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ABSTRACT

The effect of a confined porous bed of burning
explosive abutting solid explosive is studied by com-
puter simulation., Burning only is allowed in the po-
rous bed; shock-induced decomposition is modeled by
FOREST FIRE in the solid material. The occurrence of
detonation in the solid explosive depends on the sur-
face~to-volume ratio, the confinement of the porous
bed, and the geometry of the system.

The density effect on the initial-shock-pressure,
distance-to-detonation (wedge test) measure of shock
sensitivity is calculated. The calculation uses the
invariance with density of the shock particle veloc-
ity as a function of time to detonation.

I. INTRODUCTION

Sometimes a high explosive that is initially burning will detonate. The
change from burn to detonation is known as Deflagration-to-Detonation Transition
(DDT) . Accidents with high explosives may often involve DDT, and for this rea-
son alone, the subject is of interest.

Linear burn of an explosive proceeds at a rate of 10 to 100 cm/s, whereas
detonation waves propagate at a rate of 0.3 to 0.9 cm/us. The rates are very
different, and special conditions are necessary for the transition to occur.
Conditions conducive to the occurrence of DDT are confinement of a region with a
large surface area burning and high shock sensitivity of the same or nearby ma-
terial. The surface area may be initially present or may be dynamically pro-
duced as a result of stress on the material. The confinement is provided both by
material strength and inertia of the confining material. The presence of a large
burning surface area increases the mass burn rate, which, if the confinement is
sufficient, leads to high pressures and shock formation. If the shock is strong
enough, the explosive begins to decompose, the shock grows, and finally a deto-
nation is produced.

The burning in a porous bed, known as convective combustion, is a compli-
cated matter. In addition to the role of high mass burning rate and confinement,
the flow of hot gas relative to the bed of particles is often important especial-
ly in a large porous bed. The flow gases enter into the fluid dynamics (a



two-phase flow problem) and transfer heat to the particles. Ignition, flame
spreading, and flame structure in the voids are also involved. (Burning of gun
propellant involves many of these processes.)

IT. A SPECIAL CASE

Rather than try to model such a large collection of processes, a model is
constructed here that involves only confined burning and shock initiation. The
case considered involves mostly solid explosive, a small region of porous mate-
rial, and some sort of confinement. (Such situations may relate better to acci-
dents because it seems unlikely that a piece of explosive will turn entirely to
dust because it is dropped.) A small region of porous material may be just too
small to produce a DDT by itself. However, if the small region abuts a large
piece of so0lid explosive, which provides confinement, detonation may occur in the
solid. The burning of the porous material need not proceed at detonation rates
but need only burn fast enough to form a shock in the solid. If the solid is
sensitive to shock-induced decomposition and the shock is strong enough, the
shock will grow into a detonation wave.

To numerically study this restricted case of the DDT, a sequence of problems
has been calculated (see Fig. 1) in which the confinement, the burn rate, and the
geometry are varied. Three types of confinement are considered: (1) the porous
region is between solid explosive and an aluminum case with a rigid back boundary
(problem geometry I), (2) the porous region is between solid explosive and an
aluminum case that can move into air (problem geometries II, III, and V), (3) the
porous region is contained in solid explosive alone (problem geometry IV). Three
geometries are included: (1) planar (problem geometries I, II, and V), (2) cy-
lindrical converging (problem geometry III), (3) cylindrical diverging (problem
geometry IV). The mass burn in the porous region is simulated by the bulk burn
model described in Appendix A. Bulk burn assumes that the porous region 1is com-
posed of particles of similar geometry with some initial surface-to-volume ratio
So/Vo or (S/V)g. For each problem geometry, calculations are made for various
initial ratios. The bulk burn rates for Sg/Vg = 75/cm and Sg/Vg = 100/cm are
displayed in Fig. 2. Note here that for a cube with side length of 0.1 cm, (S/V)

= 60/cm, and for a cube of 0.0l cm, (S/V)y = 600/cm.

Shock-induced decomposition of the solid explosive is simulated with the
FOREST FIRE! model described in Appendix B. In these problems the decomposition
rate is taken to be a function of pressure only. The FOREST FIRE rates at den-
sities p = 1.91 and p = 1.72 as a function of pressure are shown in Fig. 2. The
experimental and calculated curves of distance to detonation versus shock pres-
sure for HE-X* that give the basis for the rate calculation are shown in Fig. 3.
Table I gives the HOM equation—of--state2 constants for aluminum and for HE-X at
two densities. Also in Table I are the constants to the fit of the pressure-
dependent rate function displayed in Fig. 2. The problems were run with the SIN
one-dimensional Lagrangian hydrodynamics code.? The initial cell length in each
region is AX = 0.1 cm.

To illustrate the effect of a low-density (high shock sensitivity) region
contained within the solid explosive, one problem is calculated using problem
geometry V (Fig. 1). Here, a 1.0-cm slab of p = 1.72 HE-X is embedded in the
solid and reacts by the FOREST FIRE model. The increased rates, calculated by
the POP-PLOT extrapolation method described ip Appendix B, are shown in Fig. 2.

*An experimental HMX-based explosive.
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1-D PLANE
Problem Geometry I

RIGID | ALUMINUM | HE~X (1.91) | HE-X (1.72) | ALUMINUM | RIGID
WALL 4 cm 10 cm 2 cm 4 cm WALL
— FOREST FIRE BULK BURN —
Problem Geometry II
AIR ALUMINUM | HE-X (1.91) | HE-X (1.72) | ALUMINUM AIR
2 cm 2 cm 10 cm 2 cm 2 cm 2 cm
FOREST FIRE BULK BURN
1-D CYLINDER
Problem Geometry III
CENTER HE-X (1.91) HE-X (1.72) ALUMINUM AIR
° 10 cm 2 cm 2 cm 2 cm
FOREST FIRE BULK BURN
Problem Geometry IV
CENTER HE-X (1.72) | HE-X (1.91) | ALUMINUM AIR
° 2 em 10 cm 2 cm 2 cm
BULK BURN FOREST FIRE
1-D PLANE
Problem Geometry V
AIR ALUMINUM HE-X (1.91) HE-X (1.72) HE-X (1.91) HE-X (1.72) ALUMINUM AIR
2 cm 2 cm 5.5 cm 1.0 cm 3.5 cm 2 cm 2 cm 2 cm
FOREST FIRE FOREST FIRE FOREST FIRE BULK BURN
Fig. 1.

