
IXRL-52957 Rev. I
Distribution Category

LC- 21,32

7?7 QyotfU)

An introduction to Praxis

James R. Greenwood
Arthur Evans, Jr.*
C. Robert Morgan*

Michael C. Zarnstorfft

Manuscript date: December 3, 1980

*Boll, Beranek, and Newman, Inc.
Cambridge, MA

'University of Wisconsin
Physics Department
Madison, Wi

LAWRENCE LIVERMORE LABORATORY
University of California • Livermore, California • 94550 l

Available from: Natitin.il Technical InlVirmalmii Seruce • U.S. Department of Commerce
5 » 5 Purl Ro>al Road • Sprinplicld. VA : : i t> l» So.00 per mpi • | Microfiche S-'.JD I

uafcfKWNUg

http://Natitin.il

CONTENTS

Abstract I
Section i. Introduction I
Section 2. Development History I
Section 3. Intended Applications 2
Section 4. Design Goals 3
Section 5. Language Overview 3
Section 6. Summary 16
Acknowledgments : 17
Bibliography 17
Appendix. Language Syntax 21

iii DISTUfflUTIflH OF THIS DOCUMENT K WtLMHTll

An introduction to Praxis

ABSTRACT

Praxis is the practice of the programming art, science, and skill. It is
a high-order language designed for the efficient programming of control and
systems applications. It is a comprehensive, strongly typed, block-structured
language in the tradition of Pascal, with much of the power of the Mesa and
Ada languages. It supports the development of systems composed of
separately compiled modules, user-defined data types, exception handling,
detailed control mechanisms, and encapsulated data and routines. Direct
access to machine facilities, efficient bit manipulation, and interlocked critical
regions are provided within Praxis.

Keywords: Praxis, high-level control language, compilers, real time.

Section 1

INTRODUCTION

This report describes the control-system implementation language Praxis, which
has been developed in the Laser Fusion Program at the Lawrence Livermore National
Laboratory (LLNL) for control applications. It serves as an introduction to the language so
that the reader can get a feel for what the language is and find out if it is applicable to the
reader's needs.

Most of the report consists of graduated examples that provide an overview of the
language. The definition and details of the language can be found in the Praxis: Language
Reference Manual and in other companion reports that follow the publication of this report.

Section 2

DEVELOPMENT HISTORY

In the summer of 1978, it became apparent in the laser fusion program at LLNL
that we needed a control-oriented language for use in programming the control system of the
Nova laser system. Our experience in developing the laser control system for Shiva, con­
sisting of 55 processors, clearly indicated that if a controls-oriented programming language
were available we could save considerable time and effort with respect lo Nova.

After carefully evaluating potential languages, including DOD's current develop­
ment of Ada, we chose to implement Praxis. Although Ada would meet our needs, it would
not be available in time for Nova (compilers had to be available before the mid-1980's to
meet the needs of the Nova controls programming). In retrospecl, our selection of Praxis
proved correct, since a Praxis compiler now exists and is in use while the more ambitious Ada
development is still ongoing.

1

The development of Praxis originated from an initial study by Bolt, Beranek, and
Newman (DBN), Inc., funded by the Defense Communications Agency (DCA.), to determine
the requirements of a language for communications programming. The result of that study
(BBN Report 3261) concluded that no current language fulfilled the rigorous needs of com­
munications programming.

The DCA then funded BBN to design an appropriate programming language. This
resulted in a preliminary design of the COL language described in BBN Report 3534, May
1977 (A. Evans, C. R. Morgan). Also, the DCA funded BBN to design a compiler described
in BBN Report 3533, May 1977.

In January 1979 LLNL funded BBN to augment the design of COL and to imple­
ment a COL compiler for the PDP-1 i series of computers from Digital Equipment Corpora­
tion. With the clarification of the Nova controls design and schedule, BBN's work has been
expanded to include the development of a VAX/VMS native-mode compiler, documenta­
tion, additional language design, and a high-level input/output package. BBN is scheduled to
complete their work by fall 1980, with the delivery of documented operational compilers for
Praxis, on both the PDP-11/RSX-ll and VAX/VMS systems, written in Praxis.

In January 1980 we changed the name of the language from COL to the current
Praxis. We felt that the language had evolved significantly from that of the original COL
study and that a new name would better reflect its power.

In March 1980 the preliminary PDP-11 compiler successfully passed two critical
milestones. The first milestone was that the compiler, which is written in Praxis, had to com­
pile itself successfully on the PDP-11/RSX-11M system. This would demonstrate that the
compiler was self-supporting on the PDP-11 systems, and that the bulk of compiler was
correctly implemented.

The tecond milestone was the implementation of a Nova controls application of the
language, for a "OM-based LSI-11 processor. A 2000-line assembly-language, stepper-
motor control program had to be recoded in Praxis, compiled, and burnt into read-only
memory (ROM). This would demonstrate that the language was indeed powerful enough to
replace detailed, assembly language sequences and that the compiler correctly implemented
the controls-oriented features.

Section 3

INTENDED APPLICATIONS
Praxis is designed for programming control and communication applications. It is

also useful for system programming applications, which require many of the same language
facilities found in Praxis. All these applications impose stringent requirements on program­
ming in such areas as

• Efficiency of object code.
* Direct access to machine facilities.
* Efficient bit manipulation.
* Complex data and control structures.
• Large programs developed by a team.
• Maintenance and upgrades.

The programming of these applications requires detailed control of the compiler-produced
code, the optimization, the variable allocation, and the run-time support. In these applica­
tions, it is important for the programmers to explicitly control exactly what is going on.

2

Section 4

DESIGN GOALS
The design goals of Praxis are based on the requirement of the language being a

useful tool for programming control applications. Consequently, the goals may be stated as
follows:

• Efficiency: first of the compiled code, then of the compiler.
• Readability: particularly more important than writability.
• Completeness; in the sense that

* it must be possible to program all of any one application in Praxis without
recourse to assembly language.

