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ABSTRACT

The effect of a confined porous bed of burning 
explosive abutting solid explosive is studied by com­
puter simulation. Burning only is allowed in the po­
rous bed; shock-induced decomposition is modeled by 
FOREST FIRE in the solid material. The occurrence of 
detonation in the solid explosive depends on the sur­
face- to-volume ratio, the confinement of the porous 
bed, and the geometry of the system.

The density effect on the initial-shock-pressure, 
distance-to-detonation (wedge test) measure of shock 
sensitivity is calculated. The calculation uses the 
invariance with density of the shock particle veloc­
ity as a function of time to detonation.

I. INTRODUCTION

Sometimes a high explosive that is initially burning will detonate. The 
change from burn to detonation is known as Deflagration-to-Detonation Transition 
(DDT). Accidents with high explosives may often involve DDT, and for this rea­
son alone, the subject is of interest.

Linear burn of an explosive proceeds at a rate of 10 to 100 cm/s, whereas 
detonation waves propagate at a rate of 0.3 to 0.9 cm/ys. The rates are very 
different, and special conditions are necessary for the transition to occur. 
Conditions conducive to the occurrence of DDT are confinement of a region with a 
large surface area burning and high shock sensitivity of the same or nearby ma­
terial. The surface area may be initially present or may be dynamically pro­
duced as a result of stress on the material. The confinement is provided both by 
material strength and inertia of the confining material. The presence of a large 
burning surface area increases the mass burn rate, which, if the confinement is 
sufficient, leads to high pressures and shock formation. If the shock is strong 
enough, the explosive begins to decompose, the shock grows, and finally a deto­
nation is produced.

The burning in a porous bed, known as convective combustion, is a compli­
cated matter. In addition to the role of high mass burning rate and confinement,
the flow of hot gas relative to the bed of particles is often important especial­
ly in a large porous bed. The flow gases enter into the fluid dynamics (a
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two-phase flow problem) and transfer heat to the particles. Ignition, flame 
spreading, and flame structure in the voids are also involved. (Burning of gun 
propellant involves many of these processes.)

II. A SPECIAL CASE

Rather than try to model such a large collection of processes, a model is 
constructed here that involves only confined burning and shock initiation. The 
case considered involves mostly solid explosive, a small region of porous mate­
rial, and some sort of confinement. (Such situations may relate better to acci­
dents because it seems unlikely that a piece of explosive will turn entirely to 
dust because it is dropped.) A small region of porous material may be just too 
small to produce a DDT by itself. However, if the small region abuts a large 
piece of solid explosive, which provides confinement, detonation may occur in the 
solid. The burning of the porous material need not proceed at detonation rates 
but need only burn fast enough to form a shock in the solid. If the solid is 
sensitive to shock-induced decomposition and the shock is strong enough, the 
shock will grow into a detonation wave.

To numerically study this restricted case of the DDT, a sequence of problems 
has been calculated (see Fig. 1) in which the confinement, the burn rate, and the 
geometry are varied. Three types of confinement are considered: (1) the porous 
region is between solid explosive and an aluminum case with a rigid back boundary 
(problem geometry I), (2) the porous region is between solid explosive and an 
aluminum case that can move into air (problem geometries II, III, and V), (3) the 
porous region is contained in solid explosive alone (problem geometry IV). Three 
geometries are included: (1) planar (problem geometries I, II, and V), (2) cy­
lindrical converging (problem geometry III), (3) cylindrical diverging (problem 
geometry IV). The mass burn in the porous region is simulated by the bulk burn 
model described in Appendix A. Bulk burn assumes that the porous region is com­
posed of particles of similar geometry with some initial surface-to-volume ratio 
Sq/Vq or (S/V)o. For each problem geometry, calculations are made for various 
initial ratios. The bulk burn rates for Sq/Vq = 75/cm and Sq/Vq " 100/cm are 
displayed in Fig. 2. Note here that for a cube with side length of 0.1 cm,(S/V)Q
= 60/cm, and for a cube of 0.01 cm, (S/V)q = 600/cm.

Shock-induced decomposition of the solid explosive is simulated with the 
FOREST FIRE-*- model described in Appendix B. In these problems the decomposition 
rate is taken to be a function of pressure only. The FOREST FIRE rates at den­
sities p = 1.91 and p = 1.72 as a function of pressure are shown in Fig. 2. The 
experimental and calculated curves of distance to detonation versus shock pres­
sure for HE-X* that give the basis for the rate calculation are shown in Fig. 3. 
Table I gives the HOM equation-of-state^ constants for aluminum and for HE-X at 
two densities. Also in Table I are the constants to the fit of the pressure-
dependent rate function displayed in Fig. 2. The problems were run with the SIN
one-dimensional Lagrangian hydrodynamics code.^ The initial cell length in each 
region is AX = 0.1 cm.

To illustrate the effect of a low-density (high shock sensitivity) region 
contained within the solid explosive, one problem is calculated using problem 
geometry V (Fig. 1). Here, a 1.0-cm slab of p = 1.72 HE-X is embedded in the 
solid and reacts by the FOREST FIRE model. The increased rates, calculated by 
the POP-PLOT extrapolation method described in Appendix B, are shown in Fig. 2.

*An experimental HMX-based explosive.
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1-D PLANE 
Problem Geometry I

RIGID ALUMINUM HE-X (1.91) HE-X (1.72) ALUMINUM RIGID
WALL 4 cm 10 cm

FOREST FIRE
2 cm

BULK BURN
4 cm WALL

Problem Geometry II
AIR ALUMINUM HE-X (1.91) HE-X (1.72) ALUMINUM AIR
2 cm 2 cm 10 cm

FOREST FIRE
2 cm

BULK BURN
2 cm 2 cm

1-D CYLINDER
Problem Geometry III

CENTER HE-X (1.91) HE-X (1.72) ALUMINUM AIR
• 10 cm 2 cm 2 cm 2 cm

FOREST FIRE BULK BURN
Problem Geometry IV

CENTER HE-X (1.72) HE-X (1.91) ALUMINUM AIR
• 2 cm 10 cm 2 cm 2 cm

BULK BURN FOREST FIRE

1-D PLANE
Problem Geometry V

AIR ALUMINUM HE-X (1.91) HE-X (1.72) HE-X (1.91) HE-X (1.72) ALUMINUM AIR
2 cm 2 cm 5.5 cm 1.0 cm 3.5 cm 2 cm 2 cm 2 cm

FOREST FIRE FOREST FIRE FOREST FIRE BULK BURN
Fig. 1.

Problem geometries for HE-X burning and detonation.

III. DISCUSSION

Calculations with the SIN hydrodynamics code are shown in Figs. 4a through 
4£. In each frame of the figures is shown a graph of pressure as a function of 
distance and a graph of mass fraction as a function of distance. The pressure 
scale is given in the lower right corner (for example, 50 kbar). The mass frac­
tion scale is always 0. to 1.0. Time indicated on each frame is in microseconds. 
The initial S/V for the bulk burn region is as specified for each figure.

