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ABSTRACT 

PRONTO 2D is a two-dimensional transient solid dynamics code for analyzing 
large deformations of highly nonlinear materials subjected to extremely high 
strain rates. This Lagrangian finite element program uses an explicit time 
integration operator to integrate the equations of motion. Four node 
uniform strain quadrilateral elements are used in the finite element 
formulation. A number of new numerical algorithms which have been developed 
for the code are described in this report. An adaptive time step control 
algorithm is described which greatly improves stability as well as perfor­
mance in plasticity problems. A robust hourglass control scheme which 
eliminates hourglass distortions without disturbing the finite element 
solution is included. All constitutive models in PRONTO are cast in an 
unrotated configuration defined using the rotation determined from the polar 
decomposition of the deformation gradient. An accurate incremental algo­
rithm was developed to determine this rotation and is described in detail. 
A robust contact algorithm was developed which allows for the impact and 
interaction of deforming contact surfaces of quite general geometry. A 
number of numerical examples are presented to demonstrate the utility of 
these algorithms. 
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1.0 INTRODUCTION 

PRONTO 20 is a finite element FORTRAN program for the analysis of the 

two-dimensional response of solid bodies to transient dynamic loading. The 

program Includes nonlinear constitutive models, and accurately analyzes 

large deformations which may lead to geometric nonlinearities. PRONTO Is a 

powerful tool for analyzing a wide variety of problems, including classes 

of problems in Impact dynamics, rock blasting, and accident analyses. 

PRONTO Is a new generation code following in a long line of finite 

difference and finite element programs which were developed in the last 

thirty years to analyze transient solid dynamics problems. These original 

codes had their origins in the Manhattan Project and the work of Von Neumann 

[1]. They are often referred to as "wave codes" and were developed at the 

national laboratories for numerous weapons projects. All of these codes use 

an explicit time integration operator to advance the equations of motion 

from the initial state. 

The first general finite difference FORTRAN codes were the WONDY [2,3] 

and TOODY [4] codes developed at Sandia National Laboratories and the HEMP 

[5] code developed at Lawrence Livermore Laboratories. The HONDO [6] code 

developed at Sandia National Laboratories was the first wave code to use the 

finite element method. HONDO drew heavily upon the experience of the finite 

difference code developers; many of the algorithms in HONDO came directly 

from the finite difference literature. The more robust numerical simulation 

capability of the finite element method allowed the introduction of many new 

Innovations in HONDO. These Include multiple material libraries and general 

surface contact algorithms. The DYNA [8] family of codes descended directly 

from HONDO. DYNA made a significant step forward by structuring the code to 

take advantage of the vector processors available on new generation 

computers. As a result, DYNA achieved a four-fold Increase in speed over 

the HONDO code. DYNA also significantly expanded the material library and 

was the first finite element wave code to implement hydrodynamic equations 

of state. Another general purpose finite element program which has seen 

widespread use is the EPIC [9] series of codes. The EPIC codes contain an 

innovative algorithm for the impact and erosion of contact surfaces for 
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penetration problems. We were able to develop PRONTO into a production tool 

In a very short time as a direct result of the rich algorithmic environment 

which we inherited from the developers who came before us. 

We developed a flexible problem-oriented language for the Input to 

PRONTO which allows the user to define a complex mechanics problem with a 

few concise commands. Experience with the code has shown that after a user 

has gained some experience with the code, reference to the user's instruc­

tions (Appendix A) is seldom needed. There Is no reference to node or 

element numbers in the problem definition. All boundary conditions are 

defined through the concept of node and element side sets which are defined 

using the GENESIS [10] mesh definition data base. 

PRONTO contains no mesh generation or post-processing capabilities; It 

relies on external mesh generators and external post-processors. The 

program writes the SEACO [11] plotting data base for graphical display of 

the results. The form of the GENESIS and SEACO data bases are given in 

Appendices D and E, respectively. 

The development of PRONTO was motivated by the need for a code which 

could serve as a testbed for research Into numerical algorithms and new 

constitutive models for nonlinear materials. Towards this goal, the code 

contains a well documented and easy to use Interface for Implementing new 

constitutive models (Appendix C ) . Complete documentation of the code ar­

chitecture and computer storage requirements is provided in Appendix B. 

PRONTO is written in completely standard FORTRAN [7]. Any system 

dependent coding such as the determination of the date or the memory manage­

ment is part of the SUPES [12] package. Figure 1.1 shows the architectural 

layout of PRONTO. Some minor utility subroutines have been omitted from the 

figure. These are routines such as GATHER, which are called from numerous 

locations. The only input/output units which PRONTO uses are 5, 6, 9, 11, 

30 and 32. Their use is described in Table 1.1. 
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TABLE 1.1 

INPUT/OUTPUT UNITS 

t Use 

Formatted input instructions for PRONTO 2D 

Formatted output from PRONTO 2D 

Unformatted GENESIS mesh file 

Unformatted SEACO post-processing file 

Unformatted restart output file 

Unformatted restart input file 
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Figure 1.1. Architectural Layout of the PRONTO 2D Code 
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2.0 GOVERNING EQUATIONS 

In this chapter, we present the underlying continuum mechanics concepts 

which are necessary to follow the development of the numerical algorithms in 

the following chapters. Bold face characters denote tensors. The order of 

the tensor is implied by the context of the equation. 

2.1 Kinematics 

A material point in the reference configuration B with position vector 

X occupies position x at time t in the deformed configuration B, Hence we 

write x = x(X,t), The motion from the original configuration to the 

deformed configuration shown in Figure 2.1.1 has a deformation gradient F 

given by 

F = 1^ , det(F) > 0 (2.1,1) 

Applying the polar decomposition theorem to F : 

F = V R = R U (2.1.2) 

where V and U are the symmetric, positive definite left and right stretch 

tensors, respectively, and R is a proper orthogonal rotation tensor. Figure 

2.1.1 illustrates the intermediate orientations defined by the two alternate 

decompositions of F defined by Equation (2.1.2). The determination of R as 

defined by Equation (2.1.2) presents a significant numerical challenge. In 

Section 3.3, we describe the incremental algebraic algorithm that we use to 

determine R. 

The velocity of the material point X is written as v = x where the 

superposed dot indicates time differentiation holding the material point 

fixed. The velocity gradient is denoted by L and may be expressed as 
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Figure 2.1.1. Original, Deformed and Intermediate Configurations of a Body 
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The velocity gradient can be written in terms of the symmetric (D) and 

antisymmetric (W) parts, respectively, 

L = D + W . (2.1.4) 

Using the right decomposition from Equation (2.1.2) in Equation (2.1.3) 

gives 

L = R R^ + R U U"-̂  R^ . (2.1.5) 

Dienes [13] denoted the first term on the right-hand side of Equation 

(2.1.5) by 0: 

a = R R^ . (2,1,6) 

Both W and Q are antisymmetric and represent a rate of rotation (or angular 

velocity) about some axes. In general, 0 î* W, The difference arises when 
the last term of Equation (2,1,5) is not symmetric. The symmetric part of 
. _ i 
U U is the unrotated deformation rate tensor d as defined below (note that 

-1 
both U and U are symmetric). 

d = ^ (U U"^ + U"-̂  U) ^ R^ D R . (2.1.7) 

There are two possible cases which can cause rotation of a material 

line element: rigid body rotation and shear. Since total shear vanishes 

along the axes of principal stretch, the rotation of these axes defines the 

total rigid body rotation of a material point. 

It is a simple exercise in vector analysis to show that Equation 

(2.1.6) represents the rate of rigid body rotation at a material point (as 

shown by Dienes [13]). It is equally simple to show that W represents the 

rate of rotation of the principal axes of the rate of deformation D. Since 

D and W have no sense of the history of deformation, they are not sufficient 

to define the rate of rotation in a finite deformation context. 
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Line elements where the rate of shear vanishes rotate solely due to 

rigid body rotations. These line elements are along the principal axes of 

il. We will apply a similar observation below as we derive Dienes' [13] 

expression for calculating 0. 

Using the left decomposition of Equation (2.1.2) in Equation (2.1.3) 

gives 

L = V V"-̂  + V 0 V"-̂  . (2.1.8) 

Postmultiplying by V yields an expression which defines the decomposition of 

L into V and 0: 

L V = V + V 0 . (2.1.9) 

When the dual vector of the above expression is taken, the symmetric V 

vanishes to yield a set of three linear equations for the three independent 

components of 0. 

The antisymmetric part of a tensor may be expressed in terms of its 

dual vector and the permutation tensor e. .,. Define the following dual 
1 J K 

vectors: 

.. =e..,fi., (2.1.10) 

w. = e . . , Wj, . (2.1.11) 

Using Equations (2.1.4), (2.1.10), and (2.1.11) in Equation (2.1.9) results 

in the expression that Dienes [13] gave for determining Q from W and V; 

6) = w - 2[V - I tr(V)]"^ z (2.1.12) 
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where 

1̂ =^jk V m k • (2.1.13) 

We observe from the above expressions that fl = W if and only if the 

product V D IS symmetric. This condition requires that the principal axes 

of the deformation rate D coincide with the principal axes of the current 

stretch V. Clearly, a pure rotation is a special case of this condition 

since D, and consequently (2.1.13), vanish. 

2.2 Stress and Strain Rates 

Our constitutive model architecture is posed in terms of the conven­

tional Cauchy stress, but we adopt the approach of Johnson and Bammann [14] 

and define a Cauchy stress in the unrotated configuration. The reader 

seeking more detail than is presented here should see Flanagan and Taylor 

[15]. The "true" stress in the deformed configuration is denoted by T. The 

Cauchy stress in the unrotated configuration is denoted by a. These two 

stress measures are related by 

a = R^ T R . (2.2.1) 

Each material point in the unrotated configuration has its own reference 

frame which rotates such that the deformation in this frame is a pure 

stretch. Then T is simply the tensor a in the fixed global reference frame. 

The conjugate strain rate measures to T and o are D and d, respectively. 
These strain rates were defined by Equations (2.1.4) and (2.1.7), 

respectively. 

The Principal of Material Frame Indifference (or objectivity) stipu­

lates that a constitutive law must be insensitive to a change of reference 

frame [16]. This requires that only objective quantities may be used in a 

constitutive law. An objective quantity is one which transforms in the same 

manner as the energy conjugate stress and strain rate pair under a super­

posed rigid body motion. The fundamental advantage of the unrotated stress 
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over the true stress is that the material derivative of a is objective, 

whereas the material derivative of T is not. 

The Jaumann rate defined below is frequently used in constitutive 

relationships to resolve the need for an objective rate of Cauchy stress. 

T = t - W T + T W . (2.2.2) 

It IS an easy task to show that the Jaumann rate is objective. 

A similar stress rate, called the Green-Naghdi rate by Johnson and 

Bammann [14], can be derived by transforming the rate of the unrotated 

Cauchy stress to the fixed global frame as follows: 

a = R a R ^ = t - B T + T O . (2,2.3) 

The Jaumann rate and the Green-Naghdi rate are very similar in form. The 

important difference between the two is that the Green-Naghdi rate is 

kinematically consistent with the rate of Cauchy stress, while the Jaumann 

rate is not. By this statement we mean that o is identical to T in the 

absence of rigid body rotations. It is clear that T need not equal t under 

the same conditions since W need not vanish with rigid body rotations. 

The simple shear problem presented by Dienes [13] serves as an excel­

lent demonstration of the symptoms which can occur due to the deficiency of 

the Jaumann rate. Figure 2.2.1 shows a body which undergoes the following 

motion: 

x(t) = X + k t Y , y(t) = Y , z(t) = Z . (2.2.4) 

Dienes applied a simple linear isotropic hypoelastic material law to both 

the Jaumann rate (2.2.2) and the Green-Naghdi rate (2.2.3). The analytic 

solution for the true stresses as a function of time using the Jaumann rate 

IS shown in Figure 2.2.1. The Green-Naghdi rate solution is shown in Figure 

2.2.2 and demonstrates a monotonic increase in stress with increasing shear 

strain, while the Jaumann rate results in a harmonic oscillation of the 
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Figure 2.2.1, Computed Stress-Strain Curves for a Body Undergoing Simple 
Shear Using the Jaumann Rate 
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Figure 2.2.2. Computed Stress-Strain Curves for a Body Undergoing Simple 
Shear Using the Green-Naghdi Rate 
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stress. The reason that the Jaumann rate produces this oscillation in 

stress is that W gives a constant rate of rotation for the motion defined by 

Equation (2.2.4), while Q vanishes with time. Clearly the body experiences 

rotations which diminish over time, but the Jaumann rate continues to drive 

the stress convection terms at a constant rate. This leads to the oscil­

latory behavior of the stresses shown in Figure 2.2.1. 

A distinct advantage of the unrotated reference frame is that all 

constitutive models are cast without regard to finite rotations. This 

greatly simplifies the numerical implementation of new constitutive models. 

The rotations of global state variables (e.g., stress and strain) are dealt 

with on a global level which insures that all constitutive models are 

consistent. Internal state variables (e.g., backstress) see no rotations 

whatsoever. 

The drawback to working in the unrotated reference frame is that we 

must accurately determine the rotation tensor, R, which is not a 

straightforward numerical calculation. We present an incremental, algebraic 

algorithm to accomplish this task in Section 3.4. 

2,3 Fundamental Equations 

The equations of motion for the body are the momentum equations 

div T - pu + pfg = 0 . (2.3.1) 

where p is the mass density per unit volume, ^ is the acceleration of the 

material point, and fp is a specific body force vector. 

We seek the solution to Equation (2.3.1) subject to the boundary 

conditions 

u = f(t) on S^ (2.3.2) 
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where S represents the portion of the boundary on which kinematic quan­

tities are specified (displacement, velocity, and acceleration). In 

addition to satisfying the kinematic boundary conditions given by (2.3.2), 

we must satisfy the traction boundary conditions 

T-n = s(t) on S^ (2.3.3) 

where S^ represents the portion of the boundary on which tractions are 

specified. The boundary of the body is given by the union of S and Sj, 

and we note that for a valid mechanics problem S and S^ have a null 

intersection. 

The jump conditions at all contact discontinuities must satisfy the 

relation 

(T^ - T~)-n = 0 on S^ (2.3.4) 

where S represents the contact surface intersection and the subscripts "+" 

and "-" denote different sides of the contact surface. 

The Lagrangian form of the continuity equation is written as 

p - p tr D = 0 . (2.3.5) 

This 15 satisfied trivially in our formulation since we do not allow mass 

transport. Equation (2.3.5) degenerates to 

p V = p^V^ (2.3.6) 

where V is the volume and the subscript "o" denotes a reference 

configuration. 

The conservation of energy principle equates the increase in internal 

energy per unit volume to the rate at which work is being done by the 

stresses plus the rate at which heat is being added. In the absence of heat 

conduction 
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^ = ^ at m = a:d + p 0 (2.3.7) 

where E is the energy per unit volume, E is the energy per unit mass, and 

6 is the heat rate per unit mass. The stress a and the strain rate d were 

discussed in the Section 2.2. 
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3.0 NUMERICAL FORMULATION 

In this chapter, we describe the finite element formulation of the 

problem and the numerical algorithms required to perform the spatial and 

temporal integration of the equations of motion. 

3.1 Four Node Unifonn Strain Element 

The 4-node two-dimensional isoparametric element is widely used in 

computational mechanics. Optimal integration schemes for these elements, 

however, present a difficult dilemma. A one point integration of the ele­

ment under-integrates the element resulting in a rank deficiency for the 

element which manifests itself in spurious zero energy modes, commonly 

referred to as hourglass modes. A two-by-two integration of the element 

over-integrates the element and can lead to serious problems of element 

locking in fully plastic and incompressible problems. The four point in­

tegration also carries a tremendous computational penalty compared to the 

one point rule. We use the one point integration of the element and imple­

ment an hourglass control scheme to eliminate the spurious modes. The 

development presented below follows directly from Flanagan and Belytschko 

[17]. We assume that the reader is somewhat familiar with the finite ele­

ment method and will not go into a complete description of the method. The 

reader can consult numerous texts on the method [41], 

The quadrilateral element relates the spatial coordinates x to the 

nodal coordinates x ^ through the isoparametric shape functions </>, as 

follows: 

^ = ^ I ^I(^^) (3.1.1) 

In accordance with indicial notation convention, repeated subscripts 

imply summation over the range of that subscript. The lowercase subscripts 

have a range of two corresponding to the spatial coordinate directions. 

Uppercase subscripts have a range of four, corresponding to the element 

nodes. 
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The same shape functions are used to define the element displacement 

field in terms of the nodal displacements u.,: 

u. = U.J 0j (3.1.2) 

Since the same shape functions apply to both spatial coordinates and dis­

placements, their material derivative (represented by a superposed dot) must 

vanish. Hence, the velocity field may be given by 

u. = U.J 0j (3.1.3) 

and likewise for the acceleration field 

u. = U.J 0j (3.1.4) 

The velocity gradient tensor, L, is defined in terms of nodal velocities as 

Lij = ^ , j = ^ I ^ I , j (3.1.5) 

By convention, a comma preceding a lowercase subscript denotes differentia­

tion with respect to the spatial coordinates (e.g., u. . denotes 9u./9x.). 

The 2-D isoparametric shape functions map the unit square in ^-TJ to an 

arbitrary quadrilateral in x-y, as shown in Figure 3.1.1. We choose to 

center the unit square at the origin in ^-T? space so that the shape func­

tions may be conveniently expanded in terms of an orthogonal set of base 

vectors, given in Table 3.1, as follows: 

0j = J Zj + ^ ^Ajj + I TjÂ j + ^T?rj (3.1.6) 
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TABLE 3.1 

node 

1 

2 

3 

4 

^ 

- . 5 

.5 

.5 

- . 5 

1? 

- . 5 

- . 5 

.5 

.5 

^I 

1 

1 

1 

1 

^ I 

-1 

1 

1 

-1 

A^j 

-1 

-1 

1 

1 

^I 

1 

-1 

1 

-1 

The above vectors represent the displacement modes of a unit square. The 

first vector, Z-,, accounts for rigid body translation. We call I the summa­

tion vector since it may be employed in indicial notation to represent the 

algebraic sum of a vector. 

The linear base vectors A., may be readily combined to define the 

uniform normal strains and shear strain in the element. We refer to A., as 

the volumetric base vectors since, as we will illustrate below, they are the 

only base vectors which appear in the element area expression. 

The last vector, F,, gives rise to linear strain modes which are 

neglected in the uniform strain integration. This vector defines the 

hourglass patterns for a unit cube. The displacement modes represented by 

the vectors in Table 3.1 are also shown in Figure 3.1.1. 

3.1.1 Plane Strain Case 

In the finite element method, we replace the momentum Equation (2.3.1) 

with a weak form of the equation. Using the principle of virtual work, we 

write the weak form of the equation as 

E /v (T^jj + Pb^ - pu.) 5u. dV = 0 (3.1.7) 
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where 6u represents an arbitrary virtual displacement field, with the same 

interpolation as Equation (3.1.2), which satisfies the kinematic 

constraints. In plane strain, the thickness of the body is considered 

uniform and arbitrary, and therefore can be eliminated from the preceding 

expression. Integrating by parts and applying Gauss' divergence theorem to 

Equation (3.1.7) then gives 

e L e e e e -

The summation symbol represents the assembly of element force vectors into a 

global nodal force array. We assume that the reader understands the details 

of this assembly; we will not discuss it further in this document. 

The second integral in the preceding equation is used to define the 

element internal force vector f , as 

'^ i ^ I = X '^j ' ' ^ ' j ' " ^'-'-'^ 
e 

The first and third integrals define the external force vector, and the 

fourth integral defines the inertial response. 

We perform one point integration by neglecting the nonlinear portion of 

the element displacement field, thereby considering a state of uniform 

strain and stress. The preceding expression is approximated by 

'̂ e 

where we have eliminated the arbitrary virtual displacements, and T repre­

sents the assumed uniform stress field which will be referred to as the mean 

stress tensor. By neglecting the nonlinear displacements, we have assumed 

that the mean stresses depend only on the mean strains. Mean kinematic 

quantities are defined by integrating over the element as follows: 
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"i,J A/,, "I,J 
dA . (3.1.11) 

We now define the discrete gradient operator as 

' i i = / * i , i 
B,T = / <̂T . dA . 

'A 
(3.1.12) 

The mean velocity gradient, applying Equation (3.1.5), is given by 

U = X U T B T . 

"i,j A "il ''jl 
(3.1.13) 

Combining Equations (3.1.10) and (3.1.12), we may express the nodal forces 

by 

^ I = ^ J ^ J I 
(3.1.14) 

Computing nodal forces with this integration scheme requires evaluation 

of the gradient operator and the element area. These two tasks are linked 

since 

^ , J = ^ J 
(3.1.15) 

where 6 is the Kroneker delta. Equations (3.1.1), (3.1.12), and (3.1.15) 

yield 

SI 'JI=/(^I Î̂ 'J '' = '̂ J (3.1.16) 

Consequently, the gradient operator may be expressed by 

B., = aA 
il 9x 

il 
(3.1.17) 

To integrate the element area in closed form, we use the Jacobian of 

the isoparametric transformation to transform the integral in x-y space to 

an integral over the unit square: 
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+ 1/2 /- + 1/2 

/

•irinL r + i 

•111 J-\l 
J drj d^ (3.1.18) 

where 

, _ 8x 8y _ 8x a^ 
8^ ar? 37? a^ 

(3.1.19) 

Therefore, Equation (3.1.18) can be written as 

^ = ^ 1 ^ 0 ^IJ (3.1.20) 

where 

1/2 /•1/2 / a^ j 80J a^j a^j 

/

lliL r i i i 

Ml J-\l\ a^ ar? a?? a^ 
dT? d^ (3.1.21) 

In light of Equation (3.1.6), the above integration involves at most 

bilinear functions. Therefore, only the constant term does not vanish and 

the integration yields 

\ 
^IJ = 4 (̂ 11 ̂ 2J "" ̂ 21 ^ J ^ 

(3.1.22) 

Note that C,, is antisymmetric; 

c = -C 
^IJ ^IJ (3.1.23) 

Evaluating equation (3.1.22), we obtain the following explicit repre­

sentation for C,,: 

c - 1 
^IJ ~ 2 

~ 0 

-1 

0 

1 

1 

0 

-1 

0 

0 

1 

0 

-1 

-1 

0 

1 

0 

(3.1.24) 

Substituting the above expression into Equation (3.1.20), we obtain the 

familiar expression for the area of a quadrilateral: 
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A = \ [(X3 - Xj)(y4 - y^) + (X2 - X4)(y3 - yj)] (3.1.25) 

Using this result in Equation (3.1.17), the B matrix may be expressed as 

^ J = ^IJ 
-X. (X4 - X2)(Xj - X3)(X2 - ^/^){^2 ~ ̂ 1^ 

(3.1.26) 

The mean stress approach used here gives the same result in two dimensions 

as the one-point quadrature rule for the quadrilateral since the Jacobian is 

at most bilinear. 

3.1.2 Axisymmetric Case 

The axisymmetnc quadrilateral poses a special problem for the finite 

element method in that we must reduce a three-dimensional variational 

Equation (3.1.7) to a two-dimensional element domain. The formulation is 

complicated by the fact that the variational principal is cast in cylindri­

cal, rather than Cartesian coordinates. 

We will start by defining the cylindrical coordinate system as follows: 

r° = (r,z,0) (3.1.27) 

While the above ordering of the coordinates is unconventional (and not 

right-handed), it degrades cleanly to the axisymmetnc case. Note that 

Greek indices have a range of three and that superscripts and subscripts 

indicate contravanant and covariant tensor components, respectively. 

The shape functions of the axisymmetnc uniform strain quadrilateral 

are the same as those for the plane strain case (Table 3.1) and are defined 

implicitly in terms of the nodal coordinates 

r = r , (4, 
1 1I ̂ I 

(3.1.28) 
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Note that lower case English indices have a range of two and that, since the 

two-dimensional coordinate system is Cartesian, there is no distinction 

between covariant and contravanant tensor components. 

In our Lagrangian formulation the same shape functions are applied to 

the displacement fields. This implies that the material derivatives of the 

shape functions vanish. As a result, these shape functions also apply to 

the velocity field, just as in the plane strain case: 

1 i l ̂ I 
(3.1.29) 

The weak form given by Equation (3.1.7) is expressed in cylindrical 

coordinates as 

X 
e ^e 

.a/? 

,P 
+ pb°- - pu°-) 6u dV = 0 (3.1.30) 

We are now faced with a three-dimensional variational principle, but 

only a two-dimensional element. Since the differential of volume imposes a 

factor of r on the differential of area (dV = 27rrdA), there is an implicit r 

weighting on the integrand of the weak form in Equation (3.1.30). This 

means that the integrand vanishes near the axis of symmetry (r = 0) regard­

less of the variations' This also means that the discretized equations 

generated by the finite element method become ill-conditioned near the axis. 

This difficulty is resolved by dividing the integrand of Equation 

(3.1.30) by r to reduce the integration to the element domain. However, we 

must carry this weighting factor in order to apply Gauss' theorem in three 

dimensions. This technique was referred to as a Petrov-Galerkin, or area-

weighted finite element, formulation by Goudreau and Hallquist [18]. 

2'^Xv 
aP\ 

- 6u 
r a 

dV + 
/ 

Pb̂  6u dA a 7 pu°6u dA = 0 (3.1.31) 

Integrating by parts and applying Gauss' theorem yields the following: 
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L e e e e 

0 (3.1.32) 

Evaluating the covariant derivative (see Fung [40]) in the preceding 

equation yields 

(F '\)\, - (F '\l, - ̂ l, [l '".) 
1 1 -Y 1 
- 6u „ - - r ' 5u - —^ 6i^6u r a,/? r a/3 7 ^2 1/3 a 

(3.1.33) 

where T^„ are the Euclidian Chnstoffel symbols associated with the 
a/3 

cylindrical coordinate system. The only nonzero components are 

33 

13 

(3.1.34) 

31 

We are now in a position to degenerate the variational equations to the 

axisymmetnc case. The axisymmetry conditions require that variations and 

derivatives in 6 vanish. Combining Equations (3.1.32) to (3.1.34) and 

enforcing axisymmetry gives 

I /* T n 6u dS - /* (T 5u + rT-̂ '̂ 6u. - - T T6U 1 
L/s ^ J J 1 y^ \ 1J 1. J 1 r i l l / 
L e e 

+ / pb 6u dA - / pu 6u dA 

dA 

(3 1 35) 

Note that we have dropped the coniravanant superscript notation for 

English indices in going from Equations (3.1.32) to (3.1.35) because, as we 

stated previously, there is no distinction between contravanant and 

covariant components m our two-dimensional coordinate sŷ t̂em. 

A by-product of the Petrov-Galerkin formulation is that the resulting 

weak form for the axisymmetnc case, Equation (3.1.35), is nearly identical 

to that of the plane strain case, Fquation (3.1.8) The only differe ce is 
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the addition of the last two terms to the internal force expression, which 

is the second integral above. This is clearly a major architectural ad­

vantage to PRONTO. 

Note that the last term of the axisymmetric internal force expression 

is not associated with strain. These forces are analogous to the covected 

force terms which appears in the stress divergence as shown below (see Fung 

[40]). 

ra/3 = T' a/J + r^„ T'y^ + r ^ . T'̂ 'y 
,/3 7/3 7/3 

= T'̂ '̂  , + I ^ , T-ŷ  + i T^l 
.^ 7/3 r 

(3 .1 .36) 

If the 1/r correction is omitted in Equation (3.1.31), the final term in the 

axisymmetric internal force disappears. 

It is convenient for a finite element program to work with physical, 

rather that tensoral, stress components. In our formulation, the hoop 

stress is the only component which requires such a distinction. The 

physical hoop stress T.,_ is given by 

T = r̂  T^^ 
'33 ^ ' (3.1.37) 

The internal forces are then given by 

'll=/^1/1,3='* *X""^l-Til'-r*I dA (3.1.38) 

Evaluating all these integrals with single point integration yields 

^ I = ^ , / j i M T 3 3 6 . j - T . j ) - ^ I j (3.1.39) 

where 

' = 4 h'l (3.1.40) 
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We now see that the internal force vector for the axisymmetric case. 

Equation (3.1.39), is the same as that for the plane strain case, Equation 

(3.1.14), with the addition of the hoop stress and covected forces. 

The velocity gradient in cylindrical coordinates is 

^«|/3 = ^«,/3 - ^ I ^ -̂y (^-l-^l) 

Substituting Equation (3.1.34) into the above equation, and enforcing 

axisymmetry leaves only five nonzero components; the four in-plane com­

ponents, and the physical hoop strain rate D--. This additional strain rate 

component is defined conjugate to Equation (3.1.37) as 

D33 = -|^3|3 = -r (3.1.42) 
r ' 

We evaluate th is quanti ty with one point in tegrat ion as fo l lows: 

D33 = 4 (3.1.43) 
r 

where r is given by Equation (3.1.40) and 

Uj = i Zj Gjj (3.1.44) 

3.1.3 Lumped Mass Matrix 

One of the aforementioned advantages of using the Petrov-Galerkin 

method for the axisymmetric case is that the inertial terms in the varia­

tional statement of the boundary value problem are identical for both the 

plane strain, Equation (3.1.8), and axisymmetric, Equation (3.1.35), cases. 

Therefore, we can treat both cases at one time. 
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In order to reap the benefits of an explicit architecture, we must 

diagonalize the mass matrix. We do this by integrating the inertial energy 

variation as follows: 

/ 
pu 5u dA = u .m,,6u , (3.1.45) 

. 1 1 l i l d l j 

where 

mjj = pA6jj (3.1.46) 

and 5 T , is the kroneker delta. Clearly the assembly process for the global 

mass matrix from the individual element matrices results in a global mass 

matrix which is diagonal and can be expressed as a vector, M,. 

