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I. INTRODUCTION

A geothermal area is often characterized by the anoma-
lous behavior of several geophysical parameters at depth;
such as density, seismic velocity, electrical conductivity
and porosity. Thus, the goal of an ideal geothermal explora-
tion method is to determine all of the relevant subsurface
parameters based on an integrated interpretation of several
geophysical data sets measured at the earth's surface. As a-
step toward this goal, several staff members at Systems,
Science and Software (S?) have been involved during the past
several years in the development of a joint inversion modeling
program that incorporates .multiple geophysical data sets in
order to produce 2 unified interpretation of the three-
dimehsional subsurface structure. Such a combined interpreta-~
tion is an extremely cost-effective approach to geothermal
exploration.

Our earliest joint inversion projects were funded by
a combination of external (i.e., government and commercial)
and internal (S?) sources. The initial step taken was an S?
funded internal research effort wherein Jordan (1975) formu-
lated the generalized linear inverse problem and defined the
inversion algorithms necessary for future modeling projects.
Subsequently, under three externally funded projects we further
developed the inversion modeling procédure, including the
requisite forward modeling algorithms, and applied it to joint
interpretations of teleseismic travel-time and Bouguer gravity
data from three areas in the western United States: the
 Imperial Valley, California, in a Department of Energy (DOE)
sponsored study (Savino, et al., 1977); Yellowstone National
Park, in a study supported by the University of Utah (Evoy,
1978); and the Columbia Flood Basalts in eastern Washington,
‘under a project supported by the Washington Public Power
o Supply System (WPPSS), reported by Savino, et al., 1979a and
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197%b. Aé evidenced from the final inversion models obtained
for each of these three study areas, both data sets, when
joihtly interpreted, were observed to be good indicators of
deep seated structural features.

These early applications of the joint inversion model-
ing technique were for delineation of relatively large scale
subsurface features. In each case, this was dictated by the
inherent resolution of the particular data sets used rather
than the modeling procedure iteself. 1In order to increase ’
the modeling resolution, we next directed our efforts to
developing the capability (i.e., forward modeling algorithms)-
for incorporating'travel-time data from local seismic events
in the joint inversion procedure. This effort was simulta- |
neously performed under this DOE sponsored study and a project
funded by WPPSS. Our first results from a joint inversion of
local seismic travel~times (i.e., first arrival P waves) and
Bouguer gravity data were obtained for the Columbia Flood
Basalts region in eastern Washington (Rodi, et al., 1980a and

1980b) .

In the following section of this report, Section II, we
deséribe the theoretical basis for modeling the arrival times
of local éarthquake P waves at a network of seismic stations.
Of particular importance is a description of a technique for
separating the dependence of network arrival times on velocity
structure from the dependence on the earthquake location
parameters. Commented-computer listings of the forward model~
ing algorithms developed in part under DOE support are given

in Appendlx A._ :

In Section IIT we describe the local earthquake arrival
tlme and Bouguer gravity data sets that we acquired for the
Roosevelt and Leach Hot Springs areas. As noted in this sec-
tion, the seismic data from Leach Hot Springs, Nevada were
found to be inadequate (i.e., in terms of numbers of events,
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stations and ray paths) for inversion modeling. Thus, the
emphasis in Section III is on the editing and processing of
the Roosevelt Hot Springs data sets prior to inversion.

Finally, in Section IV we describe the inversion modél
for the Roosevelt Hot Springs area obtained from a joint in-
version of seismic and gravity data. The more robust features
of the final model are discussed in light of the known geology
and geophysics of the area and are compared to results obtaiped
from related studies (e.g., Robinson and Iyer, 1981). '

SYSTEMS. SCIENCE AND SOFTWARE



II. THEORETICAL DEVELOPMENT FOR LOCAL EARTHQUAKE
‘ﬁ; ARRIVAL-TIME INVERSION

2.1 INTRODUCTION

In this section we describe the theoretical basis for
the modeling of the arrival times of local earthquake P waves
at a network of seismic stations. Using geometrical ray theory
we establish the relationship among the P wave arrival time at
& station, the origin time and location of the earthquake, and
the P velocity distribution within the earth. This relation-
ship defines the arrival time "data functional."” The lineari-
zation of this functional, required for the application of
linear inversion, is then described and the relevant formulae’
for a one-dimensional initial model with constant gradient
layers are presented. FinallY} we descr;be the application of
linear inverse. theory to the inversion of local earthquake

* arrival times. The joint inversion of arrival time and gravity
data is described in a DOE réport by Savino, et al. (1977).

2.2 ARRIVAL~TIME DATA FUNCTIONALS

According to geometrical ray theory, a seismic wave
travels along & path — the geometrical raypath — which mini-
mizes the source-receiver travel time. The travel time along
a raypath is defined as the integral of the medium slowness
(reciprocal velocity) along the path. This is the high fre~
quency approximation in which the raypath is taken to have )
infinitesimal width. Geometrical ray theory thus predicts
‘that the arrival time t? of a seismic wave traveling from an
earthquaké to & station is the following functional of the
medium slowness u and earthquake origin time 0, ‘

ta=t°+fdsu (1)
r .
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where s is distance along the raypath, and ' symbolizes inte-
\,/ gration along the raypath trajectory (see Figure 1).

We gain mathematical precision later if we parameterize
the raypath in terms of a nondimensional dummy variable n
defined on the unit interval. Denoting the raypath as f(n),
0 <n<1l, we can rewrite Equation (1) as

l e
a 0 dr > :
% = tY + dn Ia—{ u(r(n)) . (2)

We have used

&,

ds = dn Fi (3)

The earthquake location (hypocenter) is f(O) and the station
location is ?(l). Therefore, Equation (2) implicitly defines
the dependence of arrival time-on the endpoints of the raypath.

The geometrical ray T obeys the differential equation

£t = |El . | (4)

Here ¥ is the unit vector tangent to the ray:
_d , 4T, o
=5/ - (5)
Equation (4) is equivalent to
Y . ‘ B ,
. ;[ dn |%§| u(¥) = minimum w.r.t. z(n) ,
0 , , : '

given that the endpoints of the ray are fixed. This is Fermat's
\,/ Principle. ’ '
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u(x,y,2) = MEDIUM SLOWNESS

Pigﬁre l. Raypath ndtation.
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2.3 LINEARIZATION OF DATA FUNCTIONALS

gﬁé - The arrival-time functional in Equation (1) is nonlinear
with respect to the slowness distribution u, by virtue of the
dependence of the raypath on u through Equation (4). It must
be expanded to first order about an initial slowness model u,
for linear inverse theory to be applicable.

We shall consider u and r(n) to be perturbed from initial
values u, and ro(n):

u = uo + Su

+ 8r . (6)

It is assumed that ?O is the least time geometrical raypath
through LNy i.e., u, and ;0 obey Equation (4). ‘ '

To first order in du and 6?, the travel time along the
perturbed ray is given by

ds u= [ ds u., + u.(F~(1)) T.(1) « 6T(1)
_/1: fro 0 0'To 0 |

- ug(F,(00) Tj(0) - sT(0) . AN

where PO symbolizes the'unpérturbed taypath, §0(n). The first
term is the integral of the slowness along the unperturbed
raypath ;0; The second and third terms, respectively, repre-
sent the effects of perturbing the endpoints of the ray.

Letvﬁ‘denote the hypocenter and 5 the slowness vector
of the ray:

-~

R = ¥(0)

-/ p = u(z(0)) (o) . | (8)
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The direction of the slowness vector is the ray takeoff direc-
) tion and its magnitude is the medium slowness at the hypo-
center. If we ignore perturbations to the station location.
(i.e., 6Z(1l) = 0), then Equations (1), (7) and (8) imply (to
first order)

ta=f dsu-30-5'5+t° . (9)

where pO lS the slowness vector for the unperturbed raypath
and sh denotes the perturbation of B from the initial hypo-
center ho (0)

From Equation (9) we see that the Frechet kernel
(continuous partial derivative of a functional) of arrival
time with respect to slowness is a singular function concen=-
trated along the unperturbed raypéth. Therefore, the partial
derivatives with respect to the velocities of homogeneous
blocks in the earth are found by tracing rays through the
initial model and calculating the length of the raypath seg-
ment intersecting each block.v The partial derivatives of the
arrival time with-respect to the hypocenter components are
the components of the unperturbed slowness vector. 0f course,

t% is a linear function of the origin time 0,

Letting t2 be an observed arrival time and tg be an
initial estimate of the earthquake origin time, we define an
observed travel-time residual as -

6t==ta-to-f ds u, . (10)
"% ", 0

— To
Equations (6), (9) and (10) imply

-_-'f dsau-'ﬁo-sﬁ+5t°+e ' (11)

To
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where e is the observational error and 6t°

is the error in
) the initial origin time (st = ¢9 - tg). '

2.4 RAY TRACING IN GRADIENT LAYER MODELS

We restrict the initial velocity model to be 2 one-
dimensional model with depth dependent velocity but no. lateral
variations. We lack sufficient prior knowledge of the lateral
velocity variations in our study region to justify the ”
development and production costs of two- or three~dimensional

ray tracing.

