LU CRL-52957 Rev. 1
Distribution Category
UC-21,32

77704»&0

An introduction to Praxis

James R. Greenwood
Arthur Evans, Jr.*
C. Robert Morgan*

Michael C. Zarnstorff

Manuscript date: December 3, 1980

*Bolt, Beranck, und Newmun, Inc.
Cambridge, MA

YUniversity of Wisconsin frilongagriouspngeedy gl poviiogydidaeboprigrnoiros)

. D *‘,‘.-*:-““*--—wu

5 ; ' wovid et g ey vt . ks P 1> oy T

Physics Department —— fopbisic = ooy ot

Mﬂdiion wl vt rsanerly eatiads o ingly i ouleTeIL mcasaistion. & lacrieg by e Unis
- . vy agency Sarml.

LAWRENCE LIVERMORE LABORATORY

University of California « Livermore, California » 94550

Avatlable from: Nationad Technica! Information Servee @ US. Department of Commeree
S28S Port Roval Road @ Springfield. VA 22lo1@ $6.00 per com @ (Microtiche $3.50)

AER G B o it Uik B URLONNIED

N

i

http://Natitin.il

CONTENTS

ADSITACl . . o . L e e e e e e e e e e e e e 1
Section i. Introduction e e I
Section 2. Development History e e I
Section 3. Intended Applications L L e e 2
Section 4. Design Goals L e e e e e e 3
Section 5. Language Overview e 3
Sectionn 6. SUMMATY ¢t i e e e e e e e e e e e 16
Acknowledgments L s L L L e e e e e e e e 17
Bibliography e e e e e e e e e 17
Appendix. Language Syntax oo o e e e e e 21

iiii DISTRIBUTIGN OF THiS SOCUMENT IS UNLINNTED

An introduction to Praxis

ABSTRACT

Praxis is the practice of the programming art, science, and skill. It is
a high-order language designed for the efficient programming of control and
systems applications. It is a comprehensive, strongly typed, block-structured
language in the tradition of Pascal, with much of the power of the Mesa and
Ada languages. It supports the development of systems composed of
separately compiled modules, user-defined data types, exception handling,
detailed control mechanisms, and encapsulated data and routines. Direct
access to machine facilities, efficient bit manipulation, and interlocked critical
regions are provided within Praxis.

Keywords: Praxis, high-level control language, compilers, real time.

Section 1
INTRODUCTION

This report describes the control-system implementation language Praxis, which
has been developed in the Laser Fusion Program at the Lawrence Livermore National
Laboratory (LLNL) for control applications. It serves as an introduction to the language so
that the reader can get a feel for what the language is and find out if it is applicable to the
reader’s needs.

Most of the report consists of graduated examples that provide an overview of the
language. The definition and details of the language can be found in the Praxis: Language
Reference Manual and in other companion reports that foliow the publication of this report.

Section 2

DEVELOPMENT HISTORY

In the summer of 1978, it became apparent in the laser fusion program at LLNL
that we needed a control-oriented language for use in programming the control system of the
Nova laser system. Our experience in developing the laser control system for Shiva, con-
sisting of 55 processors, clearly indicated that if a controls-oriented programming language
were available we could save considerable time and effort with respect to Nova.

After carefully evaluating potential languages, including DOD's current develop-
ment of Ada, we chose to implement Praxis. Although Ada would meet our needs, it would
not be available in time for Nova (compilers had to be available before the mid-1980's to
meet the needs of the Nova controls programming). In retrospect, our selection of Praxis
proved correct, since a Praxis compiler now exists and is in use while the more ambitious Ada
development is still ongoing.

The development of Praxis originated from an initial study by Bolt, Beranek, and
Newman (GBN), Inc., funded by the Defense Communications Agency (DCA)), to determine
the requirements of a language for communications programming. The result of that study
(BBN Report 3261) concluded that no current language fulfilled the rigorous needs of com-
munications programming.

The DCA then funded BBN to design an appropriate programming language. This
resulted in a preliminary design of the COL language described in BBN Report 3534, May
1977 (A. Evans, C. R. Morgan). Also, the DCA funded BBN to design a compiler described
in BBN Report 3533, May 1977.

In Janvary 1979 LLNL funded BBN to augment the design of COL and to imple-
ment a COL compiler for the PDP-1i series of computers from Digital Equipment Corpora-
tion. With the clarification of the Nova controls design and schedule, BBN’s work has been
expanded toa include the development of a VAX/VMS native-mode compiler, documenta-
tion, additional language design, and a high-level input/output package. BBN is scheduled to
complete their work by fall 1980, with the delivery of documented operational compilers for
Praxis, on both the PDP-11/RSX-11 and VAX/VMS systems, written in Praxis.

In January 1980 we changed the name of the language from COL to the current
Praxis. We felt that the language had evolved significantly from that of the original COL
study and that a new name would better reflect its power.