* it must be possible to write the compiler for Praxis in the Praxis language.
• Portability: Praxis should be reasonably machine-independent.
• Modularity: it must be possible to program large projects within Praxis, requir­

ing separate compilation of modules and configuration control.
• Usability: primarily used by experienced programmers, so that the ease of

learning Praxis is less important than the ease of using Praxis.
The primary requirements for control applications are efficiency of the compiled

code, completeness, and portability. Praxis must produce programs that make effective use
of hardware resources directly controlled by the programmer. Also, the programs should be
as portable as possible between machines. In general, the language features are portable but.
where machine-dependent parts are necessary, they are as conspicuous as possible. For ex­
ample, the programmer can override the language's type-checking mechanism, but it is easy
to see when this is being done.

The requirement for efficiency has had one other impact on the language design. All
proposed features and facilities have to be scrutinized for the run-time and the compile-time
efficiency of their implementation. No matter how desirable a particular feature might be, it
had to be rejected if a reasonably efficient implementation could not be designed.

Section 5

LANGUAGE OVERVIEW
Praxis is a modern, block-structured, fully typed, algorithmic progi.imming lan­

guage in the tradition of Pascal. Its design has been influenced by the languages Simula,
BCPL, Euclid, PL/I, Jovial, CS-4, Alphard, Mesa, and Bliss languages, as well as by the
DOD's language development work and the proposed Ada language. In scope and power.
Praxis most closely resembles Ada and Mesa.

Since the control environment differs in important ways from application to ap­
plication and machine to machine. Praxis has features to handle these differences. High-level
facilities that mask machine dependencies and foster machine independence (portability)
usually prevent the use of exactly the programming capability needed for real-time, control
applications programming. However. Praxis is a high-level language that has controlled
access to machine dependencies.

Praxis is strongly typed. The programmer is given a collection of predefined types
and has the ability to construct new types. Every variable, constant, parameter, and expres­
sion has a type. All types can be deduced at compile-time and the compiler requires that each
value be used in a way that is consistent with the rules associated with its type. For instance.

3

it is a compile-time error to attempt to pass an integer parameter to a routine that requires a
real parameter.

The language is blocked structured. Blocks are a method of packaging statements
and declarations so that the scope of the statements is clearly specified and controlled. Praxis
has more than 10 block-structured statements, each of which is delimited by an
XXX/endXXX pair, where XXX represents the particular statement name. For instance:

for endfor
if endif
procedure endprocedure
select endselect

The block structuring also enforces a particular programming style that is more readable and
maintainable than that of unstructured programming.

A simple example in ;he language is the matrix multiply of two N by N matrices
named SpecA and SpecB and storing the result in Spectrum:

for I := 1 to N do
for J := I to N do

Spectrum [I,J] := 0
for K := 1 to N do

Spectrum [I,J] := Spectrum [I,J] + SpecA [I,K]* SpecB [K,J]
endfor

endfor
endfor

This example only makes sense within the scope of the declarations for the variables used. All
the variables, except the one for loop indices, must be declared before use. Thus, the code
above would be preceded by something of the form

declare
N = 32 / / constant
SpecA : array [l..N,l..N] of integer / / an array variable
SpecB : array [1..N.1..N] of integer / / an array variable
Spectrum : array [I..N.1..N] of integer / / an array variable

enddeclare

This declaration block could be written more concisely in various forms. One method would
be to use a user-defined type for the array declarations which then would ensure that the
three arrays are all the same type and remain so with subsequent software maintenance.
Thus, the declarations could take the form

declare
N = 32 / / a constant
matrix is array [I..N.I..N] of integer / / a type
SpecA : matrix / / an array variable
SpecB : matrix / / an array variable
Spectrum : matrix / / an array variable

enddeclare

Note that we have used the language's comment convention " / / . " which designates that all
text to the right on the line is treated as a comment. Here, all language-reserved words are
boldface in the examples, but no distinction is made in actual programs.

4

Anoihcr example is a simple exchange son in uhich a values array is sorted into
ascending order:

lare
N = 100 / / a constant integer
data : array [1..N] of integer / / an integer array variable
done : boolean / / a true/false variable

/ / nothing out of order found

/ / if out of order, exchange them
/ / not done yet

enddeclare
... code to store values in data ...
repeat

done := true
for K := 2 to N do

if data [K-l] > data [K] do
swap (data [K-l], data [K])
done := false

endif
endfor

until done
The repeat block-structured statement is the exception to the ending sjntax rule, in that the
until is the end for the repeat block. The repeat/until has the semantics that the included
statements are executed repeatedly until the expression after the until is true. Other looping
constructs are available in Praxis, including the while/endwhile, and four forms of for/endfor.

A more detailed control programming application is shown below, it directly reads
a hardware input/output device on a PDP-11 computer in a multi-process environment. In
this example, the resource (i.e., I/O device) is protected by the interlock variable padlock in a
critical region. Another process with similar code, using the same resource, cannot preempt
the critical-region code sequence.

Declare
status : location (8! 176420) volatile logical / / status register
datum : location (8! 176422) volatile char / / input register
padlock : static interlock / / exclusion variable
temporary : char

enddeclare

Region padlock do
Repeat until (status and 8#200) < >
temporary := datum

endregion

/ / wait for device ready
/ / read the character
/ / lock the interlock
/ / unlock the interlock

The attribute volatile on the variables status and datum informs the compiler that the
variables must be referenced directly each time they are mentioned in the program, and no
optimizations are to be performed on these variables. It allows variables to be used as I/O
registers, as above, as well as to be used in shared memory.

The location attribute informs the compiler to place the variable in the physical ad­
dress specified by the octal (8!) integer constant in the parentheses. The variable is static and
always resides at that location. The static interlock is at a fixed location determined by the
compiler.

The logical predefined data type may be thought of as a bit-string data type on
which bil-by-bit operations may be performed. In the until clause, a bit in the status variable
is tested by the bit-by-bit and with the octal (8#) logical constant and comparison to a logical
zero.