Problem geometries for HE-X burning and detonation.

IIXI. DISCUSSION

Calculations with the SIN hydrodynamics code are shown in Figs. 4a through
In each frame of the figures is shown a graph of pressure as a function of
distance and a graph of mass fraction as a function of distance. The pressure
scale is given in the lower right corner (for example, 50 kbar). The mass frac-
tion scale is always 0. to 1.0. Time indicated on each frame is in microseconds.
The initial S/V for the bulk burn region is as specified for each figure.

Comparison of the problems gives some insight into the importance of the
various boundary conditions, geometric symmetry, and processes. Consider first
the sequence of planar problems using problem geometries I and II. In these
problems the effect of the two boundary conditions on the aluminum depends on
(8/V)g. If (8/V)p =400 cm (Figs. 4a and 4b), the bulk burn is so fast that the
aluminum back boundary makes no difference. With (S/V)g = 100/cm (Figs. 4c and
4d), the effect of the boundary begins to show somewhat in the small increase in
time to detonation and in the pressure wave. With (S/V)o = 75/cm (Figs. 4e and
4f), the difference is considerable—detonation at 39.83 us with problem geometry
I and no detonation with problem geometry II. In II, the problem is terminated
just as the pressure wave is starting to reflect off the left piece of aluminum.
If run further, the reflected wave would cause detonation in the model because
FOREST FIRE as used here is pressure dependent. However, if the first wave de-
sensitizes the HE-X, detonation may not occur. The matter is open for further
study.

4%.



Next consider the cylindrical converging problems (problem geometry III)
with (S/V)g = 100/cm and (S/V)g = 75/cm (Figs. 4g and 4h). These are similar to
the planar problem geometry II problems, but detonation occurs for both ratios;
cylindrical convergence of the wave is the contributing factor.

- The sequence of problems with problem geometry IV (Figs. 4i through 4k) il-
lustrates the balance between the bulk burn and the diverging wave that lowers
the pressure. The problem of (S/V)y = 130/cm detonates just before the wave
reaches the outer case, whereas (S/V)O = 100/cm fails to detonate. Comparison of
these diverging problems with the planar and cylindrical converging problems
shows that geometry is a very significant factor in the outcome.

Problem geometry V is similar to problem geometry II except for the inclu-
sion of a 1.0-cm region of lower density HE-X. The problem with (S/V)g = 75/cm
(Fig. 4%) shows detonation occurs about 1.4 cm into the p = 1.91 HE-X past the
lower density region. The presence of the low-density region noticeably alters
the pressure wave, even though detonation did not occur in the p = 1.72 HE-X
region. The pressure wave as incident on the p = 1.72 HE-X region is too low to
cause detonation to occur in a 1.0-cm run, however it is sufficient to induce
significant partial decomposition, which adds to the wave causing detonation in
the adjacent high-density HE-X.
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FOREST FIRE shock decomposition rates Fig. 3.
for HE-X at two densities and two bulk Distance to detonation vs initial shock
burn rates for HE-X at p = 1.72. pressure for HE-X.



TABLE I
HOM EQUATION-OF-STATE CONSTANTS FOR ALUMINUM AND

HE-X (p = 1.91 AND p = 1.72 g/cm3) AND THE POLYNOMIAL COEFFICIENTS
FOR THE PRESSURE-DEPENDENT FOREST FIRE RATE
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5,35040000000E«81 1,350020000ANE +00 1,0000000C000E=¥1 @,
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3,59066427269E=01 2,420800000NYBE=05 . 1,45340003NVIE YUY
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HOM COMSTANTS FOR THE SOLID EXPLOSIVE

2,7329000000NE=21 3,620003000409€4+00 4,78445280003E=91 2,8389209000¥E =01
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1,83707476473E=31 5,25836857192E=03 ~4,210628859215k03 5. 9090099200 UE ey}
1,03P00000QD0E=21
HEeX FIRE, RHO=!,91, DCJ=2,8093
1S CONSTANTS FOR THE FIRE FIT ON THE PRESSURE INTERVAL 1010 70 1USE MBARS,

OW/0T 3 eWeEXP( C(l)o+C(2)*Ps,, #CIN)#PAO(Nel) )

*1,33243211330E+01 4,98373275331ke02 =1,75022603100L¢04 4,38741848365E40S
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HE<X, RHO31,7190 = g,91,9l

HOM CONSTANTS FOR THg SOLID EXPLOSIVE

5,8083a000013E~02 4,40020000CAVE+QQ 4,85693000000t=01 1,2737A009000L=01
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SIN calculation for a 1-D cylinder in problem geometry IV with (S/Vh) = 200/cm.
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IV. CONCLUSIONS

This study has examined some of the conditions leading to detonation in a
solid explosive bounded by a confined porous burning region. Items important to
occurrence of detonation are (1) the surface area burning, (2) the confinement of
the burning region, (3) the geometry of the system, and (4) the shock sensitivity
of the adjacent solid material. Items (1)-(3) work together to produce the pres-
sure waves that generate shocks in the solid. Geometry is especially critical
here; a system which may not produce detonation in planar geometry may well in-
duce detonation in converging geometry. Finally, the solid material shock sensi-
tivity determines the response to the shocks generated. Indeed, the planar geom—
etries (II) and (V) with (8/V)p = 75/cm illustrate this effect well. Note that
only a portion of the solid explosive adjacent to the burning region need be more
sensitive to go from a nondetonating condition to a detonating one.
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APPENDIX A
BULK BURN