In March 1980 the preliminary PDP-11 compiler successfully passed two critical
milestones. The first milestone was that the compiler, which is written in Praxis, had to com-
pile itself successfully on the PDP-11/RSX-11M system. This would demonstrate that the
compiler was self-supporting on the PDP-11 systems, and that the bulk of compiler was
correctly implemented.

The second milestone was the implementation of a Nova controls application of the
language, for « RUM-based LSI-11 processor. A 2000-line assembly-language, stepper-
motor control program had to be recoded in Praxis, compiled, and burnt into read-only
memory (ROM). This would demonstrate that the language was indeed powerful enough to
replace detailed, assembly language sequences and that the compiler correctly implemented
the controls-oriented features.

Section 3
INTENDED APPLICATIONS

Praxis is designed for programming control) and communication applications. It is
also useful for system programming applications, which require many of the same language
facilities found in Praxis. All these applications impose stringent requirements on program-
ming in such areas as
Efficiency of object code.

Direct access to machine facilities.

Efficient bit manipulation.

Complex data and control structures.

Large programs developed by a team.

Maintenance and upgrades.

The programming of these applications requires detailed control of the compiler-produced
code, the optimization, the variable allocation, and the run-time support. In these applica-
tions, it is important for the programmers to explicitly control exactly what is going on.

Section 4
DESIGN GOALS

The design goals of Praxis are based on the requirement of the language being a
useful tool for programming control applications. Consequently, the goals may be stated as
follows: .
® Efficiency: first of the compiled code, then of the compiler.
® Readability: particularly more important than writability.
® Completeness; in the sense that

* it must be possible to program all of any one application in Praxis without
recourse to assembly language.
* it must be possible to write the compiler for Praxis in the Praxis language.
® Portability: Praxis should be reasonably machine-independent.
® Modularity: it must be possible to program large projects within Praxis, requir-
ing separate compilation of modules and configuration control.
® Usability: primarily used by experienced programiners, so that the ease of
learning Praxis is less important than the ease of using Praxis.
The primary requirements for control applications are efficiency of the compiled
code, completeness, and portability. Praxis must produce programs that make effective use
of hardware resources directly controlled by the programmer. Also, the programs should bc
as portable as possible between machines. In general, the language features are portable but.
where machine-dependent parts are necessary, they are as conspicuous as possible. For ex-
ample, the programmer can override the language’s type-checking mechanism, but it is easy
to see when this is being done.

The requirement for efficiency has had one other impact on the language design. All
proposed features and facilities have to be scrutinized for the run-time and the compile-time
efficiency of their implementation. No matter how desirable a particular feature might be, it
had to be rejected if a reasonably efficient implementation could not be designed.

Section 5

LANGUAGE OVERVIEW

Praxis is a modern, block-structured, fully typed, algorithmic progiamming lan-
guage in the tradition of Pascal. Its design has been influenced by the languages Simula,
BCPL, Euclid, PL/I, Jovial, CS-4, Alphard, Mesa, and Bliss languages, as well us by the
DOD’s language development work and the proposed Ada language. In scope and power,
Praxis most closely resembles Ada and Mesa.

Since the control environment differs in important ways from application 1o ap-
plication and machine to machine, Praxis has features to handle these differences. High-level
facilities that mask machine dependencies and foster machine independence (portability)
usually prevent the use of exactiy the programming capability needed for real-time. control
applications programming. However. Praxis is a high-level language that has controlied
access to machine dependencies.

Praxis is strongly typed. The programmer is given a collection of predefined types
and has the ability to construct new types. Every variable, constant, parameter, and expres-
sion has a type. All types can be deduced at compile-time and the compiler requires that each
value be used in a way that is consistent with the rules associated with its type. For instance.

3

it is a compile-time error to attempt to pass an integer parameter to a routine that requires a
real parameter. .

The language is blocked structured. Blocks are a method of packaging statements
and declarations so that the scope of the statements is clearly specified and controlled. Praxis
has more than 10 block-structured statements, each of which is delimited by an
XXX/endXXX pair, where XXX represents the particular statement name. For instance:

for endfor
i endif
procedure endprocedure
select endselect

The block structuring also enforces a particular programming style that is more readable and
maintainable than that of unstructured programming.

A simple example in :he language is the matrix multiply of two N by N matrices
named SpecA and SpecB and storing the result in Spectrum:

for 1 := 1¢o N do
for J := 1to N do
Spectrum {LJ] := 0

for K := 1to N do
Spectrum [I,J] := Spectrum [I,J] + SpecA [ILK]* SpecB [K,J]
endfor
endfor

endfor

This example only makes sense within the scope of the declarations for the variables used. Al
the variables, except the one for loop indices, must be declared before use. Thus, the code
above would be preceded by something of the form

declare
N = 32 // constant
SpecA : array {1..N,1..N] of integer // an array variable
SpecB : array {1..N,1..N] of integer // an array variable
Spectrum : array [1..N,1..N] of integer // an array variable
enddeclare

This declaration block could be written more concisely in various forms. One method would
be to use a user-defined type for the array declarations. which then would ensure that the
three arrays are ail the same type and remain so with subsequent software maintenance.
Thus, the declarations could take the form

declare
N =32 // a constant
matrix is array [1..N,1..N] of integer // a type
SpecA : matrix // an array variable
SpecB : matrix // an array variable
Spectrum : matrix // an array variable
enddeclare

Note that we have used the language’s comment convention **//,”" which designates that all
text to the right on the line is treated as a comm.ent. Here, all language-reserved words are
boldface in the examples, but no distinction is made in actual programs.