Qur ray tracing algorithm is designed for a rather
general one-dimensional velocity model. The velocity function
is assumed continuous with depth and consists of L segments or
layers, each having a constant velocity gradient with depth.
The gradient may be negative, zero, or positive. Thus, the
model is specified by L+l values of velocity and depth, Vo
Zgs £ = 1l..L+1l, where 2, =0 (the surface) zand zL+l-i5 the
deepest point in the model (see Figure 2). The model is taken
_to be a "flat earth" model in which the earth's curvature is
ignored. This is adequate for the source-receiver distances
of concern (< 500 km).

The geometrital raypath through a medium of constant
velocity gradient describes an arc of a circle. Let us write
the velocity-depth function as

vev, + g(z - za) . (12)

This makes the velocity at a depth z, equal to v, and makes
dv/dz = g. We will consider the raypath for the case g # 0.
With little loss of generality, we assume the ray is confined

to the plane y = 0. Let (xa,za) be its starting point and €.

|
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Figure 2. Schematic 6f initial velocity model.
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its starting direction, measured as the angle from vertically

&i)down. Then the trajectory of the ray (x,2) is given by

sin 6
a sin § .
P = v = v N (13)

x = x - (pg)~t

a (cos 6§ - cos ea)

1 (sin 6 - sin 0 . (14)

z =z, f (p9)
Here v and 6 are the velocity and tangent angle at any point
. on the ray. The constant p is the ray parameter and is the
x component of the slowness vector used earlier. We note
that Equations (13) and (14) are a solution of Equation (4).

* This can be verified after making the substitution n = & sgn (g).

Pigure 3 illustrates the geometry of the raypath implied
by Equation (l4). The raypath is concave upward for ¢ > 0 and
concave downward for g < 0. (For g = 0, the path degenerztes
to a straight line.) The radius of the circular path is

'(plgl)’l. For the case g > 0, the path "bottoms" or turns

at the depth where v = p~L.

From Equations (12) through (14) one can derive the
~ following formulae for the horizontal distance traveled (4x),
travel time (At), and lencth (As) of z ray traveling from the

depth z_ to a2 depth 2y

: a
, ) g
Ax = (p9) (cos ea - cos eb).
fv, (1 + cos 5_)
-1. b a
At =g log[ ,
Ve (1L + cos eb)
as = (pe) "t (6, - 8,) (15)
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RAY FOR g > 0

T ee—emeemem v (2Z) =D

RAY FOR g < O

Figure 3. Circular raypaths through a medium of
constant velocity gradient g.

~
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where eb is determined from Equation (13) as

8y = sin™! (p v . C (16)

The expressions for the case g = 0, in which case the raypaﬁh
is a straight line, are very simple and not shown.

One can apply Equations (14) and (15) layer by iayer
in a multilayeied gradient model to obtain the entire ray'
trajectory, horizontal distance, and total travel time from
an event hypocenter at depth to & station at the surface.
One can thus evaluate for the initial velocity model the pre-
dicted travel time for each event-station path and, by deter-
mining the .length of the raypath segment that traverses each
block in the inversion model grid, the partial derivatives of
the travel-time with respect to the block slowness perturba-
tions.

The ray tracing equations we have developed assume that
the takecff angle (8) at the hypocenter is known. Equivalently,
one may specify the ray parameter p and the sense of takeoff:
diving (8 < 90°) or "emerging" (2 > 90°). However, it is
required that the ray be traced between fixed endpoints,
representing the station location and an initial estimate of
the event hypocenter. Therefore, p must be determined in-
directly. |

To determine the ray parameter of a given path, we
"first generate tables of distance (X) and travel time (T)
versus ray parameter appropriate to the event focal depth.
Tables are generzted for both diving and emerging rays: -
X3(p), T4(p) &and X (p), T (P). They are sampled at closely
spaced values of p spanning the range of possible values
determined from the velocities in the ray tracing model. The
tables are used to estimate the ray parameters predicting the

13
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known event-station distance. The estimate or estimates are
‘s# then refined by an iterative root-finding procedure. Either
a single emerging ray or a possible multiplicity of diving
rays arrive at a given distance. The multiplicity results
from triplications caused by large velocity gradients in the
model. In this case, we éhoose the first=-arrival ray param-
eter; i.e., the ray with the earliest travel time.

2.5 . LINEAR INVERSE FORMULATION

Given travel-time residuals (St) from several stations
and events, and a three-dimensional block model representation
of the slowness perturbation Su(x,y,z), we can express Equation
(11) as a discrete linear inverse problem of the form (E de-
notes expectation and Var denotes variance)

E{d] = Am + Bn
var{d] = % (17)

‘where d is the data vector containing the observed travel-time
residuals, m a model parameter vector containing the block
values of Su, and n a "nuisance" parameter vector containing
the hypocenter mislocations (Eh) and origin time errors (Gto)
of the events. The Matrix I is the covariance matrix of the
observational errors (eL‘which are assumed to have zero mean.

The separation of the unknown parameters into two
vectors is done to distinguish'the'parameters of primary
interest (sldwness perturbations) from those of ancillary
interest (event location parameters). The Matrices A and B,
respectively, contain the partial derivatives of the travel-
time residuals with respect to the block slownesses and event

. parameters. From Equation (11) we see that the derivative of
.S,J a residual with respect to the slowness of a block is the

‘14
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length of the raypath segment intersecting the block. A

) given raypath intersects very few of the blocks so most ele-
ments in A are zero. Also from Equation (ll), we see that
B contains ones, zeroes and the slowness vectors from the
various initial raypaths. A given residual depends on the
parameters of only one event, so with a proper ordering of
the data in d, B has a block diagonal structure.

We should mention that in setting up the problem in
this form, there is no requirement that the data set be pomé'
plete; i.e., that a residual exist for every event-station
pair. Nonetheless, the system represented by Equation (17)
is quite large in the present study. After data culling the
data set consists of 601 residuals observed from 93 events.
‘The model grid we designed (Section IV) contains 1050 blocks.

- Therefore, the system contains 601 equations and 1422 unknowns
(1050 in m and 372 in n). The 372 event locations parameters,
however, are not of interest. o

Instead of applying generalized linear inverse tech-
niques directly to a system this large, we first employed a
technigue that reduces the system to a simpler and smaller
one; i.e., a "denuisancing"” technique, which eliminates the
nuisance vector n from the system by constructing an equiva-
lent inverse problem involving only m. Before describing
this technigue and the inversion algorithm itself, let us
define the optimality criterion we use to obtain a solution
to Equation (17). '

We define a solution to Equation (17) as estimates m
and # which satisfy the damped least squares criterion

(a-af-Bf)T Z71 (a-aR-BH) + 0 AW R + ¢ A 2 Tk
is minimum o (18)
15
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</ this definition,

where 6 and ¢ are scalar trade-off parameters and W and 2 are

) specified parameter weighting matrices, both assumed positive

. definite. This criterion is equivalent to the optimality
criteria defined by Backus and Gilbert (1970) and Jordan (1973),
but we have expressed it in terms of two parameter vectors in-
stead of the usual one.

