i %ﬂ/

ANDlA REPORT
SAND86 — 0594 « UC—32

‘Unllmlted Release

/ Printed March 1987

&

PRONTO 2D
A Two-Dimensional Transient
Solid Dynamics Program

L. M. Taylor, D. P. Flanagan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
.mder Contract DE-AC04-76DP00789

I SE2900Q1B 61!

*;&7‘2';07_.;7’
DR- o235-4
— = 2o 2 3 L

o v s vt e g d
B UAL T gb TS Jbotent e Y
!



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government Neither the United States Govern

ment nor any agency thereof, nor any of their employees, nor any of thewr
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro

cess disclosed, or represents that its use would not infringe privately owned
rights Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or 1mply its endorsement, recommendation, or favoring
by the Umted States Government, any agency thereof or any of their
contractors or subcontractors The views and opinions expressed heremn do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors

Printed 1n the United States of America
Available from

National Technical Information Service
U S Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy All
Microfiche copy A01




SAND86-0594 Distribution
Unlimited Release uc-32
Printed March 1987

SAND--86-0594
DE87 007823

PRONTO 2D
A TWO-DIMENSIONAL TRANSIENT SOLID DYNAMICS PROGRAM

L. M. Taylor and D. P. Flanagan
Applied Mechanics Division III
Sandia National Laboratories, Albuquerque, NM 87185

ABSTRACT

PRONTO 2D is a two-dimensional transient solid dynamics code for analyzing
large deformations of highly nonlinear materials subjected to extremely high
strain rates. This Lagrangian finite element program uses an explicit time
integration operator to integrate the equations of motion. Four node
uniform strain quadrilateral elements are used 1in the finite element
formulation. A number of new numerical algorithms which have been developed
for the code are described in this report. An adaptive time step control
algorithm is described which greatly improves stability as well as perfor-
mance in plasticity problems. A robust hourglass control scheme which
eliminates hourglass distortions without disturbing the finite element
solution 1is included. All constitutive models in PRONTO are cast in an
unrotated configuration defined using the rotation determined from the polar
decomposition of the deformation gradient. An accurate incremental algo-
rithm was developed to determine this rotation and is described in detail.
A robust contact algorithm was developed which allows for the impact and
interaction of deforming contact surfaces of quite general geometry. A
number of numerical examples are presented to demonstrate the utility of

these algorithms.
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1.0 INTRODUCTION

PRONTO 2D 1is a finite element FORTRAN program for the analysis of the
two-dimensional response of solid bodies to transient dynamic loading. The
program includes nonlinear constitutive models, and accurately analyzes
large deformations which may lead to geometric nonlinearities. PRONTO is a
powerful tool for analyzing a wide variety of problems, including classes
of problems in impact dynamics, rock blasting, and accident analyses.

PRONTO 1is a new generation code following in a long 1ine of finite
difference and finite element programs which were developed in the last
thirty years to analyze transient solid dynamics problems. These original
codes had their origins in the Manhattan Project and the work of Von Neumann
[1]J. They are often referred to as "wave codes" and were developed at the
national laboratories for numerous weapons projects. All of these codes use
an explicit time integration operator to advance the equations of motion
from the initial state.

The first general finite difference FORTRAN codes were the WONDY [2,3]
and TOODY [4] codes developed at Sandia National Laboratories and the HEMP
[5] code developed at Lawrence Livermore Laboratories. The HONDO [6] code
developed at Sandia National Laboratories was the first wave code to use the
finite element method. HONDO drew heavily upon the experience of the finite
difference code developers; many of the aigorithms in HONDO came directly
from the finite difference literature. The more robust numerical simulation
capability of the finite element method allowed the introduction of many new
innovations in HONDO. These include multiple material libraries and general
surface contact algorithms. The DYNA [8] family of codes descended directly
from HONDO. DYNA made a significant step forward by structuring the code to
take advantage of the vector processors available on new generation
computers. As a result, DYNA achieved a four-fold increase in speed over
the HONDO code. DYNA also significantly expanded the material library and
was the first finite element wave code to implement hydrodynamic equations
of state. Another general purpose finite element program which has seen
widespread use is the EPIC [9] series of codes. The EPIC codes contain an
innovative algorithm for the impact and erosion of contact surfaces for
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penetration problems. We were able to develop PRONTO into a production tool
in a very short time as a direct result of the rich algorithmic environment
which we inherited from the developers who came before us.

We developed a flexible problem-oriented 1language for the input to
PRONTO which allows the user to define a complex mechanics problem with a
few concise commands. Experience with the code has shown that after a user
has gained some experience with the code, reference to the user's instruc-
tions (Appendix A) 1is seldom needed. There is no reference to node or
element numbers in the problem definition. A1l boundary conditions are
defined through the concept of node and element side sets which are defined
using the GENESIS [10] mesh definition data base.

PRONTO contains no mesh generation or post-processing capabilities; it
relies on external mesh generators and external post-processors. The
program writes the SEACO [11] plotting data base for graphical display of
the resulits. The form of the GENESIS and SEACO data bases are given in
Appendices D and E, respectively.

The development of PRONTO was motivated by the need for a code which
could serve as a testbed for research into numerical algorithms and new
constitutive models for nonlinear materials. Towards this goal, the code
contains a well documented and easy to use interface for implementing new
constitutive models (Appendix C). Complete documentation of the code ar-
chitecture and computer storage requirements is provided in Appendix B.

PRONTO is written in completely standard FORTRAN [7]. Any system
dependent coding such as the determination of the date or the memory manage-
ment is part of the SUPES [12] package. Figure 1.1 shows the architectural
layout of PRONTO. Some minor utility subroutines have been omitted from the
figure. These are routines such as GATHER, which are called from numerous
locations. The only input/output units which PRONTO uses are 5, 6, 9, 11,
30 and 32. Their use is described in Table 1.1.

12




TABLE 1.1
INPUT/OUTPUT UNITS

Unit Use
5 Formatted input instructions for PRONTO 2D
6 Formatted output from PRONTO 2D
9 Unformatted GENESIS mesh file
11 Unformatted SEACO post-processing file
30 Unformatted restart output file
32 Unformatted restart input file

13
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2.0 GOVERNING EQUATIONS

In this chapter, we present the underlying continuum mechanics concepts
which are necessary to follow the development of the numerical algorithms 1in
the following chapters. Bold face characters denote tensors. The order of
the tensor 1s implied by the context of the equation.

2.1 Kinematics

A material point in the reference configuration B0 with position vector
X occupres position x at time t 1n the deformed configuration B. Hence we
write x = x{(X,t). The motion from the original configuration to the
deformed configuration shown 1in Figure 2.1.1 has a deformation gradient F
given by

F = g; . det(F) > 0 (2.1.1)

Applying the polar decomposition theorem to F :
F=VR=RU (2.1.2)

where V and U are the symmetric, positive definite left and right stretch
tensors, respectively, and R 1s a proper orthogonal rotation tensor. Figure
2.1.1 11lustrates the 1ntermediate orientations defined by the two alternate
decompositions of F defined by Equation (2.1.2). The determination of R as
defined by Equation (2.1.2) presents a significant numerical challenge. 1In
Section 3.3, we describe the incremental algebraic algorithm that we use to
determine R.

The velocity of the matertal point X 1s written as v = x where the
superposed dot 1ndicates time differentiation holding the material point

fixed. The velocity gradient 1s denoted by L and may be expressed as

=FF" . (2.1.3)
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Figure 2.1.1. Original, Deformed and Intermediate Configurations of a Body

Q




The velocity gradient can be written in terms of the symmetric (D) and
antisymmetric (W) parts, respectively,

L=D+W. (2.1.4)

Using the right decomposition from Equation (2.1.2) in Equation (2.1.3)
gives

L=RR +ROUIR . (2.1.5)
Dienes [13] denoted the first term on the right-hand side of Equation
(2.1.5) by Q:

2=RR'. (2.1.6)
Both W and & are antisymmetric and represent a rate of rotation (or angular
velocity) about some axes. In general, @ # W. The difference arises when
the 1last term of Equation (2.1.5) is not symmetric. The symmetric part of
U U'1 is the unrotated deformation rate tensor d as defined below (note that
both U and U_1 are symmetricj.

Liulo)y=rR"DR. (2.1.7)

There are two possible cases which can cause rotation of a material
line element: rigid body rotation and shear. Since total shear vanishes
along the axes of principal stretch, the rotation of these axes defines the
total rigid body rotation of a material point.

It is a simple exercise 1in vector analysis to show that Equation
(2.1.6) represents the rate of rigid body rotation at a material point (as
shown by Dienes [13]). It is equally simple to show that W represents the
rate of rotation of the principal axes of the rate of deformation D. Since
D and W have no sense of the history of deformation, they are not sufficient
to define the rate of rotation in a finite deformation context.
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Line elements where the rate of shear vanishes rotate solely due to
rigid body rotations. These line elements are along the principal axes of
U. We will apply a similar observation below as we derive Dienes' [13]
expression for calculating .

Using the left decomposition of Equation (2.1.2) in Equation (2.1.3)
gives

L=vvisve vi. (2.1.8)
Postmultiplying by V yields an expression which defines the decomposition of

L into V and @:
LV=V+Ve. (2.1.9)

When the dual vector of the above expression is taken, the symmetric v
vanishes to yield a set of three linear equations for the three independent
components of Q.

The antisymmetric part of a tensor may be expressed in terms of its

dual vector and the permutation tensor e..

ijK° Define the following dual

vectors:

P ek %k (2.1.10)

W (2.1.11)

i~ Bk "k

Using Equations (2.1.4), (2.1.10), and (2.1.11) in Equation (2.1.9) results
in the expression that Dienes [13] gave for determining & from W and V;

@=w-2[V-1tr(V)]! 2z (2.1.12)
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where

) = e1Jk VJm Dmk . (2.1.13)

We observe from the above expressions that € = W 1f and only 1f the
product V D 1s symmetric. This condition requires that the principal axes
of the deformation rate D coincide with the principal axes of the current
stretch V. Ciearly, a pure rotation 1s a special case of this condition
since D, and consequently (2.1.13), vanish.

2.2 Stress and Strain Rates

Qur constitutive model architecture 31s posed in terms of the conven-
tional Cauchy stress, but we adopt the approach of Johnson and Bammann [14]
and define a Cauchy stress 1n the unrotated configuration. The reader
seeking more detail than 15 presented here should see Flanagan and Taylor
[15]. The "true" stress in the deformed configuration 1s denoted by T. The
Cauchy stress 1n the unrotated configuration 1s denoted by o. These two
stress measures are related by

s=R TR. (2.2.1)

Each material point 1In the unrotated configuration has 1ts own reference
frame which rotates such that the deformation 1n this frame 1s a pure
stretch. Then T 1s simply the tensor o 1n the fixed global reference frame.
The conjugate strain rate measures to T and ¢ are D and d, respectively.
These strain rates were defined by Equations (2.1.4) and (2.1.7),
respectively.

The Principal of Material Frame Indifference (or objectivity) stipu-
lates that a constitutive law must be insensitive to a change of reference
frame [16]. This requires that only objective quantities may be used 1n a
constitutive law. An objective guantity 15 one which transforms 1n the same
manner as the energy conjugate stress and strain rate pair under a super-
posed rigid body motion. The fundamental advantage of the unrotated stress
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over the true stress 1s that the material derivative of ¢ 1s objective,
whereas the material derivative of T 1s not.

The Jaumann rate defined below 1s frequently used 1n constitutive
relationships to resolve the need for an objective rate of Cauchy stress.

T=T-WT+TW. (2.2.2)
It 1s an easy task to show that the Jaumann rate 1s objective.

A similar stress rate, called the Green-Naghdi rate by Johnson and
Bammann [14], can be derived by transforming the rate of the unrotated
Cauchy stress to the fixed giobal frame as follows:

o=RoR =T-0T+T8. (2.2.3)
The Jaumann rate and the Green-Naghdi rate are very similar in form. The
important difference between the two 131s that the Green-Naghdy rate 1s
kinematically consistent with the rate of Cauchy stress, while the Jaumann
rate 1s not. By this statement we mean that ; 1s 1dentical to T in the
absence of rigid body rotations. It 15 clear that ? need not equal T under
the same conditions since W need not vanish with rigid body rotations.

The simple shear problem presented by Dienes [13] serves as an excel-
lent demonstration of the symptoms which can occur due to the deficiency of
the Jaumann rate. Figure 2.2.1 shows a body which undergoes the following
motion:

x(t) =X+ kty, y(t) =Y, z(t)=1. (2.2.4)

Dienes applied a simple 1inear 1sotropic hypoelastic material law to both
the Jaumann rate (2.2.2) and the Green-Naghdr rate (2.2.3). The analytic
solution for the true stresses as a function of time using the Jaumann rate
1s shown 1n Figure 2.2.1. The Green-Naghd1r rate solution 15 shown 1in Figure
2.2.2 and demonstrates a monotonic increase 1n stress with tncreasing shear
strain, while the Jaumann rate results in a harmonic oscillation of the
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Figure 2.2.1, Computed Stress-Strain Curves for a Body Undergoing Simple
Shear Using the Jaumann Rate
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stress. The reason that the Jaumann rate produces this osciliation in
stress 1s that W gives a constant rate of rotation for the motion defined by
Equation (2.2.4), while & vanishes with time. Clearly the body experiences
rotations which diminish over time, but the Jaumann rate continues to drive
the stress convection terms at a constant rate. This Teads to the oscil-
latory behavior of the stresses shown in Figure 2.2.1.

A distinct advantage of the unrotated reference frame 1s that all
constitutive models are cast without regard to finite rotations. This
greatly simplifies the numerical i1mplementation of new constitutive models.
The rotations of global state variables (e.g., stress and strain) are dealt
with on a global 1level which 1nsures that all constitutive models are
consistent. Internal state variables (e.g., backstress) see no rotations
whatsoever.

The drawback to working 1n the unrotated reference frame 1s that we
must accurately determine the rotation tensor, R, which 1s not a
straightforward numerical calculation. We present an incremental, algebraic
algorithm to accomplish this task 1n Section 3.4.
2.3 Fundamental Equations
The equations of motion for the body are the momentum equations
divT-pu+ pr =0. (2.3.1)

where p 15 the mass density per unit volume, u 1s the acceleration of the
material point, and fB 1s a spec1fic body force vector.

We seek the solution to Equation (2.3.1) subject to the boundary
conditions

u= f(t) on Su (2.3.2)
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where Su represents the portion of the boundary on which kinematic quan-
tites are specified (displacement, velocity, and acceleration). In
addition to satisfying the kinematic boundary conditions given by (2.3.2),
we must satisfy the traction boundary conditions

Ten = s(t) on S (2.3.3)

T
where ST represents the portion of the boundary on which tractions are
specified. The boundary of the body 1s given by the union of Su and ST’
and we note that for a wvalid mechanics problem Su and ST have a null
intersection.

The Jjump conditions at all contact discontinuities must satisfy the

relation

(T -T)n=00ns (2.3.4)

where Sc represents the contact surface i1ntersection and the subscripts “+"
and "-" denote different sides of the contact surface.

The Lagrangian form of the continuity equation 15 written as
p-ptrD=0. (2.3.5)

This 1s satisfied trivially in our formulation since we do not allow mass
transport. Equation (2.3.5) degenerates to

pV=pV (2.3.6)

00
where v 1s the volume and the subscript "o" denotes a reference
configuration.

The conservation of energy principle equates the increase 1n internal
energy per unit volume to the rate at which work 1s being done by the
stresses plus the rate at which heat 1s being added. In the absence of heat

conduction
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__r_n=a;d+p6 (2.3.7)
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where EV is the energy per unit volume, Em is the energy per unit mass, and
6 is the heat rate per unit mass. The stress o and the strain rate d were

discussed in the Section 2.2.
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3.0 NUMERICAL FORMULATION

In this chapter, we describe the finite element formulation of the
problem and the numerical algorithms reguired to perform the spatial and
temporal 1ntegration of the equations of motion.

3.1 Four Node Uniform Strain Element

The 4-node two—dimensional 1soparametric element 15 widely used 1n
computational mechanics. Optimal 1ntegration schemes for these elements,
however, present a difficult dilemma. A one point 1ntegration of the ele-
ment under-integrates the element resulting 1n a rank deficiency for the
element which manifests 1tself 1n spurious zero energy modes, commonly
referred to as hourglass modes. A two-by-two i1ntegration of the element
over-integrates the element and can 1lead to serious problems of element
locking 11n fully plastic and incompressible problems. The four point 1n-
tegration also carries a tremendous computational penalty compared to the
one point rule. We use the one point integration of the element and 1mple-
ment an hourglass control scheme to eliminate the spurious modes. The
development presented below follows directly from Flanagan and Belytschko
[17]. We assume that the reader 1s somewhat familiar with the finite ele-
ment method and will not go 1nto a compiete description of the method. The
reader can consult numerous texts on the method [41].

The quadrilateral element relates the spatial coordinates X, to the
nodal coordinates i1 through the 1soparametric shape functions ¢I as
follows:

X] = XTI ¢I(£’n) (3'1'1)

In accordance with 1ndicial notation convention, repeated subscripts
imply summation over the range of that subscript. The lowercase subscripts
have a range of 1two corresponding to the spatial coordinate directions.
Uppercase subscripts have a range of four, corresponding to the element
nodes.
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The same shape functions are used to define the element displacement
field in terms of the nodal displacements Ujpe

Uy = Uy ¢4 (3.1.2)

Since the same shape functions apply to both spatial coordinates and dis-
placements, their material derivative (represented by a superposed dot) must
vanish. Hence, the velocity field may be given by

.

Uy = usp 9 (3.1.3)
and likewise for the acceleration fieid

Uy = Ui ¢y (3.1.4)

The velocity gradient tensor, L, is defined in terms of nodal velocities as

L]~j = “1,j = Uy ¢I,j (3.1.5)
By convention, a comma preceding a lowercase subscript denotes differentia-
tion with respect to the spatial coordinates (e.g., Qi j denotes aﬁilaxj).

The 2-D isoparametric shape functions map the unit square in ¢(-n to an
arbitrary quadrilateral in x-y, as shown in Figure 3.1.1. We choose to
center the unit square at the origin in f-n space so that the shape func—
tions may bhe conveniently expanded in terms of an orthogonal set of base
vectors, given in Table 3.1, as follows:

1 1 1
¢p =7 Ly + 5 EAjp + 5 nAy + Bl (3.1.6)
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TABLE 3.1

node ¢ n ZI A11 A21 FI
1 -5 - 1 -1 -1 1
2 - 1 1 -1 =1
3 1 1 1 1
4 - 1 -1 1 -1

The above vectors represent the displacement modes of a unit square. The
first vector, ZI, accounts for rigid body translation. We call Z the summa-
tion vector since it may be employed in indicial notation to represent the
algebraic sum of a vector.

The 1linear base vectors AiI may be readily combined to define the
uniform normal strains and shear strain in the element. We refer to AiI as
the volumetric base vectors since, as we will illustrate below, they are the
only base vectors which appear in the element area expression.

The Tlast vector, FI, gives rise to Jlinear strain modes which are
neglected in the wuniform strain integration, This vector defines the
hourglass patterns for a unit cube. The displacement modes represented by
the vectors in Table 3.1 are also shown in Figure 3.1.1.

3.1.1 Plane Strain Case

In the finite element method, we replace the momentum Equation (2.3.1)
with a weak form of the equation. Using the principle of virtual work, we
write the weak form of the eguation as

{3,5 * Pby = puy) Buy v =0 (3.1.7)

Z a0
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where 6u1 represents an arbitrary virtual displacement field, with the same
interpoiation as Equation (3.1.2), which satisfies the kinematic

constraints. In plane strain, the thickness of the body 1s considered
uniform and arbitrary, and therefore can be eliminated from the preceding
expression. Integrating by parts and applying Gauss' divergence theorem to

Equation (3.1.7) then gives

zlfs

T]Jn36u1d( —'[A T1J6u1’JdA +‘/A‘ pb16u1dA —f pu18u1dA] =0 (3.1.8)
e e e

A
e e
The summation symbol represents the assembly of element force vectors 1nto a
global nodal force array. We assume that the reader understands the details

of this assembly; we w11l not discuss 1t further 1n this document.

The second 1ntegral 1n the preceding equation 1s used to define the
element 1nternal force vector f11 as

su ;o =fA T, Bu, ) dA (3.1.9)
e

The first and third 1ntegrals define the external force vector, and the
fourth i1ntegral defines the 1nertial response.

We perform one point integration by neglecting the nonlinear portion of
the element displacement field, thereby considering a state of uniform
strain and stress. The preceding expresstion 15 approximated by

fp= T”A ¢p., dA (3.1.10)
e

where we have eliminated the arbitrary virtual displacements, and T‘J repre-—
sents the assumed uniform stress field which will be referred to as the mean
stress tensor. By neglecting the nonlinear displacements, we have assumed
that the mean stresses depend only on the mean strains. Mean kinematic

quantities are defined by integrating over the element as follows:

31



_/\;u“J dA . (3.1.11)

We now define the discrete gradient operator as

B. | ='/A¢>1,1 dA . (3.1.12)

The mean velocity gradient, applying Equation (3.1.5), 1s given by

z 1 .
u1,J =7 Uy BJI (3.1.13)
Combining Equations (3.1.10) and (3.1.12), we may express the nodal forces
by
f11 = T13 BJI . (3.1.14)

Computing nodal forces with this 1ntegration scheme requires evaluation

of the gradient operator and the element area. These two tasks are 1inked
since
x1,J = 513 (3.1.15)
where 613 1s the Kroneker delta. Equations (3.1.1), (3.1.12), and (3.1.15)
yield

31 BJI =.,; (% ¢I)’J dA = A61J

(3.1.16)
Consequently, the gradient operator may be expressed by
_ OA
B1I = 3X11 (3.1.17)

To 1ntegrate the

element area 1n closed form, we use the Jacobian of
the 1soparametric

transformation to transform the integral 1n x-y space to
an i1ntegral over the unmit square:
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+1/2 +1/2
A=/ / J dn d§ (3.1.18)
-1/2 -1/2

where

_ 9X 9y _ ox 9y
V= 5% 5n ~ an B¢ (3.1.19)
Therefore, Equation (3.1.18) can be written as
A= X1 ¥y CIJ (3.1.20)
where
C,, = = =— - = x| dn d¢ (3.1.21)
W Jape Joae V98 O 0n 8¢
In 1light of Equation (3.1.6), the above integration involves at most
bilinear functions. Therefore, only the constant term does not vanish and
the integration yields
1
Cra =7 (Ayp Agg — Agp Ayy) (3.1.22)
Note that CIJ is antisymmetric:
CIJ = “CIJ (3.1.23)

Evaluating equation (3.1.22), we obtain the following explicit repre-

sentation for CIJ:

0 1 0 -1
-1 0 1 0
1
CIJ =5 0 -1 0 1 (3.1.24)
] 0 -1 0

Substituting the above expression into Equation (3.1.20), we obtain the
familiar expression for the area of a quadrilateral:
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A= [(X3 - X1)(Y4 - yz) + (xz - X4)(Y3 - yl)] (3'1-25)

N —

Using this result 1n Equation (3.1.17), the B matrix may be expressed as

¥y (Yo = ¥ )3 =y )y, = Y0y = ¥3)
(3.1.26)

Nl

J (xg = %) (¥ = x3) (x5 = x4) (X3 = x;)
The mean stress approach used here gives the same result 1n two dimensions

as the one-point quadrature rule for the quadrilateral since the Jacobian 1s
at most bilinear.

3.1.2 Axisymmetric Case

The axisymmetric quadrilateral poses a special problem for the finite
element method 11n that we must reduce a three-dimensional variational
Equation (3.1.7) to a two-dimensional element domain. The formulation 1s
complicated by the fact that the variational principal 1s cast in cylindri-
cal, rather than Cartesian coordinates.

We wi1ll start by defining the cylindrical coordinate system as follows:

r® = (r,z,0) (3.1.27)

While the above ordering of the coordinates 1s unconventional (and not
right-handed), 1t degrades cleanly to the axisymmetric case. Note that
Greek 11ndices have a range of three and that superscripts and subscripts
tndicate contravariant and covariant tensor components, respectively.

The shape functions of the axisymmetric uniform strain gquadrilateral

are the same as those for the plane strain case (Table 3.1) and are defined
mmpiicitly 1n terms of the nodal coordinates
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Note that lower case English indices have a range of two and that, since the
two—-dimensional coordinate system 131s Cartesian, there 1s no distinction
between covariant and contravariant tensor components.

In our Lagrangian formulation the same shape functions are applied to
the displacement fields. This implies that the material derivatives of the
shape functions vanish. As a result, these shape functions also apply to
the velocity field, just as 1n the plane strain case:

ro= T 9 (3.1.29)

The weak form given by Equation (3.1.7) 1s expressed 1n cylindrical

coordinates as
L
v

e e

+ pb% - pua) su,dV = 0 (3.1.30)
B

We are now faced with a three-dimensional variational principle, but
only a two-dimensional element. Since the differential of volume imposes a
factor of r on the differential of area {(dV = 2ZardA), there 1s an mplicit r
weighting on the 1ntegrand of the weak form 1n Equation (3.1.30). This
means that the integrand vanishes near the ax1s of symmetry (r = 0) regard-
less of the variations! This also means that the discretized eguations
generated by the finite element method become 111-conditioned near the axis.

This difficulty 1s resolved by dividing the integrand of Equation
(3.1.30) by r to reduce the integration to the element domain. However, we
must carry this weighting factor 1n order to apply Gauss' theorem 1n three
dimensions. This technique was referred to as a Petrov-Galerkin, or area-—
weighted finite element, formulation by Goudreau and Hallquist [18].

T 5 e (35u)dV+f baaudA-f W@su dA =0 (3.1.31)
n v B8 \r a A P a A p a - T

e e e e

Integrating by parts and applying Gauss' theorem yields the following:
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a[3 aB(l ) f a f .. )
- TH[ = dA A - A5u dA| = 0 (3.1.32
Ze [-/S-eT Su nﬁds f - Su lﬁr + pb~bu d pu ua ( )

e e e

Evaluating the covariant derivative (see Fung [40]) n the preceding

equation yields

1 - (! (!
(F 6ua),ﬁ = (r 6ua),ﬁ Faﬁ (r 6u7>
_ 1 L 2
=z 6ua’ﬁ - I‘aﬁﬁu7 rz 6136ua (3.1.33)
where FZB are the Euclidian Chraistoffel symbols associated with the

cylindrical coordinate system. The only nonzero components are

F33 = -r

(3.1.34)
3 3
F3=T3 = ¢

We are now n a position to degenerate the varvational equations to the
axi1symmetric case. The axi1symmetry conditions require that variations and
derivatives 1n 6 vanish. Combining Equations (3.1.32) to (3.1.34) and

enforcing axisymmetry gives

33 1
Z['/S' T]Jnjéu]ds —‘/A' (T1J6u1,J +rT 6u1 - T”&u]) dA
e

e e
+/pb16u1dA —/puléu]dA =0 (31 35)
Ae Ae

Note that we have dropped the coniravariant superscript notation for
English 1ndices n going from Equations (3.1.32) to (3.1.35) because, as we
stated previousiy, there 15 no distinction between contravariant and

covariant components in our two-dimensional coordinate system.
A by-product of the Petrov-Galerkin formulatron 1s that the resulting

weak form for the axisymmetric case, Equation (3.1.35), 1s nearly 1dentical

to that of the plane strain case, Fquation (3.1.8) The only differe ce 1s
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the addition of the last two terms to the internal force expression, which
is the second integral above. This is clearly a major architectural ad-
vantage to PRONTO.

Note that the last term of the axisymmetric 1nterha1 force expression
is not associated with strain. These forces are analogous to the covected
force terms which appears in the stress divergence as shown below (see Fung

[40]).

L] P LU R LS VR o
B By Y

B B

af 8 1 qal
T g r:ﬁ s 2T (3.1.36)
If the 1/r correction is omitted in Equation (3.1.31), the final term in the
axisymmetric internal force disappears.

It 1is convenient for a finite element program to work with physical,
rather that tensoral, stress components. In our formulation, the hoop
stress is the only component which requires such a distinction. The
physical hoop stress T33 is given by

T33 =r T (3.1.37)
The internal forces are then given by
fi1 = ,4 Tij#1,59A +_/A- (T33851 = T4p) % ¢ dA (3.1.38)
Evaluating all these integrals with single point integration yields
fir = Tigyp + (Tagdiy - Ty e (3.1.39)
4r
where
eI (3.1.40)
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We now see that the internal force vector for the axisymmetric case,
Equation (3.1.39), 1is the same as that for the plane strain case, Equation
(3.1.14), with the addition of the hoop stress and covected forces.