3.2 Explicit Time Integration 

PRONTO uses a modified central difference scheme to integrate the 

equations of motion through time. By this we mean that the velocities are 

integrated with a forward difference, while the displacements are integrated 

with a backward difference. The integration scheme for a node is expressed 

as 

"t = t̂̂ -̂ ^ r ' ^ (3-2-1) 

VAt = \^^^ \ (3-2-2) 

and u^^^^ = u^ + At u^^^^ (3.2.3) 

where f. and f. are the external and internal nodal forces, respec­

tively, M IS the nodal point lumped mass, and At is the time increment. 

The central difference operator is conditionally stable. It can be 

shown that the Courant stability limit for the operator is given in terms of 

the highest eigenvalue in the system [41]: 

At s — ^ (3.2.4) 
max 
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In Section 3.5, we discuss how the highest eigenvalue is approximated 

and how we determine a stable time increment. 

3.3 Finite Rotation Algorithm 

We stated in Section 2.2 that one of our fundamental numerical chal­

lenges in the development of an accurate algorithm for finite rotations was 

the determination of R, the rotation tensor defined by the polar decomposi­

tion of the deformation gradient F. We developed an incremental algorithm 

for reasons of computational efficiency and numerical accuracy. The validity 

of the unrotated reference frame is based on the orthogonal transformation 

given by Equation (2.2.1). Therefore the crux of integrating Equation 

(2.1.6) for R is to maintain the orthogonality of R. If one integrates R = 

aR via a forward difference scheme, the orthogonality of R degenerates 

rapidly no matter how fine the time increments. We instead adapted the 

algorithm of Hughes and Winget [19] for integrating incremental rotations as 

follows. 

A rigid body rotation over a time increment At may be represented by 

VAt^^At ̂  (3-3-1) 

where Q , is a proper orthogonal tensor with the same rate of rotation as R 

given by Equation (2.1.6). The total rotation R is updated via the highly 

accurate expression below. 

•̂ t+At = ̂ At "̂ t (3-3.2) 

For a constant rate of rotation, the midpoint velocity and the midpoint 

coordinates are related by 

Â  (VAt-^) =2^(VAt-^\) • (3-3-3) 

Combining Equations (3.3.1) and (3.3.3) yields 

(̂ At- )̂ \ = ~2^^\t'- I) \ • (3-3-4) 
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Since x. is arbitrary in Equation (3.3.4), t may be eliminated. We then 
solve for Q.^. The result is 

The accuracy of this integration scheme is dependent upon the accuracy 
of the midpoint relationship of Equation (3.3.3). The rate of rotation must 
not vary significantly over the time increment. Furthermore, Hughes and 
Winget [19] showed that the conditioning of Equation (3.3.5) degenerates as 
Ata grows. 

Our complete numerical algorithm for a single time step is as follows; 

1. Calculate D and W. 

2. Compute z. = e..^ V^^ D^^ , 

(0 = w - 2[V - I tr(V)]"-^ z , and 

^ij = I ̂ ijk % 

3. solve (l-^«)Rt+At = ( l ^ ^ « ) « t 

4. Calculate V = (D + W) V - V8 . 

5. Update V. ,. = V, + At V,, 
^ t+At t At 

6. Compute d = R^ D R . 

7. Integrate a = f(d,a) 

8. Compute T = R a R . 

This algorithm requires that the tensors V and R be stored in memory for 

each element. 
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3.4 Determination of Effective Moduli 

Algorithms for calculating the stable time increment, hourglass con­

trol, bulk viscosity, and nonreflecting boundaries require dilitational and 

shear moduli. In PRONTO we use an algorithm for adaptively determining the 

effective dilatational and shear moduli of the material. 

Since PRONTO uses an explicit integration algorithm, the constitutive 

response over a time step can be recast aposteriori as a hypoelastic 

relationship. We approximate this relationship as isotropic. This defines 

effective moduli, X and n in terms of the hypoelastic stress increment and 
strain increment as follows: 

Aa.. = At(Xd^^ 6.. + 2u d..) (3.4.1) 

Equation 3.4.1 can be rewritten in terms of volumetric and deviatoric parts 

as 

y\ ^ 

Aa^^ = At(3X + 2n) d^^ (3.4.2) 

and 

s.. = At 2u e.. (3.4.3) 

where 

^ij = ^^ij - 5 ^^kk ^ j (3-4-4) 

and 

^ij= ^ i j - 5 ^ k k ^ j • (3-4-5) 

The effective bulk modulus follows directly from Equation (3.4.2) as 

- - - Aa., 
3K = 3X + 2M = ^ ^ (3.4.6) 

mm 
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Taking the inner product of Equation (3.4.3) with the deviatoric strain rate 

and solving for the effective shear modulus 2p, gives 

/v s e 
2 M = Ĵ Ĵ (3.4.7) 

At e e 
mn mn 

Using the result of Equation (3.4.6) with Equation (3.4.7), we can calculate 

the effective dilatational modulus X + 2M: 

X + 2i = ^ (3K + 2-(2i)) (3.4.8) 

If the strain increments are insignificant. Equations (3.4.6) and 

(3.4.7) will not yield numerically meaningful results. In this cir­

cumstance, PRONTO sets the dilatational modulus to an initial estimate, X + 

2M • An initial estimate of the dilatational modulus is, therefore, the 

only parameter which every constitutive model is required to provide to the 

time step control algorithm. 

In a case where the volumetric strain increment is significant, but the 

deviatoric increment is not, the effective shear modulus can be estimated by 

rearranging Equation (3.4.8) as follows: 

2M = \ (3(X^ + 2 M Q ) - 3K) (3.4.9) 

If neither strain increment is significant, PRONTO sets the effective shear 

modulus to the initial dilatational modulus. 

The algorithm that PRONTO follows to estimate the effective dilata­

tional and shear moduli is summarized in Table 3.2 Note that either of 

effective moduli calculated via this algorithm may be zero or negative. 

These degenerate cases must be taken into account whenever these moduli are 

used. 
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^"kk > 

Yes 

Yes 

No 

No 

10" -6 
2 

At e 

TABLE 3.2 

U^J > 

Yes 

No 

Yes 

No 

10" -12 X + 2M 

(3.4.8) 

\ ^ 2M, 

\ ^ 2M, 
\ ^ 2M, 

2M 

(3.4.7) 

(3.4.9) 

(3.4.7) 

\ ^ 2M, 

3.5 Determination of the Stable Time Increment 

Flanagan and Belytschko [20] provided eigenvalue estimates for the 

uniform strain quadrilateral described in Section 3.1. They showed that the 

maximum eigenvalue was bounded by 

, Liiii !ll!:i > 2 > 2 Li l i ! !ll!ll ,3.5.1) 

P ;̂2 max p ^2 ^ ' 

Using the effective dilatational modulus from Section 3.4 with the eigen­

value estimates of Equation (3.5.1) allows us to write the stability 

criteria of Equation (3.2.4) as 

The stable time increment is determined from Equation (3.5.2) as the minimum 

over all elements. 

Equation (3.5.2) is numerically invalid if the effective dilatational 

modulus IS less than or equal to zero. A negative modulus indicates a 

strain softening situation (the Damage Model, Section 4.4, is the only 

currently supported constitutive model which allows strain softening), which 

44 



renders the central difference operator unconditionally unstable. In prac­

tice, however, strain softening is generally short lived, so that the 

calculations can continue in a stable manner once the softening energy has 

been dissipated. To aid the user in controlling an unstable strain soften­

ing situation, we adjust the effective dilatational modulus with the strain 

softening scale factor (Appendix A, command 9) as follows: 

- - ^0 -̂  2M, 
If X + 2M < 0 ; X + 2M = — % (3.5.3) 

(ssft) 

To avoid dividing by zero in Equation (3.5.2), we then enforce the following 

condition: 

X + 2M > (X, + 2M,) 10"^ (3.5.4) 

The estimate of the critical time increment given in the preceding 

equation is for the case where there is no damping present in the system. 

If we define e as the fraction of critical damping in the highest element 
mode, the stability criteria of Equation (3.5.2) becomes 

At i At \Vl + e^ - e) (3.5.5) 

Conventional estimates of the critical time increment size have been 

based on the transit time of a dilatational wave over the shortest dimension 

of an element or zone. For the undamped case this gives 

At = ^/c (3.5.6) 

where c is the dilitational wave speed. 

There are two fundamental and important differences between the time 

increment limits given by Equations (3.5.2) and (3.5.6). First, our time 

increment limit is dependent on a characteristic element dimension, which is 

based on the finite element gradient operator and does not require an ad hoc 

guess of this dimension. This characteristic element dimension, ,̂ is 

defined by inspection of Equation (3.5.2) as 

-̂  = A/ yB^j B^j (3.5.7) 
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Second, the sound speed used in the estimate is based on the current 

response of the material and not on the original elastic sound speed. For 

materials which experience a reduction in stiffness due to plastic flow, 

this can result in significant increases in the critical time increment. 

It should be noted that the stability analysis performed at each time 

step predicts the critical time increment for the next step. Our assumption 

IS that the conservativeness of this estimate compensates for any reduction 

in the stable time increment over a single time step. 

3.6 Hourglass Control Algorithm 

The mean stress-strain formulation of the uniform strain element con­

siders only a fully linear velocity field. The remaining portion of the 

nodal velocity field is the so-called hourglass field. Excitation of these 

modes may lead to severe, unresisted mesh distortion. The hourglass control 

algorithm described here is taken directly from Flanagan and Belytschko 

[17]. The method isolates the hourglass modes so that they may be treated 

independently of the rigid body and uniform strain modes. 

A fully linear velocity field for the quadrilateral can be described by 

u^L^^ = U^ + U^^j (Xj - Xj) (3.6.1) 

The mean coordinates x correspond to the center of the element and are 

defined as 

x^ = \ x^j Zj (3.6.2) 

The mean translational velocity is similarly defined by 

"T = 5 u^i ^i (3.6.3) 
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The linear portion of the nodal velocity field may be expressed by 

specializing Equation (3.6.1) to the nodes as follows: 

G^I^.U. Zj.U.^.(x.j-x. Zj) (3.6.4) 

where Zj is used to maintain consistent index notation and indicates that u. 

and x. are independent of position within the element. From Equations 

(3.1.15) and (3.6.4), and the orthogonality of the base vectors, it follows 

that 

"il ^I = ""U^ h = ̂ ^1 (3-^-5) 

and 

^ i BjI = ^ i ^ B j I = ^ ^ , j (3-6-6) 

• HP 

The hourglass field u., may now be defined by removing the linear portion of 

the nodal velocity field: 

•HG • 'LIN 
u ^ ^ = u . j - u ^ | ^ (3.6.7) 

Equations (3.6.5) through (3.6.7) prove that Z, and B., are orthogonal to 

the hourglass field: 

•HG 
u"j Zj = 0 (3.6.8) 

u^^ B.J = 0 (3.6.9) 

Furthermore, it can be shown that the B matrix is a linear combination of 

the volumetric base vectors. A,, so Equation (3.6.9) can be written as 

u^f Aj = 0 (3.6.10) 
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Equations (3.6.8) and (3.6.10) show that the hourglass field is orthogonal 

to all the base vectors in Table 3.1 except the hourglass base vectors. 
•HG 

Therefore, u . may be expanded as a linear combination of the hourglass base 

vectors as follows: 

• HG 1 • 
u^i = ̂  Pi Tj (3.6.11) 

The hourglass nodal velocities are represented by q above (the leading 

constant is added to normalize r,). We now define the hourglass shape 

vector 7j such that 

q̂  = I u^j 7i (3.6.12) 

By substituting Equations (3.6.4), (3.6.7), and (3.6.12) into (3.6.11), then 

multiplying by r, and using the orthogonality of the base vectors, we obtain 

the following: 

^ I ^ I - ^ , J >^JI^I = ^ I ^i (3-6-i3) 

With the definition of the mean velocity gradient, Equation (3.1.13), we can 

eliminate the nodal velocities above. As a result, we can compute 7. from 

the following expression: 

^ i = r i - A ^ i ^ J • ^J (3-6-14) 

The difference between the hourglass base vectors r, and the hourglass 

shape vectors 7, is very important. They are identical if and only if the 

quadrilateral is a parallelogram. For a general shape, F, is orthogonal to 
•LIN 

B J while 7j IS orthogonal to the linear velocity field u j . While r, 

defines the hourglass pattern, 7, is necessary to accurately detect 

hourglassing. Equation (3.6.14) is simple enough for the quadrilateral that 

it can be written explicitly as 
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^I = A 

^2(^3 " ^4) "̂  ^3(^4 " ^2^ "̂  ^4(^2 " ^3^ 

X3(yj - y4) + X4(y3 - y j ) + Xj(y4 - y3) 

X4(yj - ^2) "̂  ^1(^2 " ^4) "̂  ^2(^4 " ^ 1 ^ 

Xj(y3 - y2) + X2(yj - y3) + X3(y2 - y j ) 

(3.6.15) 

For the purpose of controlling the hourglass modes, we define generalized 

forces 0•, which are conjugate to q. so that the rate of work is 

u„f?Mp, q, (3.6.16) 

for arbitrary u.,. Using Equation (3.6.12), it follows that the contribu­

tion of the hourglass resistance to the nodal forces is given by 

fHG 1 n 
^ I = 2 ̂ i ̂ I 

(3.6.17) 

Two types of hourglass resistance are used in PRONTO: artificial 

stiffness and artificial damping. We express this combination as 

1̂  V 
0, = 0^ . 0; (3.6.18) 

In terms of the tuneable stiffness (K) and viscosity (E) factors, these 

restinances are given by 

AK K - ^il ̂ il • 
^i = 2 2^ — A — ^i 

(3.6.19) 

o l - ymin (0,2M) m q. (3.6.20) 

Note that the stiffness expression must be integrated, which further re­

quires that this resistance be stored in a global array. 
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Observe that the nodal antihourglass forces of Equation (3.6.17) have 

the shape of 7, rather than r,. This fact is essential since the an­

tihourglass forces should be orthogonal to the linear velocity field, so 

that no energy is transferred to or from the rigid body and uniform strain 

modes by the antihourglassing scheme. 

We would prefer to use only hourglass stiffness and, in fact, this is 

what IS used for the plane strain case (K = .05 and c = 0.0). 

Unfortunately, the nonstrain terms in the Petrov-Galerkin formulation give 

rise to an instability which is best stabilized using hourglass viscosity. 

For the axisymmetnc case, values of K = .01 and e = .03 are used. 

3.7 Artificial Bulk Viscosity 

Artificial viscosity is applied to the numerical solution for two 

reasons. First is to prevent high velocity gradients from collapsing an 

element before it has a chance to respond. The second reason is to quiet 

truncation frequency "ringing". 

Ideally, one would like to add viscosity only to the highest mode of 

the element, but isolating this mode is impractical. The standard technique 

IS to simply add viscosity to the volumetric or "bulk" response. This 

generates a viscous pressure in terms of the volume strain rate as follows: 

V / V \ 2 
q = b j p c ^ ^ - p ^ b 2 ^ y j (3.7.1) 

The quadratic term in Equation (3.7.1) is more important and is designed to 

"smear" a shock front across several elements. This term yields a jump in 

energy as a smeared shock passes, which simulates the shock heating. As a 

result, the smeared shock front can be propagated as a steady wave. 

The linear term is intended to dissipate truncation frequency 

oscillations. Note that the quadratic term is only applied to compressive 

strain rates since an element cannot collapse in expansion. 
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The preceding expression is simplified if we use the undamped stable 

time increment defined by Equation (3.5.2) and write 

i -^"--c-^^T^-rru ^'-'-'^ 

or 

= V ^ -̂t = V H r i i • B ; ^ (3.7.3) 

We now define the factor e such that the quadratic viscosity term vanishes 

in expansion 

£ = b^ - b^ At min(0,D|^^) (3.7.4) 

This quantity is required for the damped stability criteria of Equation 

(3.5.5). Note that the condition imposed by Equation (3.5.4) prevents 

Equation (3.7.4) from yielding so large a value of e that Equation (3.5.5) 

would numerically yield a zero value. 

We will show below that e is an estimate of the fraction of critical 

damping in the highest element mode. Using Equation (3.7.4) in Equation 

(3.7.3) allows us to write the viscous pressure as 

q = (b^ - bl At D^^)(X + 2M) At D̂ ,̂  (3.7.5) 

The bulk viscosity pressure is appended to the stresses during the internal 

force calculations to yield the following forces: 

f^j = q B^j (3.7.6) 

The above expression can be expanded using Equations (3.7.3) and (3.7.4) to 

yield 

^ I = ^p'^\^,j ^ i ^ j ( 3 . 7 . 7 ) 
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This form indicates that if B , is an eigenvector, the modal damping is 

e p ^ (3.7.8) 

The critical damping estimate of the maximum element frequency is 

2m^= 2 eA 2 £ = p A£ ^3 7 9^ 

The two expressions above show that e is indeed a good estimate of the 

fraction of critical damping in the highest mode. 

3.8 Adaptive Element Deletion 

The adaptive element deletion option was added to PRONTO 2D to provide 

the capability to model catastrophic material failure. This option should 

not be confused with the element block deletion option (Appendix B, command 

35) which can be used to remove an entire block of material from the 

analysis at some predetermined time. The keyword here is "adaptive". We 

allow the user to specify criteria which define when the material fails 

within an element. This criteria is defined at the element level and PRONTO 

checks every time step to determine whether material failure has occurred. 

Currently, the user can define failure in terms of energy per unit 

volume, Von Mises stress, pressure, or maximum principal stress. Also, 

failure criteria can be defined in terms of any internal state variable. 

Note that the pressure is positive in compression, p = -tr(a). The adaptive 

element death capability requires a very mature user who understands how 

his/her material behaves. The capability built into the code is quite 

general, and it is possible for the user to define a nonsensical failure 

criteria. We allow the user to specify the failure in terms of a particular 

variable, a prescribed value of the variable at failure, and what we refer 

to as the mode of failure. By mode we mean minimum, maximum, or absolute 

value. 
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The adaptive element deletion capability is completely vectorized and 

does not add any appreciable computational penalty. We define a status 

array (length=NUMEL) which has a value of one or zero. If an element is 

"alive", the status array contains a value of one for that element. When 

PRONTO detects that the element has "died", the value of the status array 

for that element is reduced to zero over five time steps. We use the status 

array to wipe out any contribution that a deleted element makes in step 1 of 

Section 8.2. Each deleted element undergoes all the calculations which it 

would if it were not deleted, but its contributions are not included in the 

timestep control algorithm nor the stress divergence. This is accomplished 

by a few multiplications of critical results by the status array. If the 

element is not deleted, the results are multiplied by a one and the results 

are unchanged. If the element is deleted, the results are multiplied by a 

zero and the results are neutralized. Hence, the overall cost of this 

algorithm is a few multiplications per element. 

When the element is deleted, its contribution to the nodal point lumped 

mass is still retained. When all the elements connected to a particular 

node are deleted, the node then becomes a free nodal mass, whose motion we 

continue to calculate. 

It is more convenient for post-processing to define the status array 

exactly opposite to our convention. For this reason, we flip each value as 

we write the status array to the post-processing data base. Note that if 

the adaptive element deletion and/or the element block deletion options are 

used, the element status array is automatically written to the data base. 
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4.0 CONSTITUTIVE MODELS 

One of the primary reasons for developing PRONTO was to have a numeri­

cal testbed for developing constitutive models. As a result, considerable 

effort was directed to write a flexible material interface subroutine which 

allows a constitutive model to be added to the code with minimal effort. 

The MATINT subroutine in PRONTO allows a constitutive modeler to add a new 

material model to the program by filling in a handful of numbers in data 

statements which tell the program how to set up the internal data base for 

the new model. Consequently, the constitutive modeler does not have to 

understand the inner workings of PRONTO and does not have to write any 

format statements or juggle the memory allocation in the code. The comments 

in the FORTRAN explain in great detail how to add the new model. See 

Appendix C for the steps to be taken to add a new constitutive model. 

Currently there are nine material models in the code. Since models can 

be added with such ease, this number is expected to increase as applications 

requiring new materials arise. 

All material models are written in terms of the unrotated Cauchy 

stress, a, and the deformation rate in the unrotated configuration, d. 

For each of the materials described below, we give a list of the inter­

nal state variables used in that particular material model. We also give a 

list of the material constants which are stored in the PROP array 

(Appendix B, Section 5.0). In the list of material properties, the items 

denoted by an "*" are material properties which are calculated internally. 

The remaining material properties are the actual values read from the input 

data. 

The relationship between the material models described in this chapter 

and the equations of state described in Chapter 5 must be understood in 

order to properly use the equations of state. We have structured PRONTO so 

that material models can act as a host to an equation of state. Not all of 

the constitutive models described below in this chapter do so. The equa­

tions of state cannot be used except in conjunction with a material model. 
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The equation of state can only give the volumetric material response. The 

hydrodynamic material model (Section 4.7) has only volumetric response and 

just calls the specified equation of state. The elastic plastic 

hydrodynamic material model (Section 4.9) uses classical J^ plasticity 

theory to determine the deviatoric material response and calls the specified 

equation of state for the volumetric material response. Any of the other 

constitutive models in this chapter could be restructured to use an equation 

of state for the volumetric material response if required. 

We have followed the historical convention used for each material model 

for the sign of a positive pressure. We inherited most of these constitu­

tive models from previous codes and did not wish to change what has come to 

be accepted conventions for a positive pressure. This means that for some 

models the pressure is positive in tension and for some it is positive in 

compression. Table 4.1 shows the convention used for each of the material 

models described in this chapter. 

TABLE 4.1 

Model 

Elastic 

Elastic Plastic 

Viscoplastic 

Soils and Crushable Foams 

Low Density Foams 

Hydrodynamic 

Rate and Temperature 

Dependent Plasticity 

Elastic Plastic 

Hydrodynamic 

Tension 

positive 

positive 

positive 

negative 

positive 

negative 

positive 

negative 

Compression 

negative 

negative 

negative 

positive 

negative 

positive 

negative 

positive 
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4.1 Elastic Material, Hooke's Law 

A linear elastic material is defined using Hooke's Law. In a rate 

form, this is written as 

a = X(tr d)6 + 2 M d (4.1.1) 

where X and M are the elastic Lame material constants. 

This model has no internal state variables. 

The PROP array for this material contains the following entries: 

PROP(l) - Young's Modulus, E 

PR0P(2) - Poisson's Ratio, v 

*PR0P(3) - X 

*PR0P(4) - 2 M 

4.2 Elastic Plastic Material with Combined Hardening 

The elastic plastic model is based on a standard Von Mises type yield 

condition and uses combined kinematic and isotropic hardening. This model 

is widely used in many finite element and finite difference computer 

programs and the many details of its derivation are scattered throughout the 

literature. Here, we present the model in detail because we feel that many 

users of the model are not familiar with its underlying assumptions and 

numerical approximations. 

4.2.1 Basic Definitions and Assumptions 

Some definitions and assumptions are outlined here. Referring to 

Figure 4.2.1, which shows the yield surface in deviatoric stress space, we 

define the backstress (the center of the yield surface) by the tensor, a. 
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Figure 4.2.1. Yield Surface in Deviatoric Stress Space 
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If a is the current value of the stress, we define the deviatoric part of 

the current stress by 

S = C T - = tra6 (4.2.1) 

We define the stress difference measured by subtracting the backstress 

from the deviatoric stress by 

€ = S - a (4.2.2) 

The magnitude of the deviatoric stress, R, is defined by 

R = 1̂1 = ViTi , (4.2.3) 

where we denote the inner product of second order tensors by S:S = S.. S... 

Note that if the backstress is zero (isotropic hardening case) the stress 

difference is equal to the deviatoric part of the current stress, S . 

The Von Mises yield surface is defined as 

f(a) = \ ^:h= K^ (4.2.4) 

The Von Mises effective stress, a, is defined by 

^ = V i ^ (4.2.5) 

Since R is the magnitude of the deviatoric stress tensor when a = 0, it 

follows that 

= ^ " " V ! (4.2.6) 

The normal to the yield surface can be determined from Equation (4.2.4) 

0 = 1̂  91 
8a 

= ^/R (4.2.7) 
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We assume that the strain rate can be decomposed into elastic and 

plastic parts by an additive decomposition 

d = d^^ + dP^ (4.2.8) 

and assume that the plastic part of the strain rate is given by a normality 

condition 

dP^ = 7Q . (4.2.9) 

when the scalar multiplier, 7, must be determined. 

A scalar measure of equivalent plastic strain rate is defined by 

dP̂  = VI dP^dP^ (4.2.10) 

which is chosen such that 

o dP^ = a:dP^ . (4.2.11) 

The stress rate is assumed to be purely due to the elastic part of the 

strain rate and is expressed in terms of Hooke's law by 

a = X tr d^^ 5 + 2 M d®^ . (4.2.12) 

where X and M are the Lame constants for the material. 

Below, we develop the theory for the cases of isotropic hardening, 

kinematic hardening and combined hardening separately so that the reader can 

see the details of each case. 

4.2.2 Isotropic Hardening 

In the isotropic hardening case, the backstress is zero and the stress 

difference is equal to the deviatoric stress, S. We write a consistency 

condition by taking the rate of Equation (4.2.4) 
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f(a) = 2 K K . (4.2.13) 

By "consistency" we mean that the state of stress must remain on the yield 

surface at all times. We use the chain rule and the definition of the 

normal to the yield surface given by Equation (4.2.7) to obtain 

K.) - |!:i = 91 
do 

Q:a (4.2.14) 

and from Equations (4.2.3) and (4.2.4) 

91 
9a 

= ISI = R (4.2.15) 

Combining Equations (4.2.13), (4.2.14), and (4.2.15) 

^ S:a = R (4.2.16) 

We note that because S is deviatoric, S:o = S:S and 

S:S = 
dt 

i s-s\ = ^ ( 
2 ^•^j dt \ 

2 - • 
= ^o o (4.2.17) 

Then Equation (4.2.16) can be written as 

R^VfJ 'VFH'a ' " (4.2.18) 

where H' is the slope of the yield stress versus equivalent plastic strain 

(a versus 1^ ). This is derivable from the data from a uniaxial tension 

test as shown in Figure 4.2.2. 

The consistency condition. Equation (4.2.16) and Equation (4.2.18), 

result in 

Vf I H' HPI = n. H' d^' = Q'.o (4.2.19) 

•TR 
We define the trial elastic stress rate a by 
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c'̂ ^ 

H' 
E - E 

Figure 4.2.2. Conversion of Data From a Uniaxial Tension Test 
to Equivalent Plastic Strain Versus Von Mises Stress 
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a^ = C:d (4.2.20) 

where C is the fourth order tensor of elastic coefficients defined by 

Equation (4.2.12). Combining the strain rate decomposition defined in 

Equation (4.2.8) with Equations (4.2.19) and (4.2.20) yields 

^ H ' dP^ = Q:o^^ - Q:C:dP^ . (4.2.21) 

We note that because Q is deviatoric, C:0 = 2 M 0 and 0:C:0 = 2M. Then 

using the normality condition, Equation (4.2.9), the definition of equiv­

alent plastic strain. Equation (4.2.10), and Equation (4.2.21) 

I H' 7 = Q:o^^ - 7 2 M (4.2.22) 

•TR and since Q is deviatoric (0:a = 2 M 0:d) we can determine 7 from Equation 

(4.2.22) as 

y = TT-nrjiiT) "^--^ • (^•2-23) 

The current normal to the yield surface, 0, and the total strain rate, 

d, are known quantities. Hence, from Equation (4.2.23), 7 can be determined 

which can be used in Equation (4.2.9) to determine the plastic part of the 

strain rate which, with the additive strain rate decomposition and the 

elastic stress rate of Equations (4.2.8) and (4.2.12), completes the defini­

tion of the rate equations. 

We still must explain how to integrate the rate equations subject to 

the constraint that the stress must remain on the yield surface. We will 

show how that is accomplished in Section 4.2.5. 

4.2.3 Kinematic Hardening 

Just as before with the isotropic hardening case, we write a Von Mises 

yield condition but now in terms of the stress difference 
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f{i) = 5 «:« = «2 (4.2.24) 

It is important to remember that a and ^ are deviatoric tensors. The con­

sistency condition is written for kinematic hardening as 

fU) = 0 (4.2.25) 

because the size of the yield surface does not grow with kinematic hard­

ening, therefore, « = 0. Using the chain rule on Equation (4.2.25) 

9! :« = 0 (4.2.26) 

and 

91 
91 

91 
91 Q = R 0 

Combining Equations (4.2.26) and (4.2.27) and assuming that R ?* 0 

(4.2.27) 

Q:i = 0 (4.2.28) 

or 

0:(S - o) = 0 (4.2.29) 

A geometric interpretation of Equation (4,2.29) is shown in Figure 4.2.3 

where it can be seen that the backstress moves in a direction parallel to 

the normal to the yield surface. 

We must now decide how a is defined. Recall that for the isotropic 

hardening case. Equation (4.2.19) 

Q:o = v l H' d^' = ̂  H' 7 r dPl = 2 (4.2.30) 

The kinematic hardening condition assumes that 

D1 
a = 0 d^ = 07 0 (4.2.31) 
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Q : S 

Figure 4.2.3. Geometric Interpretation of the Consistency 
Condition for Kinematic Hardening 
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where </> is a material parameter. Equation (4.2.31) combined with Equation 

(4.2.29) gives a result identical to the isotropic hardening case. Equation 

(4.2.30), if <j> is chosen to be | H'. Hence, either Equation (4.2.30) or 

(4.2.31) gives us a scalar condition on a. Note that both of these are 

assumptions and must be shown to be reasonable. Of course, experience with 

material models based on these assumptions has proven them to be reasonable 

representations of material behavior. 