The first term in Equation (18) is a measure of the
"misfit" between the observed data, 4, and the data predicted
by the solution (f,fi). The second and third terms are norms
of m and 1, respectively. These terms stabilize the solution
by damping components of M and i that do not contribute much
to fitting the data, but which may cause the solution to be-
come physically implausible. |

In the travel~-time problem, it is useful to interpret
the product ¢ 1z as a prior variance assigned to n:

_var(n] = ¢71z . (19)

Thus, ¢ and Z assign an uncertainty to the initial origin
times and error ellipsoids to the initialyhypocenters. Making
the prior variance sufficiently large allows fi to adjust
fréely to fit the data:

In selecting 6 and W for the damping of #, the prior
~variance interpretation is not very useful. Instead, we set
up the model norm to be a measure of the roughness of the
velocity structure. That is, we construct W -1 as a non-
diagonal matrix such that the model norm is a discrete
approximation to the following integral:

W im éfdx'/;ly'fdz [(axes\“r)2+ (aysw”r)zn‘z(«sx“,v)?].(zm

where 6% is the velocity perturbation (6% = -ug ). With

mT lm is sensitive to lateral gradients in
}

16
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8% of a scale smaller than A, which we set to a large value
; (200 km). In this way, 8 allows us to control a trade-off
between the smoothness of the velocity model and the fit
it provides to the data. The best value of & cannot be
determined in advance. Rather, it must be selected on the
basis of examining models and their predlcted data computed
with several values of 8.

In the following developments, we will use some abbre-
viations to simplify expressions. We will use a circumflex :
above symbols to denote that quantities have been normalized
by the factor Z'%Z Thus,

-3
2

d=Z “a
§==Z- A
§3=2 B . ' (21)

We will also apply this notation to guantities defined later,
without further explanation.

2.6 DENUISANCING

An example of denuisancing is the zero-meaning of tele-
seismic travel-time residuals and their partial derivatives,
derived by aki, et al. (1977) as a way to eliminate the effects
of baseline errors from the inverse problem. This basic de- |
nuisancing technigue has been extended and generalized by
Savino, et al. (1977), Pavlis and Booker (1980), Spencer and
Gubbins (1980) and Minster, et 55.,(1981). Here we summarize

' the algorithm of Minster, et al. (1981) in the context of
solving Equations‘(l7) and (18).

17
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To begin, we note that Equation (18) is equivalent to
(i; the coupled normal equations:

aT

AT8 + ew ™ L)m + ATBA = AT4 . (22a)
(
8Taz + (8T8 + ¢27h)a = 874 . (22b)

Solving Equation (222) for fi we obtain

=28 (d - Am) (23)

where
A ATA —1 -l AT
87 = (B*B + ¢2 ) B . (24)

The matrix B~ is a damped generalized inverse of B. Now we
define the symmetric matrix QB by

Qg = I-388 . (25)
Then substituting f in Equation (23) into Eguation (22a) gives

1l

(ﬁquﬁ + 0W D)@ = KTQBE . (26)

We can simplify this with the following substitutions:

f -0t fez T | (27a)
v QB T v ,
R T | |
4 =02 8:=z% ‘a ' » (27b)
dy = Qg d = v o :

Then Equation (26) becomes

T «-1 =1~ _ AT =1 _
(AvE A, + oW )m—AvZ q, - (28)

18
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Equation (28) is the normal equation that results from
\/ the minimization condition

(dv-Avfr'x)T 2 -1 (d -2 m) + emTW ' is minimum . '(29)

Comparing to Equations (17) and (18), we see that m is a
solution to an equivalent inverse problem that does not
involve the nuisance vector n; namely, '

—— -  ——— o a

E[dv] = Avm
Var[dv] = 3 . (30)

Equations (29) and (30) are a standard linear inverse problem
and we discuss its solution in Section 2.7.

L

We call the operator Qz'in Eqﬁation (27) a denuisancing
operator, and d and A denuisanced data and partial derlvatzves,
respectively. It is convenlent for computation to evaluate QT,
and the damped generalized inverse B , in terms of the s;ngular
value decomposition (SVD) of B (Lanczos, 1961; Wiggins, 1972).
Let |

P
82° = sro” | | (31)

where the columns of S and T are orthonormal eigenvectors and

I is a dlagonal matrix of pos;tzve ezgenvalues.

sTs = lr = 1

|

I' = diag (S2F Yor «+2) >0 . - (32)

19
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-

Then we have

1

U - -
8" = z°or(r? + ¢1)"t s7T

Qs =1 -sr2(r? + 1)t §T

1 1

- L -1
Q2 = I - S[I - ¢2 (rz + ¢I) 2]'sT ‘ ' (33)

B

When ¢ << Yi, which is the case for the valui of ¢ wé

selected for the Roosevelt Hot Springs inversion, Qé approxi-
mates an orthogonal projection operator:

. _
z - eeT ; (34

Denuisancing then removes the projections of 4 and A onto the
range space of B. ' ' .

In the local travel~time residual problem, B has a block

'diagohal structure. The denuisancing operator Qg then reduces

to a block diagonal matrix, and the denuisancing algorithm be-

comes particularly efficient.

o/

2.7 LINEAR INVERSE ALGORITHM

We have reduced the teleseismic residual problem to a
standard linear inverse problem of the form:

E[a] '-,',3.m ‘ » .
var{d] = I - | S (3%)
where m represents the slownessfperturbatibn su andia repre—v

sents the (denuisanced) travel-time residuals. A solution
to Equation (35) has been defined by

20
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(@ - A&&)T (@ - Am) + 0 AW TR = minimum . (36)
-

This defines m as a linear estimator of the form

=3 4 - . (37)

‘where A~ is the damped generalized inverse of A.

The algorithm we use to obtain A~ is very similar to the
algorithm described in Section 2.6 for obtaining B~. 1In this
case, we factor the weighting matrix as

wl=g'w | . (38)

where H is a square nonsingular matrix. (We actually specify
H instead of wLl.) Then we obtain the SVD

Art=owt | (39)

where ' ) ' ~

vty = ViV = I

A = diag (Ag, 12;‘..., Ag) >0 . | (40)

Even after denuisancing, A is a very large matrix (601 by 1050)
so the SVD requires & core-to-disk computer algorlthm The

A ow

inverse A is then obtained as

-1 .7

A" =g lvann?+ e o . (41)

A = H

Since A is diagonal this expression is readily evaluated for
varying 6. | | '
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Equations (35) and (37) imply

E(f] = #m
Var(m] = % (42
where
=2 A=mtw? @ +er)Lvim
ATAT=rtwa? w2 viehT 43

Y=a A = B - VA

#® is the resolution matrix and ¥ the covariance matrix of the
model fi. These matrices provide a means for assessing the
unigqueness of M. Equation (43) states that @M is an estimate of
m "filtered" by &, and not of m itself. With # as a three-
dimensional block model of the earth, each component ﬁi esti-
mates a spatial average of the true structure; the i'th row of
R is a discrete three-dimensional function which shows the
spatial extent of the averaging or filtering. 1In addition to
the filtering, m is also contaminated by & random error whose
variance is ¥. k '

The gquantities # and 7 aid in selecting a "best" single
model among the family of models m(6) defined over 0 < 8 < =,
Backus and Gilbert (1970) showed that as 8 increases (I-~ZR)
increases (resolution degrades) and ¥ decreases, thus giving
a trade~off between resolution and variance. One should -
attempt to choose 6 such that (I-&) and ¥ are both acceptably
small. |

The parameter 6 also‘controls a trade-off between model
roughness and data misfit, as one can see from the minimization
criterion, Equation (36). The quantity e, given by

22
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=% @-amTzt @-am , (44)

o
where N is the number of data, is the r.m.s. misfit between
the observed (denuisanced) data and the data predicted by
i, A m. The squared model norm, ﬁmw-lﬁ, measures the total

. Frbughness" of the model. As a function of increasing 8, ¢

increases and the model norm decreases. While these scalar
quantities are useful, it is desirable to visually examine the
smoothness of the entire model and to compare the full observed
and predicted data sets, in selecting and assessing'a final

model.

It is convenient to convert the trade-off parameter to a
dimensionless quantity which is the effective number of degrees
of freedom (NDF) in the model m(6). NDF is defined as

K 2 .2
NDF = I A/(Ap + 6) | (45)

k=1

and equals the rank of Z.