The velocity gradient in cylindrical coordinates is

_ . _ 7 [

= u“,ﬁ F«ﬁ uy (3.1.41)
Substituting Equation (3.1.34) into the above equation, and enforcing

axisymmetry leaves only five nonzero components; the four in-plane com-

ponents, and the physical hoop strain rate D33. This additional strain rate

component is defined conjugate to Equation (3.1.37) as

u

S 1
D33 = ;ﬁ u3l3 = = (3.1.42)
We evaluate this quantity with one point integration as follows:
_ U
D33 = —= (3.1.43)
r
where r is given by Equation (3.1.40) and
io-tzog (3.1.44)
17471 711 T

3.1.3 Lumped Mass Matrix

One of the aforementioned advantages of wusing the Petrov-Galerkin
method for the axisymmetric case is that the inertial terms in the varia-
tional statement of the boundary value problem are identical for both the
plane strain, Equation (3.1.8), and axisymmetric, Equation (3.1.35), cases.
Therefore, we can treat both cases at one time.
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In order to reap the benefits of an explicit architecture, we must
diagonalize the mass matrix. We do this by i1ntegrating the 1nertial energy
variation as follows:

J& pu]6u1dA = u”mméu1J (3.1.45)

where
Mg = pAcSIJ (3.1.46)

and 5IJ 1s the kroneker delta. Clearly the assembly process for the global
mass matrix from the individual element matrices results 1n a global mass
matrix which 1s diagonal and can be expressed as a vector, MI‘
3.2 Explicit Time Integration

PRONTO uses a modified central difference scheme to integrate the
equations of motion through time. By this we mean that the velocities are
1ntegrated with a forward difference, while the displacements are integrated
with a backward difference. The 1ntegration scheme for a node 1s expressed

as
EXT INT
u, = ft - ft /M (3.2.1)
Up at = U + At uy (3.2.2)
and Up at = Yp + At Us At (3.2.3)
where fEXT and f{NT are the external and 1nternal nodal forces, respec—

tively, M 1s the nodal point Tumped mass, and At 1s the time increment.

The central difference operator 1s conditionally stable. It can be
shown that the Courant stability 1imit for the operator 1s given in terms of
the highest eigenvalue 1n the system [41]:

At < (3.2.4)
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In Section 3.5, we discuss how the highest eigenvalue is approximated
and how we determine a stable time increment.

3.3 Finite Rotation Algorithm

We stated in Section 2.2 that one of our fundamental numerical chal-
lenges 1in the development of an accurate algorithm for finite rotations was
the determination of R, the rotation tensor defined by the polar decomposi-
tion of the deformation gradient F. We developed an incremental algorithm
for reasons of computational efficiency and numerical accuracy. The validity
of the unrotated reference frame is based on the orthogonal transformation
given by Equation (2.2.1). Therefore the crux of integrating Equation
(2.1.6) for R is to maintain the orthogonality of R. If one integrates R =
QR via a forward difference scheme, the orthogonality of R degenerates
rapidly no matter how fine the time increments. We instead adapted the
algorithm of Hughes and Winget [19] for integrating incremental rotations as
follows.

A rigid body rotation over a time increment At may be represented by

Xpeat = Qat %t (3.3.1)

where is a proper orthogonal tensor with the same rate of rotation as R

Q
At
given by Equation (2.1.6). The total rotation R is updated via the highly
accurate expression below.

R R (3.3.2)

t+at = Ot R¢

For a constant rate of rotation, the midpoint velocity and the midpoint
coordinates are related by

1

1
5t Pteat ~ X¢) = 7 MXpar %) - (3.3.3)
Combining Equations (3.3.1) and (3.3.3) yields
At
(0At - 1) X, == SZ(OAt + 1) Xi - (3.3.4)
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Since Xy is arbitrary in Equation (3.3.4), t may be eliminated. We then
solve for QAt' The result is
At -1 At
0, = (1 g ) (1 + & n) . (3.3.5)

The accuracy of this integration scheme is dependent upon the accuracy
of the midpoint relationship of Equation (3.3.3). The rate of rotation must
not vary significantly over the time increment. Furthermore, Hughes and
Winget [19] showed that the conditioning of Equation (3.3.5) degenerates as
AtQ grows.

Our complete numerical algorithm for a single time step is as follows:
1. Calculate D and W.
2. Compute z; = eijk ij Dmk ,

w-2[V-1 tr‘(V)]’1 z , and

5]
]

1
%55 =2 ®ijk 9%

At At
3. Solve (1 -4 a) Ryoat = (1 . At a) R,

4, Calculate V=(D+ W) V-Vve.

5. Update Vooap = Yy + At vAt .
6. Compute d=R DR.

7. Integrate ¢ = f(d,o0)

8. Compute T=RoR .

This algorithm requires that the tensors V and R be stored in memory for
each element.
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3.4 Determination of Effective Moduli

Algorithms for <calculating the stable time increment, hourglass con-
trol, bulk viscosity, and nonreflecting boundaries require dilitational and
shear moduli. In PRONTO we use an algorithm for adaptively determining the
effective dilatational and shear moduli of the material.

Since PRONTO wuses an explicit integration algorithm, the constitutive
response over a time step can be recast aposteriori as a hypoelastic
relationship. We approximate this relationship as isotropic. This defines
effective moduli, i and ; in terms of the hypoelastic stress increment and
strain increment as follows:

A

Ao. . = At()\d

i ) + 2u di

k 513 §) (3.4.1)

Equation 3.4.1 can be rewritten in terms of volumetric and deviatoric parts

as
Aakk = At (3N + 2u) dkk (3.4.2)
and
Sij = At 2u e, (3.4.3)
where
S..=A0.. - % Ag. B (3.4.4)
i] ij 3 kk “1ij T
and
_ 1
€5 = 9553 Yk Bij - (3.4.5)

The effective bulk modulus follows directly from Equation (3.4.2) as

~ A~ Aokk

(3.4.6)

42




Taking the 1nner product of Equation (3.4.3) with the deviatoric strain rate
and solving for the effective shear modulus 2u gives

u = —L 1 (3.4.7)

Using the result of Equation (3.4.6) with Equation (3.4.7), we can calculate
the effective dilatational modulus A + 2u:

(3K + 2-(2m)) (3.4.8)

Lil—

If the strain 1ncrements are 1insignificant, Equations (3.4.6) and
(3.4.7) will not yield numerically meaningful results. In this cir-
cumstance, PRONTO sets the dilatational modulus to an 1nitial estimate, xo +
2“0' An 1nitial estimate of the dilatational modulus 1s, therefore, the
only parameter which every constitutive model 1s required to provide to the

time step control algorithm.

In a case where the volumetric strain i1ncrement 1s significant, but the
deviatoric increment 1s not, the effective shear modulus can be estimated by
rearranging Equation (3.4.8) as follows:

~

2u =3 (30, + 2u) - ) (3.4.9)

Nt —

If neither strain increment 1s significant, PRONTO sets the effective shear
modulus to the 1nitial dilatational modulus.

The algorithm that PRONTO follows to estimate the effective dilata-
tional and shear modull 1s summarized 1n Table 3.2 Note that either of
effective modulr calculated via this algorithm may be zero or negative.
These degenerate cases must be taken 1nto account whenever these moduli are
used.
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TABLE 3.2

-6 2 -12 $ ~ -
Atdkk > 10 At eUe13 > 10 N+ 2u 21
Yes Yes (3.4.8) (3.4.7)
Yes No ko + 2u (3.4.9)
No Yes xo + 2u0 (3.4.7)
No No ko + 2“0 xo + 2“0

3.5 Determination of the Stable Time Increment

Flanagan and Belytschko [20] provided eigenvalue estimates for the
uniform strain quadrilateral described in Section 3.1. They showed that the
maximum eigenvalue was bounded by

NI Gl G SR Wy WIS Lo}

4 p A2 = “max ) AZ

(3.5.1)

Using the effective dilatational modulus from Section 3.4 with the eigen-
value estimates of Equation (3.5.1) allows us to write the stability
criteria of Equation (3.2.4) as

2 (P A,) A

Até < . (3.5.2)
(X + 24) B (B

The stable time increment 1s determined from Equation (3.5.2) as the minimum
over all elements.

Equation (3.5.2) 1s numerically invalid 1f the effective dilatational
modulus 1s less than or equal to zero. A negative modulus indicates a
strain softening situation (the Damage Model, Section 4.4, 1s the only
currently supported constitutive model which allows strain softening), which
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renders the central difference operator unconditionally unstable. In prac-
tice, however, strain softening 1s generally short 1lived, so that the
calculations can continue n a stable manner once the softening energy has
been dissipated. To aid the user i1n controlling an unstable strain soften-
ing situation, we adjust the effective dilatational modulus with the strain
softening scale factor (Appendix A, command 9) as follows:

N ~ ko + Zuo
IFN+20<0 3 A+ 2u=— (3.5.3)
(ssft)

To avoid dividing by zero 1n Equation (3.5.2), we then enforce the following
condition:

-6
N+ 2u > (ko + 2u0) 10

(3.5.4)

The estimate of the critical time increment given 1n the preceding
equation 1s for the case where there 1s no damping present 1n the system.
If we define ¢ as the fraction of critical damping 1n the highest element
mode, the stability criteria of Equation (3.5.2) becomes

At ( 1+ €2 - e) (3.5.5)

A

At

Conventional estimates of the critical time increment size have been
based on the transit time of a dilatational wave over the shortest dimension
of an element or zone. For the undamped case this gives

At = g/c (3.5.6)
where ¢ 15 the dilitational wave speed.

There are two fundamental and 1mportant differences between the time
increment 1imits given by Equations (3.5.2) and (3.5.6). Farst, our time
increment 11mit 1s dependent on a characteristic element dimension, which 1s
based on the finite element gradient operator and does not require an ad hoc
guess of this dimension. This characteristic element dimension, ¢, 1S
defined by itnspection of Equation (3.5.2) as
B

¢=A/ §B (3.5.7)

11 Tl
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Second, the sound speed used 1in the estimate 1s based on the current
response of the material and not on the original elastic sound speed. For
materials which experience a reduction in stiffness due to plastic flow,
this can result in significant increases in the critical time increment.

It should be noted that the stability analysis performed at each time
step predicts the critical time 1ncrement for the next step. Our assumption
1s that the conservativeness of this estimate compensates for any reduction
1n the stable time increment over a single time step.

3.6 Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element con-
siders only a fully 1linear velocity field. The remaining portion of the
nodal velocity field 1s the so-called hourglass field. Excitation of these
modes may lead to severe, unresisted mesh distortion. The hourglass control
algorithm described here 15 taken directly from Flanagan and Belytschko
[177. The method 1solates the hourglass modes so that they may be treated
1ndependently of the rigid body and uniform strain modes.

A fully linear velocity field for the quadrilateral can be described by
u =Uu_+u (x. - x.) (3.6.1)

The mean coordinates 21 correspond to the center of the element and are

defined as
X.=3ix .z (3.6.2)
1 4 "I 71 U
The mean translational velocity 1s similarly defined by
To-lu oz (3.6.3)
1 4 11 71 T
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The 1linear portion of the nodal velocity field may be expressed by
specializing Equation (3.6.1) to the nodes as follows:

LIN = M
us; = U ZI + U (Xx.; = X, ZI) (3.6.4)

where ZI is used to maintain consistent index notation and indicates that 31
and ij are independent of position within the element. From Equations
(3.1.16) and (3.6.4), and the orthogonality of the base vectors, it follows
that

. <LIN z
uiI ZI = Ui ZI = 4u1 (3.6.5)
and
. “LIN h
Uiy le = U] le = Aui,j (3.6.6)

The hourgliass field ﬁ?? may now be defined by removing the linear portion of
the nodal velocity field:

«HG _ - -LIN
Ujp = Uyp — Ui (3.6.7)

Equations (3.6.5) through (3.6.7) prove that ZI and BjI are orthogonal to
the hourglass field:

+HG
Ui ZI =0 (3.6.8)
> HG
Uiy BjI =0 (3.6.9)

Furthermore, it can be shown that the B matrix is a linear combination of
the volumetric base vectors, AI, so Equation (3.6.9) can be written as

ﬁHG

L Ap=0 (3.6.10)
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Equations (3.6.8) and (3.6.10) show that the hourglass field 15 orthogonal
to all the base vectors 1n Table 3.1 except the hourglass base vectors.
Therefore, G?? may be expanded as a linear combination of the hourglass base
vectors as follows:

(3.6.11)

The hourglass nodal velocities are represented by 61 above (the leading
constant 1s added to normalize FI). We now define the hourglass shape
vector 11 such that

1
a, =3 U7 (3.6.12)

By substituting Equations (3.6.4), (3.6.7), and (3.6.12) 1nto (3.6.11), then
muitiplying by FI and using the orthogonality of the base vectors, we obtain
the following:

Y A

U, T r (3.6.13)

1 S SR VR TS
With the definition of the mean velocity gradient, Equation (3.1.13), we can
eliminate the nodal velocities above. As a result, we can compute 11 from

the following expression:
=T, -3iB.x..T (3.6.14)
T TR 0 $o

The difference between the hourglass base vectors FI and the hourglass
shape vectors yp 1S very important. They are 1dentical 1f and only 1f the
quadrilateral 1s a parallelogram. For a general shape, FI 1s orthogonal to
BJI while v; S orthogonal to the linear velocity field G%iN. While FI
defines the hourglass pattern, y; s necessary to accurately detect
hourglassing. Equation (3.6.14) 1s simple enough for the quadrilateral that

1t can be written explicitly as
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yz) + x4(y2 - y3)

1 X3(y1 - y4) + x4(y3 - yl) + xl(y4 - y3)
vy =i (3.6.15)
Xg(¥1 = ¥o) + X1 (¥, = ¥g) + %50y, = ¥q)

X1(¥3 = ¥o) + x,(y7 = ¥3) + x3(y, = ¥;)

For the purpose of controlling the hourglass modes, we define generalized
forces Qi’ which are conjugate to 61 so that the rate of work is

HG

. 1 L]
Ui fiI =5 Q1 q; (3.6.16)

for arbitrary 611. Using Equation (3.6.12), it follows that the contribu-

tion of the hourglass resistance to the nodal forces is given by

HG _ 1
fiI = ? 01 71 (3.6.17)

Two types of hourglass resistance are used in PRONTO: artificial
stiffness and artificial damping. We express this combination as

K )
Q; = Qy +Q, (3.6.18)

In terms of the tuneable stiffness (x) and viscosity (e) factors, these
restinances are given by

Kk il "l -

01 = ? Zu R q_.| (3.6.19)
v . - .

Q. = ¢ Ymin(0,2u) m q, (3.6.20)

i

Note that the stiffness expression must be integrated, which further re-
quires that this resistance be stored in a global array.
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Observe that the nodal antihourglass forces of Equation (3.6.17) have
the shape of 1 rather than FI. This fact 1s essential since the an-
tihourglass forces should be orthogonal to the l1inear velocity field, so
that no energy 1s transferred to or from the rigid body and uniform strain
modes by the antihourglassing scheme.

We would prefer to use only hourglass stiffness and, 1n fact, this 1s
what 1s used for the plane strain case (k = .05 and € = 0.0).
Unfortunately, the nonstrain terms 1n the Petrov-Galerkin formulation give
rise to an instability which 1s best stabilized using hourglass viscosity.
For the axisymmetric case, values of xk = .01 and € = .03 are used.

3.7 Artificial Bulk Viscosity

Artificial viscosity 1s applied to the numerical solution for two
reasons. First 1s to prevent high velocity gradients from collapsing an
element before 1t has a chance to respond. The second reason 1s to quiet
truncation frequency "ringing”.

Ideally, one would 11ke to add viscosity only to the highest mode of
the element, but 1solating this mode 1s wmpractical. The standard technique
15 to simply add viscosity to the volumetric or "bulk" response. This
generates a viscous pressure 1n terms of the volume strain rate as follows:

v
g=Dbypcey-»p (bz £

<} <o

)2 (3.7.1)

The quadratic term i1n Equation (3.7.1) 1s more mportant and 1s designed to
"smear" a shock front across several elements. This term yields a jump 1in
energy as a smeared shock passes, which simulates the shock heating. As a
result, the smeared shock front can be propagated as a steady wave.

The Tinear term 1s 1ntended to dissipate truncation frequency

oscillations. Note that the quadratic term 1s only applied to compressive
strain rates since an element cannot collapse 1n expansion.
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The preceding expression 1s simplified 1f we use the undamped stable
time 1ncrement defined by Equation (3.5.2) and write

2
at = £ =A‘/ . (3.7.2)
c BB X+
or
~ A
At =-‘/ m__. (3.7.3)
A+ 2u 811811

We now define the factor e such that the quadratic viscosity term vanishes
1n expansion

e = b, — b2 At min(0,0,,) (3.7.4)

1 2 *Tkk T

This quantity 1s required for the damped stability criteria of Equation
(3.5.5). Note that the condition 1mposed by Equation (3.5.4) prevents
Equation (3.7.4) from y1elding so large a value of e that Equation (3.5.5)
would numerically yield a zero value.

We w11l show below that € 1s an estimate of the fraction of critical
damping 1n the highest element mode. Using Equation (3.7.4) 1n Equation
(3.7.3) allows us to write the viscous pressure as

2 ~

q = (b, - b5 AL D, )(A + 2u) AL D

‘K (3.7.5)

kk

The bulk viscosity pressure 1s appended to the stresses during the internal
force calculations to yi1eld the following forces:

fiy =98, (3.7.6)

The above expression can be expanded using Equations (3.7.3) and (3.7.4) to
yield

1
f1I = €pCy 3 B.,B u

30 Bl (3.7.7)

JJ
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This form 1ndicates that 1f B11 1s an eigenvector, the modal damping 1s

cA
i 3.7.8
€p =, ( )

A 2¢c
2mw=221—2=p——— (3.7.9)

The two expressions above show that € 1s 1ndeed a good estimate of the
fraction of critical damping in the highest mode.

3.8 Adaptive Element Deletion

The adaptive element deletion option was added to PRONTO 2D to provide
the capability to model catastrophic material faillure. This option should
not be confused with the element block deletion option (Appendix B, command
35) which can be wused to remove an entire block of material from the
analysis at some predetermined time. The keyword here 1s "adaptive". We
allow the wuser to specify criteria which define when the material fails
within an element. This criteria 1s defined at the element level and PRONTO
checks every time step to determine whether material failure has occurred.

Currently, the wuser can define faillure in terms of energy per unit
volume, Von Mises stress, pressure, or maximum principal stress. Also,
failure criteria can be defined 1n terms of any internal state variable.
Note that the pressure 1s positive 1n compression, p = —tr(o). The adaptive
element death <capability requires a very mature user who understands how
his/her material behaves. The capabi1li1ty built 1nto the code 1s quite
general, and 1t 1s possible for the user to define a nonsensical failure
criteria. We allow the user to specify the farlure in terms of a particular
variable, a prescribed value of the variable at failure, and what we refer
to as the mode of failure. By mode we mean minimum, maximum, or absolute
value.
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The adaptive element deletion capability is completely vectorized and
does not add any appreciable computational penalty. We define a status
array (length=NUMEL) which has a value of one or zero. 1If an element is
"alive", the status array contains a value of one for that element. When
PRONTO detects that the element has "died", the value of the status array
for that element is reduced to zero over five time steps. We use the status
array to wipe out any contribution that a deleted element makes in step 1 of
Section 8.2. Each deleted element undergoes all the calculations which it
would if it were not deleted, but its contributions are not included in the
timestep control algorithm nor the stress divergence. This is accomplished
by a few multiplications of critical results by the status array. If the
element 1is not deleted, the results are multiplied by a one and the results
are unchanged. If the element is deleted, the results are multiplied by a
zero and the results are neutralized. Hence, the overall cost of this
algorithm is a few muitiplications per element.

When the element is deleted, its contribution to the nodal point lumped
mass 1is still retained. When all the elements connected to a particular
node are deleted, the node then becomes a free nodal mass, whose motion we
continue to calculate.

It 1is more convenient for post-processing to define the status array
exactly opposite to our convention. For this reason, we flip each value as
we write the status array to the post-processing data base. Note that if
the adaptive element deletion and/or the element block deletion options are
used, the element status array is automatically wrfitten to the data base.
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4.0 CONSTITUTIVE MODELS

One of the primary reasons for developing PRONTO was to have a numeri-
cal testbed for developing constitutive models. As a result, considerable
effort was directed to write a flexible material interface subroutine which
allows a constitutive model to be added to the code with minimal effort.
The MATINT subroutine in PRONTO allows a constitutive modeler to add a new
material model to the program by filling in a handful of numbers in data
statements which tell the program how to set up the internal data base for
the new model. Consequently, the constitutive modeler does not have to
understand the inner workings of PRONTO and does not have to write any
format statements or juggle the memory allocation in the code. The comments
in the FORTRAN explain 1in great detail how to add the new model. See
Appendix C for the steps to be taken to add a new constitutive model.

Currently there are nine material models in the code. Since models can
be added with such ease, this number is expected to increase as applications
requiring new materials arise.

A1l material models are written in terms of the unrotated Cauchy
stress, o, and the deformation rate in the unrotated configuration, d.

For each of the materials described below, we give a 1ist of the inter—
nal state variables used in that particular material model. We also give a
1ist of the material constants which are stored in the PROP array
(Appendix B, Section 5.0). In the 1ist of material properties, the items
denoted by an "*" are material properties which are calculated internally.
The remaining material properties are the actual values read from the input
data.

The relationship between the material models described in this chapter
and the -equations of state described in Chapter 5 must be understood in
order to properly use the equations of state. We have structured PRONTO so
that material models can act as a host to an equation of state. Not all of
the constitutive models described below in this chapter do so. The equa-

tions of state cannot be used except in conjunction with a material model.
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The equation of state can only give the volumetric material response. The
hydrodynamic material model (Section 4.7) has only volumetric response and
just calls the specified equation of state. The elastic plastic
hydrodynamic material model (Section 4.9) uses classical J2 plasticity
theory to determine the deviatoric material response and calls the specified
equation of state for the volumetric material response. Any of the other
constitutive models in this chapter could be restructured to use an equation
of state for the volumetric material response if required.

We have followed the historical convention used for each material model
for the sign of a positive pressure. We inherited most of these constitu-
tive models from previous codes and did not wish to change what has come to
be accepted conventions for a positive pressure. This means that for some
models the pressure 1is positive in tension and for some it is positive in
compression. Table 4.1 shows the convention used for each of the material
models described in this chapter.

TABLE 4.1
Model Tension Compression
Elastic positive negative
Elastic Plastic positive negative
Viscoplastic positive ‘ negative
Soils and Crushable Foams negative positive
Low Density Foams positive negative
Hydrodynamic negative positive
Rate and Temperature positive negative
Dependent Plasticity
Elastic Plastic negative positive
Hydrodynamic
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4.1 Elastic Material, Hooke's Law

A linear elastic material 1is defined using Hooke's Law. In a rate
form, this is written as

o =Ntr d)é + 2u d (4.1.1)

where A and u are the elastic Lame material constants.

This model has no internal state variables.

The PROP array for this material contains the following entries:

PROP(1) - Young's Modulus, E
PROP(2) - Poisson's Ratio, »
*PROP(3) - A

*PROP(4) - 2u

4.2 Elastic Plastic Material with Combined Hardening

The elastic plastic model is based on a standard Von Mises type yield
condition and wuses combined kinematic and isotropic hardening. This model
is widely wused in many finite element and finite difference computer
programs and the many details of its derivation are scattered throughout the
literature. Here, we present the model in detail because we feel that many
users of the model are not familiar with its underlying assumptions and
numerical approximations.

4,2.1 Basic Definitions and Assumptions

Some definitions and assumptions are outlined here. Referring to
Figure 4.2.1, which shows the yield surface in deviatoric stress space, we
define the backstress (the center of the yield surface) by the tensor, a.
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Figure 4.2.1. Yield Surface in Deviatoric Stress Space
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If o 1is the current value of the stress, we define the deviatoric part of
the current stress by

S=o—%tr‘08. (4.2.1)

We define the stress difference measured by subtracting the backstress
from the deviatoric stress by

tE =S-a (4.2.2)

The magnitude of the deviatoric stress, R, is defined by

R = |&] = VEE, (4.2.3)

where we denote the inner product of second order tensors by S:S = Sij Sij'
Note that 1if the backstress is zero (isotropic hardening case) the stress

difference is equal to the deviatoric part of the current stress, S .

The Von Mises yield surface is defined as

2

flo) = 5 £:8=«k" . (4.2.4)

Nl—

The Von Mises effective stress, o, is defined by
- 3
g = ? E:f . (4.2.5)

Since R 1is the magnitude of the deviatoric stress tensor when a = 0, it
follows that

R=«/?K=‘/g6. (4.2.6)

The normal to the yield surface can be determined from Equation (4.2.4)

_ of of | _
Q‘aa/l of | ~ ER . (4.2.7)
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We assume that the strain rate can be decomposed into elastic and
plastic parts by an additive decomposition

d=d® + d° (4.2.8)

and assume that the plastic part of the strain rate is given by a normality
condition

' = 0. (4.2.9)

when the scalar multiptier, vy, must be determined.
A scalar measure of equivalent plastic strain rate is defined by
! - % P! gP! (4.2.10)
which is chosen such that
5 P! = 0:dP! . (4.2.11)

The stress rate is assumed to be purely due to the elastic part of the
strain rate and is expressed in terms of Hooke's law by

el el

o=\Atrd &+2ud (4.2.12)

where X and u are the Lame constants for the material.
Below, we develop the theory for the cases of isotropic hardening,
kinematic hardening and combined hardening separately so that the reader can

see the details of each case.

4.2.2 1Isotropic Hardening

In the isotropic hardening case, the backstress is zero and the stress
difference 1is equal to the deviatoric stress, S. We write a consistency
condition by taking the rate of Equation (4.2.4)
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flo) =2k k . (4.2.13)

By "consistency" we mean that the state of stress must remain on the yield
surface at all times. We use the chain rule and the definition of the
normal to the yield surface given by Equation (4.2.7) to obtain

_of - _|of .o
%(a)_aa.o_ aolo"’ (4.2.14)
and from Equations (4.2.3) and (4.2.4)
of
o = |S] =R . (4.2.15)
Combining Equations (4.2.13), (4.2.14), and (4.2.15)
l.. .
R S:o0 =R . (4.2.16)
We note that because S is deviatoric, S:o = S:$ and
s:5=% (1s:s —9-(5—2)-2‘ 4.2.17
S=g (2%%) ~: \3/=3°° (4.2.17)

Then Equation (4.2.16) can be written as

. 2 = 2 .. =p
R=‘/;a=‘/§ H' gP (4.2.18)

where H' is the slope of the yield stress versus equivalent plastic strain
(o0 versus Ep]). This 1is derivable from the data from a uniaxial tension
test as shown in Figure 4.2.2.

The consistency condition, Equation (4.2.16) and Equation (4.2.18),
result in

@H' P! - Qo . x (4.2.19)

We define the trial elastic stress rate o'} by
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Figure 4,2.2. Conversion of Data From a Uniaxial Tension Test
to Equivalent Plastic Strain Versus Von Mises Stress
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o'R = c:d (4.2.20)

where C 1s the fourth order tensor of elastic coefficients defined by
Equation (4.2.12). Combining the strain rate decomposition defined 1n
Equation (4.2.8) with Equations (4.2.19) and (4.2.20) yields

‘/giH' ' = Q:6'f — g:c:dP! . (4.2.21)

We note that because Q 1s deviatoric, C:Q = 2u Q and Q:C:Q = 2u. Then
using the normality condition, Equation (4.2.9), the definition of equiv-
alent plastic strain, Equation (4.2.10), and Equation (4.2.21)

oy =00t -y (4.2.22)
and since Q 1s deviatoric (Q:&TR = 2u Q:d) we can determine y from Equation
(4.2.22) as

y = i 0:d (4.2.23)

(1 +H"/3u) 7 ° T

The current normal to the yield surface, Q, and the total strain rate,
d, are known quantities. Hence, from Equation (4.2.23), y can be determined
which can be used 1n Equation (4.2.9) to determine the plastic part of the
strain rate which, with the additive strain rate decomposition and the
elastic stress rate of Equations (4.2.8) and (4.2.12), completes the defini-
tion of the rate equations.

We sti111 must explain how to integrate the rate equations subject to

the constraint that the stress must remain on the yield surface. We will
show how that 1s accomplished 1n Section 4.2.5.

4.2.3 Kinematic Hardening

Just as before with the 1sotropic hardening case, we write a Von Mises
yi1eld condition but now 1n terms of the stress difference
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f(§) = % g8 = k2. (4.2.24)

It is important to remember that a and { are deviatoric tensors. The con-
sistency condition is written for kinematic hardening as

f(g) =0 (4.2.25)

because the size of the yield surface does not grow with kinematic hard-
ening, therefore, x = 0. Using the chain rule on Equation (4.2.25)

af .3 _
5E E=0 (4.2.26)
and
of _ | of -
5t = | 5t ‘ Q=RQ. (4.2.27)

Combining Equations (4.2.26) and (4.2.27) and assuming that R # 0

o
I
o

(4.2.28)
or

Q:(S-a)=0. (4.2.29)
A geometric interpretation of Equation (4,2.29) is shown in Figure 4.2.3
where it can be seen that the backstress moves—in a direction parallel to

the normal to the yield surface.

We must now decide how a is defined. Recall that for the isotropic
hardening case, Equation (4.2.19)

Q:0 = @H' LRI (4.2.30)
The kinematic hardening condition assumes that

a=0d =4yQ (4.2.31)

64




Figure 4.2.3.