The bulk burn model is used to simulate the burning of a porous bed of ex-
plosive that is assumed to be ignited over all burning surfaces simultaneously.
The explosive is assumed to be divided into uniform pieces of similar geometry
that burn at the linear burn rate perpendicular to the surface of each particle.
The change in burning surface area as the particles are consumed is included.
The model for surface area change is motivated by three special geometric situa-
tions: (1) sphere-like particles, volumes that contain an inscribed sphere;

(2) cylinder-like particles, volumes that contain an inscribed cylinder; and (3)
sheet-like particles, volumes that have constant surface area. In the first two
cases the surface area and volume of the particles are functions of the radius of
the inscribed sphere or cylinder only. In all three cases there exists a q so
that (surface area/initial surface area) = (volume/initial volume)? with q = 2/3
for sphere-like, q = 1/2 for cylinder-like, and q = 0 for sheet-like particles.
However, q may assume any value to simulate mixtures of particle types.

Bulk burn is a simplified treatment of the process known as convective com-
bustion, in which hot gases from the burn flow into the porous bed ahead of the
burning region. The flowing hot gases heat the cold particles until ignition
and enter into the fluid dynamics (two-phase flow). In spite of the simplifica-
tions, bulk burn is appropriate for small confined regions where gas motion dur-
ing ignition and burning is small.
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BULK BURN MODEL
Notation:
Vol = volume of particle
V = volume of solid
M = masé of the solid
W= (M/MO) = mass fraction of solid
p = density of solid
S = surface area burning
X = linear burn rate = cPP
q = "geometric" constant
The subscript zero (for example, Vo) denotes initial values.

Model Relations and Assumptions:

(-]
Each particle is assumed to burn at a linear rate X = dx/dt perpendicular
to its surface. Thus the time derivative of mass burning is

M e
I = -SeX .

Model Development:

To isolate (SO/VO) in the model,. expand dM/dt as follows:

dM/dt = SpX

dM/dt = —(SO/VO)(S/So)(pOVO)(p/po)x .

The term (S/Sp) above is a function of time and needs to be related to the mass.
For this purpose let

_ q -q _ 4 -q
(S/So) = (OV/DOVO) (o/po) W (p/po)

(The motivation for this will be discussed on p. 21.)
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Substitution of this expression into the equation above gives
- 1-q .92
dw/dt = -(S,/V,) (p/pg) WX

The constant q has value

q = 0 for sheet-like particles,
q = 1/2 for cylinder-like particles,
q = 2/3 for sphere-like particles.

Motivation for (S/SO) = (M/Mo)q(p/po)_q

An assumption of bulk burn is that each particle burns perpendicular to its
surface. For certain polyhedral particles this assumption implies that the
"shape" of the particle is fixed as the particle burns. Consider now the follow-
ing three cases of special polyhedral particle shapes.

For sphere-like polyhedra (containing an inscribed sphere of radius r), the
surface and volume relations are

S = Ar2 , Vol = Ar3/3 , and

(5/5p) = (e/rp? = (Wo/ve1)?/?

where A is a constant. (For example, for a cube A = 24.)
For cylinder-like polyhedra (containing an inscribed cylinder of radius r
and ignoring the surface area of the ends), the relations are

Ar2£/2 , and

(/5y) = (x/ry) = (v°1/v°10)1/2 ,

S = Ar% , Vol

where £ is the length of the particle and A is a constant. (For example, for a
square .tube, A = 8,)
For plane-like volumes with constant surface area, the relations are

(s/s.) =1 = (Vol/vol )0 .
0 0
In each of the above cases

-

(S/SO) = (Vol/Volo)q , for some q.
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Thus

(8/54) = (p Vol/p, Vol;)(e/p)

and finally

(s/5) = MmN Ie/p™t .

APPENDIX B
SHOCK INITIATION AND THE POP-PLOT
I. INTRODUCTION

The phrase "shock initiation of high explosive" refers to the process in
which a shock wave passing through a piece of explosive material grows into a
detonation wave. This process has been studied extensively in "sensitivity
tests.”" One such test which has been a favorite for years and which, because of
its one-dimensionality, is of special interest is the "wedge test." 1In this
test, a wedge of high explosive is placed on a large planar shock-wave generator
and the distance that the shock runs through the wedge before detonation occurs
is observed with a streak camera. The change to detonation is marked by a rapid
change in the shock velocity. A sequence of such shots with varying initial
shock pressure in the explosive defines a graph of distance to detonation versus
initial shock pressure. This graph is often a straight line in (log P, log run)
coordinates and is known as the POP-PLOT (after Alphonse Popolato). The wedge
test also furnishes the time to detonation, initial particle velocity (Up), and
initial shock velocity (Ug). The (UP,US) line is known as the Hugoniot for the
material.

The POP-PLOT and Hugoniot data have been used to describe and compare shock
sensitivity of heterogeneous explosives. Also the data have been incorporated
into a model of shock-induced decomposition rate in heterogeneous explosive
called FOREST FIRE.! The model uses an assumption known as "single curve build-
up," which asserts that during shock initiation the pressure wave grows along a
unique line in (time, distance, state) space. The POP-PLOT is interpreted in
the FOREST FIRE model to be that unique shock growth line, even though it is not
what the wedge test actually measures.