23
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III. SEISMIC AND GRAVITY DATA
e3..'1. - LOCAL SEISMIC DATA-ROOSEVELT HOT SPRINGS
The local seismic data set for the Roosevelt Hot Springs

(RES) area was obtained from Dr. Robert Smith at the University
of Utah. This data set consisted of 870 arrival time estimates
of P-~waves recorded at a network of up to 20 seismcéraphs from -
163 events. Figure 4 shows the locations of the seismograph
stations and Figure 5 the seismic events recorded during sur-
veys conducted in 1974 and 1975 by Olson and Smith (1976). 1In
Table 1 we list the locations of the 20 seismograph stations
depicted in Figure 4. The last column in this table gives
estimates of the average velocity of intervening material
beneath the station and the common datum plane, which in this
study was taken at 2 km above sea level. These estimates are
based on station elevation-correction velocities determined by
Robinson and Iyer (198l) for a set of stations located through-
out the region of interest in this study. Hypocentral informa-
tion for the 163 events plotted in Figure 5 is given in Table 2.

Some general comments based on Figures 4 and 5 are the
following: ' '

1. The actual number of seismograph stations
operating during any one time period, and
thus for a particular event, is less than
20. '

2. The distribution of stations is quite
inhomogenecus with a concentration of
sites in the Cove Fort area. -

3. The spatial distribution of seismic events
is also inhomogeneous with concentrations
of activity in a few areas of the study

(- o region.
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Figure 4. Station locations for 1974 thrdugh 1975 surveys

in the Roosevelt Hot Springs area.
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in 1974 and 1975.
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TABLE 1

SYSTEMS, SCIENCE AND SOFTWARE

STATION LOCATIONS
Elevation
Correction
_ Elevation Velocity
Station Name (Code) Longitude Latitude (meters) (km/s)
Antelope Valley (ANT) 112°38.36'  38°39.12'  1871.9 . 3.0
Beaver Lake Mountains. (BVR) 113°04.66'  38°31.89' 1658.5 2.0
Cinder Crater (CIN) 112°38.27'  38°34.39' 1973.2 3.0
Dog Valley (DOG) 112°33.36'  38°38.43'  1964.0 3.0
Dry Wash (DRY) 112°28.06'  38°45.16" 1707.8 3.0
Lincoln Gulch (LIN) 112°52.22'  38°16.57' 2098.2 4.5
Linoln II (LI2) 112°s1.62'  38°16.59' = 2147.0 4.5
Mine (MIN) 112°41.27'  38°29.75' 2055.5 3.0
Mud Springs (MUD) '112°24.58'  38°32.08' 2214.1 3.0
Mary's Nipple (NIP) 112°25.69'  38°40.95' 2217.1 .3.0
North Mineral (NOM) 112°49.71'  38°37.91' 1762.7 4.5
‘North Mineral IT (NM2) 112°50.23'  38°37.64' 1834.0 4.5
Pole Canyon (POL) 112°32.54"'  38°925.03' 2409.3 3.0
Ranch Canyon (RAN) 112°50.85'  38925.65' 1982.3 4.5
Sandstone (SND) 112°31.72'  38°40.75' 1970.1 3.0
Sevier Lake (LAK) 113°02.44'  38°52.90'  1590.0 -
Sulphur Creek (SLF) 112°33.85'  3§°32.69'  2098.2 3.0
Thermo (TMO) 113°17.62'  38°15.27° 1590.0 -
Twin Peaks (TWN) 112°44.35'  38°46.89'  1622.5 4.5
Twin Peaks II (TW2) 112°44.63'  38°44.96' 1616.4 4.5
27



TABLE 2

EARTHQUAKE LOCATION INFORMATION

™

Long (W) Depth*

Event YrMoDy HrMn Sec DgMnSec DgMnSec (km)
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TABLE 2 ({continued)

Ty

Long (W) Depth

Event YrMoDy HrMn Sec DgMnSec DgMnSec (km)

Lat(N)
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‘ As we will note in more detail in the following section

\sJof this report, the particular station and event distributions
in the intended study region impacts the final inversion model
in very specific and, in fact, negative ways. This situation
is typical of most of our modeling projects conducted to date
and mainly reflects the lack of seismic networks dedicated
(i.e., more dense, evenly spaced statibns) to the type of
study we are interested in.

3.1.1 RHS Seismic Data Culling

The first step in the RHS data culling précedure was to
delete poorly recorded events from the data base. To accomplish
this, we adopted the following rejection criteria:

1. For an event in any part of the general study
region, reject it if there are less than five
‘stations reporting a P-wave arrival time and
no stations reporting an S-wave arrival time,
or if there are less than four stations re-
porting P times in the case where one or more
report S times. |

2. 'For an event in the Cove Fort area, where
there is an abundance of events, reject it
if less than six stations report P times

and no stations report an S time, or if
there are less than five stations reporting
P times in the case where one or more re-
port S times.. |

- 3. ‘Reject any events located north of 38.9°N
or south of 38.0°N. Such events, in addi-
tion to being outside the intended model
region, are located well outside the local

network and, thus, are very poorly located.
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4. Reject events with reported focal depths
\iJ o greater than 25 km.

Application of these four rejection criterié resulted
in a reduction of the original 163 events to 99 events (i.e.,
64 events rejected). The breakdown by criterion is: 49 events
by Criterion 1; 1l events by Criterion 2; 3 events by Criterion
3; and 1 event by ériterion 4. In addition, after applying
these rejection criteria to the data base we found that two
stations, LAK and TMO (refer to Figure 4, Table 1), located
well outside the central portion of the intended model region,
contributed a very small number of arrival time data. In view
of these circumstances we deleted stations LAK and TMO from |
the station set. Thus, at the conclusion of this culling step
the resultant data base consisted of 620 P-wave arrival times
for 99 events recorded at a subset of 18 stations. '

The final step in the culling procedure was to compare
observed and predicted travel times corresponding to the re-
maining 620 station-event ray paths and reject obvious out-
liers (i.e., observed travel times that differ by more than
ten percent from predicted values). Application of this cull-
ing procedure reguired the adoption of & plane-layered initial
velocity model for the general study region shown in Figure 1.
To accomplish this, we started with the velocity model used in
'HYPO 71 by Olson and Smith (1976; Figure 4b, Page 15) to locate
the 163 earthquakes listed in Table 2. While this model, which
consisted of three layers over a half-space, provides & good
fit to the travel time versus distance data (as expected since
it was used for the location of the events in question), the
particular layering adopted by Olson and Smith (1976) does not

- provide an adequate parameterizatidn for an inversion modeling
procedure. More specifically, the Olson and Smith (1976) model
does not yield an adequate distribution»of ray paths in the
different layers. An additional consideration is the fact that
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we used different station elevation correction velocities
.determined, as mentioned previously, from the work of Robinson

\'Jand Iyer (198l). The initial velocity model that we arrived
at by trial and error is given in Table 3.

Based on the Gelocity model in Table 3, we calculated
travel-times for the 620 event-station ray paths in the seismic
data set and used these results for final screening of the data,
invoking the ten percent rule mentioned previously. The final
data set consists of 601 P-wave travel times from 93 of the
original 163 earthguakes. The location information for these
93 earthquakes is given in Table 4.

Figures 6a through 6e are plots of the observed reduced
travel times (symbols), after all screening, for events with
focal depths reported within the respective layers (e.gq.,
events with focal depths between 0 and 1 km are plotted in
Figure 6a). The observed times in each figure are corrected
to be for a common focal depth, taken to be the depth of the
m;dpoint of the respective layers, except Layer 1 which is
taken at 0 km. The data are also corrected to a common sta-
tion elevation of 2 km above sea level. The theoretical
travel-time curves shown in Figures 6a through 6e were com-
puted from the initial velocity model in Table 3 for event
focal depths equal to the appropriate common depths for the
five different layers.

