2
98. 29 : RETURN
99. 29 : ENO IF

FOR * RPGEN *

```
77.      29  C ADJUST CRITICAL VELOCITIES TO AVOID PATHOLOGIES.
78.      29  CC FIND AND FLAG POINTS OF DISCONTINUITY IN DIST AND TIME.
79.      29  C
80.      29  EPS = 1.E-4
81.      29  NOISC = 0
82.      29  AVIM1 = 0.
83.      29  AVI = AVCRIT(1)
84.      29  AVCRIT(1) = (1.-EPS) * AVCRIT(1) + EPS * AVCRIT(2)
85.      29  C
86.      29  DO 200 I = 2,NCRIT
87.      29  AVIM1 = AVI
88.      29  AVI = AVCRIT(I)
89.      29  IF (AVI.EQ.AVIM1) THEN
90.      29  AVCRIT(I) = (1.-EPS) * AVI + EPS * AVCRIT(I+1)
91.      29  AVCRIT(I+1) = -AVCRIT(I)
92.      29  NOISC = NOISC + 1
93.      29  ELSE
94.      29  AVCRIT(I) = (1.-EPS) * AVI + EPS * AVIM1
95.      29  END IF
96.      29  200  CONTINUE
97.      29  C CALCULATE ARRAY OF RAYPARAMETERS FOR EMERGING RAYS
98.      29  C
99.      29  IF (NTABE.LT.2) THEN
100.      29  IERR = 3
101.      29  RETURN
102.      29  END IF
103.      29  PTABE(NTABE) = 1. / AVCRIT(1)
104.      29  DANG = PI / (2.*NTABE-1)
105.      29  C
106.      29  DO 300 I = 1,NTABE-1
107.      29  ANG = (I-1)*DANG
108.      29  300  PTABE(I) = SIN (ANG) / AVCRIT(1)
109.      29  C CALCULATE ARRAY OF RAYPARAMETERS FOR DIVING RAYS
110.      29  C
111.      29  IF (NTABD.LT.NCRIT) THEN
112.      29  IERR = 4
113.      29  RETURN
114.      29  END IF
115.      29  NPERC = (NTABD-NOISC-1) / (NCRIT-NOISC-1)
116.      29  NXTRA = NTABD-NOISC-1 - NPERC*(NCRIT-NOISC-1)
117.      29  IGO = 1
118.      29  PMIN = 1. / AVCRIT(1)
119.      29  PTABD(1) = PMIN
120.      29  C
121.      29  DO 400 IC = 2,NCRIT
122.      29  PMAX = PMIN
123.      29  PHIN = 1. / AVCRIT(IC)
124.      29  IF (PHIN.LT.0.) THEN
125.      29  PHIN = -PMIN
126.      29  N = 1
127.      29  ELSE
128.      29  IF (NXTRA.GT.0.) THEN
129.      29  N = NPERC + 1
130.      29  NXTRA = NXTRA - 1
131.      29  ELSE
132.      29  N = NPERC
133.      29  END IF
134.      29  END IF
135.      29  DP = (PMAX - PMIN) / N
136.      29  C
137.      29  DO 350 I = 1,N
138.      29  350  PTABD(IGO+I) = PMIN + (N-I)*DP
139.      29  400  CONTINUE
140.      29  C FINAL ERROR CHECK
141.      29  C
142.      29  IF (IGO.NE.NTABD) THEN
143.      29  IERR = 5
144.      29  RETURN
145.      29  END IF
146.      29  C
147.      29  IERR = 0
148.      29  RETURN
149.      29  END
```



```

FOR * TABXTP *

77.      08      C
78.      05      WRITE (6,2210)
79.      05      2210 FORMAT (10, RAY PARAM APPAR VEL DISTANCE TRAVELTIME",
80.      05      * DELAY TIME NRAY,/)
81.      05      ENO IF
82.      05
83.      05      C GENERATE EMERGING AND DIVING BRANCHES OF X,T,O TABLES
84.      05
85.      05      DO 300 I = 1,NTAB
86.      05
87.      05      C
88.      05      IF (I.LT.1TAB0) THEN
89.      05      IDIVE = +1
90.      05      ELSE
91.      05      IDIVE = -1
92.      05      END IF
93.      05      CALL TRACE3
94.      05      * (KRTM,2RTM,VRTM, IDIVE,ZEVT,PTAB(I),
95.      05      * NRAY,XTCI,ZTCI,STOT,TTOT, IERR)
96.      05      IF (IERR.NE.0) THEN
97.      05      WRITE (6,3200) IERR
98.      05      3200 FORMAT (10,?TABXTP ERROR ???? TRACE3 RETURNS IERR =*,I3/)
99.      05      CALL FTNUB
100.      05      ENO IF
101.      05      XTAB(I) = XTOT
102.      05      TTAB(I) = TTOT
103.      05      OTAB(I) = TTAB(I) - PTAB(I) * XTAB(I)
104.      05
105.      05      C PRINT X,T,O & MAYBE RAYPATH
106.      05
107.      05      C
108.      05      IF (LIST) THEN
109.      05      AV = 1./PTAB(I)
110.      05      WRITE (6,2220) I,PTAB(I),AV,XTAB(I),TTAB(I),OTAB(I),NRAY, ZEVT
111.      05      2220 FORMAT (1X,I4,1P5E12.5,I7, T10I,'ZEVT =',1P5E12.5)
112.      05      END IF
113.      05
114.      05      C
115.      05      200  CONTINUE
116.      05
117.      05      C
118.      05      RETURN
119.      05
120.      05      ENO