Using Equation (4.2.30), the strain rate decomposition. Equation 

(4.2.8), and the elastic strain rate. Equation (4.2.12), in the consistency 

condition for kinematic hardening. Equation (4.2.29) gives 

I H' 7 0 = â "̂  - C:dP^ . (4.2.32) 

Taking the tensor inner product of both sides of Equation (4.2.32) with Q 

gives 

Q: I H' 7 0 = Q--{o^^ - 2M7 0) (4.2.33) 

Again, because Q is deviatoric; C:Q = 2 M 0 and 0:C:0 = 2M. 

Solving Equation (4.2.33) for y gives 

y = ( i . i ' / 3 M ) Q ^ ^ (^•2-3^) 

which is the same result as was obtained for the isotropic hardening case. 

4.2.4 Combined Isotropic and Kinematic Hardening 

For the combined hardening case we define a scalar parameter, j3, which 

determines the amount of each type of hardening. We require that 

0 ^ / 3 5 1 . (4.2.35) 
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Figure 4.2.4 illustrates the uniaxial response which will be computed for a 

for different choices of j3. When /3 = 0 we have only kinematic hardening and 

when /3 = 1 we have only isotropic hardening. 

We use the results derived before for the independent hardening cases 

and multiply by the appropriate fraction for each type of hardening. 

Equations (4.2.18) and (4.2.31) are rewritten as 

R = ' ^ H' dP^ ^ (4.2.36) 

and 

a = I H' d P ^ l - /3) = I H' 70(1 - P) (4.2.37) 

As before, we write a consistency condition 

0:? = R (4.2.38) 

or 

0:(S - i) = - ^ H' d P % . (4.2.39) 

Using the e las t i c stress rate and the addi t ive s t ra in rate decomposition 

wi th Equation (4.2.39) and taking the tensor product wi th the normal, Q 

Q'.'o^^ - 7 Q:C:Q - Q: § H' 7(1 - /3) :Q = 0: Vf-Vf /37 :Q . (4 .2 .40) 

Solving for 7 

1 
(1 + H ' / 3 M ) 

0:d (4 .2 .41) 

which is the same result as we obtained for each of the independent cases, 

We summarize the governing equations for the combined theory: 
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Figure 4.2.4. Effect of the Choice of the Hardening Parameter, p, 
on the Computed Uniaxial Response 
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d p ^ 

;=C:(d-dPb=a^'^ 

2 
3 R = /3 ̂ H ' dP^ = /3 ̂  H' 7 

i = (1 - /3) I H- dP^ 

0, elastic; f(^) < K' 

70, plastic; f(n ^ ^ 

(4.2.42) 

(4.2.43) 

(4.2.44) 

(4.2.45) 

7 = (1 + H'/3M) 

= 9f / 
9€ / 

91 
91 

Q:d 

= «/R 

(4.2.46) 

(4.2.47) 

4,2.5 Numerical Implementation 

Our finite element algorithm requires an incremental form of Equations 

(4.2.41) through (4.2.43). Additionally, we must have an algorithm which 

integrates the incremental equations subject to the constraint that the 

stress remains on the yield surface. 

The incremental analogs of Equations (4.2.42) through (4.2.44) are 

= a. 
TR 

'n+1 - "n+l - T̂' 2M 0 

= R + f /3H' A7 
n+1 ~ "n " 3 

and 

Wl 
a^ + (1 - /J) ̂  H' A7O 

(4.2.48) 

(4.2.49) 

(4.2.50) 

where A7 represents the product of the time increment and the equivalent 

plastic strain rate (A7 = At 7). 

69 



The subscripts n and n+1 refer to the beginning and end of a time step, 

respectively. 

We also need an incremental analog to the rate forms of the consistency 

condition given by Equations (4.2.13), (4.2.25), and (4.2.39). At the end 

of the time step, we insist that the stress state must be on the yield 

surface. Hence the incremental consistency condition is 

V l ^ «n+l 0 = ̂ n+l (4.2.51) 

Equation (4.2.51) is shown graphically in Figure 4.2.5. 

Substituting the definitions given by Equations (4.2.48) through 

(4.2.50) into the consistency condition of Equation (4.2.51) 

[a^ + (1 _ /3) I H' A7O] + [Rp + I /5H' A7] 0 = [sll^ - A72M 0 (4.2.52) 

Taking the tensor product of both sides of Equation (4.2.52) with Q and 

solving for A7 

A7 = 
1 1 
2M (1 + H'/3M) I 

TR 
n+1 - R. (4.2.53) 

It follows from Equation (4.2.53) that the plastic strain increment is 

proportional to the magnitude of the excursion of the elastic trial stress 

past the yield surface (see Figure 4.2.6). 

Using the result of Equation (4.2.53) in Equations (4.2.48) through 

(4.2.50) completes the algorithm. In addition we can compute 

AdP^ = Q A7 (4.2.54) 

and 

Ad ̂ ' = Vf A7 (4.2.55) 
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Q n + 1 

Figure 4.2.5, Geometric Interpretation of the Incremental Form 
of the Consistency Condition for Combined 
Hardening 
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Figure 4.2.6. Geometric Interpretation of the Radial Return Correction 
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The results of Equation (4.2.53) applied to Equation (4.2.48) show that 

the final stress is calculated by returning the elastic trial stress 

radially to the final yield surface at the end of the time step. (Hence the 

derivation of the name Radial Return Method.) Estimates of the accuracy of 

this method and other methods for similarly integrating the rate equations 

are available in Krieg and Krieg [21] and Schreyer, et al. [22]. Note that 

the last term in Equation (4.2.48) (the radial return correction) is purely 

deviatoric. 

The elastic plastic material model uses six internal state variables: 

EQPS - equivalent plastic strain 

RADIUS - current radius of yield surface 

ALPHAll - 1,1 component of backstress in unrotated configuration 

ALPHA22 - 2,2 component of backstress in unrotated configuration 

ALPHA33 - 3,3 component of backstress in unrotated configuration 

ALPHA12 - 1,2 component of backstress in unrotated configuration 

The PROP array for this material contains the following entries: 

PROP(l) - Young's Modulus, E 

PR0P(2) - Poisson's Ratio, v 

PR0P(3) - Yield Stress, o . 

PR0P(4) - Hardening Modulus, H 

PR0P(5) - /3 

*PR0P(6) - 2M 

*PR0P(7) - 3M 

*PR0P(8) - 1 / ( 2 M * ( 1 + H ' / 3 M ) ) (Note: H' = H/(l - E/H) 

*PR0P(9) - X 

*PR0P(10) - 2^-H'/3 

*PR0P(11) - 2(1 - /3)H'/3 
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4.3 Viscoplastic Material Model 

The viscoplastic material model presented here represents a simple rate 

dependent plasticity model. The model is intended for relatively low strain 

rate (|d| < 200) and is not recommended for high rates of impact. More 

details of the model can be found in Taylor and Becker [23] and Perzyna 

[24]. The model assumes an additive strain rate decomposition identical to 

the elastic plastic model 

d = d®^ + dP^ . (4.3.1) 

The stress rate is assumed to be given by the elastic part of the strain 

rate using Hooke's law 

o = C:d®^ = C:(d - dP^) (4.3.2) 

which can be written more clearly in index notation as 

îj = Kk ^j ̂  K ] • (̂ •3-3) 

We define the Von Mises equivalent stress by 

a= V F ^ = Vl^ij^ij (̂ •3-4) 

where S is the deviatoric part of a. 

For this isothermal model, we use isotropic hardening only. Hence, we 

can write the yield stress as 

% = a^dP^) (4.3.5) 

where 1^ is the equivalent plastic strain. In this model, we assume 

isotropic hardening with a control hardening modulus, H. This is defined by 

identifying an equivalent plastic strain rate by 
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o dP^ = a:dP^ (4.3.6) 

and 

7PI =/^t ^ 2 ^pl^^pl ^̂  _ (4 3 7^ 

We define the yield function as 

f(a, o^) =0 - a^(dP^) . (4.3.8) 

The plastic strain rate is assumed to be given by a stress potential as 

dP^ = 9g(a)/9a (4.3.9) 

and we assume an associated flow rule which implies that 

g(a) = g(f) = g(a, o^) . (4.3.10) 

Then Equation (4.3.9) can be written as 

d P ^ = ^ | ^ . (4.3.11) 
9a 9" 

We use a power law for 9g/9a 

7/ — - 1 i a i 0^ 

9a 
o < o 

(4.3.12) 

0 

where 7 and p are material parameters. 

Equation (4.3.12) indicates that the plastic strain rate is propor­

tional to the overstress above the current value of the yield stress. 

Hence, the higher the overstress, the greater the plastic strain, which 
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leads to a reduction in the stress rate given by Equation (4.3.2) and an 

increase in strain hardening given by Equation (4.3.5). 

Consider a uniaxial tension test. The solid curve shown in Figure 

4.3.1 shows the locus of apparent yield strengths a for mild steel at 

different strain rates. The apparent yield strength is the measured yield 

strength for a specimen from a tension test at a given strain rate. At 

different strain rates, different yield strengths are found. If the elastic 

strain rate is assumed negligible, using Equation (4.3.11) and (4.3.12), the 

uniaxial strain rate is 

d = 7(0/0^ - 1)P . (4.3.13) 

Solving Equation (4,3.13) for the Von Mises equivalent stress gives a 

relation for the apparent yield stress 

ay = a j l + (d/r)^^P] . (4.3.14) 

If the rate of deformation is very slow (e.g., d-'O), or the fluidity con­

stant is very large (e.g., 7-*oo), then the yield stress given by Equation 

(4.3.14) is equal to the static yield stress and the static yield condition 

of a rate-independent constitutive theory is satisfied. If the motion is 

very rapid (e.g., d-»oo), or the fluidity constant is zero, the response is 

elastic, since the value of yield stress is not restricted by Equation 

(4.3.14). Values of effective yield stress as a function of strain rate for 

different choices of the flow parameters, 7 and p, are shown in Figure 

4.3.1. 

It follows that 

d P U § 3 (4.3.15) 
do 

and 

|2 = i s . (4.3.16) 
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p = 5, y = 40.4 EXP. 

p= 3, y = 240 

1 
25 50 75 

STRAIN RATE (sec"^) 
100 

Figure 4.3.1. Yield Stress as a Function of Strain Rate as Defined by the 
Viscoplastic Material Model 
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Using these definitions of the flow potential in Equation (4.3.9) yields 

dP^ = dP^ i S . (4.3.17) 

The numerical algorithm used in this model consists of a backward difference 

integration of the rate equations. The algorithm proceeds as follows: 

1. Calculate the elastic trial stress 

''I!l = ''n + ̂  ̂ ^̂  

2. Calculate the equivalent trial stress 

-TR ^[T s^^s^R 

3. Check for yield 

a - o (dP^) ̂  0 ; skip step 4 

a - o (dP ) > 0 continue below with step 4 
0 

4. Yield exceeded, calculate 

i,PUjL-,)''^sT'< 

Aa = C (Atd - AdP^) = o^^ - 2u Ad pl 

- ' • ' ( ? - ) ' 
''n+l = '̂ n ̂  ̂'̂  

o , =0 IdP̂  + AdP\ 
0 n+1 0 \ n n+1 
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The viscoplastic material model uses two internal state variables: 

EQPS - equivalent plastic strain 

SIGYLD - current value of yield stress 

The PROP array for this material contains the following entries: 

PROP(l) - Young's Modulus, E 

PR0P(2) - Poisson's Ratio, v 
PR0P(3) - Yield Stress, a . 

PR0P(4) - Hardening Modulus, H 

PR0P(5) - 7 

PR0P(6) - p 

*PR0P(7) - 2n 
*PR0P(8) - X 

*PR0P(9) - H' = H/(l - H/E) 

4.4 Damage Model 

The damage model in PRONTO is based on the work of Taylor, et al. [25] 

and simulates the dynamic fracture behavior of brittle rock. The essential 

feature of this model is the treatment of the dynamic fracture process in 

rock as a continuous accrual of damage where the damage mechanism is at­

tributed to microcracking in the rock medium. The fundamental assumption of 

the damage model is that the material is permeated by an array of randomly 

distributed microcracks which grow and interact with one another under 

tensile loading. 

The compressive response of the material is assumed to be elastic-

perfectly plastic and follows the theory of Section 4.2 when the hardening 

modulus, H', is set to zero. In this section, we present the equations 

governing the tensile response of the material. 

Following the work of Budiansky and O'Connell [26], we write the effec­

tive bulk modulus of a cracked medium as 

79 



'"-'-Hrih- (4.4.1) 

In Equation (4.4.1), the barred quantities represent degraded or effec­

tive quantities in the fractured medium. We denote the undegraded bulk 

modulus and Poisson's" ratio by K and v, respectively. The crack density, 

C., represents the volume fraction of the material made of flaws and is 

given by 

C - ^ 
^d " 16 

(t̂  - t̂ )(2 - t̂ ) 

(1 - ;^^)[10J' - v[l + 3v)2 

(4.4.2) 

A Wiebull distribution is used to determine the number of flaws per unit 

volume, N, active at a given pressure level, p (positive in tension) 

' - ' fe' 
(4.4.3) 

where k and m are material constants, 

The nominal fragment size, a, is given by an expression derived by 

Grady [27] 

a = 
^̂ /20 Kj^ \2/3 

(4.4.4) 
pC £ 

max 

where <,„ is the fracture toughness of the material, p is the material 

density, c is wave speed ^/E7p, and e^,^ is 
max 

strain rate the material has ever experienced. 

density, c is wave speed ^/E7p, and e^,^ is the maximum positive (tensile) 

The crack density is proportional to the number of flaws per unit 

volume and the nominal fragment size. 

C^ = /3 N a , (4.4.5) 
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where /3 is a proportionality constant. Combining Equations (4.4.3) through 

(4.4.5) gives an expression for the crack density in terms of the current 

pressure level and the maximum previous deviatoric strain rate, £„,„ , 
max 

r 5_i-(^)%'«;-2 (4.4.6) 
d 2 /o|̂ '>m \pc / max ^ ' 

where we have absorbed the proportionality constant, /3, into the material 

constant, k. 

Combining Equations (4.4.6) and (4.4.2) gives 

5 _ ! L _ (h^Y pT- ;-2 _ 45 {u-i;){2~p) .4 ̂  7. 
2 (3^)m \pc / max 16 ^̂  _ ̂ 2^^^^^ _ -^^ ̂  3^^^ 

Equation (4.4.7) gives a relation which can be solved for the effective 

Poisson's ration of the degraded material. Unfortunately, for given values 

of C. and v, the equation is a cubic in v and the determination of v is a 
nontrivial numerical exercise. As a simplification. Equation (4.4.7) has 

been approximated with a linear, analytic function for v in terms of v and 

^d' 

^ = »' (1 - ̂ c j . (4.4.8) 

The error associated with using Equation (4.4.8) instead of (4.4.7) to 

determine v is generally less than 5 percent. Once u is known, it Is used 

in Equation (4.4.1) to determine the effective bulk modulus of the material. 

The error of the bulk modulus due to using Equation (4.4.8) instead of 

Equation (4.4.7) is less than 1 percent. 

It is convenient to define a damage parameter, D, where 0 < D < 1 as 

D = i| f̂ (i;) C^ (4.4.9) 

where 

f [u) = {^ - ^ ) . (4.4.10) 
^ (1 - 2u) 
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This definition of damage follows directly from inspection of Equation 

(4.4.1) and results in an expression for the total mean stress or pressure 

as 

P = 3K (1 - D) ê  , (4.4.11) 

where e is the mean volumetric strain j J ~ tr d dt 1 . 

We assume that the deviatoric response of the material Is degraded in 

the same manner as the bulk response, 

S = 2M (1 - D) e , (4.4.12) 

where S is the deviatoric part of the stress and e is the deviatoric part of 

the strain. 

Taking the rate of Equations (4.4.9) through (4.4.12); 

D = i| f^{p) Ĉ  + ̂  Ĉ  fi(v), (4.4.13) 

P = 3K (1 - D) £ - 3K £ D , (4.4.14) 

S = 2M (1 - D) e - 2M e D , (4.4.15) 

and 

^(^) = ir d̂ • (4.4.16) 
^ du ^̂ d ^ 

It follows that 

t = ^ [ f ^ { u ) -^ u f^{u) C^]t^ (4.4.17) 

where 

f ( ^ ) . 2 1 1 ^ l 2 ^ (4.4.18) 

'̂  (1 - 2ur 
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and 

5 
C = -
^d 2 

joTi I^Y pm-1 • • -2 
m-1 \pc / ^v ^max (3K) 

(4.4.19) 

Equations (4.4.14), (4.4.15), (4.4.17), and (4.4.19) represent seven 

coupled ordinary differential equations to be integrated over each time 

step. In PRONTO, we use a simple forward difference integration operator. 

The damage material model requires six material constants to charac­

terize the material. Young's modulus, Poisson's ratio, the yield stress in 

compression, and the fracture toughness of the material are all conventional 

material properties readily obtained from standard material tests. The 

remaining two material constants are k and m for the Wiebull distribution of 

Equation (4.4.3). Determining these material constants requires data relat­

ing the fracture stress of the material to the strain rate. If this data is 

available, the two constants can be determined as follows. The logarithm of 

the fracture stress versus the logarithm of the uniaxial strain rate is 

generally a straight line. 

In(ap) = C„ + ^ ln(£) 
^ F' 0 m ^ ' (4.4.20) 

Two points on the fracture stress versus strain rate curve can be used 

with Equation (4.4.20) to determine m. The other constant, k, is determined 

from 

ln(k) = m ,„(2H_-).niii ,„„,!, - In 
40 /'^ic\^ --2 

(4.4.21) 

If laboratory data for fracture stress versus strain rate are not available, 

it is possible to generate this data using an expression derived by Kipp, et 

al. [28], 

, =,!Li5cy/3 .1/3 
'̂  " h6 HI C3^ 

(4.4.22) 
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where N^ is a shape factor (1.12 for penny shaped cracks) and c- is the 

shear wave velocity of the material. Equation (4.4.22) has been shown to be 

a reasonable approximation for a number of rock types. 

The damage material model uses five Internal state variables: 

EQPS - equivalent plastic strain 

DAMAGE - damage (Equation (4.4.9)) 

EVMAX - maximum volumetric tensile strain experienced by the 

material 

FRAGSIZ - average fragment diameter (Equation (4.4.4)) 

CRAKDENS - crack density (Equation (4.4.2)) 

The PROP array for this material type contains the following entries: 

PROP(l) - Young's Modulus, E 

PR0P(2) - Poisson's Ratio, v 

PR0P(3) - Yield Stress, a . 

PR0P(4) - m 

PR0P(5) - k 

PR0P(6) - Fracture Toughness, K,^ 

*PR0P(7) - Bulk Modulus, K 

*PR0P(8) - M 

*PR0P(9) - m - 1 

*PR0P(10) - COND = I k m Kj^/(pc)^ (Note: c = / E 7 ^ ) 

*PR0P(11) - CONA = i (,/20 Kj^/pc)^^^ 

4.5 Soils and Crushable Foams Model 

The soils and crushable foams model in PRONTO is a direct descendent of 

the model developed by Krieg [29]. Reference [29] is an unpublished Sandia 

National Laboratories report and is not readily available. The model was 

described in detail by Swenson and Taylor [30] as it was Incorporated into a 

tensile failure model. One major difficulty with the original version of 
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this material model which has confounded users is that the pressure depend-
2 

ence of the yield stress is expressed in terms of J , the second invariant 

of the stress tensor. We have reformulated the model so that the yield 

stress Is written directly in terms of the pressure. NOTE: this means that 

old data must be converted. 

The yield surface assumed is a surface of revolution about the hydros-

tat In principal stress space as shown in Figure 4.5.1. In addition, a 

planar end cap on the normally open end is assumed. The yield stress is 

specified as a polynomial in pressure, p (positive in compression) 

^ d = a^ + ^i P + ^2 ^̂  • (4.5.1) 

The determination of the yield stress from Equation (4.5.1) places 

severe restrictions on the admissible values of a„, a,, and a^. There are 
0 1 2 

three valid cases as shown In Figure 4.5.2. First, the user may specify a 

positive a , and a. and â , equal to zero as shown in Figure 4.5.2a. This 

gives an elastic-perfectly plastic deviatoric response, and the yield sur­

face is a cylinder oriented along the hydrostat in principal stress space. 

Second, a conical yield surface (Figure 4.5.2b) is given by setting a^ to 

zero and entering appropriate values of a and a,. The program checks the 

users input to determine whether a valid (negative) tensile fracture pres­

sure, P- , results from the input data. The third case results when all 

three constants are nonzero and the program detects that a valid negative 

tensile failure pressure can be derived from the data. This case is shown 

in Figure 4.5.2c. A valid set of constants for the third case results in a 

parabola as shown in Figure 4.5.2.c. We have drawn the descending portion 

of the curve with a dashed line indicating that the program does not use 

that portion of the curve. Instead, when the pressure exceeds P*, the yield 

stress is held constant as shown at the maximum value. 

The plasticity theories for the volumetric and deviatoric parts of the 

material resppnse are completely uncoupled. The volumetric response 1s 

computed first. The mean pressure, P, is assumed to be positive in compres­

sion and a yield function is written for the volumetric response as 
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HYDROSTAT 

Figure 4 .5 .1 . Pressure Dependent Yield Surface for the Soils and Crushable 
Foams Material Model 
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(a) 

a. 

P, COMPRESSION 

(b) 

fr P, COMPRESSION 

(c) 

P, COMPRESSION 

Figure 4.5.Z, Forms of Valid Yield Surface Which can be Defined for the 
Soils and Crushable Foams Material Model 
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0 p = P - f p ( S ) (4.5.2) 

where f (e ) defines the volumetric stress-strain curve for the pressure as 
p V 

shown in Figure 4.5.3. This function is defined by the user with the 

restriction that the slope of the function must be less than or equal to the 

unloading bulk modulus, K , everywhere. If the user wishes the volumetric 

response to be purely elastic, he simply specifies no function identifica­

tion (e.g., FUNCTION ID = 0). The yield function, <p , determines the motion 

of the end cap along the hydrostat. 

The mean volumetric strain is updated as 

where e is the volumetric part of the strain rate I «w = 3 tr dj. 

There are three possible regimes of the pressure-volumetric strain 

response. Tensile failure is assumed to occur If the pressure becomes 

smaller (more negative) than P^ . The quantity £- is initialized to 

-P* /K by the program. If tensile failure is detected, the pressure is set 
fr 0 

to -Pf_- Remember, pressure is negative in tension! Failure by monotonic 

tensile loading is shown in Figure 4.5.4a. As long as € < e- , the pres­

sure will remain equal to -P- . 
f r 

If the volumetric strain exceeds £- , a check is then made to see if 

where £ is the most positive (compressive) volumetric strain previously 

experienced by the material, set initially to zero by the program. If 

Equation (4.5.4) is satisfied, the step is elastic and, 

pn+1 ^ pn _ 1̂ ^ ̂ ^^ _ (4.5.5) 

This elastic response is shown in Figure 4.5.4b. 
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Figure 4.5,3, Pressure Versus Volumetric Strain Curve in Terms of a User 
Defined Curve, F(e ), for the Soils and Crushable Foams 
Material Model ^ 
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(a) (b) 

(c) (d) 

Figure 4.5.4. Possible Loading Cases for the Pressure Versus Volumetric 
Strain Response Using the Soils and Crushable Foams Material 
Mode 
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If Equation (4.5.4) is not satisfied, the volumetric response is along 

the curve defined by f (£,) and 
p^ V 

P"-̂ ' = fp U',^'] (4.5.6) 

and we set 

•^+1 //I c -7̂  

û = % • (4.5.7) 

This response is shown in Figure 4.5.4c. Note, that if Equation (4.5.5) is 

used to determine P, we also drag £- along so that if we unload from the 

curve, fr,(«y)' we will fracture at the appropriate strain level as shown in 

Figure 4.5.4d. 

The deviatoric part of the response is computed next and uses a conven­

tional plasticity theory with radial return. See Krieg and Krieg [21]. The 

trial elastic deviatoric stresses are computed as 

S^^ = S^ + 2G At e (4.5.8) 

where e is the deviatoric part of the strain rate. The current value of 

yield stress Is calculated using Equation (4.5.1) and the Von Mises effec­

tive stress, a, is computed as 

- # S:S . (4.5.9) 

The yield condition is checked to determine whether o < o ,. If this is the 
yd 

case, the trial stress is the correct deviatoric stress at the end of the 
TR time step, S . = S . If yield is exceeded, a simple radial return is 

performed to calculate the deviatoric stress at the end of the time step 

V l = ^ ST'̂  • (4.5.10) 
o 
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Finally, the total stress is determined by 

V i = V i ^ V i « • (^-s-ii) 

The Soils and Crushable Foams model uses four internal state variables: 

EVMAX - maximum compressive volumetric strain experienced (always 

positive) 

EVFRAC - current value of volumetric fracture strain (positive in 

compression) 

EV - current value of volumetric strain (positive in compression) 

NUM - integer pointing to the last increment in |;he pressure 

function where the interpolate was found 

The PROP array contains the following entries for this material: 

PROP(l) - 2M 

PR0P(2) - Bulk Modulus, K 

PR0P(3) - a^ 

PR0P(4) - a^ 

PR0P(5) - a^ 

PR0P(6) - Function Id number 

4.6 Low Density Foams 

The low density foams model presented here was developed by Morgan, 

Kneg, and Neilsen [31] and is based on results from experimental tests on 

low density, closed-cell polyurethane foams. These foams having densities 

ranging from 2 to 10 pounds per cubic foot have been proposed for use as 

energy absorbers in nuclear waste shipping containers. Representative 

responses of closed-cell polyurethane foams for various hydrostatic, 

uniaxial and triaxial laboratory test conditions are shown in Figures 4.6.1 

and 4.6.2. These results indicate that the volumetric response of the foam 

IS highly dependent on load history. This implies that typical decomposi­

tions of total foam response into an independent volumetric part and a mean 

stress (pressure) dependent deviatoric part are not valid for this class of 
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Figure 4.6.1. Foam Volume Strain Versus Mean Stress for 6602 Foam at 
Various Confining Pressures 
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foam. Many "soil and crushable foam" models, including the other foam model 

described in Section 4.5, use such decompositions and hence are not valid 

for low density closed-cell polyurethane foams. The model presented here 

reproduces experimental test responses more accurately for this class of 

foams than the model in Section 4.5. 

The experimental tests on which this model is based were performed by 

the Civil Engineering Research Facility of the University of New Mexico with 

the results reported in [31]. Foam samples were subjected to static, com­

pressive stresses during these tests. In most of the tests, air was trapped 

in the closed cells of the foams and could not escape because the samples 

were jacketed with an impervious material. In this constitutive model, the 

total foam response is decomposed into contributions from the skeleton and 

from air trapped in the closed cells of the foam. The contribution of the 

air to the total foam response is dependent on the application. If the foam 

IS used in a vented application where the air can escape, the contribution 

of the air is zero and the foam and skeleton responses are identical. If 

the foam is used in an application where the air cannot escape, such as a 

sealed shipping container, the foam pressure is considered to be the sum of 

pressure earned by the skeleton and the air pressure. That is, 

f'F = Psk^Pair (̂ -̂ -l) 

where Pp and P , are the mean stresses (first invariants of the stress 

tensor divided by three) of the foam and skeleton, respectively. The mean 

stresses and air pressure are assumed positive in tension. The air pressure 

IS determined from 

where 7 is the engineering volume strain (first invariant of the total 

strains) which is positive in tension and p and 0 are model parameters. 

The parameter p is the initial foam pressure (usually atmospheric pressure 

of 14.7 psi), and 0 is the ratio of the foam density to the polymer density 

from which the foam is produced. 
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Test data indicate that the skeleton response in any principal stress 

direction is independent of loading in any other principal stress direction. 

Thus, Poisson's ratio for the skeleton is equal to zero. Test data also 

indicate that the yield strength of the skeleton in any principal stress 

direction can be expressed in terms of the engineering volume strain and the 

second invariant of the deviatoric strains with the following relationship 

/ A + B(l + C7); ir > 0 

f̂  = ' (4.6.3) 

( B(l + C7); ir = 0 

IS the second invariant of the deviatoric strain tensor; 7 is the engineer­

ing volume strain as in Equation (4.6.2); and A, B, and C are constants 

determined from fitting Equation (4.6.3) to the laboratory data. Constants 

B and C are determined from hydrostatic test data where 11' is zero, and A 

IS determined from any test where the loading is deviatoric. 

Numerical implementation of the model is as follows. Foam stresses and 

strains from the previous time increment are saved. At the beginning of the 

next time increment, the old skeleton stresses are computed from the old 

foam stresses and the old air pressure. The strain rates for the new time 

increment are used to determine new strain increments and trial elastic 

stress increments for the skeleton. These stress increments are added to 

the old skeleton stresses to produce new trial stresses for the skeleton. 

The trial skeleton stresses are then rotated to principal stress directions 

and compared with the yield stress determined from Equation (4.6.3). If 

yield occurs, the skeleton stresses are set to the yield stress. If yield 

does not occur, the trial skeleton principal stresses become the final 

skeleton principal stresses. The final skeleton stresses are obtained by 

rotating the final skeleton principal stresses back to the unrotated 

configuration. Then, the final foam stresses are obtained by adding the air 

pressure contribution for the new strain state to the new skeleton stresses. 