A more complex application, which demonstrates the ability in Praxis to bypass the
strong typing (when desired), is the sequence that extracts the exponent value from a real
number on the PDP-11:

/ / floating point variable
/ / signed integer variable
/ / 16-bit bit-string variable

Declare
scale : real
power : integer
temporary : logical

end declare
... code assigning value to scale ...

temporary := ((force logical (scale)) rsh 8) and 8#I77
power := integer (temporary) - 81100 / / make -N to N

The force explicitly overrides the lype-checking mechanism and specifies that the variable
scale is to be handled as a logical in this expression. The logical value (i.e., 16 bits) is shifted
right 8 bits and masked with the logical constant. Temporary is assigned the resulting value
that was the exponent of the real variable scale. The logical value is then converted to an in­
teger and stored in the variable power.

Note the distinction between force and type conversion; force informs the compiler
to treat a variable as a particular type regardless of its actual type; conversion causes the
variable to be converted to the desired type.

Another application of type conversion is shown in the function upper, which con­
verts a possible lower-case letter to an upper-case letter:

function Upper (incriarxhar) returns outchanchar
if inchar < Sa or inchar > Sz do

outchar := inchar
return

endif
outchar := char (integer (inchar) - 8!40)

endfunction I Upper |

/ / set returned value
/ / exit if not lower-case letter

/ / convert to upper-case

The previous function example utilized the return statement for explicit exit from a
routine (i.e., procedure or function). This statement is one of several such statements that
eliminates the need for a GOTO in the language. An imporlant/ea/wre in the language is the
lack of the GOTO statement. The following example uses two other control flow statements,
together with block labeling, to program an application that normally requires a GOTO
statement.

primary : For index := 0 to Bound do
size:= Motor—size index
While Motor [index] = on do

if size < mid—size do
loop primary

orif size < max—size do
break primary

otherwise
Slew—motor (index)

endif
endwhile

endfor {primary!

/ / labeled statement
/ / assignment
/ / inner loop
/ / conditional statement
/ / iterate for loop
/ / alternative
/ / exit for loop
/ / default alternative
/ / procedure invocation
/ / end of alternatives
/ / end of inner loop
/ / end of labeled block

6

The loop statement above causes the for loop iteration to occur; that is, it acts like a GOTO
the for, which causes the iteration count of the loop to be incremented, the lest for comple­
tion to be performed, and the for block to be executed if the iterations have not been com­
pleted. The break statement on the other hand is a block exi: statement. In the above case, it
exits three levels of blocks: the if, while, and for, and exec ution continues after the endfor.
Labels can only appear on blocks (at the beginning and end) and are only used with the
break, loop, and retry (in critical regions) statements.

The statement sequence above would have had to be preceded by a declaration in
which the variables, types, and constants are declared. All items must be declared before their
use. The declaration for the above could be

Declare
min—size = 0 / / a constant
mid—size — 25
max—size = 50
size: integer initially min size // a variable
bound : integer initially 0
Onoff is [on, off) initially off / / an enumeration type
Motor_size: array [O..9]of integer / / array variable
Motor : array [0..9] of Onoff / / array variable

enddeclare

Notice the use of initialization clauses on variable and type declarations, which
allow for variables to be declared with initial values. For instance, the variable bound is
declared with the initial value zero, and the variable motor is declared as an array of
enumerated data values, initially all elements being the value off. The declaration form is
declares new data types and is discussed more fully below.

The break and loop example above also introduced the multiarm if statement that
allows the programming of a branch-tree. Only one arm of the statement is elaborated on
each iteration of the while loop, depending on the boolean expressions in each arm. Any
number of orif clauses may be present, and the otherwise clause is optional. Thus, the forms
below are valid if statements:

if (x = 0)or (y = 15) do

endif

if x = y do

otherwise

endif

Another form of flow control statement in Praxis is the select statement, which
selects a sequence to elaborate from a set of cases according to a selection expression. For ex­
ample:

Declare
subsystem is [power, align, beam, target] / / a type
system : subsystem initially beam / / a variable

enddeclare

7

select system from
case power : Print ("Power subsystem")
case align : Print ("Alignment")
default : Print ("Others")

endselect

Only one of the Print procedure invocations is executed, depending on the value of the
enumerated variable system. Note that the default clause will be executed for any values
other than power or align. The strong typing and declarations ensure that the only other
enumerated values the system can take on are beam and target.

Another control application that can be run on the PDP-11 uses data structures,
procedure variables, and interrupt procedures to quickly and easily program an application
that normally must be done in assembly language:

interrupt procedure clock —service ()
ticks := ticks + I

endprocedure |clock_service|
declare

vector is structure
routine: interrupt procedure () initially clock_service
status : logical initially 8#340

endstructure
clock : location (81100) vector
ticks : static integer initially 0

enddeclare

The variable ticks gets incremented for each interrupt from the line clock on the PDP-11.
Note that because the interrupt procedure is executed asynchronously, communica­

tion with the other code must be done through static variables. Only one copy exists of any
static variable.

The user-defined structure data-type vector has two fields: the first is the routine.
which is of type Interrupt Procedure and is initialized to be the address of the clock service
routine: the second field is a logical (i.e., bit-string) variable, which is set to the value desired
for the processor status word. The actual declaration and positioning of the clock vector are
accomplished by the variable declaration clock and the location attribute.