Comparison of the problems gives some insight into the importance of the 
various boundary conditions, geometric symmetry, and processes. Consider first 
the sequence of planar problems using problem geometries I and II. In these 
problems the effect of the two boundary conditions on the aluminum depends on 
(S/V)q. If (8/7)0 =400 cm (Figs. 4a and 4b), the bulk burn is so fast that the 
aluminum back boundary makes no difference. With (S/V)q = 100/cm (Figs. 4c and 
4d), the effect of the boundary begins to show somewhat in the small increase in 
time to detonation and in the pressure wave. With (S/V)q = 75/cm (Figs. 4e and 
4f), the difference is considerable—detonation at 39.83 ys with problem geometry 
I and no detonation with problem geometry II. In II, the problem is terminated 
just as the pressure wave is starting to reflect off the left piece of aluminum. 
If run further, the reflected wave would cause detonation in the model because 
FOREST FIRE as used here is pressure dependent. However, if the first wave de­
sensitizes the HE-X, detonation may not occur. The matter is open for further 
study.
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Next consider the cylindrical converging problems (problem geometry III) 
with (S/V)q = 100/cm and (S/V)q = 75/cm (Figs. 4g and 4h). These are similar to 
the planar problem geometry II problems, but detonation occurs for both ratios; 
cylindrical convergence of the wave is the contributing factor.

The sequence of problems with problem geometry IV (Figs. 4i through 4k) il­
lustrates the balance between the bulk burn and the diverging wave that lowers 
the pressure. The problem of (S/V)q = 130/cm detonates just before the wave 
reaches the outer case, whereas (S/V)q = 100/cm fails to detonate. Comparison of 
these diverging problems with the planar and cylindrical converging problems 
shows that geometry is a very significant factor in the outcome.

Problem geometry V is similar to problem geometry II except for the inclu­
sion of a 1.0-cm region of lower density HE-X. The problem with (S/V)g = 75/cm 
(Fig. 4£) shows detonation occurs about 1.4 cm into the p = 1.91 HE-X past the 
lower density region. The presence of the low-density region noticeably alters 
the pressure wave, even though detonation did not occur in the p = 1.72 HE-X 
region. The pressure wave as incident on the p = 1.72 HE-X region is too low to 
cause detonation to occur in a 1.0-cm run, however it is sufficient to induce 
significant partial decomposition, which adds to the wave causing detonation in 
the adjacent high-density HE-X.

t—I I M 11|

Bulk Burn 
(S/V)0* 75/cmBulk Burn

" (S/V)0« 100/cm

PRESSURE (Mbar)

Fig. 2.
FOREST FIRE shock decomposition rates 
for HE-X at two densities and two bulk 
burn rates for HE-X at p = 1.72.

HE-X 
POP- PLOT*

Calculated

0.1000.010
Pressure (Mbar)

Fig. 3.
Distance to detonation vs initial shock 
pressure for HE-X.
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TABLE I

HOM EQUATION-OF-STATE CONSTANTS FOR ALUMINUM AND 
HE-X (p = 1.91 AND p = 1.72 g/cm3) AND THE POLYNOMIAL COEFFICIENTS 

FOR THE PRESSURE-DEPENDENT FOREST FIRE RATE

ALUMINUM. RHO » 2,785
HOM CONSTANTS 70R A5,3sa<iaeaB0ooE>0t3.•2(i>a2<l62a8969E + 02 
3,S9»6<><I2728«*01 3,0?a>incaaQC!0E»02 5.0sa03au0aoeE-02

SOHOt,3S0flanaaaaaE^oa -T.RfcUSBfthSTaEtOJ 
.5,797ja<>6<l7j2E»01 2,aaaanoui,taa0E>0S l.Baaaaaaoeaat-ofc 
l,080aaauaaaaE>a6

l.paaaooauaaaE-al•3,17S33b61633b»a2
i,70aauaaaaaat«aao.
3,6666666660JE*«3.0,

0,■0,385253715331*022,20O0oaaaadab*ai
l,asaaaoaaaaat*au2,500000aa0aut«at

HE-X, RHOe1v91
HOM CONSTANTS FOR 2,a0aaa0aaaaac-0l 1,87Raaaa8nooE*ua 
•R,992jj««RiaaE*ai 
5,235bn2aqu2aE>01 
2,96879a00OO0E*02 
«.

IE SOLID EXPLOSIVE 
3t600nO30U000Et00 .1,3S733168580E*01 .2,35377b0S339E*0|i.EsoaaaaatiaaE^oa0.0.

a.TflaiisaaaaoaE-ai • 8,6097801) 10S7E*al l (baaaaaauaaaETao
0.0.4,78a4500O00at«0i

2,4 3000000000E*01 •1,42062911ai6E*02 
3,3O00000U000E*UI0.0.

HOM CONSTANTS FOR THf detonation products-3,592?5JM710aET00 
3.2631713O386E-0O 
8,610O8912339E*03 
l,e0767O76O73E-01 1,03000Oa0000£-01

.2.25139n95825E*00 

.l,569b757996lE*00 
3,2aia0l788iSE.aa 
5,2S836857192E-03

3,07083271371E-01 ^,632O0aa<i420E-0l 
8,050381750l7t*00 •0,21628859215t"aS

•3,38388105816E*02 
9,10076859528E*a2 •4,7b298681iatE*Ul 
5,0U80000800WE>01

HE-X FIRE, RHOs1,91, DCJS0.8093
15 CONSTANTS FOR THE FIRE FIT ON THE PRESSURE INTERVALOW/OT a -h>EXP(• l,3S0O12U330E*ai• 7,S,->7a81U7863E*08 •2,1352tt7Ol63SE*l0 -2,93612090928E*1t

(1)*C(2)*P*,,,*C(N)O,9837l2753Itt*02
8,9557388l711E*V)7
6,88859OI75tOE*t0
1,920153520OIE*11

*P*»(N«t) )-1,75U226031OOfc*OO -7,610983752368*08 •1,622682135178*11 
•5,665579215958-10

010 TO ,050 HBARS|
0,38701808365E*05 
0,687797O0935C*09 
2,677850001208*11

HE-X, RHOs1,7190 s 0,9*1,91
HOH CONSTANTS FOR 
5,8000a0Oa900E«02 
2,O180n003O00E*00 
5,8T550896556E*U2 
5,81733566027E-01 
3,O30O0000000E*02 
0.

• SOLID EXPLOSIVE o,4n00anp0000E*00 
5,35308lH155OE-01 
2,1226909O127E»02 
1,20000000O0OE>04 0.0.