Geometric Interpretation of the Consistency
Condition for Kinematic Hardening
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where ¢ is a material parameter. Equation (4.2.31) combined with Equation
(4.2.29) gives a result identical to the isotropic hardening case, Equation
(4.2.30), if ¢ 1is chosen to be % H'. Hence, either Equation (4.2.30) or
(4.2.31) gives us a scalar condition on a. Note that both of these are
assumptions and must be shown to be reasonablie. Of course, experience with
material models based on these assumptions has proven them to be reasonable

representations of material behavior.

Using Equation (4.2.30), the strain rate decomposition, Equation
(4.2.8), and the elastic strain rate, Equation (4.2.12), in the consistency
condition for kinematic hardening, Equation (4.2.29) gives

R

% H' v Q=0 = C:dP! . (4.2.32)

Taking the tensor inner product of both sides of Equation (4.2.32) with Q
gives

R _ 2uy Q) (4.2.33)

: EH 70 =Q:(s
Again, because Q is deviatoric; C:Q = 2u Q and Q:C:Q = 2u.
Solving Equation (4.2.33) for v gives

vy = (T—;—%T7§Z7 Q:d (4.2.34)

which is the same result as was obtained for the isotropic hardening case.

4.2.4 Combined Isotropic and Kinematic Hardening

For the combined hardening case we define a scalar parameter, §, which
determines the amount of each type of hardening. We require that

o
A
w
A
—

(4.2.35)
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Figure 4.2.4 illustrates the uniaxial response which will be computed for o
for different choices of 8. When § = 0 we have only kinematic hardening and
when 3 = 1 we have only isotropic hardening.

We use the results derived before for the independent hardening cases
and multiply by the appropriate fraction for each type of hardening.
Equations (4.2.18) and (4.2.31) are rewritten as

R = \/g H aP! g (4.2.36)
and
a=%n P (1-8) =51 1-8 . (4.2.37)
As before, we write a consistency condition
Q:( =R (4.2.38)
or
Q:(5 - a) = ‘/g He Pl g . (4.2.39)

Using the elastic stress rate and the additive strain rate decomposition
with Equation (4.2.39) and taking the tensor product with the normal, Q

Q:6'R = 4 Q:C:Q - o:[ EH A1 - ﬁ)l:Q - o:[‘ﬁ§]+'vegﬁ7 J:o . (4.2.40)

f]( ( I/ ) Q. ( 02- 1)

which is the same result as we obtained for each of the independent cases.

We summarize the governing equations for the combined theory:
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Figure 4.2.4. Effect of the Choice of the Hardening Parameter, B,
on the Computed Uniaxial Response




*TR

o=C(d-dy=4¢ (4.2.42)
R=p ch.H' LA T (4.2.43)
a=(1-p) 5n o (4.2.44)
0 . 2
, elastic; f(&) <«
P! = { (4.2.45)
vQ, plastic; f(¢) 2 KZ
1 .
Y= TR 730 Q:d (4.2.46)
Q= g-g /’ %E = ER (4.2.47)

4.2.%5 Numerical Implementation

OQur finite element algorithm requires an incremental form of Equations
(4.2.41) through (4.2.43). Additionally, we must have an algorithm which
integrates the incremental equations subject to the constraint that the
stress remains on the yield surface.

The incremental analogs of Equations (4.2.42) through (4.2.44) are

TR
0,1 =0n, - A 2u Q : (4.2.48)
R ., =R +2pH A (4.2.49)
n+l n 3 i T
and
2
@ =g, +(1-6) 5H M0 . (4.2.50)

where Ay represents the product of the time increment and the equivalent
plastic strain rate (Ay = At v).
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The subscripts n and n+l refer to the beginning and end of a time step,
respectively.

We also need an incremental analog to the rate forms of the consistency
condition given by Equations (4.2.13), (4.2.25), and (4.2.39). At the end
of the time step, we insist that the stress state must be on the yield
surface. Hence the incremental consistency condition is

a ., +R (4.2.51)

n+1 nel @ Spyp o

Equation (4.2.51) is shown graphically in Figure 4.2.5.

Substituting the definitions given by Equations (4.2.48) through
(4.2.50) into the consistency condition of Equation (4.2.51)

[an s (1-8) 5w AyQ} + [Rn + % Ay] Q = [STR

- M2 o] . (4.2.52)

Taking the tensor product of both sides of Equation (4.2.52) with Q and
solving for Ay

1 1 TR
& = T+ 73 (‘ Bl | - Rn) (4.2.53)

It follows from Equation (4.2.53) that the plastic strain increment is
proportional to the magnitude of the excursion of the elastic trial stress
past the yield surface (see Figure 4.2.6).

Using the result of Equation (4.2.53) in Equations (4.2.48) through
(4.2.50) completes the algorithm. In addition we can compute

ad®! = Q ay (4.2.54)

and

adP? - ‘/§-A7 . (4.2.55)
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Figure 4.2.5,

Geometric Interpretation of the Incremental Form
of the Consistency Condition for Combined
Hardening
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TR
n+1

Figure 4.2.6. Geometric Interpretation of the Radial Return Correction
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The results of Equation (4.2.53) applied to Equation (4.2.48) show that
the final stress is calculated by returning the elastic trial stress
radially to the final yield surface at the end of the time step. (Hence the
derivation of the name Radial Return Method.) Estimates of the accuracy of
this method and other methods for similarly integrating the rate equations
are available in Krieg and Krieg [21] and Schreyer, et al. [22]. Note that
the 1last term in Equation (4.2.48) (the radial return correction) is purely
deviatoric.

The elastic plastic material model uses six internal state variables:

EQPS - equivalent plastic strain

RADIUS - current radius of yield surface

ALPHA1l - 1,1 component of backstress in unrotated configuration
ALPHAZ22 - 2,2 component of backstress in unrotated configuration
ALPHA33 -~ 3,3 component of backstress in unrotated configuration
ALPHA12 -~ 1,2 component of backstress in unrotated configuration

The PROP array for this material contains the following entries:

PROP(1) - Young's Modulus, E
PROP(2) - Poisson's Ratio, v
PROP(3) - Yield Stress, °yd
PROP(4) - Hardening Modulus, H
PROP(5) - g
*PROP(6) - 2u
*PROP(7) - 3u
*PROP(8) - 1/(2u*(1 + H'/3u)) (Note: H' = H/(1 - E/H)

*PROP(9) - A
*PROP(10) — 28-H'/3
*PROP(11) ~ 2(1 - B)H'/3
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4.3 Viscoplastic Material Model

The viscoplastic material model presented here represents a simple rate
dependent plasticity model. The model is intended for relatively low strain
rate (|d] < 200) and 1is not recommended for high rates of impact. More
details of the model can be found in Taylor and Becker [23] and Perzyna
[24]. The model assumes an additive strain rate decomposition identical to
the elastic plastic model

d=a® +df! . (4.3.1)

The stress rate 1is assumed to be given by the elastic part of the strain
rate using Hooke's law

o =C:d® =c:(d - d? (4.3.2)

which can be written more clearly in index notation as

. el
;5 = Xdkk 51j + Zudij . (4.3.3)
We define the Von Mises equivalent stress by
s §._‘/§
o= ‘/2 S:S = 5 Sjj 81J (4.3.4)

where S is the deviatoric part of o.

For this isothermal model, we use isotropic hardening only. Hence, we
can write the yield stress as

0, = 0 (") (4.3.5)

where ?p] is the equivalent plastic strain. In this model, we assume

isotropic hardening with a control hardening modulus, H. This is defined by
identifying an equivalent plastic strain rate by
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5 @' = g:¢P! (4.3.6)
and

e t J2 pl..pl
= [ Y5 dPdP at (4.3.7)

We define the yield function as

flo, 0 ) = 5 - oo(a‘”) . (4.3.8)

The plastic strain rate is assumed to be given by a stress potential as
pl
d° = 9g9(o)/d0 (4.3.9)
and we assume an associated flow rule which implies that
9(0) = 3(f) = 9(a, o) . (4.3.10)

Then Equation (4.3.9) can be written as

pl _ 89 8o
d" = - S0 ° (4.3.11)
We use a power law for dg/d0
g P -
'y(a-l) 0.3.00
Qg = (4.3.12)

o
Ql
A
Q

where v and p are material parameters.
Equation (4.3.12) indicates that the plastic strain rate is propor-

tional to the overstress above the current value of the yield stress.
Hence, the higher the overstress, the greater the plastic strain, which
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leads to a reduction in the stress rate given by Equation (4.3.2) and an
increase in strain hardening given by Equation (4.3.5).

Consider a wuniaxial tension test. The solid curve shown in Figure
4,3.1 shows the 1locus of apparent yield strengths Sy for mild steel at
different strain rates. The apparent yield strength is the measured yield
strength for a specimen from a tension test at a given strain rate. At
different strain rates, different yield strengths are found. If the elastic
strain rate is assumed negligible, using Equation (4.3.11) and (4.3.12), the

uniaxial strain rate is
d = y(alo, - 1P . (4.3.13)

Solving Equation (4.3.13) for the Von Mises equivalent stress gives a
retation for the apparent yield stress

0, = o1+ (d/y) 1Py . (4.3.14)

If the rate of deformation is very slow (e.g., d=0), or the fluidity con-
stant is very large {(e.g., y»=), then the yield stress given by Equation
(4.3.14) is equal to the static yield stress and the static yield condition
of a rate-independent constitutive theory is satisfied. If the motion is
very rapid (e.g., d-=), or the fluidity constant is zero, the response is
elastic, since the value of yield stress is not restricted by Equation
(4.3.14). Values of effective yield stress as a function of strain rate for
different choices of the flow parameters, <+ and p, are shown in Figure
4.3.1.

It follows that

Pl - (4.3.15)
30
and
g% s, (4.3.16)
[y
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Using these definitions of the flow potential in Equation (4.3.9) yields

! =P s, (4.3.17)

Ql =

The numerical algorithm used in this model consists of a backward difference
integration of the rate equations. The algorithm proceeds as follows:

1. Calculate the elastic trial stress

R _ o + C Atd

%0+l = %

2. Calculate the equivalent trial stress

ETR _ % STR:STR

3. Check for yield

A

0 - ao(ap‘) 0 ; skip step 4
o - ao(ap‘) > 0 continue below with step 4

4., Yield exceeded, calculate

~TR p
Adp1 =7<g———1) é—tSTR
0 g
a0 = C (atd - adP') = 'R = 24 adP!

=TR p
Aap] =7(z—— - 1)

0

0n+1 = on + Ao

_ =p1 =p1
=0, (dn + Adn+1)
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The viscoplastic material model uses two internal state variables:
EQPS - equivalent plastic strain
SIGYLD — current value of yield stress

The PROP array for this material contains the following entries:
PROP(1) - Young's Modulus, E

PROP(2) - Poisson's Ratio, »
PROP(3) — Yield Stress, Oy
PROP(4) - Hardening Modulus, H
PROP(5) - «
PROP(6) - p
*PROP(7) - 2u
*PROP(8) - A
*PROP(9) - H' = H/(1 - H/E)

4.4 Damage Model

The damage model in PRONTO is based on the work of Taylor, et al. [25]
and simulates the dynamic fracture behavior of brittle rock. The essential
feature of this model is the treatment of the dynamic fracture process in
rock as a continuous accrual of damage where the damage mechanism is at-—
tributed to microcracking in the rock medium. The fundamental assumption of
the damage model is that the material is permeated by an array of randomly
distributed microcracks which grow and interact with one another under
tensile loading.

The compressive response of the material is assumed to be elastic-
perfectly ptastic and follows the theory of Section 4.2 when the hardening
modulus, H', is set to zero. In this section, we present the equations
governing the tensile response of the material.

Foliowing the work of Budiansky and 0'Connell [26], we write the effec—
tive bulk modulus of a cracked medium as
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-2

16 {1 - v

K/K =1 - 3 (————j:) Cd . (4.4.1)
1 - 2v

In Equation (4.4.1), the barred quantities represent degraded or effec—
tive quantities in the fractured medium. We denote the undegraded bulk
modulus and Poisson's ratio by K and p, respectively. The crack density,

Cd’ represents the volume fraction of the material made of flaws and is
given by
- 45 (v - v)(2 - »)
Cd = 1§ . (4.4.2)

(1 = $9)[10» = B(1 + 3v)]

A Wiebull distribution is used to determine the number of flaws per unit

volume, N, active at a given pressure level, p (positive in tension)

N=k ET. (4.4.3)

where k and m are material constants.

The nominal fragment size, a, 1is given by an expression derived by
Grady [27]

/20 Kie \2/3

a = (4.4.4)

C e
P max

where KIC is the fracture toughness of the material, p is the material
density, ¢ 1is wave speed NE/p, and ;max is the maximum positive (tensile)
strain rate the material has ever experienced.

The crack density 1is proportional to the number of flaws per unit

volume and the nominal fragment size,

C,=p8Na”, (4.4.5)
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where B is a proportionality constant. Combining Equations (4.4.3) through
(4.4.5) gives an expression for the crack density in terms of the current

pressure Jevel and the maximum previous deviatoric strain rate, €max °

K 2
5k ( IC) m .-2
C, =2 —t) " (4.4.6)
d 2 (3K)m pc max

where we have absorbed the proportionality constant, B8, into the material
constant, k.

Combining Equations (4.4.6) and (4.4.2) gives

K, \2 - -
5 k 1cy m -2 _ 45 (v - 2)(2 - %)
3 15235 (EE') P e =12 LA 4 L4 (4.4.7)

16 (1 — 39100 - 5(1 + 3v)]

Equation (4.4.7) gives a relation which can be solved for the effective
Poisson's ration of the degraded material. Unfortunately, for given values
of Cd and », the equation is a cubic in » and the determination of » 1is a
nontrivial numerical exercise. As a simplification, Equation (4.4.7) has
been approximated with a linear, analytic function for » in terms of » and
Cd,

7= (1 -2 cd) . (4.4.8)

The error associated with using Equation (4.4.8) instead of (4.4.7) to
determine » is generally less than 5 percent. Once » is known, it is used
in Equation (4.4.1) to determine the effective bulk modulus of the material.
The error of the bulk modulus due to using Equation (4.4.8) instead of
Equation (4.4.7) is less than 1 percent.

It is convenient to define a damage parameter, D, where 0 < D < 1 as

D = lg £, ¢, (4.4.9)
where
2
OISR (4.4.10)
(1 - 2v»)

81



This definition of damage follows directly from inspection of Equation
(4.4.1) and results in an expression for the total mean stress or pressure
as

P=3K (1 - D) € (4.4.11)

where €y is the mean volumetric strain (j"% tr d dt) .

We assume that the deviatoric response of the material is degraded in
the same manner as the bulk response,

S=2u(l-0D)e, (4.4.12)

where S is the deviatoric part of the stress and e is the deviatoric part of
the strain.

Taking the rate of Equations (4.4.9) through (4.4.12);

b= e+ Bt (4.4.13)
P =3K (1-0D) év - 3K e, D, (4.4.14)
S=2u(1l-D)e-2uebd, (4.4.15)

and ]
f () = Zgl 8%5 Cy - (4.4.16)

It follows that
I [fl(i) -8 e cd] ¢, (4.4.17)
where

- 21 -3+ 7Y
vl = =2
(1 - 2»)
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and

o _ D
C4 =2

km (KIC)Z ol s s -2
d

—_— | == € . (4.4.19)
(3K)m—1 pC vV oomax

Equations (4.4.14), (4.4.15), (4.4.17), and (4.4.19) represent seven
coupled ordinary differential equations to be integrated over each time
step. In PRONTO, we use a simple forward difference integration operator.

The damage material model requires six material constants to charac-
terize the material. Young's modulus, Poisson's ratio, the yield stress in
compression, and the fracture toughness of the material are all conventional
material properties readily obtained from standard material tests. The
remaining two material constants are k and m for the Wiebull distribution of
Equation (4.4.3). Determining these material constants requires data relat-
ing the fracture stress of the material to the strain rate. If this data is
available, the two constants can be determined as follows. The logarithm of
the fracture stress versus the Tlogarithm of the uniaxial strain rate is
generally a straight line,

2 L]
1n(oF) = Co + - In(e) . (4.4.20)
Two points on the fracture stress versus strain rate curve can be used

with Equation {4.4.20) to determine m. The other constant, k, is determined
from

K \2
In(k) = m [1n(§§@) -2 a4 1)] ~ 1n [ﬂg (5%9) 2‘2}. (4.4.21)

If laboratory data for fracture stress versus strain rate are not available,
it is possible to generate this data using an expression derived by Kipp, et
al. [28],

op = | ——— € (4.4.22)
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where NS is a shape factor (1.12 for penny shaped cracks) and Cs is the
shear wave velocity of the material. Equation (4.4.22) has been shown to be
a reasonable approximation for a number of rock types.

The damage material model uses five internal state variables:

EQPS - equivalent plastic strain

DAMAGE - damage (Equation (4.4,9))

EVMAX — maximum volumetric tensile strain experienced by the
material

FRAGSIZ - average fragment diameter (Equation (4.4.4))

CRAKDENS - crack density (Equation (4.4.2))

The PROP array for this material type contains the following entries:

PROP(1) - Young's Modulus, E
PROP(2) - Poisson's Ratio, »
PROP(3) - Yield Stress, Id
PROP(4) - m
PROP(5) - k
PROP(6) - Fracture Toughness, KIC
*PROP(7) - Bulk Modulus, K
*PROP(8) - u
*PROP(9) - m - 1
*PROP(10) ~ COND = 5 k m KZ./(pc)?  (Note: ¢ = /E7p)
*PROP(11) — CONA = 3 (/20 K, o/pc)?/

4.5 Soils and Crushable Foams Model

The soils and crushable foams model in PRONTO is a direct descendent of
the model developed by Krieg [29]. Reference [29] is an unpublished Sandia
National Laboratories report and is not readily available. The model was
described in detail by Swenson and Taylor [30] as it was incorporated into a
tensile failure model. One major difficulty with the original version of
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this material model which has confounded users is that the pressure depend-
ence of the yield stress is expressed in terms of J2, the second invariant
of the stress tensor. We have reformulated the model so that the yield
stress is written directly in terms of the pressure. NOTE: this means that
old data must be converted.

The yield surface assumed is a surface of revolution about the hydros—
tat in principal stress space as shown in Figure 4.5.1. 1In addition, a
planar end cap on the normally open end is assumed. The yield stress is
specified as a polynomial in pressure, p (positive in compression)

(4.5.1)

The determination of the yield stress from Equation (4.5.1) places
severe restrictions on the admissible values of ao, al, and az. There are
three valid cases as shown in Figure 4.5.2. First, the user may specify a
positive a,s and a; and a, equal to zero as shown in Figure 4.5.2a. This
gives an elastic—perfectly plastic deviatoric response, and the yield sur-
face 1is a cylinder oriented along the hydrostat in principal stress space.
2 to
zero and entering appropriate values of aoand a;. The program checks the

Second, a copical yield surface (Figure 4.5.2b) is given by setting a

users input to determine whether a valid (negative) tensile fracture pres-
sure, pfr’ results from the input data. The third case results when all
three constants are nonzero and the program detects that a valid negative
tensile failure pressure can be derived from the data. This case is shown
in Figure 4.5.2c. A valid set of constants for the third case results in a
parabola as shown in Figure 4.5.2.c. We have drawn the descending portion
of the curve with a dashed line indicating that the program does not use
that portion of the curve. Instead, when the pressure exceeds P*, the yield

stress is held constant as shown at the maximum value.

The plasticity theories for the volumetric and deviatoric parts of the
material resppnse are completely uncoupled. The volumetric response is
computed first. The mean pressure, P, is assumed to be positive in compres-—
sion and a yield function is written for the volumetric response as
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/

Figure 4.5.1. Pressure Dependent Yield Surface for the Soils and Crushable
Foams Material Model
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Figure 4.5.2. Forms of Valid Yield Surface Which can be Defined for the
Soils and Crushable Foams Material Model
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b, = P - fle,) (4.5.2)

p
where fp(ev) defines the volumetric stress-strain curve for the pressure as
shown 1in Figure 4.5.3. This function 1is defined by the user with the
restriction that the slope of the function must be less than or equal to the
unloading bulk modulus, KO, everywhere. If the user wishes the volumetric
response to be purely elastic, he simply specifies no function identifica-
tion (e.g., FUNCTION ID = 0). The yield function, ¢ _, determines the motion

p
of the end cap along the hydrostat.
The mean volumetric strain is updated as
n+1 n .
€, =€, ¢t At-ev (4.5.3)

where ;v is the volumetric part of the strain rate (;v = % tr d).

There are three possible regimes of the pressure-volumetric strain
response. Tensile failure is assumed to occur if the pressure becomes
smaller (more negative) than Pfr' The quantity €sp is initialized to
—Pfr/Ko by the program. If tensile failure is detected, the pressure is set
to —Pfr' Remember, pressure is negative in tension! Failure by monotonic

tensile 1loading is shown in Figure 4.5.4a. As long as €, < € the pres-

fr?

sure will remain equal to —Pfr.

If the volumetric strain exceeds €6 a check is then made to see if
€. < € (4.5.4)

where €4 is the most positive (compressive) volumetric strain previously
experienced by the material, set initially to zero by the program. If
Equation (4.5.4) is satisfied, the step is elastic and,

n+1

_ ph
PR = P - K Ae, (4.5.5)

This elastic response is shown in Figure 4.5.4b.
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P fp (ev)

(compression)

€v
€v=-1n (P,/P); COMPRESSION

Figure 4,5,3. Pressure Versus Volumetric Strain Curve in Terms of a User

Defined Curve, F(ev), for the Soils and Crushable Foams
Material Model
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If Equation (4.5.4) is not satisfied, the volumetric response is along
the curve defined by fp(ev) and

n+1 n+1
P =y (o) (4.5.6)
and we set
n+1
€, = € - (4.5.7)

This response is shown in Figure 4.5.4c. Note, that if Equation (4.5.5) is
used to determine P, we also drag €6 along so that if we unload from the
curve, fp(ev), we will fracture at the appropriate strain level as shown in
Figure 4.5.4d.

The deviatoric part of the response is computed next and uses a conven-
tional plasticity theory with radial return. See Krieg and Krieg [21]. The
trial elastic deviatoric stresses are computed as

STR

=S + 26 At e (4.5.8)
where e is the deviatoric part of the strain rate. The current value of
yield stress 1is calculated using Equation (4.5.1) and the Von Mises effec-
tive stress, o, is computed as

Qi
Il
ATV

S:S . (4.5.9)
The yield condition is checked to determine whether o < ayd' If this is the
case, the trial stress is the correct deviatoric stress at the end of the

_ STR.
n+1

performed to calculate the deviatoric stress at the end of the time step

time step, S I[f yield is exceeded, a simple radial return is

g
s = -Y¢sTR (4.5.10)

o

n+1
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Finally, the total stress 1s determined by

o + Pn+1 s . (4.5.11)

N+l = Snsl

The So1ls and Crushable Foams model uses four 1nternal state variables:
EVMAX - maximum compressive volumetric strain experienced (always

positive)
EVFRAC ~ current value of volumetric fracture strain (positive 1n
compression)
EV — current value of volumetric strain (positive 1n compression)
NUM - integer pointing to the last ncrement 1n the pressure

function where the 1nterpolate was found

The PROP array contains the following entries for this material:

PROP(1) - 2u

PROP(2) - Bulk Modulus, K
PROP(3) - a,

PROP(4) - a,

PROP(5) - a,

PROP(6) - Function Id number

4.6 Low Density Foams

The 1low density foams model presented here was developed by Morgan,
Krieg, and Neilsen [31] and 1s based on results from experimental tests on
low density, closed-cell polyurethane foams. These foams having densities
ranging from 2 to 10 pounds per cubic foot have been proposed for use as
energy absorbers 1n nuclear waste shipping containers. Representative
responses of closed-cell polyurethane foams for various hydrostatic,
untaxial and triaxial laboratory test conditions are shown 1n Figures 4.6.1
and 4.6.2. These results i1ndicate that the volumetric response of the foam
1s highly dependent on load history. This mmplies that typical decomposi-
tions of total foam response 1nto an 1ndependent volumetric part and a mean
stress (pressure) dependent deviatoric part are not valid for this class of
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Figure 4.6.1. Foam Volume Strain Versus Mean Stress for 6602 Foam at
Various Confining Pressures
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foam. Many "so1l and crushable foam" models, including the other foam model
described 1n Section 4.5, use such decompositions and hence are not valid
for low density closed-cell polyurethane foams. The model presented here
reproduces experimental test responses more accurately for this class of
foams than the model 1n Section 4.5.

The experimental tests on which this model 15 based were performed by
the Civil Engineering Research Facility of the University of New Mexico with
the results reported in [31]. Foam samples were subjected to static, com-
pressive stresses during these tests. In most of the tests, air was trapped
in the closed cells of the foams and could not escape because the samples
were Jacketed with an Impervious material. In this constitutive model, the
total foam response 1s decomposed 1nto contributions from the skeleton and
from air trapped in the closed cells of the foam. The contribution of the
air to the total foam response 1s dependent on the application. 1If the foam
1s used 1n a vented application where the air can escape, the contribution
of the air 1s zero and the foam and skeleton responses are 1dentical. If
the foam 1s wused 1n an application where the air cannot escape, such as a
sealed shipping container, the foam pressure 1s considered to be the sum of
pressure carried by the skeleton and the air pressure. That 1s,

P. =P +Pa

£= Py (4.6.1)

ir

where PF and PS

tensor divided by three) of the foam and skeleton, respectively. The mean

, are the mean stresses (first invariants of the stress

stresses and air pressure are assumed positive in tension. The air pressure
1s determined from

Py ¥

Parr = T3 N - ¢

(4.6.2)
where v 1s the engineering volume strain (first invariant of the total
strains) which 1s positive 1n tension and Po and ¢ are model parameters.
The parameter Py 1S the 1nit1al foam pressure (usually atmospheric pressure
of 14.7 ps1), and ¢ 1s the ratio of the foam density to the polymer density
from which the foam 15 produced.
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Test data 1indicate that the skeleton response 1n any principal stress
direction 1s 1ndependent of loading 1n any other principal stress direction.
Thus, Poisson's ratio for the skeleton 1s equal to zero. Test data also
indicate that the yileld strength of the skeleton 1in any principal stress
direction can be expressed 1n terms of the engineering volume strain and the
second 1nvariant of the deviatoric strains with the following relationship

A+ B(1+Cy); I >0
fo= (4.6.3)
B(1 + Cy); II; =0

1s the second i1nvariant of the deviatoric strain tensor; vy 1s the engineer-
1ng volume strain as 1n Equation (4.6.2); and A, B, and C are constants
determined from fitting Equation (4.6.3) to the laboratory data. Constants
B and C are determined from hydrostatic test data where II; 1s zero, and A

15 determined from any test where the loading 1s deviatoric.

Numerical implementation of the model 1s as follows. Foam stresses and
strains from the previous time increment are saved. At the beginning of the
next time ncrement, the old skeleton stresses are computed from the old
foam stresses and the old air pressure. The strain rates for the new time
increment are used to determine new strain increments and trial elastic
stress increments for the skeleton. These stress 1ncrements are added to
the old skeleton stresses to produce new trial stresses for the skeleton.
The trial skeleton stresses are then rotated to principal stress directions
and compared with the yield stress determined from Equation (4.6.3). If
yield occurs, the skeleton stresses are set to the yield stress. If yield
does not occur, the trial skeleton principal stresses become the final
skeleton principal stresses. The final skeleton stresses are obtained by
rotating the final skeleton principal stresses back to the unrotated
configuration. Then, the final foam stresses are obtained by adding the air
pressure contribution for the new strain state to the new skeleton stresses.

Input parameters for the model are the constants E, po, ¢, A, B, and C
which are defined above. If the foam 1s used 1n an application where the
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air can escape, Po should be input as zero. Otherwise, Po is the atmos—
pheric pressure at the beginning of the simulation.

There are no internal state variables for this model.

The PROP array contains the following entries for this material type:

PROP(1) - Young's Modulus, E
PROP(2) - A

PROP(3) - B

PROP(4) - C

PROP(5) - NAIR

PROP(6) — P,

PROP(7) - ¢

4.7 Hydrodynamic Materials
A1l of the equations of state described 1in Chapter 5 are used by
specifying a hydrodynamic material type. This material type has only

volumetric or mean stress response and no deviatoric response. The pressure
is calculated in the equation of state and the stress is set as

o= -p é (4.7.1)

Note that the pressure is assumed positive in compression in the equations
of state.

The hydrodynamic material requires the user to input a pressure cutoff
which is positive in compression.

There are no internal state variables for this material type.

The PROP array contains only one entry for this material:

PROP(1) — Pressure cutoff.

97



4.8 Rate and Temperature Dependent Plasticity

In this section, we discuss briefly the formulation and numerical
implementation of a wunified creep plasticity model which was proposed by
Bammann [32], and later modified and cast into a form which allows efficient
impiementation into a finite element code by Bammann and Johnson [33]. The
description here follows the same notation as that for the rate independent
combined hardening plasticity model described in Section 4.2.