The FOREST FIRE model addresses the question: What decomposition rate in
the flow behind the shock is consistent with shock growth along the POP-PLOT
line? The shock is assumed to have a square wave front (dP/9X = 0) to complete
the data necessary for solution (note that if the pressure is known throughout
the material, the entire flow may be analyzed to give decomposition rates). The
HOM equation of state is used for the mixture of solid and decomposition prod-
ucts. As a setting for the later discussion of POP-PLOT calculation, a brief
outline of the analysis as restricted to the shock front only is given. A more
detailed and more general account is found in Ref. 1.
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Note now that in this model the decomposition rate is calculated along one
curve in state space, namely a single shock Hugoniot. At each point of this line
are calculated the state variables P, V, I, T, W, U,, and rate, -(dW/dt)/W. The
representation of the rate as a function of these state variables is not uniquely
determined. It may be a function of several of the variables or their deriva-
tives. However, after some experimentation with various forms, representation
of rate as a function of pressure only was found to be convenient and fairly suc-
cessful. No claim is made that the rates are necessarily pressure dependent nor
that FOREST FIRE is a pressure-dependent rate-law model. When information be-
comes available about the rate process off the single shock Hugoniot or as cases
arise for which the pressure-dependent rate is not applicable, the matter will
need to be considered again.

In the model description, 'Model Relations" are the equations that express
the various assumptions used in constructing the model. They are stated sepa-
rately before being incorporated into the "Solution Method" that follows. This
notation is used throughout the development.

P = pressure (Mbar)
Up = particle velocity (cm/us)
Also, U= Up (written without the subscript p)
V = specific volume (cm3/g)
I = specific internal energy (Mbar cm3/g)
W = mass fraction of undecomposed explosive
W =1, all undecomposed explosive
W = 0, all decomposition products
run = distance to detonation (cm)
tdet = time to detonation (us)

For any function £ = f(m,T),

Similarly, for H = H(V,I,W)

_ oH _ oH - OH
Hy =5y » Hp =37 »8d Hy =5y
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II. FOREST FIRE RATE CALCULATION

The shock is assumed to grow in pressure as it moves through distance ac-
cording to POP-PLOT, relations (1) and (2). The shock is taken to be a sharp
shock on the Ug = C + SUp line, relation (3). This Hugoniot line may be the in-
ert Hugoniot or a reactive Hugoniot. (In Fig. A~l are illustrated an inert and a
reactive Hugoniot3 for PBX 9404.) Relation (4) expresses that, in the region
behind the shock, an equation of state (for example, HOM) describes the mixture
of unreacted explosive and reaction products.

MODEL RELATIONS

FOREST FIRE RATE CALCULATION

(1) POP-PLOT: &n (run) = a; + a, &n (P - a

(2) Interpret POP-PLOT using
SINGLE CURVE BUILD-UP HYPOTHESIS.

3)

0.4
B l I I _
. -== EXPERIMENTAL REACTIVE -
e HUGONIOT -
0.3}~ —
5 =~ =
£ -
= " i
g 0.2 |~ -—
o) - -
a . _
tg ~W=0
B —Ws 02 .
o ~ —W 3 03 -
0.l f— —W = 04—
N —W s 05
—W = 06
- —_—W s 07 ]
- —W = ge -
- —Ws=09 .
0 —J—w=10
0.34 0.40 0.45 0.50 0.55
VOLUME (cm%/7g)
Fig. A-l.

HOM equation-of-state partial reaction Hugoniots at various mass fraction of
solid (W) for PBX 9404. The dashed line is the experimental 'reactive' Hugoniot
of Ramsay and Popolato (Ref. 3). The W = 1.0 line is the solid "inert" Hugoniot.
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(3) Hugoniot: US =C + SUp

P = pOUSUp
V=V, - Up)/US
' 2
I=1U°/2

p/

(4) Equation of State: P = H(V,I,W) (HOM equation of state)

Briefly, the HOM equation of state2 gives pressure as a function of the spe-
cific volume and specific internal energy of the mixture of solid and gaseous
products and of the mass fraction of solid. The solid equation of state is ex—
panded off the Hugoniot with the Gruneisen construction that has a constant gam-
ma (I'). The gas is expanded off the detonation product isentrope. The mix rule
assumes ideal mixing of specific volumes of solid and gas and energy partition-
ing according to mass fraction. Pressure and temperature equilibrium are re-
quired, and solution for Vg and Vg is obtained.

HOM EQUATION-OF-STATE RELATIONS
(Ref. 2)

Equation of State:

P = H(V,I,W)

V = specific volume

I = specific internal energy

W = mass fraction of undecomposed explosive

Gruneisen solid equation of state:

(US =C + SUp)

P

s F(IS - IH)/VS + PH

T

s (IS - 1) - 23890/Cv + T

H ,S H

Gas Equation of State: (BKW isentrope)

P

g = (Tg = I/ + B

1 - +
T ( . Ii)23890/Cv . T,

b
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Mix Rule: Pressure and temperature equilibrium
PS(VS) = Pg(Vg) and TS(VS) = Tg(Vg)

with

<
I

WVS +.(1 - W)Vg

=
I

WIS + (1 - W)Ig

Regular one-dimensional planar fluid flow is assumed behind the shock, re-
lation (5). The shock is accelerating and is differentiated in time, relation
(6). At each mass point the equation of state applies and is differentiable
with respect to time, relation (7). With the additional information about the
pressure gradient behind the shock, the solution for WT is possible.

MODEL RELATIONS

FOREST FIRE RATE CALCULATION (cont)

(5) Fluid Flow: Lagrange mass coordinates (m,T)

3 _ 13 9 _ 3 9
dm p ox and dtT ot +v 9x
U_ = -P

T m
VT = Um

IT = -PV

(6) Shock Front Derivatives:

o dPIX_(1),t]

P = dt
XS = shock position
P P +P

P = DOUS m T

U +U

U= pOUsUm T

P = (dP/d run)US

[-] [-]

U= on/(c + 2SU)
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(7) Total Derivative of Equation of State:
PT = HV . VT + HI . IT + HW . WT

The solution method consists of solving for the time derivatives Pr, Vi, and
I; behind the shock from the time derivatives of the shock front. The pressure
gradient at the shock front is taken to be zero if this information is not known
explicitly. (Under such circumstances the solution method solves a shock with a
"square'" leading edge.) The state of the front is determined by the POP-PLOT and
shock jump relations. The total derivative of the equation of state allows for
solution of WT if 3H/9W # 0. The solution thus is outlined in (A), (B), and (C).