The above sequence would most likely be used in conjunction with a read routine of
the form

function Read—ticks'() returns t : integer
t := ticks

endfunction I Read—ticks)

The empty parentheses (i.e., ()) denote a routine with no parameters and would be invoked
with the form

count := Read—ticks() / / get # of ticks

The interrupt-procedure example utilized the structure data type (i.e.. the user-
defined vector) and the procedure data type. These data types are two of the predefined data
types in the language, all of which are listed below:

8

Discrete types
integer
cardinal
char
boolean
enumeration

Control types
interlock
logical
pointer

Floating types
real
long real

Aggregate types
array
structure
set

Routine types
procedure
function

Other types
general
descriptor

- signed
- unsigned integer
- ASCII character
- true/false
- programmer-specified values

- locked/unlocked
- bit string
- pointer to a typed object

- floating point
- double precision real

- array of any type, access by index
- various type components, access by name
- set of discrete type

- typed procedure variables
- typed function variables

- union o\' all t\pes (used as formal parameter*
- type descriptor

User-defined data types may be characterized in terms of the predefined types or
other user-defined types. The is form declares a user-defined data type. The semaphore in the
example below is a user-defined data type. Sync is a variable of type semaphore:

declare
semaphore is structure

lock : interlock
count : integer initially 0

endstructure
Sync : semaphore

enddeclare

type deel

' a semaohore variable

This method for synchronization was proposed by Dijkstra in 1968. The semaphore is a
special variable that can be manipulated only by the primitives Wait (also called the P
operator) and Signal (also called the V operator), defined as follows:

procedure Wait (Sem : inout ref semaphore)
Region Sem.lock do

if Sem.count = 0 do
retry

end if
Sem.count *= -1

endregion
endprocedure |Wait|

P operator
protect count access
check count value
loop, unlock, a relock lock.

decrement count
end of critical region
return from procedure

procedure Signal (Sent : inout ref semaphore)
Region Sem.lock

/ / V operator
. / enter critical recion

Sem.count *= +1 / / increment count
endregion / / exit critical region

endprocedure (Signal) / / exit from Signal

The Wait procedure allows a process to delay while waiting for an event to occur. The Signal
procedure is used to signal another process that an event has occurred. In the above example,
it is assumed that the semaphore would be shared between two processes, and each process
would have its own copy of the Wait and Signal procedures. The interlock is utilized to
guarantee atomic access to the semaphore count without worrying about actual code se­
quences

The form ••* = " assignment statement can be read as transformed by. Thus, the
statement

Sem.count *= +1

increments the count field of the semaphore passed as an argument to Signal and is equivalent
to the statement

Sem.count : - Sem.count +1

The formal parameter specification on Wait (and Signal) explicitly specifies that the
actual parameter be passed by Rcf (i.e., reference) and that the parameter will be both read
(i.e.. in) and written (i.e., out). Parameters may be passed by Ref or Val (i.e., value, by copy)
with the default being by Val. The programmer would usually specify by Ref, for large
aggregates, in the interest of efficiency. The data-passing direction can be specified as in,
inoul, or out with the default being in. The compiler checks at compile-time to ensure thai the
usage of the parameter, within the routine, is consistent with the passing direction.

The semaphore. Wait, and Signal definitions can be encapsulated within a Module
for separate compilation, or for data abstraction, or for both. Thus, the definition module
would be

Module Semaphore— package
Export semaphore. Wait, Signal
Declare

semaphore is hidden structure
lock : interlock
count : integer initially 0

enrtstructure
enddeclarc
Procedure Wait (Sem : inout ref semaphore)

endprocedure |Wail|
Procedure Signal (Sem : inout ref semaphore)

endprocedure (Signal]
endmodule {Semaphore—package)

The declarations of semaphore. Wait, and Signal are made available by the Export
to other modules (i.e.. if this module was within another) or to other separately compiled
modules that Import the declarations. Note that typ. *' as well as data and routines, can be
imported and exported.

10

The hidden attribute specified on this new declaration of the semaphore type imple­
ments what is referred to as an abstract data type. That is, the type name is known outside of
the module, but the internal structure is unknown. Thus, an application program can import
the type and declare and use variables of type semaphore without knowing the details of the
structure. For instance:

Main Module Joe_Schmoe
Import semaphore. Wait, Signal from Semaphore__package
Declare

Async: segment (cintrol—area) volatile semaphore
Bsync: segment (control _area) volatile semaphore

enddeclare
While true do / / infinite loop

Wait (Async) / / process synchronization

Signal (Bsync) / / process synchronization
endwhile
endmodule |Joe_Schmoej

The main module allows the use of top-level code (i.e., code not within a routine) and is the
main program or process, depending on the operating system employed. In the example, two
variables, Async and Bsync, are declared, using the imported semaphore definition. These
variables are then used with the Wait and Signal procedure calls to synchronize this process
with other processes. Note that the language makes no assumptions about the run-time
system; no tasking or multiprocess operations are built into Praxis. These facilities can be
programmed in the language, or provided by existing operating environments.

The segment storage class on the declarations of Async and Bsync specify that the
semaphores are static in a named (i.e.. control area) data area. This data area can be
associated with program sections or location counters (depending on the implementation) by
means of the %Segment compiler directive. For instance, for a PDP-11/RSX-11M implemen­
tation, the directive

%Segment control— area = RW, D

creates a program section (i.e., PSECT) which can be controlled and positioned at
link-time. Segment can be viewed as a named location.

The Print routine used in a previous example could be written as

Procedure Print (string : in ref array [l..?length] of char)
For index : = 1 to length do

Put—character (string [index])
endfor

endprocedure IType}

The formal parameter specifies a flexible array of characters as the type of the parameter: this
allows the arrays of characters of any length to be passed, with an implicit-size parameter
length. A quoted string is considered an array of characters indexed 1 through N, where N is
the number of characters between the quotes.

Flexible arrays can also be allocated from the free memory storage (i.e.. heap) and
accessed through pointers. The free memory is only utilized when the programmer explicitly

11

specifies it by the allocate and free operations. There is no implicit heap usage or garbage
collection in the language, an essentia] requirement in real-time control applications. Data
objects in the heap are referenced by pointers. For instance:

Declare
node is pointer structure

address : integer
status : logical initially 8#201
data : array [-3..2] of real
next : node initially nil

endstructure
head : node initially nil

enddeclare
head := allocate node (address : 81177560)
if head@.data [2] = 0 do

endif

The node declaration is a pointer to a structure of the form shown. Mead is a declaration of a
pointer object, and the assignment statement creates an object within the heap and places the
location of the object in the variable head. The field address will be initialized to the octal
value 177560, and the field status will be initialized to the octal value 201 via the type in­
itialization clause.