Input parameters for the model are the constants E, p , 0, A, B, and C 

which are defined above. If the foam is used in an application where the 
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air can escape, p should be input as zero. Otherwise, p is the atmos­

pheric pressure at the beginning of the simulation. 

There are no Internal state variables for this model. 

The PROP array contains the following entries for this material type: 

PROP(l) - Young's Modulus, E 

PR0P(2) - A 

PR0P(3) - B 

PR0P(4) - C 

PR0P(5) - NAIR 

PR0P(6) - P^ 

PR0P(7) - 0 

4.7 Hydrodynamic Materials 

All of the equations of state described in Chapter 5 are used by 

specifying a hydrodynamic material type. This material type has only 

volumetric or mean stress response and no deviatoric response. The pressure 

Is calculated in the equation of state and the stress is set as 

a = -p 6 (4.7.1) 

Note that the pressure is assumed positive in compression in the equations 

of state. 

The hydrodynamic material requires the user to input a pressure cutoff 

which is positive in compression. 

There are no internal state variables for this material type. 

The PROP array contains only one entry for this material: 

PROP(l) - Pressure cutoff. 
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4.8 Rate and Temperature Dependent Plasticity 

In this section, we discuss briefly the formulation and numerical 

implementation of a unified creep plasticity model which was proposed by 

Bammann [32], and later modified and cast into a form which allows efficient 

implementation into a finite element code by Bammann and Johnson [33]. The 

description here follows the same notation as that for the rate independent 

combined hardening plasticity model described in Section 4.2. 

The kinematics and thermodynamics of finite deformation as well as the 

numerical algorithm developed in reference [32] are valid for any of the 

class of unified creep plasticity models discussed by Bammann and Krieg 

[34]. Unified creep plasticity models are formulated without the introduc­

tion of a yield surface. This is accomplished by proposing a constitutive 

equation for the plastic part of the strain rate which Is near zero when 

response is elastic and Increases rapidly at yield, thus simulating an 

elastic limit. This model represents a combined hardening model where the 

history dependence is characterized by two Internal state variables, a 

scalar, K, for the isotropic hardening and a second order tensor, a, for the 

kinematic hardening. These Internal state variables have the same defini­

tion as for the isotropic and kinematic hardening cases described in 

Sections 4.2.2 and 4.2.3 for the rate Independent plasticity model. The 

crucial difference is that the evolution equations for the Internal state 

variables are motivated by the specific dislocation processes which they 

represent. 

The specific model proposed In [32] and [33] is summarized as, 

o = Xtr(d) 6 + 2M(d - d^^) (4.8.1) 

dPU.(.)sinh[l^|--/(^)]^ 

i = (1 - /3) k(̂ ) dPi - m - m \ f \ \a\a 
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where d is temperature and the functions, r{e), Y(e), V(e), k(0), g{e), and 

h{e) will be defined below. In Equation (4.8.2), $ is a deviatoric effec­

tive stress defined by 

5 = ̂ 5 (4.8.5) 

where S is the deviatoric part of the unrotated Cauchy stress defined by 

Equation (4.2.1). Note that (; is a different measure of effective stress 

than that defined by the backstress, ^, of Equation (4.2.2). 

The assumption of a nonconducting temperature change is given by 

d = pC, 
^dP^. m M^Vg(^) iiai'..h (4.8.6) 

where C is specific heat. 

This can be reasonably approximated for moderate strains by 

•95 , . .pK (4.8.7) 

To implement this model, the flow rule defined by Equation (4.8.2) is in­

verted and the dependence upon the plastic stretching is replaced by a 

dependence upon the total stretching. This results in a rate dependent 

Mises type flow surface of the form 

f(i,d,k,^) = 151 - K _ x(|d|,e) (4.8.8) 

where 

x(|d|,0) = Y(^) + V(^) sinh -1 
r{e) 

(4.8.9) 

The flow rule defined by Equation (4.8.8) is similar to that defined by 

Equation (4.2.4) for the rate independent case except that it depends on 

strain rate and temperature. A similar substitution for the plastic strain 

rate is utilized in the dynamic recovery terms resulting in a simplified 
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flow rule. More specifically, \6^ \ is replaced by |d| in the recovery 

terms in Equations (4.8.3) and (4.8.4) (see Equations (4.8.11) and 

(4.8.12)). While this is convenient, it is not essential as discussed in 

reference [33]. 

The model is now in a form permitting implementation utilizing the 

radial return method described in general in Section 4.2.4 and in particular 

for this model in reference [33]. The nonconducting temperature change is 

included by use of an operator split, that is, the stress is updated assum­

ing isothermal conditions and the temperature change is then calculated 

based upon the new values for the stress, plastic strain rate, and internal 

state variables. We begin by assuming elastic behavior and calculate a 

trial deviatoric stress and trial internal state variables, 

S^^ = S 
/•^n+1 

n ̂  j ^ ^^^^^ (4.8.10) 

[h(e) Idl ^ g(g)] \a\a 
1 - / 3 °^ 

[h(e) Idl + g(e)] / 
|3 a t 

(4.8.11) 

(4.8.12) 

where e is the deviatoric part of d. 

The elastic assumption is now checked by substitution into the yield 

condition of Equation (4.8.8) 

0 -
3 cTR TR ^ S - a K^ - x(|d|,0) (4.8.13) 

If 0 ^ 0, the assumption of elasticity is verified and we proceed to the 

next time step with the trial values of the variables 
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'n+1 = S 
TR , î  i;- tr(d) 6 dt 

a 1 = a 
n+1 

'̂ n+1 = " 

n 

TR 

TR 

(4.8.14) 

(4.8.15) 

(4.8.16) 

If, however, the stress point lies outside the flow surface, 0 > 0, the 

values of the variables at the end of the time step must have the terms 

associated with the plastic part of the strain rate 

'n+1 

Wl 

•n+1 

3TR _ r - ^ 

JR+ ('""' 

TR r^-i 
K + / 

•^ t_ 

ZudP^ dt 

(1 - /3) k(e) (jP^ dt 

/3k(9) \dP^ 1 dt 

(4.8.17) 

(4.8.18) 

(4.8.19) 

The obvious problem, just as in the rate independent case, is how to deter­

mine A7. We take a similar approach as in the rate independent case. We 

assume normality for the plastic flow and assume that the direction of the 

flow at the end of the step is the same as the trial (elastic) direction. 

'n+l „, .TR 
dPl dt ~ A7 - ^ 

S 
TR 

(4.8.20) 

We calculate the flow rule from the numerical consistency equation just as 

in Section 4.2.5, except we use the flow rule defined by Equation (4.8.8). 

Solving for A7, 

I T P I 

A ^ - Is I -x(|d|,e) TR (4.8.21) 
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The values for the stress and internal state variables at the end of the 

time step are then given by 

^n+l = S"̂ ' - 2MA7 J | 

TR 

TR 

TR ^ 3X + 2 M / ""̂ ^ ^.,,H^ 
%+l = '' ^ —1— j^ '̂̂ (̂ ) 6dt 

(4.8.22) 

(4.8.23) 

TR JR 
"n+1 = " + (1 - /̂ ) k(^) A7 JR 

TR /ĉ _̂ ^ = K + ^k(e) A7 

(4.8.24) 

(4.8.25) 

The temperature is updated based upon these values of the variables. 

^n+1 = ^n ^ '^' (4.8.26) 

where 

i -95 , .pK (4.8.27) 

or 6 can be computed using Equation (4.8.6) 

In the case of uniaxial stress, the yield function takes the form 

4> = \o - a\ - x{e,d). (4.8.28) 

where. 

X(£,0) = Y(0) + V(0) sinh -1 L r(e) J (4.8.29) 

and a is the true uniaxial (Cauchy) stress and € is the true stretching or 

strain rate. The function x is the same as in Equation (4.8.9), except that 

|5| is replaced by the uniaxial value, \o - a\ as in the yield surface. 
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This formulation allows a general fit for many metals over many decades 

of strain rate and a large temperature range. The temperature dependence in 

Equation (4.8.28) would, in general, take different forms depending upon the 

temperature range considered. However, this does not complicate the model 

or the determination of parameters. The parameter y{6) determines the slope 

of the yield stress versus logarithm of strain rate at the higher strain 

rates as shown in Figure 4.8.1. This slope increases sharply with increas­

ing temperature consistent with the observed increased rate sensitivity with 

temperature of most metals. 

The rate independent yield stress is given by Y(0), while r(^) deter­

mines the strain rate at which the rate independent limit is reached as 

shown in Figure 4.8.2. The back-extrapolated yield stress is determined 

from a series of tension or compression tests at various temperatures. It 

IS important to use the back-extrapolated yield stress since we are neglect­

ing the "knee" in the post yield regime and desire an accurate 

representation at strains larger than 2 or 3 percent. The final parameters 

in the function x(f,^) can then be determined with a nonlinear least squares 

analysis utilizing the data at all temperatures simultaneously. If the form 

of the functions r{6), Y(0), and \{e) is not known, these can be determined 

by fitting Equation (4.8.28) at various temperatures, giving values of these 

parameters at various temperatures. From this data, the best form for r{6), 

y{6), and \(6) can be determined. 

The dynamic recovery term, h(|a - a\,e), is defined as, 

h(|a - a\,e) = h{e) r{e) sinh ( l ^ _ Z ^ ^ | L z J M j . (4.8.30) 

The form for this equation was chosen to give an accurate description of 

large strain compression behavior at different strain rates as well as to 

simplify the system of equations during loading. This form predicts that 

the stress reaches a constant value in compression or tension independent of 

the strain rate. While this is not precisely true for all metals due to the 

influence of micromechanisms which are not considered, it is a reasonable 

assumption for stainless steel and is easily modified if the experimental 
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results require otherwise. During loading, the dynamic recovery function 

reduces to, 

h(|a - a\,e) = h{d)e . (4.8.31) 

Now consider the case of a tensile or compressive test conducted at 

constant true strain rate and at strain rates small enough to approximate 

isothermal conditions. For this case, the system of constitutive equations 

can be integrated in closed form to yield. 

a = X + J-A- tanh J ^ ^ l ^ e . (4.8.32) 
f he + g » e 

This equation can be examined to determine the differences between dynamic 

and static recovery in the case of uniaxial stress at a constant true strain 

rate. Notice that after an initial strain rate dependent yield, the stress 

is predicted to approach the asymptote. 

^ he + g 
'̂  = X + ^-i^^- , (4.8.33) 

At high s t ra in rates th is reduces t o , 

a i X + J f . (4.8.34) 

Under these conditions the model predicts that the steady state value of the 

stress occurs at the same value of strain, hence at high strain rates the 

strain rate dependence of the stress is entirely due to the rate dependence 

of the yield function x- This assumption is difficult to check since at the 

strain rates where this occurs, the tests are not isothermal due to the 

temperature change from the plastic work. At small strain rates, Equation 

(4.8.32) reduces to 

o iX + \ ^ . (4.8.35) 
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The parameters k(e), g(6), and h(0) can now be determined from Equation 

(4.8.31). This IS accomplished by consideration of tensile or compressive 

tests performed at strain rates small enough for the isothermal assumption 

to be reasonably approximated. Then by performing these tests at different 

temperatures, the parameters k{e), g{d), and h(^) are determined from a 

nonlinear least squares analysis. The parameter ^ is determined by con­

sidering reverse loading data exactly as in the case for the rate 

independent, combined hardening model. For j3 = 0, the hardening is 

kinematic, while for /3 = 1, the hardening is fully isotropic. Axial stress 

data in a large strain torsion test can also be used to determine this 

parameter. For metals which exhibit an axial stress of approximately one-

third the shear stress, the response is best modeled by choosing /3 = 0. If 

the axial stress is approximately two orders of magnitude smaller than the 

shear stress, j3 = 1 is a more appropriate choice. Users interested in this 

effect are referred to reference [33] for details. 

The temperature dependent parameters, Y(e), V(0), g{d), k(9), h(e), and 

r{6) are chosen for this study as, 

V(e) = C^ exp (- - | ) , 

^4 
Y(^) = C3 + -| 

6̂ 
r{e) = Cg exp I- -^ 

h{e) = C7 exp \- -Jl , 

k{9) = Cg exp \- ^° 

S2 
g{e) = Cj^ exp I-

It IS important to note that the form of these temperature dependent 

parameters can be as complex as necessary to accurately predict behavior 

over large temperature ranges. It is not the number of material parameters, 
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but rather the number of independent tests required to determine the 

parameter which is important. 

The elastic plastic temperature dependent material uses seven internal 

state variables: 

EQPS - equivalent plastic strain 

TEMP - temperature 

RADIUS - current radius of the yield surface 

ALPHAll - 1,1 component of the backstress 

ALPHA22 - 2,2 component of the backstress 

ALPHA33 - 3,3 component of the backstress 

ALPHA12 - 1,2 component of the backstress 

The PROP array for this material contains the following entries: 

PROP(l) 

PR0P(2) 

PR0P(3) 

PR0P(4) 

PR0P(5) 

PR0P(6) 

PR0P(7) 

PR0P(8) 

PR0P(9) 

PROP(IO) 

PROP(ll) 

PR0P(12) 

PR0P(13) 

PR0P(14) 

PR0P(15) 

PR0P(16) 

PR0P(17) 

*PR0P(18) 

*PR0P(19) 

*PR0P(20) 

- Young's 

- Poisson 

- CI 

- C2 

- C3 

- C4 

- C5 

- C6 

- C7 

- C8 

- C9 

- CIO 

- Cll 

- C12 

- n 
- ^ ^ 
- initial 

- 2M 

- 3M 

- X 

Modulus, E 

s Ratio, u 

temperature 
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TABLE 4.8.1. VALUES OF PARAMETERS FOR 21-6-9 SS 

E = 207 GPa 

I' = .3 

/3 = 0 

Cy = 4.60 X 10^ [J/kg-K] 

p = 7.83 X 10"̂  [Kg/m"̂ ] 

CI = 5.58 X 10^ [MPa] 

C2 = 8.67 X 10^ [K] 

C3 = 2.448 X 10^ [MPa] 

C4 = 1.07 X lO"" [MPa*K] 

C5 = 7.28 X 10^ [s ^] 

C6 = 2.44 X lO"" [K] 

C7 = 2.47 X 10 -̂  [1/MPa] 

C8 = 1.1 X 10^ [K] 

C9 = 1.81 X lO-" [MPa] 

CIO = 5.23 X 10^ [K] 

Cll = 0. [1/MPa-s] 

C12 = 1. [K] 
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4.9 Elastic Plastic Hydrodynamic Material 

The elastic plastic hydrodynamic material model is a combination of the 

elastic plastic combined hardening model described in Section 4.2 and the 

purely hydrodynamic material model described in Section 4.7. In this 

material model, we uncouple the volumetric and deviatoric response. The 

volumetric response is determined using one of the equations of state 

defined in Chapter 5, and the deviatoric response is determined using the 

equations of Section 4.2. 

First, we calculate the deviatoric response. This is accomplished in a 

manner almost identical to Section 4.2.5. We calculate a trial deviatoric 

stress 

Ŝ "̂  = S + 2 M e (4.9.1) 

where e is the deviatoric part of the strain rate, d, and 2 M is the usual 

Lame constant. We then proceed exactly as in Section 4.2.5 with an in­

cremental consistency condition and determine the increment in equivalent 

plastic strain, update the radius of the yield surface, and update the 

backstress. The same radial return correction is applied to the DEVIATORIC 

part of the stress tensor. 

We then update the energy to include the increment due to the 

deviatoric energy contribution in Equation (5.1.9). 

Next we call the appropriate equation of state to calculate the new 

pressure at the end of the time increment. Once this is known, we determine 

the total stress by 

V i = V i - p« (^•9-2) 

The elastic plastic hydrodynamic material model uses six internal state 

variables: 

EQPS - equivalent plastic strain 
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RADIUS - current radius of yield surface 

ALPHAll - 1,1 component of backstress in unrotated configuration 

ALPHA22 - 2,2 component of backstress in unrotated configuration 

ALPHA33 - 3,3 component of backstress in unrotated configuration 

ALPHA12 - 1,2 component of backstress in unrotated configuration 

The PROP array for this material contains the following entries: 

PROP(l) - Young's Modulus, E 

PR0P(2) - Poisson's Ratio, u 

PR0P(3) - Yield Stress, o . 

PR0P(4) - Hardening Modulus, H 

PR0P(5) - j3 

PR0P(6) - pressure cutoff 

*PR0P(7) - 2M 

*PR0P(8) - 1/(2M*(1 + H ' / 3 M ) ) (Note: H' = H/(l - E/H) 

*PR0P(9) - X 

*PR0P(10) - 2/3-H'/3 

*PR0P(11) - 2(1 - |3)H'/3 
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5.0 EQUATIONS OF STATE 

The discussion of the hydrodynamic equations of state incorporated in 

PRONTO follows closely the development of the theory found in WONDY [3] and 

TOODY [4]. 

5.1 Introduction 

The equation for conservation of energy equates the increase in inter­

nal energy per unit volume to the rate at which work is being done by the 

stresses and the rate at which heat is being added. In the absence of heat 

conduction 

3E 

^ = '̂  ~al = (P - "i) p it -̂  (*' - P*) = ̂  -̂  "^ • (̂ •̂ •̂ ) 

We note that in Equation (5.1.1), p is the pressure measured as POSITIVE IN 

COMPRESSION, and q is the pressure due to the bulk viscosity, from Equation 

(3.7.1), which is NEGATIVE IN COMPRESSION. Also in Equation (5.1.1), E^ is 

the energy per unit volume, E is the energy per unit mass, and Q is the 

heat rate per unit mass. 

The continuity equation can be written as 

The deviatoric part of the strain rate is 

e = d - | t r d 6 . (5.1.3) 

and the pressure is given by 

p = - ^ tr o . (5.1.4) 

Rewriting Equation (5.1.1) in terms of the pressure and the deviatoric 

part of the stresses, S, 
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Ey = (q - P) d^^ + S:e + pO . (5.1.5) 

An equation of state is assumed for the pressure as a function of density 

and energy per unit mass 

P = f(P'E^) • (5.1.6) 

In PRONTO we use equations of state linear in internal energy of the form 

p = f^(p) + f2(p) E^ . (5.1.7) 

We find it convenient in the numerical implementation to work with energy 

per unit volume instead of energy per unit mass and rewrite Equation (5.1.7) 

as 

p = f^(p) + f3(p) E^ . (5.1.8) 

where we have defined a new function, f^(p) = f-(p)/p. 

Assuming there are no heat sources and the strain rates are constant 

over the step, we can integrate Equation (5.1.5) to obtain the following 

discrete form of the energy equation: 

^t+At rt At , t „t+At „t t+Atv . At ,ct ct+Atv • /c 1 n\ 
E^ = E^ + "2 (q + q - P - P ) d|̂|̂  + -^ (S + S ):e . (5.1.9) 

Equations (5.1.9) and (5.1.8) represent two linear equations in two 
, rt+At , t+At 

unknowns: E and p 

Defining E by 

* rt , At , t „t+At t, . , At ,̂ .t , pt+Atx • ,(- 1 inx 
E^ = Ey + -2 (q + q - p ) d|̂|̂  + -^ (S + S ):e (5.1.10) 

we rewrite Equation (5.1.9) as 

ct+At r* At „t+At . /c 1 ii\ 

^ = ^ - - 2 P ^kk • (5.1.11) 
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If we have a completely hydrodynamic equation of state (see Section 

4.5), there are no deviatoric terms in Equation (5.1.10) (i.e., S and e are 

both zero). For the elastic plastic hydrodynamic material (see Section 

4.9), the deviatoric and volumetric response are uncoupled. We first deter­

mine the deviatoric response and calculate the deviatoric strain energy in 

Equation (5.1.10). Then we proceed with the equation of state calculation. 

The bulk viscosity pressure as defined in Equation (3.7.5) contains a 

linear and a quadratic part. Careful inspection of Equation (3.7.5) along 

with the definition of the stable time increment given by Equation (3.7.2) 

shows that the quadratic part of q is independent of the effective dilita-

tional modulus, while the linear part is not. At the time we must calculate 

E in Equation (5.1.10), we do not yet know the effective moduli for the 

time step since it depends on the new pressure. To avoid the need to in-

terate to solve Equations (5.1.10) and (5.1.11), we do not include the 

energy due to the linear term in the calculation. 

By substituting Equation (5.1.11) into (5.1.8), we can solve for the 

new pressure; 

P = At (5.1.12) 

' ^ ^3(^) -2 ^kk 

After calculating the new pressure using Equation (5.1.12), the energy can 

be updated using Equation (5.1.11). 

5.2 Mie-Gruneisen Type Equations of State 

The designation, Mie-Gruneisen equation of state, refers to any equa­

tion of state which is linear in energy. The most general form is 

p - p^ = rp (E^ - E^) (5.2.1) 
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where Pn and Eu are pressure and energy per unit mass along some reference 

path and are functions of density only. The Gruneisen ratio, r, is also a 

function of density only. The Hugoniot reference pressure Pn(p) is 

generally defined from fits to experimental data. 

The Hugoniot energy is related to the Hugoniot pressure by 

PHT? 

^H " 2p (5.2.2) 

where 

7J = 1 - pjp (5.2.3) 

The Gruneisen ratio is usually approximated as 

r(p) = r (1 + h,7j + h V + (5.2.4) 

Using Equation (5.2.2) in Equation (5.2.1) leads to 

P = Pu 
2 1^0 ( ^ - ' ) 

+ rpE, 
m 

(5.2.5) 

Equation (5.2.5) has the form of Equation (5.1.7) 

where 

p = f^(p) + f2(p) E^ 

fl(p) = PH(l-^) 

f2(p) = rp 

(5.2.6) 

(5.2.7) 

(5.2.8) 

and 
„=/-£.! _£ (5.2.9) 

The most common form for Equation (5.2.4) is to use ĥ  = -1 and all other 

h. = 0 which gives 
1 ^ 
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^0 
r = r -5 . (5.2.10) 

op ^ ' 

ALL the Mie-Gruneisen equation of states in PRONTO will use the form given 

by Equation (5.2.10). 

5.2.1 Linear Us-Up Hugoniot Form 

A common fit to Hugoniot data is given by 

(1 - Sr?) 

where c and s come from the linear shock velocity-partical velocity U -U 
0 s p 

fit 

Ug = ĉ  + s-Up . (5.2.12) 

Equation (5.2.11) follows directly from the relations 

PH = % - ^ - U S (5.2.13) 

and 

rj = Up/Ug . (5.2.14) 

We see that there is a limiting compression given by the denominator of 

Equation (5.2.11) 

r?^.^=l/s (5.2.15) 

or 

'^0 

^lim = ^ - (5.2.16) 
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Also, at rj = -1/s there is a tensile minimum and thereafter, negative sound 

speeds are calculated for the material. Since Equation (5.2.11) is intended 

for use in compression, caution is advised if the model is used in response 

regimes where large tensions are expected. 

For this form of the equation of state we see that 

ô'̂o M , TM 

and 

f,(p) = " " 2 ^ - 2 (5-2.17) 

^0^0 

f^ip) =-j^ = r . (5.2.18) 

5.2.2 Power Series Hugoniot Form 

Another common form for the Hugoniot is to express the reference pres­

sure, Pn, in a power series in 17, 

p^ = K̂ T}(1 + K̂ rj + K̂ T?̂  + .... ) . (5.2.19) 

dPu 
In order to match -y- at 77 = 0 it is necessary that 

K. = P.c^ (5.2.20) 
0 '̂0 0 ^ ' 

where K is the adiabatic bulk modulus at zero pressure and room temperature 

and c is the bulk sound speed. 
0 ^ 

For this Hugoniot form, the equation of state is defined by 

f^(p) = K̂ rj(l + KjTj + K^/) (1 - ^ ) (5.2.21) 

and 

f3(p) = -7-^ = r (5.2.22) 
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where we have restricted ourselves to using only three terms in the polyno­

mial in Equation (5.2.19). 

5.2.3 Ideal Gas Equation of State 

The ideal gas equation of state is given by 

P = (7 - 1) PE^ . (5.2.23) 

where 7 is a material parameter. 

Hence, we see that 

f^ip) = 0 (5.2.24) 

and 

f^{p) = (7 - 1) • (5.2.25) 

The initial sound speed in the gas, c , must be defined by the user. The 

initial pressure and specific internal energy per unit mass are 

p c 
p„ = - ^ (5.2.26) 

07 ^ ' 

The initial pressure and energy per unit volume 

are initialized inside the code. 
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5.2.4 JWL High Explosive Equation of State 

The Jones-Wilkins-Lee or JWL equation of state [35] provides the pres­
sure generated by the release of chemical energy in an explosive. In PRONTO 
it is implemented in a form which is usually referred to as a prograimned 
burn. A programmed burn means that the reaction and initiation of the 
explosive is not determined by the shock in the material, rather the initia­
tion time is determined by a Huygens construction using the detonation wave 
speed and the distance of the material point from the detonation point(s). 

The OWL equation of state is generally written as 

p p 

p = A/l-^\e"''l'^ ^B /l-^\e"'^2-^ + ̂ E „ (5.2.29) 
hf^ol \ Vo/ 0̂ % 

where A, B, R,, R^, w, and E are material constants. Note that Equation 
0 

(5.2.29) is written in terms of energy per mass which is the usual form 
found in the literature. Again, we chose to write our equations of state in 
terms of energy per unit volume which results in 

R ^ R ^ 
f l ( P ) - A ( l - R ^ ) e 1 ' - B ( l - ^ ) e '^ (5.2.30) 

and 

f.ip) = ̂  . (5.2.31) 
-̂  ^0 

The programmed burn requires the initial calculation of the arrival of the 
detonation wave at a material point. If there is only one detonation point 
denoted by x,, and if the location of the material point is denoted by x , 
then the detonation time is determined by 

td= l^d-^|/^d (5-2.32) 
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where c. is the detonation wave speed (a material property supplied by the 

user) and the symbol |'| indicates the Euclidian norm of a vector. Clearly, 

if there are multiple detonation points, then Equation (5.2.32) must be 

applied for each material point for each detonation point and the arrival 

time is the minimum. 

In order to spread the burn wave over several elements, a burn fraction 

F is computed as 

F = min 1, 
(^ - td) s 

(5.2.33) 

where B is a constant which controls the width of the burn wave (defaulted 

to 2.5 in the code) and ^ is the characteristic length of the element which 

is calculated internally in the code as the square root of the area of the 

element. If the time t is less than t., the pressure is zero in the 

explosive. Otherwise, the pressure is given by 

P = F [f^(p) + f2(p)E^] (5.2.34) 

When t < t , the detonation wave speed is used as the sound speed in the 

material. After the detonation wave has arrived, the sound speed is calcu­

lated internally from the hypoelastic stress rates and strain rates just as 

for all other materials. 

This form of the equation of state requires that the internal energy 

per unit volume be initialized to account for the chemical energy in the 

explosive. Parameters for a wide variety of explosives have been tabulated 

by Dobratz [36]. 
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6.0 CONTACT SURFACES 

PRONTO currently supports two types of contact surface boundary 

conditions: a deformable surface against a rigid plane, and two distinct 

deformable surfaces against each other. The first option requires a far 

more simple procedure since the constraints on each node are completely 

uncoupled. 

Contact is treated as a kinematic constraint by PRONTO. This means 

that the final product of the contact algorithm is to modify the accelera­

tions of the nodes along this surface such that the kinematic constraints 

are satisfied. 

PRONTO supports friction for both contact surface options. Either a 

simple Coulomb friction model or a velocity dependent friction model may be 

selected. 

6.1 Deformable-to-Rigid Surface Contact 

The rigid surface option in PRONTO imposes the kinematic constraints of 

an unyielding plane on a user specified surface of the deformable body. The 

plane is defined by a point x and the outward unit normal n. The deformable 

surface can be treated as simply a set of unique nodes. The primary 

kinematic condition is that the deformable nodes may not penetrate the rigid 

plane. In addition, the motion of deformable nodes along the plane may be 

restricted subject to a velocity dependent friction law. 

6.1.1 Normal Constraint 

We begin by integrating the motion of the deformable nodes without 

regard to the kinematic constraints required by the rigid surface. For each 

node, we calculate a predicted kinematic state as follows: 

a = f / m (6.1.1) 

v = v + A t a (6.1.2) 
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x = X + At V (6.1.3) 

In the above equations, f is the residual force vector (sum of external 

forces minus sum of internal forces), m is the nodal mass, v is the current 

velocity, x is the current position, and At is the time increment. The 

predicted kinematic quantities are denoted by a superposed hat. Note that 

the predicted accelerations and velocities are never stored in a global 

array. 

We now calculate the depth of penetration of each node into the plane 

as shown below. This depth is zero for nodes which are not in contact. 

6 = max (n-(x - x ) , 0 ) (6.1.4) 

The magnitude of the force which must be applied to enforce the kinematic 

constraint, i.e., which will cancel the penetration, is given by 

f^ = 6 m / At^ (6.1.5) 

This force must be applied in the direction of n. Applying this correction 

to Equation (6.1.1) and eliminating the nodal mass, we can express the new 

acceleration in the absence of friction as 

a = 6 / At^ (6.1.6) 
n ' 

a = a + a n (6.1.7) 

6.1.2 Friction 

Friction resists tangential motion of deformable nodes contacting the 

rigid plane. The unit tangent vector is orthogonal to the outward normal 

and, therefore, is expressed by 

(6.1.8) 
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The tangential component of the predicted velocity of a node is computed as 

follows: 

V, = S'V 
s 

(6.1.9) 

The force which must be applied to cancel the tangential velocity of a node 

is then given by 

f̂  = - m / At V 
s s 

(6.1.10) 

where the minus sign above reflects that this force would be applied in the 

direction of s, but opposing the motion. 