The kinematics and thermodynamics of finite deformation as well as the
numerical algorithm developed 1in reference [32] are valid for any of the
class of wunified creep plasticity models discussed by Bammann and Krieg
[34]. Unified creep plasticity models are formulated without the introduc-
tion of a yield surface. This is accomplished by proposing a constitutive
equation for the plastic part of the strain rate which is near zero when
response is elastic and increases rapidly at yield, thus simulating an
elastic Tlimit. This model represents a combined hardening model where the
history dependence 1is characterized by two internal state variables, a
scalar, k, for the isotropic hardening and a second order tensor, a, for the
kinematic hardening. These internal state variables have the same defini-
tion as for the isotropic and kinematic hardening cases described in
Sections 4.2.2 and 4.2.3 for the rate independent plasticity model. The
crucial difference 1is that the evolution equations for the internal state
variables are motivated by the specific dislocation processes which they

represent.

The specific model proposed in [32] and [33] is summarized as,

o = nr(d) & + 2u(d - d°1) (4.8.1)

d! = r(6) sinn [lfi - C(Q)Y(el] T§T (4.8.2)

a=(1-8) k(o) o - 92 “gezlgpll lale (4.8.3)
pl 2

k= pk(o) |dP - €L n(6) |d | « (4.8.4)

B
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where 6 1s temperature and the functions, r(6), Y(6), V(8), k(6), g{(6), and
h(6) will be defined below. In Equation (4.8.2), § 1s a deviatoric effec-
tive stress defined by

{=35-a (4.8.5)
where S 1s the deviatoric part of the unrotated Cauchy stress defined by
Equation (4.2.1). Note that § 1s a different measure of effective stress

than that defined by the backstress, §, of Equation (4.2.2).

The assumption of a nonconducting temperature change 1s given by

.1 1 h(e) |dP 0 3 3
= ot g DUELIE L2 9(0) (4.8.6)

where CV 15 specific heat.

This can be reasonably approximated for moderate strains by

b = ;%3 (o:dP!) (4.8.7)
To 1mplement this model, the flow rule defined by Equation (4.8.2) 1s 1n-
verted and the dependence wupon the plastic stretching 1s replaced by a
dependence upon the total stretching. This results 1n a rate dependent
Mises type flow surface of the form

f(§,d,k,0) = |§] - x - x(]d].8) (4.8.8)
where
x(|d],6) = Y(8) + V(8) sinh”] F%g% J (4.8.9)

The flow rule defined by Equation (4.8.8) 1s simitar to that defined by
Equation (4.2.4) for the rate independent case except that 1t depends on
strain rate and temperature. A similar substitution for the plastic strain
rate s utilized 1n the dynamic recovery terms resulting in a simplified
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flow rule. More specifically, |dp1| 1s replaced by |d| 1n the recovery
terms 1n Equations (4.8.3) and (4.8.4) (see Equations (4.8.11) and
(4.8.12)). While this 1s convenient, 1t 1s not essential as discussed 1n
reference [33].

The model 1s now 1n a form permitting 1mplementation utilizing the
radial return method described 1n general 1n Section 4.2.4 and 1n particular
for this model 1n reference [33]. The nonconducting temperature change 1s
included by use of an operator split, that 1s, the stress 1s updated assum-
ing 1sothermal conditions and the temperature change ts then calculiated
based upon the new values for the stress, plastic strain rate, and internal
state variables. We begin by assuming elastic behavior and calculate a
tri1al deviatoric stress and trial 1nternal state variables,

t
n+1
R =5 +-J{ 2uedt (4.8.10)
tn
TR 1 ey | 9
a’=a - | [h(e) | ll+_gé )] lala 4 (4.8.11)
n
TR el oy g Id 6)] «°
k'E o=k - Lh(6) |ﬁ+ 9(6)] k= 44 (4.8.12)
t
n

where e 1s the deviatoric part of d.

The elastic assumption 1s now checked by substitution into the yield
condition of Equation (4.8.8)

o= 3s™-a™ | k™ - x(]a].0) (4.8.13)

If ¢ = 0, the assumption of elasticity 1s verified and we proceed to the
next time step with the trial values of the variables
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t
" n+1
o . =SsR, 3A+ 2 f tr(d) & dt (4.8.14)
t

n+1 3
n
TR
a1 =a (4.8.15)
TR
Knpl = K (4.8.16)

If, however, the stress point 1lies outside the flow surface, ¢ > 0, the
values of the variables at the end of the time step must have the terms
associated with the plastic part of the strain rate

t
n+1
1 sTR _ / 2udP! dt (4.8.17)
tn
R tn+1 1
a . =a + (1 - 8) k(8) dP' dt (4.8.18)
tn
TR fn+l ]
Kpo = K+ . gk(6) 1dP'| dt (4.8.19)
n

The obvious problem, just as in the rate independent case, is how to deter-
mine Ay. We take a similar approach as in the rate independent case. We
assume normality for the plastic flow and assume that the direction of the
flow at the end of the step is the same as the trial (elastic) direction,

i TR
d®' dt - Ay T (4.8.20)
t §

n

We calculate the flow rule from the numerical consistency equation just as
in Section 4.2.5, except we use the flow rule defined by Equation (4.8.8).
Solving for Ay,

Bl xgape) e (4.8.21)

_Ls
A&y = =3 3N(0)
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The values for the stress and internal state variables at the end of the
time step are then given by
TR
TR
el = S - 2uhAy R (4.8.22)
§
t
- n+l
o =0 R 43Nt tr(d) 8dt (4.8.23)
n+1 3 t
n
TR R
a . =at+ (1-8) k6) Ay TiTﬁT (4.8.24)
K = KTR + Bk(8) Ay (4.8.25)
n+1 T
The temperature is updated based upon these values of the variables,
0n+1 = 9n + 6At (4.8.26)
where
5 _ 295 (i gP]
8 = +C (0:d" ") (4.8.27)
v
or & can be computed using Equation (4.8.6).
In the case of uniaxial stress, the yijeid function takes the form
¢ = |lo - a| - x(e,6), (4.8.28)
where,
x(£,8) = Y(8) + V(6) sinh™] [lﬂng%l] . (4.8.29)

and ¢ is the true uniaxial (Cauchy) stress and ¢ is the true stretching or

strain rate. The function x is the same as in Equation (4.8.9), except that

|§] is replaced by the uniaxial value, |o — a| as in the yield surface.
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This formulation allows a general fit for many metals over many decades
of strain rate and a large temperature range. The temperature dependence 1in
Equation (4.8.28) would, 1n general, take different forms depending upon the
temperature range considered. However, this does not complicate the model
or the determination of parameters. The parameter V(6) determines the slope
of the yield stress versus logarithm of strain rate at the higher strain
rates as shown 1n Figure 4.8.1. This slope 1increases sharply with increas-
ing temperature consistent with the observed i1ncreased rate sensitivity with
temperature of most metals.

The rate 1ndependent yield stress 1s given by Y(8), while r(6) deter-
mines the strain rate at which the rate i1ndependent 1imit 1s reached as
shown 1n Figure 4.8.2. The back-extrapolated yield stress 1s determined
from a sertes of tension or compression tests at various temperatures. It
1s important to use the back-extrapolated yield stress since we are neglect-
1ng the "knee" in the post yleld regime and desire an accurate
representation at strains larger than 2 or 3 percent. The final parameters
in the function x(é,e) can then be determined with a nonlinear least squares
analysis uti1lizing the data at all temperatures simultaneously. If the form
of the functions r(6), Y(8), and V(6) 1s not known, these can be determined
by fitting Equation (4.8.28) at various temperatures, giving values of these
parameters at various temperatures. From this data, the best form for r(6),
Y(8), and V(8) can be determined.

The dynamic recovery term, h(|o - al|,6), 15 defined as,

h(lo - a|,8) = h(8) r(6) sinh (I" -v((lzg)_ Y(el) . (4.8.30)
The form for this equation was chosen to give an accurate description of
large strain compression behavior at different strain rates as well as to
simplify the system of equations during loading. This form predicts that
the stress reaches a constant value 1n compression or tension independent of
the strain rate. While this 1s not precisely true for all metals due to the
influence of micromechanisms which are not considered, 1t 15 a reasonable

assumption for stainless steel and 1s easily modified 1f the experimental
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results require otherwise. During loading, the dynamic recovery function
reduces to,

h(lo - a],8) = h(8)¢ . (4.8.31)

Now consider the case of a tensile or compressive test conducted at
constant true strain rate and at strain rates small enough to approximate
isothermal conditions. For this case, the system of constitutive equations
can be integrated in closed form to yield,

0=x+ ke tann o/%Lhe 9l (4.8.32)

he + g €

This equation can be examined to determine the differences between dynamic
and static recovery in the case of uniaxial stress at a constant true strain
rate. Notice that after an initial strain rate dependent yield, the stress
is predicted to approach the asymptote,

0 =X+ .Ke . (4.8.33)
he + g

At high strain rates this reduces to,

o~ X+ ‘/2 . (4.8.34)
h

Under these conditions the model predicts that the steady state value of the
stress occurs at the same value of strain, hence at high strain rates the
strain rate dependence of the stress is entirely due to the rate dependence
of the yield function x. This assumption is difficult to check since at the
strain rates where this occurs, the tests are not isothermal due to the
temperature change from the plastic work. At small strain rates, Equation
(4.8.32) reduces to

o~ x+¢y¥. (4.8.35)
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The parameters k(6), g(8), and h(6) can now be determined from Equation
(4.8.31). This s accomplished by consideration of tensile or compressive
tests performed at strain rates small enough for the 1sothermal assumption
to be reasonably approximated. Then by performing these tests at different
temperatures, the parameters k(8), g(8), and h(8) are determined from a
noniinear least squares analysis. The parameter § 1s determined by con-
sidering reverse loading data exactly as 1n the case for the rate
independent, combined hardening model. For B = 0, the hardening 15
kinematic, while for 8§ =1, the hardening 1s fully 1sotropic. Axial stress
data 1n a Jlarge strain torsion test can alsoc be used to determine this
parameter. For metals which exhibit an axial stress of approximately one-
third the shear stress, the response 1s best modeled by choosing 8 = 0. If
the axial stress 1s approximately two orders of magnitude smaller than the
shear stress, § =1 1s a more appropriate choice. Users interested 1n this
effect are referred to reference [33] for details.

The temperature dependent parameters, Y(6), V(6), g(6), k(8), h(8), and
r(6) are chosen for this study as,

%)
V(6) = C1 exp\- 5/
C
4
Y(G) = C3 + —5 ,
-3)
r(6) = C5 exp |- </
%)
h(6) = C7 exp \- 5/
c
10
k(6) = C9 exp (— —5—) ,
C
12
9(9) = Cll exp (_‘ "9"’) ’

It s mportant to note that the form of these temperature dependent
parameters can be as complex as necessary to accurately predict behavior
over large temperature ranges. It 1s not the number of material parameters,
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but rather the number of 1ndependent tests required to determine the
parameter which 1s 1mportant.

The elastic plastic temperature dependent material uses seven internal
state varilables:

EQPS - equivalent plastic strain

TEMP - temperature

RADIUS - current radius of the yteld surface
ALPHALl - 1,1 component of the backstress
ALPHAZ22 -~ 2,2 component of the backstress
ALPHA33 - 3,3 component of the backstress
ALPHA1Z - 1,2 component of the backstress

The PROP array for this material contains the following entries:

PROP(1) - Young's Modulus, E
PROP(2) - Poisson's Ratio, »
PROP(3) =~ C1
PROP(4) - C2
PROP(5) - C3
PROP(6) - C4
PROP(7) - C5
PROP(8) - C6
PROP(9) - C7
PROP(10) - C8
PROP(11) - C9
PROP(12) - C10
PROP(13) - Cl11
PROP(14) - C12
PROP(15) - 8
PROP(16) - pCV
PROP(17) - 1ni1t1al temperature
*PROP(18) - 2u
*PROP(19) - 3u
*PROP(20) - A
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TABLE 4.8.1. VALUES OF PARAMETERS FOR 21-6-9 SS

E = 207 GPa
vy = .3
=0

C. = 4.60 x 10° [J/kg-K]

p=7.83 x 10° [Kg/m ]
Cl = 5.58 x 10! [MPa]

C2 = 8.67 x 101 [K]

C3 = 2.448 x 10! [MPa]
C4 = 1.07 x 10° [MPa*K]
c5 = 7.28 x 10% [s~ 1]

C6 = 2.44 x 10° [K]

C7 = 2.47 x 107> [1/MPa]
8 = 1.1 x 10% [K]

€9 = 1.81 x 10° [MPa]
€10 = 5.23 x 10! [K]
Cll = 0. [1/MPa-s]

C12 = 1. [K]

109



4.9 Elastic Plastic Hydrodynamic Material

The elastic plastic hydrodynamic material model is a combination of the
elastic plastic combined hardening model described in Section 4.2 and the
purely hydrodynamic material model described 1in Section 4.7. In this
material model, we uncouple the volumetric and deviatoric response. The
volumetric response 1is determined using one of the equations of state
defined 1in Chapter 5, and the deviatoric response is determined using the
equations of Section 4.2.

First, we calculate the deviatoric response. This is accomplished in a
manner almost identical to Section 4.2.5. We calculate a trial deviatoric
stress

STR

=sn+2ué (4.9.1)
where e is the deviatoric part of the strain rate, d, and 2u is the usual
Lame constant. We then proceed exactly as in Section 4.2.5 with an in-
cremental consistency condition and determine the increment in eguivalent
plastic strain, update the radius of the yield surface, and update the
backstress. The same radial return correction is applied to the DEVIATORIC
part of the stress tensor.

We then wupdate the energy to include the increment due to the
deviatoric energy contribution in Equation (5.1.9).

Next we call the appropriate equation of state to calculate the new
pressure at the end of the time increment. Once this is known, we determine
the total stress by

o =S - pb (4.9.2)

n+l n+1

The elastic plastic hydrodynamic material model uses six internal state
variables:

EQPS - equivalent plastic strain
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RADIUS

ALPHAL1
ALPHA22
ALPHA33
ALPHA12

current radius of yield surface

1,1 component
2,2 component
3,3 component
1,2 component

of backstress
of backstress
of backstress
of backstress

in unrotated
in unrotated
in unrotated
in unrotated

configuration
configuration
configuration
configuration

The PROP array for this material contains the following entries:

PROP(1)
PROP(2)
PROP(3)
PROP(4)
PROP(5)
PROP(6)
*PROP(7)
*PROP(8)
*PROP(9)
*PROP(10)
*PROP(11)

Young's Modulus, E

Poisson's Ratio, »

Yield Stress, o

yd

Hardening Modulus, H

/3u)) (Note: H' = H/(1 - E/H)

B

pressure cutoff
2u

1/(2u*(1 + H'

A

203+H'/3

2(1 - B)H'/3
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5.0 EQUATIONS OF STATE

The discussion of the hydrodynamic equations of state incorporated in
PRONTO follows closely the development of the theory found in WONDY [3] and
TOODY [4].

5.1 Introduction
The equation for conservation of energy equates the increase in inter-
nal energy per unit volume to the rate at which work is being done by the

stresses and the rate at which heat is being added. 1In the absence of heat
conduction

+ (0 - pd):e + pQ . (5.1.1)

RN
2

E, =» 3t = (P-9)

We note that in Equation (5.1.1), p is the pressure measured as POSITIVE IN
COMPRESSION, and q is the pressure due to the bulk viscosity, from Equation
(3.7.1), which is NEGATIVE IN COMPRESSION. Also in Equation (5.1.1), EV is
the energy per unit volume, Em is the energy per unit mass, and Q is the
heat rate per unit mass.

The continuity equation can be written as

=-trd=-d, . (5.1.2)

I
Q)lOJ
+Io

The deviatoric part of the strain rate is

e=d-=ztrdé. (5.1.3)

Wi

and the pressure is given by
1
P=-3 tr o . (5.1.4)

Rewriting Equation (5.1.1) in terms of the pressure and the deviatoric
part of the stresses, S,
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EV = (q-p) dy + S:e + pQ . (5.1.5)

An equation of state is assumed for the pressure as a function of density
and energy per unit mass

p=flo.Ep) - (5.1.6)
In PRONTO we use equations of state linear in internal energy of the form
p = fl(p) + fz(p) Em . (5.1.7)

We find it convenient in the numerical implementation to work with energy
per unit volume instead of energy per unit mass and rewrite Equation (5.1.7)
as

p="f(p) + filp) E, . (5.1.8)
where we have defined a new function, f3(p) = f2(p)/p.

Assuming there are no heat sources and the strain rates are constant
over the step, we can integrate Equation (5.1.5) to obtain the following
discrete form of the energy equation:

t+At
v

t+AL : pt t+At t+At

_eto At t At ot ‘e
E =E, += (a"+q -p ) dp + 5 (57 +S ):e . (5.1.9)

Equations (5.1.9) and (5.1.8) represent two 1linear equations in two

unknowns: E5+At and pt+At.
%
Defining EV by
* .t At t . t+At t At ot | o t+Aty s
EV = EV + = (a” + g -p) dkk + = (S +S ):e (5.1.10)

we rewrite Equation (5.1.9) as

*
LAt _ g% _ Attt

Ev v 2

d (5.1.11)

kk *
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If we have a completely hydrodynamic equation of state (see Section
4.5), there are no deviatoric terms in Equation (5.1.10) (i.e., S and e are
both zero). For the elastic plastic hydrodynamic material (see Section
4.9), the deviatoric and volumetric response are uncoupled. We first deter-
mine the deviatoric response and calculate the deviatoric strain energy in
Equation (5.1.10). Then we proceed with the equation of state calculation.

The bulk viscosity pressure as defined in Equation (3.7.5) contains a
linear and a quadratic part. Careful inspection of Equation (3.7.5) along
with the definition of the stable time increment given by Equation (3.7.2)
shows that the quadratic part of g is independent of the effective dilita-
tional modulus, while the linear part is not. At the time we must calculate
E: in Equation (5.1.10), we do not yet know the effective moduli for the
time step since it depends on the new pressure. To avoid the need to in-
terate to solve Equations (5.1.10) and (5.1.11), we do not include the
energy due to the linear term in the calculation.

By substituting Equation (5.1.11) into (5.1.8), we can solve for the
new pressure;

*
teat _ 1P + T5l0) By

At

p (5.1.12)

After calculating the new pressure using Equation (5.1.12), the energy can
be updated using Equation (5.1.11).
5.2 Mie-Gruneisen Type Equations of State

The designation, Mie-Gruneisen equation of state, refers to any equa-
tion of state which is linear in energy. The most general form is

p-py=Tpn (E -E) (5.2.1)
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where and EH are pressure and energy per unit mass along some reference

p
H
path and are functions of density only. The Gruneisen ratio, I, is also a
function of density only. The Hugoniot reference pressure pH(p) is

generally defined from fits to experimental data.

The Hugoniot energy is related to the Hugoniot pressure by

Pun
EH = EE; (5.2.2)
where
n=1- po/p . (5.2.3)

The Gruneisen ratio is usually approximated as

Using Equation (5.2.2) in Equation (5.2.1) leads to

p=p, [1 T (Bi - 1)} + ToE_ . (5.2.5)

Equation (5.2.5) has the form of Equation (5.1.7)
p="F(p) + fr(p) E, (5.2.6)
where f,(0) = py (1 + E%) (5.2.7)
fo(p) =Tp (5.2.8)

and

u= (55 - 1) = 55 n . (5.2.9)
The most common form for Equation (5.2.4) is to use h1 = -1 and all other

hi = 0 which gives

116




r=r _% . (5.2.10)

ALL the Mie-Gruneisen equation of states in PRONTO will use the form given
by Equation (5.2.10).

5.2.1 Linear Us-Up Hugoniot Form

A common fit to Hugoniot data is given by

2

Polo M

= 20 (5.2.11)
(1 - sn)°

Py

where ¢y and s come from the linear shock velocity-partical velocity US—Up
fit

Us = Cy ¥ s-Up . (5.2.12)
Equation (5.2.11) follows directly from the relations
Py = Uypy U (5.2.13)
and

n= U/Ug . (5.2.14)

We see that there 1is a limiting compression given by the denominator of
Equation (5.2.11)

= 1/s (5.2.15)

or

p]1m=§—_—1 . (5.216)
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Also, at n = -1/s there is a tensile minimum and thereafter, negative sound
speeds are calculated for the material. Since Equation (5.2.11) is intended
for use in compression, caution is advised if the model is used in response

regimes where large tensions are expected.

For this form of the equation of state we see that

p.co n
f1(p) = ——— (1 - Eg) (5.2.17)
(1 - sq)
and
p
fylp) = o= =T . (5.2.18)

5.2.2 Power Series Hugoniot Form

Another common form for the Hugoniot is to express the reference pres-
sure, pys in a power series in 7,

oy = Kon(1 + Kpm + Kon® + ..ol ) (5.2.19)
de
In order to match ~n at n = 0 it is necessary that
K =p c? (5.2.20)
0 070 T

where K0 is the adiabatic bulk modulus at zero pressure and room temperature
and A is the bulk sound speed.

For this Hugoniot form, the equation of state is defined by

2 r
f1(p) = Kon(l + Ky + Kn°) (1 - —g) (5.2.21)

and

falp) = —— =T (5.2.22)




where we have restricted ourselves to using only three terms in the polyno-
mial in Equation (5.2.19).

5.2.3 Ideal Gas Equation of State

The ideal gas equation of state is given by
P=(y-1) 0k, . (5.2.23)
where 5 is a material parameter.
Hence, we see that
filp) =0 (5.2.24)
and
fale) = (v - 1) . (5.2.25)

The initial sound speed in the gas, Coo must be defined by the user. The
initial pressure and specific internal energy per unit mass are

Poce
Py = — (5.2.26)
2
E = —— . .2,
m, (v -1) (5.2.27)
The initial pressure and energy per unit volume
oc?
E = pE = ——ret 5.2.28
o~ Pm Ty - 1) (5.2.28)

are initialized inside the code.
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5.2.4 JWL High Explosive Equation of State

The Jones-Wilkins-Lee or JWL equation of state [35] provides the pres-
sure generated by the release of chemical energy in an explosive. In PRONTO
it is implemented in a form which is usually referred to as a programmed
burn. A programmed burn means that the reaction and initiation of the
explosive is not determined by the shock in the material, rather the initia-
tion time is determined by a Huygens construction using the detonation wave
speed and the distance of the material point from the detonation point(s).

The JWL equation of state is generally written as

pO pO
R, R0 2
b= A (1 _ 598—) e 1P 43 (1 - §92—) e PP LU g (5.2.29)
1°0 2Po Po Mo

where A, B, R R2, w, and Em are material constants. Note that Equation

19
o]
(5.2.29) 1is written in terms of energy per mass which is the usual form
found in the literature. Again, we chose to write our equations of state in

terms of energy per unit volume which results in

filp) = A (1 - —93—) e 1P 4B (1 - —93—) e 2° (5.2.30)

and

fale) = 22 . (5.2.31)

The programmed burn requires the initial calculation of the arrival of the
detonation wave at a material point. If there is only one detonation point
denoted by Xy and if the location of the material point is denoted by X,
then the detonation time is determined by

t, = |x

q - xnl/cd (5.2.32)

d
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where cd is the detonation wave speed (a material property supplied by the
user) and the symbol |-| indicates the Euclidian norm of a vector. Clearly,
if there are multiple detonation points, then Equation (5.2.32) must be
applied for each material point for each detonation point and the arrival

time is the minimum.

In order to spread the burn wave over several elements, a burn fraction
F is computed as

(t - td) Cq
F = min [1, *—-B—ST‘-] (5.2.33)

where BS is a constant which controls the width of the burn wave (defaulted
to 2.5 in the code) and ¢ is the characteristic length of the element which
is <calculated internally in the code as the square root of the area of the
element. If the time t is 1less than td’ the pressure is zero in the
explosive. Otherwise, the pressure is given by

p=F [fl(p) + fz(p)EV] (5.2.34)
When t <« td the detonation wave speed is used as the sound speed in the
material. After the detonation wave has arrived, the sound speed is calcu-—

lated internally from the hypoelastic stress rates and strain rates just as
for all other materials.

This form of the equation of state requires that the internal energy
per unit volume be 1initialized to account for the chemical energy in the
explosive. Parameters for a wide variety of explosives have been tabulated
by Dobratz [36].
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6.0 CONTACT SURFACES

PRONTO currently supports two types of contact surface boundary
conditions: a deformable surface against a rigid plane, and two distinct
deformable surfaces against each other. The first option requires a far
more simple procedure since the constraints on each node are completely
uncoupled.

Contact is treated as a kinematic constraint by PRONTO. This means
that the final product of the contact algorithm is to modify the accelera-
tions of the nodes along this surface such that the kinematic constraints
are satisfied.

PRONTO supports friction for both contact surface options. Either a
simple Coulomb friction model or a velocity dependent friction model may be
selected.

6.1 Deformable-to-Rigid Surface Contact

The rigid surface option in PRONTO imposes the kinematic constraints of
an unyielding plane on a user specified surface of the deformable body. The
plane is defined by a point x and the outward unit normal n. The deformable
surface can be treated as simply a set of unique nodes. The primary
kinematic condition is that the deformable nodes may not penetrate the rigid
plane. In addition, the motion of deformable nodes along the plane may be
restricted subject to a velocity dependent friction law.

6.1.1 Normal! Constraint

We begin by integrating the motion of the deformable nodes without
regard to the kinematic constraints required by the rigid surface. For each
node, we calculate a predicted kinematic state as follows:

a=f/m (6.1.1)

A

; =V + At a (6.1.2)
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X=X+At vV (6.1.3)

In the above equations, f is the residual force vector (sum of external
forces minus sum of internal forces), m is the nodal mass, v is the current
velocity, x 1is the current position, and At is the time increment. The
predicted kinematic quantities are denoted by a superposed hat. Note that
the predicted accelerations and velocities are never stored in a global

array.

We now calculate the depth of penetration of each node into the plane
as shown below. This depth is zero for nodes which are not in contact.

& = max (n-(i - ;), 0 ) (6.1.4)

The magnitude of the force which must be applied to enforce the kinematic
constraint, i.e., which will cancel the penetration, is given by
2

f =686m/ At

. (6.1.5)

This force must be applied in the direction of n. Applying this correction
to Equation (6.1.1) and eliminating the nodal mass, we can express the new

acceleration in the absence of friction as

a =5/ at? (6.1.6)

a=a+a_n (6.1.7)
6.1.2 Friction
Friction resists tangential motion of deformable nodes contacting the

rigid plane. The unit tangent vector is orthogonal to the outward normal
and, therefore, is expressed by

-, l
s = (6.1.8)




The tangential component of the predicted velocity of a node is computed as
follows:

v = sV (6.1.9)
The force which must be applied to cancel the tangential Ve]ocity of a node
is then given by

fs =-m/ At Ve (6.1.10)
where the minus sign above reflects that this force would be applied in the
direction of s, but opposing the motion.

PRONTO currently supports three options for friction: no friction,
Coulomb friction with a constant coefficient of friction, or the velocity
dependent friction 1law found in HONDO II [6]. The coefficient of friction
can be expressed by

S
wo=uo+ (ug - omy) e

(6.1.11)

where Hg and u are the low and high velocity friction coefficients, respec-
tively, and v 1is a decay constant. Clearly, if 4 equals zero, the
coefficient of friction is the constant Kg- Futhermore, if Kq is also equal
to zero, the surface will be frictionless.

The magnitude of the tangential force exerted by the plane on a node
cannot exceed the maximum friction force. This constraint is expressed as

f
S .
ff = T?;T m1n(ufn ’ |fS|) (6.1.12)

Substituting Equations (6.1.5), (6.1.6), and (6.1.10) into the above, then
eliminating the nodal mass yields

v

a, = - IVET min (“an , IVS| / At) (6.1.13)
S
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The total acceleration of the node is then given by

a=a+a n+a s (6.1.14)

6.2 Deformable-to-Deformable Surface Contact

The fundamental condition which must be satisfied between two contact
surfaces is that one surface may not penetrate into the other. The algo-
rithmic challenge is to find the set of nodal forces which will maintain
kinematic compliance. The classic difficulty of contact algorithms is that
elaborate and exhaustive schemes to maintain strict compliance are prohibi-
tively expensive to implement and to execute. Furthermore, because the
surface is discretized for the finite element method, it is virtually impos-
sible to pose an algorithm which always yields unique and meaningful
results.

The contact algorithm 1in PRONTO, as in any other code, represents a
compromise between robustness and efficiency. Our algorithm is designed to
handle very 1large deformations and moderately high impact velocities. The
sample problems in Chapter 9 illustrate a fairly representative, but by no
means exhaustive, range of applicability of the PRONTO contact surfaces.

PRONTO uses a partitioned kinematic approach to contact. The par-
titioning can be adjusted to give a strict master-slave treatment or to
balance the master-slave relationship between the two surfaces. In any
case, the constraint forces conserve momentum.

The contact algorithm is performed in two passes; first with one sur-
face as the master, then with the other surface as the master. One of these
passes will be skipped if a strict master-slave treatment is requested. The

following sections described just one such pass.
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6.2.1 Surface Topology

A surface 1n PRONTO must be continuous and simply connected. It may be
e1ther an open "string" or a closed "loop". The "1nside" of the surface to
PRONTO 1s where the material l1es; 1t 1s assumed that there 1s no material
on the ‘"outside" of the surface. 1In order for a surface node to form a
valid connection, the two adjoining segments must have material on the same
side. By convention, PRONTO orders components of a surface such that the
material 1s to the 1left and the outward normal 1s to the right as one
progresses along the surface.