```

FOR * TRACE3 *

8ELT,LS XTP,TRACE3
ELT 881-53C S7401C 04/17/82 11:36:46 (8)

1. 04 SUBROUTINE TRACE3
2. 04 : INRTH,ZRTM,VRTH, IDIVE,ZEVT,RAYPAR,
3. 06 : NPRAY,XTOT,ZTOT,STOT,ITOT, IERR
4. 04
5. 04 C
6. 04 WRITTEN 2-18-80 BY W. L. RODI
7. 04
8. 04 C TRACE A RAY FROM A STATION AT SURFACE (Z=0.) TO AN EVENT AT
9. 04 DEPTH ZEVT THROUGH A ONE-D VELOCITY MODEL
10. 04 HAVING CONTINUOUS VELOCITY WITH CONSTANT GRADIENT LAYERS.
11. 04
12. 04 C INPUT:
13. 04
14. 04 C NRTM = NUMBER OF POINTS IN RAYTRACING MODEL (1 + NO. LAYERS)
15. 04 C ZRTM (1..NRTM) = DEPTHS IN RAYTRACING MODEL
16. 04 C VRTH (1..NRTM) = VELOCITIES IN RAYTRACING MODEL
17. 04 C IDIVE = CODE INDICATING WHETHER RAY IS DIVING OR EMERGING
18. 04 C = +1, EMERGING (TAKEOFF ANGLE > 90)
19. 04 C = 0, TAKEOFF ANGLE = 90
20. 04 C = -1, DIVING (TAKEOFF ANGLE < 90)
21. 04 C ZEVT = DEPTH OF EVENT
22. 04 C RAYPAR = RAY PARAMETER (INVERSE OF APPARENT VELOCITY)
23. 04
24. 04 C OUTPUT:
25. 04
26. 04 C NPRAY = NO. OF POINTS IN TRACED PATH (NO. OF SEGMENTS + 1)
27. 04 C XTOT = HORIZONTAL DISTANCE OF ENDING POINT OF RAY
28. 04 C ZTOT = DEPTH OF ENDING POINT OF RAY
29. 04 C STOT = TOTAL LENGTH OF RAY
30. 04 C ITOT = TOTAL TRAVEL TIME ALONG RAY
31. 04 C IERR = ERROR FLAG
32. 04 C = 0, NO ERROR
33. 04 C > 0, ERROR
34. 04
35. 04 C TELESEISMIC RAYS ARE SIMULATED (DEFINED) BY ...
36. 04 C 1) IDIVE = +1 AND 2) ZEVT > ZRTM(NRTM)
37. 04
38. 04 C
39. 04 C DIMENSION ZRTM(NRTM),VRTH(NRTM)
40. 04 C LOGICAL ERROR
41. 04 C DATA PI /3.141592654/, EPS /1.E-4/
42. 04
43. 04 C
44. 04 C PRINT *, 'TRACE3 ARGS = ',NRTM,ZRTM,VRTH, IDIVE,ZEVT,RAYPAR
45. 04
46. 04 C CALL TRACE4
47. 04 C : INRTH,ZRTM,VRTH, 0.,0.,0.,ZEVT, RAYPAR,
48. 04 C : NPRAY,XTOT,ZTOT,STOT,ITOT, ISTAT1
49. 04 C
50. 04 C ERROR = ISTAT.LE.-1
51. 04 C : OR. (ISTAT.EQ.0 : AND. ZEVT.GT.0.0)
52. 04 C : OR. (ISTAT.EQ.2 : AND. IDIVE.LE.0)
53. 04 C IF (ERROR) THEN
54. 04 C IERR = 1
55. 04 C GO TO 90
56. 04 C END IF
57. 04 C ZERR = ZTOT - ZEVT
58. 04 C ERROR = ISTAT.EQ.3 .AND. ABS(ZERR).GT.EPS+ZEVT
59. 04 C IF (ERROR) THEN
60. 04 C IERR = 2
61. 04 C GO TO 90
62. 04 C END IF
63. 04 C
64. 04 C IF (ISTAT.GT.1) GO TO 60
65. 04 C IF (ISTAT.EQ.1 .AND. IDIVE.GE.0) GO TO 60
66. 04 C
67. 04 C ERROR = (ISTAT.EQ.0.AND.IDIVE.GE.0) .OR. ZEVT.GE.ZRTM(NRTM)
68. 04 C IF (ERROR) THEN
69. 04 C IERR = 3
70. 04 C GO TO 90
71. 04 C END IF
72. 04 C
73. 04 C NPRAY1 = NPRAY
74. 04 C
75. 04 C CALL TRACE4
76. 04 C : INRTH,ZRTM,VRTH, 0.,ZTOT,ZRTM(NRTM), RAYPAR,

```

FOR * TRACE3 *
77.      04      C      .  Npray2,xtot2,ztot2,stot2,ttot2, istat)
78.      04      C      Npray = Npray1 + Npray2 - 1
79.      04      C      error = istat.ne.1
80.      04      C      if (error) then
81.      07      C      ierr = 4
82.      08      C      go to 90
83.      07      C      end if
84.      07      C
85.      04      C      Npray = Npray1 + 2*(Npray2 - 1)
86.      04      C      xtot = xtot + 2.*xtot2
87.      04      C      stot = stot + 2.*stot2
88.      04      C      ttot = ttot + 2.*ttot2
89.      04      C      ztot = ztot2
90.      04      C
91.      04      C      ierr = 0
92.      04      C      return
93.      04      C
94.      04      C      print *, *TRACE3* error : ierr,istat,idive,zeyt,raypar,npray
95.      07      C      print *, ierr,istat,idive,zeyt,raypar,npray
96.      07      C
97.      04      C
98.      04      C      return
99.      04      C

```

FOR * TRACE4 *

ELT LS XTP TRACE
ELT 8RI-S3C S74Q1C 04/17/82 11:36:47 (S)

01 SUBROUTINE TRACE4
01 : (NRTM, ZRTM, VRTM, X1, Z1, Z2, RAYPAR,
01 : NRAY, XTO1, ZTO1, STOT, ITOT, ISTAT)

01 WRITTEN 2-16-80 BY W. L. RODI

01 TRACE A RAY FROM DEPTH Z1 TO Z2 THROUGH A ONE-D VELOCITY MODEL
01 HAVING CONTINUOUS VELOCITY WITH CONSTANT GRADIENT LAYERS.