PRONTO currently supports three options for friction: no friction. 

Coulomb friction with a constant coefficient of friction, or the velocity 

dependent friction law found in HONDO II [6]. The coefficient of friction 

can be expressed by 

'̂  = '̂oo + ('̂0 " O ^ 

-yy 
(6.1.11) 

where Mn and M are the low and high velocity friction coefficients, respec-

tively, and 7 is a decay constant. Clearly, if 7 equals zero, the 

coefficient of friction is the constant MQ- Futhermore, if Mn is also equal 

to zero, the surface will be frictionless. 

The magnitude of the tangential force exerted by the plane on a node 

cannot exceed the maximum friction force. This constraint is expressed as 

f^= nr,in(Mf, , |f3|) (6.1.12) 

Substituting Equations (6.1.5), (6.1.6), and (6.1.10) into the above, then 

eliminating the nodal mass yields 

w 1 ^ - " ("»n / At (6.1.13) 
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The total acceleration of the node is then given by 

a = a + a n + a s (6.1.14) 
n s 

6.2 Deformable-to-Deformable Surface Contact 

The fundamental condition which must be satisfied between two contact 

surfaces is that one surface may not penetrate into the other. The algo­

rithmic challenge is to find the set of nodal forces which will maintain 

kinematic compliance. The classic difficulty of contact algorithms is that 

elaborate and exhaustive schemes to maintain strict compliance are prohibi­

tively expensive to implement and to execute. Furthermore, because the 

surface is discretized for the finite element method, it is virtually impos­

sible to pose an algorithm which always yields unique and meaningful 

results. 

The contact algorithm in PRONTO, as in any other code, represents a 

compromise between robustness and efficiency. Our algorithm is designed to 

handle very large deformations and moderately high impact velocities. The 

sample problems in Chapter 9 illustrate a fairly representative, but by no 

means exhaustive, range of applicability of the PRONTO contact surfaces. 

PRONTO uses a partitioned kinematic approach to contact. The par­

titioning can be adjusted to give a strict master-slave treatment or to 

balance the master-slave relationship between the two surfaces. In any 

case, the constraint forces conserve momentum. 

The contact algorithm is performed in two passes; first with one sur­

face as the master, then with the other surface as the master. One of these 

passes will be skipped if a strict master-slave treatment is requested. The 

following sections described just one such pass. 
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5.2.1 Surface Topology 

A surface in PRONTO must be continuous and simply connected. It may be 

either an open "string" or a closed "loop". The "inside" of the surface to 

PRONTO is where the material lies; it is assumed that there is no material 

on the "outside" of the surface. In order for a surface node to form a 

valid connection, the two adjoining segments must have material on the same 

side. By convention, PRONTO orders components of a surface such that the 

material is to the left and the outward normal is to the right as one 

progresses along the surface. 

Figure 6.2.1 illustrates valid and invalid surface topologies. Frames 

(a) and (b) show valid open and closed surfaces, respectively. Material is 

represented by shading and an arrow indicates the ordering direction for 

each surface. Frames (c) through (d) show examples of surfaces which are 

invalid to PRONTO. Clearly, frame (c) is not continuous and frame (d) is 

multiply connected. Frame (e) shows a case which appears ambiguous. This 

surface is actually simply connected, but not continuous, since the center 

point IS not a valid connection. 

PRONTO carefully checks the topology of contact surfaces during 

initialization. It will print with an appropriate error message for each of 

the invalid cases described above. If the surface is found to be valid, 

PRONTO will build the node list data structure which contains the topology 

of the surface as described below. Note that for a closed surface the 

number of nodes and segments are equal (NNODES = NSIDES), while for an open 

surface the number of nodes is one more than the number of sides (NNODES = 

NSIDES+1). 

The node list data structure, NSN0DE(NSIDES+1), contains the list of 

surface nodes in the order in which they appear along the surface. The 

first NNODES entries always contain unique nodes; the last entry is identi­

cal to the first entry (NSN0DE(NSIDES+1) = NSNODE(l)) for a closed surface. 

The surface is made up of a series of segments; each segment is a straight 

line defined by an element side. The node list also defines the initial and 

terminal node of each segment, since the terminal point of one segment is 
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Valid (a and b) and Invalid (c, d, and e) Surface Topologies 
for Contact Surfaces 
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the initial point of the following segment; the segment "N" goes from node 

NSNODE(N) to node NSN0DE(N+1). 

6.2.2 Surface Geometry 

PRONTO recalculates the geometry of all contact surfaces at each time 

step. A predicted configuration is computed by integrating the motion 

without regard to the kinematic constraints required by the contact 

surfaces. For each node we calculate: 

a = f / m (6.2.1) 

V = V + At a (6.2.2) 

X = X + At V (6.2.3) 

In the above equations, f is the residual force vector (sum of external 

forces minus sum of internal forces), m is the nodal mass, v is the current 

velocity, x is the current position, and At is the time increment. The 

predicted kinematic quantities are denoted by a superposed hat. Note that 

the predicted accelerations and velocities are never stored in a global 

array. 

The outward unit normals of the surface segments are critical to 

PRONTO's contact algorithm. For convenience of the tracking algorithm 

(Section 6.2.3), the array which contains the segment normals, 

P(0:NN0DES,2), is structured so that either side attached to a given node 

can be referenced readily; the precedent segment normal to node "N" is 

P(N-1,1:2), while the antecedent segment normal is P(N,1:2). The unit 

normals of the segments (1 through NSIDES) are calculated as follows: 

( ^I+l - ̂ I ) 
Nj = ; \ (6.2.4) 

( ^I - ^I+l ) 
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Hj = Nj / ̂ Nj-Nj (6.2.5) 

The ends of the normal array need to be filled in dependent upon whether the 

surface is closed or open. For the closed case, we simply copy the last 

position to the initial position: 

"O = "NSIDES (6.2.6a) 

For the open case, we construct virtual normals such that right outside 

corners are formed at the edge nodes: 

"O " ~ ^1 ' "NNODES " ^NSIDES (6.2.6b) 

where s represents the unit tangent of a surface segment. This vector is 

never stored since it can be readily defined from the unit normal as 

follows: 

1 % 
(6.2.7) 

6.2.3 Surface Tracking 

Surface tracking is the process of matching points along one surface to 

points along its mating surface. For our purposes, it is sufficient to 

locate the nearest master node to the possible point of contact for each 

slave node. It is important to understand that in this context the 

"nearness" of a node is measured in terms of the surficial (along the 

surface) distance, rather than the spatial (straight line) distance. Once 

we have determined the nearest master node, all that remains is to determine 

which of the two master segments the slave node may be contacting. In the 

next section (6.2.4), we describe how we decide whether the slave node is in 

contact and which master segment it is contacting. 

The tracking algorithm truly governs the cost/benefit of the contact 

surface capability in PRONTO. The amount of geometric detail that the 
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tracking algorithm can resolve determines the range of applicability of the 

contact surfaces. On the other hand, exhaustive checks of every slave node 

against every master node during every time step will always be prohibi­

tively expensive, and generally unwarranted. The tracking algorithm, 

therefore, is an area where compromises must be made, but where cleverness 

wil1 pay off. 

The tracking algorithm currently implemented in PRONTO is based on two 

assumptions regarding the behavior of the contacting surfaces. The first 

assumption is that the spatially nearest master node is also the surficially 

nearest master node to the point of contact. This assumption allows us to 

find the nearest node via simple distance calculations. We initialize the 

tracking scheme for each slave node S by finding the master node I which has 

the minimum distance d, defined by 

dj = (Xj - X3)-(Xj - X3) (6.2.8) 

The second assumption we make to streamline the tracking algorithm is 

that the nearest master node to a given slave node at one time step will be 

in the vicinity of the nearest master node at the next time step. This 

assumption allows us to update the tracking scheme by simply searching for a 

local minimum in the vicinity of the previously nearest master node. Thus, 

at each time step, we start at the previously nearest node and search in 

either the ascending or descending direction along the surface until we find 

a master node which satisfies: 

di_l ^ dj s dj^^ (6.2.9) 

where it is assumed that the search wraps around the node list and 

^0 = "^NNODES ' ^ N N O D E S + 1 = ^1 (6.2.10) 

While the tracking algorithm in PRONTO is quite simple, it will solve the 

majority of contact problems. With varying amounts of user intervention, 

this algorithm can handle virtually any problem. We shall explain where 
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limitations of the current algorithm arise and how to circumvent them in the 

following discussion. 

The tracking algorithm may fail when either of the above assumptions is 

invalidated. The first such condition can only occur near a very sharp 

corner. Figure 6.2.2 illustrates a case where a master node on the back 

side of the master surface has the shortest spatial distance to the slave 

node. The shortest surficial distance to the slave node is clearly to either 

the corner node or its front side neighbor. The symptom which will occur in 

this situation is that the slave node will be kicked out of the back side of 

the master surface and hook there. 

The above condition is highly unlikely to occur in any reasonable 

problem. The are three ways to relieve the symptom for this case. The 

first, and preferred, method is to refine the mesh at the tip of the master 

surface (which should be done to achieve decent accuracy anyway). As a rule 

of thumb, the length of the side segments should always be less than the 

thickness of the material. The second course of treatment is to set the 

partition factor (Appendix A, command 27) for the sharp surface so that it 

acts only as a slave. The final course of treatment would be to divide the 

master surface at the tip. This must be done with caution since the corner 

node would then be part of two distinct surfaces, which could lead to a 

conflict if these two surfaces contact the same master surface. 

The second condition which can cause the tracking algorithm to fail is 

a severely undulating master surface. Figure 6.2.3 shows a situation where 

a slave node is tracking the master surface on the wrong side of a peak. 

For this to occur, the master surface must be folding quite rapidly and the 

slave surface must be moving tangentially to the original master surface. 

The symptom that occurs in this case is that this slave node will never 

detect contact. This is also a highly unlikely situation since the tracking 

information is continuously updated. The remedy for this symptom is quite 

simple; the calculation should be restarted (Appendix A, commands 8 and 7) 

after the surface peaks and valleys have formed. PRONTO reinitializes the 

tracking data when it reads a restart file, which forces an exhaustive 

search for the nearest master node via Equation (6.2.8). 
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NEAREST (tracked) MASTER NODE 
SLAVE NODE 

Figure 6.2.2. Case Where a Master Node on the Back Side of the Master 
Surface has the Shortest Spatial Distance to the Slave 
Node 
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NEAREST (tracked) 
MASTER NODE SLAVE NODE 

Figure 6.2.3. Case Where a Slave Node is Tracking the Master Surface 
on the Wrong Side of a Peak 
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In addition to the pathological cases described above, the tracking 

algorithm in PRONTO does not yet support a surface contacting itself. This 

capability would be useful for buckling shells which fold upon themselves, 

as shown in Figure 6.2.4. The problem in this instance is that the tracking 

scheme will always find that each node is contacting itself. Presently, the 

only way to handle this situation is to divide the surface at the crease 

points. The best approach is to run the calculation with fairly frequent 

restart dumps (Appendix A, command 8 ) , identify a restart state which occurs 

after the surface has buckled but before contact, then restart from this 

state (Appendix A, command 7) with the proper contact surfaces inserted. 

The greatest difficulty with this technique is that it requires manipulation 

of the GENESIS mesh file (Appendix D). 

6.2.4 Determination of Contact 

This section describes how we decide if each slave node is in contact. 

If a slave node is in contact, we also decide which of the two master seg­

ments connected to the nearest master node is in contact. 

The first task we perform in order to determine contact is to orient 

the slave node with respect to the master segments connected to the tracked 

master node. This entails calculating the local depth and position coor­

dinates for both the precedent and antecedent master segments. Figure 6.2.5 

illustrates the geometric interpretation of these quantities which are 

defined below. 

Sp = "i_i-(Xi - X3) (6.2.11) 

^ p = ^I-1-(^I - \ ^ (^•2-12) 

Sg = nj-(Xj - x^) (6.2.13) 

X3 - Sj-(x^ - Xj) (6.2.14) 
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Figure 6.2.4. Case Where a Surface is Contacting I t se l f 
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Figure 6.2.5. Definition of Local Depth and Position Coordinates 
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If Its depth (6) IS positive, we say that the slave node is penetrating that 

segment. If its position (x) is positive, we say that the slave node is 

along that segment. 

It IS helpful to visualize the dichotomy of the two master segments as 

near and far, rather than precedent and antecedent. The distinction is made 

by the line which bisects the corner formed at the master node, which is 

shown as the centerline in Figure 6.2.6. The near segment is the one which 

lies on the same side of the corner as the slave node. In Figure 6.2.6, the 

near segment is to the right. 

The near segment with regard to the slave node can be determined 

readily as the segment with the greater position coordinate, as defined in 

Equations (6.2.12) and (6.2.14), respectively. Figure 6.2.6 illustrates 

this test. 

The ideal condition for determining contact is that the slave node is 

along and penetrating the contacted segment. Unfortunately, this definition 

leads to many ambiguous cases because the surface normal is not continuous. 

One must impose further conditions in order to resolve these ambiguities. 

PRONTO's approach to determining contact is based on the premise that a 

slave node usually contacts the near master segment as defined above. The 

only exception we make to this rule is when the master surface forms an 

outside corner. In this instance, as is shown in Figure 6,2.7, it is impos­

sible to determine which master segment is in contact by examining just the 

depth and position coordinates. 

PRONTO detects an outside corner situation when the slave node is along 

both master segments and penetrating at least one. Figure 6.2.8 shows 

examples of the range of master surface corners. The hatched areas in 

frames (b) and (d) indicate the regime where the outside corner ambiguity 

occurs. 

The technique we use to resolve the outside corner ambiguity is to 

determine if the slave surface near the node in question is more strongly in 

contact with the far master segment than with the near segment. If this is 
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Figure 6.2.6. Definition of Near and Far Master Segments 
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Figure 6.2.7. Illustration of Outside Corner Ambiguities 
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Figure 6.2.8. Examples of the Range of Master Surface Corners 
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true, we check for penetration of the far segment, rather than the near 

segment. The exact test we perform is given below for when the precedent 

segment is the near segment or when the antecedent is the near segment, 

respectively. These situations are illustrated in Figure 6.2.9. In this 

figure, we denote the unit normals to the master surface and the slave 

surface by m and n, respectively. The subscript p refers to the precedent 

segment, while the subscript a refers to the antecedent segment. 

n -m < n -m (6.2.15a) 
p a p p 

n,'m < n 'm (6.2.15b) 
a p a a ^ ' 

The logic that PRONTO follows to determine contact once it has identified 

the near and far master segments is summarized in Figure 6.2.10. Note that 

there are only three questions. This logic is so simple that it can be 

vectorized efficiently. 

The final issue for determining contact is to treat edge contacts, 

i,e,, when the nearest master node is at one end of the node list. If the 

master surface is closed, the nearest master node is the first in the list 

(1), and the precedent segment (0) is in contact, then we wrap around and 

contact the last segment (NSIDES) in the list. This reverses the action of 

Equation (6,2,6a), If the master surface is open, it is not legitimate to 

contact the precedent segment (0) of the first node (1) nor the antecedent 

segment (NSIDES+1) of the last node (NNODES), This is because these 

"segments" where manufactured by Equation (6,2,6b). If this occurs, PRONTO 

will print an error message and stop, 

6,2.5 Contact Forces 

We use a partitioned kinematic approach to enforce compliance between 

two contact surfaces. This means that each surface acts as a master for a 

fraction of each time step and as a slave for the remainder. 

The first task in restoring compliance is to calculate the penetration 

forces imposed on the master surface by the slave surface. We define these 
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Figure 6.2,9, Outside Corner Contacts 
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YES IS SLAVE NODE 
PENETRATING NEAR SEGMENT? 

IS SLAVE NODE PENETRATING 
AND ALONG FAR SEGMENT? 

NO YES 

IS OPPOSING SLAVE SEGMENT 
MORE OPPOSED TO FAR MASTER 
SEGMENT THAN NEAR SEGMENT? 

NO YES 

' 

CONTACT NEAR SEGMENT | [ 

NO 

IS SLAVE NODE PENETRATING 
AND ALONG FAR SEGMENT? 
YES NO 

• 

IS OPPOSING SLAVE SEGMENT 
MORE OPPOSED TO FAR MASTER 
SEGMENT THAN NEAR SEGMENT? 

YES NO 

' 

CONTACT FAR SEGMENT 

• ' 

1 NO CONTACT | 

Figure 6.2.10. Flowchart of Logic PRONTO 20 Uses to Determine Contact Once 
it has Identified the Near and Far Master Segments 

• • • • • 



forces as a fraction of the forces which would be imposed by the slave nodes 

if the master surface was rigid. This fraction is the partition factor /3, 

which represents the fraction of each time step for which these surfaces act 

as master and slave, respectively. Their roles are reversed for the remain­

ing fraction (1-/3). 

The penetration force for a slave node is expressed by 

f = /3 m^ / At^ n-(x^ - x^) n (6.2.16) 

where m is the mass of the slave node, and x, and x. are the predicted s s 1 ^ 
coordinates of the slave and precedent master node, respectively. This is 

illustrated in Figure 6.2.11. 

Next we want to find the response of the master surface to these 

penetration forces, such that the response of each contacting slave node is 

constrained by its master nodes as shown below. 

^s= (1-^) ^ 1 ^ ^ V (̂ -̂ -l̂ ) 

where a , a ,, and a ^ are the acceleration responses of the slave node, ns nl n2 
precedent master node, and the antecedent master node, respectively. The 

interpolation variable ^ is given by 

s-(x - X,) 
^ = ^e x^ (6.2.18) 

S-(X2 - x^) 

Equation (6.2.17) couples the response of individual master nodes. The 

principle of virtual work is applied to generate the following equations 

which define the accelerations of the master nodes in response to the 

penetration forces. 

(m + I m ) a = Z f (6.2.19) 
^ s ^I "̂  s ^I 

where the summation is over all slave nodes in contact. 
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Figure 6.2.11. Definition of Master and Slave Node 
Quantities for a Contact 
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The above expression represents a set of uncoupled equations; one for 

each master node. The mass and force contributions to the above assembly 

for a given slave node are as follows: 

m3^ = (1 - n m^ (6.2.20) 

\ = ^ ^ (6.2.21) 

= (1 - n f (6.2.22) 

= ^ f. (6.2.23) 

After assembling and solving Equations (6.2.19) for the master accelera­

tions, the slave accelerations are interpolated via Equations (6.2.17) and 

(6.1.18). Note that this slave response restricts the motion induced by the 

penetration force given in Equation (6.2.16). In the absence of friction, 

the corrected nodal accelerations of the master and slave nodes, respec­

tively, then are given by 

a = a + a. (6.2.24a) 

a = a + a„ - f„/m^ 
n p s (6.2.24b) 

6.2.6 Friction 

Friction resists the relative tangential motion of the contacting slave 

nodes. The tangential component of the relative predicted velocity of the 

slave node with respect to the master surface is given below in terms of the 

unit tangent vector (6.2.7) and the its position along the side (6.2.18). 

v = s*(v 
s ^ s 

(1 - n V 
1 ? v^) (6.2.25) 

As with the penetration force (6.2.16), we define the tangential contact 

force as a fraction of the force which must be applied to the slave node to 

cancel its relative tangential velocity. This force is given by 
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f^ = - /3 m^ / At v^ (6.2.26) 

where the minus sign reflects that this force would be applied in the direc­

tion of s, but opposing the motion. 

PRONTO currently supports three options for friction: no friction, 

Coulomb friction with a constant coefficient of friction, or the velocity 

dependent friction law found in HONDO II [6]. The coefficient of friction 

can be expressed by 

M = M^ + (MQ - uj e (6.2.27) 

where M^ and M are the low and high velocity friction coefficients, respec-
U 00 

tively, and 7 is a decay constant. Clearly, if 7 equals zero, the 

coefficient of friction is the constant n^. Futhermore, if MQ IS also equal 

to zero, the surfaces will be frictionless. 

The magnitude of the tangential force exerted by the master surface on 

a slave node cannot exceed the maximum friction force. This constraint is 

expressed as 

f 
ff = T A min(M f^ , |f3|) (6,2,28) N 

where f is the magnitude of the normal contact force as given below, 

f„ = m^ n-(a„^ - fjm) (6,2,29) 
n s ns p s' ^ ' 

Applying this force to the slave node and balancing forces to the 

master nodes, then dividing by the appropriate nodal mass yields the follow­

ing expressions for the tangential accelerations to these respective nodes, 

^sO " ^f ^ '"s ^ (6,2,30) 

^ 1 = - (1 - U ff / rn̂  s (6,2.31) 
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a^2 = - ^ ff / fTî  s (6.2.32) 

Finally, by adding the above tangential accelerations to Equations (6.2.24a) 

and (6.2.24b), the corrected total acceleration of the contact nodes is 

expressed in general form for master and slave nodes, respectively, by 

a = a + a„ + a, (6.2.33a) 
n s ^ ' 

a = a + a„ - f„/m, + a, (6.2.33b) 
n p s s ' 
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7.0 BOUNDARY CONDITIONS 

PRONTO contains several types of boundary conditions. In this section, 

we describe how these are implemented in the program. It is important to 

note that the order in which these boundary conditions is applied is crucial 

to the accuracy of the program. In Chapter 8, we describe the initializa­

tion and time stepping algorithm which should be referred to in order to 

determine exactly when the different boundary conditions are applied. 

7.1 Kinematic Boundary Conditions 

The kinematic boundary conditions described below are all accomplished 

by altering the accelerations of the nodal points. The application of these 

boundary conditions does not vectorize because they require a function look­

up and a scatter of values. All of the kinematic boundary conditions are 

nodal boundary conditions. 

7.1.1 No Displacement Boundary Conditions 

The no displacement boundary conditions are accomplished by setting the 

acceleration of the node to zero. 

Note: If velocity or acceleration boundary conditions are specified on 

a node which has a no displacement boundary condition, they will override 

the displacement boundary condition. 

7.1.2 Prescribed Velocity Boundary Conditions 

The prescribed velocity boundary conditions are accomplished by alter­

ing the nodal point acceleration such that when the accelerations are 

integrated once, they provide the proper value of the nodal velocity. The 

nodal value of acceleration for the time step is calculated by the program 

as 
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The velocity at the end of the time step is computed by 

where s is the scale factor and f(t) is the history function defined by the 

user. In Equation (7.1.1), the value of velocity at the beginning of the 

time increment, v^, is the value computed by Equation (7.1.2) at the pre­

vious time increment. 

Note: If a prescribed acceleration boundary condition is specified by 

the user on the same node as a prescribed velocity boundary condition, it 

will override the prescribed velocity boundary condition. 

7.1.3 Prescribed Acceleration Boundary Conditions 

Prescribed acceleration boundary conditions are applied by the program 

by setting the nodal acceleration during the time increment to the value 

given by 

a^ = s-f(t) (7.1.3) 

where s is the scale factor and f(t) is the history function defined by the 

user. 

Note: A prescribed acceleration boundary condition will override any 

other kinematic boundary condition on the same node. 

7.2 Traction Boundary Conditions 

The boundary conditions described below involve applied forces to the 

boundary of the mesh. The pressure and nonreflecting boundary conditions 

are side boundary conditions, while the nodal force boundary condition is a 

nodal boundary condition. 
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7.2.1 Pressure 

The set of consistent nodal point forces arising from pressures dis­

tributed over an element side are defined via the principal of virtual work 

by 

Su.jf.j = 8u.j f 0j(-pn.)dA . (7.2.1) 
•'s 

where the range of the lower-case subscripts is 1 to 2 and the upper-case 
subscripts 1 to 4. 

Since the virtual displacements are arbitrary, they may be eliminated 
to yield: 

Ul = ~ f h P"i ^̂  (7-2.2) 
•'s 

The most general pressure distribution we allow is mapped from nodal point 
pressure values via the isoparametric shape functions. The resulting ex­
pression for the consistent nodal forces is 

^ I = " Pj f ^I^J "i^^ • (7.2.3) 
•̂ s 

For the four node constant stress element used in PRONTO, 0, is given by 

01 = I Ei + ^ Aj , - 2 = ^ = ^ (7-2.4) 

where 

E, = i 1 A, = (7.2.5) 

and n.n. = 1. For the geometry and pressure distribution shown in Figure 
7.2.1, it can be shown that 
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Figure 7.2.1. Definition of a Pressure Boundary Condition 
Along an Element Side 
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X. = X.J 0j (7.2.6) 

and 

ax 
"i^^ = ^j3a|- ^^ = ^j3 ^ j K \ d ^ (7.2.7) 

Then the consistent nodal forces can be written as 

îl = •Pj'ij3 "jK \ 1 , Î̂ J ̂ ^ (7.2.8) 

Combining Equations (7.2.4), (7.2.5), and (7.2.8) 

îl =-Pj'ij3 ̂ jK\[5^I^JM2^^J] (7.2.9) 

The above expression is evaluated as 

N. = -e X.,. A,. = ) 
i " "ij3 '̂ jK '̂K 

^1 - ̂ 2 j 

( ^2 - ̂  i 
(7.2.10) 

and 

f = N •-
îl '̂i 6 

2 1 

1 2 

(7.2.11) 

The nodal values for the pressure are calculated using the user supplied 

scale factor and time history function. The values are calculated for the 

beginning of the time step. 

The application of the pressure boundary conditions is fully 

vectorized. Blocks of element sides are processed in vector blocks using 

the scratch element space. After the consistent nodal point forces are 

calculated for a block of element sides, they are accumulated into the 

global nodal force array. 
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7.2.2 Moving Pressures 

The moving pressure boundary condition implemented in PRONTO represents 

a relatively simple way of incorporating both a spatial and temporal dis­

tribution of pressure loading on a surface. The implementation described 

here is intended for blast type loading on a surface where the blast 

originates from some point defined by the coordinates (xO,yO) and propagates 

along the surface. We assume that the surface is flat and the distance from 

any point on the surface to point (xO,yO) is given by d. Then the pressure 

at any point is written as 

p(T,d) = are"^'' (7.2.12) 

where T is the time measured from the arrival of the pressure wave at the 

point and a and b are functions of distance, which are defined below. If w 

is the propagation speed of the pressure wave along the surface, then r is 

given by 

T = t„ - d/w (7.2.13) 
0 ^ ' 

where t is the pressure initiation time at the point (x ,y ). The time at 

which Equation (7.2.12) gives a maximum for the pressure is given by 

W=l/^ (7.2.14) 

which we refer to as the rise time. The peak pressure obtained at this time 

is 

"max = B '~' f ' - ^ - " ' 

We allow the user to define two functions of distance from the point (xO,yO) 

which describe the behavior of the pressure wave. The first function 

defines the peak pressure as a function of distance while the second 

describes the rise time as a function of distance. Using Equations (7.2.14) 

and (7.2.15), we can write the parameters a and b as functions of distance 
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The user can define the functions in any manner he sees fit which allows for 

a quite general specification of the moving pressure wave. If the user 

inputs a zero value for the propagation speed, w, the code assumes that the 

pressure is applied instantaneously along the surface (i.e., this cor­

responds to an infinite propagation speed). If the assumed pressure 

description given by Equation (7.2.12) is not suitable, it is a simple task 

to change this description to some other two parameter functions and alter 

the code accordingly. Of course the definition of the parameters, a and b, 

as a function of distance given by Equation (7.2.16) would have to be 

rederived and changed as well. 

7.2.3 Nodal Forces 

Nodal point load forces are applied by determining the magnitude of the 

force determined by the user supplied scale factor and time history 

function. The time history function is evaluated at the beginning of the 

time step. 

7.3 Nonreflecting Boundaries 

In a number of geotechnical applications, it is desirable to model an 

infinite or semi-infinite space. In these applications, waves are trans­

mitted outward from some disturbance and are absorbed in the far field. 

PRONTO contains a boundary condition specification which will absorb waves 

and not reflect them back into the interior mesh. This allows for a much 

smaller mesh and a significant reduction in the number of degrees of freedom 

in the problem. 

The absorbing or nonreflecting boundary which is implemented in the 

code was proposed by Lysmer and Kuhlemeyer [37] and discussed in detail by 

Cohen and Jennings [38]. The exterior infinite region is replaced by an 

energy absorbing boundary condition. The basic idea is to apply boundary 
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tractions which will exactly cancel the stresses which are generated at the 

free surface. On this boundary surface, tractions are applied of the form 

^„ = P V„ u„ 
n p n 

(7.3.1) 

and 

ŝ = ̂  ̂  \ (7.3.2) 

where: 

o = normal stress applied to the boundary 
n 

t = shear stress applied to the boundary 

u = velocity component normal to the boundary 

u. = velocity component tangential to the boundary 

p = current density of the material at the boundary 

V = current s-wave velocity in the material at the boundary 

V = current p-wave velocity in the material at the boundary 

The wave speeds required in Equations (7.3.1) and (7,3.2) are calculated 

using the current shear and dilatational moduli determined in Section 3.4. 