Figure 6.2.1 11lustrates valid and 1nvalid surface topologies. Frames
(a) and (b) show valid open and closed surfaces, respectively. Material 1is
represented by shading and an arrow 1ndicates the ordering direction for
each surface. Frames (c) through (d) show examples of surfaces which are
invalid to PRONTO. Clearly, frame (c) 1s not continuous and frame (d) 1s
multiply connected. Frame (e) shows a case which appears ambiguous. This
surface s actually simply connected, but not continuous, since the center

point 1s not a valid connection.

PRONTO carefully checks the topology of contact surfaces during
initialization. It will print with an appropriate error message for each of
the 1nvalid cases described above. If the surface 1s found to be valid,
PRONTO w11l build the node 1i1st data structure which contains the topology
of the surface as described below. Note that for a closed surface the
number of nodes and segments are equal (NNODES = NSIDES), while for an open
surface the number of nodes 1s one more than the number of sides (NNODES =
NSIDES+1).

The node 11st data structure, NSNODE(NSIDES+1), contains the list of
surface nodes 1n the order 1n which they appear along the surface. The
first NNODES entries always contain unique nodes; the last entry 1s 1denti-
cal to the first entry (NSNODE(NSIDES+1) = NSNODE(1)) for a closed surface.
The surface 1s made up of a series of segments; each segment 15 a straight
1ine defined by an element side. The node 11st also defines the 1nitial and

terminal node of each segment, since the terminal point of one segment 1s
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Figure 6.2.1.
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Valid (a and b) and Invalid (c, d, and e) Surface Topologies
for Contact Surfaces
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the initial point of the following segment; the segment "N" goes from node
NSNODE(N) to node NSNODE(N+1).

6.2.2 Surface Geometry

PRONTO recalculates the geometry of all contact surfaces at each time
step. A predicted configuration is computed by integrating the motion
without regard to the kinematic constraints required by the contact
surfaces. For each node we calculate:

a=f/m (6.2.1)
V=va+Ata (6.2.2)
X=x+At v (6.2.3)

In the above equations, f 1is the residual force vector {sum of external
forces minus sum of internal forces), m is the nodal mass, v is the current
velocity, x 1is the current position, and At is the time increment. The
predicted kinematic quantities are denoted by a superposed hat. Note that
the predicted accelerations and velocities are never stored in a global
array.

The outward unit normals of the surface segments are critical to
PRONTO's contact algorithm. For convenience of the tracking algorithm
(Section 6.2.3), the array which contains the segment normals,
P(O:NNODES,2), 1is structured so that either side attached to a given node
can be referenced readily; the precedent segment normal to node "N" is
P(N-1,1:2), while the antecedent segment normal is P(N,1:2). The unit
normals of the segments (1 through NSIDES) are calculated as follows:

Y141 ~ Y l
(6.2.4)

17 X141 5
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n, = NI /-v NI-NI (6.2.5)

The ends of the normal array need to be filled in dependent upon whether the
surface is closed or open. For the closed case, we simply copy the last
position to the initial position:

Ny = PNSIDES (6.2.6a)

For the open case, we construct virtual normals such that right outside

corners are formed at the edge nodes:

1 "NoDES = SNSIDES (6.2.6b)

where s represents the unit tangent of a surface segment. This vector is
never stored since it can be readily defined from the unit normal as
follows:

|
s = (6.2.7)

6.2.3 Surface Tracking

Surface tracking is the process of matching points along one surface to
points along its mating surface. For our purposes, it is sufficient to
locate the nearest master node to the possible point of contact for each
slave node. It is 1important to wunderstand that in this context the
"nearness" of a node 1is measured 1in terms of the surficial (along the
surface) distance, rather than the spatial (straight line) distance. Once
we have determined the nearest master node, all that remains is to determine
which of the two master segments the slave node may be contacting. In the
next section (6.2.4), we describe how we decide whether the slave node is in
contact and which master segment it is contacting.

The tracking algorithm truly governs the cost/benefit of the contact
surface capability in PRONTO. The amount of geometric detail that the
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tracking algorithm can resolve determines the range of applicability of the
contact surfaces. On the other hand, exhaustive checks of every slave node
against every master node during every time step will always be prohibi-
tively expensive, and generally unwarranted. The tracking algorithm,
therefore, 1s an area where compromises must be made, but where cleverness
will pay off.

The tracking algorithm currently implemented in PRONTO 1s based on two
assumptions regarding the behavior of the contacting surfaces. The first
assumption 1s that the spatially nearest master node 1s also the surficially
nearest master node to the point of contact. This assumption allows us to
find the nearest node via simple distance calculations. We 1nitialize the
tracking scheme for each slave node S by finding the master node I which has
the minimum distance dI defined by

dI = (xI - xS)-(xI - xS) (6.2.8)

The second assumption we make to streamline the tracking algorithm 1s
that the nearest master node to a given slave node at one time step will be
in the vicinity of the nearest master node at the next time step. This
assumption allows us to update the tracking scheme by simply searching for a
local minimum 1n the vicinity of the previously nearest master node. Thus,
at each twme step, we start at the previously nearest node and search 1n
e1ther the ascending or descending direction along the surface until we find
a master node which satisfies:

dI—l 4 dI 2 dI+1 (6.2.9)
where 1t 1s assumed that the search wraps around the node li1st and
do = Inobes > OnnopEs+1 = 9 (6.2.10)

While the tracking algorithm in PRONTO 1s quite simple, 1t will solve the
majority of contact problems. With varying amounts of user intervention,
this algorithm can handle virtually any problem. We shall explain where
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limitations of the current algorithm arise and how to circumvent them in the
following discussion.

The tracking algorithm may fail when either of the above assumptions is
invalidated. The first such condition can only occur near a very sharp
corner. Figure 6.2.2 illustrates a case where a master node on the back
side of the master surface has the shortest spatial distance to the slave
node. The shortest surficial distance to the slave node is clearly to either
the corner node or its front side neighbor. The symptom which will occur in
this situation is that the slave node will be kicked out of the back side of
the master surface and hook there.

The above condition 1is highly unlikely to occur in any reasonable
probtem. The are three ways to relieve the symptom for this case. The
first, and preferred, method is to refine the mesh at the tip of the master
surface (which should be done to achieve decent accuracy anyway). As a rule
of thumb, the 1length of the side segments should always be less than the
thickness of the material. The second course of treatment is to set the
partition factor (Appendix A, command 27) for the sharp surface so that it
acts only as a slave. The final course of treatment would be to divide the
master surface at the tip. This must be done with caution since the corner
node would then be part of two distinct surfaces, which could lead to a
conflict if these two surfaces contact the same master surface.

The second condition which can cause the tracking algorithm to fail is
a severely undulating master surface. Figure 6.2.3 shows a situation where
a slave node 1is tracking the master surface on the wrong side of a peak.
For this to occur, the master surface must be folding quite rapidly and the
slave surface must be moving tangentially to the original master surface.
The symptom that occurs in this case is that this slave node will never
detect contact. This is also a highly unlikely situation since the tracking
information 1is continuously updated. The remedy for this symptom is quite
simple; the calculation should be restarted (Appendix A, commands 8 and 7)
after the surface peaks and valleys have formed. PRONTO reinitializes the
tracking data when it reads a restart file, which forces an exhaustive
search for the nearest master node via Equation (6.2.8).
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NEAREST (tracked) MASTER NODE
SLAVE NODE

Figure 6.2.2. Case Where a Master Node on the Back Side of the Master
Surface has the Shortest Spatial Distance to the Slave
Node
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NEAREST (tracked)

MASTER NODE SLAVE NODE

Figure 6.2.3. Case Where a Slave Node is Tracking the Master Surface
on the Wrong Side of a Peak
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In addition to the pathological cases described above, the tracking
algorithm 1n PRONTO does not yet support a surface contacting 1tself. This
capabi1l1ty would be useful for buckling shells which fold upon themselves,
as shown 1n fFigure 6.2.4. The problem 1n this 1nstance 1s that the tracking
scheme w111 always find that each node 1s contacting 1tself. Presently, the
only way to handle this situation 1s to divide the surface at the crease
points. The best approach 1s to run the calculation with fairly frequent
restart dumps (Appendix A, command 8), identify a restart state which occurs
after the surface has buckled but before contact, then restart from this
state (Appendix A, command 7) with the proper contact surfaces 1nserted.
The greatest difficulty with this technique 15 that 1t requires manipulation
of the GENESIS mesh file (Appendix D).

6.2.4 Determination of Contact

This section describes how we decide 1f each slave node 15 in contact.
If a slave node 1s 1n contact, we also decide which of the two master seg-
ments connected to the nearest master node 15 1nh contact.

The first task we perform 1n order to determine contact 1s to orient
the slave node with respect to the master segments connected to the tracked
master node. This entails calculating the local depth and position coor-
dinates for both the precedent and antecedent master segments. Figure 6.2.5
11lustrates the geometric 1nterpretation of these quantities which are
defined below.

6p = nI_l-(xI - xs) (6.2.11)
Xp = Sp_pt (X = %) (6.2.12)
6a = nI-(xI - xs) (6.2.13)
Xy = sI-(xs - XI) (6.2.14)
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Figure 6.2.4. Case Where a Surface is Contacting Itself
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Figure 6.2.5. Definition of Local Depth and Position Coordinates
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If 1ts depth (&) 1s positive, we say that the slave node 1s penetrating that
segment. If 1ts position (x) 1s positive, we say that the slave node 1s
along that segment.

It 1s helpful to visualize the dichotomy of the two master segments as
near and far, rather than precedent and antecedent. The distinction 1s made
by the 1line which bisects the corner formed at the master node, which 1s
shown as the centerline 1n Figure 6.2.6. The near segment 15 the one which
11es on the same side of the corner as the slave node. In Figure 6.2.6, the
near segment 1s to the right.

The near segment with regard to the slave node can be determined
read1ly as the segment with the greater position coordinate, as defined 1n
Equations (6.2.12) and (6.2.14), respectively. Figure 6.2.6 11lustrates
this test.

The 1deal condition for determining contact 1s that the slave node 1s
along and penetrating the contacted segment. Unfortunately, this definition
leads to many ambiguous cases because the surface normal 1s not continuous.
One must 1mpose further conditions in order to resolve these ambiguities.

PRONTO's approach to determining contact 15 based on the premise that a
slave node wusually contacts the near master segment as defined above. The
only exception we make to this rule 1s when the master surface forms an
outside corner. In this 1nstance, as 15 shown 1n Figure 6.2.7, 1t 1s 1mpos—
sible to determine which master segment 1s 1n contact by examining just the
depth and position coordinates.

PRONTO detects an outside corner situation when the slave node 15 along
both master segments and penetrating at Tleast one. Figure 6.2.8 shows
examples of the range of master surface corners. The hatched areas 1in
frames (b) and (d) indicate the regime where the outside corner ambiguity

occurs.
The technique we use to resolve the outside corner ambiguity 1s to

determine 1f the slave surface near the node 1n question 1s more strongly 1n
contact with the far master segment than with the near segment. If this 1s
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Figure 6.2.6. Definition of Near and Far Master Segments
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Figure 6.2.7. Illustration of Outside Corner Ambiguities
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Figure 6.2.8. Examples of the Range of Master Surface Corners
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true, we check for penetration of the far segment, rather than the near
segment. The exact test we perform 1s given below for when the precedent
segment 1s the near segment or when the antecedent 15 the near segment,
respectively. These situations are 1ltustrated in Figure 6.2.9. In this
figure, we denote the unit normals to the master surface and the slave
surface by m and n, respectively. The subscript p refers to the precedent
segment, while the subscript a refers to the antecedent segment.

nyem, < noem (6.2.15a)
na-mp <n -m (6.2.15b)

The 1logic that PRONTO follows to determine contact once 1t has 1dentified
the near and far master segments 1s summarized 1n Figure 6.2.10. Note that
there are only three questions. This logic 1s so simple that 1t can be
vectorized efficiently.

The final 1ssue for determining contact 1s to treat edge contacts,
1.e., when the nearest master node 1s at one end of the node li1st. If the
master surface 1s closed, the nearest master node 15 the first i1n the 13ist
(1), and the precedent segment (0) 1s 1n contact, then we wrap around and
contact the last segment (NSIDES) 1n the Tist. This reverses the action of
Equation (6.2.6a). If the master surface 1s open, i1t 15 not legitimate to
contact the precedent segment (0) of the first node (1) nor the antecedent
segment (NSIDES+1) of the Tlast node (NNODES). This 1s because these
"segments" where manufactured by Equation (6.2.6b). If this occurs, PRONTO
will print an error message and stop.

6.2.5 Contact Forces

We wuse a partitioned kinematic approach to enforce compliance between
two contact surfaces. This means that each surface acts as a master for a
fraction of each time step and as a slave for the remainder.

The first task 1n restoring compliance 1s to calculate the penetration
forces 1mposed on the master surface by the slave surface. We define these
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forces as a fraction of the forces which would be imposed by the slave nodes
if the master surface was rigid. This fraction is the partition factor g,
which represents the fraction of each time step for which these surfaces act
as master and slave, respectively. Their roles are reversed for the remain-
ing fraction (1-8).

The penetration force for a slave node is expressed by
2 ~ ~
fp = f m /[ at™ n (xs - xl) n (6.2.16)

where m, is the mass of the siave node, and X and x, are the predicted
coordinates of the slave and precedent master node, respectively. This is
illustrated in Figure 6.2.11.

Next we want to find the response of the master surface to these
penetration forces, such that the response of each contacting slave node is
constrained by its master nodes as shown below.

a . = (1 - &) a, + £ a, (6.2.17)

where a and a ., are the acceleration responses of the slave node,

a
ns’ nl’
precedent master node, and the antecedent master node, respectively. The

interpolation variable ¢ is given by

se(x_ - x.)
g —> L (6.2.18)
s-(x2 - xl)

Equation (6.2.17) couples the response of individual master nodes. The
principle of virtual work 1is applied to generate the following equations
which define the accelerations of the master nodes in response to the
penetration forces.

(6.2.19)

(mI + Z ms ) anI = E fS

S I I

where the summation is over all slave nodes in contact.
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The above expression represents a set of uncoupled equations; one for
each master node. The mass and force contributions to the above assembly
for a given slave node are as follows:

m51 = (1~ §) m (6.2.20)

m, = £ mg (6.2.21)
2

fsl = (1 - §) fp (6.2.22)

f52 = ¢ fp (6.2.23)

After assembling and solving Equations (6.2.19) for the master accelera-
tions, the slave accelerations are interpolated via Equations (6.2.17) and
(6.1.18). Note that this slave response restricts the motion 1nduced by the
penetration force given 1n Equation (6.2.16). In the absence of friction,
the corrected nodal accelerations of the master and slave nodes, respec-
tively, then are given by

a=a+a (6.2.24a)
a=a+a - fp/ms (6.2.24Db)
6.2.6 Friction

Friction resists the relative tangential motion of the contacting slave
nodes. The tangential component of the relative predicted veltocity of the
slave node with respect to the master surface 1s given below in terms of the
unit tangent vector (6.2.7) and the 1ts position along the side (6.2.18).

~

v = s (v - (1 - §) Cl ~ £ vy) (6.2.25)

As with the penetration force (6.2.16), we define the tangential contact
force as a fraction of the force which must be applied to the slave node to
cancel 1ts relative tangentiral velocity. This force 1s given by
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fs = -8 mg / At Ve (6.2.26)
where the minus sign reflects that this force would be applied 1n the direc-
tion of s, but opposing the motion.

PRONTO currently supports three options for friction: no friction,
Coulomb friction with a constant coefficient of friction, or the velocity
dependent friction law found 1n HONDO II [6]. The coefficient of friction
can be expressed by

u=u o+ (uo - uw) e (6.2.27)

where K and u, are the Tow and high velocity friction coefficients, respec-
tively, and v 1s a decay constant. Clearly, 1f v -equals zero, the
coefficient of friction 1s the constant Hg- Futhermore, 1f Ko 18 also equal
to zero, the surfaces will be frictionless.

The magnitude of the tangential force exerted by the master surface on

a slave node cannot exceed the maximum friction force. This constraint 1s
expressed as

f
s
f. = min{u f_, |f.|) (6.2.28)
f ‘fs| n s
where fn 1s the magnitude of the normal contact force as given below.

f = m n-(a s~ fp/ms) (6.2.29)

n

Applying this force to the slave node and balancing forces to the
master nodes, then dividing by the appropriate nodal mass yields the follow-
1ng expressions for the tangential accelerations to these respective nodes.

=f./m s (6.2.30)

a.=-(1-%) ff / m s (6.2.31)
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a, = - £ ff / m, s (6.2.32)

Finally, by adding the above tangential accelerations to Equations (6.2.24a)
and (6.2.24b), the corrected total acceleration of the contact nodes is
expressed in general form for master and slave nodes, respectively, by

a=a+a +a (6.2.33a)

a=a+a - fp/ms +a (6.2.33b)

149 - 150






7.0 BOUNDARY CONDITIONS

PRONTO contains several types of boundary conditions. 1In this section,
we describe how these are implemented 1n the program. It 3is important to
note that the order 1n which these boundary conditions 1s applied 1s crucial
to the accuracy of the program. In Chapter 8, we describe the 1nitializa-
tion and time stepping algorithm which should be referred to 1n order to
determine exactly when the different boundary conditions are applied.

7.1 Kinematic Boundary Conditions

The kinematic boundary conditions described below are all accomplished
by altering the accelerations of the nodal points. The application of these
boundary conditions does not vectorize because they require a function look-
up and a scatter of values. A1l of the kinematic boundary conditions are
nodal boundary conditions.

7.1.1 No Displacement Boundary Conditions

The no displacement boundary conditions are accomplished by setting the
acceleration of the node to zero.

Note: If velocity or acceleration boundary conditions are specified on
a node which has a no displacement boundary condition, they will override

the displacement boundary condition.

7.1.2 Prescribed Velocity Boundary Conditions

The prescribed velocity boundary conditions are accomplished by alter-
ing the nodal point acceleration such that when the accelerations are
integrated once, they provide the proper value of the nodal velocity. The
nodal value of acceleration for the time step 1s calculated by the program
as

¢ = (vt+At - vt)/At . (7.1.1)
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The velocity at the end of the time step is computed by

Viiat = s*f(t + At) (7.1.2)
where s is the scale factor and f(t) is the history function defined by the
user. In Equation (7.1.1), the value of velocity at the beginning of the
time increment, Vis is the value computed by Equation (7.1.2) at the pre-
vious time increment.

Note: If a prescribed acceleration boundary condition is specified by
the user on the same node as a prescribed velocity boundary condition, it

will override the prescribed velocity boundary condition.

7.1.3 Prescribed Acceleration Boundary Conditions

Prescribed acceleration boundary conditions are applied by the program
by setting the nodal acceleration during the time increment to the value
given by

a, = s+f(t) (7.1.3)

where s is the scale factor and f(t) is the history function defined by the
user.

Note: A prescribed acceleration boundary condition will override any
other kinematic boundary condition on the same node.

7.2 Traction Boundary Conditions
The boundary conditions described below involve applied forces to the
boundary of the mesh. The pressure and nonreflecting boundary conditions

are side boundary conditions, while the nodal force boundary condition is a
nodal boundary condition.

152



7.2.1 Pressure

The set of consistent nodal point forces arising from pressures dis-—
tributed over an element side are defined via the principal of virtual work

by
su, fLp = 8uy /; 61(~pn.)dA . (7.2.1)

where the range of the lower-case subscripts is 1 to 2 and the upper-case
subscripts 1 to 4.

Since the virtual displacements are arbitrary, they may be eliminated
to yield:

fig= _-/; 9 pn; dA (7.2.2)

The most general pressure distribution we allow is mapped from nodal point
pressure values via the isoparametric shape functions. The resulting ex-
pression for the consistent nodal forces is

fi= -0, /S' b6y n.dA . (7.2.3)

For the four node constant stress element used in PRONTO, ¢I is given by

1 1 1
$y=3L[+EA , -3SES> (7.2.4)
where
1 -1
I I
[1 = ‘ AI = l ‘ (7.2.5)
1 1
and nny = 1. For the geometry and pressure distribution shown in Figure

7.2.1, it can be shown that
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Figure 7.2.1. Definition of a Pressure Boundary Condition
Along an Element Side
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Xi = Xi1 91 (7.2.6)
and

oX;

nidA = eij3 5‘2—3 d¢ = e1j3 ij AK d¢ . (727)

Then the consistent nodal forces can be written as

Nl —

f.; = -

il pJeU.3 ij AK ¢I¢J d¢ . (7.2.8)

N e

Combining Equations (7.2.4), (7.2.5), and (7.2.8):

1 1
i1 = PoBij3 Xk A [Z Lily + 17 AIAJ] ' (7.2.9)

The above expression is evaluated as

N, =

P = iy Xy Ay = l (7.2.10)

and

1
0= Nos i (7.2.11)
12 l92$

The nodal values for the pressure are calculated using the user supplied
scale factor and time history function. The values are calculated for the
beginning of the time step.

The application of the pressure boundary conditions is fully
vectorized. Blocks of element sides are processed in vector blocks using
the scratch element space. After the consistent nodal point forces are
calculated for a block of element sides, they are accumulated into the
global nodal force array.
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7.2.2 Moving Pressures

The moving pressure boundary condition implemented in PRONTO represents
a relatively simple way of incorporating both a spatial and temporal dis-
tribution of pressure Jloading on a surface. The implementation described
here 1is intended for blast type 1loading on a surface where the blast
originates from some point defined by the coordinates (x0,y0) and propagates
along the surface. We assume that the surface is flat and the distance from
any point on the surface to point (x0,y0) is given by d. Then the pressure
at any point is written as

br (7.2.12)

p(r,d) = are
where 7 is the time measured from the arrival of the pressure wave at the
point and a and b are functions of distance, which are defined below. If w
is the propagation speed of the pressure wave along the surface, then 7 is

given by
T = t0 - d/w (7.2.13)

where to is the pressure initiation time at the point (xo,yo). The time at
which Equation (7.2.12) gives a maximum for the pressure is given by

Toax = 1/b (7.2.14)
which we refer to as the rise time. The peak pressure obtained at this time
is

-1 (7.2.15)

a

Pmax = b ©
We allow the user to define two functions of distance from the point (x0,y0)
which describe the behavior of the pressure wave. The first function
defines the peak pressure as a function of distance while the second
describes the rise time as a function of distance. Using Equations (7.2.14)

and (7.2.15), we can write the parameters a and b as functions of distance
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a(d) = +1 b(d) = == (7.2.16)

The user can define the functions in any manner he sees fit which allows for
a quite general specification of the moving pressure wave. If the user
inputs a zero value for the propagation speed, w, the code assumes that the
pressure 1is applied instantaneously along the surface (i.e., this cor-
responds to an infinite propagation speed). If the assumed pressure
description given by Equation (7.2.12) is not suitable, it is a simple task
to change this description to some other two parameter functions and alter
the code accordingly. Of course the definition of the parameters, a and b,
as a function of distance given by Equation (7.2.16) would have to be
rederived and changed as well.

7.2.3 Nodal Forces

Nodal point load forces are applied by determining the magnitude of the
force determined by the user supplied scale factor and time history
function. The time history function is evaluated at the beginning of the
time step.

7.3 Nonreflecting Boundaries

In a number of geotechnical applications, it is desirable to model an
infinite or semi-infinite space. In these applications, waves are trans-—
mitted outward from some disturbance and are absorbed in the far field.
PRONTO contains a boundary condition specification which will absorb waves
and not reflect them back into the interior mesh. This allows for a much
smaller mesh and a significant reduction in the number of degrees of freedom
in the problem.

The absorbing or nonreflecting boundary which is implemented in the
code was proposed by Lysmer and Kuhlemeyer [37] and discussed in detail by
Cohen and Jennings [38]. The exterior infinite region is replaced by an
energy absorbing boundary condition. The basic idea is to apply boundary
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tractions which will exactly cancel the stresses which are generated at the
free surface. On this boundary surface, tractions are applied of the form

o, =0V, an (7.3.1)
and
to=p Y, at (7.3.2)
where:
0, = normal stress applied to the boundary
tS = shear stress applied to the boundary
Gn = velocity component normal to the boundary
ﬂt = velocity component tangential to the boundary
p = current density of the material at the boundary
VS = current s-wave velocity in the material at the boundary

V_= current p-wave velocity in the material at the boundary

The wave speeds required in Equations (7.3.1) and (7.3.2) are calculated
using the current shear and dilatational moduli determined in Section 3.4.

The tractions given by Equations (7.3.1) and (7.3.2) are used with the
consistent nodal forces which were derived in Section 7.2.1. The nodal
normal and tangential velocities are determined for the two nodes on the
element side to determine the correct tractions. These are used in Equation
(7.2.11) for both the normal and shear components to give the proper consis—
tent nodal point forces for the absorbing boundary.
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The application of the nonreflecting boundary condition is vectorized
as 1s the pressure boundary condition. The effective moduli required for
the wave speed determinations in Equations (7.3.1) and (7.3.2) are computed
and stored during the loop on the elements for elements having this boundary
condition specification.
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8.0 INITIALIZATION AND TIME-STEPPING ALGORITHM
8.1 Initialization

The user defines a mechanics problem by specifying material properties,
body geometry, initial conditions, tractions, and kinematic boundary
conditions. PRONTO does an extensive amount of data checking to try to
insure that the user has defined a meaningful mechanics problem. These
checks range from mundane (e.g., Are nonzero and positive mass densities
provided for the materials?) to more subtle (e.g., Are all the contact
surfaces simply connected?). We do not guarantee that PRONTO will always
detect a bad set of data, but experience with it has shown that it is
usually smarter than the authors.

By "initialization" we mean the calculations which must be performed
and the data structures which must be set up before entering the time step-
ping loop. There are two initialization processes in PRONTO. The first has
to do with setting up the initial data structures which are specified by the
user. This 1is all done in the INIT routine which is called from the main
program. At this time the initial displacements, velocities, and accelera-
tions are all set to zero. Then the initial velocities defined by the user
are set. The stresses are initialized to zero and the internal state vari-
ables are initialized to the appropriate values for all of the materials.
The initial tracking of the contact surfaces is also performed in the INIT
routine.

The second and more subtle initialization which must be performed
concerns the resolution of the kinematic constraints which the user has
defined with the initial velocity field, which the user has also defined. A
simple example of why this is required is the case of a bar striking a rigid
wall at some nonzero 1initial velocity. The user defines a rigid contact
surface and gives all the material in the bar an initial velocity. But the
first row of nodes (initially on the rigid surface) has the initial velocity
at time zero; whereas, physically it is in contact and should have zero
velocity. It would be a simple matter to just check for this type of condi-
tion and set the nodal velocities to zero, but this procedure fails to
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correctly transfer momentum, to correctly initialize the artificial bulk
viscosity pressure in the first row of elements, to correctly predict the
strain rates, and to correctly predict stable time increment. The problem
is especially severe if the impact velocity is on the order of the wave
speed of the material. For the case of two deformable surfaces (the general
contact case), the correct initialization of the kinematic constraints is of
even more importance.

In order to correctiy perform the initialization, we must first perform
what we call a pseudo-time increment. A trial stable time increment is
determined in the INIT routine while calculating the element masses. This
time 1increment 1is based on the state of the body defined by the user which
is, in general, stress free. Essentially, it is the time increment which
would have been stabie had there been a previous time step. Remember that
the stable time increment prediction always looks backward and we rely on
the conservativeness of Equation (3.5.5) to remain stable. The pseudo-time
increment 1is performed 1in the SOLVE routine before entering the time step
loop. The algorithm is:

1. Set up a pseudo-time step by setting the accelerations to the
trial velocities divided by the pseudo-time increment and the
velocities to zero. Note that these accelerations are purely
an algorithmic invention and have nothing to do with initial
accelerations which we correctly calculate at the top of the
time step loop. This set of kinematic conditions is the same
as the original set specified by the user if no kinematic
conditions are present. The velocities must be zero so that
we do not integrate the friction in the initiatization
calculation.

2. Predict a new configuration based on the pseudo-time incre-
ment and the user supplied initial velocities.

3. Calculate acceleration corrections to enforce kinematic
constraints on initial velocities.
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4. Apply kinematic boundary conditions (except prescribed
accelerations).

5. Alter initial velocities to enforce kinematic constraints and
reset current coordinates to the original configuration.

8.2 Time Step Loop

The order in which calculations are performed during the time step loop
is crucial to the question of the accuracy of the algorithm. Our time
stepping algorithm proceeds in the following order:

1. Advance the constitutive state to the end of the time incre-
ment, calculate internal forces due to stress divergence,
artificial viscosity, and hourglass resistance, and determine
the stable time increment.

2. Apply external loads: pressures, quiet boundaries, and nodal
forces.

3. Calculate accelerations and predict the configuration at the
end of +time step ignoring kinematic constraints. This
predicted configuration will be used in the contact and rigid
surface routines to determine the corrections which must be
made to the accelerations to bring the surfaces back into
compliance.