0,856930000008*0l 
2,8042OO29325E*U2 
1,50000000000E*00
0.0.O,85693000000E*0l

HOM CONSTANTS FOR TH£ DETONATION PRODUCTS
-3,09829960362E*00 I,6l3ot66106t€*03 
5t096O289226OE.03 
8,860899373008-02 
1,300000000O0E-0t

.2,212939185538*00 .1,527696533OJE*00 
1,000211O6127C-04 

.1,180361094778-02

2,84B88396236E-01 
5, 1 17518772158-01 
8,107350259768*00 
6,097850090388-00

HE-X, FIRE, RHOsl,7t90s0,9*l,91, DCJ s 0,7080
u constants for the fire fit on the pressure intervalO./DT * -H*EXP< 
•1,0362875650OE*01 •5,66925058239E*10 •a,7OO70711OO2E*l9 
•7,289201131396*26

(l)*C(2)*P*t,,*C(N) 
2,3S85225622«8*03 
7,O5365730S50E*12 
1,169110630698*22

*P»»(N-1) )
• 9,58087572371E*05 -1,323130958858*15 -9,209012O1O99E*23

15 CONSTANTS FOR the Fire FIT ON THE PRESSURE INTERVAL ,D*/f)T * -w»EXP( -7,S65tl750275E*00 •6tboOl8S8u36lE*06 -3, 18?927520O9E*10 
•8,58557307O17E*ll

(1)*C(2I»R*,.,*C(N) 
3t6972O70a255E*02 
8,81003O75638£*87 
1,219575863723*11 
6,680258069566*11

»P«»(N-l) )•1,28378'I06823E*0O 
-8,567783303883*08 •3,381736183268*11 •2,350205003768*11

1,273700000008-01 
6,108739O<I231E*02 
3,30080008000E-01
0.0.

-3,O590R309O71E-O2 
6,913910267908-02 •0,290181500078-01 
5,000000000008-01

001 TO ,010 M8AHS,
2,928O21O612TE*08
3.90621201727^*17
3,972595607806*25

010 TO ,370 MSARS,
3,OU910103509E*05
6,090693838608*09
6,598279395008*11



Fig. 4a.
SIN calculation for a 1-D plane in problem geometry I with (S/V)q = 400/cm.
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Fig. 4b.
SIN calculation for a 1-D plane in problem geometry II with (S/V)0 ** 400/cm.
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Fig. 4c.
SIN calculation for a 1-D plane in problem geometry I with (S/V)q = 100/cm.
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Fig. 4d.
SIN calculation for a 1-D plane in problem geometry II with (S/V)q = 100/cm.
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Fig. 4e.
SIN calculation for a 1-D plane in problem geometry I with (S/V)o = 75/cm
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Fig. 4f.
SIN calculation for a 1-D plane in problem geometry II with (S/V)q ■ 75/cm.
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DISTANCE DISTANCE
Fig. Ag.

SIN calculation for a 1-D cylinder in problem geometry III with (S/V)q *= 100/cm
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Fig. 4h.
SIN calculation for a 1-D cylinder in problem geometry III with (S/V)n ■ .75/cm.
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Fig. 4i.
SIN calculation for a 1-D cylinder in problem geometry IV with (S/V)q » 200/cm.
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DISTANCE DISTANCE
Fig. 4J.

SIN calculation for a 1-D cylinder in problem geometry IV with (S/V)g ■ 130 cm
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16



Fig. 4k.
SIN calculation for a 1-D cylinder in problem geometry IV with (S/V)q * 100/cm.

PR
ES

SU
RE
 

MA
SS
 F
RA
CT

IO
N

PR
ES

SU
R

E 
N

A
SS
 F

RA
CT

IO
N

PR
ES

SU
RE
 

MA
SS

 F
RA

CT
IO

N

PR
ES

SU
RE
 

M
AS

S 
FR

AC
TI

O
N

Cy
li
nd

er
 a

xi
s 

PR
ES

SU
RE
 

MA
SS

 F
RA
CT
IO
N

o *4 in

H
Bu

lk
 B

ur
n

P 
- 

1.
72
 

\j
2 m ii

FO
RE
ST

 F
IR
E

P 
- 

1.
91

o b GJ cn o TO n
Al
um
in
um

TO
Ai
r PR
ES

SU
RE

MA
SS

 F
RA
CT
IO
N



Fig. til.
SIN calculation for a 1-D plane in problem geometry V with (S/V)n = 75/cm
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IV. CONCLUSIONS

This study has examined some of the conditions leading to detonation in a 
solid explosive bounded by a confined porous burning region. Items important to 
occurrence of detonation are (1) the surface area burning, (2) the confinement of 
the burning region, (3) the geometry of the system, and (4) the shock sensitivity 
of the adjacent solid material. Items (l)-(3) work together to produce the pres­
sure waves that generate shocks in the solid. Geometry is especially critical 
here; a system which may not produce detonation in planar geometry may well in­
duce detonation in converging geometry. Finally, the solid material shock sensi­
tivity determines the response to the shocks generated. Indeed, the planar geom­
etries (II) and (V) with (S/V)q = 75/cm illustrate this effect well. Note that 
only a portion of the solid explosive adjacent to the burning region need be more 
sensitive to go from a nondetonating condition to a detonating one.
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APPENDIX A 

BULK BURN

The bulk burn model is used to simulate the burning of a porous bed of ex­
plosive that is assumed to be ignited over all burning surfaces simultaneously. 
The explosive is assumed to be divided into uniform pieces of similar geometry 
that burn at the linear burn rate perpendicular to the surface of each particle. 
The change in burning surface area as the particles are consumed is included.
The model for surface area change is motivated by three special geometric situa­
tions: (1) sphere-like particles, volumes that contain an inscribed sphere;
(2) cylinder-like particles, volumes that contain an inscribed cylinder; and (3) 
sheet-like particles, volumes that have constant surface area. In the first two 
cases the surface area and volume of the particles are functions of the radius of 
the inscribed sphere or cylinder only. In all three cases there exists a q so 
that (surface area/initial surface area) = (volume/initial volume)^ with q = 2/3 
for sphere-like, q = 1/2 for cylinder-like, and q = 0 for sheet-like particles. 
However, q may assume any value to simulate mixtures of particle types.

Bulk burn is a simplified treatment of the process known as convective com­
bustion, in which hot gases from the burn flow into the porous bed ahead of the 
burning region. The flowing hot gases heat the cold particles until ignition 
and enter into the fluid dynamics (two-phase flow). In spite of the simplifica­
tions, bulk burn is appropriate for small confined regions where gas motion dur­
ing ignition and burning is small.
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BULK BURN MODEL

Notation:

Vol = volume of particle 

V = volume of solid J
M = mass of the solid 

W = (M/Mq) = mass fraction of solid 

p = density of solid 

S = surface area burning 

X = linear burn rate = cPn 

q = "geometric" constant

The subscript zero (for example, V^) denotes initial values.