SOLUTION METHOD

FOREST FIRE RATE CALCULATION

Let P be the independent variable.
(A) Solve the shock front state.

Calculate run, run = exp [al + a, n(P - 33)] .

Solve for U P = C+ Su)u_ .
olve for U, g p) p

Calculate U_ = C + SU
s P
vV = VO(Us - Up)/US
2
I=07/2 .
p/

Solve for W, P = H(V,I,W) .

(B) Solve for Lagrangian time derivatives PT, VT, and IT behind the shock.

(-]
Calculate P (dp/d run)US

U PVO/(C + 2SU) .

Assume Pm = 0, if pressure gradient information is not available.

o

Calculate PT =P - pOUSPm
Vo= (U +P)/(pyU.)
IT = -PVT .
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(C) Solve for WT,
PT = HVVT + HIIT + Hwa .

III. POP-PLOT CALCULATION

The shock sensitivity of an explosive is greatly influenced by the initial
density of the explosive. For example, an explosive pressed to low density is
more sensitive than if it were pressed to high density. Correspondingly, the
POP-PLOT reflects the change in sensitivity for different densities. A method
is given here to estimate the POP-PLOT change with density given a POP-PLOT at
some initial reference density.

The method of POP-PLOT calculation uses the assumption that the shock par-
ticle velocity as a function of time to detonation is independent of density.
The assumption is based upon the observation that this seems to be true for PBX
9404 and PETN (see Fig. A-2). Also, the single curve build-up assumption is em-
ployed to interpret the POP-PLOT at the reference density. The shock Hugoniot
at other densities is constructed using the Gruneisen form of the equation of
state.4 The function Up(tget) 1s obtained from the wedge test data.

Note here that the assumption about Up(tdet) may not necessarily hold for
all explosives. An examination of this matter may be important in developing
further theories about initiation.

Figures A-2 through A-5 show the input curves of Up(tdet): the calculated
POP-PLOTS, and calculated time-to-detonation, distance-to-~detonation curves, all
with the experimental points. The data for PBX 9404 are from B. G. Craig.> The
PETN data for p = 1.75 are from J. D. Wackerle.® The PETN data for p=1.72 and
p =1.60 are from D. Stirpe et al.,7 and the data for PETN p = 1.0 are from G. E.
Seay and L. B. Seely.8 The curves are calculated from the Up(tget) line and the
Hugoniot of the highest density for each explosive.

Model relations for POP-PLOT calculation are listed below. Relation (1)
states that Up is independent of time to detonation and that the Hugoniot for
the solid at density pj] is as measured. Relation (2) is the Griuneisen construc-
tion of the Hugoniot at density p3.

MODEL RELATIONS

POP-PLOT CALCULATION

U_(t )

p det
U =C+ SU
s P

) = F(t
(1) Data at Py det
(2) Gruneisen Equation-of-State Construction of Hugoniot at p = Py (Ref. 4)

P=TI(I ~ IH)/V + PH

with

I =20.5 P(V2 -V)
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Fig. A-4.
Calculated distance to detonation vs
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-
|

lav)
L]

c2(v, - W/v, - s, - ]
Then

P =P (V)EV) ,
where

G(V) = [2V - I'(V1 - n1/[2v - I‘(V2 -n] .

The solution method uses the shock pressure as the independent variable.
From the constructed Hugoniot, solution is made for the specific volume, particle
velocity, and shock velocity. Using the assumption about Up(tdet) being inde-
pendent of density, solution is made for time to detonation. Finally the shock
velocity is integrated to give distance to detonation.
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SOLUTION METHOD

POP-PLOT CALCULATION

Input Data: U (t),U =C+ SU
p [p(),S p]

Let P be the independent variable.
Solve for V,

P = PH(V)G(V) .

Then

U= [B(V, - v1t/2

p

]

U

1/2
o = V,l2/, - MIE

Assume Up(t F( ), independent of p, and calculate t

det) = tdet det”’

Finally after a table of (tdet’Us) is formed,

t
run =/ det U, de’ .

0

IV. ©POP-PLOT AND FOREST FIRE RATE CALCULATION

Often the particle velocity and time to detonation for wedge tests are not
reported. Rather, it seems to be customary to report only the POP-PLOT line and
the Hugoniot. To compute the POP-PLOT and FOREST FIRE rates for another density
then requires construction of Up(tget) and the shock change derivatives P and Up.
Given here is a method that uses the invariance of Up(tdet) with density and the
single curve build-up assumption.

Model relation (1) describes the experimental data for the reference density
P1. Relation (2) is again the construction of the Hugoniot at density pp. Re-
lation (3) gives the time derivative of the shock pressure growth at density pj
and is used in inverse form to calculate time to detonation.

MODEL RELATIONS

POP-PLOT AND FOREST FIRE RATE CALCULATION

POP-PLOT: 2n (run) = o, + o, in (P - o

1 3)

(1) Data at Py {
Hugoniot: U = C + SU
s )%
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(2) Gruneisen Equation-of-State Construction of Hugoniot at p = Py (Ref. 4)

= I'(I - IH)/V + PH R
with
I=0.52(,-")
IH = 0.5 PH(V1 - V) .
P = c2(v, - ©)/[V, - SV, - V)]
H 1 1 1
Then

P = PH(V)G(V) s
where
G(V) = [2V - F(V1 - "1/[2v - I‘(V2 -1 .

(3) Time Derivative of Shock Pressure on POP-PLOT Line at p = Py

dP _ dP d run - dp U
dt d run dt d run s °

dp
d run

= (P - a3)/[a2 run (P)]
and

U = 0.5[C + (C* + z.svlp)l/z]

The solution method uses pressure as the independent variable. From the
constructed Hugoniot, solution is for specific volume, and then particle velocity
and shock velocity are calculated. Assuming Up(tger) is independent of demsity,
time to detonation is determined from the data at density p; by calculating the
pressure corresponding to particle velocity Up and then integrating the inverse
of the derivative relation (3). The distance to detonation is then found by in-
tegrating the constructed Ug(tget) function.