4, Enforce contact surface and rigid surface constraints by
altering the accelerations.

5. Apply kinematic boundary conditions by altering the accelera-
tions so that the kinematic constraints are satisfied:

displacement, velocity, and/or acceleration.

6. Write output, if timely.

163



7. Integrate the velocities and displacements using the altered
accelerations and compute the current spatial coordinates
which reflect the kinematic constraints.

8. Update the current value of time and go back to step 1 if
more time is required. Otherwise, exit the time step loop.

Most of the computation time in PRONTO occurs in step 1. This is where
the elements are processed in vector block loops. We calculate the gradient
operator, determine the strain rates, advance the constitutive state, deter-
mine the critical time increment, and calculate the divergence of the

stresses for a block of elements at a time.
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9.0 NUMERICAL EXAMPLES

In this chapter, we present several representative example problems
which demonstrate some of the features of the numerical algorithms which
were described in previous chapters. We will refer to the particular sec-
tion or chapter so that the reader can gain a better understanding of
algorithms we consider vital to the success and accuracy of PRONTO. Only
the PRONTO input instructions are shown here; the geometric definitions of
the mesh are not given.

9.1 Simple Shear

This 1is a simple one element example problem which demonstrates the
accuracy of the finite rotation algorithm described in Section 3.3.
Figure 9.1.1 shows the one element mesh and the boundary conditions applied
as well as the PRONTO input required to define the problem. The prescribed
constant velocity on the top of the element is maintained until the element
has experienced a total shear strain of 400 percent. The deformations in
the element are totally prescribed by the kinematic boundary conditions,
which means that the time step is arbitrary and the time integration cannot
go unstable. Hence, the choice of the mass density simply serves to fix the
number of time 1increments used to integrate the stresses and rotations to
the end of the problem. We ran this problem using a mass density which
resuited in 400 time steps (1 percent shear strain per time step) and the
results were almost indistingishable from the analytical solution given in
Figure 2.2.2. The numerical accuracy does not degenerate significantly
until the strain increment approaches 5 percent (of course, this strain
increment is unreasonable for the integration of any real constitutive
model).

9.2 Rotating Cylinder
The rotating cylinder problem illustrated in Figure 9.2.1 was proposed
by Longcope and Key [39] as a means of exercising finite rotation algo-

rithms. The cylinder has an initial angular velocity of 4000 rpm with a
zero 1initial stress state. Of course, this is not physically possible
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PLANE STRAIN
MATERIAL,1,ELASTIC,1.346E-6

YOUNGS MODULUS, 1. ,POISSONS RATIO,O,
END
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OUTPUT TIME, .1
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Figure 9.1.1. Geometry and PRONTO 2D Input for the Simple Shear Problem




because the body forces would generate a stress field under this angular
velocity, but these initial conditions are acceptable for this numerical
experiment. The inside of the cylinder experiences a step load in pressure
to a value of 9780 psi, which causes the cylinder to expand. The material
model is elastic/plastic with kinematic hardening. Figure 9.2.2 shows the
maximum principal stress in the cylinder for the element labeled A in Figure
9.2.1. Since the cylinder is thin, the maximum principal stress corresponds
to the hoop stress and is the only stress component of interest in the
problem. Examination of Figure 9.2.2 shows that the material first loads up
elastically until the yield stress of 41500 psi is reached. It then strain
hardens until the cylinder reaches its maximum expansion, where an elastic
rebound occurs. The first cycle of rebound actually unloads to the point
that the material begins to yield again. Remember that the hardening is
kinematic so when the material begins to yield again, the state of stress
has actually crossed back over the yield surface in stress space and strain
hardening occurs as it begins to yield. The cylinder then settles into a
purely elastic rebound mode where the cylinder oscillates in a "breathing"
mode. This oscillation occurs entirely within the yield surface in stress
space.

This problem illustrates two features of the numerical algorithms in
PRONTO. First, the example problem serves as a test of the finite rotation
algorithm of Section 3.3. During the time shown in Figure 9.2.2, the ele-
ment labeled A rotates 90 degrees to the position labeled B in Figure 9.2.1.
This is a very large finite rotation in which both the stress and the tensor
internal state variable of backstress must be correctly rotated. More than
ten thousand time steps were performed during the 90-degree rotation. The
obvious question is, "What is the numerical drift in the solution over such
a large number of time steps?” To determine this, we also plotted the
maximum principal stress for the element which started in position B, and
the results were identical to those for element A. These are two elements
which have stress states which are oriented 90 degrees from one another.
The principal values do not drift apart even though the material is ex-
periencing extremely large rotations and large nonlinear deformations.
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TITLE

wo = 4,000 rad/sec
-.- = 9,760 psi

PRESSURIZED RING TEST PROBLEM, OMEGA = 4000
INITIAL VELOCITY ANGULAR = 1,4000
TERMINATION TIME = .4E-3
OUTPUT TIME,.O0lE-3

PLOT TIME =

0.

MATERIAL,1,ELASTIC PLASTIC,2.508E-4
YOUNGS MODULUS = 1.03E7 , POISSONS RATIO = .33333
YIELD STRESS = 4.15E4 , HARDENING MODULUS = 5.17E5 , BETA = 0

END
FUNCTION
0,1

1,1
PRESSURE
EXIT

1

100,1,9760

Figure 9.2.1. Definition of the Rotating Cylinder Problem
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The second feature which is illustrated is the stable time increment
control described in Section 3.5. Figure 9.2.3 shows a plot of the time
increment chosen by the code as a function of time. During the initial
elastic loading the stable time increment is relatively constant, decreasing
slightly due to the change in radius of the cylinder. As the cylinder
yields, the time step rises because the material has a softer effective
modulus. As elastic rebound begins, the time increment size returns to the
small size that was used in the initial elastic loading. When the cylinder
begins to yield again on the backside of the first rebound, we see a jump in
the stable time increment. Finally, the rebound becomes completely elastic
and the time step increment becomes almost constant with the slight oscilla-
tion due to the oscillation in the geometry of the cylinder.

9.3 Explosive Pipe Closure

In this problem, two concentric pipes have the annulus between them
filled with high explosive (HE). The inside radius of the inner pipe is
1 cm, and the inside radius of the outer pipe is 2 cm. Both pipes are steel
with a wall thickness of .2 cm. Each pipe has 6 elements through the wall
thickness, and the HE has 24 elements through its thickness. The problem is
analyzed as a piane strain problem and only one-quarter of the geometry is
modeled due to symmetry. The analysis used 75 elements around the quarter
circumference, for a total of 2700 elements and 2812 nodes in the probiem.
The input data deck and a schematic drawing of the problem are shown in
Figure 9.3.1. This particular example is included here to demonstrate the
use of an equation of state, in this case the JWL explosive equation of
state (see Section 5.2.4.). The HE was detonated at a point on the inside
edge of the outer pipe which lies equidistant from the two coordinate axes
(along the line x = y). The units in this problem were cm, gm, and usec.

The problem was run to 7.5 microseconds, at which time the inner pipe
has been nearly compressed into a solid mass. Figure 9.3.2 shows a sequence
of deformed configurations. The numerical solution took 434 time steps and
required 14.35 cpu seconds on the CRAY XMP-24 under CTSS.
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PLOT ELEMENT = PRESSURE,DENSITY
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YOUNGS MODULUS = 2,211E-2 , POISSONS RATIO = .279

YIELD STRESS = .0043 , HARDENING MODULUS = O , BETA = O
END

MATERIAL, 2 ,HYDRO,1.9

PRESSURE CUT = 0.

END
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END

EXIT

Figure 9,3.1. Definition of the Explosive Pipe Closure Problem
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9.4 Missile Impact

The next example problem involves the structural effects of a 600 foot
per second head-on impact of a missile against a hard target. The response
of the front section of the missile was computed for 200 microseconds fol-
lowing the initial instant of impact against the assumed target, an
unyielding plane perpendicular to the direction of motion of the missile.
The finite element mesh for the calculation was comprised of 1157 nodes and
945 elements. The model included the region of the missile from the tip to
the point at which the forward case switches from conical to a cylindrical
cross section. An extra region was appended to the model at the latter
point in order to add the equivalent mass of the remainder of the missile.

Thirteen contact surfaces were used in the model to separate the
various components in the missile. A rigid surface was used to model the
hard target. Figure 9.4.1 shows the mesh and the location of the various
slide 1lines used in the model. Figure 9.4.2 contains the input file for
this problem. We have inciuded this example problem to illustrate how easy
it is to use PRONTO with problems containing a large number of contact
surfaces which undergo very large deformations.

Figures 9.4.3 and 9.4.4 show the deformed mesh at 100 and 200
microseconds, respectively. This problem required 600 seconds of cpu time
on the CRAY/XMP-24 under CTSS.

9.5 Forging Problem

The last example problem represents the drawing of a spherical cup from
an initially flat copper disk. Figure 9.5.1 shows the original geometry of
the dies and the disk. All of the nodes on the rigid dies were given
prescribed displacement boundary conditions using either the no displacement
boundary condition or the prescribed velocity boundary condition.
Consequently, there 1is no deformation 1in the dies and the material
properties wused for that material are of no importance. In fact, we used
the material deletion option to delete that material from the mesh at the
beginning of the analysis. The kinematic boundary conditions applied to the
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TITLE

600FPS,90Deg Hard Impact
AX1SYMMETRIC

NO DISPLACEMENT X = 1

TERMINATION TIME = 200 E-6

OUTPUT TIME = 1 OE-6

PLOT TIME = 10 E~6

PLOT NODAL = VEL REACT

PLOT ELEMENT = PRESSURE, VONMISES
PLOT STATE = EQPS

INIT VEL MAT = 1, 0, -7200
INIT VEL MAT = 2, 0 , -7200
INIT VEL MAT = 3, 0 , -7200
INIT VEL MAT = 4, 0 , ~7200
INIT VEL MAT = 5, 0 , ~7200
INIT VEL MAT = 6, 0 , ~7200
INIT VEL MAT = 7, 0 , -7200
INIT VEL MAT = 8, 0 , ~7200
INIT VEL MAT = 9, 0., -7200
INIT VEL MAT = 10, 0 , ~7200

MATERIAL, 1, ELASTIC PLASTIC, 7 32E~4 $ 15-5 PH S S (Ring Nut, Nose Bolt)
YOUNGS MODULUS = 28 5E+6 . POISSONS RATIO = 27

YIELD STRESS = 170 E+3 , HARDENING MODULUS = 2 85E+6 , BETA = 1

END

MATERIAL., 2, ELASTIC PLASTIC, 7 32E~-4 $
YOUNGS MODULUS = 28 S5E+6 , POISSONS RATIO =
YIELD STRESS = 170 E+3 , HARDENING MODULUS =
END

MATERIAL 3, ELASTIC PLASTIC, 7 33E~4 $
YOUNGS MODULUS = 29 OE+6 , POISSONS RATIO =
YIELD STRESS = 125 E+3 , HARDENING MODULUS =
END

MATERIAL., 4. ELASTIC PLASTIC, 2 54E-4 $ 6061-T6 Aluminum (Front Support)
YOUNGS MODULUS = 9 9E+6 , POISSONS RATIO = 33

YIELD STRESS = 35 OE+3 , HARDENING MODULUS = 9 9E+5 , BETA = 1|

END

MATERIAL, 5, ELASTIC PLASTIC 7 32E-4 $
YOUNGS MODULUS = 28 S5E+6 , POISSONS RATIO =
YIELD STRESS = 170 E+3 , HARDENING MODULUS =
END

MATERIAL, 6, ELASTIC PLASTIC, 7 21E-3 $ Tungsten Mass (Impact Sensor)
YOUNGS MODULUS = 58 5E+6 , POISSONS RATIO = 283

YIELD STRESS = 160 E+3 , HARDENING MODULUS = 58 S5E+4 , BETA = 1

END

MATERIAL, 7. ELASTIC PLASTIC, 7 32E-4 $
YOUNGS MODULUS = 28 5E+6 , POISSONS RATIO =
YIELD STRESS = 170 E+3 , HARDENING MODULUS =
END

MATERIAL, 8. ELASTIC PLASTIC, 7 33E-4 $ 4340 Steel (Explosive Bolt)
YOUNGS MODULUS = 29 OE+6 , POISSONS RATIO = 3

YIELD STRESS = 125 E+3 , HARDENING MODULUS = 29 OE+5 ., BETA = 1

15-5 PH S S {(Nose Cap)
27

2 B5E+6 , BETA = 1
4340 Steel (Forward Case)
32

2 90E+5 , BETA = 1

15-5 PH S S (lmpact Sensor Plate)
27
2 85E+8 , BETA = |

15-5 PH S S (1 S Backing Plate)
27
2 85E+6 , BETA = 1

END

MATERIAL, 9, ELASTIC, 4 75E-2 ¢ Equivalent mass elements
YOUNGS MODULUS = 30 QE+6 , POISSONS RATIO = 3

END

MATERIAL, 10, ELASTIC, 2 B5E-2 $ Extra material mass
YOUNGS MODULUS = 3 OE+6 , POISSONS RATIO = 3

END

RIGID SURFACE, 11, ©
RIGID SURFACE, 21, 0
RIGID SURFACE 22 O
0
0
0

cooooo
[ I

RiGID SURFACE 23
RIGID SURFACE, 31,
RIGID SURFACE, 81. ,
CONTACT SURFACE 11, 81,10
CONTACT SURFACE 11, 21

CONTACT SURFACE 21, 31, 10
CONTACT SURFACE, 21, 51

CONTACT SURFACE, 21, 61

CONTACT SURFACE, 21, 71

CONTACT SURFACE, 21, 81

CONTACT SURFACE, 22. 23

CONTACT SURFACE, 31, 71

CONTACT SURFACE, 41, 101, 0, 10
CONTACT SURFACE, 51, 81

CONTACT SURFACE, 51, 61

CONTACT SURFACE, 61, 71

EXIT

Docoooo
cocococoe

Figure 9.4.2. PRONTO 2D Input for the Missile Impact Problem
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Figure 9.4.4. Deformed Mesh for the Missile Impact at 200 Microseconds
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nodes on the dies continue to be applied even though the elements to which
they are connected have been deleted from the problem. Likewise, the con-
tact surfaces continue to enforce the contact conditions even though the
elements connected to them have been deleted. Since the dies are rigid, we
set the contact surfaces to a purely master/slave relationship by setting
the bfac parameter (Appendix A.27) to =zero on the the contact surface
definitions in the input file. Since we were modeling a relatively slow
(quasistatic) process, we set the bulk viscosity (Appendix A.14) to a value
of .5 to provide a large amount of damping. Figure 9.5.2 shows the input
file for this problem. The mesh contains 1663 nodes and 1324 elements.
Only the 1200 elements in the copper disk are active (i.e., for these ele-
ments constitutive calculations are performed). There are six elements
through the thickness in the copper disk.

The analysis was performed in two parts. First, the edge of the copper
disk was crimped by moving down the upper right-hand die. This motion
occurs in 0.1 seconds of real time, requiring 3968 time steps in PRONTO.
The coefficient of friction between the die and the copper was set to 0.2.
Figure 9.5.3 shows a closeup of the deformed mesh before and after this was
accomplished and after the second step described next was completed. The
second step involved drawing the copper disk into a hemispherical cup by
moving the punch down 40 mm at a constant velocity of 39.6 mm/sec. The
coefficient of friction between the dies and the copper was .08. The total
motion occurs in 1.0 seconds of real time requiring an additional 49264 time
steps. Two deformed shapes during the motion of the punch are shown in
Figure 9.5.4. The total cpu time required for the 53232 total time steps
was 1497 seconds on the CRAY/XMP-24 under CTSS.

The 1load deflection curve for the process is shown in Figure 9.5.5.
The initial peak and rebound of the force at a displacement of 2 mm is due
to the 39.6 mm/sec impact of the die onto the copper disk. The oscillations
which occur in the force after a displacement of 25 mm are caused by the
slip of the copper from between the dies used to crimp the edge of the disk
(see Figure 9.5.3c). Figure 9.5.6 shows the radial displacement of the node
on the far 1left edge of the copper disk on the centerline. The initial
positive radial displacement is due to the initial crimping. Up to a punch
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TITLE
DEEP DRAWING CRIMP FRICT = 2 PUNCH FRICT = 08
AXISYMMETRIC
BULK VISCOSITY= 5.1 2
TERMINATION TIME = 1 1
OUTPUT TIME = 005
PLOT TIME = 050
WRITE RESTART = 1
PLOT NODAL = D!SPLACEMENT, REACTION
PLOT STATE = EQPS
PLOT ELEMENT = STRESS,VONMISES, PRESSURE
FUNCTION 1
0 1
10
10
ND
UNCTION 2

O T X —

1
1

- O O

111

END

NO DISPLACEMENT X
NO DISPLACEMENT X
NO DISPLACEMENT X
NO DISPLACEMENT X =
NO DISPLACEMENT Y =
PRESCRIBED VELOCITY =2, 1, -4 002
PRESCRIBED VELOCITY =3 ,2, -39 6
CONTACT SURFACE = 200 , 100 , 1 , O
CONTACT SURFACE 300 , 100 , 0 , O
CONTACT SURFACE = 500 , 400 , O , O
CONTACT SURFACE 600 , 400 , 1 0

!
o B D W N

1

MATERIAL 1,ELASTIC,1 O $ RIGID DIES
YOUNGS MODULUS = 1 0 , POISSONS RATIO = O

END

DELETE MATERIAL 1 = O

MATERIAL 2 ELASTIC PLASTIC,9 $ COPPER

YOUNGS MODULUS
HARDENING MODUL'IS
END

EXIT

It

103 4E6 , POISSONS RATIO = 3
7 E4 , YIELD STRESS = 55 16E3 BETA = 1

i

Figure 9.5.2. PRONTO 2D Input for the Hemispherical Punch Problem
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Figure 9.5.3. Close-ups of the Deformed Shapes of the Edge of the Plate at
Times 0.0, 0.1, and 1.1 Seconds
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Figure 9.5.4. Deformed Shapes of the Hemispherical Punch at Times 0.7 and
1.1 Seconds; Punch Velocity = 39.6 mm/sec
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184

40




0.03 . T |

0.00 —\

|

O

o

(7]
/

—
P
¥
O
2
&
2-0.06
2 -0.
<y
[+ 4

—0.12

0 5 10 15 20 25 30 35 40
DISPLACEMENT

Figure 9.5.6. Punch Displacement Versus Radial Displacement of a Point on
the Edge of the Copper Plate; Punch Velocity = 39.6 mm/sec
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displacement of 20 wmm, there is no stippage. At a punch displacement of
20 mm, there is slippage which stops at a punch displacement of 25 mm.

Modeling the problem with different punch velocities can have a
dramatic effect on the ability to draw the copper disk into a hemispherical
cup. We ran the problem using a punch velocity of 66 mm/sec so that the
same punch motion of 40 mm occurs in .6 seconds. With this punch velocity,
the copper does not slip as early at the edges, and a neck forms in the
copper under the punch. Figure 9.5.7 shows the formation of the neck. The
ltocation of the neck is strongly dependent on the rate of drawing.

9.6 Impact on Copper Target

This example problem s taken directly from the WONDY [3] manual
(example problem 3, page 171). It represents the impact of a copper plate
onto a copper target. A plate of thickness .001 m impacts a target of
thickness .002 m at a velocity of 210 m/sec. The lateral displacements are
constrained resulting in a one-dimensional response. There are 20 elements
through the thickness of the plate and 40 through the thickness of the
target. There 1is a contact surface defined between the plate and the
target. The geometry defining the problem and the PRONTO instructions for
this problem are shown in Figure 9.6.1.

In the WONDY calculation of this problem, the fracture stress was set
to a value of 3.5 GPa. We used the adaptive element death option (see
Section 3.8, Appendix A.34) to delete elements when the tensile pressure
exceeded this value.

The WONDY code uses a higher amount of artificial bulk viscosity than
the default values 1in PRONTO (see Section 3.7). For this problem, we have
changed the 1linear and quadratic bulk viscosity coefficients from their
default values to 0.1 and 2.0, respectively (Appendix A.14).

Figure 9.6.2 shows a sequence of shock profiles up to 1.4E-6 seconds.

The results very well agree with the WONDY calculations. There is some
discrepancy between the results from the two codes late in time (after
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. e
v a= ,001 m (20 elements)

Copper Copper b = ,002 m (40 elements)

| — V = 210 m/sec
;contact surface

TITLE
COPPER PLATE IMPACTING COPPER TARGET (210 M/S)
PLANE STRAIN

BULK VISCOSITY = .1, 2.
TERMINATION TIME = 1.5E-6

OUTPUT TIME = .15E-6

PLOT TIME = ,05E~6

PLOT NODAL = VELOCITY

PLOT ELEMENT = PRESSURE,BULKQ

NO DISPLACEMENT Y = 2

INITIAL VELOCITY MATERIAL = 1 , 210 , O,
CONTACT SURFACE, 100,200

DEATH = 1 , PRESSURE, MIN ,-3.5E9
DEATH = 2 , PRESSURE, MIN ,-3.5E9
MATERIAL 1 = HYDRO , 8930.
PRESSURE CUTOFF = -10E9

END

EQUATION OF STATE 1 = MG US-UP
€0=3940, S=1.489, GAMMA=1.99

END

MATERIAL 2 = HYDRO , 8930.
PRESSURE CUTOFF = -10E9

END

EQUATION OF STATE 2 = MG US-UP
C0=3940, S=1.489, GAMMA=1.99

END

EXIT

Figure 9.6.1. Definition of the Copper Target Impact Problem
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Figure 9.6.2. Caiculated Shock Profiles for the Copper Target Impact
Problem
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1.0e-6 seconds). This is due to the different manner in which the two codes
treat the tensile failure. In WONDY, the material is allowed to carry load
again 1in compression after it has failed in tension, while in PRONTO the
material is deleted from the mesh and cannot carry load either in tension or

compression.
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APPENDIX A
PRONTO 2D USERS MANUAL

Listed below are all the keywords used in the PRONTO 2D input.. They are
listed in the order they appear in the text beiow.

TITle

PLAne STRain
AXIsymmetric
TERMination TIme

OUTput TIme

PLOT TIme

REAd REStart

WRIte REStart

TIme STep SCale

10. EXIT

11. PLOT NODa1l

12. PLOT ElLement

13. PLOT STate

14. BULK VIScosity

15. HOURglass STIFfening
16. FUNCtion

17. NO DISplacement

18. PREScribed VELocity

19. PREScribed ACCeleration
20. PREScribed FORce

21. INITial VELocity NODeset
22. INITial VELocity MATerial
23. INITial VELocity ANGular
24. PRESsure

25. MOVing PREssure

26. SlLent BC

27. CONtact SURface

28. RIGid SURface

29. MATerial

30. EQuation OF STate

31. DETonation POint

32. BURN CONstant

33. MATerial POint

34. DEATh

35. DElLete MATerial

OCONOONWN =

The 1input data to PRONTO is a free field form using keywords. The keywords
are intended to define a user friendly program language input. The input is
order independent and can be entered in any order the user finds convenient.
Words typed below in UPPER CASE represent keywords in the list above. Most
of the words can be abbreviated to the first few characters. In the list
above, the upper case characters indicate the shortest abbreviation allowed.
The words typed in lower case below indicate variables for which the user
should enter a value.

The free field input allows the user to delineate entries by either a blank,

a comma, or an equals sign. We find it useful to use blanks with commands
(keywords), equal signs to separate keywords and/or lists, and commas for
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lists of values. The material data requires material cues and their as-
sociated values and equal signs are useful there. See the example input
below.

A dollar sign indicates that whatever follows on the line of input is a

comment and is ignored. An asterisk indicates that the current input line
is to be continued on the next line.

1. *x*xxx  TITLE
(enter a suitable title on the next line)

2. xx*xxx P ANE STRAIN (default) (Sec 3.1.1)

3. xxkxx AXISYMMETRIC (Sec 3.1.2)

4, xxxxx  TERMINATION TIME, tend
tend time to terminate the analysis

5. Xxxxxx  QUTPUT TIME, tout
tout time interval at which to print output
(default = tend/200, where tend is from
the TERMINATION TIME, command 4 above)

6. *xx*xx  pIOT TIME, tplot, tstart, tpend

tplot time interval at which to write plotting
data base (default = (tpend-tstart)/10 )

tstart time to start writing data on plotting
data base (default = 0.)

tpend time to stop writing data on plotting

data base (default = tend from
TERMINATION TIME 1line)

7. *xxxxx  READ RESTART, restm (Append F)
restm time at which restart is to begin

8. *x*xxx  WYRITE RESTART, trsdmp (Append F)
trsdmp time interval at which to write restart

dump files (default is to write no
restart files)

9., *%xxx  TIME STEP SCALE, scft, ssft (Sec 3.5)
scft scale factor to be applied to the
internally calculated time step
(default = 1.0)
ssft scale factor to be applied to the
internally calculated time step if
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strain softening occurs (default = 1.0)
See Section 3.5.

10, **xxxx  EX]T (required to terminate the input data)

11. ***x** p| 0T NODAL, nodal name 1, nodal name 2, .....
allowable nodal variable names:
DISPLACEMENT - nodal displacements ( DISPLX,DISPLY )
VELOCITY - nodal velocities ( VELX,VELY )

ACCELERATION - nodal accelerations ( ACCLX,ACCLY )
MASS - nodal lumped masses ( MASS )
REACTION - nodal reactions ( RX,RY )

The default nodal variables written on the plotting data base are
the displacements, velocities and accelerations. The MASS
specification results 1in having the lumped nodal masses written on
the data base. The user always gets the displacements whether he
asks for them or not.

The names in parenthesis indicate the alphanumeric name of the
variables which are written on the plotting data base. The default
element variables are the stresses and the energies.

12, **%*%*x Pl OT ELEMENT, element variable 1, element variable 2, ....
allowable element variable names:
STRESS - stresses ( SIGXX,SIGYY,SIGZZ,TAUXY )

ENERGY - internal energy per unit volume ( ENERGY )
STRAIN - total strains ( EPSXX,EPSYY,EPSZZ,EPSXY )
RATEDFM - deformation rates ( DXX,DYY,DZZ,DXY )
STRETCH - material stretches: V of F =V R

( STRECHXX,STRECHYY,STRECHZZ,STRECHXY )
ROTATION - material rotations: R of F =V R

( COSTHETA,SINTHETA )
DENSITY - current mass per unit volume ( DENSITY )
PRESSURE -~ pressures ( PRESSURE )
VONMISES - Von Mises equivalent stress ( VONMISES )
HG - hourglass resistance forces ( HGX,HGY )
BULKQ — fraction of pressure due to bulk viscosity

( BULKQ )

The names in parenthesis indicate the alphanumeric name of the
variables which are written on the plotting data base. The default
element variables are the stresses and the energies.

13. **x*** p| OT STATE, state variable 1, state variable 2, .....

The user can ask for any of the internal state variables to be written
on the plotting data base. Since all materials do not have the same
internal state variables (some have none), a zero will be written on
the data base for an element using a material model that does not have
a state variable which is specified by the user. Hence, if the user
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14.

15.

16.

asks for EQPS (equivalent plastic strain) and ALPHA11l,ALHAZ22,ALPHA33,
and ALPHA12 (back stress components for kinematic hardening) and he
has a model where half the mesh uses the ELASTIC material and half the
mesh uses the ELASTIC PLASTIC material, much of the data written on
the plotting data base will contain zeros. The table below gives the
internal state variables names for all the current material models.
See the theory section for definitions of the variables if they are
not obvious.

The default state variables are none.

WARNING: Indiscriminate use of this option can create extremely large
plotting data bases.

LOW DENSITY FOAM
SOIL N FOAMS

EP TEMP DEPEND
EP HYDRODYNAMIC

MATERIAL ALLOWABLE NAMES
ELASTIC (no internal state variables)
ELASTIC PLASTIC EQPS  ALPHA1l ALPHA22 ALPHA33 ALPHA12 RADIUS
VISCOPLASTIC EQPS  SIGYLD
DAMAGE EQPS  DAMAGE  EVMAX FRAGSIZE CRKDENS
HYDRO (no internal state variables)

(no internal state variables)
EVMAX EVFRAC EV NUM
EQPS  ALPHA1l ALPHA22 ALPHA33 ALPHA12 RADIUS TEMP
EQPS  ALPHA1l ALPHA22 ALPHA33 ALPHA12 RADIUS

*xxx*x BULK VISCOSITY, bi, b2 (Sec 3.7)
bl Tinear bulk viscosity coefficient
(default = .06)
b2 quadratic bulk viscosity coefficient

(default = 1.2)

x%kxx*x  HOURGLASS STIFFENING, hgstiff, hgvis (Sec 3.6)

hgstiff hourglass stiffening factor (default =
.05 for plane strain and .01 for
axisymmetric)

hgvis hourglass viscosity factor (default = .0
for plane strain and .03 for axisymmetric)

xxx%x%x  FUNCTION, function id

function id any nonzero number you wish to identify with
this function; after a FUNCTION statement
you must enter a 1ist of points defining
your function:

x1,f(x1)

x2,f(x2)

xﬁ,fixn)
END
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17.