01 INPUT:
01 NRTM = NUMBER OF POINTS IN RAYTRACING MODEL (1 + NO. LAYERS)
01 ZRTM(1..NRTM) = DEPTHS IN RAYTRACING MODEL
01 VRTM(1..NRTM) = VELOCITIES IN RAYTRACING MODEL
01 X1 = HORIZONTAL DISTANCE OF STARTING POINT OF RAY
01 Z1 = DEPTH OF STARTING POINT OF RAY
01 Z2 = DEPTH TO TRACE TO, UNLESS RAY TURNS SHALLOWER (Z2 >= Z1)
01 RAYPAR = RAY PARAMETER (INVERSE OF APPARENT VELOCITY)

01 OUTPUT:
01 NRAY = NO. OF POINTS IN TRACED PATH (NO. OF SEGMENTS + 1)
01 XTOT = HORIZONTAL DISTANCE OF ENDING POINT OF RAY
01 ZTOT = DEPTH OF ENDING POINT OF RAY
01 STOT = TOTAL LENGTH OF RAY
01 TTOT = TOTAL TRAVEL TIME ALONG RAY
01 ISTAT = STATUS FLAG
01 : = -1, INVALID INPUT
01 : = 0, TRIVIAL RAY (Z1=Z2 OR VRTM(Z1)=1./RAYPAR)
01 : = 1, RAY TRACED TO Z2
01 : = 2, RAY HITS BOTTOM OF MODEL (EQUIV. TO Z2 = ZRTM(NRTM))
01 : = 3, RAY TURNS AT OR ABOVE Z2

01 DIMENSION ZRTM(NRTM), VRTM(NRTM)
01 LOGICAL LINEAR, HOMOG, INIT
01 DATA EPS1 /1.E-5/, EPS2 /1.E-5/
01 DATA ZB, VB, SNA, CSA, TFACB, ANGB /6*0./

01 C
01 ISTAT = -1
01 NRAY = 1
01 XTOT = X1
01 ZTOT = Z1
01 STOT = 0.
01 TTOT = 0.

01 C
01 IF (Z1.GT.Z2 .OR. Z1.LT.ZRTM(1) .OR. Z1.GE.ZRTM(NRTM)) GO TO 91
01 IF (RAYPAR.LT.0.) GO TO 91
01 NM1 = NRTM - 1
01 INIT = .FALSE.

01 C MAIN LOOP OVER LAYERS
01 DO 60 L = 1, NM1
01 C
01 ZBOT = ZRTM(L+1)
01 IF (Z1.GE.ZBOT) GO TO 60
01 VBOT = VRTM(L+1)
01 DVZ = (VRTM(L) - VBOT) / (ZRTM(L) - ZBOT)
01 IF (INIT) THEN
01 ZA = ZB
01 VA = VB
01 SNA = SNB
01 CSA = CSB
01 TFACA = TFACB
01 ANGA = ANGB
01 ELSE
01 INIT = .TRUE.
01 ZA = Z1
01 VA = VBOT + DVZ * (ZA - ZBOT)
01 SNA = RAYPAR * VA
01 IF (SNA.GT.1.) GO TO 91
01 CSA = SQRT (1. - SNA**2)
01 TFACA = (1. + CSA) / VA
01 ANGA = ASIN (SNA)