To calculate the decomposition rates for the constructed POP-PLOT at density
P2s the time derivatives for the shock are needed (see the solution method for
the FOREST FIRE rate calculation given on p. 27). Here again the assumption that
Up(tdet) is independent of density is applied. From the data at pi, ﬁp-is cal-
culated corresponding to the particle velocity Up already determined. Then by
dlfferentiatlng the shock jump relations and the constructed Hugoniot at density
P2, V and P are solved. Thereafter the solution method is identical to that on
P. 27.
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SOLUTION METHOD

POP-PLOT AND FOREST FIRE RATE CALCULATION

Let P be the independent variable.
Solve for V,

P = PH(V)G(V) .

Then
U = [p(V. - V)12
P 2
= 1/2
U = V2[P/(V2 -]
I=0.50% .
P

Assuming Up(tdet) is independent of p, calculate t N from the data at p

de 1’

P = pl(C + SUp)Up

o —az run (P) dP
t =f 2 172, °
P, (P - a)0.5[Ct (c° + 45V P)"~' 7]

where Pwo is the pressure so that the POP-PLOT distance to detonation is 0.0001
cm. A finite upper integration limit is used to permit numerical integration.
Finally, after a table of (tget,Ug) is formed,

tdet
run =/ U dt' .

det min
Calculate the shock-induced decomposition rate for the constructed POP-PLOT.

Notation:

(] [ -]
Let P, U ,, and V be shock front derivatives with respect to time, for

example

o dP[X _(t),t]
p-—S5 "~
dt

where XS is the shock position.

To solve the shock change, ﬁ and ﬁp are needed.
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Calculate ﬁp from data at p = Pys assuming

Up(tdet) is independent of p

Uy = C+ SO
Py =%
runl =

exp [0 +a, 0 (B - aq)]

o
B, = (P

1 1~ 930U/ (ay Tuny)

[-) (-]
Up = lel/(Usl + sup)

Shock Jump Equations for p = P,

A

VZ(US - UP)/US

it

P(V) = p,U. U

Differentiating with respect to time,

° 2 o °
USUp = —USpZV + UpUs
and
d dP 2 °
USUp =V, 7w V- UPUS ,
where
dr _ d[PH(V)G(V)] ) dPH Gv) + B (V) ac
dv dav dv H av ?
P  -C2[V, + S(V, - V)]
H _ 1 1
av 3 2
[Vl S(Vl V)]
and
dg 2+ DI -V
dv :

v - I, - )12
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Solving,

o o . dP _ 2

vV =200 /(V, 55 o, )
and then

° _dp e

P=oV oL

Assume Pm = 0, if pressure gradient is not known.

Calculate

-]
i
o

- pOUSPm
-]
vV_ = (Up + Pm)/(poUs)
I = ~pPV
T
Solve for W,
P = H(V,I,W)
(The HOM equation of state is a Griuneisen construction.)

Solve for WT,
= +
Bom BV HL 4R

V. FFIRE

This solution method forms the basis for the computer program FFIRE (LASL
Identification No. LP-0601). Two examples of the output from the program follow.
The first example is the calculation of the decomposition rate for PBX 9404 at
density 1.844. The second example is the calculation of the rate and POP-PLOT
for PBX 9404 at density 1.72 msing the data at density 1.844. A microfiche 1list-
ing the code is in the pocket on the inside back cover of this report.

Notation for computer program FFIRE.

RUN = distance to detonation (cm)

P = pressure (Mbar)

V = specific volume (cm3/g)
UP = shock particle velocity (cm/us)
US = shock velocity (cm/us)
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RATE

TEMPERATURE

TIME

RHO

mass fraction of undecomposed explosive

1

- — « = , decomposition rate (us~

(K)
time to detonation (us)

density (g/cm3)
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EXAMPLE 1

9424 B PBX94B4,BEST (TDET,UP,RUN) POP PLOT (,020,1,72) T0 (,200,9,05) TMARTS RHU = 1,84400

POP PLOT, LNC(RUN) ® Af ¢ A2+LN(P=A3), Al = »5,46US53E+00 A2 = «1,531479+08 A3 = =0,

REACTION HUGONIOT, US = C + s*UP, C 2 2,46PP00E=B1 S8 = 2,530000E+00
CJ DETONATION VELOCITY 3 8,830000E=71
HOM EQUATION OF STATE CONSTANTS
PBX94N4, RHU=1,B44, RAMSAY INERT HUGONIOT
UNREACTED EXPLOSIVE
2,42300000000E=2) 1,88384000aN0E+0AY 1,000%00N0ARRE~N2=0,
B, *9,04187222p42E4+00*T7,13185252435E+401=1,25204979560E+02
=9,20424177603E+01=2,21893825727E+81 6,750P00000WRE-01 4,00200000PBAE~R]
5,42299340241E=01 5,000000000P0E~05 B, U,
3,00000000700E+A2 1,0000008NgYBEsRb"Y, “d,
.ﬂ. .@. =y,

DETONATION PRODUCTS

*3,83906259964E+002,57737590893E+00 2,60n75423332E~01 1,39083578508E =02

«1,13963024875E°02=1,61913041133E+400 5,21518534192E=01 6,77506594137E02
4,26520264691EeN3 1,00679999002EwPd 7,36422919794E+00~4,93658222389E=01
2,92353060961E=02 3,30277402219Ee02%1,14532498206E=02 5,00020200000E»R1
1,00000200000F 01
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9404 B