Model Relations and Assumptions:
e

Each particle is assumed to burn at a linear rate X = dx/dt perpendicular 
to its surface. Thus the time derivative of mass burning is

dM
dt = -SpX .

Model Development:

To isolate (Sq/Vq) in the model, expand dM/dt as follows: 

dM/dt = SpX ,

dM/dt = -(Sq/Vq)(S/Sq)(PqVq)(p/p0)X .

The term (S/Sq) above is a function of time and needs to be related to the mass. 
For this purpose let

(s/Sq) = (pv/PqVqAp/Pq)^ = wq(p/p0)-q .

(The motivation for this will be discussed on p. 21.)
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Substitution of this expression into the equation above gives

dw/dt = -(s0/v0)(p/p0)1_q wqx .

The constant q has value

q = 0 for sheet-like particles, 
q = 1/2 for cylinder-like particles, 
q = 2/3 for sphere-like particles.

Motivation for (S/SQ) = (M/M0)q(p/p0)-q

An assumption of bulk burn is that each particle burns perpendicular to its 
surface. For certain polyhedral particles this assumption implies that the 
"shape" of the particle is fixed as the particle burns. Consider now the follow­
ing three cases of special polyhedral particle shapes.

For sphere-like polyhedra (containing an inscribed sphere of radius r), the 
surface and volume relations are

S = Ar^ , Vol = Ar^/3 , and

(S/Sg) = (r/rQ)2 = (VoI/VoIq)2/3 ,

where A is a constant. (For example, for a cube A = 24.)
For cylinder-like polyhedra (containing an inscribed cylinder of radius r 

and ignoring the surface area of the ends), the relations are

S = Aril , Vol = Ar2il/2 , and

1/2(S/S0) = (r/r0) = (Vol/Vol0r/Z ,

where il is the length of the particle and A is a constant. (For example, for a 
square .tube, A = 8.)

For plane-like volumes with constant surface area, the relations are 

S = Sq and

(S/SQ) = 1 = (VoI/VoIq)0 .

In each of the above cases

(S/Sq) = (Vol/VolQ)q , for some q.
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Thus

(S/S0) = (p Vol/p0 Vol0)q(p/p0) q 

and finally

(S/S0) - (M/M0)q(p/p0) q

APPENDIX B

SHOCK INITIATION AND THE POP-PLOT

I. INTRODUCTION

The phrase "shock initiation of high explosive" refers to the process in 
which a shock wave passing through a piece of explosive material grows into a 
detonation wave. This process has been studied extensively in "sensitivity 
tests." One such test which has been a favorite for years and which, because of 
its one-dimensionality, is of special interest is the "wedge test." In this 
test, a wedge of high explosive is placed on a large planar shock-wave generator 
and the distance that the shock runs through the wedge before detonation occurs 
is observed with a streak camera. The change to detonation is marked by a rapid 
change in the shock velocity. A sequence of such shots with varying initial 
shock pressure in the explosive defines a graph of distance to detonation versus 
initial shock pressure. This graph is often a straight line in (log P, log run) 
coordinates and is known as the POP-PLOT (after Alphonse Popolato). The wedge 
test also furnishes the time to detonation, initial particle velocity (Up), and 
initial shock velocity (Us). The (Up,Us) line is known as the Hugoniot for the 
material.

The POP-PLOT and Hugoniot data have been used to describe and compare shock 
sensitivity of heterogeneous explosives. Also the data have been incorporated 
into a model of shock-induced decomposition rate in heterogeneous explosive 
called FOREST FIRE.1 The model uses an assumption known as "single curve build­
up," which asserts that during shock initiation the pressure wave grows along a 
unique line in (time, distance, state) space. The POP-PLOT is interpreted in 
the FOREST FIRE model to be that unique shock growth line, even though it is not 
what the wedge test actually measures.

The FOREST FIRE model addresses the question: What decomposition rate in 
the flow behind the shock is consistent with shock growth along the POP-PLOT 
line? The shock is assumed to have a square wave front (3P/3X = 0) to complete 
the data necessary for solution (note that if the pressure is known throughout 
the material, the entire flow may be analyzed to give decomposition rates). The 
HOM equation of state is used for the mixture of solid and decomposition prod­
ucts. As a setting for the later discussion of POP-PLOT calculation, a brief 
outline of the analysis as restricted to the shock front only is given. A more 
detailed and more general account is found in Ref. 1.
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Note now that in this model the decomposition rate is calculated along one 
curve in state space, namely a single shock Hugoniot. At each point of this line 
are calculated the state variables P, V, I, T, W, Up, and rate, -(dW/dt)/W. The 
representation of the rate as a function of these state variables is not uniquely 
determined. It may be a function of several of the variables or their deriva­
tives. However, after some experimentation with various forms, representation 
of rate as a function of pressure only was found to be convenient and fairly sucr- 
cessful. No claim is made that the rates are necessarily pressure dependent nor 
that FOREST FIRE is a pressure-dependent rate-law model. When information be­
comes available about the rate process off the single shock Hugoniot or as cases 
arise for which the pressure-dependent rate is not applicable, the matter will 
need to be considered again.

In the model description, "Model Relations" are the equations that express 
the various assumptions used in constructing the model. They are stated sepa­
rately before being incorporated into the "Solution Method" that follows. This 
notation is used throughout the development.

P

UP

Also, U

V

I

W

run

tdet

pressure (Mbar) 

particle velocity (cm/ps)

Up (written without the subscript p)
3

specific volume (cm /g)
3

specific internal energy (Mbar cm /g)

mass fraction of undecomposed explosive 
W = 1, all undecomposed explosive 
W = 0, all decomposition products

distance to detonation (cm)

time to detonation (ys)

For any function f = f(m,r).

fm
3f
3m and fT

3f
3t *

Similarly, for H = H(V,I,W)

„_3H u _ 3H , „ _ 3H^ _ 3V ’ HI “ 31 ’ and ^ - 3W
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II. FOREST FIRE RATE CALCULATION

The shock is assumed to grow in pressure as it moves through distance ac­
cording to POP-PLOT, relations (1) and (2). The shock is taken to be a sharp 
shock on the Us = C + SUp line, relation (3). This Hugoniot line may be the in­
ert Hugoniot or a reactive Hugoniot. (In Fig. A-l are illustrated an inert and a 
reactive Hugoniot^ for PBX 9404.) Relation (4) expresses that, in the region 
behind the shock, an equation of state (for example, HOM) describes the mixture 
of unreacted explosive and reaction products.

MODEL RELATIONS

FOREST FIRE RATE CALCULATION 1 2

(1) POP-PLOT: An (run) = a1 + &2 An (P - a3)

(2) Interpret POP-PLOT using 
SINGLE CURVE BUILD-UP HYPOTHESIS.