FOR * TRACES *

```
77.    01      IF (SNA.EC.1.) THEN
78.    01        IF (DVDZ.E0.0.) GO TO 91
79.    01        IF (DVDZ.GT.0.) GO TO 92
80.    01        ENO IF
81.    01        IF (Z1.EQ.22) GO TO 92
82.    01        END IF
83.    01
84.    01        C
85.    01        NRAY = NRAY + 1
86.    01        ZB = AMIN1 (ZBOT,22)
87.    01        VB = VBOT + CYOZ * (ZB - ZBOT)
88.    01        SNB = RAYPAR * VB
89.    01        IF (SNB.GE.1.) THEN
90.    01          ISTAT = 3
91.    01          VB = 1./RAYPAR
92.    01          ZB = ZBOT + (VB - VBOT) / DVDZ
93.    01          SNB = 1.
94.    01          ENO IF
95.    01          CSB = SORT (1. - SNB**2)
96.    01          TFACB = (1. + CSB) / VB
97.    01        C
98.    01        LINEAR = ABS (SNB-SNA) .LT. EPS1*CSB
99.    01        IF (LINEAR) THEN
100.   01          SNB = SNA
101.   01          CSB = CSA
102.   01          ANGB = ANGA
103.   01          DZ = ZB - ZA
104.   01          DS = DZ / CSA
105.   01          DX = DS * SNA
106.   01          HOMOG = ABS (VB-VA) .LT. EPS2*VB
107.   01          IF (HOMOG) THEN
108.   01            DT = DS / VA
109.   01          ELSE
110.   01            DT = ALOG (TFACA/TFACB) / DVDZ
111.   01          ENO IF
112.   01        ELSE
113.   01          ANGB = ASIN (SNB)
114.   01          CRV = DVDZ * RAYPAR
115.   01          RADIUS = 1. / CRV
116.   01          DX = RADIUS * (CSA - CSB)
117.   01          DS = RADIUS * (ANGB - ANGA)
118.   01          DT = ALOG (TFACA/TFACB) / DVDZ
119.   01        C
120.   01        XTOT = XTOT + DX
121.   01        STOT = STOT + DS
122.   01        TTOT = TTOT + DT
123.   01        ZTOT = ZB
124.   01        IF (ISTAT.EQ.3) GC TO 80
125.   01        IF (ZB.GE.22) THEN
126.   01          ISTAT = 1
127.   01          GO TO 80
128.   01          ENO IF
129.   01
130.   01        C
131.   01        60      CONTINUE
132.   01        C
133.   01        ENC MAIN LOOP
134.   01        C
135.   01        IF (.NOT.INIT) GO TO 91
136.   01        ISTAT = 2
137.   01        RETURN
138.   01        C
139.   01        91      ISTAT = -1
140.   01        RETURN
141.   01        C
142.   01        92      ISTAT = 0