The object is referred to with the "®" operator. That is, since head is a pointer to a structure,
then

head@ - whole structure
head@.address - an integer field
head@.dala [J] - an element of a field
head®.next - a field
head®.next®.address - a field of an object pointed to by a field

are valid references. Note that the last reference only makes sense if the value in the next field
points to something (i.e., not nil).

The node pointer structure allows a linked list to be allocated at runtime from the
heap. The iterator form of the for loop is useful for stepping through such a list.

For p := head then p@.next while p O n i l do
if p@.stalus and 8#200 < > 8#0 do

endif

endfor

The pointer variable^ is deJared and is assigned the value from head; if the value is not nil
then the body of the for block is elaborated. The expression between the then and while is the
iteration expression that specifies the subsequent values of p.

Objects allocated from the heap must be explicitly returned with Ihe free procedure,
which has the form

12

I-'ree (p, head) / / release P and head

Free may be called with any type of pointer and any number of parameters.
An important consideration in real-time systems is the ability to handle abnormal

conditions and catastrophic failures. In Praxis, this is accomplished with named exceptions
and guard blocks. Both predefined and user-defined exceptions are available and can be
caught with a guard block. Thus,

Guard

X := Y/Z

catch
case divide—zero: Print ("Whoops")

endguard

would catch any divide-by-zero exception in the code between the gu ird and catch phases, or
in any nested routines invoked from within the code. When and if a named exception occurs.
the first (deepest) dynamically nested catch case for the named exception is elaborated. The
catch clause can specify various named exceptions as well as use a default clause (i.e., all
others).

Guard blocks may be used to contain exceptions in a large program or to catch an
exception from a localized section. For instance, the Praxis input/output package uses excep­
tions for abnormal condition handling:

Import Open, Open— error, Hie, N ame—error from IO— package
Declare

myfile : file
enddeclare
Guard

Open
with

name : "DB3: [Shiva] Test.dal"
file—id: myfile
access : default—access

endwith
catch

case open—error : Print ("Bad I/O")
raise Bad—lO

case name—error: Print ("Bad filename")
endguard

The Open procedure invocation is surrounded by a guard block: the procedure
upon detecting an error will raise the exception open- err that is declared in the 10- package.
Control is transferred to the case clause in the catch block for the exception named. The
clause is then elaborated. In the open— err case, a routine is invoked and then a user-defined
exception is explicitly raised, and elaboration continues in a higher-level guard block. For the
name-err exception, the case clause is elaborated and elaboration continues after the
endguard. If no exceptions are raised within the open, then elaboration continues after the
endguard.

13

The Open example also introduced an alternate procedure invocation, using named
formal paramelers and the list (i.e., with-endwith) format. The named parameters allow the
use of optional paramelers and parameter specificalion in any order. The name on the left of
the colon (:) is the name of the formal parameter, and the name on the right is the actual
parameter of the invocation. The declaration of the Open procedure could be of the form

-rocedure Open
param

f i le- id : in val file
name : in ref array l l . .?N] of char
access: in val set of access- type
window : optional in val 8 bit integer

initially 0
share : optional in val set of sharing

initially empty— share
. . more optional parameters . .

endparam
. . procedure body . .
endprocedure Open

Only formal parameters declared as optional may be omitted in any actual invocation. Each
formal parameter specified as optional must have a default value specified by the initially
clause.

The Guard example introduced two procedures from the Inpu t /Outpu t package.
The package is implemented as a series of procedures, functions, and abstract data types
written in the language. Each implementation will have slightly different I /O packages,
tailored to the particular operating environment. Under the PDP-11 /RSX- l 1M and VAX-
/ V M S operating systems, the I /O package supports the full RMS-11 capabilities including
indexed files. The standard, l /O-related. encapsulated data types are

•file record stream attribute

and some of the routines are

Create Open Close Extend

Display Erase Connect Disconnect
Find Delete Flush Release
Get Put Rewind Update

In addit ion, a set of conversion routines for the predefined data types are supplied, which
convert to/from ASCII text.

Other packages are supplied with implementations, or are supplied as interfaces to
existing packages in other languages. Praxis routines can invoke other language subroutines
and functions, o r they may be called from other languages. For instance, a Fortran
mathematics package would be defined as

Module Math—package
Export Sin, Cos, Log
Fortran Function Sin (X : real) returns Y : real

endfunction {Sin}

eodmodule | M a t h _ package!
14

Other than the Fortran linkage. Praxis provides the linkages

Inline - Place routine code in place of invocation
Interrupt - PDP-11 Interrupt service routine

Different compiler implementations could supply additional iinkages.
An important feature that is necessary in the control environment is the ability to

control the actual code generated for differing applications: for instance, the ability to
generate code that would reside in ROM. This control is supplied by means of both
predefined and user-defined compiler variables (comp— var), in conjunction with compiler
directives. For instance:

%define Author, three_ D
%Set Author = "J R Greenberg"
%Set Object- ROM
%Set three— D = true

/ / siring comp_ var
/ / predefined comp-
' I user defined

Declare
span is 0..5
%if three.- Dor AIU three

data : array [span. span, span] of real
%otherwise

data : array [span, span] of real
%endif

enddeclare

Compiler variables can be either boolean or string types and are explicitly declared and
assigned to by the %Set compiler directive. The comp_var Object- ROM specifies that the
code generation should be such that the code and constant data can be burned into ROM.
The %if-%otherwise-%endif allows conditional compilation under control of a boolean
comp_var expression. The referenced comp— var values can be set either within program
text or upon compiler invocation.