18.

19.

20.

(The 1ist is terminated by a line containing the word
END as shown. Any other valid input cue will also work)

If the function represents a time history function or a function of
distance and the value of time or distance is not within the 1imits
defined by x1 and xn, no boundary condition will be applied until the
current value falls within the limits. This means that you can have a
boundary condition turn on at a specific time or distance and turn off
at a specific time or distance.

**xxxx NO DISPLACEMENT, direction, node set id (Sec 7.1.1)
direction either X or Y
node set id identifying number from the input data base

which identifies the nodes you want to have
no displacement (note this is a nodal bc!)

*xxkx PRESCRIBED VELOCITY, dir, node set id, function id, (Sec 7.1.2)
scale factor, a0, b0
dir either X, Y, RADIAL, TANGENT, or NORMAL
node set id identifying number from the input data base

which identifies the nodes you want to have
this velocity (note this is a nodal bc!)

function id identifying number of the function you want
to use to specify the time dependence of the
velocity

scale factor scale factor to be applied to the function
(default = 1.0)
a0,b0 not used if direction = X or Y
center of cylinder of sphere if direction =
RADIAL or TANGENT
components of normal (if direction = NORMAL)

xx%xx  PRESCRIBED ACCELERATION, direction, node set id, (Sec 7.1.3)
function id, scale factor
direction either X or Y
node set id identifying number from the input data base

which identifies the nodes you want to have
this acceleration (note this is a nodal bc!)

function id identifying number of the function you want
to use to specify the time dependence of the
acceleration

scale factor scale factor to be applied to the function
(default = 1.0)

x%xxxx PRESCRIBED FORCE, direction, node set id, function id, (Sec 7.2.3)

scale factor, a0, b0
direction either X, Y, RADIAL, TANGENT, or NORMAL
node set id identifying number from the input data base
which identifies the nodes you want to have
this force (note this is a nodal bc!)
function id identifying number of the function you want
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to use to prescribe the time dependence of
the force

scale factor scale factor which will be apptied to the
function (default = 1.0)

a0,b0 not used if direction = X or Y
center of cylinder of sphere if direction =

RADIAL or TANGENT

components of normal if direction = NORMAL

21, *xxxx  INITIAL VELOCITY NODESET, node set id, x-velocity, y-velocity
node set id identifying number from the input data base
which identifies the nodes you want to have
this initial velocity (note this is a nodal bc!)
x-velocity initial velocity in the x direction
y-velocity initial velocity in the y direction

22. ***xxx INITIAL VELOCITY MATERIAL, material no, x-velocity, y-velocity

material no material number of the material to receive
this initial velocity

x-velocity initial velocity in the x direction

y-velocity initial velocity in the y direction

23, *xxxx  INITIAL VELOCITY ANGULAR , material no, omega, x0, y0

material no material number of the material to receive
this initial angular velocity
omega initial angular velocity in radians per second
x0,y0 coordinates of point which the body is spinning
about
24, *x**xx  PRESSURE, side set id, function id, scale factor (Sec 7.2.1)
side set id identifying number from the input data base

which identifies the sides you want to have
this pressure (note this is a side bc!)
function id identifying number of the function you want
to use to prescribe the time dependence of
the pressure
scale factor scale factor which will be applied to the
function (default = 1.0)

25, **xxxx MOVING PRESSURE, side set id, x0, yo, function #1 id, (Sec 7.2.2)
function #2 id, wave speed, tO0,
scale factor
side set id identifying number from the input data base
which identifies the sides you want to have
this pressure (note this is a side bc!)
x0, y0 position of point from which pressure propagates
function #1 id identifying number of the function you want to
use to describe the peak pressure as a function
of distance from the position (x0,y0)
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26.

27.

28.

% % % k k

function #2 id identifying number of the function you want to
use to describe the pressure rise time as a
function of distance from the position (x0,y0)

wave speed propagation speed of the wave along the surface
away from the point (x0,y0)
t0 time at which the wave begins to propagate

(default = 0.0)
scale factor scale factor which will be applied to function
number 1 to scale the peak pressures (default = 1.0)

SILENT BC, side set id (Sec 7.3)
side set id identifying number from the input data base
which identifies element sides which have the
nonreflecting boundary condition (note this
is a side bc!)
*xxxx  CONTACT SURFACE, side set id 1, side set id 2, (Sec 6.2)

mu0, pfac, mul, gamma
side set id 1  identifying number from the input data base
which identifies sides on one of the surfaces
to be in contact (note this is a side bc!)
side set id 2 identifying number from the input data base
which identifies sides on the other surface
to be in contact (note this is a side bc!)

mu0 static coefficient of friction (default = 0.)
pfac partition factor (default = .5)
mul high velocity coeffient of friction
(default = 0.)
gamma velocity decay factor

The partition factor is a relative weighting of the master slave
relationship of the two surfaces. A value of zero implies that the
first surface (defined by side set id 1) acts only as a master and
the second surface acts only as a slave. A value of one reverses
these roles. The default value (0.5) gives a totally symmetric
treatment of the contact. If one surface is much more massive than
the other, this variable should be adjusted so that it is treated as
a master. By more massive, we mean that the surface either has a
higher material density and/or a coarser mesh refinement.

xxxx* RIGID SURFACE, slave id, x0, y0, nx, ny, mu0, mul, (Sec 6.1)
gamma
slave id identifying number from the input data base

which identifies sides that are slaved to
the rigid surface (note this is a side bc!)

x0,y0 coordinates of a point on the rigid surface

nx,ny outward unit normal to the rigid surface

mu0 static coefficient of friction (default = 0.)

mul high velocity coefficient of friction
(default = 0.)

gamma velocity decay factor (default = 0.)
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MATERIAL, material id, material name, density (Ch 4)
material id material identification number from the
input data base
material name valid material type name, the current
material types allowed in PRONTO are:
ELASTIC
ELASTIC PLASTIC
VISCOPLASTIC
DAMAGE
SOIL N FOAMS
LOW DEN FOAM
HYDRO
EP TEMP DEPEND
EP HYDRODYNAMIC
density material density

Appropriate material data for the given material name are entered
here. An END statement is required to terminate the data for each
material entered. Each material type requires different material
cues. The material data can be entered in any order separated by
commas.

Currently, the allowable material names and their required material
constants are:

1. ELASTIC (number of cues=2) (Sec 4.1)
material cues: YOUNGS MODULUS
POISSONS RATIO

2. ELASTIC PLASTIC (number of cues=5) (Sec 4.2)
material cues: YOUNGS MODULUS
POISSONS RATIO
YIELD STRESS
HARDENING MODULUS
BETA

3. VISCOPLASTIC (number of cues=6) (Sec 4.3)
material cues: YOUNGS MODULUS
POISSONS RATIO
YIELD STRESS
HARDENING MODULUS
GAMMA
P

4. DAMAGE (number of cues=6) (Sec 4.4)
material cues: YOUNGS MODULUS
POISSONS RATIO
YIELD STRESS
M
K
FRACTURE TOUGHNESS

5. SOIL N FOAMS (number of cues=7) (Sec 4.5)
material cues: TWO MU
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6. LOW DEN FOAM

material cues:

7. HYDRO

material cues:

8. EP TEMP DEPEND

material cues:

9. EP HYDRODYNAMIC
materijal cues:

BULK MODULUS

PRESSURE CUTOFF (negative for tension)
FUNCTION ID (if the function id is
zero, the original bulk modulus is
used; otherwise this is the function
which gives yield stress as a form of
pressure)

(number of cues=7)
YOUNGS MODULUS
A
B
C
NAIR
PO
PHI

(number of cues=1)
PRESSURE CUTOFF (Note: negative
for tension) (a valid equation of
state must be defined which
corresponds to this material number)

(number of cues=17)
YOUNGS MODULUS
POISSONS RATIO
€1
C2
C3
C4
C5
Cé
c7
c8
C9
C10
Cl1
C12
BETA
RHOCV = pCV

TEMP = initial temperature

(number of cues=16)
YOUNGS MODULUS
POISSONS RATIO
YIELD STRESS
HARDENING MODULUS
BETA
PRESSURE CUTOFF (Note: negative for
tension) (A valid equation of state
must be defined for this material)
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Examples for the ELASTIC PLASTIC material are given below to il-—
Justrate how the user might input the data in different forms. All
three examples are identical as far as PRONTO is concerned.

Example 1.
MATERIAL,1,ELASTIC PLASTIC,2.7E-3
HARDENING MODULUS = 30.E4
YOUNGS MODULUS = 30.E6
BETA = .5
POISSONS RATIO = .3
YIELD STRESS = 30.E3
END
Example 2.
MATERIAL,1,ELASTIC PLASTIC,2.7E-3
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA =.5
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4
END
Example 3.
MATERIAL,1,ELASTIC PLASTIC,2.7E-3

YOUNGS MODULUS = 30.E6 POISSONS RATIO .3 BETA = .5

YIELD STRESS 30.E3 HARDENING MODULUS = 30.E4 END
30. **x*xx*x FQUATION OF STATE, material id, equation of (Ch 5)
state name
material id material identification number from the
input data base
equation of valid equation of state name, the current
state name equations of state defined in PRONTO are:
MG US-UP
MG POWER SERIES
JWL
IDEAL GAS

Appropriate material data for the given equation of state name is
entered here. An END statement is required to terminate the material
data. Each equation of state type requires different material cues.
The material data can be entered in any order separated by commas.

Currently, the allowable equation of state names and their required
material constants are:

1. MG US-UP (number of cues=3) (Sec 5.2.1)
material cues: CO
S
GAMMA
2. MG POWER SERIES (number of cues=4) (Sec 5.2.2)
material cues: KO
K1
K2
GAMMA
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31.

32.

33.

34.

3. JWL (NUMBER OF CUES=7)
material cues: CD
A
B
OMEGA
R1
R2
ENERGY

4. IDEAL GAS (NUMBER OF CUES=2)
materjal cues: GAMMA
SOUND SPEED

(Sec 5.2.4)

(Sec 5.2.3)

An example for the MG US-UP equation of state is given below. Note
that the MATERIAL card using the HYDRO material name is shown also
and that the material number on both the HYDRO and the EQUATION OF

STATE card matches.

Example:
MATERIAL,8,HYDRO,2.7E-3
PRESSURE CUTOFF=-1.E9 (note that the pressure is negative
END in tensionl)

EQUATION OF STATE,8,MG US-UP
C0=5380 S=1.337 GAMMA=2
END

*xx%xx DETONATION POINT, material no, x0, y0, tO

material no material number of high explosive to be
detonated

x0,y0 coordinates of the detonation point

t0 detonation time (default = 0.)

**xxxx  BURN CONSTANT, bs
bs high explosive burn constant
(default = 2.5)

xxx*xx  MATERIAL POINT, x, y
X,y coordinates of a material point which
will be monitored and printed at the
tout intervals.

*xxxx DEATH, material id, variable name, mode, level
material id material identification number

variable name either ENERGY, VONMISES, PRESSURE, SIGMAX
or one of the state variables given in the

table defined above for defining the
plotting data base (see 13.)

mode either MIN, MAX, or ABSolute

level value at which death occurs
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Care must be taken to avoid deleting elements which have side bound-
ary conditions applied to them.

The element adaptive death capability requires a very mature user who
understands how his material behaves. The capability built into the
code 1is quite general and allows the element to be deleted depending
upon the 1level of energy, vonmises stress, pressure, maximum
principal stress or any of the internal state variables for the
material type. The mode of comparison given on the line of data
( MIN, MAX, or ABS ) determines how the comparison is made. For
example, the line

DEATH = 3 , DAMAGE , MAX , .8

would delete elements in the material with id number 3 in which the
damage exceeds a value of 0.8. Note that the code will check to see
if that material is a damage material and print a fatal error message
if it s not. The MIN or ABSolute specification will check whether
the value of the variabie is less than the level specified or whether
the absolute value of the variable exceeds the level specified,
respectively. The user should be aware that it is possible to define
nonsensical data by using a mode specification which is inappropriate
to the variable name. An example of this would be using the MIN
specification with the VONMISES variable and a negative value of the
level.

If this option is being used, the element array STATUS is automati-
cally written on the plotting data base. This array contains a zero
if the element is ALIVE and a one if it is DEAD.

35. ***xxx DELETE MATERIAL, material id, deletion time

material id material identification number
deletion time time at which all elements made up of this
material shouid be deleted from the mesh.

If this option is being used, the element array STATUS is automati-
cally written on the plotting data base. This array contains a zero
if the element is ALIVE and a one if it is DEAD.
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APPENDIX B
STORAGE ALLOCATION FOR PRONTO 2D

1.0 DIMENSIONING PARAMETERS AND VARIABLES
PARAMETERS
Name Description

MFIELD maximum number of fields per line of free field input = 22
NASYMM number of components inan antisymmetric tensor = 1

NELNS number of nodes in an element = 4
NHGM number of hourglass modes per coordinate = 1
NSPC number of spatial coordinate components = 2
NSYMM number of components in a symmetric tensor = 4
VARIABLES
Name Description
MCONES maximum number of equation of state constants
MCONS maximum number of material constants
NACCBC number of prescribed acceleration boundary conditions
NANGY number of specifications of initial angular velocity
NCONT number of contact surfaces

NDEATH number of specifications of adaptive element death

NDETPT number of detonation points

NEMBLK number of materials

NFORCE number of prescribed nodal point force boundary conditions
NFUNC number of functions

NIVFLG number of specifications of initial velocity by node sets
NIVMAT number of specifications of initial velocity by materials
NMATPT number of material points

NMPBC number of moving pressure boundary conditions
NNOD number of nodes

NODISP number of no displacement boundary conditions
NPRBC number of pressure boundary conditions

NQUIET number of nonreflecting or silent boundary conditions
NRIGID number of rigid surfaces

NRTOT total number of nodes on all rigid surfaces

NTOTSN total number of nodes on all contact surfaces

NTOTSV total number of internal state variables for all elements
NUMEL number of nodes

NVELBC number of prescribed velocity boundary conditions

2.0 NODAL POINT VARIABLES

Array Dimension Description
COORD (NNOD,NSPC) Original nodal point coordinates
CUR (NNOD,NSPC) Current nodal coordinates
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DISPL (NNOD ,NSPC)
VEL (NNOD ,NSPC)
ACCL (NNOD ,NSPC)
FORCE (NNOD ,NSPC)
XMASS (NNOD)

3.0 ELEMENT VARIABLES

Array Dimension

SIG (NSYMM,NUMEL)
HGR (NSPC ,NHGM,NUMEL )
ELMASS (NUMEL)

LINK (NELNS,NUMEL)

STRECH (NSYMM,NUMEL)

ROTATE  (2,NASYMM,NUMEL)

RHO (NUMEL)
ENERGY (NUMEL)
VISPR (NUMEL)

Nodal displacements
Nodal velocities
Nodal accelerations
Nodal forces

Nodal point lumped mass

Description

Element stresses (Note: the number of entries
in a symmetric tensor, NSYMM, is four in the
2D case)

(1,N) = sigma XX
(2,N) = sigma YY
(3,N) = sigma 2Z
(4,N) = tau XY

Element hourglass control (Note: the number of

hourglass modes, NHGM, is one in the 2D case)
(1,1,N) = X hourglass resistance
(2,1,N) = Y hourglass resistance

Element masses

Element connectivity (Note: the number of
element nodes, NELNS, is four in the 2D case)

(1,N) = node 1 of element
(2,N) = node 2 of element
(3,N) = node 3 of element
(4,N) = node 4 of element

Element material stretches

(1,N) = stretch in X dir
(2,N) = stretch in Y dir
(3,N) = stretch in Z dir
(4,N) = stretch in X-Y dir

Element material rotations (Note: the number
of entries in an asymmetric tensor, NASYMM,
is one in the 2D case)

(1,1,N) = cosine theta

(2,1,N) = sine theta

Element current densities
Element internal energies per unit volume

Element bulk viscosity pressures

208




SV

4.0

ST

DO

ST

(NTOTSV) Element internal state variables (Note: NTOTSV
is the length of the total storage for all of
the internal state variables for all of the
material models including the equations of
state)

Each material block is allocated a specific portion of the SV array whose
structure depends wupon the material model. The pointer IPSV locates this
portion which is processed as SV(NINSV,NELB), where NINSV is the number of
internal state variables per element for this material model and NELB is
the number of elements in this material block. IPSV, NINSV, and NELB are
defined for each material block within the KONMAT data structure.

Each material block with a material model which references an equation of
state is also allocated a specific portion of the SV array for the storage
of internal state variables for the equation of state. The structure of
this array depends upon the equation of state. The pointer IPESV locates
this portion which is processed as SVEOS(NESV,NELB), where NESV is the
number of internal state variables per element for this equation of state
and NELB is the number of elements in this material block. Note that if
NESV is zero the pointer is not used. IPESV, NESY, and NELB are defined
for each material block within the KONMAT data structure.

OPTIONAL ELEMENT VARIABLES
There are some element arrays which are only allocated if the user

specifies certain options which require them or the user asks for them on
the plotting data base.

ray Dimension Description
RAIN (NSYMM,NUMEL) Element strains; the strains are only allocated
if the strain flag KSFLG = 1.
(1,N) = strain XX
(2,N) = strain YY
(3,N) = strain ZZ
(4,N) = strain XY
PT (NSYMM,NUMEL) Element strain rates (the D tensor). The strain
rates are only allocated if the strain rate flag
KSRFLG = 1. Normally, the strain rates are only
temporaries stored in the SCREL array.
(1,N) = strain rate XX
(2,N) = strain rate YY
(3,N) = strain rate ZZ
(4,N) = strain rate XY
ATUS (NUMEL) Element status. The element status is allocated

if the status flag KSTAT = 1. The status array

contains either a zero or a one; one indicates

an element is active and a zero indicates it is
inactive. This array will be used for deleting
elements.
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5.0 MATERIAL DATA

Dimension

(10,NEMBLK)

KONMAT

DATMAT -( (MCONS+MCONES),
(NEMBLK+1) ")

Description
Element block data. The elements are ordered
internally such that all of the elements for
each material definition are grouped together.
We call these material blocks. The following
data structure defines this blocking:

( 1,N) = material id number

( 2,N) = material kind

( 3,N) = starting element number

( 4,N) = ending element number

( 5,N) = number elements in block

( 6,N) = number inter. state var

( 7,N) = IPSV, pointer into SV array

( 8,N) = EOS type (if any)

( 9,N) = number of internal state
variables for the EOS

(10,N) = IPESV, pointer into SV array

Material properties data array. Each material
block also has an array of material properties.
Different material models require different
amounts of data to be defined. The material
interface subroutine returns the variables MCONS
and MCONES which are the maximum number of
material constants and equation of state
constants that will be required. A column in
the DATMAT array is allocated to save the
material properties for each material block.

We allocate one extra column so that if the user
inputs an illegal material or makes some other
error on material input, we have someplace to
put the data as we make the first and second
input pass.

(1,N) = PROP(1)
(2,N) = PROP(2)

(3,N) = .

(MCONS-2,N) = PROP(MCONS)
(MCONS-1,N) = LAMBDA + TWO MU
(MCONS,N) = DENSITY
(MCONS+1,N) = EOSDAT(1)
(MCONS+2,N) = EOSDAT(2)
(MCONS+MCONES-1,N) = EQSDAT (MCONES)

Note: We increment MCONS by 2 over the values set in the data statements in

MATINT to make
material.

space for the density and dilatational wave speed for the
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6.0 OPTIONS ARRAYS
6.1 CONTACT SURFACES

Array Dimension Description
KLSURF (12 ,NCONT) Integer array containing data for the contact
surfaces (Note: NCONT = number of contact
surfaces defined).
( 1,N) = surface 1 side set flag

( 2,N) = surface 2 side set flag
( 3,N) = pointer to surface 1 element list
( 4,N) = pointer to surface 2 element 1ist
( 5,N) = pointer to surface 1 side set
node 1ist
( 6,N) = pointer to surface 2 side set
node 1ist

( 7,N) = pointer to surface 1 node 1ist
( 8,N) = pointer to surface 2 node 1ist
( 9,N) = number sides in surface 1 list
(10,N) = number sides in surface 2 list
(11,N) = number nodes in surface 1
(12,N) = number nodes in surface 2

CLSURF (2,NCONT) Real array containing data for the contact

surface.
(1,N) = partition balance factor
(2,N) = coefficient of friction
(3,N) = high velocity coefficient of
friction

(4,N) = decay constant

KSLIST (NTOTSN*2) This array contains the 1ist of surface nodes

and tracted element sides for all contact
surfaces. The pointers in positions 7 and 8 in
KLSURF above point into the KSLIST array.

(IP) = surface node number
(IP+NSIDES+1) = tracted element side
number
CONDAT (MCTEMP) This array provides temporary storage to the

CONTAC routine for unit normals and assembly
of master surface quantities.

6.2 RIGID SURFACES

Array Dimension Description

KRIGID (3,NRIGID) Integer array containing data for the rigid
surface definitions. (Note: NRIGID = the number
of rigid surfaces defined)

(1,N) = slave side set id flag
(2,N) = pointer to slave 1ist
(3,N) = number of nodes in list
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RIGID (7 ,NRIGID) Real array containing data for the rigid surface

definitions.
(1,N) = static coefficient of friction
(2,N) = high velocity coefficient of
friction
(3,N) = velocity decay constant
(4,N) = X0
(5,N) = YO
(6,N) = nx, X normal component
(7,N) = ny, Y normal component
6.3 NO DISPLACEMENT BOUNDARY CONDITIONS
Array Dimension Description
KDISPL (4,NODISP) Integer array containing information defining

the no displacement boundary conditions (Note:
NODISP = the number of no displacement boundary
conditions supplied by the user).

(1,N) = node set flag

(2,N) = pointer into the IBC array

(3,N) = direction specification
(x-dir = 1., y-dir = 2.)

(4,N) = number of nodes with this bc

6.4 PRESCRIBED VELOCITY BOUNDARY CONDITIONS

Array Dimension Description

KPVELL (5,NVELBC) Integer array containing information defining
the prescribed velocity boundary conditions.
(Note: NVELBC = the number of prescribed
velocity boundary conditions supplied by the

user)
(1,N) = node set flag
(2,N) = pointer into IBC array
(3,N) = function id, changed to function
number in TELALL
(4,N) = direction specification
(x-dir = 1., y-dir = 2.)
(5,N) = number of nodes with this bc
PVBC (4 ,NVELBC) Real data array containing floating point
information for the prescribed velocity boundary
conditions.
(1,N) = scale factor
(2,N) = a0
(3,N) = b0
(4,N) = velocity at last time step

212




6.5 PRESCRIBED ACCELERATION BOUNDARY CONDITIONS

KPACCL

PABC

Dimension

(5,NACCBC)

(NACCBC)

Description
Integer data array containing information for
the prescribed acceleration boundary conditions.
(Note: NACCBC = the number of prescribed accele-
ration boundary conditions set by the user)

(1,N) = node set flag

(2,N) = pointer into IBC array

(3,N) = function id, changed to function
number in TELALL

(4,N) = direction specification
(x-dir = 1., y-dir = 2.)

(5,N) = number of nodes with this bc

Scale factors to apply to the time history
function for each acceleration boundary
condition.

6.6 PRESCRIBED NODAL FORCE BOUNDARY CONDITIONS

KFORCE

PFORCE

Dimension

(5,NFORCE)

(3,NFORCE)

6.7 FUNCTIONS

KFDAT

Dimension

(3,NFUNC)

Description
Integer data array containing information
pertaining to the prescribed nodal point force
boundary conditions defined. (Note: NFORCE = the
number of prescribed nodal point force boundary
conditions set by the user.

(1,N) = node set flag

(2,N) = pointer into IBC array

(3,N) = function id, changed to function
number in TELALL

(4,N) = direction specification
(x-dir = 1., y-dir = 2.)

(5,N) = number of nodes

Real data array containing information for the
prescribed nodal point force boundary conditions

(1,N) = scale factor

(2,N) = a0

(3,N) = b0
Description

Integer array containing data describing the
function definitions. (Note: NFUNC = the total
number of functions defined by the user) Each
function has a pointer into the FUNCS array to
the data that defines the function (the third
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entry). The number of points in the function is
stored the second entry. Note that the FUNCS
array has all of the functions stored in it and
some may be time history functions, some may be
spatial functions, and some may be material
constitutive data functions.

(1,N) = function id number

(2,N) = number of points in function

(3,N) = pointer into the FUNCS array
FUNCS (2,NTOTFV) Function definitions. Note that the FUNCS array

has all of the functions stored in it and some
may be time history functions, some may be
spatial functions, and some may be material
constitutive data functions.

(1,N) = abscissa
(2,N) = ordinate

6.8 INITIAL VELOCITY NODESET

Array Dimension Description

KVELFL (3,NIVFLG) Integer array containing data defining the
initial velocity by nodeset specifications.
(Note: NIVFLG = the number of initial velocity
by nodeset specifications defined by the user)

(1,N) = node set flag
(2,N) = pointer into IBC array
(3,N) = number of nodes with this
initial condition
VELFL (2,NIVFLG) Real data array containing the initial

velocities specified by the user.

(1,N) = X initial velocity
(2,N) = Y initial velocity
6.9 INITIAL VELOCITY MATERIAL
Array Dimension Description
KVELM (NIVMAT) Material identification numbers of those mate-

rials which are to receive initial velocity
definitions. (Note: NIVMAT = the number of
initial velocity by materials defined by the
user)

VELM (2,NIVFLG) Real data array containing the initial
velocities specified by the user.
(1,N) = X initial velocity

(2,N) = Y initial velocity
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6.10 INITIAL VELOCITY ANGULAR

Array Dimension Description

KANGY (NANGV) Material identification numbers of those
materials which are to receive initial angular
velocity definitions. (Note: NANGV = the number
of initial angular velocity by materials defined
by the user)

ANGVEL (3,NANGV) Real data array containing the initial angular
velocity and the point the body is spinning
about as specified by the user.

(1,N) = angular velocity
(2,N) = X0
(3,N) = YO
6.11 DETONATION POINTS
Array Dimension Description
KDETPT (NDETPT) Material identification numbers in which each

of the detonation point are defined. (Note:
NDETPT = total number of detonation points
defined by the user)

DETPT (3,NDETPT) Real data array containing information defining
the detonation points.
(1,N) = x coordinate of the detonation

point
(2,N) = y coordinate of the detonation
point
(3,N) = detonation time
6.12 PRESSURE BOUNDARY CONDITIONS
Array Dimension Description
KPBC (4 ,NPRBC) Integer data array defining the pressure

boundary conditions. (Note: NPRBC = the number
of pressure boundary conditions specified by the

user)

(1,N) = sideset id

(2,N) = pointer to side list

(3,N) = function id

(4,N) = number of sides with this bc

PBCDAT (NPRBC) Scale factors to be applied to the time history

function used with each pressure boundary
condition.
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6.13 MOVING PRESSURE BOUNDARY CONDITIONS

Array Dimension Description
KMPBC (5,NMPBC) Integer data array defining each of the moving
pressure boundary conditions.
(1,N) = side set id
(2,N) = pointer to side set list
(3,N) = number of sides with this BC
(4,N) = function no. 1 id
(5,N) = function no. 2 id
PMPBC (5,NMPBC) Floating point data array defining each of
the moving pressure boundary conditions.
(1,N) = x0
’ = y0
(3,N) = scale factor
(4,N) = tO
(5,N) = wave speed
XMPBC (3,NSLIST) This array is dimensioned so that it is

allocated for all side boundary condition
side sets. We realize that this is wasteful
of storage, but it simplifies the coding
considerably. For each side in the side
set containing the moving pressure boundary
condition, there are three pieces of data:

(1,N) = a
(2,N) = b
(3,N) = td, delay time
6.14 SILENT BOUNDARY CONDITIONS
Array Dimension Description
KQUIET (4 ,NQUIET) Integer data array defining each of the silent
or nonreflecting boundary conditions.
(1,N) = side set id
(2,N) = pointer to element 1ist
(3,N) = pointer to side list
(4,N) = number of sides with this bc
6.15 MATERIAL POINT DEFINITIONS
Array Dimension Description
KMPTS (3,NMATPT) Integer data array defining each of the material

points defined. (Note: NMATPT = the number of
material points defined by the user)

(1,N) = nearest nodal point number
(2,N) = element number containing point
(3,N) = material block number
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PTSDAT (2,NMATPT) Coordinates of the material points

(1,N) = X coordinate of point
(2,N) = Y coordinate of point
6.16 ELEMENT BLOCK DELETION
Array Dimension Description
DELETE - (NEMBLK) This array contains the time at which each

material block of elements is to be deleted from
the analysis. The default times are twice the
termination time.

6.17 ADAPTIVE ELEMENT DELETION

Array Dimension Description
KDEATH (4 ,NDEATH) Integer data array defining the adaptive element
deletions.

(1,N) = material id

(2,N) = material type

(3,N) = variable to base death upon

(4,N) = mode of death (MIN,MAX, or ABS)
DEATH (NDEATH) Value upon which adaptive deletion depends.