EXPERIMENTAL REACTIVE 
HUGONIOT

W » 0
W ■ 0.2
W * 0.3

—W « 0.4—
-W » 0.5
W » 0.6

—-W ■ 0.7 ~
-—W * 0.8 -
W • 0.9
W » 1.0

45 0.50
VOLUME (cm3/g)

Fig. A-l.
HOM equation-of-state partial reaction Hugoniots at various mass fraction of 
solid (W) for PBX 9404. The dashed line is the experimental "reactive" Hugoniot 
of Ramsay and Popolato (Ref. 3). The W = 1.0 line is the solid "inert" Hugoniot.
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(3) Hugoniot: U = C + SU s p

P = wp

V = Vn<Ua " Ur,>/Uo Os P s

I = U2/2 
P

(4) Equation of State: P = H(V,I,W) (HOM equation of state)

Briefly, the HOM equation of state gives pressure as a function of the spe­
cific volume and specific internal energy of the mixture of solid and gaseous 
products and of the mass fraction of solid. The solid equation of state is ex­
panded off the Hugoniot with the Griineisen construction that has a constant gam­
ma (F). The gas is expanded off the detonation product isentrope. The mix rule 
assumes ideal mixing of specific volumes of solid and gas and energy partition­
ing according to mass fraction. Pressure and temperature equilibrium are re­
quired, and solution for Vs and Vg is obtained.

HOM EQUATION-OF-STATE RELATIONS 
(Ref. 2)

Equation of State:

P = H(V,I,W)

V = specific volume 

I = specific internal energy 

W = mass fraction of undecomposed explosive 

Griineisen solid equation of state:

(U = C + SU ) s p

Ps * r<Is - V/Vs + PH
T - (I - I„) • 23890/C + T„s s H v,s H

Gas Equation of State: (BKW isentrope)

Pg i1)/(evg> + Pi

T = (I - I.)23890/C + T.g g i v,g i
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Mix Rule: Pressure and temperature equilibrium

with

V = WV + (1 - W)V s g

I = WI + (1 - W)I s g

Regular one-dimensional planar fluid flow is assumed behind the shock, re­
lation (5). The shock is accelerating and is differentiated in time, relation 
(6) . At each mass point the equation of state applies and is differentiable 
with respect to time, relation (7). With the additional information about the 
pressure gradient behind the shock, the solution for is possible.

MODEL RELATIONS

FOREST FIRE RATE CALCULATION (cont)

(5) Fluid Flow: Lagrange mass coordinates (m,x)

m

IT = -pv.T

(6) Shock Front Derivatives:

P
O dP[Xs(t),t]

dt

Xg = shock position

O

P = P.U P + PT 0 s m T
O

U = P_U u + UT 0 s m T
O

P = (dP/d run)Us
O O

U = PV0/(C + 2SU)
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(7) Total Derivative of Equation of State:

P = 
T =7 V + H, I + n* w

The solution method consists of solving for the time derivatives PT, VT, and 
IT behind the shock from the time derivatives of the shock front. The pressure 
gradient at the shock front is taken to be zero if this information is not known 
explicitly. (Under such circumstances the solution method solves a shock with a 
"square" leading edge.) The state of the front is determined by the POP-PLOT and 
shock jump relations. The total derivative of the equation of state allows for 
solution of W^. if SH/Slf ^ 0. The solution thus is outlined in (A), (B), and (C).

SOLUTION METHOD

FOREST FIRE RATE CALCULATION

Let P be the independent variable.

(A) Solve the shock front state.

Calculate run, run = exp [a^ + &n(P -

Solve for U , P = pn(C + SU )U p u P P

Calculate U = C + SU s p

v - * * * * vo(us - y/us

I = U2/2 .
P

Solve for W, P = H(V,I,W) .

(B) Solve for Lagrangian time derivatives P^, V , and behind the shock.
O

Calculate P = (dP/d run)Us

U = PV0/(C + 2SU) .

Assume P = 0, if pressure gradient information is not available, tn

Calculate P = P - p-U P T 0 s m

VT - (U + Pm)/(p0us)

I = -PV
T T
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(C) Solve for W^,

PT " Vt+ Vt+Vt '

III. POP-PLOT CALCULATION

The shock sensitivity of an explosive is greatly influenced by the initial 
density of the explosive. For example, an explosive pressed to low density is 
more sensitive than if it were pressed to high density. Correspondingly, the 
POP-PLOT reflects the change in sensitivity for different densities. A method 
is given here to estimate the POP-PLOT change with density given a POP-PLOT at 
some initial reference density.

The method of POP-PLOT calculation uses the assumption that the shock par­
ticle velocity as a function of time to detonation is independent of density.
The assumption is based upon the observation that this seems to be true for PBX 
9404 and PETN (see Fig. A-2). Also, the single curve build-up assumption is em­
ployed to interpret the POP-PLOT at the reference density. The shock Hugoniot 
at other densities is constructed using the Griineisen form of the equation of 
state.4 The function UpCt^^) is obtained from the wedge test data.

Note here that the assumption about Up(tdet) may not necessarily hold for 
all explosives. An examination of this matter may be important in developing 
further theories about initiation.

Figures A-2 through A-5 show the input curves of Up(tdet)* th® calculated 
POP-PLOTS, and calculated time-to-detonation, distance-to-detonation curves, all 
with the experimental points. The data for PBX 9404 are from B. G. Craig.5 The 
PETN data for p = 1.75 are from J. D. Wackerle.^ The PETN data for p = 1.72 and 
p = 1.60 are from D. Stirpe et al.,? and the data for PETN p = 1.0 are from G. E 
Seay and L. B. Seely.® The curves are calculated from the Up(tdet) line and the 
Hugoniot of the highest density for each explosive.

Model relations for POP-PLOT calculation are listed below. Relation (1) 
states that Up is independent of time to detonation and that the Hugoniot for 
the solid at density Pi is as measured. Relation (2) is the Griineisen construc­
tion of the Hugoniot at density P2-

MODEL RELATIONS

POP-PLOT CALCULATION

(1) Data at p.
yw -

U = C + SU s p

(2) Griineisen Equation-of-State Construction of Hugoniot at p =

P = r(i - iH)/v + ph

P2 (Ref. 4)

with

I = 0.5 P(V2 - V)
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T Mil

PBX 9404 DATA 
\p= 1.84 
2p= 1.72

PETN DATA 
3/» = 1.75 
4^ = 1.72 
5/> = l.60 
6/>= 1.00

PBX 9404
Curve fit to p = 1.84 data

PETN 
Curve fit to ^ = 1.75 data

J__i i i

Time to Detonation (/is)

Fig. A-2.
Shock particle velocity vs time to detonation showing the invariance of the graph 
with different densities.

l I I I I I |
RBX 9404 DATA 

l/>«t.84

PETN DATA 
• 1.75 

4/» • 1,72 
5/>-i.60
6p *1.00
l (g/cm3)

« 0.1

9404

f Ml t M mf .UJ.UIi i m
0.1000.010

Initiot Shock Pressure (Mbor)

Fig. A-3.
Calculated POP-PLOTS for PBX 9404 and - 
PETN. The lines are calculated from the 
data at the highest density for each 
explosive.