143.   01        RETURN
144.   01        C
145.   01        PPINT *, 'TRACES RETURNED, ARGS .. X1,Z1,Z2,RAYPAR =',
146.   01        * X1,Z1,Z2,RAYPAR
147.   01        * PRINT *, 'NRAY,XTOT,ZTOT,STOT,TTOT,ISTAT =',
148.   01        * NRAY,XTOT,ZTOT,STOT,TTOT,ISTAT
149.   01        RETURN
150.   01        ENC
```

FOR * XTSET *

2ELT,LS XTP,XTSET
3ELT BR1-S3C S74Q1C 04/17/82 11:36:47 (0)
4 SUBROUTINE XTSET (INTAB,XTAB,TTAB,XMIN,XMAX, NPLOT,XPLOT,TPLOT)
5
6 C SET UP PLOT ARRAYS OF DISTANCE (X) AND TRAVELTIME (T) FROM
7 C DISTANCE-TRAVELTIME TABLES. INCLUDE ONLY POINTS WITH DISTANCES
8 C BETWEEN XMIN AND XMAX.
9 C
10 C DIMENSION XTAB(INTAB),TTAB(INTAB), XPLOT(1),TPLOT(1)
11 C
12 C NPLOT = 0
13 C IF (INTAB.LT.1) RETURN
14 C
15 C DO 100 I = 1,NTAB
16 C IF (XTAB(I).GE.XMIN .AND. XTAB(I).LE.XMAX) THEN
17 C NPLOT = NPLOT + 1
18 C XPLOT(NPLOT) = XTAB(I)
19 C TPLOT(NPLOT) = TTAB(I)
20 C END IF
21 C 100 CONTINUE
22 C
23 C RETURN
24 C
25 C

APPENDIX B

**VELOCITY PERTURBATIONS IN FINAL JOINT
INVERSION MODEL (NDF = 74)**

Figures B.1 through B.5 show the velocity perturbations in each grid cell of the final joint inversion model. The number in a cell is δv in units of 0.01 km/s. Both outer grid and inner grid can be compared with corresponding figures in the text.

	Model Layer 1 (0 - 1 km)															
	-13,000				-12,800				-12,600				-12,400			
38.750	-7	-5	-4	-4	-7	-9	-5	-2	3	6	9	11	12	13	10	38.750
	-10	-4	-4	12	-13	-36	-33	-15	9	15	16	15	14	8	8	
38.625	-15	-13	-23	4	-3	-23	-15	3	30	33	25	21	19	-1	7	38.625
	-19	-26	-42	-13	24	18	5	15	33	21	20	23	16	0	7	
	-22	-39	-51	-10	41	32	2	10	21	9	12	17	15	9	7	
	-23	-45	-48	9	55	30	-11	-3	-3	-2	2	17	15	10	7	
38.500	-22	-39	-42	22	51	23	-6	-11	-14	-4	3	28	5	10	7	38.500
	-20	-34	-42	19	32	12	-14	-11	-24	-15	-3	9	10	9	7	
	-21	-36	-45	14	18	-1	-14	-22	-35	-21	10	0	4	5	5	
	-21	-35	-49	13	9	-21	-19	-9	-28	-19	-10	-3	1	3	3	
38.375	-22	-36	-32	15	7	-8	-2	-2	-11	-11	-8	0	-1	0	1	38.375
	-23	-30	-4	22	16	19	9	-12	-24	-17	-12	-7	-4	-2	-1	
38.250	-23	-28	33	42	30	4	-35	-35	-7	-8	-7	-6	-5	-4	-3	38.250
	-17	-11	6	9	5	-2	-10	-11	-9	-8	-7	-7	-6	-5	-4	
	-13,000				-12,800				-12,600				-12,400			