.The reduced travel—tiﬁés sﬁéﬁhuih Eiguresrfé through 6e
were subsegquently denuisanced with respect to event hypocenters;
assuming prior standard deviations of 4 km on épicenter, 2 km
on focal depth and 100 seconds on origin time. The use of prior
standard deviations on earthquake location parameters was dis-
cussed in Section 2.5 of this report. The resulting denuisanced
travel-time data are shown in Figures 7a through 7e. The format
of this series of.figures is the sameyas for Figures 6a through
6e. An important point about these data is that the r.m.s. of

~i;the observed, denuisanced residuals (i.e., the scatter of the
symbols about the theoretical curves in Figures 7a through 7e)
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TABLE 3
INITIAL VELOCITY MODEL

Depth* to
Bottom Layer
of Layer Thickness Velocity
Layer (km) : (km) (km/s)
1 1.0 1.0 4.5
2 2.0 1.0 5.4
3 3.5 1.5 5.6
4 7.0 3.5 5.75
5 26.0 19.0 6.05

'*Measuredvfrom datum plane at
2 km above sea level.
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TABLE 4

LOCATION INFORMATION FOR FINAL EVENT SET

Depth
xm) b

Long (W)
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Event YrMoDy ErMn Sec Dg Mn Sec Dg Mn Sec
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TABLE 4 (continued)
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Figure 6a.
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DISTANCE (KM)

Observed travel times (symbols) for events with focal depths between
0 and 1 km. Times have been corrected to a common focal depth of 0
km.  Theoretical travel-time curve shown (focal depth = 0 km) was
computed from initial model in Table 3.
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Figure 6b. Observed travel times for events with focal depths between 1 and 2 km.
Times have been corrected to a common focal depth of 1.5 km. Theoret-
ical travel-time curve computed for focal depth of 1.5 km.
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Observed travel times for events with focal depths between 2.0 and
3.5 km. Times have been corrected to a common focal depth of 2.75
km. - Theoretical travel-time curve computed for focal depth of 2.75
km.
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Observed travel times for events with focal depths between 3.5 and
7.0 km. Times have been corrected to a common focal depth of 5.25

‘km. - Theoretical travel-time curve computed for focal depth of 5.25

km.
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Observed travel times for events with focal depths between 7.0 and
26.0 km. Times have been corrected to a common focal depth of 16.5
km. : Theoretical travel-time curve computed for focal depth of 16.5
km. ' '
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Figure 7a. Observed travel times, denuisanced with respect to event hypocenters

(see. text). PFocal depth range is 0 to 1 km. Focal depth for theoret-
ical curve is 0 km. : :
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Figure 7b. Observed travel times, denuisanced with respect to event hypocenters.
Focal depth range is 1 to 2 km. Focal depth for theoretical curve is
1.5 km. - '
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Figure 7c. Observed travel times, denuisanced with respect to event hypocenters.
: Focal depth range is 2.0 to 3.5 km. Focal depth for theoretical curve
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Figure 7d. Observed travel times, denuisanced with respect to event hypocenters.

Focal depth range is 3.5 to 7.0 km. PFocal depth for theoretical curve
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is only 0.1 seconds. This value is clearly not much greater

\/than the "noise level" associated with these data. The data
in Figures 7a through 7e, consisting of 601 arrival times from
93 events, comprise the seismic data set used in subsequent

inversions.

The fact that the seismic data mya have a low r.m.s.
signal-to-noise ratio suggests the possibility that an inver-
sion model obtained from these data will also have a low signal-
to-noise ratio; i.e., the statistical uncertainties in the '
model velocity perturbations (8¥) will exceed the magnitude of
the perturbations themselves, indicating that the model fits
primarily the noise. However, because our inversion algorithm
is based on the joint optimization of data fit and model
smoothness (and of variance and resolution), the signal-to-
noise ratio in the inversion model is controllable through
the parameter NDF (see Section 2.7). We will see in Section
IV that the inversion models for our preferred values of NDF
are not seriously contaminated by noise. Assuming the highest
reasonable noise level in the data (0.1 s), the model uncer-
tainties are less than one-third the major model perturbations.

3.2  RES GRAVITY DATA

- The gravity data for the RHS study region, consisting
of 1468 terrain-corrected Bouguer anomaly values, was obtained
from Dr. Kenneth L. Cook of the University of Utah. Figure 8
shows the locations at which the original gravity measurements
were taken. The areal extent of the data is approximately 63
‘km by 43 km and is outlined by the dotted rectangle.

While sbmewhat premature, in Figure 8 we have superposed
the model grid (i.e., the solid intersecting lines) used in the
subseqguent joint inversion to be discussed in Section IV. Our
reasons for including the grid at this time are two-fold. First,
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the grid makes it easier for the reader to ascertain the density
&/ of gravity observations. For'instance, the smallest grid cells
are 3 km by 3 km and in several cases contaln as many as ten.
gravity stations. The second reason is to emphasize a limita-
tion imposed by the areal coverage of the gravity data. Note
that the stations cover approximately 60 percent of the intended
model grid which was designed to accommodate both seismic and
gravity data. The influence of this limitation on the modeling
results is discussed in the following section of .this report..

3.2.1 Data Processing -

The original gravity data were converted to a regular
redtangular grid of 2709 values, spaced 1 km apart, by a
least-squares quadratic surface interpolation technique (Savino,
et al., 1977). A contour map of the interpolated values is
shown in Figure 9. The frame of this figure corresponds to
the dotted rectangle in Figure 8.

Figures 10 through 12 show the cumulative effects of
the remaining series of proceséing operations that we applied
to the gravity data in order to produce a final data vector
to be inverted. 1In Figure 10 we contour the interpolated
gravity data after low-pass filtering with a Gaussian filter
having a half-width of 1.5 km; i.e., convolution with an
operator of the form

(const) exp [ 3 (x* + y2)/(1.5)% ,

where x and y are UTM coordinates. Figure 1l shows the results
of decimating the filtered, interpolated data to a 3 km grid
spacing and truncating gravity values located on the periphery
of the original data grid to conform to the dashed rectangle

in Figure 8. Truncating the data was hecessary in order to
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Gravity data, low-pass filtered with a 3.0 km
50 .
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avoid both edge effects and areas of poor data coverage such

; as the extreme southeastern corner of the region outlined by
the dotted box in Figure 8. Given that the minimum horizontal
block dimension of our inversion model is 3 km, our choice of
filter and decimation parameters probably does not affect our
inversion results.

' The effects of deep structure on the gravity data (i.e.,
the regional field due to structure below the model grid) were
treated as nuisance parameters. To accomplish this we param-~
. eterized the regional field as a constant plus a linear trend
given by

Ireg (x,y) % gy + ax + by ,

where the constants ggr 2 and b are treated as nuisance param-
eters. Denuisancing the data, then, corresponds to detrending
and demeaning the data (Savino, et al., 1977). A contour plot
of the detrended and demeaned data is shown in Figure 12. This
is the final gravity data set to be used in the inversion and
consists of 204 values on a regular spaced grid (spacing equal
to 3 km).

‘3.3 LEACH HOT SPRINGS, NEVADA

 As mentioned in the introduction to this report, we
were originally interested in applying this modeling approach
to seismic and gravity data from a sécond geothermally active
region, namely the Leach Hot Springs area in northwestern
Nevada. The data sets for this area were located at the
Lawrence Bérkeley Laboratory and with the cooperation of
several people there, we acquired all the available local
earthquake travel-time and Bouguer gravity data. |
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A comparison of the seismic data sets available for the
\./Roosevelt and Leach Hot Springs areas revealed an insurmount-
able problem concerning the data set for the latter area. The
number of seismic travel~time data available for Roosevelt Hot
Springs consisted of 601 arrival times. These data were shown
in Figures 7a through 7e. Processing of the available data for
Leach Hot Springs, on the other hand, indicated that the final
data base was too small to attempt a worthwhile inversion. For
instance, during the time period that a 13 station seismic net-
work was operating in the Leach Hot Springs area, only 19
events were recorded at 7 or more stations. This compares
with approximately 50 events recorded at 7 or more stations
operating in the Roosevelt Hot Springs area. Our modeling
experience to date convinced us that the spatial sampling of
local earthgquake ray paths, one of the most critical aspects
of the data, in thé Leach Hot Springs area is totally inade-
gquate for inversion modeling. As a result, we placed our
emphasis on the Roosevelt area.
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IV. MODEL RESULTS

\ig 4.1 MODEL GRID

The vertical layering used in all inversions performed
in this study was introduced in Section 3.1.1 and listed in
Table 3. As noted, it consists of five horizontal layers ex-
tending to a depth of 26 km and provides a good fit to the
observed travel-time data (Figures 7a through 7e) and an .
optimal parametérization in terms of the vertical distribution
of ray paths.

The next task is to design a horizontal rectangular
grid capable of representing lateral velocity and density
variations across the region of interest. Our design must
meet with the following constraints:

1. The grid samples the entire area covered by

both the seismic event and gravity data sets
retained for modeling with a minimal waste
of unsampled blocks.