I Mil.

PBX 9404 DATA 
\f « 1.84 
ip « 1.72

J__ i i ■ ' i

Time to Detonotion (/is)

Fig. A-4.
Calculated distance to detonation vs 
time to detonation for PBX 9404 based 
on the data at p = 1.84.
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PETN DATA 
3/> = 1.75 
4/>= 1.72 
5/>=l.60 
6/)* 1.00 
p (g/cm3)

0.3 1.0 10.0
Time to Detonation (/is)

Fig. A-5.
Calculated distance to detonation vs time to detonation for PETN based on the 
data at p = 1.75.

\ ' °-5 Vvi -v>
PH - c2^ - v)/^ - sOfj - v)]2 .

Then

P = Ph(V)G(V) ,

where

g(v) = [2v - - v)]/[2v - r(v2 - v)] .

The solution method uses the shock pressure as the independent variable.
From the constructed Hugoniot, solution is made for the specific volume, particle 
velocity, and shock velocity. Using the assumption about UpCt^et) being inde­
pendent of density, solution is made for time to detonation. Finally the shock 
velocity is integrated to give distance to detonation.
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SOLUTION METHOD

POP-PLOT CALCULATION

Input Data: [U (t),U = C + SU ]p s p

Let P be the independent variable.

Solve for V,

P = Ph(V)G(V) .

Then
U = [P(V, - V)]1/2 
P 2

us = v2[p/(y2 ~

Assume U (t, . = F(t, ^p det) det

Finally after a table of

1/2
*

), independent of p, and calculate t.det

(t, ,U ) is formed, det s

run
/■tdet U df
Jo

IV. POP-PLOT AND FOREST FIRE RATE CALCULATION

Often the particle velocity and time to detonation for wedge tests are not 
reported. Rather, it seems to be customary to report only the POP-PLOT line and 
the Hugoniot. To compute the POP-PLOT and FOREST FIRE rates for anotherQdensity 
then requires construction of Up(t<jet) an<^ b*16 shock change derivatives P and Up. 
Given here is a method that uses the invariance of Up(tdet) with density and the 
single curve build-up assumption.

Model relation (1) describes the experimental data for the reference density 
Pj_. Relation (2) is again the construction of the Hugoniot at density P2- Re­
lation (3) gives the time derivative of the shock pressure growth at density p^ 
and is used in inverse form to calculate time to detonation.

MODEL RELATIONS

POP-PLOT AND FOREST FIRE RATE CALCULATION

! POP-PLOT: Jin (run) = ol + a. Jin (P - ou)

Hugoniot: U = C + SU s p
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(2) Gruneisen Equation-of-State Construction of Hugoniot at p = P2 (Ref. 4) 

P = r(I - IH)/V + PR ,

with

I = 0.5 P(V2 - V)

\ ' °-5 PH(V1 - V) .
Pjj • c2<vi - V)/[V1 - SCVj - V)]2 .

Then

P = Pr(V)G(V) ,

where

g(v) = [2v - ro^ - v)]/[2v - r(v2 - v)] .

(3) Time Derivative of Shock Pressure on POP-PLOT Line at p = p^

dP _ dP d run _ dP ^ 
dt d run dt d run s *

where

= (P - o. )/[a run (P)] d run J 2

and

Ug = 0.5[C + (C2 + 4SV1P)1^2] .

The solution method uses pressure as the independent variable. From the 
constructed Hugoniot, solution is for specific volume, and then particle velocity 
and shock velocity are calculated. Assuming UpCt^et) independent of density, 
time to detonation is determined from the data at density p^ by calculating the 
pressure corresponding to particle velocity Up and then integrating the inverse 
of the derivative relation (3). The distance to detonation is then found by in­
tegrating the constructed UgCtdet) function.

To calculate the decomposition rates for the constructed POP-PLOT at density 
P2> the time derivatives for the shock are needed (see the solution method for 
the FOREST FIRE rate calculation given on p. 27). Here again the assumption that 
Up(tdet) is independent of density is applied. From the data at Pi, ftp is cal­
culated corresponding to the particle velocity Up already determined. Then by 
differentiating the shock jump relations and the constructed Hugoniot at density 
P2> ft and P are solved. Thereafter the solution method is identical to that on 
p. 27.
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SOLUTION METHOD

POP-PLOT AND FOREST FIRE RATE CALCULATION

Let P be the independent variable. 

Solve for V,

P = Ph(V)G(V) .

Then

Up = [P(V2 " V>]1/2

us = v2[p/(y2 ~ v)]1/2

I = 0.5 U

Assuming Up(t(jet) is independent of p, calculate t^et from the data at

P1 P- (c + SU )u1 p p

tdet
-a2 run (P) dP 

a3)0.5[C+(C2 + ASVj^P)1^]

where Poo is the pressure so that the POP-PLOT distance to detonation is 0.0001 
cm. A finite upper integration limit is used to permit numerical integration. 
Finally, after a table of (t(iet,Us) is formed.

run ■L
tdet

U dt’ s
det min

Calculate the shock-induced decomposition rate for the constructed POP-PLOT. 

Notation:
O O o

Let P, Up, and V be shock front derivatives with respect to time, for 
example

dP[X„(t),t]
P = dt

where Xs is the shock position.
O OTo solve the shock change, P and U^ are needed.
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Calculate from data at p = p^, assuming

Up (tdet) :*-n^ePen^ent P

U - = C + SU si p

P, = p,U_U . 1 ^1 p si

run 1 = exp [a^ + a2 (Pj_ - «3)]

= -(Pj^ - a3)Us;|/(a2 runi)

U - V.Pt/CU - + SU ) .p 1 1 si p

Shock Jump Equations for p = p„

V - V2(US - up)/us

P(v> - p2upus .

Differentiating with respect to time,

o 2 0 °U U = -U p-V + U U s p s^2 p s

and

o dP ° °UU =v0^-v-uu s p 2 dV p s

where

„ d[P (V)G(V)] dP 
§ - —^dV------ dT G(V> + PH(V>

dPR -C^[V1 + S^ - V)]

dV ^ - s(v1 - v)]3

and

dG (2 + nr^ - V2)
dv [2v - r(v2 - v)]2

dG
dV ’
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Solving,

V = 2U U /(V, 
s p v ,

r

2 dV

and then

Assume P = 0, if pressure gradient is not known.m
Calculate

O

o

I = -PV T T
Solve for W,

P = H(V,I,W) .