The tractions given by Equations (7.3.1) and (7.3.2) are used with the 

consistent nodal forces which were derived in Section 7.2.1. The nodal 

normal and tangential velocities are determined for the two nodes on the 

element side to determine the correct tractions. These are used in Equation 

(7.2.11) for both the normal and shear components to give the proper consis­

tent nodal point forces for the absorbing boundary. 
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The application of the nonreflecting boundary condition is vectorized 

as is the pressure boundary condition. The effective moduli required for 

the wave speed determinations in Equations (7.3.1) and (7.3.2) are computed 

and stored during the loop on the elements for elements having this boundary 

condition specification. 
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8.0 INITIALIZATION AND TIME-STEPPING ALGORITHM 

8.1 Initialization 

The user defines a mechanics problem by specifying material properties, 

body geometry, initial conditions, tractions, and kinematic boundary 

conditions. PRONTO does an extensive amount of data checking to try to 

insure that the user has defined a meaningful mechanics problem. These 

checks range from mundane (e.g., Are nonzero and positive mass densities 

provided for the materials?) to more subtle (e.g.. Are all the contact 

surfaces simply connected?). We do not guarantee that PRONTO will always 

detect a bad set of data, but experience with it has shown that it is 

usually smarter than the authors. 

By "initialization" we mean the calculations which must be performed 

and the data structures which must be set up before entering the time step­

ping loop. There are two initialization processes in PRONTO. The first has 

to do with setting up the initial data structures which are specified by the 

user. This is all done in the INIT routine which is called from the main 

program. At this time the initial displacements, velocities, and accelera­

tions are all set to zero. Then the initial velocities defined by the user 

are set. The stresses are initialized to zero and the internal state vari­

ables are initialized to the appropriate values for all of the materials. 

The initial tracking of the contact surfaces is also performed in the INIT 

routine. 

The second and more subtle initialization which must be performed 

concerns the resolution of the kinematic constraints which the user has 

defined with the initial velocity field, which the user has also defined. A 

simple example of why this is required is the case of a bar striking a rigid 

wall at some nonzero initial velocity. The user defines a rigid contact 

surface and gives all the material in the bar an initial velocity. But the 

first row of nodes (initially on the rigid surface) has the initial velocity 

at time zero; whereas, physically it is in contact and should have zero 

velocity. It would be a simple matter to just check for this type of condi­

tion and set the nodal velocities to zero, but this procedure fails to 
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correctly transfer momentum, to correctly initialize the artificial bulk 

viscosity pressure in the first row of elements, to correctly predict the 

strain rates, and to correctly predict stable time increment. The problem 

is especially severe if the impact velocity is on the order of the wave 

speed of the material. For the case of two deformable surfaces (the general 

contact case), the correct initialization of the kinematic constraints is of 

even more importance. 

In order to correctly perform the initialization, we must first perform 

what we call a pseudo-time increment. A trial stable time increment is 

determined in the INIT routine while calculating the element masses. This 

time increment is based on the state of the body defined by the user which 

is, in general, stress free. Essentially, it is the time increment which 

would have been stable had there been a previous time step. Remember that 

the stable time increment prediction always looks backward and we rely on 

the conservativeness of Equation (3.5.5) to remain stable. The pseudo-time 

increment is performed in the SOLVE routine before entering the time step 

loop. The algorithm is: 

1. Set up a pseudo-time step by setting the accelerations to the 

trial velocities divided by the pseudo-time increment and the 

velocities to zero. Note that these accelerations are purely 

an algorithmic invention and have nothing to do with initial 

accelerations which we correctly calculate at the top of the 

time step loop. This set of kinematic conditions is the same 

as the original set specified by the user if no kinematic 

conditions are present. The velocities must be zero so that 

we do not integrate the friction in the initialization 

calculation. 

2. Predict a new configuration based on the pseudo-time incre­

ment and the user supplied initial velocities. 

3. Calculate acceleration corrections to enforce kinematic 

constraints on initial velocities. 
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4. Apply kinematic boundary conditions (except prescribed 

accelerations). 

5. Alter initial velocities to enforce kinematic constraints and 

reset current coordinates to the original configuration. 

8.2 Time Step Loop 

The order in which calculations are performed during the time step loop 

is crucial to the question of the accuracy of the algorithm. Our time 

stepping algorithm proceeds in the following order: 

1. Advance the constitutive state to the end of the time incre­

ment, calculate internal forces due to stress divergence, 

artificial viscosity, and hourglass resistance, and determine 

the stable time increment. 

2. Apply external loads: pressures, quiet boundaries, and nodal 

forces. 

3. Calculate accelerations and predict the configuration at the 

end of time step ignoring kinematic constraints. This 

predicted configuration will be used in the contact and rigid 

surface routines to determine the corrections which must be 

made to the accelerations to bring the surfaces back into 

compliance. 

4. Enforce contact surface and rigid surface constraints by 

altering the accelerations. 

5. Apply kinematic boundary conditions by altering the accelera­

tions so that the kinematic constraints are satisfied: 

displacement, velocity, and/or acceleration. 

6. Write output, if timely. 
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7. Integrate the velocities and displacements using the altered 

accelerations and compute the current spatial coordinates 

which reflect the kinematic constraints. 

8. Update the current value of time and go back to step 1 if 

more time is required. Otherwise, exit the time step loop. 

Most of the computation time in PRONTO occurs in step 1. This is where 

the elements are processed in vector block loops. We calculate the gradient 

operator, determine the strain rates, advance the constitutive state, deter­

mine the critical time increment, and calculate the divergence of the 

stresses for a block of elements at a time. 
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9.0 NUMERICAL EXAMPLES 

In this chapter, we present several representative example problems 

which demonstrate some of the features of the numerical algorithms which 

were described in previous chapters. We will refer to the particular sec­

tion or chapter so that the reader can gain a better understanding of 

algorithms we consider vital to the success and accuracy of PRONTO. Only 

the PRONTO input instructions are shown here; the geometric definitions of 

the mesh are not given. 

9.1 Simple Shear 

This is a simple one element example problem which demonstrates the 

accuracy of the finite rotation algorithm described in Section 3.3. 

Figure 9.1.1 shows the one element mesh and the boundary conditions applied 

as well as the PRONTO input required to define the problem. The prescribed 

constant velocity on the top of the element is maintained until the element 

has experienced a total shear strain of 400 percent. The deformations in 

the element are totally prescribed by the kinematic boundary conditions, 

which means that the time step is arbitrary and the time integration cannot 

go unstable. Hence, the choice of the mass density simply serves to fix the 

number of time increments used to integrate the stresses and rotations to 

the end of the problem. We ran this problem using a mass density which 

resulted in 400 time steps (1 percent shear strain per time step) and the 

results were almost indistingishable from the analytical solution given in 

Figure 2.2.2. The numerical accuracy does not degenerate significantly 

until the strain increment approaches 5 percent (of course, this strain 

increment is unreasonable for the integration of any real constitutive 

model). 

9.2 Rotating Cylinder 

The rotating cylinder problem illustrated in Figure 9.2.1 was proposed 

by Longcope and Key [39] as a means of exercising finite rotation algo­

rithms. The cylinder has an initial angular velocity of 4000 rpm with a 

zero initial stress state. Of course, this is not physically possible 
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Figure 9.1.1. Geometry and PRONTO 2D Input for the Simple Shear Problem 



because the body forces would generate a stress field under this angular 

velocity, but these initial conditions are acceptable for this numerical 

experiment. The inside of the cylinder experiences a step load in pressure 

to a value of 9780 psi, which causes the cylinder to expand. The material 

model is elastic/plastic with kinematic hardening. Figure 9.2.2 shows the 

maximum principal stress in the cylinder for the element labeled A in Figure 

9.2.1. Since the cylinder is thin, the maximum principal stress corresponds 

to the hoop stress and is the only stress component of interest in the 

problem. Examination of Figure 9.2.2 shows that the material first loads up 

elastically until the yield stress of 41500 psi is reached. It then strain 

hardens until the cylinder reaches its maximum expansion, where an elastic 

rebound occurs. The first cycle of rebound actually unloads to the point 

that the material begins to yield again. Remember that the hardening is 

kinematic so when the material begins to yield again, the state of stress 

has actually crossed back over the yield surface in stress space and strain 

hardening occurs as it begins to yield. The cylinder then settles into a 

purely elastic rebound mode where the cylinder oscillates in a "breathing" 

mode. This oscillation occurs entirely within the yield surface in stress 

space. 

This problem illustrates two features of the numerical algorithms in 

PRONTO. First, the example problem serves as a test of the finite rotation 

algorithm of Section 3.3. During the time shown in Figure 9.2.2, the ele­

ment labeled A rotates 90 degrees to the position labeled B in Figure 9.2.1. 

This is a very large finite rotation in which both the stress and the tensor 

internal state variable of backstress must be correctly rotated. More than 

ten thousand time steps were performed during the 90-degree rotation. The 

obvious question is, "What is the numerical drift in the solution over such 

a large number of time steps?" To determine this, we also plotted the 

maximum principal stress for the element which started in position B, and 

the results were identical to those for element A. These are two elements 

which have stress states which are oriented 90 degrees from one another. 

The principal values do not drift apart even though the material is ex­

periencing extremely large rotations and large nonlinear deformations. 
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Figure 9.2.1. Definition of the Rotating Cylinder Problem 
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The second feature which is illustrated is the stable time increment 

control described in Section 3.5. Figure 9.2.3 shows a plot of the time 

increment chosen by the code as a function of time. During the initial 

elastic loading the stable time increment is relatively constant, decreasing 

slightly due to the change in radius of the cylinder. As the cylinder 

yields, the time step rises because the material has a softer effective 

modulus. As elastic rebound begins, the time increment size returns to the 

small size that was used in the initial elastic loading. When the cylinder 

begins to yield again on the backside of the first rebound, we see a jump in 

the stable time increment. Finally, the rebound becomes completely elastic 

and the time step increment becomes almost constant with the slight oscilla­

tion due to the oscillation in the geometry of the cylinder. 

9.3 Explosive Pipe Closure 

In this problem, two concentric pipes have the annulus between them 

filled with high explosive (HE). The inside radius of the inner pipe is 

1 cm, and the inside radius of the outer pipe is 2 cm. Both pipes are steel 

with a wall thickness of .2 cm. Each pipe has 6 elements through the wall 

thickness, and the HE has 24 elements through its thickness. The problem is 

analyzed as a plane strain problem and only one-quarter of the geometry is 

modeled due to symmetry. The analysis used 75 elements around the quarter 

circumference, for a total of 2700 elements and 2812 nodes in the problem. 

The input data deck and a schematic drawing of the problem are shown in 

Figure 9.3.1. This particular example is included here to demonstrate the 

use of an equation of state, in this case the JWL explosive equation of 

state (see Section 5.2.4.). The HE was detonated at a point on the inside 

edge of the outer pipe which lies equidistant from the two coordinate axes 

(along the line x = y ) . The units in this problem were cm, gm, and usee. 

The problem was run to 7.5 microseconds, at which time the inner pipe 

has been nearly compressed into a solid mass. Figure 9.3.2 shows a sequence 

of deformed configurations. The numerical solution took 434 time steps and 

required 14.35 cpu seconds on the CRAY XMP-24 under CTSS. 
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Figure 9,3.1. Definition of the Explosive Pipe Closure Problem 
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9.4 Missile Impact 

The next example problem involves the structural effects of a 600 foot 

per second head-on impact of a missile against a hard target. The response 

of the front section of the missile was computed for 200 microseconds fol­

lowing the initial instant of impact against the assumed target, an 

unyielding plane perpendicular to the direction of motion of the missile. 

The finite element mesh for the calculation was comprised of 1157 nodes and 

945 elements. The model included the region of the missile from the tip to 

the point at which the forward case switches from conical to a cylindrical 

cross section. An extra region was appended to the model at the latter 

point in order to add the equivalent mass of the remainder of the missile. 

Thirteen contact surfaces were used in the model to separate the 

various components in the missile. A rigid surface was used to model the 

hard target. Figure 9.4.1 shows the mesh and the location of the various 

slide lines used in the model. Figure 9.4.2 contains the input file for 

this problem. We have included this example problem to illustrate how easy 

it is to use PRONTO with problems containing a large number of contact 

surfaces which undergo very large deformations. 

Figures 9.4.3 and 9.4.4 show the deformed mesh at 100 and 200 

microseconds, respectively. This problem required 600 seconds of cpu time 

on the CRAY/XMP-24 under CTSS. 

9.5 Forging Problem 

The last example problem represents the drawing of a spherical cup from 

an initially flat copper disk. Figure 9.5.1 shows the original geometry of 

the dies and the disk. All of the nodes on the rigid dies were given 

prescribed displacement boundary conditions using either the no displacement 

boundary condition or the prescribed velocity boundary condition. 

Consequently, there is no deformation in the dies and the material 

properties used for that material are of no importance. In fact, we used 

the material deletion option to delete that material from the mesh at the 

beginning of the analysis. The kinematic boundary conditions applied to the 
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INIT VEL MAT = 
INIT VEL MAT •= 
INIT VEL MAT = 
INIT VEL MAT -
INIT VEL MAT » 
INIT VEL MAT •= 
INIT VEL MAT = 
INIT VEL MAT « 

1, 
2, 
3. 
4. 
5, 
6, 
7. 
8. 
9, 
10, 

0 , 
0 , 
0 , 
0 , 
0 , 
0 , 
0 , 
0 , 
0. , 
0 , 

-7200 
-7200 
-7200 
-7200 
-7200 
-7200 
-7200 
-7200 
-7200 
-7200 

(Ring Nut, Nose Bolt) 

BETA 1 

(Nose Cap) 

BETA = 1 

(Forward Case) 

BETA 1 

(Front Support) 

BETA 1 

(I S Backing Plate) 

MATERIAL, 1, ELASTIC PUSTIC, 7 32E-4 $ 15-5 PH S S 
YOUNGS MODULUS = 28 5E+6 , POISSONS RATIO = 27 
YIELD STRESS = 170 E+3 , HARDENING MODULUS = 2 e5E+6 , 
END 
MATERIAL, 2. ELASTIC PLASTIC. 7 32E-4 $ 15-5 PH S 
YOUNGS MODULUS = 28 5E+6 . POISSONS RATIO = 27 
YIELD STRESS = 170 E+3 , HARDENING MODULUS = 2 85E+6 , 
END 
MATERIAL 3, ELASTIC PUSTIC, T 33E-4 % 4340 Steel 
YOUNGS MODULUS = 29 OE+6 , POISSONS RATIO = 32 
YIELD STRESS = 125 E+3 , HARDENING MODULUS = 2 90E+5 
END 
MATERIAL, 4, ELASTIC PLASTIC, 2 54E-4 $ 6061-T6 Aluminuni 
YOUNGS MODULUS = 9 9E+6 . POISSONS RATIO = 33 
YIELD STRESS = 35 OE+3 , HARDENING MODULUS = 9 9E+5 , BETA = 1 
END 
MATERIAL, 5, EUSTIC PUSTIC 7 32E-4 $ 15-5 PH S S (Impact Sensor Plate) 
YOUNGS MODULUS = 28 5E+6 , POISSONS RATIO = 27 
YIELD STRESS = 170 E+3 , HARDENING MODULUS = 2 B5E+6 , BETA = 1 
END 
MATERIAL, 6, EUSTIC PUSTIC, 7 21E-3 $ Tungsten Mass (Impact Sensor) 
YOUNGS MODULUS = 58 5E+6 , POISSONS RATIO = 283 
YIELD STRESS = 160 E+3 , HARDENING MODULUS = 58 5E+4 , 
END 
MATERIAL. 7, EUSTIC PLASTIC. 7 32E-4 t 15-5 PH S 
YOUNGS MODULUS = 28 5E+6 , POISSONS RATIO = 27 
YIELD STRESS = 170 E+3 , HARDENING MODULUS = 2 85E+6 . 
END 
MATERIAL, 8, EUSTIC PUSTIC, 7 33E-4 $ 4340 Steel 
YOUNGS MODULUS = 29 OE+6 , POISSONS RATIO = 3 
YIELD STRESS = 125 E+3 , HARDENING MODULUS = 29 OE+5 
END 
MATERIAL, 9, EUSTIC. 4 
YOUNGS MODULUS = 30 OE+6 
END 
MATERIAL. 10, EUSTIC, 2 
YOUNGS MODULUS = 3 OE+6 
END 
RIGID SURFACE, 11 
RIGID SURFACE, 21 
RIGID SLIRFACE 22 
RIGID SURFACE 23 
RIGID SURFACE, 31 
RIGID SURFACE, 81 
CONTACT SURFACE 
CONTACT SURFACE 
CONTACT SURFACE 
CONTACT SURFACE, 
CONTACT SURFACE, 
CONTACT SURFACE. 
CONTACT SURFACE. 
CONTACT SURFACE. 
CONTACT SURFACE. 
CONTACT SURFACE. 
CONTACT SURFACE. 
CONTACT SURFACE, 
CONTACT SURFACE, 
EXIT 

BETA = 1 

(Explosive Bolt) 

BETA = 1 

75E-2 t Equivalent mass elements 
. POISSONS RATIO = 3 

85E-2 $ Extra material mass 
POISSONS RATIO = 3 

, 0 
. 0 
0 
0 

. 0 

. 0 

11. 
II. 
21. 
21, 
21, 
21. 
21. 
22. 
31. 
41, 
51. 
51, 
61. 

,0 
.0 
.0 
.0 
.0 
.0 
81. 
21 
31. 
51 
61 
71 
81 
23 
71 
101. 
81 
61 
71 

1 
1 
1 
1 
1 
1 

1 0 

1 0 

1 0 

Figure 9.4.2. PRONTO 2D Input for the Missi le Impact Probl 
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Figure 9.4.3. Deformed Mesh for the Missile Impact at 100 Microseconds 

177 



4.0 

3.0 

2.0 

1.0 

nn 

WScNw' 1 ' ' ' ' 1 y/y^ 

)Qj^<rhrh^^^^^^^>^y^ 

^&mt^^ 
^ ^ ^ 

i=̂ ^̂ ^̂  
^ r ^ ^ ^ i r - , ^ 
^^B 

1 1 ^^^M-M 

• • 

!! ^ r ^ • 
! / TiC 0.2000E-3 

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 

Figure 9.4.4. Deformed Mesh for the Missile Impact at 200 Microseconds 
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nodes on the dies continue to be applied even though the elements to which 

they are connected have been deleted from the problem. Likewise, the con­

tact surfaces continue to enforce the contact conditions even though the 

elements connected to them have been deleted. Since the dies are rigid, we 

set the contact surfaces to a purely master/slave relationship by setting 

the bfac parameter (Appendix A.27) to zero on the the contact surface 

definitions in the Input file. Since we were modeling a relatively slow 

(quasistatic) process, we set the bulk viscosity (Appendix A.14) to a value 

of .5 to provide a large amount of damping. Figure 9.5.2 shows the input 

file for this problem. The mesh contains 1663 nodes and 1324 elements. 

Only the 1200 elements in the copper disk are active (i.e., for these ele­

ments constitutive calculations are performed). There are six elements 

through the thickness In the copper disk. 

The analysis was performed in two parts. First, the edge of the copper 

disk was crimped by moving down the upper right-hand die. This motion 

occurs in 0.1 seconds of real time, requiring 3968 time steps in PRONTO. 

The coefficient of friction between the die and the copper was set to 0.2. 

Figure 9.5.3 shows a closeup of the deformed mesh before and after this was 

accomplished and after the second step described next was completed. The 

second step involved drawing the copper disk into a hemispherical cup by 

moving the punch down 40 mm at a constant velocity of 39.6 mm/sec. The 

coefficient of friction between the dies and the copper was .08. The total 

motion occurs in 1.0 seconds of real time requiring an additional 49264 time 

steps. Two deformed shapes during the motion of the punch are shown In 

Figure 9.5.4. The total cpu time required for the 53232 total time steps 

was 1497 seconds on the CRAY/XMP-24 under CTSS. 

The load deflection curve for the process is shown in Figure 9.5.5. 

The initial peak and rebound of the force at a displacement of 2 mm is due 

to the 39.6 mm/sec impact of the die onto the copper disk. The oscillations 

which occur in the force after a displacement of 25 mm are caused by the 

slip of the copper from between the dies used to crimp the edge of the disk 

(see Figure 9.5.3c). Figure 9.5.6 shows the radial displacement of the node 

on the far left edge of the copper disk on the centerline. The initial 

positive radial displacement is due to the initial crimping. Up to a punch 
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Figure 9.5.1. Undeformed Finite Element Mesh for the Hemispherical Punch 
Problem 
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TITLE 
DEEP DRAWING CRIMP FRICT = 2 PUNCH FRICT = 08 

AX I SYMMETRIC 
BULK V1SC0SITY= 5.1 2 
TERMINATION TIME = 1 1 
OUTPUT TIME = 005 
PLOT TIME = 050 
WRITE RESTART = 1 
PLOT NODAL = DISPLACEMENT.REACTION 
PLOT STATE = EQPS 
PLOT ELEMENT = STRESS,VONMISES,PRESSURE 
FUNCTION 1 
0 1 
1 0 

1 1 0 
END 
FUNCTION 2 
0 0 
1 0 
1 1 

1 1 1 
END 
NO DISPLACEMENT X = 1 
NO DISPLACEMENT X = 2 
NO DISPLACEMENT X = 3 
NO DISPLACEMENT X = 4 
NO DISPLACEMENT Y = 4 
PRESCRIBED VELOCITY Y = 2 , 1 , -4 002 
PRESCRIBED VELOCITY Y = 3 , 2 , -39 6 
CONTACT SURFACE = 200 , 100 . 1 , 0 
CONTACT SURFACE = 300 , 100 , 0 ,0 
CONTACT SURFACE = 500 , 400 ,0 ,0 
CONTACT SURFACE = 600 , 400 , 1 , 0 
MATERIAL 1,ELASTIC,1 0 $ RIGID DIES 
YOUNGS MODULUS = 1 0 , POISSONS RATIO = 0 
END 
DELETE MATERIAL 1 = 0 
MATERIAL 2 ELASTIC PLASTIC,9 $ COPPER 
YOUNGS MODULUS = 103 4E6 , POISSONS RATIO = 3 
HARDENING MODULMS :̂  7 E4 , YIELD STRESS = 55 16E3 BETA = 1 
END 
EXIT 

Figure 9.5.2. PRONTO 2D Input for the Hemispherical Punch Problem 
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gure 9.5.3. Close-ups of the Deformed Shapes of the Edge of the Plate at 
Times 0.0, 0.1, and 1.1 Seconds 
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Figure 9.5.4. Deformed Shapes of the Hemispherical Punch at Times 0.7 and 
1.1 Seconds; Punch Velocity = 39.6 mm/sec 
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Figure 9.5.5. Force-Displacement Curve for the Hemispherical Punch Problem; 
Punch Velocity = 39.6 mm/sec 
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Figure 9.5.6. Punch Displacement Versus Radial Displacement of a Point on 
the Edge of the Copper Plate; Punch Velocity = 39.6 mm/sec 
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Figure 9.5.7. Formation of a Neck in the Copper Plate at a Punch Velocity 
of 66 mm/sec 
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displacement of 20 mm, there is no slippage. At a punch displacement of 

20 mm, there is slippage which stops at a punch displacement of 25 mm. 

Modeling the problem with different punch velocities can have a 

dramatic effect on the ability to draw the copper disk into a hemispherical 

cup. We ran the problem using a punch velocity of 66 mm/sec so that the 

same punch motion of 40 mm occurs in .6 seconds. With this punch velocity, 

the copper does not slip as early at the edges, and a neck forms in the 

copper under the punch. Figure 9.5.7 shows the formation of the neck. The 

location of the neck is strongly dependent on the rate of drawing. 

9.6 Impact on Copper Target 

This example problem is taken directly from the WONDY [3] manual 

(example problem 3, page 171). It represents the impact of a copper plate 

onto a copper target. A plate of thickness .001 m impacts a target of 

thickness .002 m at a velocity of 210 m/sec. The lateral displacements are 

constrained resulting in a one-dimensional response. There are 20 elements 

through the thickness of the plate and 40 through the thickness of the 

target. There is a contact surface defined between the plate and the 

target. The geometry defining the problem and the PRONTO Instructions for 

this problem are shown in Figure 9.6.1. 

In the WONDY calculation of this problem, the fracture stress was set 

to a value of 3.5 GPa. We used the adaptive element death option (see 

Section 3.8, Appendix A.34) to delete elements when the tensile pressure 

exceeded this value. 

The WONDY code uses a higher amount of artificial bulk viscosity than 

the default values In PRONTO (see Section 3.7). For this problem, we have 

changed the linear and quadratic bulk viscosity coefficients from their 

default values to 0.1 and 2.0, respectively (Appendix A.14). 

Figure 9.6.2 shows a sequence of shock profiles up to 1.4E-6 seconds. 

The results very well agree with the WONDY calculations. There is some 

discrepancy between the results from the two codes late in time (after 
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V 

Copper Copper 

•contact surface 

a = .001 m (20 elements) 

b = .002 m (AO elements) 

V = 210 m/sec 

210 , 0. 

TITLE 
COPPER PLATE IMPACTING COPPER TARGET (210 M/S) 
PLANE STRAIN 
BULK VISCOSITY = .1, 2. 
TERMINATION TIME = 1.5E-6 
OUTPUT TIME = .15E-6 
PLOT TIME = .05E-6 
PLOT NODAL = VELOCITY 
PLOT ELEMENT = PRESSURE,BULKQ 
NO DISPLACEMENT Y = 2 
INITIAL VELOCITY MATERIAL = 1 
CONTACT SURFACE,100,200 
DEATH = 1 , PRESSURE, MIN 
DEATH = 2 , PRESSURE, MIN 
MATERIAL 1 = HYDRO , 8930. 
PRESSURE CUTOFF = -10E9 
END 
EQUATION OF STATE 1 = MG 
CO=3940, S=1.489, GAMMA=1.99 
END 
MATERIAL 2 = HYDRO , 8930. 
PRESSURE CUTOFF = -10E9 
END 
EQUATION OF STATE 2 = MG US-UP 
CO=3940, 8=1.489, GAMMA=1.99 
END 
EXIT 

,-3.5E9 
,-3.5E9 

US-UP 

Figure 9.6.1. Definition of the Copper Target Impact Problem 
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Figure 9.6.2. Calculated Shock Profiles for the Copper Target Impact 
Problem 
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l.Oe-6 seconds). This Is due to the different manner in which the two codes 

treat the tensile failure. In WONDY, the material is allowed to carry load 

again in compression after It has failed in tension, while In PRONTO the 

material Is deleted from the mesh and cannot carry load either in tension or 

compression. 
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APPENDIX A 
PRONTO 2D USERS MANUAL 

Listed below are all the keywords used in the PRONTO 2D input. They are 
listed in the order they appear in the text below. 

1. TITle 
2. PLAne STRain 
3. AXIsymmetric 
4. TERMination Time 
5. OUTput Time 
6. PLOT Time 
7. REAd REStart 
8. WRIte REStart 
9. Time STep SCale 
10. EXIT 
11. PLOT NODal 
12. PLOT ELement 
13. PLOT STate 
14. BULK Viscosity 
15. HOURglass STIFfening 
16. FUNCtion 
17. NO Displacement 
18. PREScribed VELocity 
19. PREScribed Acceleration 
20. PREScribed FORce 
21. INITial VELocity NODeset 
22. INITial VELocity MATerial 
23. INITial VELocity ANGular 
24. PRESsure 
25. Moving PREssure 
26. SILent BC 
27. CONtact SURface 
28. RIGid SURface 
29. MATerial 
30. EQuation OF STate 
31. DETonation POint 
32. BURN CONstant 
33. MATerial POint 
34. DEATh 
35. DELete MATerial 

The input data to PRONTO is a free field form using keywords. The keywords 
are intended to define a user friendly program language input. The input is 
order independent and can be entered in any order the user finds convenient. 
Words typed below in UPPER CASE represent keywords in the list above. Most 
of the words can be abbreviated to the first few characters. In the list 
above, the upper case characters indicate the shortest abbreviation allowed. 
The words typed in lower case below indicate variables for which the user 
should enter a value. 

The free field input allows the user to delineate entries by either a blank, 
a comma, or an equals sign. We find it useful to use blanks with commands 
(keywords), equal signs to separate keywords and/or lists, and commas for 

195 



lists of values. The material data requires material cues and their as­
sociated values and equal signs are useful there. See the example input 
below. 

A dollar sign indicates that whatever follows on the line of input is a 
comment and is ignored. An asterisk indicates that the current input line 
is to be continued on the next line. 

1. ***** TITLE 
(enter a suitable title on the next line) 

2. ***** PLANE STRAIN (default) (Sec 3.1.1) 

3. ***** AXISYMMETRIC (Sec 3.1.2) 

4^ ***** TERMINATION TIME, tend 
tend time to terminate the analysis 

***** OUTPUT TIME, tout 
tout time interval at which to print output 

(default = tend/200, where tend is from 
the TERMINATION TIME, command 4 above) 

***** PLOT TIME, tplot, tstart, tpend 
tplot time interval at which to write plotting 

data base (default = (tpend-tstart)/10 ) 
tstart time to start writing data on plotting 

data base (default = 0.) 
tpend time to stop writing data on plotting 

data base (default = tend from 
TERMINATION TIME line) 

7. ***** READ RESTART, restm (Append F) 
restm time at which restart is to begin 

8. ***** WRITE RESTART, trsdmp (Append F) 
trsdmp time interval at which to write restart 

dump files (default is to write no 
restart files) 

9. ***** jiME STEP SCALE, soft, ssft (Sec 3.5) 
soft scale factor to be applied to the 

internally calculated time step 
(default = 1.0) 

ssft scale factor to be applied to the 
internally calculated time step if 
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strain softening occurs (default = 1.0) 
See Section 3.5. 