2. Grié elements are smaller in areas well

sampled by seismic events and gravity data.

3. The grid consists of two parts: an inner

’grid of finite blocks, containing most of
the data, surrounded by a buffer zone of
- semi~infinite elements (the outer grid),
for which structural modeling is necessarily
imprecise and unreliable due to poor
parameterization. |

A 12 by113 element inner grid was adoptéd for thevin-‘
version modeling. This inner grid, together with the asso-
ciated outer grid, is shown in Figure'l3 on a background of
geographical coordinates. Also shown are the 93 local

&/

55

SYSTEMS. SCIENCE AND SOFTWARE



~-13.000

o

w00
12400

TWN
38750 | B ORY 27
1. 14 x TN
TSR OO N A - X
T SR NI
[N x H 2L L"- .
X \[OM el ) :
B2 : ¥ A x Jy Ttk %% X B82S
P ] x N
: H ' ::\tz‘&t_\' . X x
BV R MUID
- A YRS [
B|ER| xi |1 MIN | i 38500
ol § 81 | —
o i | . ! ' x
P Xx| X i RﬁN | o éﬂ; x! »
- ; i 12T
38375 5 : _ r : ‘ 38375
o E LIN L
-__—935.250 S SR B "X '""“'""”"l k : ! 38250
| o i
X
b l
| [
............... r....-.---..-.----........-... Sessaascesesrvasocsnasannnas
g . & 2 |x g
| % %} %

Figure 13. Model grid (intersecting lines), seismic stations

(triangles) and earthquake epicenters (crosses).
Boundaries of raw gravity data and inverted
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earthquakes (crbsses), 18 seismograph stations (triangles) and

\.’ the boundaries of the raw gravity data (dotted box) and the
final processed gravity data (dashed box). The actual dimen-
sions of the model grid elements are listed in Table 5.

4.2 INVERSION MODELS

Three~dimensional models of the crustal velocity'struc-
ture in the Roosevelt Hot Springs area were obtained from two
inversions: a joint inversion of the seismic travel-time and
gravity data (Figures 7 and 12), and an inversion of the travel-
time data by themselves. Both inversions solve for a velocity
perturbation in each block of the three-dimensional grid
described in Section 4.l1. The perturbations are with respect
to the initial plane-layered velocity model given in Table 3.

In the joint inversion, density perturbétions were
treated as constrained parameters. ~The density perturbation,
8p, of each block was tied to the velocity perturbation, §v,

by
§p = 0.3 v .

This relationship approximates that determined by Birch (1961)
for crustal igneous and metaﬁorphic rocks. . We note that the
‘density perturbation ép is defined with réSpect to a plane-
layered model,‘po(z), which is not specified. Since the
gravity data and their partial derivatives are demeaned as

a result of denuisancing (see Section 2.6), p,(2) is incon-
sequential; i.e., the inversion neither requires Pg as input
nor determines o from the data.

A constant ratio between velocity and density contrasts,
as we have assumed, does not necessarily apply to the variety
of subsurface materials encountered throughout our model

“ region (e.g., Gertson and Smith, 1979). For the known hard
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TABLE 5

HORIZONTAL GRID.DIMENS IONS

Block Block Block Block
Index width - Index Width
- (S=N) (km) (W=E) (km)
1 10* 1 10*
-2 8 2 8
3 7 3 6
4 5 4 4
5 4 5 4
6 4 6 4
7 4 7 4
8 3 8 4
9 3 9 3
10 3 10 3
11 3 11 3
12 4 12 4
13 6 13 4
14 10* 14 6
15 10*

- - , -
For plotting only; edge blocks
are assumed to be semi-infinite
in the actual modeling.
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- rock geology of the area, the ratio we assumed is reasonable.
This includes the granitic rocks of the Mineral Mountains,
and the metamorphic rocks believed to underlie the Milford
vValley (Ward, et al., 1978). Our ratio may be less appro-
priate for the contrast of these rocks with the known
Quarternary basalts east of the Mineral Mountains; but the
gravity data barely extend this far eastward. The only
serious guestion about our assumed velocity-density relation
arises with existence of alluvial £ill in the Milford and
Beaver Valleys. In the case of the Milford Valley, Gertson
and Smith (1979) suggest a rather small density contrast be-
tween Tertiary sediments and bedrock: ~ 0.2 gm/cc compared
a velocity contrast of ~ 1.5 km/s. However, they note that
avlarger.sediment~bedrock density contrast might be required
by the gravity data, and in fact Ward, et al. (1978) were
able to fit the gravity along a profile over Milford Valley
by assuming a density contrast of 0.5 gm/cc. This latter
value would support our assumed velocity-density ratio.

The only known violation of our density-velocity law,
then, occurs with the surface fill of very low velocity
(v 1.8 km/s) recent sediments in the Milford Valley. For
these, in comparison to bedrock, our coefficient 0.3 is too
high. But these superficial sediments have limited areal
extent over our model and, because of their limited depth
extent and expected small density contrast with the under-
lying Tertiary sediments, probably do not contribute much to
the gravity data. We have corrected the travel-tlme data at
station BVR for these sedlments. if it could be shown that
they have a significant effect on the gravxty data, we would
prefer to do a gravity correction as well. However, a suffi-
ciently accurate three-dimensional"model of the recent sedi-
ments is not available.

Both the joint gravity/seismic inversion and seismic-
only inversion produced a family of models corresponding to

- .
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a trade-off between data misfit and model roughness, as

\.’ described in Section 2.7. The trade-off is parameterized

U

by the scalar parameter 6, or equivalently by the number of

degrees of freedom NDF (see Equation (45)). In each inver~
sion, we generated models for six values of 6: 30, 10, 3, 1,
0.3, and 0.1. The corresponding values of NDF ranged from

45 to 259% in the joint inversion, and from 14 to 150 in the
seismic only inversion. Figqure 14 displays the data misfit/
model roughness trade-off curves obtained in the two inver-’
sions. The points resulting from the six computed models are
labeled on the figure; the curves shown were interpolated
between these points. The data misfit plotted is defined as
the sum of squared residuals (observed minus predicted data),
normalized by the assumed data standard deviations (0.1 second
for travel times, 2 mgal for gravity). The squared model norm
is the discrete approximation to the integral defined in
Equation (20). It measures the»average spétial "roughness" of
the velocity perturbation, 6¥(x,y,z), as reflected both by the
magnitude of 6V and its wavenumber content; i.e., large varia-
tions in 6V on a small spatial scale imply a high degree of

- roughness.

A model generated with any NDF is optimal in the sense
that the data misfit and model roughness are jointly minimized;
i.e., each quantity is minimum given a fixed value of the
other (Backus and Gilbert, 1970). However, the models for
extreme values of NDF are not very useful representations_of“

the earth. For a too low NDF, the model is so spatially

smooth that it does not adequately represent real variations
in the earth's velocity which are required by the data. For

too high an NDF, the model possesses spurious small-scale
variations whichvattempt,to fit the noise in the data.

The parameter NDF also controls a trade-off between the
variance of the inversion model and its spatial resolution
(see Section 2.7). We examined this trade-off for the joint

60

SYSTEMS. SCIENCE AND SOFTWARE




1500t

1000

Data Misfit

e

—0
150

N _ _  ] ! ! I
0 00 . 200 300 400 500 600
' ' Squared Model Norm _

Figure 14. Trade-off curves for travel-time inversion
(bottom line) and joint travel-time/gravity
inversion (top line). Ordinate ("data mis-
fit") is the sum of squared differences be-
tween observed and predicted data (normalized
by data variances). Abscissa is a measure of
model "roughness." Points on trade-off
curves corresponding to various numbers of
degrees of freedom (NDF) are labeled.
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- inversion model family. A separate variance-resolution trade-

off curve exists for each block of the model, but our analysis
showed that the trade-off curves varied significantly only
with depth; for a given NDF, the variance obtained for a block
and, to a lesser extent, the resolution did not vary greatly
within a given layer (inside the inner grid).