(The HOM equation of state is a Gruneisen construction.) 

Solve f01* w

V. FFIRE

This solution method forms the basis for the computer program FFIRE (LASL 
Identification No. LP-0601). Two examples of the output from the program follow. 
The first example is the calculation of the decomposition rate for PBX 9404 at 
density 1.844. The second example is the calculation of the rate and POP-PLOT 
for PBX 9404 at density 1.72 using the data at density 1.844. A microfiche list­
ing the code is in the pocket on the inside back cover of this report.

Notation for computer program FFIRE.

RUN = distance to detonation (cm)

P = pressure (Mbar)

V = specific volume (cm^/g)

UP = shock particle velocity (cm/ys)

US = shock velocity (cm/ys)
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W = mass fraction of undecomposed explosive

dW 1 -1RATE = - — • — , decomposition rate (ys )at W

TEMPERATURE = (K)

TIME = time to detonation (ys)
3

RHO = density (g/cm )
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EXAMPLE 1

9<J3U B PBX9«0«,BEST (TDET,UP,RUN) POP PLOT (,030,1,70) TO (,200,0.05) 7MAH78 RHU =
POP PLOT, LN(RUN) * *1 ♦ A2*Ln(P-A3), A1 s -5,a60553t + 00 A2 s -1,53ia79fct00 A3 s -0,

REACTION HUGONIOT, US * C ♦ S*UP, C = 2.960000E-01 S = 2,530000E+00

CJ DETONATION VELOCITY ■ 6,8fl0000E-01

HOH EQUATION OF STATE CONSTANTS 
P8X9«0«, RHO=l,Ba«, RAMSAY InERT HUGONIOT 

UNREACTEO EXPLOSIVE
2,42300000000E-01 l.BR300000000Et00 1,00000000000E-02-0,-0, -R.ouiBTSsapazEtao-T.isiesasaasst+oi-i.sszoiiRTRisoEtoa
-9,2042«177603E+01-2,21B93826727E+01 6t75000000000E-01 4,0000000O000E-81 
5,4229934924IE-01 5.00000000000E-05 0, -0,
3,00000000000Et02 1.00000000e00E-06»0, -0,

-0, -0. -0,
DETONATION products
-3,5390625P964E+00-2,57737590J93E+00 2.60075423332E-01 1,3908357850et-02 
•1,13963024075E-02-l,61913041i33E*00 5,21518534192E-01 6,77506S9410/E-02 
4,26524264691E*P3 1.04679999R02E-B4 7,3842291979HEt00--4,93658222389E-01 
2,9235306096IE-02 3.30277402219E-02-1, 14532498206E-02 5,00000000000E-01 
1,00000000000E»01

1,84400



u>00 EXAMPLE 1 (cont)

9«0« B POXObflitjOEST ( TIH.T , UP, RUN) POP PLOT ( ,020,1,70)
POP PLOT# LN(RUN) * Al ♦ A2«LN(P-A3), Al » *5,960553K+00
REACTION HUGONIOT # US ■ C ♦ s*UP# C ■ 2,960000b-01

RUN p V UP US

6,99135 ,00700 .51609 ,01159 ,28027
6,92189 ,00800 .51325 ,01525 ,28957
5.78018 ,00900 ,51056 ,01690 ,28877
9,91955 ,01000 .50801 ,01852 ,29285
1,69951 ,02000 .98807 ,03293 ,12933
,90723 ,03000 .97932 .09516 ,36026
,58199 ,09000 ,«6399 ,05597 ,38759
.91121 ,05000 .95582 ,06576 ,91236
,30939 ,06000 .99912 ,07977 ,93517
,29293 ,07000 ,99398 ,08317 ,95692
,19677 ,08000 .93863 ,09107 ,97690
,16319 ,09000 .93991 ,09859 ,99530
,13788 ,10000 .93068 ,10565 ,51329
,11825 ,11000 .92735 ,11295 ,53099
,10267 ,12000 .92935 ,11897 ,59699
,09006 ,13000 .92163 ,12525 ,56288
,07968 .19000 . 91 915 ,13131 ,57821
,07102 ,15000 .91687 ,13717 ,59309
,06371 ,16000 .«1«76 .19285 ,60791
,05797 ,17000 .91281 ,19837 ,62137
,05210 ,18000 .91100 ,15373 ,63995
,09793 ,19000 .90930 ,15896 .69818
,09339 ,20000 .90771 ,16906 .66106
,03979 ,21000 .90622 ,16909 ,67369
,03655 ,22000 .90982 ,17391 ,68601
,03371 ,23000 ,90399 .17868 ,69806
,03116 ,29000 .90223 ,18335 ,70987
,02887 ,25000 .90109 ,18792 ,72199
,02680 ,26000 ,39991 ,19291 ,73280
,02992 ,27000 .39883 ,19662 ,79395
,02321 ,28000 .39780 ,20119 ,75990
,02165 ,29000 .39682 ,20590 ,76566
,02022 ,30000 .39588 ,20958 ,77625
,01890 ,31000 .39998 .21370 ,78667
,01769 ,32000 .39912 .21776 ,79693
,01657 .33000 .39329 ,22175 ,80703
,01553 ,39000 ,39299 ,22369 ,81699
,01«57 ,35000 .39173 ,23956 ,82680
,01367 ,36000 .39099 ,23339 ,83698
.01283 ,37000 .39028 ,23717 ,89603
,01205 ,30000 .38959 ,29089 ,83596
,01132 .39000 .38893 ,29957 ,86977
,01069 .90000 .38829 ,29820 ,87396
,01000 ,91000 .38767 ,25179 ,88309