***** EXIT (required to terminate the input data) 

***** PLOT NODAL, nodal name 1, nodal name 2, 
allowable nodal variable names: 

DISPLACEMENT - nodal displacements ( DISPLX,DISPLY ) 
VELOCITY - nodal velocities ( VELX,VELY ) 
ACCELERATION - nodal accelerations ( ACCLX,ACCLY ) 
MASS - nodal lumped masses ( MASS ) 
REACTION - nodal reactions ( RX,RY ) 

The default nodal variables written on the plotting data base are 
the displacements, velocities and accelerations. The MASS 
specification results in having the lumped nodal masses written on 
the data base. The user always gets the displacements whether he 
asks for them or not. 

The names in parenthesis indicate the alphanumeric name of the 
variables which are written on the plotting data base. The default 
element variables are the stresses and the energies. 

***** PLOT ELEMENT, element variable 1, element variable 2, 
allowable element variable names: 

STRESS - stresses ( SIGXX,SIGYY,SIGZZ,TAUXY ) 
ENERGY - internal energy per unit volume ( ENERGY ) 
STRAIN - total strains ( EPSXX,EPSYY,EPSZZ,EPSXY ) 
RATEDFM - deformation rates ( DXX,DYY,DZZ,DXY ) 
STRETCH - material stretches: V of F = V R 

( STRECHXX,STRECHYY,STRECHZZ,STRECHXY ) 
ROTATION - material rotations: R of F = V R 

( COSTHETA,SINTHETA ) 
DENSITY - current mass per unit volume ( DENSITY ) 
PRESSURE - pressures ( PRESSURE ) 
VONMISES - Von Mises equivalent stress ( VONMISES ) 
HG - hourglass resistance forces ( HGX,HGY ) 
BULKQ - fraction of pressure due to bulk viscosity 

( BULKQ ) 

The names in parenthesis indicate the alphanumeric name of the 
variables which are written on the plotting data base. The default 
element variables are the stresses and the energies. 

***** PLOT STATE, state variable 1, state variable 2, 

The user can ask for any of the internal state variables to be written 
on the plotting data base. Since all materials do not have the same 
internal state variables (some have none), a zero will be written on 
the data base for an element using a material model that does not have 
a state variable which is specified by the user. Hence, if the user 
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asks for EQPS (equivalent plastic strain) and ALPHA11,ALHA22,ALPHA33, 
and ALPHA12 (back stress components for kinematic hardening) and he 
has a model where half the mesh uses the ELASTIC material and half the 
mesh uses the ELASTIC PLASTIC material, much of the data written on 
the plotting data base will contain zeros. The table below gives the 
internal state variables names for all the current material models. 
See the theory section for definitions of the variables if they are 
not obvious. 

The default state variables are none. 

WARNING: Indiscriminate use of this option can create extremely large 
plotting data bases. 

MATERIAL ALLOWABLE NAMES 

ELASTIC 
ELASTIC PLASTIC 
VISCOPLASTIC 
DAMAGE 
HYDRO 
LOW DENSITY FOAM 
SOIL N FOAMS 
EP TEMP DEPEND 
EP HYDRODYNAMIC 

(no internal state variables) 
EQPS ALPHAll ALPHA22 ALPHA33 ALPHA12 RADIUS 
EQPS SIGYLD 
EQPS DAMAGE EVMAX FRAGSIZE CRKDENS 

(no internal state variables) 
(no internal state variables) 

EVMAX EVFRAC EV NUM 
EQPS ALPHAll ALPHA22 ALPHA33 ALPHA12 RADIUS TEMP 
EQPS ALPHAll ALPHA22 ALPHA33 ALPHA12 RADIUS 

14. ***** BULK VISCOSITY, bl, b2 
bl linear bulk viscosity coefficient 

(default = .06) 
b2 quadratic bulk viscosity coefficient 

(default = 1.2) 

(Sec 3.7) 

15. ***** HOURGLASS STIFFENING, hgstiff, hgvis 
hgstiff hourglass stiffening factor (default = 

.05 for plane strain and .01 for 
axisymmetric) 

hgvis hourglass viscosity factor (default = .0 
for plane strain and .03 for axisymmetric) 

(Sec 3.6) 

16. ***** FUNCTION, function id 
function id any nonzero number you wish to Identify with 

this function; after a FUNCTION statement 
you must enter a list of points defining 
your function: 

xl,f(xl) 
x2,f(x2) 

xn,f(xn) 
END 
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(The list is terminated by a line containing the word 
END as shown. Any other valid input cue will also work) 

If the function represents a time history function or a function of 
distance and the value of time or distance is not within the limits 
defined by xl and xn, no boundary condition will be applied until the 
current value falls within the limits. This means that you can have a 
boundary condition turn on at a specific time or distance and turn off 
at a specific time or distance. 

***** NO DISPLACEMENT, direction, node set id (Sec 7.1.1) 
direction either X or Y 
node set id identifying number from the input data base 

which Identifies the nodes you want to have 
no displacement (note this is a nodal be!) 

***** PRESCRIBED VELOCITY, dir, node set id, function id, (Sec 7.1.2) 
scale factor, aO, bO 

dir either X, Y, RADIAL, TANGENT, or NORMAL 
node set id identifying number from the input data base 

which identifies the nodes you want to have 
this velocity (note this is a nodal be!) 

function id identifying number of the function you want 
to use to specify the time dependence of the 
velocity 

scale factor scale factor to be applied to the function 
(default = 1.0) 

aO,bO not used if direction = X or Y 
center of cylinder of sphere if direction = 

RADIAL or TANGENT 
components of normal (if direction = NORMAL) 

***** PRESCRIBED ACCELERATION, direction, node set id, (Sec 7.1.3) 
function id, scale factor 

direction either X or Y 
node set id identifying number from the input data base 

which identifies the nodes you want to have 
this acceleration (note this is a nodal be!) 

function id identifying number of the function you want 
to use to specify the time dependence of the 
acceleration 

scale factor scale factor to be applied to the function 
(default = 1.0) 

***** PRESCRIBED FORCE, direction, node set id, function id, (Sec 7.2.3) 
scale factor, aO, bO 

direction either X, Y, RADIAL, TANGENT, or NORMAL 
node set id identifying number from the input data base 

which identifies the nodes you want to have 
this force (note this is a nodal be!) 

function id identifying number of the function you want 
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scale factor 

aO,bO 

to use to prescribe the time dependence of 
the force 
scale factor which will be applied to the 
function (default = 1.0) 
not used if direction = X or Y 
center of cylinder of sphere if direction = 

RADIAL or TANGENT 
components of normal if direction = NORMAL 

21. ***** INITIAL VELOCITY NODESET, node set id, x-velocity, y-velocity 
node set id 

x-velocity 
y-velocity 

identifying number from the input data base 
which identifies the nodes you want to have 
this initial velocity (note this is a nodal be!) 
initial velocity in the x direction 
initial velocity in the y direction 

22. ***** INITIAL VELOCITY MATERIAL, material no, x-velocity, y-velocity 
material no material number of the material to receive 

this initial velocity 
x-velocity initial velocity in the x direction 
y-velocity initial velocity in the y direction 

23. ***** INITIAL VELOCITY ANGULAR , material no, omega, xO, yO 
material no 

omega 
xO,yO 

material number of the material to receive 
this Initial angular velocity 
initial angular velocity in radians per second 
coordinates of point which the body Is spinning 
about 

24. ***** PRESSURE, side set id, function id, scale factor 
side set id 

function id 

scale factor 

identifying number from the input data base 
which identifies the sides you want to have 
this pressure (note this is a side be!) 
identifying number of the function you want 
to use to prescribe the time dependence of 
the pressure 
scale factor which will be applied to the 
function (default = 1.0) 

(Sec 7.2.1) 

25. ***** MOVING PRESSURE, side set id, xO, yo, function #1 id, (See 7.2.2) 
function #2 id, wave speed, tO, 
scale factor 

side set id identifying number from the input data base 
which identifies the sides you want to have 
this pressure (note this is a side be!) 

xO, yO position of point from which pressure propagates 
function #1 id identifying number of the function you want to 

use to describe the peak pressure as a function 
of distance from the position (xO,yO) 
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function #2 id identifying number of the function you want to 
use to describe the pressure rise time as a 
function of distance from the position (xO,yO) 

wave speed propagation speed of the wave along the surface 
away from the point (xO,yO) 

to time at which the wave begins to propagate 
(default = 0.0) 

scale factor scale factor which will be applied to function 
number 1 to scale the peak pressures (default = 1.0) 

' SILENT BC, side set id (Sec 7.3) 
side set id identifying number from the input data base 

which identifies element sides which have the 
nonreflecting boundary condition (note this 
is a side be!) 

" CONTACT SURFACE, side set id 1, side set id 2, (Sec 6.2) 
muO, pfac, mul, gamma 

side set id 1 identifying number from the input data base 
which identifies sides on one of the surfaces 
to be in contact (note this is a side be!) 

side set id 2 identifying number from the input data base 
which identifies sides on the other surface 
to be in contact (note this is a side be!) 

muO static coefficient of friction (default = 0.) 
pfac partition factor (default = .5) 
mul high velocity coeffient of friction 

(default = 0.) 
gamma velocity decay factor 

The partition factor is a relative weighting of the master slave 
relationship of the two surfaces. A value of zero implies that the 
first surface (defined by side set id 1) acts only as a master and 
the second surface acts only as a slave. A value of one reverses 
these roles. The default value (0.5) gives a totally symmetric 
treatment of the contact. If one surface is much more massive than 
the other, this variable should be adjusted so that it is treated as 
a master. By more massive, we mean that the surface either has a 
higher material density and/or a coarser mesh refinement. 

* RIGID SURFACE, slave id, xO, yO, nx, ny, muO, mul, (Sec 6.1) 
gamma 

slave id identifying number from the input data base 
which identifies sides that are slaved to 
the rigid surface (note this is a side be!) 

xO,yO coordinates of a point on the rigid surface 
nx,ny outward unit normal to the rigid surface 
muO static coefficient of friction (default = 0.) 
mul high velocity coefficient of friction 

(default = 0.) 
gamma velocity decay factor (default = 0.) 
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* MATERIAL, material id, material name, density (Ch 4) 
material id 

material name 

density 

material identification number from the 
input data base 
valid material type name, the current 
material types allowed in PRONTO are: 

ELASTIC 
ELASTIC PLASTIC 
VISCOPLASTIC 
DAMAGE 
SOIL N FOAMS 
LOW DEN FOAM 
HYDRO 
EP TEMP DEPEND 
EP HYDRODYNAMIC 

material density 

Appropriate material data for the given material name are entered 
here. An END statement is required to terminate the data for each 
material entered. Each material type requires different material 
cues. The material data can be entered in any order separated by 
commas. 

Currently, the allowable material names and their required material 
constants are: 

1. ELASTIC 
material cues; 

(number of cues=2) 
YOUNGS MODULUS 
POISSONS RATIO 

(Sec 4.1) 

2. ELASTIC PLASTIC 
material cues: 

(number of cues=5) 
YOUNGS MODULUS 
POISSONS RATIO 
YIELD STRESS 
HARDENING MODULUS 
BETA 

(Sec 4.2) 

3. VISCOPLASTIC 
material cues: 

(number of cues=6) 
YOUNGS MODULUS 
POISSONS RATIO 
YIELD STRESS 
HARDENING MODULUS 
GAMMA 
P 

(Sec 4.3) 

4. DAMAGE 
material cues: 

(number of cues=6) 
YOUNGS MODULUS 
POISSONS RATIO 
YIELD STRESS 
M 
K 
FRACTURE TOUGHNESS 

(Sec 4.4) 

5. SOIL N FOAMS 
material cues: 

(number of cues=7) 
TWO MU 

(Sec 4.5) 
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6. LOW DEN FOAM 
material cues: 

BULK MODULUS 
AO 
Al 
A2 
PRESSURE CUTOFF (negative for tension) 
FUNCTION ID (if the function id is 
zero, the original bulk modulus is 
used; otherwise this is the function 
which gives yield stress as a form of 
pressure) 

(number of cues=7) 
YOUNGS MODULUS 
A 
B 
C 
NAIR 
PC 
PHI 

(Sec 4.6) 

7. HYDRO 
material cues; 

8. EP TEMP DEPEND 
material cues: 

9. EP HYDRODYNAMIC 
material cues: 

(number of cues=l) (Sec 4.7) 
PRESSURE CUTOFF (Note: negative 
for tension) (a valid equation of 
state must be defined which 
corresponds to this material number) 

(number of cues=17) (Sec 4.8) 
YOUNGS MODULUS 
POISSONS RATIO 
CI 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CIO 
Cll 
C12 
BETA 
RHOCV = pCy 

TEMP = initial temperature 

(number of cues=16) (Sec 4.9) 
YOUNGS MODULUS 
POISSONS RATIO 
YIELD STRESS 
HARDENING MODULUS 
BETA 
PRESSURE CUTOFF (Note: negative for 
tension) (A valid equation of state 
must be defined for this material) 
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Examples for the ELASTIC PLASTIC material are given below to il­
lustrate how the user might input the data in different forms. All 
three examples are identical as far as PRONTO is concerned. 

Example 1, 
MATERIAL,1,ELASTIC PLASTIC,2.7E-3 
HARDENING MODULUS = 30.E4 
YOUNGS MODULUS = 30.E6 
BETA = .5 
POISSONS RATIO = .3 
YIELD STRESS = 30.E3 
END 

Example 2. 
MATERIAL,1,ELASTIC PLASTIC,2.7E-3 
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA =,5 
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4 
END 

Example 3. 
MATERIAL,1,ELASTIC PLASTIC,2.7E-3 
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA = .5 
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4 END 

* EQUATION OF STATE, material id, equation of (Ch 5) 
state name 

material id material identification number from the 
input data base 

equation of valid equation of state name, the current 
state name equations of state defined in PRONTO are: 

MG US-UP 
MG POWER SERIES 
JWL 
IDEAL GAS 

Appropriate material data for the given equation of state name is 
entered here. An END statement is required to terminate the material 
data. Each equation of state type requires different material cues. 
The material data can be entered in any order separated by commas. 

Currently, the allowable equation of state names and their required 
material constants are: 

1. MG US-UP (number of cues=3) (Sec 5.2.1) 
material cues: CO 

S 
GAMMA 

2. MG POWER SERIES (number of cues=4) (Sec 5.2.2) 
material cues: KO 

Kl 
K2 
GAMMA 
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3. 

4. 

JWL 
material cues: 

IDEAL GAS 
material cues: 

(NUMBER OF CUES=7) 
CD 
A 
B 
OMEGA 
Rl 
R2 
ENERGY 

(NUMBER OF CUES=2) 
GAMMA 
SOUND SPEED 

(Sec 5.2.4) 

(Sec 5.2.3) 

An example for the MG US-UP equation of state is given below. Note 
that the MATERIAL card using the HYDRO material name is shown also 
and that the material number on both the HYDRO and the EQUATION OF 
STATE card matches. 

Example: 
MATERIAL,8,HYDRO,2.7E-3 
PRESSURE CUT0FF=-1.E9 (note that the pressure is negative 
END in tension!) 
EQUATION OF STATE,8,MG US-UP 
C0=5380 S=1.337 GAMMA=2 
END 

** DETONATION POINT, material no, xO, yO, tO (Sec 5.2.4) 
material no material number of high explosive to be 

detonated 
xO,yO coordinates of the detonation point 
to detonation time (default = 0.) 

** BURN CONSTANT, bs (Sec 5.2.4) 
bs high explosive burn constant 

(default = 2.5) 

** MATERIAL POINT, x, y 
x,y coordinates of a material point which 

will be monitored and printed at the 
tout intervals. 

** DEATH, material id, variable name, mode, level (Sec 3.8) 
material id material identification number 
variable name either ENERGY, VONMISES, PRESSURE, SIGMAX 

or one of the state variables given in the 
table defined above for defining the 
plotting data base (see 13.) 

mode either MIN, MAX, or ABSolute 
level value at which death occurs 
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Care must be taken to avoid deleting elements which have side bound­
ary conditions applied to them. 

The element adaptive death capability requires a very mature user who 
understands how his material behaves. The capability built into the 
code is quite general and allows the element to be deleted depending 
upon the level of energy, vonmises stress, pressure, maximum 
principal stress or any of the internal state variables for the 
material type. The mode of comparison given on the line of data 
( MIN, MAX, or ABS ) determines how the comparison is made. For 
example, the line 

DEATH = 3 , DAMAGE , MAX , .8 

would delete elements in the material with id number 3 in which the 
damage exceeds a value of 0.8. Note that the code will check to see 
if that material is a damage material and print a fatal error message 
if it is not. The MIN or ABSolute specification will check whether 
the value of the variable is less than the level specified or whether 
the absolute value of the variable exceeds the level specified, 
respectively. The user should be aware that it is possible to define 
nonsensical data by using a mode specification which is inappropriate 
to the variable name. An example of this would be using the MIN 
specification with the VONMISES variable and a negative value of the 
level. 

If this option is being used, the element array STATUS is automati­
cally written on the plotting data base. This array contains a zero 
if the element is ALIVE and a one if it is DEAD. 

* DELETE MATERIAL, material id, deletion time 
material id material identification number 
deletion time time at which all elements made up of this 

material should be deleted from the mesh. 

If this option is being used, the element array STATUS is automati­
cally written on the plotting data base. This array contains a zero 
if the element is ALIVE and a one if it is DEAD. 
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APPENDIX B 
STORAGE ALLOCATION FOR PRONTO 2D 

.0 DIMENSIONING PARAMETERS AND VARIABLES 

Name 

MFIELD 
NASYMM 
NELNS 
NHGM 
NSPC 
NSYMM 

PARAMETERS 

Description 

maximum number of fields per line of free field input 
number of components in an antisymmetric tensor = 1 
number of nodes in an element = 4 
number of hourglass modes per coordinate = 1 
number of spatial coordinate components = 2 
number of components in a symmetric tensor = 4 

22 

Name 

MCONES 
MCONS 
NACCBC 
NANGV 
NCONT 
NDEATH 
NDETPT 
NEMBLK 
NFORCE 
NFUNC 
NIVFLG 
NIVMAT 
NMATPT 
NMPBC 
NNOD 
NODISP 
NPRBC 
NQUIET 
NRIGID 
NRTOT 
NTOTSN 
NTOTSV 
NUMEL 
NVELBC 

VARIABLES 

Description 

maximum number of equation of state constants 
maximum number of material constants 
number of prescribed acceleration boundary conditions 
number of specifications of initial angular velocity 
number of contact surfaces 
number of specifications of adaptive element death 
number of detonation points 
number of materials 
number of prescribed nodal point force boundary conditions 
number of functions 
number of specifications of initial velocity by node sets 
number of specifications of initial velocity by materials 
number of material points 
number of moving pressure boundary conditions 
number of nodes 
number of no displacement boundary conditions 
number of pressure boundary conditions 
number of nonreflecting or silent boundary conditions 
number of rigid surfaces 

all rigid surfaces 
all contact surfaces 
state variables for all elements 

total number of 
total number of 
total number of 
number of nodes 
number of prescribed velocity boundary conditions 

nodes on 
nodes on 
internal 

.0 NODAL POINT VARIABLES 

Array Dimension 

COORD (NNOD,NSPC) 

CUR (NNOD,NSPC) 

Description 

Original nodal point coordinates 

Current nodal coordinates 
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DISPL 

VEL 

ACCL 

FORCE 

XMASS 

(NNOD,NSPC) 

(NNOD,NSPC) 

(NNOD,NSPC) 

(NNOD,NSPC) 

(NNOD) 

Nodal 

Nodal 

Nodal 

Nodal 

Nodal 

displacements 

velocities 

accelerations 

forces 

point lumped mass 

.0 ELEMENT VARIABLES 

Array Dimension 

SIG (NSYMM,NUMEL) 

HGR 

STRECH 

(NSPC,NHGM,NUMEL) 

ELMASS (NUMEL) 

LINK (NELNS,NUMEL) 

(NSYMM,NUMEL) 

ROTATE (2,NASYMM,NUMEL) 

RHO 

ENERGY 

VISPR 

(NUMEL) 

(NUMEL) 

(NUMEL) 

Description 

Element stresses (Note: the number of entries 
in a symmetric tensor, NSYMM, is four in the 
2D case) 

(1,N) = Sigma XX 
(2,N) = Sigma YY 
(3,N) = Sigma ZZ 
(4,N) = tau XY 

Element hourglass control (Note: the number of 
hourglass modes, NHGM, is one in the 2D case) 

(1,1,N) = X hourglass resistance 
(2,1,N) = Y hourglass resistance 

Element masses 

Element connectivity (Note: the number of 
element nodes, NELNS, is four in the 2D case) 

(1,N) = node 1 of element 
(2,N) = node 2 of element 
(3,N) = node 3 of element 
{4,N) = node 4 of element 

Element material stretches 
(1,N) = stretch in X dir 
(2,N) = stretch in Y dir 
(3,N) = stretch in Z dir 
(4,N) = stretch in X-Y dir 

Element material rotations (Note: the number 
of entries in an asymmetric tensor, NASYMM, 
is one in the 2D case) 

(1,1,N) = cosine theta 

(2,1,N) = sine theta 

Element current densities 

Element internal energies per unit volume 

Element bulk viscosity pressures 
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SV (NTOTSV) Element internal state variables (Note: NTOTSV 
is the length of the total storage for all of 
the Internal state variables for all of the 
material models including the equations of 
state) 

Each material block is allocated a specific portion of the SV array whose 
structure depends upon the material model. The pointer IPSV locates this 
portion which is processed as SV(NINSV,NELB), where NINSV is the number of 
internal state variables per element for this material model and NELB is 
the number of elements in this material block. IPSV, NINSV, and NELB are 
defined for each material block within the KONMAT data structure. 

Each material block with a material model which references an equation of 
state is also allocated a specific portion of the SV array for the storage 
of internal state variables for the equation of state. The structure of 
this array depends upon the equation of state. The pointer IPESV locates 
this portion which Is processed as SVEOS(NESV,NELB), where NESV Is the 
number of internal state variables per element for this equation of state 
and NELB is the number of elements in this material block. Note that if 
NESV is zero the pointer is not used. IPESV, NESV, and NELB are defined 
for each material block within the KONMAT data structure. 

.0 OPTIONAL ELEMENT VARIABLES 

There are some element arrays which are only allocated if the user 
specifies certain options which require them or the user asks for them on 
the plotting data base. 

Array Dimension Description 

STRAIN (NSYMM,NUMEL) Element strains; the strains are only allocated 
if the strain flag KSFLG = 1. 

(1,N) = strain XX 
(2,N) = strain YY 
(3,N) = strain ZZ 
(4,N) = strain XY 

DOPT (NSYMM,NUMEL) Element strain rates (the D tensor). The strain 
rates are only allocated if the strain rate flag 
KSRFLG = 1. Normally, the strain rates are only 
temporaries stored in the SCREL array. 

(1,N) = strain rate XX 
(2,N) = strain rate YY 
(3,N) = strain rate ZZ 
{4,N) = strain rate XY 

STATUS (NUMEL) Element status. The element status is allocated 
if the status flag KSTAT = 1. The status array 
contains either a zero or a one; one Indicates 
an element is active and a zero Indicates it is 
Inactive. This array will be used for deleting 
elements. 
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0 MATERIAL DATA 

Array Dimension 

KONMAT (10,NEMBLK) 

DATMAT ( (MCONS+MCONES), 
(NEMBLK+1) ) 

Description 

Element block data. The elements are ordered 
internally such that all of the elements for 
each material definition are grouped together. 
We call these material blocks. The following 
data structure defines this blocking: 

1,N 
2,N 
3,N 
4,N 
5,N 
6,N 
7,N 
8,N 
9,N 

(10,N) 

material id number 
material kind 
starting element number 
ending element number 
number elements in block 
number inter, state var 
IPSV, pointer into SV array 
EOS type (if any) 
number of internal state 
variables for the EOS 
IPESV, pointer into SV array 

Material properties data array. Each material 
block also has an array of material properties. 
Different material models require different 
amounts of data to be defined. The material 
interface subroutine returns the variables MCONS 
and MCONES which are the maximum number of 
material constants and equation of state 
constants that will be required. A column in 
the DATMAT array is allocated to save the 
material properties for each material block. 
We allocate one extra column so that if the user 
inputs an illegal material or makes some other 
error on material input, we have someplace to 
put the data as we make the first and second 
input pass. 

(1,N) 
(2,N) 
(3,N) 

= PROP(l) 
= PR0P(2) 

(MC0NS-2,N) 
(MC0NS-1,N) 
(MCONS,N) 
(MC0NS+1,N) 
(MC0NS+2,N) 

PROP(MCONS) 
LAMBDA + TWO 
DENSITY 
EOSDAT(l) 
E0SDAT(2) 

MU 

(MC0NS+MC0NES-1,N) = EOSDAT(MCONES) 

Note: We increment MCONS by 2 over the values set in the data statements in 
MATINT to make space for the density and dilatational wave speed for the 
material. 

210 



6.0 OPTIONS ARRAYS 

6.1 CONTACT SURFACES 

Array 

KLSURF 

CLSURF 

KSLIST 

Dimension 

(12,NCONT) 

(2,NCONT) 

(NT0TSN*2) 

Integer array 
surfaces (Not 

Description 

containing data for 
e: NCONT = number of 

surfaces defined). 
( 1,N) 
( 2,N) 
( 3,N) 
( 4,N) 
( 5,N) 

( 6,N) 

( 7,N) 
( 8,N) 
( 9,N) 
(10,N) 
(11,N) 
(12,N) 

= surface 1 side set 
= surface 2 side set 
= pointer to surface 
= pointer to surface 
= pointer to surface 

node list 
= pointer to surface 

node list 
= pointer to surface 
= pointer to surface 

the contact 
contact 

flag 
flag 
1 element list 
2 element list 
1 side set 

2 side set 

1 node list 
2 node list 

= number sides in surface 1 list 
= number sides In sui 
= number nodes in sui 
= number nodes in sui 

Real array containing data for th« 
surface. 

(1,N) = 
(2,N) = 
(3,N) = 

(4,N) = 

"face 2 list 
"face 1 
"face 2 

i contact 

partition balance factor 
coefficient of frici 
high velocity coeff-
friction 
decay constant 

tion 
icient of 

This array contains the list of surface nodes 

CONDAT (MCTEMP) 

and tracted element sides for all contact 
surfaces. The pointers in positions 7 and 8 in 
KLSURF above point into the KSLIST array. 

(IP) = surface node number 
(IP+NSIDES+1) = tracted element side 

number 

This array provides temporary storage to the 
CONTAC routine for unit normals and assembly 
of master surface quantities. 

6.2 RIGID SURFACES 

Array Dimension 

KRIGID (3,NRIGID) 

Description 

Integer array containing data for the rigid 
surface definitions. (Note: NRIGID = the number 
of rigid surfaces defined) 

(1,N) = slave side set id flag 
(2,N) = pointer to slave list 
(3,N) = number of nodes in list 
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RIGID (7,NRIGID) Real array containing data for the rigid surface 
defi nitions. 

(l.N) 
(2,N) 

(3,N) 
(4,N) 
(5,N) 
(6,N) 
(7,N) 

= 
= 

= 
= 
= 
= 
= 

static ; coefficient of friction 
high velocity coefficient of 
friction 
veloci 
XO 
YO 
nx, X 
ny, Y 

ty decay constant 

normal component 
normal component 

6.3 NO DISPLACEMENT BOUNDARY CONDITIONS 

Array 

KDISPL 

Dimension 

(4,NODISP) 

Description 

NODISP = the number 
conditions supplied 

Integer array containing information defining 
the no displacement boundary conditions (Note: 

of no displacement boundary 
by the user), 
set flag 

pointer into the IBC array 
direction specification 
(x-dir = 1., y-dir = 2.) 
number of nodes with this be 

(l.N) 
(2.N) 
(3.N) 

node 

(4,N) 

6.4 PRESCRIBED VELOCITY BOUNDARY CONDITIONS 

Array 

KPVELL 

Dimension 

(5,NVELBC) 

PVBC (4,NVELBC) 

Description 

Integer array containing information defining 
the prescribed velocity boundary conditions. 
(Note: NVELBC = the number of prescribed 
velocity boundary conditions supplied by the 
user) 

node set flag 
pointer into IBC array 
function id, changed to function 
number in TELALL 
direction specification 
(x-dir = 1., y-dir = 2.) 
number of nodes with this be 

(1,N) 
(2,N) 
(3,N) 

(4,N) 

(5,N) 

Real data array containing floating point 
information for the prescribed velocity boundary 
conditions. 

(1,N) = scale factor 
(2,N) = aO 
(3,N) = bO 
(4,N) = velocity at last time step 
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6.5 PRESCRIBED ACCELERATION BOUNDARY CONDITIONS 

Array 

KPACCL 

Dimension 

(5,NACCBC) 

Description 

PABC (NACCBC) 

Integer data array containing information for 
the prescribed acceleration boundary conditions, 
(Note: NACCBC = the number of prescribed accele­
ration boundary conditions set by the user) 

(1,N) = node set flag 
(2,N) = pointer into IBC array 
(3,N) = function id, changed to function 

number in TELALL 
(4,N) = direction specification 

(x-dir = 1., y-dir = 2.) 
(5,N) = number of nodes with this be 

Scale factors to apply to the time history 
function for each acceleration boundary 
condition. 