Table 6 shows the trade-off between variance and spatial
resolution — determined from the joint seismic/gravity inver-
sion — for the column of model blocks that most nearly lies
beneath Roosevelt Hot Springs; i.e., block,index (6,5) of
each layer (refer to Figure 13). The upper part of the table
lists, for each layer and NDF, the standard deviation of the
velocity perturbation estimated for the particular block. ‘
The "normalized resolution measure" listed in the lower table
is a dimensionless quantity which reflects the extent to which
the velocity perturbation is spatially averaged over blocks
surrounding the target block, (6,5), in a given layer. A value
of one for this quantity would imply the best possible spatial
resolution — i.e., the velocity in the target block is deter-
mined independently of all other blocks — while a value of
zero is the worst possible resolution. Since.this resolution

measure is normalized, it cannot be converted to a measure of

"resolving length" as defined by Backus and Gilbert (1970).
It can be compared between NDF's, but unfortunately it is
difficult to relate its value among different model blocks.

To select a "best"” model among the six Joznt inversion
models that we computed, we were swayed to a great extent by
the standard deviations in Table 6. It is desirable to have
the standard deviation of 6V in a 1ayér be only a fraction -
say, less than one~third — of the principal extrema of | 8%]
in the 1aYer (adjusted for the éverage 6V of the’layer).
Otherwise, the noise-contributed component of &% causes a
significant distortion in contours of the block velocitiés
and in the location of velocity highs and lows. Only the
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TABLE 6

VARIANCE-RESOLUTION TRADE-OFF FOR BLOCK (6,5)
IN FIVE LAYERS OBTAINED FROM THE

JOINT SEISMIC/GRAVITY INVERSION

Standard Deviation of Velocity Perturbation

NDF
Layer 45 74 116 160 212
1l 0.06 0.15 0.34 0.60 0.91
2 0.11 0.16 0.22 0.30 0.46
3 0.07 0.09 0.15 0.22 0.31
4 0.04 0.06 0.09 0.13 0.20
5 0.03 0.04 0.05 0.07 0.11
Normalized Resolution Measure (see text)
NDF
Layer 45 74 . . 116 160 212
1 0. 39 0.53 0.70 0.82 0.89
2 0.77 0.83 k0.86 0.88 0.90
3 0.89 0.92 0.95 0.96 0.97
4 0.90 0.92 0.94 0.95 0.96
S 0.79 0.86 0.89 0.90 0.92
!
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NDF = 45 and 74 models clearly meet a criterion of this type
for all five layers. We note that in applying this rule, we
are frge to scale the model standard deviations up or down by
revising the assumed data standard deviations. The fits of
the models to the observed data (discussed below) suggest re-
vising our assumed data variances downward, but'not by very

e - R o

In Table 6 we see that the model standard deviations
tend to decrease with depth (increasing layer number). This
is also true of the standard deviations relative to the veloc-
ity extrema themselves. Applied on a layer-by-layer basis,
our standard deviation criterion would, therefore, accept
higher NDF's as we go to deeper layers. For this reason we
will later examine the structure in some of the deeper layers
of the high NDF models to aid in our interpretation.of the in-
version results. HEowever, the noisy nature of the shallow
layers of these models do‘not’qualify them in our eyes as
optimal models. Furthermore, we do not consider a composite
model constructed from two or more NDF's to be-a valid inver-
sion model since it does not satisfy our data misfit/model
norm minimization criterion (Equation (36)).

much.

Between the joint inversion models for NDF = 45 and
NDF = 74, we judged the latter to be a better model. Although
the former model has smaller standard deviations, it also has
poorer spatial resolution (see Table 6, bottom). Furthermore,
the data misfit/model norm trade-off curve (Figure 14) shows.
that the NDF = ‘74 model provides a significantly improved fit
to the data with a relatively minor increase in spatial rough-
ness. We verified this by visually inspecting plots of the
data fits and model velocity contours. '

The joint inversion model for NDF = 74 is displayed in
Figures 1l5a through l5e as a contour map of velocity perturba-
tions (in km/s) for each of the five model layers. The contours
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are interpolated from the individual block values of velocity.

\./ Absolute velocities can be obtained simply by adding the initial
velocity of each layer (Table 3) to the velocity perturbations
found by the inversion. We note that the contours in Figure 15
‘are displayed over the 14 by 15 array of "outer grid" blocks
defined in Section 4.1. ' '

For completeness, we present in Appendix B the discrete
block version of the NDF = 74 joint inversion model. In the
appendix, velocity perturbations are given and they are shown
for the full 14 by 15 grid including edge blocks.

In the next section, we compare the observed gravity
and travel-time data to the data predicted by our preferred
joint inversion model (Figure 15), and evaluate the quality
of £it. An interpretation of our model follows in the subse-
quent section. Because of the success of the joint inversion,
we consider our inversion of the travel-time data to be & pre-
liminary step in obtaining our final joint inversion model, as
well as a corroboration of the assumed velocity-density sys-
‘tematics. We will, however, make use of some of the seismic-
only inversioﬁ results in our interpretation (Section 4.4).

4.3 DATA FITS

A useful and informative test of our model lies in the
comparison of predicted data functionals (namely, travel-time
ahd gravity anomalies)’with the observed values. The observed
(Figures 7a through 7e) and predicted travel-time data based
on the final joint inversion model (Figure 15) are shown in
Figure 1l6. The format used for showing these data is the
following. A circle is drawn around the location of each of
the 18 seismograph‘stations used in this study. The circum-
ference of each circle corresponds to a zero travel-time
residual. Positive residuals are represented by lines ex-

-/ tending out from the circumference at azimuths corresponding
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to the contributing events. Negative residuals are drawn in
. toward the center of a circle. The length of any particular
line is scaled according to the size, or absolute value, of .

the residual.

While the form of déta representation in Figure 16 has
the advantage of showing the behavior — that is the sign,
size and azimuthal distribution — of travel-time residuals
over the model region, there are two important disadvaniages
that should be kept in mind when perusing these figures. '
First, residuals with values near zero seconds (i.e., * 0.05
seconds) are hard to distinguish and, as a result, fits in
this range tend to go unnoticed. Second, the magnitudes of
the predicted residuals are in general significantly smaller
than the observed values. One reason for this stems from
the damping imposed on the inversion procedure which tends
to limit the amplitude of lateral.variations in the model,
and hence to bias predicted residuals toward smaller values.
Iﬂ addition, the high noise level in the observed data acts
to»create a visual impression that the observations are under-
predicted since larger (in general noisy) residuals in the
plot of observed data are much more obvious to the eye than
those with more average values, so that visual averaging can
actually be quite misleading.

With these caveats in mind, we pbint out that some ,
general features of the obsefved data set are indeed reflected’
in the model-predicted values (Figure 16). For instance, the
transition from stations with predominantly positive'observea
residuals (e.g., MIN and CIN) to largely negative residual
stations (ANT, DOG and SLF) is reproduced by the predicted
residuals. The r.m.s. misfit of the travel-time residuals
is 0.085 seconds. '

In Figure'l7, we compare the observed gravity data
(i.e., the zero-meaned and detrended data shown in Figure 12)
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and the model-predicted data. The data are contoured with a
contour interval of 2 mgal. As is obvious the gravity field
predicted by the joint inversion model shown in Figure 15
reproduces all of the significant features of the observed
field. Of particular note are the Milford Valley gravity

low (Number 1 in Figure 1l7a), the Ranch Canyon gravity saddle
(Number 2), the southern Mineral Mountains gravity high
(Number 3) and the.central Mineral Mountains gravity high
(Number 4). These graviﬁy anomalies are identified in the
report by Carter and Cook (1978). These patterns are naturally
correlated with model features, and we shall discuss them in
the framework of model interpretation in the next subsection
- of this report. Finally, we point out that the r.m.s. misfit
to the data is 1.5 mgal.

4.4 DISCUSSION OF MODELING RESULTS

In order to facilitate the discussion of our inversion
modeling results we begin this section‘with a2 base map of the
general model region shown in Figure 18. This map is taken
from the study by Robinson and Iyer (198l1) and depicts in a
simplified manner -the major physiographic features of interest
in this study. Dominating this region is the Mineral Mountains,
a2 horst composed mainly of Tertiary granitic rocks (10 to 14
m.y. old) and flanked by alluvial valleys typical of the Basin
and Range province (Milford Valley and Beaver Valley). Of
particular interest in this modeling effort is the Roosevelt
Hot Springs geothermal area (the starred symbol in Figure 18)
which is located on the western: flank of the Mineral Mountains.