Another feature that, needs mentioning is the ability to generate specific instructions
or nonstandard calling sequences. This is provided by the block-structured code statement
shown below for a PDP-11 application:

Procedure Trigger (X : integer)
Declare

timer : static integer
index : integer

enddeclare
code "PDP-11" do

MOV 433. index(SP)
MOV X(SP). Rl

LP: INC timer
TRAP
DEC index(SP)
BNE LP

endcode
if timer = X do

/ set a count
; pass parameter

,7 strobe
/ / go to another routine
/ / count
//

15

endif
end procedure {Trigger)

The concluding example outlines a simple task, processor, using arrays of procedure
variables and the set data type:

Declare
number is integer range 0..5
active is set of number
active—tasks: static active initially active ()
task is procedure 0
task_ list: static array [number] of task

enddeclare

/ / range of integers
/ / set of integers
/ / a set variable
/ / procedure type
/ / list of possible tasks

Procedure Activate (task-id:number)
Active-tasks *= + Active (task- id)

end procedure | Activate)
/ / place in set

For index in active_ tasks do
task—list [index] ()

endfor

/ / scan all active tasks
/ / invoke task

These* data type in the declaration of active is used as an attribute associated with each task.
The set has six possible members denumerated by the values 0 through 5. Sets can be of any
discrete type and can be arbitrarily large (i.e., limited by memory size of machine). The active
11 after the initially clause and in the assignment statement is the set constant constructor,
which allows items from the set to be included or removed. The For statement iterates
through the set of active- tasks and will invoke any active task.

Section 6

SUMMARY
The preceding section, although introducing many features of the Praxis language,

is by no means exhaustive. Some features have not been mentioned, and others have only
been partially described. The full language is described in Praxis: Language Reference
Manual and the Programming in Praxis manual.

The Praxis language is specifically within the state of the art of language design, par­
ticularly designed for control and system implementation needs. Complex language features,
such as generic procedures, overloading of operators, and parallel processes, have been inten­
tionally left out. We felt that these concepts were either not understood enough to be incor­
porated at this time, or that they need not be part of the language.

In conclusion. Praxis is an extremely powerful, modern programming language that
goes beyond Pascal and is available today.

16

ACKNOWLEDGMENTS
The original language was designed by Arthur Evans. ir„ and C. Robert Morgan of

BBN in 1977. Additional language design in 1979 by Evans and Morgan was augmented by
James R. Greenwood (LLNL) and Michael C. Zarnstorff (University of Wisconsin). The
final language design in 1980 was developed by the above individuals, with contributions
from Earl Killian (BBN), Graeme Williams (BBN), and W. Nowicki (Stanford University).

The continued support of the management of the laser fusion program and the
Nova laser project at LLNL, in particular J. L. Emmett, J. F. Holzrichter, R. O. Godwin,
and W. W. Simmons, is gratefully acknowledged. The encouragement and support of H.
Ahlstrom and L. Coleman of the fusion experiments program at LLNL is also greatly ap­
preciated.

The tremendous effort by F. Holloway in developing the first application program
in Praxis for the Nova control system is hereby acknowledged. His patience with early com­
piler releases, his persistence in developing the application acceptence test, and his constant
enthusiasm were invaluable to the success of the project.

Additional thanks go to G. J. Suski, P. Rupert, and the controls development group
at LLNL for their willingness to attempt the project and suffer through the preliminary ver­
sions of the product.

Also, the dedicated support and documentation efforts by W. Nowicki was essen­
tial. In particular, his work on the Programming in Praxis manual came at a critical time.

The documentation and support role of J. Walker and R. Shapiro at BBN was ex­
tremely valuable. J. Walker created the Language Reference Manual in a short period of time
from an everchanging definition.

17

BIBLIOGRAPHY
Many languages are identified in the body of this report without specific references.

Citations are as follows:

Ada (Ichbiah-79A-79B)
ALGOL-60 (Naur-63)
ALPHARD (Wulf-76)
BCPL (Richard-69), (BBN-74)
BLISS (Wulf-71)
CS-4 (Inlermetrics-75)
EUCLID (Lampson-77)
FORTRAN (FORTRAN-76)
IMP (Irons-70)
JOVIAL (Shaw-63)
Mesa (Mitchell-79)
Pascal (Jensen-74)
PL/1 (IBM)
Simula (Dahl-70)

(BBN-74)
BCPL Manual, Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts
(1954).

(Brinch-Hansen-72)
P. Brinch Hansen, "Structured Multiprogramming," Comm. ACM 15, 7, 574-578
(1972).

(Brinch-Hansen-73)
P. Brinch-Hansen, Operating Systems Principles, Prentice-Hall, Inc.. Englewood
Cliffs, New Jersey (1973).

(Dahl-70)
O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Common Base Language, Norwegian
Computing Center, Publication S-22 (1970).

(DoD-77)
"Department of Defense Requirements for High-Order Computer Programming
Language—Ironman," January 14, 1977.

(Evans-76)
A. Evans, Jr., and C. R. Morgan, Development of a Communications Oriented
Language, Bolt, Beranek, and Newman. Inc., Cambridge, Massachusetts, Report
No. 3261 (1976)

(Evans-77)
A. Evans, Jr., and C. R. Morgan, A Communications Oriented Language (COL):
Language Design, Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts.
Report No. 3534(1977).

18

(Hvans-79)
A. Lvans. Jr., C. R. Morgan, E. S. Roberts, and E. M. Clarke. The Impact nf Mul­
tiprocessor Technology on High-Level Language Design. Bolt. Bcranek. and New­
man, Inc., Cambridge. Massachusetts, Report No. 4188 (1979).

(Fisher-76)
D. A. Fisher, "A Common Programming Language for the Department of
Defense—Background and Technical Requirements," Institute for Defense
Analysis, Paper P-1191. June 1976

(FORTRAN-76)
"Draft proposed ANS FORTRAN," ACM Sigplan Notices 11. 3 (1976) (entire
issue).

(IBM)
"PL/I Language Specification," IBM Corporation. ANSI] Standard for PL/I,
Subset G, Form GY33-6003-2 (undated).

(Ichbiah-79A)
J. D. Ichbiah, J. Heiard, O. Roubine, J. Barnes, B. Krieg-Brueckner, and B. A.
Wichmann, "Rationale for the Design of the Ada Programming Language," ACM
Sigplan Notices 14, 6 (1979).

(Ichbiah-79B)
J. D. Ichbiah, J. Heiard, O. Rouhne, J. Barnes. B. Krieg-Brueckner, and B. A.
Wichmann, "The Preliminary Ar/a Language Reference Manual," ACM Sigplan
Notices 14, 6 (1979).