\

j .faaK'n7MAW7U RHO a
l,54l«79t>k!0 Ai a «0,
■e.bsunnutmi

w RATE ItMPtRATUME time

99788 9,9065t"09 320,79293 27,92226
99739 1,93251-03 329,39795 21,86390
99676 1 # 9J19t-0i 328,05099 17,87969
99611 2,592BE-03 331,85993 19,91958
98813 1, 7859E-02 375,090/1 9,91910
97800 5,5259E-02 925,39669 2,121/3
96657 1,2383E-01 980,03671 1,29737
95902 2,32911-01 537,35231 ,82060
99118 3.9299E-01 596,25659 ,57990
92756 6,1326E-01 656.08883 .93061
91393 9,0730E-01 716,93985 ,33153
89882 1,2B77E + 00 777,02889 .26236
88378 1,7699E+00 837,67799 ,21213
86829 2,3709E + 00 898,27392 .17950
85236 3, 1087E + 00 958,72521 ,19555
83597 9,0066k+00 1018,98553 ,12282
81911 5,1307E+00 1079,01508 ,10962
80179 6,3859E+00 1138,73192 ,08983
78396 7,9333E + 00 1198,15217 ,07765
76560 9,7699E+00 1257,25022 ,06799
79668 1.1992E+01 1316,00279 ,05893
72718 1,9986E+ 01 1579,38983 .05165
70706 1,7531E+01 1932,37993 ,09591
68625 2,1107E+01 1989,98239 ,09001
66975 2,5308E + 01 1597,16312 ,03532
69250 3,0261£+01 1603,88563 ,03121
61996 3,6l90t+01 1660,13228 ,02759
59559 9,3198E+01 1715,90959 ,02939
57076 5, 1 903E + 01 1771,10996 ,02159
59998 6,1527E+01 1825,77596 ,01899
51817 7,3252E+01 1879,89537 ,01671
99021 B,7B1BE+01 1933,30237 ,01966
96105 1.0559E+02 1986,08317 ,01280
93060 1,2763£ + 02 2030,15329 .01111
39875 1.5539E+02 2089,96693 ,00958
36537 1,90B5E+02 2139,97351 ,00818
33036 2,3707E+02 2189,60912 ,00691
29360 2.9959E+02 2238,31627 ,00573
25988 3,8719E+02 2286,03733 ,00966
21905 5,1701E+02 2332,69611 ,00366
17090 7.2638E+02 2378,21699 ,00275
12528 1, 1093E+03 2922,99717 ,00190
07686 2,0266E + 03 2965,96237 ,00111
03000 5,7971E+03 2506,29199 ,00038
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EXAMPLE 2 (cont)

1 B P0X9U0U# BEST (TOtT.UP.RUN) PUP PLOT ( ,020,1,70) TO (, 200,0,05) 7MAR78 RHU c 1,72000
PLOT, LN(RUN) = Al t A2*LnCP«A3)* Al = •5.460553E+U0 A2 3 -1.531479E700 A3 s -0,

1TION HUGONIOT t US = C + S*UP, C = 2.460000E-01 S 3 2,5300808700

RUN P V UP US W RATE TEMPERATURE TIME

B.U37S0 ,00200 ,53358 ,00978 ,11890 ,99800 . 4,5703E-04 314,26523 50,15697
6.12251 ,00303 .52971 ,01245 ,14007 ,99880 8, 7965E-04 317,25236 32,13292
R,76500 ,00400 .52611 ,01487 ,15638 ,99800 l,4504E-03 320,12791 22,93681
3.66836 ,00500 .52275 ,01712 , 169/5 ,99800 2, 1960E-03 322,91333 17,42482
3,23232 ,00600 .51959 ,01926 ,18115 ,99800 3, 1192E-03 325,62936 13,79385
2,758/8 ,00700 .51663 ,02129 ,19113 ,99796 4,2422t-03 328,44922 11,24694
2,39354 ,00800 .51383 ,02325 ,20086 ,99744 5,6137E"03 333,15050 9,37804
2,10405 ,00900 .51118 ,02514 ,20815 ,99688 7,0I37E-03 337,94663 7,95872
1,86958 ,01000 .50867 ,02697 ,21559 ,99628 6,68518-03 342,84125 6,85147
,81030 ,02000 .46898 ,04299 ,27047 ,98858 4,4669E-02 396,78844 2,38729
,47582 ,03000 .47536 ,05640 ,30925 ,97882 1,2194E-01 457,70456 1,22302
,32096 ,00000 ,06510 ,06820 ,34898 ,96779 2.5507E-01 522,95200 ,74439
,23454 ,05000 .45697 ,07887 ,36856 ,95588 4.5897E-01 590,81475 ,50005
,18058 ,06000 .45030 ,08869 ,39332 ,94329 7,4960t»01 660,26478 ,35808
,14423 ,07000 .44467 ,09783 ,41600 ,93013 1, 1442E + 00 730,64455 ,26811
,11838 ,08000 .43983 ,10642 ,43706 ,91648 1,66208700 801,53295 ,20742
,09922 ,09000 .43561 ,11455 ,45681 ,90237 2,32368700 872,65826 ,16451
,08455 ,10000 .43188 ,12226 ,47547 ,68784 3,15368700 943,81556 ,13302
,07304 ,11000 .02855 ,12967 ,49321 ,87288 4,17828700 1014,889/1 ,10923
,06379 ,12000 .42554 ,13676 ,51816 ,85749 5,42768700 1085,78323 ,09079
,05624 ,13000 .42282 ,14358 ,52641 ,64167 6,93638700 1156,44049 ,07622
,04998 ,14000 .42033 ,15016 ,54204 ,82540 8,74388700 1226,79398 ,06449
,04472 ,15000 .4)604 ,15653 ,55713 ,80867 1,08928701 1296,82357 .05442
,04025 ,16000 .41593 ,16271 ,57172 ,79147 1,34438701 1306,48674 ,04649
,03641 ,17000 .41398 ,16870 ,58586 ,773/6 1,60528701 1435,71918 ,04036
,03309 ,18000 .41215 ,17454 ,59959 ,75553 1,99918701 1504,55269 ,034/6
,03019 ,19000 .41045 ,18022 ,61295 ,73671 2,44258701 1572,96302 ,02497
,02765 ,20000 .40886 ,18576 ,62596 ,71735 2,89998701 1640,84972 ,02566
,02539 ,21000 ,40736 ,19118 ,63664 ,69733 3,47358701 1708,27782 ,02230
,02339 ,22000 ,40594 ,19647 .65104 ,67664 4,14368701 1775,19704 ,01919
,02160 ,23000 .40401 ,20164 ,66315 ,65524 4,92758701 1841,56548 ,01646
,01999 ,24000 .40335 ,20672 ,67501 ,63310 5,84898701 1907,35210 ,01405
,01854 ,25000 .40215 ,21169 ,68662 ,61015 6.94068701 1972,53736 ,01192
,01722 ,26000 .40101 ,21657 ,69800 ,58634 8,22318701 2037,08237 ,01002
,01602 ,27000 .39992 ,22135 ,70917 ,56162 9,74938701 2100,95551 ,00832
,01493 ,28000 .39819 ,22606 ,72013 ,53591 1,15708702 2164,11473 ,00679
,01393 ,29000 ,39790 ,23068 ,73090 ,50916 1,37828702 2226,51479 ,80541
,01302 ,30000 .39695 ,23523 ,74148 ,40125 1,64168702 2288,13165 ,00416
,01217 ,31000 .39605 ,23970 ,75190 ,45214 1,96638702 2348,88985 ,00303
.01139 ,32000 .39518 .,24411 ,76214 ,42171 2,36858702 2408,74563 ,00200
,01067 ,33000 ,39434 ,24805 ,77223 ,38987 2,87468702 2467,64144 ,00106
,01000 ,34000 ,39354 ,25273 ,78217 ,35649 3,52418702 2525,51567 ,00020
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