The scale of the base map in Figure 18 is equivalent
to the scale of‘all subsequent model plots. This greatly
facilitates~ihterpretation of the more robust features in
the inversion models.
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Figure 18. The Mineral Mountains region, southwest

‘the Mineral Mountains.

Utah. Seismograeph stations used in the
study by Robinson and Iyer. (188l) are

shown by triangles. The star indicates
the location of the Roosevelt Hot Springs

geothermal area. Contour interval is

1000 feet, the shaded region representing
The scale of this

map is the same as in Figures 19 through
22.
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Before interpreting our model, a few words about resolu-

\-/tion.are in order. The similarity of the contours in Layers

1, 2 and 3 (Figures l1l5a, 15b and 15c¢) suggest that the vertical

resolution available from the data in the upper two or three

kilometers of the model is relatively poor. Given that Layers

1 and 2 are only 1 km thick, this makes physical senseé from

the standpoint of both the gravity data, whose horizontal

spacing is 3 km, and the travel-times, whose ray paths sample

relatively few blocks in Layers 1 and 2. Layer 1, in particu-

lar, contains very few horizontal ray paths which intersect

two or more blocks. Given the nature of the data, shallow

structure in our model may be vertically smeared across

Layers 1 and 2 and, to a lesser extent, across Layers 2 and

3 (since some rays do turn in Layer 2; see Figure 7a).

An additional problem with Layer 1 is that the top of
this layer is at the approximate mean elevation of the study
region (2 km). True ground elevations differ from this datum
plane by as much as 500 m, which is half the thickness of
Layer 1, Therefore, in addition to modeling geology, Layer 1
has the role of absorbing errors due to elevation corrections
made to the seismic data. Of course, such errors have been
minimized by our choice of the datum plane. Because of this
ambiguity of Layer 1 and the potential problems with dépth
resolution, we have chosen to ignore this layer in our dis-
cussion below. '

" Vertical resolution may be best in the depth range
between Layers 3 and 4. Many rays turn in these la&ers
(Figures 7a, 7b and 7c¢) and they also contain a large number
of earthquake hypocenters‘(Figures~7c,and 7d) .. Layer 4 is
also deep enough to decouple from the highest wavenumber com-
ponents of the gravity data. R

Contour maps of velocity variations in Layers 2 and 3
for the joint inversion model (NDF = 74) and the seismic-only
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inversion model (NDF = 48) are given in Figures 19 and 20, re-
\-)spectivély. (See captions for contour intervals.) The more
robust features seen in these iéfers, particularly in the
case of the joint inversion, are the following. A very
prominent ridge of high velocities can be seen trending
generally northward from the southern limit of the model
region between 112.8° and 113°W to as far north as 38.6°N.
This ridge is flanked on the west by a narrow zone of steep
velocity gradients grading to a pronounced velocity low fur-
ther to the west.

While these features are probably largely controlled
by the terrain-corrected Bouguer gravity déta included in the
joint inversion (recall the disjoint spatial sampling of the
gravity and seismic data in Figure 13 for instance), the
local earthquake travel-time data do in fact delineate all
three features, especially in Layer 3 (Figure 20, NDF = 48).
An interpretation of these model features is taken from a
study by Ward, et al. (1978). These authors analyzed a sub-
set of the Bouguer gravity data that we inverted and inter-
preted the northward~trending gravity contours, with pro-
nounced gradients over the alluvium adjacent to the western
margin of the Mineral Mountains as indicating that the
mountains are bounded on the west by Basin and Range faults;
these faults form the eastern margin of the Milford Valley
graben, which is reflected in the gravity low (Figure 17a)
along the western portion of this region. '

Ward, et al.(1978) further noted two northward-trending,
'elohgate gravity highs extending over the region of interest
here' and pointed out that the northern gravity high does not
coincide with the crest of the Mineral Mountains in this area
but rather overlies the western mafgin of the mountains where -
granitic rocks are exposed. Referring to our mddel Layers 2
and 3 in Figures 19 and 20, especially for the joint inversion,
\ane see that the velocity anomalies display a similar behavior;
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Figure 19. Contour plots of velocity in model Layer 2 of the joint inversion (left)
and seismic-only inversion (right). The contour intervals are 0.2 km/s
and 0.1 km/s for the joint and seismic-~only model layers, respectively.
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the ridge, with an intervening saddle in the Ranch Canyon
\')area, of high velocity material diverges west of the crest
of the mountains going from south to north over the model

region.

Additional seismic evidence, supporting the model
features in Figures 19 and 20, comes from a study by Robinson
and Iyer (1981). These authors inverted teleseismic P-wave
travel-times recorded at the stations (solid triangles) de- |
picted in Figure 18 for three-dimensional velocity structure
in the crust and upper mantle beneath our general study region.
The model obtained by Robinson and Iyer (1981) consisted of
four layers extending from 0 to 35 km. The pattern of velocity
anomalies determined in their topmost model layer (0 to 5 km)
correlates quite well with anomalies in Layers 2 and 3 of our
inversion models — and includes the three features discussed

above. .

" The inversion results for the deeper model layers are
given in Figures 21 and 22. An extremely interesting feature
appears in Layer 4 (Figures 21 and 22), for both the joint and
seismic-only inversions, and persists into Layer 5 (Figure 22).
The feature of interest is the east-west trending low velocity
anomaly centered between approximately 38.45°N and 38.5°N.
This anomaly extends beneath the axis of the Mineral Mountains,
and, most importantly,,underlies’thé Roosevelt Hot Springs
KGRA. Once again, comparing our results with those of Robinson
and Iyer (198l1) we find that this low velocity anomaly is
delineated by the teleseismic travel times between depths of
5 to 25 km, and furthermore is located very nearly in the same
place as in our study (i.e., Figure 7b from Robinson and Iyer
(1981) shows this anomaly extending beneath the Mineral Mountains
just south of 38.5°N).

Robinson and Iyer (198l) stated that their results
suggested a pipe-like feature of approximately five to seven:

&/
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Figure 21. Contour plots of velocity in model Layer 4 of the joint inversion (left)
and the seismic-only inversion (right). The contour intervals are 0.05
km/s in both plots.
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-

percent velocity contrast extending from about 5 km-depth
down at least as far as the uppermost mantle, centered near
the Roosevelt Hot Springs geothermal area but extending to 3
the north and south at depth. While our inversion model
lacks sufficient resolution in the deepest (i.e., 7 to 26
km) layer (i.e., in terms of defining the depth extent of
this anomaly), we note that this low velocity anomaly is
well-defiged in our Layer 4 (3.5 to 7.0 km) and is thus
probably shallower than 5 km.

The similar geological and geophysical picture painted
by the various data set considered in this study lends strong
support to the joint inversion approach we have described in
this report. To a large extent, we were handicapped in this
study by the relatively disjoint coverage afforded by the
local seismic and gravity data and, in addition, by the poor
distribution of seismic events and recording stations, and
the small average number of &tations recording each event.
However, in spite of these circumstances we obtained struc-
ture models of considerable merit. Obwviously, given a
"dedicated" seismic experiment and overlapping gravity
coverage, we would expect the joint inversion teChnique to
prové to be a valuable exploration tool. B
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APPENDIX A

LISTING OF LOCAL EARTHQUAKE TRAVEL-TIME
MODELING PROGRAMS
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\_J Program XTP computes local earthquake travel-times
for buried sources in a flat-layered one-dimensional velocity
model having continuous velocity versus depth and constant
velocity gradient in each layer. It is written in ASCII
FORTRAN, UNIVAC's version of FORTRAN 77. All input to the
program is through NAMELIST reads in the main program (AAMAIN),
The program produces printed output and a plot file generated
by calls to the DISSPLA graphics library. The program accesses
no other tape or disk files. The following program listing is
complete except for subroutines in the copyrighted DISSPLA
library, which is available from ISSCO, Incorporated, San Diego,
California. ‘
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APPENDIX B

VELOCITY PERTURBATIONS IN FINAL JOINT

INVERSION MODEL (NDF = 74)
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Figures B.l through B.5 show the velocity perturbations
in each grid cell of the final joint inversion model. The
number in a cell is &v in units of 0.0l km/s. Both outer grid
and inner grid can be compared with corresponding figures in

the text.
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Model Layer 1 (0 - 1 km).
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Model Layer 5 (7.0 = 26.0 km).
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Figure B.S5.
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