(Intermetrics-75)
CS-4 Language Reference Manual and Operating System Interface. Intermetrics,
Inc., Cambridge. Massachusetts. Report 1R-I30-2 (1975).

(Irons-70)
E. T. Irons, "Experience with an Extensible Language." Comm. ACM 13. 1 (1970).

(Jensen-74)
K. Jensen and N. Wirth. PASCAL User Manual and Report (Second Edition).
Springer-Verlag. Berlin (1974).

(Knuth-73)
D. E. Knuth, A Review of Structured Programming, Stanford University, Stanford,
California, Computer Science Department. Report STAN-CS-73-371 (1973).

(Knulh-74)
D. E. Knuth, "Structured Programming with Goto Statements." Computing
Surveys (December 1974).

(l.ampson-77)
B. W. Lampson. J. J. Horning. R. L. London, J. G. Mitchel. and G. J. Popek.
"Report on the Programming Language EUCLID." ACM Sigplan Notices 12. 2
(1977) (entire issue).

19

(Mitchell-79)
J. G. Mitchell. W. Maybury. and R. Sweet. Mesa Language Manual 1.5. Xerox Cor­
poration. Palo Alto. California. Report CSL-79-3 (1979).

(Morgan-77)
C. R. Morgan and A. Evans, Jr.. Communications Oriented Language (COL):
Language Implementation, Bolt. Beranek, ana Newman, Inc., Cambridge.
Massachusetts, Report No. 3533 (1977).

(Naur-63) \
"Revised Report on the Algorithmic Language ALGOL 60" (P. Naur. Ed.), Conim.
ACM 6. 1, 1-17 (1963).

(Richards-69)
M. Rich; rds, "BCPL—A Tool for Compiler Writing and Systems Programming,"
from Spring Joint Computer Conference (1969), pp. 557-566.

(Shaw-63)
C. J. Shaw. "A Specification of JOVIAL," Comm. ACM 6. 12. 721-736 (1963).

(Wirth-76)
N. VVirth. Algorithms + Data Structures = Programs. Prentice-Hall. Inc.,
Englewood Cliffs, New Jersey (1976).

(Wulf-71)
W. A. Wulf. D. B. Russell, and A. N. Haberman. "BLISS: A Language for System
Programming." Comm. ACM 14, 12, 780-790 (1971).

tWulf-76)
W. A. Wulf. R. L. London, and M. Shaw, Abstraction and Verificaiion in
ALPHARD: Introduction to Language and Methodology. Carnegie-Mellon Univer­
sity. Pittsburgh, Pennsylvania, Department of Computer Science (June 1976).

(Zahn-74)
C. T. Zahn, "A Control Structure for Natural Top Down Structured Program­
ming." from Symposium on Programming Languages, Paris. France (1974).

BJ / jvb U.S. Government Printing Office: I981/1-789-O02/5S31

Appendix

LANGUAGE SYNTAX
Backus-Naur Form (BNF)

Here, we describe the context-free syntax of the language, using a variant of the
Backus-Naur Form (BNF). In particular, we adhere to the following conventions in the BNF
representation:

• Lower-case words, perhaps containing underscores, denote syntactic categories,
such as:

function-list
relation-operator
linkage

• Boldface words denote reserved words, for example.

select
function
or

• Square brackets enclose optional items. A quoted square bracket means that it
is part of the syntax (i.e.. array subscripts and enumerations).

endif [{label!] array '[' subscript,...']' of type
[mode] function for ID in '[' enumeration,...']'
[access- mode]structure

• Repeated items are represented by a delimiter followed by three dots. Thus, a
list of identifiers could be designated by

identifier,...

where the comma is the repeat delimiter. Thus, the BNF form,

identifier- list := identifier...

means that the identifier list can contain one or more identifiers separated by
commas. Another example is

statement _ list := statement;...

where the semicolon is the delimiter.

The syntax rules describing structured constructs in the language are presented
in a form that is visually similar to their usage in programs. For example, the
select statement is specified in the BNF as

21

select^statement := label: select expression from
[casecase_ literal,...: sentence;... J...
[default : sentence;...]

endselect llabclt

• Various syntactic items can be represented by the item prefixed by a qualifier
corresponding to a category name. The prefix is intended to convey extra
semantic information. For instance:

module ..identifier module-ID function, identifier

are all equivalent to:

identifier

• Some abbreviations used in the syntax description are

ID identifier
expr expression
spec specifier
c - constant compile-time constant
! - constant link-time constant

The slash (/) is used to delimit various cases of a BNF production. It can be
read as "or."

Thus:

declaration ::= procedure-declaration
/ function_declaration

is just shorthand for

declaration ::= procedure—declaration
declaration ::= function _ declaration

Syntax Definition

module declaration ::= [main] module module-ID segment-list
export ID,... [to module— ID,...]:...
sentence;...

endmodule [{module- ID|]

module ID ::= ID / module-ID.ID

sentence ::= statement / declaration / empty

declaration ::= procedure- declaration
/ function— declaration
/ listed— declaration
/ import- declaration

22

import- declaration

segment—list

/ module— declaration
/ exception— declaration

::= assignment—statement
/ invocation- statement
/ iterative— statement
/ flow— statement
/ special- statement
/ miscellaneous-statement

::= import ID,... from module- ID
/ use module- ID

::= segment (segment- ID,...) [aligned (c—const,...)]