POP PLOT, LN(RUN) 2 Af ¢ A2aLN(P=A3),
Us & C + gunypP,

REACTION WU
RUN

8,49135
6,92189
5,78418
4,91955
1,6945]
,90723
458149
01121
, 39939
, 24293
19677
16319
.13788
11825
18267
LTTTS
,07968
L07182
L06371
65747
85219
s0474u3
,94334
83974
83655
,83371
,03116
,02887
,@2660
,92492
82321
+02165
,020822
,01899
WA1769
01657
#1553
,01457
.01367
.01283
21225
,81152
012364
01008

EXAMPLE 1 (cont)

PBX94AU, AEST (TOET,UP,RUN) POP PLOT (,¥20,1,79) TU (,200,%,25) 7
Al 3 «5,460553t+a0
C & 2,460000L=0)

GONIOT,
P

» 40700
200822
, 20990
21000@
s02n00
«0300@
RUpen
025000
« 06000
27000
« 28000
090200
10000
11000
12000
s13000
14008
154020
16000
1702080
18000
J19ne0
20000
121000
e22000
23300
, 24000
5000
26200
027000
1280090
129200
30000
31000
032000
33000
34000
y 35000
e 36000
37009
380040
« 390100
Judango
gdloen

v

,51609
,5132%
.51086
L5891
L4807
47432
L 46399
L U5582
L4492
L44348
43883
JU3uuy
LU43%68
JU42735
JH2u3s
J42103
41915
L41687
41476
41281
41100
L4910
Lan1r
Jupee2
Jueuse
L4p349
Jun223
Japton
, 39991
.39883
,3978n
. 39682
.3os5a8
. 39498
.39412
.39329
. 39249
,39173
.39099
. 390258
.389%9
. 38893
.38829
38787

up

21354
01525
,01699
.91852
,23293
NUS16
. 05597
06578
ATUT?
,08317
9107
,09854
. 10565
11248
, 11897
» 12525
13131
13717
. 14285
, 14837
,15373
T W 15896
Jleuae
. 16904
o 17391
.17868
018335
18792
19241
19682
220114
20843
,20958
21370
21776
,22175
22369
022956
23339
«23717
-1 1.1
,24US7
,24820

225179

us

,28027
28457
28877
29285
,32933
36026
., 38759
J41236
S43517
45642
W47640
149530
,51329
«53049
,54699
156288
57821
59304
,60741
062157
63495
,6U818
.66108
67369
,68601
,69886
70987
J72144
, 73280
. 74395
75490
76566
+77625
78667
.79693
,80703
181699
82680
83648
84603
89546
, 86477
,87396
88384

A2 3 =1,551479L+u0

2,93v00aL s v

L

199788
99734
099676
+99613
,98813
«97800
« 96657
295422
34118
192756
291343
89882
,88378
86829
+85236
+ 83597
181911
2180179
78396
o 716560
74668
72718
272706
268625
66478
64250
061946
259554
« 57876
54498
51817
J49021
46108
43060
£ 39875
+ 36537
»33038
293602
125488
121485
117099
012528
127686
. 93000

MART S
A3 & =y,

RATE

9,9065L=0Y
f44325L=03
14938 4L=038
2.59286-03
1e 71889k=02
545259¢E=02
X.2383E'Ul
2,5291E"01
3,924d4E=0}
6y1326E=01
G, UTINE=U]
1.,2877E+08
1,7699E+00
2, $704E+00
3,1087E+10
4,0066E+08
S.1307€+00
6, 3BS9E+4Q
T¢9333E+08
Qe 7694E+VY
1.1942€¢0]
1,4486E+041)
1,7531E+81
Coe110T7E+GY
€e53UBE+LY
J.0261E+0)
3,0140L+0}
4,5198E+01
SeldY3E+4]
bel327L+01
703252E+01
B,7814E¢01
1,0559E 402
1,2763E402
14553UE*02
1,9485E+02
243787E¢02
2¢9954E+DR2
3,8714E+02
Sel701L¢02
7.2638L+082
141093E+03
2,0266E+03
5¢7971E+03

RHO = 1, Kauun

TEMPERATUKE

32u,74245.
324,34745
3268,05v44
331,85493
375,004471
425,34669
4Bn,v3671
537,35231
596,25%659
656,08883
T164,43445
717,1M2884
837,67799
898,27342
9%8,72521
1018,98553
1479,71508
1138,73142
1198,15217
12S7,2582¢
{316,00279
1374,38485
j432,37493
i489,968234
1547,16312
1603,88563
1660,13228
1715,946459
1771,106946
1825,77546
1879,84%37
1933,30237
i986,08317
2038,15329
2089,4b643
2139,97351
2189,60412
2238,31627
2286,03733
2332,69611
2378,21644
2422,49717
2465,46237
2506,29194

TIME

27,42226
21,86340
17,87969
14,91958
4,4191¢
2,12173
1,24737
282060
«5799¢
W43061
033153
126236
21213
17450
P 14559
12282
10462
JHB9B3
207765
6749
45893
05165
YLD
JBdvul
03532
03121
02759
82439
02154
201899
Jut671
e0id00
n@iiQU
W0i111
V0958
171 3]
00691
10573
e V0Ubb
MO36b
00215
20199
00111
200038
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EXAMPLE 2

94dy B PBX94MA4,BEST (TDEY,UP,RUN) POP PLOT (,¢2@,1,78) TO (,2100,0,05) TMARTS  RHO & {,72000
POP PLOT, LN(RUNY = Ay + A2#LN(PeA3), Al = o5,46U553E¢+00 A2 = =1,531479E+00 A3 & »y,

REACTION HUGONIOT, US = C ¢ g*yP, C 5 2,460000E=01 S = 2,953004E+ud

CJ DETONATION VELOCITY 3 8,8p200REmD]

HOM EQUATION OF STATE CONSTANTS

PBX94Ad, RHD31,BU44, RAMSAY INERT WYGONIOT

UNREACTED EXPLOSIVE

2,42300000030E-01 1,868300000nRREYA0 1,00PR000RR00E~R2=0,

d, *9,PU187222042E4+00=7,13188252435E+01+1,25204979360E+02

©9,20424177603E+01=2,21893825727F+0M) 6,7SPMU0A0RINE=RA] 4,00002C00000RE~0]
5,82299349241E=01 5,0000000000RE=05 B, -2,
3,00020000000E¢m2 1,00008000n00E=06=0, -,