7.0

8.0

VECTOR BLOCKING ARRAYS

A number of arrays are needed to vectorize the code. These arrays all have
one dimension given by the vector blocking factor, NEBLK. It should be
noted that the particular order of the dimensions of many of the arrays in
PRONTO is such that the GATHER and SCATTER routines can be used. An array
called SCREL for SCRatch ELement is dimensioned in the main routine 50 by
NEBLK. It is passed into the SOLVE array and used as needed for vector
scratch arrays. Maps are provided in the comments in SOLVE which indicate
how this space is being managed.

BOUNDARY CONDITIONS

Arrays of boundary condition data are read from the GENESIS data base. For
more information on the GENESIS data base, see Appendix D.
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8.1 NODAL BOUNDARY CONDITIONS

Array Dimension Description

KFLAGS (NBCNOD) This array contains a list of all the node set
id's found on the GENESIS file. (Note: NBCNOD =
the number of id's found) PRONTO does not
necessarily use all the flags found.

NPFLAG (NBCNOD) This array contains the number of nodes in each
of the nodal sets which have node set id's in
the KFLAGS array above. The IBC array below
contains the actual list of nodes.

NFLOC (NBCNOD) This array contains the pointer into the IBC
array to the 1ist of nodes for each flag.

IBC (NNLIST) This array contains the 1ist of nodes having
nodal boundary conditions. (Note: NNLIST = the
total number of all nodes having nodal boundary
conditions specified) Some nodes may be repeated
in this 1ist because more than one flag was
specified on that particular node.

VALNOD (NNLIST) This array contains the Tist of multiplication
values to be applied to the boundary condition
specification (currently this option is not used
but it is anticipated that it will be used to
define spatial distributions of nodal boundary
conditions).

8.2 SIDE BOUNDARY CONDITIONS

Array Dimension Description

NSFLG (NBCSID) This array contains a list of all the element
side boundary condition id's found on the
GENESIS file. (Note: NBCSID = the total number
of side boundary condition id's found on the
file)

NSLEN (NBCSID) This array contains the number of element sides
in each side set.

NVLEN (NBCSID) This array contains the number of nodes which
define the sides in each side set.

NSPTR (NBCSID) This array contains the pointer into the NELEMS
array where the elements numbers for the side
set are located.
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NVPTR (NBCSID) This array contains a pointer for each side set
which locates the nodes associated with this
side set relative to a concatenated 1ist in the
array NSNODE.

NELEMS (NSLIST) This array contains a concatenated list of
elements numbers which encompasses all side
sets. The element number for each side is
provided in order that the analysis code can
determine material properties which may be
relevant to a particuiar surface condition.

NSNODE (2,NSLIST) This array contains a concatenated 1ist of side
nodes which encompasses all side sets. This
1ist is ordered such that the local node index
cycles faster than the element side index (all
connected nodes for side 1, then all connected
nodes for side 2, etc.). The Tlist usually
contains repeated node numbers since associated
element sides tend to be connected. In PRONTO,
we sometimes remove the repeated nodes and
repack this array (e.g., when processing
slidelines).

(1,N) = first node number
(2,N) = second node number
SYALUE (2,NSLIST) This array contains a concatenated 1ist of nodal

distribution factors. The 1ist has a one-to-one
correspondence to the NSNODE array above. These
distribution factors can be used to prescribe a
spatial distribution of a boundary condition. In
PRONTO, we do not currently support this
capability, but we do use this array in the
slideline calculations.

(1,N) = factor at first node

(2,N) = factor at second node

non

9.0 SEACO DATA BASE

We allow the user to construct his own plotting output database, but give
him a default data base. We allocate some arrays in PRONTO (the main
routine) to set up the data base.

9.1 NODAL PLOTTING ARRAYS

Array Dimension Description

NODWR (5) This array contains zeros or ones and indicates
whether a particular nodal quantity is to be
written to the SEACO data base. A zero indicates
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9.2 ELEMENT PLOTTING ARRAYS

Dimension

that the quantity is not written, a one
indicates the quantity is written.

(1) = displacement flag (default =1)
(2) = velocity flag (default=1l)

(3) = acceleration flag (default=1l)
(4) = nodal mass flag (default=0)
(5) = reaction flag (default=0)

This array contains the 1ist of variable names to
be written on the plotting data base. The default
names are set in the first six entries and get
reset in subroutine SNLIST if the user changes
them. Below, we show the defaults and indicate
the last three are defaulted to null.

(1) = default = DISPLX

(2) = default = DISPLY

(3) = default = VELX

(4) = default = VELY

(5) = default = ACCLX

(6) = default = ACCLY

(7) = nuil

(8) = null

(9) = null
Description

- e e e e e e = e = A = - - ——

This array contains zeros or ones and indicates

whether a particular element quantity is to be

written to the SEACO data base. A zero indicates

that the quantity is not written, a one

indicates the quantity is written.

( 1) = stress flag (default =1)

2) = energy flag (default=1)

hourglass flag (default=0)

strain flag (default=0)

strech flag (default=0)

rotation flag (default=0)

ratedfm flag (default=0)

density flag (default=0)
0
0

w
~

pressure flag (default
vonmises flag (default
bulkqg flag (default=0)

)
)

LL I | I I { N VI [ A { N | O { O [ O |
non
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This array contains the 1ist of variable names
to be written on the plotting data base. The
default names are set in the first six entries
and get reset in subroutine SELIST if the user
changes them. Below we show the defaults and
indicate the last three are defaulted to null.

(1) = default = SIGXX
( 2) = default = SIGYY
( 3) = default = SIGZZ
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9.3 STATE VARIABLE PLOTTING ARRAYS

LISTSY

MAPIE

Dimension

(MFIELD)

(NEMBLK,NSVLST)

( 4) = default = TAUXY

( 5) = default = ENERGY

(6) = null

(7) = null

(25) = null
Description

e - — . —n n e - S e - - - - - -

This array contains the 1ist of state variable
names to be written on the plotting data base.
The default names are all null and get reset

in subroutine SVLIST if the user asks for any
internal state variables. (Note: MFIELD is a
parameter set in the parameter statement set

and is the maximum number of fields which can

be read on one line of input by the free field
reader; currently this value is set to 22, which
should be sufficient.)

Mapping array for writing internal state
variables to the plotting data base. If the
user specifies that he wants to write internal
state variables on the plotting data base, this
mapping is constructed which indicates where the
internal state variable resides for each
materijal. If a particular material does not
have that internal state variable, a zero is
entered into the mapping. This mapping is
required because totally different material
models may have the same internal state variable
(e.g., equivalent plastic strain) but it may not
be the first state variabie for one material and
the last for another. (Note: NSVLST = the
number of internal state variables specified by
the user.)

(1,N) = location of state variable in
this material
(2,N) = location of state variable in
this material
(3,N)
(NEMBLK,N) = location of state variable in

this material
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APPENDIX C
ADDING A NEW CONSTITUTIVE MODEL TO PRONTO

PRONTO was designed from the beginning to serve as a testbed for new con-
stitutive models and algorithms. We have incorporated a materijal interface
subroutine which allows you (the constitutive model developer) to add a new
material model with very 1little effort. We have purposely designed this
interface so that you do not have to understand the inner workings of the
finite element code, especially with respect to the allocation and manage-
ment of computer memory. If the instructions in subroutine MATINT are
followed correctly, the computer program will handle all memory allocation,
'material data reading, and material data printing. There are three steps
that you should follow to add a new model.

STEP 1.

Subroutine MATINT contains instructions in the FORTRAN COMMENT cards which
outline the steps that you should follow to add a new material model. Most
of the changes required involve adding or changing numbers in DATA and
PARAMETER statements. Since we have no foreknowledge of what the material
constants represent for a particular material, we require in one of the
steps that a few 1lines of FORTRAN be added which tells the code what the
initial dilatational modulus ( lambda+two mu ) is for the material. This
value must be stored in the variable DATMOD in step 12. At the same place
in the code, it is possible to calculate any combinations of the input
material constants that may be required in the constitutive subroutine
(e.g., bulk modulus from Young's modulus and Poisson's ratio).

There is a restriction to twenty characters in the material name, material
cues and internal state variable names which are defined in subroutine
MATINT. Also, since the names may have blanks (i.e., you may use multiple
word cues as in YOUNGS MODULUS) the names must be defined such that each
word in the name is unique to the first three characters. This means that
material cues C1, C2, C3, etc., are legal; but CON1, CON2, CON3, etc., are
not. Finally, please do not use unusual characters in your words as we
cannot guarantee the results.

Again, we reiterate, all of the steps that you must take when adding a new
material model are outlined in detail with comments in the FORTRAN in sub-
routine MATINT.

STEP 2.

This step 1is optional and is only required if the new material model con-
tains internal state variables which must be initialized to some value other
than zero (we initialize all internal state variables to zero by default).
If state variables must be initialized, you must add an ELSE IF statement to
subroutine SVINIT for this material. This statement should read:
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ELSE IF( MKIND .EQ. (new material no.) ) THEN
initialize.internal
state variables here

The new material number corresponds to the position where the material
resides in the list of materials defined in subroutine MATINT. Generally,
when adding a new material, the new material is the last one defined it will
be the same as the number of materials defined which is in step 1 in MATINT.
This step should be obvious from looking at how other material models are
coded in SVINIT. Please use comments so that years from now we have some
chance of figuring out what was added to the code.

STEP 3.

In subroutine UPDSTR, the call to the new material subroutine must be added.
The material subroutine may have any appropriate name, but we have been
naming them MAT1, MAT2, etc., where the number corresponds to the MKIND (see
STEP 2) above. The <call 93s included by adding an ELSE IF block to sub-
routine UPDSTR which should read:

ELSE IF( MKIND .EQ. (new material no.) ) THEN
CALL new subroutine( .... argument list .... )

The new material number corresponds to where the material resides in the
1ist of materials defined in subroutine MATINT. Generally, when adding a
new material, the new material is the last one defined and the new material
number will be the same as the number of materials defined, which is set in
step 1 1in MATINT. This step should be obvious from Tooking at how other
material models are coded in UPDSTR. Please use comments.
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APPENDIX D
GENESIS FILE FORMAT

The GENESIS file format defines the geometry of the problem and is generated
by an external preprocessor. PRONTO reads the file in two places. The
first two records on the file are read in the MSHDAT routine. The first
record contains a title which is not used, but the second record contains
the sizing data for the problem. The FORTRAN to read these two records
appears as:

C
C---- Comment Record (Ignored)
C
READ(9)
C
C---- Problem Size Data
C

READ(9) NNOD,NDIM,NUMEL ,NEMBLK,NBCNOD,NNLIST ,NBCSID,NSLIST ,NVLIST

After reading the sizing information and allocating space for the ap-
propriate arrays, PRONTO reads the remainder of the GENESIS file in the
MSHDAT routine. The element connectivity data is read in blocks of elements
according to the material identification numbers of the various materials in
the mesh. Note that we depend on the ANSI FORTRAN standard to execute zero
trip DO LOOPS correctly. The FORTRAN to read the rest of the file appears
as:

C
PARAMETER (NSPC=2 ,NELNS=4 ,NESNS=2 ,NSYMM=4 ,NASYM=1 ,NONSYM=5 ,NHGM=1,
NEBLK= 64 MFIELD 22)

DIMENSION COORD(NNOD NSPC) ,LINK(NELNS ,NUMEL) ,KONMAT (10 ,NEMBLK),

* KFLAGS(*) ,NPFLAG(*),NFLOC(*),IBC(*),VALNOD(*),NSFLG(*),NSLEN(*),

* NVLEN(*),NSPTR(*),NVPTR(*) ,NELEMS(*) ,NSNODE(*),SVALUE(*)
C
C---- Nodal Coordinates

READ(9) COORD

C---- Element Order Map (We ignore this record in PRONTO)

READ(9)
C
C---- Element Block Data
C

IEND = O

DO 10 N = 1,NEMBLK
C
C Element Block Parameters -

READ(9) MATID,NUMELB,NELNOD,NATRIB

C MATID - material id number
C NUMELB - number of elements in this material block
C NELNOD - number of nodes in the element (must be equal
C to four for the four node quadrilateral)
C NATRIB - number of element attributes (must be equal to
C zero because we have no element attributes)
C
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ISTRT = IEND + 1

IEND IEND + NUMELB
o
c Element Connectivity -
READ(9) ((LINK(J,1),J=1,NELNOD),I=ISTRT,IEND)
C
C Element Attributes (Ignored in PRONTO) -
READ(9)
10 CONTINUE
C
C---- Nodal Boundary Condition Data
C
READ(9) (KFLAGS(I1),I=1,NBCNOD)
READ(9) (NPFLAG(I),I=1,NBCNOD)
READ(9) (NFLOC(I),I=1,NBCNOD)
READ(9) (IBC(I),I=1,NNLIST)
READ(9) (VALNOD(I),I=1,NNLIST)
C
C---- Side Boundary Condition Data
C
READ(9) (NSFLG(I),I=1,NBCSID)
READ(9) (NSLEN{(I),I=1,NBCSID)
READ(9) (NVLEN(I),I=1,NBCSID)
READ(9) (NSPTR(I),I=1,NBCSID)
READ(9) (NVPTR(I),I=1,NBCSID)
READ(9) (NELEMS(I),I=1,NSLIST)
READ(9) (NSNODE(I),I=1,NVLIST)
READ(9) (SVALUE(I),I=1,NVLIST)
C N
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APPENDIX E
SEACO FILE FORMAT

The SEACO file format 1s a standard post processing format adopted by the
Engineering Analysis Department at Sandia. PRONTO writes a post processing
f1le which follows this format. The beginning of the file contains 1nforma-
tion defining the mesh and the names of the nodal, element, and global
guantities which are written at regular time 1ntervals. Each time record
then contains the actual values of the nodal, element, and global quantities
at that specific time.

In PRONTO we construct the 11sts of nodal and element variables to be writ-
ten on the file as instructed by the user. These l1sts of names are stored
in the arrays LISTND and LISTEL, respectively. The default nodal variable
T1st gives displacements, velocities, and accelerations. The default ele-
ment variable 1i1st gives stresses and 1nternal energies. The complete
default li1sts are:

COORDINATES NODAL ELEMENT GLOBAL
X DISPLX SIGXX TMSTEP
Y DISPLY SIGYY KE
VELX SI1GZ2Z XMOM
VELY TAUXY YMOM
ACCLX ENERGY
ACCLY

Note that the FORTRAN shown here 1s not exactly as 1t 1s written 1n PRONTO
but the result 1s the same. We have simplified 1t somewhat to make 1t
easter to read.

The first part of the file 1s written as:

PARAMETER (NSPC=2 ,NELNS=4,1DUM=0)

DIMENSION COORD(NNOD,2),LINK(4,NUMEL),MATID(NUMEL)
CHARACTER*8 LISTND(NDLIST),LISTEL(NELIST)
CHARACTER*8 MODIFY,NAMEGB(4) ,NAMEX(2)

C
DATA NAMEX/'X','Y'/
DATA NAMEGB/'TM STEP','KE','XMOM','YMOM'/
DATA MODIFY/* '/

C

C Write title and QA information -

WRITE(11) HEAD,VERSON,RDATE,RTIME ,MODIFY ,MODIFY ,MODIFY
C Write parameters -
WRITE(11) NSPC,NNOD,NUMEL ,NELNS,NEMBLK ,NDLIST,NVAREL ,NGLOBL,
* IDUM, IDUM, IDUM
C Write alphanumeric names of the coordinates -
WRITE(11) NAMEX
C Write alphanumeric names of the nodal variables -
WRITE(11) LISTND
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C Write alphanumeric names of the element variables -
WRITE(11) LISTEL
C Write alphanumeric names of the global variables -
WRITE(11) NAMEGB
C Write the initial coordinates of the mesh -
WRITE(11) COORD
C Write the element connectivity array -
DO 20 J=1,NUMEL
WRITE(11) (LINK(I,J),I=1,4)
20 CONTINUE
C Write the material identification array (WARNING: if only ONE
C material id is present in the mesh this record is not written;
C this has caused a considerable amount of grief in the past)
IF(NEMBLK.GT.1) WRITE(11) (MATID(I),I=1,NUMEL)
C

Each time interval contains records defining the values of the nodal, ele-
ment, and global variables defined above. Since the user can construct his
own 1list of nodal and element variables, the variables written at each time
interval may not be the same as those shown below for the default case. For
the default case, the nodal variables are displacements, velocities, and
accelerations, and the element variables are stresses and internal energy.
For the default case, the SEACO file is written for each time interval as:

(o0 M ep]

Write the current time
WRITE(11) TIME

NODAL variables -

OQOOO0

Write the displacements
WRITE(11) (DISPL(I,1),I=1,NNOD)
WRITE(11) (DISPL(I,2),I=1,NNOD)
C Write the velocities
WRITE(11) (VEL(I,1),I=
WRITE(11) (VEL(I,2),I=
C Write the accelerations
WRITE(11) (ACCL(I,1),I=1,NNOD)
WRITE(11) (ACCL(I,2),I=1,NNOD)

NOD)

1,N
1,NNOD)

ELEMENT variables -

OOOO0

Write the stresses
DO 10 J =1,4
WRITE(11) (SIG(J,I),I=1,NUMEL)
10 CONTINUE
C Write the energy per unit volume
WRITE(11) (ENERGY(I),I=1,NUMEL)

GLOBAL Variables —

OO0

WRITE(11) DT,XKE,XMOM, YMOM
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APPENDIX F
RESTART FILE FORMAT

The PRONTO restart file contains the data defining the state of the problem
at regular intervals in time. The philosophy behind the manner in which we
do restarts is to allow the user as much leeway as possible in changing the
problem upon restart. He can add or delete slidelines, change algorithmic
parameters such as bulk viscosity or hourglass control, or make any changes
which are consistent with the mechanics principles inherent in the problem
definition which resides on the restart file. Typically, the restart input
will be identical to the original PRONTO input deck except for the data line
defining the time of restart (e.g., READ RESTART = 2.E-6). Also, the re-
start run will usually use the same GENESIS data file.

The code will carefully check the restart file to see if it is compatible
with the mechanics problem defined by the input data. Most of these checks
are relatively simple (e.g., checking to see if there are the same number of
elements in the mesh). PRONTO checks very carefully to make sure that the
user has not changed the material definitions or properties upon restarting.

The only real complication involved in reading and writing restart files
correctly 1lies with the contact and rigid surfaces. The PRONTO contact
algorithms are written such that each node in the contact Tist can only be
in contact with one surface segment at one time. This means that there is
at most one tangential nodal force due to friction. Since the friction
forces are history dependent, these forces must be written on the restart
file. We simply construct a list of all the nodal friction forces, most of
which most are zero, and write that 1ist on the restart file. It is then a
simple effort to reconstruct the contact data since we can detect all the
normal contact conditions from the current configuration and then search the
nodal 1list of tangential forces for the current friction force for that
contact. This procedure makes it possible to add and/or delete slidelines
upon restarting.

There are always seven records in each restart state:
1. header record
2. material properties record
3. nodal and element state record
4. internal state variables record
5. element status record (null if death option is not used)

6. element densities record (null if element densities are not
required)

7. element strains record (null if element strains are not
required)
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Each record in the restart file is written in the following manner:

C
C

OO0

OO

1.

2.

3.

b S S S R

Write the header information
MATX = ( MCONS + MCONES ) * NEMBLK

ISTATE = 1

WRITE(BO) TIME,DT ,NNOD,NUMEL ,NEMBLK ,NSPC ,MATX,KDFLG,KSFLG,KSTAT,
ISTATE, NTOTSV NSTEPS

where:
TIME
DT
NNOD
NUME

NEMBLK

NSPC
MATX
KDFL

KSFL

KSTA

ISTATE
NTOTSV
NSTEPS
Write the
*WRITE(30)

Write the
WRITE(30)

IDUM =

L

G

G

T

0

o #wowonn

current time for the state

current time increment

number of nodes in the mesh

number of elements in the mesh

number of materials in the mesh

number of spatial coordinate components

total number of material constants for all materials
flag indicating whether material densities are required
in this problem. KDFLG = 0 indicates no densities are
required and an empty record is written. KDFLG =1
indicates densities are required and the densities are
written on the file.

flag indicating whether element strains are required
in this problem. KSFLG = 0 indicates no strains are
required and an empty record is written. KSFLG = 1
indicates strains are required and the strains are
written on the file.

flag indicating whether the elements status are required
in this problem. KSTAT = 0 indicates no status is
required and an empty record is written. KSTAT =1
indicates status is required and the status is written
on the file.

1, indicates the internal state variables are written
on the file.

total number of internal state variables for all the
elements and all the materials

current time step number

material property arrays
((KONMAT(J,1),J=1,10),1I=1,NEMBLK),
(DATMAT(I1),I=1,(MCONS+MCONES)*NEMBLK)

current state
((DISPL(I,J),I=1,NNOD),J=1,NSPC),
((VEL(I,J),I=1 NNOD) J=1,NSPC),
(ENERGY(1),I=1,NUMEL),

((STRECH(J,1),I=1,NUMEL),J=1,NSYMM),
((ROTATE(J,1),1=1 NUMEL), =1,2),
((HGR(J,1),I=1,NUMEL),J=1,2),
((SIG(J.1),1=1.NUMEL).J=1.NSYMM)

(VISPR(I),I=1,NUMEL)

230




QOO

[qp 2N o]

[N e

. Write internal state variables

IF( NTOTSV .NE. O ) THEN
WRITE(30) (SV(I),I=1,NTOTSV)
ELSE
WRITE(30) IDUM
END IF

. Write material status array if needed

IF( KSTAT .NE. 0 ) THEN

WRITE(30) (STATUS(I),I=1,NUMEL)
ELSE

WRITE(30) IDUM
END IF

. Write material density per unit volume if needed

IF( KDFLG .NE. O ) THEN
WRITE(30) (RHO(I),I=1,NUMEL)
ELSE
WRITE(30) IDUM
END IF

. Write element strains if needed

IF( KSFLG .NE. 0 ) THEN
WRITE(30) ((STRAIN(J,I),I=1,NUMEL),J=1,NSYMM)
ELSE
WRITE(30) IDUM
END IF

231 - 232






Distribution:

Dr. R. T. Allen
Pacifica Technology
P.0. Box 148

Del Mar, CA 92014

Prof. S. Atluri

Center for the Advancement of
Computational Mechanics

School of Civil Engineering

Georgia Institute of Technology

Attlanta, GA 30332

Dr. William E. Bachrach

Areojet Research Propulsion Inst.
P. 0. Box 13502

Sacramento, CA 95853-4502

Prof. E. B. Becker

Department of Aerospace Engineering
and Engineering Mechanics

University of Texas

Austin, TX 78712

Prof. T. Belytschko

Department of Civil Engineering
Northwestern University
Evanston, IL 60201

Mr. Chuck Charman

GA Technologies

P.0. Box 81608

San Diego, CA 92138

Mr. Dwight Clark

Morton Thiokol Corp.

P. 0. Box 524

Mail Stop 281

Brigham City, UT 84302

Mr. Gerald Collingwood
Morton Thiokol
Huntsville, AL 35807

Mr. Bill Cook
Los Alamos National Laboratory
Los Alamos, NM 87545

Dr. R. S. Dunham

Anatech International Corp.
3344 N. Torrey Pines Ct.
Suite 320

La Jolla, CA 92307

233

Dr. Arlo F. Fossum
RE/SPEC, Inc.

P.0. Box 725

Rapid City, SD 57709

Dr. Francisco Guerra

Mail Stop C931

WX11 Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Dr. Gerry Goudreau

Methods Development Group
Mechanical Engineering Department
Lawrence Livermore National Lab
Livermore, CA 94550

Dr. John Hallquist

Methods Development Group
Mechanical Engineeriga 7 :paresnt
Lawrence Livermore National Lab
Livermore, CA 94550

Dr. David Hibbitt

Hibbitt, Karlisson & Sorrensen, Inc.
100 Medway St.
Providence, RI 02906

Mr. Jeffery P. Hill

Mail Stop F644

Group CTR-4

Los Alamos National Laboratory
Los Alamos, NM 87545

Mr. Roger Hill

Mail Stop D449

P15 Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Mr. John Hopson

Group T3

Mail Stop BZ216

Los Alamos National Laboratory
Los Alamos, NM 87545

Dr. William Hufferd

United Technologies
Chemical Systems Division

P.0. Box 50015

San Jose, CA 95150-0015



Prof. T. J. R. Hughes

Department of Mechanical Engineering
Stanford University

Palo Alto, CA 94306

Dr. Rembert Jones and (2)

Dr. Alan S. Kushner

Office of Naval Research

Structural Mechanics Div. (Code 434)
800 N. Quincy Street

Arlington, VA 22217

Prof. George C. Johnson
Mechanical Engineering Dept.
University of Califorma
6127 Etcheverry Hall
Berkeley, CA 94720

Dr. Gordon R. Johnson
Honeywell Inc.

5901 S. County Rd. 18
Edina, MN 55436

Mr. James Johnson

Rm L120, CPC Engineering Center
30003 Van Dyke

Warren, MI 48090

Prof. J. K. Lee

Department of Engineering Mechanics
Ohio State University

Cotumbus, OH 43210

Mr. Richard Lung

TRW Corporation

P. 0. Box 1310

Bidg 527, Rm 709

San Bernadino, CA 91763

Mr. J. J. Murphy (5)

Vehicle Technology 59-22,

Bidg 580

Lockheed Missiles and Space Co.
P. 0. Box 3504

Sunnyvale, CA 94088

Prof. V. D. Murty

5000 N. Willamette Blvd.
School of Engineering
University of Portland
Portland, OR 97203

234

Dr. Joop Nagtegaal

Marc Analysis Research Corp.
260 Sheridan Ave

Suite 200

Palo Alto, CA 94306

Prof. S. Nemat-Nasser
Department of Applied Mechanics
and Engineering Sciences
University of Califorma
San Diego
La Jolla, CA 92093

Dr. R. E. Nickell

c/o Anatech International Corp.
3344 N. Torrey Pines Court
Suite 320

La Jolla, CA 92037

Mr. Dean Norman

Waterways Experiment Station
P.0. Box 631

Vicksburg, MS 39180

Prof. J. T. Oden

Department of Aerospace Engineering
and Engineering Mechanics

University of Texas

Austin, TX 78712

Dr. Robert Pardue
Martin Marietta

Y-12 Plant, Bldg. 9998
Mail Stop 2

Oak Ridge, TN 37831

Mr. Mitchell R. Phillabaum
Monsanto Research Corp.
MRC-MOUND

Miamisburg, OH 45342

Dr. Joe Rashid

Anatech International Corp.
3344 N. Torrey Pines Ct.
Suite 320

La Jolla, CA 92307

Dr. Timothy J. Ross

Arr Force Weapons Laboratory

Civil Engineering Research Division
Kirtland AFB, NM 87117




Mr. Donald W. Sandidge
U.S. Army Missile Command
AMSMI-RLA

Redstone Arsenal, AZ 35898-5247

Prof. H. L. Schreyer

New Mexico Engineering Research Inst.

Campus P. 0. Box 25
University of New Mexico
Albuquerque, NM 87131

Prof. M. Stern

Department of Aerospace Engineering

and Engineering Mechanics
University of Texas
Austin, TX 78712

Mr. Ray Stoudt

Lawrence Livermore National Lab
P.0. Box 808, Lz200

Livermore, CA 94550

Prof. D. V. Swenson
Mechanical Engineering Dept.
Durland Hall

Kansas State University
Manhattan, KS 66506

Mr. Sing C. Tang

P. 0. Box 2053

Rm 3039 Scientific Lab
Dearborn, MI 48121-2053

Mr. David Wade, 36E

Bett1s Atomic Power Laboratory
P.0. Box 79

West Miffland, PA 15122

Dr. Paul T. Wang

Fabricating Technology Division
Aluminum Company of America
Alcoa Technical Center

Alcoa Center, PA 15069

Prof. Kaspar Willam

Civil, Environmental, and
Architectural Engineering

Campus Box 428

Universtty of Colorado

Boulder, CO 80309-0428

Ms. Emily Young

K-Tech Corporation

901 Pennsylvania, N.E.
Albuquerque, NM 87110

235

1510
1511
1520
1521
1521
1521
1521
1521
1521
1522
1522
1522
1522
1523
1523
1523
1523
1524
1524
1530
1531
1531
1533
1533
1533
1534
1540
1542
1550
3141-1
3151
3154-1

6253
6258
6258
8024
9113
9122
9122

OXNAVETEFTLCIONILCOMCOCPEPARMCTOMGQGUOUXRVOOOMOGOWME OCG

TTCUVvCTUOUEZ

. W

K
H

T WVNGLOHhTITPOITOVDN<——MEEMEARNETEZI O UOITIUTEETLCOZIIOODOOZ

. Nunziato

. Gartling
errmann, Actg.
Burchett
Krieg
Miller
Sjaardema
Stone
Wellman
Reuter
Kipp
Schuter
Stirbis
Biffle
Chen
Flanagan (25)
Taylor (25)
Gwinn
Miller
Davison
Thompson
Swegle
K1ipp

. Montgomery
arrington
Asay

Luth
Wawersik
Maydew
Landenberger (5)
Garner (3)
. Dalin (28)
or DOE/OSTI
Warpinski
Hommert
Kuszmaul
Dean

. Schamaun
Forrestal
Gubbels