Figure B.1. Model Layer 1 (0 - 1 km).

	-13000	-12800	-12600	-12400	
38.750	-17 -15 -15 -16 -18 -19 -15 -18 -13 -9 -5 -2 2 -3 -5				38.750
	-19 -17 -17 -7 -23 -39 -36 -22 -8 -4 -3 -3 -4 -14 -10				
38.625	-22 -26 -34 -14 -13 -25 -21 -5 5 5 0 -3 0 -20 -11				38.625
	-26 -31 -50 -25 5 1 -9 -2 3 -1 -1 -2 0 -11 -10				
	-29 -46 -31 -29 13 9 -12 -10 -14 -9 1 2 -7 -9				
	-30 -50 -50 -13 23 1 -24 -24 -27 -39 -19 5 2 -5 -8				
	-28 -43 -53 -4 22 2 -21 -33 -36 -35 11 10 2 -4 -7				
38.500	-26 -47 -54 -7 9 -5 -26 -39 -50 -35 20 4 -2 -3 -7				38.500
	-24 -50 -60 -12 -1 -14 -24 -24 -36 -40 32 -21 -11 -7 -6 -7				
	-23 -51 -62 -14 -6 -25 -25 -22 -3 -27 -19 -8 -9 -9 -9				
38.375	-24 -50 -50 -14 -14 -20 -14 -14 -21 -22 -19 -14 -13 -12 -11				38.375
	-25 -35 -13 7 5 3 -8 -25 -33 -28 -24 -20 -17 -15 -13				
38.250	-28 -28 19 28 12 -8 -36 -42 -26 -23 -22 -20 -18 -17 -15				38.250
	-24 -12 -5 -3 -9 -17 -23 -24 -22 -21 -20 -19 -18 -17 -16				
	-13000	-12800	-12600	-12400	

Figure B.2. Model Layer 2 (1 - 2 km).

	-13000							-12800							-12600							
38.750	-5	-5	-5	-4	-5	-5	-6	-8	-40	3	7	8	7	6		38.750						
	-6	-7	-7	0	-9	-18	-19	-15	-35	9	11	6	3	5								
38.625	-9	-15	-21	-6	-3	-10	-12	-13	0	8	16	13	8	2	6		38.625					
	-12	-24	-33	-12	9	7	1	-2	7	16	22	22	10	6	7							
38.500	-13	-30	-39	-15	14	5	4	2	5	10	14	29	18	9	8		38.500					
	-14	-33	-40	-8	19	5	-2	-1	-1	2	5	30	20	5	9							
38.375	-12	-29	-37	-2	21	14	-6	-15	-14	8	-2	15	17	5	9		38.375					
	-9	-31	-38	-2	14	9	0	-9	-19	-13	-1	12	14	16	9							
38.250	-6	-33	-42	-5	6	2	-11	-7	-12	6	3	12	11	11	7		38.250					
	-4	-34	-43	-6	3	1	-5	-2	-7	-6	-1	6	6	7	5							
38.000	-5	-33	-35	-4	-1	0	2	1	-2	-4	-3	0	2	3	4		38.000					
	-6	-18	-1	17	20	20	8	-6	-12	-10	-7	-4	-2	0	1							
37.750	-11	-8	27	34	23	7	-14	-20	-12	-9	-7	-5	-4	-2	-1		37.750					
	-9	-5	7	7	1	-8	-14	-13	-9	-6	-5	-4	-4	-3	-2							
	-13000							-12800							-12600							

Figure B.3. Model Layer 3 (2.0 - 3.5 km).