Declarations

procedure— declaration

mode

procedure— spec

parameter- spec

::= forward [mode] procedure procedure— ID procedure- spec

/ [mode] procedure procedure— ID procedure- spec
sentence;...

endprocedure [|procedure_ ID|]

::= inline / fortran / interrupt

::- parameter— spec [segment- list]

:.= (parameter,...)/()
/ param

parameter;...
endparam

function—declaration ::= forward (mode]function function—ID function-spec

/ [mode] function function—ID function - spec
sentence;...

endfunction [{function- ID}]

function - spec

variable—spec

storage

initial

parameter

::= parameter—spec returns variable—spec [segment list J

::= variable- ID,...: [storage] type [initial]

:;= static
/ location (I_ constant)
/ register (register— spec)
/ segment-spec

::= initially expression

::= ID....: [call-type] [storage! type [default] [desc- clause]

23

segment— spec

desc_clause

call—type

default

Type

attribute

constraint

abstract— list

abstraction

base- type

listed—declaration

decl

basic— type

discrete— type

limit

zone— declaration

::= segment (segment- ID) [aligned (c_ constant))

:: = with descriptor— ID

::= variadic call—type
/ [optional] [volatile] [in / out / inout]

[ref / v«l]

::= initially expression

:= [different] [attribute— list] base— type [constraint]
[initial] [abstract- list]

:= hidden / readonly
/ volatile
/ packed / packed packed / unpacked
/ c constant bit

:= range discrete— type

:= abstraction / abstraction abstraction—list

:= starting [mode] procedure procedure—spec
/ finishing [mode] procedure procedure— spec
/ in zone—ID

:= basic-type
/ discrete— type
/ aggregate-type
/ special—type

:= declare (decl)
/ declare

decl;...
endeclare

::= variable-spec
/ constant— ID,... = 1_ constant
/ type— ID,... is [different] type [initial]
/ zone—declaration

:= integer / real / logical / char / long- real /
/ interlock / cardinal / boolean

:= limit..limit
/ '[' enumeration- ID,...']1

/ base- type

:= expression /?ID

:= zone-ID: storage zone (parameter,...)

24

special—type

aggregate- type

field

case—label

exception— declaration

::= pointer type
/ descriptor
/ general
/ [modej procedure procedure- spec
/ [mode] function function- spec

::= array'[' discrete- type,...']' of type
/ structure

field;...
endstructure

/ set of type

::= fill (c_ constant bit)
/ field- id,...: type
/ select tag-ID from

[casecase-label,...: field;...]...
endselect

::= c_ constant.. c_ constant / c_ constant

::= exception exception- ID,...
/ arm comp— var~ ID,...
/ disarmcomp—var_ ID,...

Statements

assignment—statement

invocation—statement

procedure— expression

iterative— statement

::= expression := expression
/ expression *= infix-op expression

::= procedure- ID (expression,...) / procedure- ID ()
/ procedure- expression
/ procedure—ID (parameter- ID: expression,...)
/ procedure- ID

with
parameter- ID:expression;...

endwith

::= expr—10

::= [loop— label:] while boolean- expression do
sentence;...

endwhile [{end- label)]
/ [loop— label:] repeat

sentence;...
until boolean- expression [|end_ label|]

/ [loop— label:] for for_ element do
sentence:...

endfor [{end- label]]

25

for_ element

flow_ statement

:: = for- 1D:= expression downto expression
/ for- ID := expression to expression
/ for- ID := expr (hen expr while boolean- expr
/ for.- ID in discrete- type
/ for- ID in set- type

::= break label
/ loop [loop- label]
/ return
/ (begin-label:] if boolean-expr do

sentence:...
orif boolean— expression do

sentence;...
otherwise sentence;...
endif [{end—label]]

flow— statement ::= [begin-label:] select expression from
case case- label,...

sentence;
default : sentence;...

endselect[{end_ label)]
/ [begin—label:] upon viaduct-ID,... leave

sentence;...
through

case viaduct- ID: sentence;.
endupon [|end- label]]

/ via viaduct-ID

special-statement ::= [begin—label:] region interlock—expression do
sentence;...

otherwise
sentence;...

endregion [{end— label]
/ retry
/ [begin—label:] guard

sentence;...
catch

case exception— ID,...: senter
default : sentence;...

endguard [|end_ label]]
/ raise exception— id [finishing ID,...]
/ reraise [finishing ID,...]
/ [begin- label:] block

sentence;...
endblock [{end- label]]

special—statement : [begin—label:] code "machine-designator" do
instruction;...

endcode [{end- label]]

26

instruction ::= assembler-instruction

misc. _ statement ::= free (pointer-type., expression:...)
/ swap (expression, expression)
I assert boolean- expression

Expressions

The numeric values on the "expr" identifiers below represent the operator precedence levels.

expression : :=expr -0
/ when boolean expr then expr else expr

expr_0 ::= [expr-Oeqv] expr- I

/ expr- 0 xor expr.- I

expr_ 1 ::= expr - 2 (or expr- 2]

expr—2 :.= expr- 3 [andexpr- 3]

expr_3 ::= [notlexpr_4

expr_4 ::= expr—5 [relational, operator expr-5]

expr—5 ::= expr- 6 [shift-operator expr- 6]

expr—6 ::= [expr-6 addition, operation] expr. 7

expr—7 ::= expr- 8 [multiplication- operator expr. 8]

expr_8 ::= [unary sign)expr 9

expr_9 ::= expr_ 10
/ allocate expr_ 10
/ force expr_ 10

cxpr—10 : : = 1 D / constant /expr-10(expression....i
/ expr-10 (field-value....)
/ (expression)
/ expr— 10 '[' expression,... 'J'
/ expr- 10. field-ID
/ expr- 10 <fi
•' expr_ 10 with parameter-ID expression:... endwith

fie!d_value ::= field- ID : expression /
'[' case— element']' : expression

Operators

Infix— operator

relational operator

shift-operator

::= eqv / *or/ or /and
/ relational-operator / shifl_ operator
/ addition-operator / multiplication- operator

::= = /<>/< = /</> = />

::= Ish / rsh

multiplication.-operator ::= * / ' / ' /mod

Predefined Functions

mux - maximum
min - minimum
succ - successor
pred - predeccessor
abs - absolute value
round - real to integer rounded
floor - largest integer not greater than real
ceiling - smallest integer not less than real
low - lower limit of discrete type
high - upper limit of discrete type
size- of - size in bits of data object
descriptor— of - descriptor of a type

L'SGPO-1980: 7B9-002/5531

28