6.6 PRESCRIBED NODAL FORCE BOUNDARY CONDITIONS 

Array 

KFORCE 

Dimension 

(5,NFORCE) 

PFORCE (3,NFORCE) 

Description 

Integer data a 
pertaining to 
boundary condi 
number of pres 
conditions set 

(1,N) = 
(2,N) = 
(3,N) = 

(4,N) = 

(5,N) = 

rray containing information 
the prescribed nodal point force 
tions defined. (Note: NFORCE = the 
eribed nodal point force boundary 
by the user. 
node set flag 
pointer into IBC array 
function id, changed to function 
number in TELALL 
direction specification 
(x-dir = 1., y-dir = 2.) 
number of nodes 

Real data array containing information for the 
prescribed nodal point force boundary conditions 

(1,N) = scale factor 
(2,N) = aO 
(3,N) = bO 

6.7 FUNCTIONS 

Array Dimension 

KFDAT (3,NFUNC) 

Description 

Integer array containing data describing the 
function definitions. (Note: NFUNC = the total 
number of functions defined by the user) Each 
function has a pointer into the FUNCS array to 
the data that defines the function (the third 
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FUNCS (2,NT0TFV) 

entry). The number of points in the function is 
stored the second entry. Note that the FUNCS 
array has all of the functions stored in it and 
some may be time history functions, some may be 
spatial functions, and some may be material 
constitutive data functions. 

(1,N) = function id number 
(2,N) = number of points in function 
(3,N) = pointer into the FUNCS array 

Function definitions. Note that the FUNCS array 
has all of the functions stored in it and some 
may be time history functions, some may be 
spatial functions, and some may be material 
constitutive data functions. 

(1,N) = abscissa 
(2,N) = ordinate 

6.8 INITIAL VELOCITY NODESET 

Array 

KVELFL 

Dimension 

(3,NIVFLG) 

Description 

Integer array containing data defining the 
initial velocity by nodeset specifications. 
(Note: NIVFLG = the number of initial velocity 
by nodeset specifications defined by the user) 

(l.N) = node set flag 
(2,N) = pointer into IBC array 
(3,N) = number of nodes with this 

initial condition 

VELFL (2,NIVFLG) Real data array containing the initial 
velocities specified by the user. 

(1,N) = X initial velocity 
(2,N) = Y initial velocity 

6.9 INITIAL VELOCITY MATERIAL 

Array 

KVELM 

VELM 

Dimension 

(NIVMAT) 

(2,NIVFLG) 

Description 

Material identification numbers of those mate­
rials which are to receive initial velocity 
definitions. (Note: NIVMAT = the number of 
initial velocity by materials defined by the 
user) 

Real data array containing the initial 
velocities specified by the user. 

(1,N) = X initial velocity 
(2,N) = Y initial velocity 
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6.10 INITIAL VELOCITY ANGULAR 

Array 

KANGV 

Dimension 

(NANGV) 

ANGVEL (3,NANGV) 

Description 

Material identification numbers of those 
materials which are to receive Initial angular 
velocity definitions. (Note: NANGV = the number 
of initial angular velocity by materials defined 
by the user) 

Real data array containing the initial angular 
velocity and the point the body is spinning 
about as specified by the user. 

(1,N) = angular velocity 
(2,N) = XO 
(3,N) = YO 

6.11 DETONATION POINTS 

Array Dimension 

KDETPT (NDETPT) 

DETPT (3,NDETPT) 

Description 

Material identification numbers in which each 
of the detonation point are defined. (Note: 
NDETPT = total number of detonation points 
defined by the user) 

Real data array containing information defining 
the detonation points. 

(1,N) = X coordinate of the detonation 
point 

(2,N) = y coordinate of the detonation 
point 

(3,N) = detonation time 

6.12 PRESSURE BOUNDARY CONDITIONS 

Array 

KPBC 

Dimension 

(4,NPRBC) 

PBCDAT (NPRBC) 

Description 

Integer data array defining the pressure 
boundary conditions. (Note: NPRBC = the number 
of pressure boundary conditions specified by the 
user) 

(1,N) = sideset id 
(2,N) = pointer to side list 
(3,N) = function id 
(4,N) = number of sides with this be 

Scale factors to be applied to the time history 
function used with each pressure boundary 
condition. 
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6.13 MOVING PRESSURE BOUNDARY CONDITIONS 

Array 

KMPBC 

PMPBC 

Dimension 

(5,NMPBC) 

(5,NMPBC) 

Description 

Integer data array defining each of the moving 
pressure boundary conditions. 

(l.N) = side set id 
(2.N) = pointer to side set list 
(3,N) = number of sides with this BC 
(4.N) = function no. 1 id 
(5,N) = function no. 2 id 

Floating point data array defining each of 
the moving pressure boundary conditions. 

(l.N) = xO 
(2,N) = yO 
(3,N) = scale factor 
(4,N) = to 
(5,N) = wave speed 

XMPBC (3,NSLIST) This array is dimensioned so that it is 
allocated for all side boundary condition 
side sets. We realize that this is wasteful 
of storage, but it simplifies the coding 
considerably. For each side in the side 
set containing the moving pressure boundary 
condition, there are three pieces of data: 

(1,N) = a 
(2,N) = b 
(3.N) = td, delay time 

6.14 SILENT BOUNDARY CONDITIONS 

Array Dimension 

KQUIET (4,NQUIET) 

Description 

Integer data array defining each of the silent 
or nonreflecting boundary conditions. 

(l.N) = side set id 
(2,N) = pointer to element list 
(3,N) = pointer to side list 
(4,N) = number of sides with this be 

6.15 MATERIAL POINT DEFINITIONS 

Array Dimension 

KMPTS (3,NMATPT) 

Description 

Integer data array defining each of the material 
points defined. (Note: NMATPT = the number of 
material points defined by the user) 

(1,N) = nearest nodal point number 
(2,N) = element number containing point 
(3,N) = material block number 
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PTSDAT (2,NMATPT) Coordinates of the material points 
(l.N) = X coordinate of point 
(2,N) = Y coordinate of point 

6.16 ELEMENT BLOCK DELETION 

Array Dimension Description 

DELETE (NEMBLK) This array contains the time at which each 
material block of elements is to be deleted from 
the analysis. The default times are twice the 
termination time. 

6.17 ADAPTIVE ELEMENT DELETION 

Array Dimension 

DEATH 

KDEATH (4,NDEATH) 

(NDEATH) 

Description 

Integer data array defining the adaptive element 
deletions. 

(l.N) = material id 
(2,N) = material type 
(3.N) = variable to base death upon 
(4.N) = mode of death (MIN,MAX, or ABS) 

Value upon which adaptive deletion depends. 

7.0 VECTOR BLOCKING ARRAYS 

A number of arrays are needed to vectorize the code. These arrays all have 
one dimension given by the vector blocking factor, NEBLK. It should be 
noted that the particular order of the dimensions of many of the arrays in 
PRONTO is such that the GATHER and SCATTER routines can be used. An array 
called SCREL for SCRatch ELement is dimensioned in the main routine 50 by 
NEBLK. It is passed into the SOLVE array and used as needed for vector 
scratch arrays. Maps are provided in the comments in SOLVE which indicate 
how this space is being managed. 

8.0 BOUNDARY CONDITIONS 

Arrays of boundary condition data are read from the GENESIS data base, 
more information on the GENESIS data base, see Appendix D. 

For 
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8.1 NODAL BOUNDARY CONDITIONS 

Array 

KFLAGS 

NPFLAG 

NFLOC 

IBC 

Dimension 

(NBCNOD) 

(NBCNOD) 

(NBCNOD) 

(NNLIST) 

Description 

VALNOD (NNLIST) 

This array contains a list of all the node set 
Id's found on the GENESIS file. (Note: NBCNOD 
the number of id's found) PRONTO does 
necessarily use all the flags found. 

not 

This array contains the 
of the nodal sets which 
the KFLAGS array above, 
contains the actual list 

number of 
have node 

nodes in 
set id's 

each 
in 

The IBC array 
of nodes. 

below 

This array contains the pointer into the IBC 
array to the list of nodes for each flag. 

This array contains the list of nodes having 
nodal boundary conditions. (Note: NNLIST = the 
total number of all nodes having nodal boundary 
conditions specified) Some nodes may be repeated 
in this list because more than one flag was 
specified on that particular node. 

This array contains the list of multiplication 
values to be applied to the boundary condition 
specification (currently this option Is not used 
but It is anticipated that it will be used to 
define spatial distributions of nodal boundary 
conditions). 

8.2 SIDE BOUNDARY CONDITIONS 

Array 

NSFLG 

Dimension 

(NBCSID) 

NSLEN 

NVLEN 

NSPTR 

(NBCSID) 

(NBCSID) 

(NBCSID) 

Description 

This array contains a list of all the element 
side boundary condition id's found on the 
GENESIS file. (Note: NBCSID = the total number 
of side boundary condition id's found on the 
file) 

This array contains the number of element sides 
in each side set. 

This array contains the number of nodes which 
define the sides in each side set. 

This array contains the pointer into the NELEMS 
array where the elements numbers for the side 
set are located. 
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NVPTR 

NELEMS 

(NBCSID) 

(NSLIST) 

NSNODE (2,NSLIST) 

SVALUE (2,NSLIST) 

This array contains a pointer for each side set 
which locates the nodes associated with this 
side set relative to a concatenated list in the 
array NSNODE. 

This array contains a concatenated list of 
elements numbers which encompasses all side 
sets. The element number for each side is 
provided in order that the analysis code can 
determine material properties which may be 
relevant to a particular surface condition. 

This array contains a concatenated list of side 
nodes which encompasses all side sets. This 
list is ordered such that the local node index 
cycles faster than the element side Index (all 
connected nodes for side 1, then all connected 
nodes for side 2, etc.). The list usually 
contains repeated node numbers since associated 
element sides tend to be connected. In PRONTO, 
we sometimes remove the repeated nodes and 
repack this array (e.g., when processing 
siidelines). 

(1,N) = first node number 
(2,N) = second node number 

This array contains a concatenated list of nodal 
distribution factors. The list has a one-to-one 
correspondence to the NSNODE array above. These 
distribution factors can be used to prescribe a 
spatial distribution of a boundary condition. In 
PRONTO, we do not currently support this 
capability, but we do use this array in the 
slideline calculations. 

(1,N) = factor at first node 
(2,N) = factor at second node 

9.0 SEACO DATA BASE 

We allow the user to construct his own plotting output database, but give 
him a default data base. We allocate some arrays in PRONTO (the main 
routine) to set up the data base. 

9.1 NODAL PLOTTING ARRAYS 

Array Dimension 

NODWR (5) 

Description 

This array contains zeros or ones and indicates 
whether a particular nodal quantity is to be 
written to the SEACO data base. A zero indicates 
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LISTND (9) 

that the quantity is not written, a one 
indicates the quantity is written. 

(1) = displacement flag (default =1) 
(2) = velocity flag (default=l) 
(3) = acceleration flag (default=l) 
(4) = nodal mass flag (default=0) 
(5) = reaction flag (default=0) 

This array contains the list of variable names to 
be written on the plotting data base. The default 
names are set in the first six entries and get 
reset in subroutine SNLIST if the user changes 
them. Below, we show the defaults and Indicate 
the last three are defaulted to null. 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

default 
default 
default 
default 
default 
default 

null 
null 
null 

DISPLX 
DISPLY 
VELX 
VELY 
ACCLX 
ACCLY 

9.2 ELEMENT PLOTTING ARRAYS 

Array Dimension 

NELWR (11) 

LISTEL (25) 

Description 

This array contains zeros or ones and Indicates 
whether a particular element quantity is to be 
written to the SEACO data base. A zero indicates 
that the quantity is not written, a one 
indicates the quantity is written. 

stress flag (default =1) 
energy flag (default=l) 
hourglass flag (default=0) 
strain flag (default=0) 
strech flag (default=0) 
rotation flag (default=0) 
ratedfm flag (default=0) 
density flag (default=0) 
pressure flag (default=0) 
vonmises flag (default=0) 
bulkq flag (default=0) 

: 1) 
: 2) 
: 3) 
: 4) 
: 5) 
: 6) 
: 7) 
: 8) 
; 9) 
;io) 
:i i) 

This array contains the list of variable names 
to be written on the plotting data base. The 
default names are set in the first six entries 
and get reset in subroutine SELIST if the user 
changes them. Below we show the defaults and 
indicate the last three are defaulted to null. 

( 1) = default = SIGXX 
( 2) = default = SIGYY 
( 3) = default = SIGZZ 
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( 4) 
( 5) 
( 6) 
( 7) 

default 
default 

null 
null 

TAUXY 
ENERGY 

(25) null 

.3 STATE VARIABLE PLOTTING ARRAYS 

Array 

LISTSV 

Dimension 

(MFIELD) 

MAPIE (NEMBLK.NSVLST) 

Description 

This array contains the list of state variable 
names to be written on the plotting data base. 
The default names are all null and get reset 
in subroutine SVLIST if the user asks for any 
internal state variables. (Note: MFIELD is a 
parameter set in the parameter statement set 
and is the maximum number of fields which can 
be read on one line of input by the free field 
reader; currently this value Is set to 22. which 
should be sufficient.) 

Mapping array for writing Internal state 
variables to the plotting data base. If the 
user specifies that he wants to write Internal 
state variables on the plotting data base, this 
mapping is constructed which indicates where the 
Internal state variable resides for each 
material. If a particular material does not 
have that internal state variable, a zero is 
entered into the mapping. This mapping is 
required because totally different material 
models may have the same internal state variable 
(e.g., equivalent plastic strain) but it may not 
be the first state variable for one material and 
the last for another. (Note: NSVLST = the 
number of internal state variables specified by 
the user.) 

location of state variable in 
this material 
location of state variable in 
this material 

(l.N) 

(2,N) 

(3,N) 

(NEMBLK,N) = location of state variable in 
this material 
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APPENDIX C 
ADDING A NEW CONSTITUTIVE MODEL TO PRONTO 

PRONTO was designed from the beginning to serve as a testbed for new con­
stitutive models and algorithms. We have incorporated a material interface 
subroutine which allows you (the constitutive model developer) to add a new 
material model with very little effort. We have purposely designed this 
interface so that you do not have to understand the inner workings of the 
finite element code, especially with respect to the allocation and manage­
ment of computer memory. If the instructions in subroutine MATINT are 
followed correctly, the computer program will handle all memory allocation, 
material data reading, and material data printing. There are three steps 
that you should follow to add a new model. 

STEP 1. 

Subroutine MATINT contains instructions in the FORTRAN COMMENT cards which 
outline the steps that you should follow to add a new material model. Most 
of the changes required Involve adding or changing numbers in DATA and 
PARAMETER statements. Since we have no foreknowledge of what the material 
constants represent for a particular material, we require in one of the 
steps that a few lines of FORTRAN be added which tells the code what the 
initial dilatational modulus ( lambda+two mu ) is for the material. This 
value must be stored in the variable DATMOD in step 12. At the same place 
in the code, it is possible to calculate any combinations of the input 
material constants that may be required in the constitutive subroutine 
(e.g., bulk modulus from Young's modulus and Poisson's ratio). 

There is a restriction to twenty characters in the material name, material 
cues and internal state variable names which are defined in subroutine 
MATINT. Also, since the names may have blanks (i.e.. you may use multiple 
word cues as in YOUNGS MODULUS) the names must be defined such that each 
word in the name is unique to the first three characters. This means that 
material cues CI, C2, C3, etc., are legal; but CONl, C0N2, C0N3, etc., are 
not. Finally, please do not use unusual characters in your words as we 
cannot guarantee the results. 

Again, we reiterate, all of the steps that you must take when adding a new 
material model are outlined in detail with comments in the FORTRAN in sub­
routine MATINT. 

STEP 2. 

This step is optional and is only required if the new material model con­
tains internal state variables which must be initialized to some value other 
than zero (we initialize all internal state variables to zero by default). 
If state variables must be initialized, you must add an ELSE IF statement to 
subroutine SVINIT for this material. This statement should read: 
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ELSE IF( MKIND .EQ. (new material no.) ) THEN 

initialize internal 
state variables here 

The new material number corresponds to the position where the material 
resides in the list of materials defined in subroutine MATINT. Generally, 
when adding a new material, the new material is the last one defined it will 
be the same as the number of materials defined which is in step 1 in MATINT. 
This step should be obvious from looking at how other material models are 
coded in SVINIT. Please use comments so that years from now we have some 
chance of figuring out what was added to the code. 

STEP 3. 

In subroutine UPDSTR. the call to the new material subroutine must be added. 
The material subroutine may have any appropriate name, but we have been 
naming them MATl. MAT2. etc.. where the number corresponds to the MKIND (see 
STEP 2) above. The call is included by adding an ELSE IF block to sub­
routine UPDSTR which should read: 

ELSE IF( MKIND .EQ. (new material no.) ) THEN 
CALL new subrout1ne( .... argument list .... ) 

The new material number corresponds to where the material resides in the 
list of materials defined in subroutine MATINT. Generally, when adding a 
new material, the new material is the last one defined and the new material 
number will be the same as the number of materials defined, which is set in 
step 1 in MATINT. This step should be obvious from looking at how other 
material models are coded in UPDSTR. Please use comments. 
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APPENDIX D 
GENESIS FILE FORMAT 

The GENESIS file format defines the geometry of the problem and is generated 
by an external preprocessor. PRONTO reads the file in two places. The 
first two records on the file are read in the MSHDAT routine. The first 
record contains a title which is not used, but the second record contains 
the sizing data for the problem. The FORTRAN to read these two records 
appears as: 

C 
C Comment Record (Ignored) 
C 

READ(9) 
C 
C Problem Size Data 
C 

READ(9) NNOD,NDIM.NUMEL,NEMBLK,NBCNOD,NNLIST,NBCSID.NSLIST,NVLIST 

After reading the sizing information and allocating space for the ap­
propriate arrays, PRONTO reads the remainder of the GENESIS file in the 
MSHDAT routine. The element connectivity data is read in blocks of elements 
according to the material identification numbers of the various materials in 
the mesh. Note that we depend on the ANSI FORTRAN standard to execute zero 
trip DO LOOPS correctly. The FORTRAN to read the rest of the file appears 
as: 

PARAMETER (NSPC=2.NELNS=4,NESNS=2,NSYMM=4.NASYM=1.N0NSYM=5.NHGM=1. 
* NEBLK=64,MFIELD=22) 
DIMENSION C00RD(NN0D,NSPC),LINK(NELNS.NUMEL).KONMAT(10.NEMBLK). 
* KFLAGS(*),NPFLAG(*),NFLOC(*).IBC(*),VALNOD(*),NSFLG(*),NSLEN(*), 
* NVLEN(*).NSPTR(*).NVPTR(*).NELEMS(*).NSNODE(*).SVALUE(*) 

C 
C Nodal Coordinates 

READ(9) COORD 
C 
C Element Order Map (We ignore this record in PRONTO) 

READ(9) 
C 
C Element Block Data 
C 

lEND = 0 
DO 10 N = 1,NEMBLK 

C 
C Element Block Parameters -

READ(9) MATID.NUMELB,NELNOD,NATRIB 
C MATID - material id number 
C NUMELB - number of elements in this material block 
C NELNOD - number of nodes in the element (must be equal 
C to four for the four node quadrilateral) 
C NATRIB - number of element attributes (must be equal to 
C zero because we have no element attributes) 
C 
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ISTRT = lEND + 1 
lEND = lEND + NUMELB 

C 
C Element Connectivity -

READ(9) ((LINK(J,I),J=1,NELN0D),I=ISTRT,IEND) 
C 
C Element Attributes (Ignored in PRONTO) -

READ(9) 
10 CONTINUE 

C 
C Nodal Boundary Condition Data 
C 

READ(9) (KFLAGS{I),I=1,NBCN0D) 
READ(9) (NPFLAG(I),I=1,NBCN0D) 
READ(9) (NFL0C(I),I=1,NBCN0D) 
READ(9) (IBC(I),I=1,NNLIST) 
READ(9) (VALN0D(I),I=1,NNLIST) 

C 
C Side Boundary Condition Data 
C 

READ(9) (NSFLG(I) 
READ(9) (NSLEN(I) 
READ(9) (NVLEN(I) 
READ(9) (NSPTR(I) 
READ(9) (NVPTR(I) 
READ(9) (NELEMS(I 
READ(9) (NSN0DE(I 
READ(9) (SVALUE(I 

I=1,NBCSID) 
I=1,NBCSID) 
I=1,NBCSID) 
I=1,NBCSID) 
I=1,NBCSID) 
,I=1,NSLIST) 
,I=1,NVLIST) 
,I=1,NVLIST) 

226 



APPENDIX E 
SEACO FILE FORMAT 

The SEACO file format is a standard post processing format adopted by the 
Engineering Analysis Department at Sandia. PRONTO writes a post processing 
file which follows this format. The beginning of the file contains informa­
tion defining the mesh and the names of the nodal, element, and global 
quantities which are written at regular time intervals. Each time record 
then contains the actual values of the nodal, element, and global quantities 
at that specific time. 

In PRONTO we construct the lists of nodal and element variables to be writ­
ten on the file as instructed by the user. These lists of names are stored 
in the arrays LISTND and LISTEL, respectively. The default nodal variable 
list gives displacements, velocities, and accelerations. The default ele­
ment variable list gives stresses and internal energies. The complete 
default lists are: 

COORDINATES 

X 
Y 

NODAL 

DISPLX 
DISPLY 
VELX 
VELY 
ACCLX 
ACCLY 

ELEMENT 

SIGXX 
SIGYY 
SIGZZ 
TAUXY 
ENERGY 

GLOBAL 

TMSTEP 
KE 
XMOM 
YMOM 

Note that the FORTRAN shown here is not exactly as it is written in PRONTO 
but the result is the same. We have simplified it somewhat to make it 
easier to read. 

The first part of the file is written as: 

PARAMETER(NSPC=2,NELNS=4,IDUM=0) 
DIMENSION C00RD(NN0D,2),LIN<(4,NUMEL),MATID(NUMEL) 
CHARACTER*8 LISTND(NDLIST),LISTEL(NELIST) 
CHARACTER*8 MODIFY,NAMEGB(4),NAMEX(2) 

C 
DATA NAMEX/'X','Y7 
DATA NAMEGB/'TM STEP','KE','XMOM','YMOM'/ 
DATA MODIFY/' '/ 

C Write title and QA information -
WRITE(ll) HEAD,VERSON,RDATE,RTIME,MODI FY,MODI FY,MODI FY 

C Write parameters -
WRITE(ll) NSPC,NNOD,NUMEL,NELNS,NEMBLK,NDLIST,NVAREL,NGLOBL, 
* IDUM,IDUM,IDUM 

C Write alphanumeric names of the coordinates -
WRITE(ll) NAMEX 

C Write alphanumeric names of the nodal variables -
WRITE(ll) LISTND 
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C Write alphanumeric names of the element variables -
WRITE(ll) LISTEL 

C Write alphanumeric names of the global variables -
WRITE(ll) NAMEGB 

C Write the initial coordinates of the mesh -
WRITE(ll) COORD 

C Write the element connectivity array -
DO 20 J=1,NUMEL 

WRITE(ll) (LINK(I,J),I=1,4) 
20 CONTINUE 

C Write the material identification array (WARNING: if only ONE 
C material id is present in the mesh this record is not written; 
C this has caused a considerable amount of grief in the past) 

IF(NEMBLK.GT.l) WRITE(ll) (MATID(I),1=1,NUMEL) 
C 

Each time interval contains records defining the values of the nodal, ele­
ment, and global variables defined above. Since the user can construct his 
own list of nodal and element variables, the variables written at each time 
interval may not be the same as those shown below for the default case. For 
the default case, the nodal variables are displacements, velocities, and 
accelerations, and the element variables are stresses and internal energy. 
For the default case, the SEACO file is written for each time interval as: 

C 
C Write the current time 

WRITE(ll) TIME 
C 
C NODAL variables -
C 
C Write the displacements 

WRITE(ll) (DISPL(I,1),I=1,NN0D) 
WRITE(ll) (DISPL(I,2),I=1,NN0D) 

C Write the velocities 
WRITE(ll) (VEL(I,1),I=1,NN0D) 
WRITE(ll) (VEL(I,2),I=1,NN0D) 

C Write the accelerations 
WRITE(ll) (ACCL(I,1),I=1,NN0D) 
WRITE(ll) (ACCL(I,2),I=1,NN0D) 

C 
C ELEMENT variables -
C 
C Write the stresses 

DO 10 J = 1,4 
WRITE(ll) (SIG(J,I),I=1,NUMEL) 

10 CONTINUE 
C Write the energy per unit volume 

WRITE(ll) (ENERGY(I),I=1,NUMEL) 
C 
C GLOBAL Variables -
C 

WRITE(ll) DT,XKE,XMOM,YMOM 
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APPENDIX F 
RESTART FILE FORMAT 

The PRONTO restart file contains the data defining the state of the problem 
at regular intervals in time. The philosophy behind the manner in which we 
do restarts is to allow the user as much leeway as possible in changing the 
problem upon restart. He can add or delete slidelines, change algorithmic 
parameters such as bulk viscosity or hourglass control, or make any changes 
which are consistent with the mechanics principles inherent in the problem 
definition which resides on the restart file. Typically, the restart input 
will be identical to the original PRONTO input deck except for the data line 
defining the time of restart (e.g., READ RESTART = 2.E-6). Also, the re­
start run will usually use the same GENESIS data file. 

The code will carefully check the restart file to see if it is compatible 
with the mechanics problem defined by the input data. Most of these checks 
are relatively simple (e.g., checking to see if there are the same number of 
elements in the mesh). PRONTO checks very carefully to make sure that the 
user has not changed the material definitions or properties upon restarting. 

The only real complication involved in reading and writing restart files 
correctly lies with the contact and rigid surfaces. The PRONTO contact 
algorithms are written such that each node in the contact list can only be 
in contact with one surface segment at one time. This means that there is 
at most one tangential nodal force due to friction. Since the friction 
forces are history dependent, these forces must be written on the restart 
file. We simply construct a list of all the nodal friction forces, most of 
which most are zero, and write that list on the restart file. It is then a 
simple effort to reconstruct the contact data since we can detect all the 
normal contact conditions from the current configuration and then search the 
nodal list of tangential forces for the current friction force for that 
contact. This procedure makes it possible to add and/or delete slidelines 
upon restarting. 

There are always seven records in each restart state: 

1. header record 

2. material properties record 

3. nodal and element state record 

4. internal state variables record 

5. element status record (null if death option is not used) 

6. element densities record (null if element densities are not 
required) 

7. element strains record (null if element strains are not 
requi red) 
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Each record in the restart file is written in the following manner: 

C 
C 1. Write the header information 

MATX = ( MCONS + MCONES ) * NEMBLK 
ISTATE = 1 
WRITE(30) TIME,DT,NNOD,NUMEL,NEMBLK,NSPC,MATX,KDFLG,KSFLG,KSTAT, 

* ISTATE,NTOTSV,NSTEPS 
C where: 
C TIME = current time for the state 
C DT = current time increment 
C NNOD = number of nodes in the mesh 
C NUMEL = number of elements in the mesh 
C NEMBLK = number of materials in the mesh 
C NSPC = number of spatial coordinate components 
C MATX = total number of material constants for all materials 
C KDFLG = flag indicating whether material densities are required 
C in this problem, KDFLG = 0 indicates no densities are 
C required and an empty record is written. KDFLG = 1 
C indicates densities are required and the densities are 
C written on the file. 
C KSFLG = flag indicating whether element strains are required 
C in this problem. KSFLG = 0 indicates no strains are 
C required and an empty record is written. KSFLG = 1 
C indicates strains are required and the strains are 
C written on the file. 
C KSTAT = flag indicating whether the elements status are required 
C in this problem. KSTAT = 0 indicates no status is 
C required and an empty record is written. KSTAT = 1 
C indicates status is required and the status is written 
C on the file. 
C ISTATE = 1, indicates the internal state variables are written 
C on the file. 
C NTOTSV = total number of internal state variables for all the 
C elements and all the materials 
C NSTEPS = current time step number 
C 
C 2. Write the material property arrays 

WRITE(30) ((K0NMAT(J,I),J=1,10),I=1,NEMBLK), 
* (DATMAT(I),I=1,(MC0NS+MC0NES)*NEMBLK) 

C 
C 3. Write the current state 

WRITE(30) ((DISPL(I,J),I=1,NN0D),J=1,NSPC), 
* ((VEL(I,J),I=1,NN0D),J=1,NSPC), 
* (ENERGY(I),1=1,NUMEL), 
* ((STRECH(J,I),I=1,NUMEL),J=1,NSYMM), 
* ((R0TATE(J,I),I=1,NUMEL),J=1,2), 
* ((HGR(J,I),I=1,NUMEL),J=1,2), 
* ((SIG(J,I),I=1,NUMEL),J=1,NSYMM), 
* (VISPR(I),1=1,NUMEL) 
IDUM = 0 
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Write internal state variables 
IF( NTOTSV .NE. 0 ) THEN 

WRITE(30) (SV(I),1=1,NTOTSV) 
ELSE 

WRITE(30) IDUM 
END IF 

Write material status array if needed 
IF( KSTAT .NE. 0 ) THEN 

WRITE(30) (STATUS(I),1=1,NUMEL) 
ELSE 

WRITE(30) IDUM 
END IF 

Write material density per unit volume if needed 
IF( KDFLG .NE. 0 ) THEN 

WRITE(30) (RHO(I),1=1,NUMEL) 
ELSE 

WRITE(30) IDUM 
END IF 

Write element strains if needed 
IF( KSFLG .NE. 0 ) THEN 

WRITE(30) ((STRAIN(J,I),I=1,NUMEL),J=1,NSYMM) 
ELSE 

WRITE(30) IDUM 
END IF 
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