Figure B.4. Model Layer 4 (3.5 - 7.0 km).

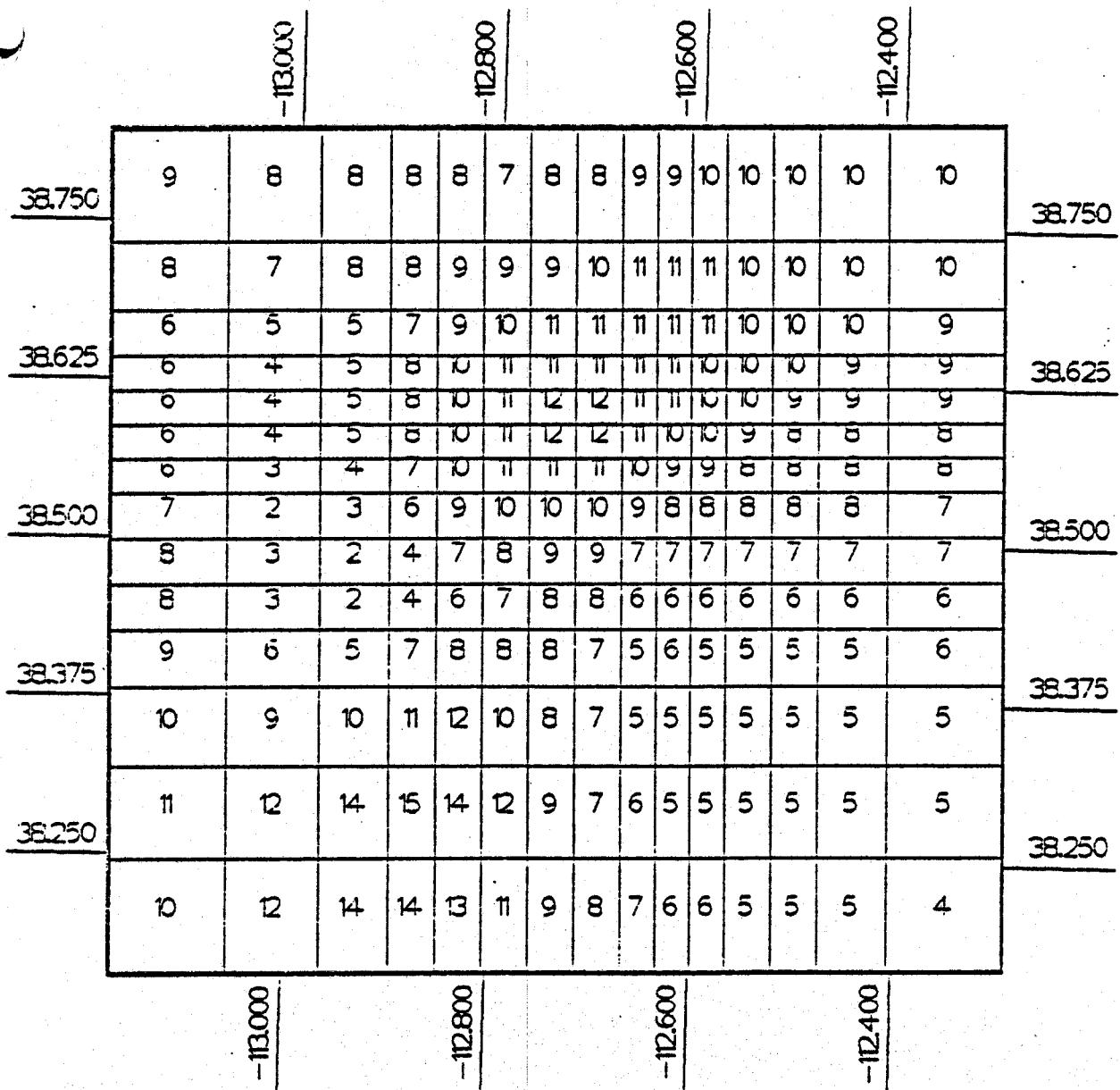


Figure B.5. Model Layer 5 (7.0 - 26.0 km).