=0, 0. *d,

DETONATION PRODUCTS

*3,53906259964E+002,57737590393E400 2,00075423332E=21 {,39083578508E=n2

»1,13963024073E=02=1,61913041133E+013 S,21518%34192E=01 6,77584594107E=0¢
4,2652426U691E«R3 1,00679999902Ewdy 7,36422919790E+00=4,93658222389Ew01
2¢9235306U963Een2 3,302774N2219E~02%1,14532u98206E=02 5,00000800000E=01
1,00000000020E=01
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9404 8
POP PLOT, L
REACTION HU

RUN

8,4373%2
6,12251
4,76500
3,86836
3,23232
2,75878
2439354
2,10485
1,86958
081030
147582
32096
023454
¢18058
14423
11838
209922
¢ 88455
27304
0906379
«85624
094998
JBu472
04825
¥3641
83329
03019
002765
¢ 82539
82339
021060
«¥1999
091854
V1722
1622
01493
91393
21302
01217
01139
81067
01030

EXAMPLE 2 (cont)

PBX9UBU,BEST (TOET,UP,RUN) PUP PLOT (,020,1,780) TO (,2¢¥,0,N5) 7
A2 3 »1,531479E+00

N(RUN)Y = Al ¢ A2xLnN(PeAl),
us = C ¢+ s=uP,

GONTOT,
[

«B200
002300
, 0040
92500
A TY14
22700
00800
«PA920
121000
02000
123000
L PUPR
045000
Q6000
007000
28020
. 69720
12000
1000
12000
13000
Jlunae
(15000
lbp00
17200
18000
19000
e 20000
21008
122000
+230P0
24000
25000
226000
27000
« 28000
029000
30090
31000
32000
33000
e 34nQo

v

,533%8

9291
02611
. 22275
51959
1663
21383
291118
58867
48898
L471536
LUBS1D
45697
.45030
JHulde?

43983

L43501
43188
LU28585
42554
2282
.42033
L1884
41593
41398
L41215
L1245
.un8se
L4736
240594
CELT Y|
,4a31s
4p21Ss
Juoioy
. 39992
.39889
.39790
. 39695
. 39695
39518
.30434
. 39354

Al = »5,460553E400

C 2, U6080CE=01
up uUs
10978 11890
01248 214007
01487 015638
0t712 «16975
91926 W1811%
Letee 19113
,22325 e £R0VB
«22514 «20815
12697 + 21559
04299 e27047
,25640 0 32925
., 06820 34098
,07887 0 36856
018869 039332
109783 41680
SY-TYY 43706
. 11455 ,U5681
12228 WU7547
12967 49321
, 13676 51016
o 14358 D264
219916 L S4204
o 15653 25713
o16271 57172
, 16870 « 58586
, 17454 +599%9
oJRO22 61295
218576 162596
e19118 163864
019647 65104
20164 66315
2R672 067501
21169 168662
21657 « 69800
122135 70917
122606 72013
025068 0713090
23523 e T4148
23970 015190
wwodat 76214
s2UBUS 077223
025273 «78217

S s

2,530 00RE+0VY
N

. 99820
ALY
99800
0 99809
099800
99796
199744
79688
099628
«98858
097882
+96779
,95588
. 94329
295013
91648
090237
88784
87288
B5TUS
JB4l67
W B2540
184867
79147
W 77576
0 715553
e 736714
W 71735
269733
167664
265524
63310
«6101S
058634
053591
W S0916
48125
45214
WH28T8
038987
035649

MARTSH
A} z -0,

RATE

4,5703E=04
By 71965E=04d
14 450UE~U3
2,195¢E=03
3.1 192E=03
5,0137E=03
Tou337E=03
8,8851E%03
4,Ub669E=02
1,2194E=01
2e5506TEmuU1
4.,5897e-01
T,4968Lw0]
1,14428+u08
1,6620E¢00
2,5236E400
3p1536L¢00
4y 1782E¢00
Se4276E+008
6,9363L409
B8,7458E+00
1,9892E+01
143443E+01
1460928401
1,9991E+01
2.4425p¢01
2B999E+01
3,4735E+01
Uy1U36E+0]
4,9275€+01
95,8489E+01
6. 9UVGESVL
8,2¢31L+401
9,7493E+01
1,1574E+u2
1,5792E+62
f1,6R1bESR2
1,9663E+02
Ce3685E+02
2,8746E+02
3,524 1E+02

RHO & | ,72400

TEMPERATURE

314,26523
317,292306
320,12791
322,91333
325,602936
328, 44922
333,15059
337,94663
342,84125
396,78844
457,78456
522,95200
594,81475
b6V, 26478
730,644%%
8u1,53295
872,65826
945,8155¢6
1014,889/1
J¥85,78325
1156,44849
1226,79394
1296,82357
1300,46674
{u35,71918
i504,55269
1572,96542
joun,8d972
i7e8,2778¢2
1775,19704
IB4y,56548
1997,3521{»
i972,537386
2957,68237
2180,99551
2164,11473
2226,51479
2288,1316%
2348,8898%
24nB, 74563

2467,64144

2525,51567

i

5¥,15897
52,1829
22,93681
17, 42482
13,7938%
i1,24094
9,37804
7,9587¢2
6,85147
2,387¢9
1,22302
W T4U3Y
50095
¢ 35808
26811
,20742
160451
13302
, 10923
109879
y07622
196449
05492
204699
VN se
03476
82997
002586
L2235y
W0i919
JUi64db
201405
01192
JBivE2
W 0r8se
20679
N'TETE
W P0d16
QU303
s B02000
YY)
Y T'F])
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