4

Another example is a simple exchange sort in which a values array 1s sorted into
ascending order:

declare
N = 100 // a constant integer
data : array [1..N] of integer // an integer array variable
done : boolean // a true/false variable
enddeclare
... code to store values in data ...
repeat
done := true // nothing out of order found

for K := 2to N do
if data [K-1] > data [K] do
swap (data [K-1], data [K]) // if out of order, exchange them

done := false // not done yet
endif
endfor
until done

The repeat block-structured statement is the exception to the ending syntax rufe. in that the
until is the end for the repeat block. The repeat/until has the semantics that the included
statements are exccuted repeatedly until the expression after the until is true. Other looping
constructs are available in Praxis, including the while/endwhile, and four forms of for/endfor.

A more detailed control programming application is shown below. i1 directly reads
a hardware input/output device on a PDP-11 computer in a multi-process environment. In
this example. the resource (i.e., 1/O device) is protected by the interlock variable padlock in a
critical region. Another process with similar code, using the same resource, cannot preempt
the critical-region code sequence.

Declare
status : location (8!176420) volatile logical // status register
datum : location (8'176422) volatile char // input register

padlock : static interlock // exclusion variable
temporary : char

emddeclare

Region padlock do // wait for device ready
Repeat until (status and 8#200) <> 8#0 // read the character
temporary := datum // lock the interlock

endregion // unlock the interlock

The attribute volatile on the variables srazus and darum informs the compiler that the
variables must be referenced directly cach time they are mentioned in the program, and no
optimizations are 10 be performed on these variables. [t allows variables to be used as 1/0
registers, as above, as well as to be used in shared memory.

The location attribute informs the compiler to place the variable in the physical ad-
dress specified by the octal (8!) integer constant in the parentheses. The variable is static and
always resides at that location. The static interlock is at a fixed location determined by the
compiler.

The logical predefined data type may be thought of as a bit-string data type on
which bit-by-bit operations may be performed. In the until clause, a bit in the status variable
is tested by the bit-by-bit and with the octal (8#) logical constant and comparison to a logical
sero.

(v

A more complex application, which demonstrates the ability in Praxis 10 bypass the
strong typing (when desired), is the sequence that extracts the cxponent value from a real
number on the PDP-11:

Declare
scale : real // floating point variable
power : integer // signed integer variable

temporary : logical // 16-bit bit-string variable
enddeclare
... code assigning value to scale ...

temporary := ({force logical (scale)) rsh 8) and 84177

power := integer (temporary) - 8!100 // make -N to N

The force explicitly overrides the type-checking mechanism and specifies that the variable
scale is to be handled as a logical in this expression. The logical value (i.e., 16 bits) is shifted
right 8 bits and masked with the logical constant. Temporary is assigned the resulting value
that was the exponent of the real variable scale. The logical value is then converted to an in-
teger and stored in the variable power.

Note the distinction between force and type conversion; force informs the compiler
to treat a variable as a particular type regardless of its actual type: conversion causes the
variable to be converted to the desired type.

Another application of type conversion is shown in the function upper, which con-
verts a possible lower-case letter to an upper-case letter:

function Upper (inchar:char) returns outchar:char
if inchar < %a or inchar > 3z do

outchar := inchar // set returned value

return // exit if not lower-case letter
endif
outchar := char (integer (inchar) - 8'40) // convert to upper-case

endfunction {Upper}

The previous function example utilized the return statement for explicit exit from a
routine (i.¢., procedure or function). This statement is one of several such statements that
eliminates the need for a GOTO in the language. An important feature in the language is the
lack of the GOTO statement. The following example uses two other control flow statements,
together with block labeling, to program an application that normally requires a GOTO
statement.

primary : For index := 0 to Bound de
size := Motor—size index
While Motor [index] = on do
if size < mid—size do
loop primary
orif size < max—sizedo
break primary
otherwise
Slew—motor {index)
endif
endwhile
endfor {primary}

// labeled statement

// assignment

// inner loop

// conditional statement
// iterate for loop

// alternative

// exit for loop

// default alternative
// procedure invocation
// end of alternatives
// end of inner loop

// end of labeled block

The loop statement above causes the for loop iteration 1o occur: that is, it acts like a GOTO
the for. which causes the iteration count of the loop to be incremented, the test for comple-
tion to be performed, and the for block to be executed if the iterations have not been com-
pleted. The break statement on the other hand is a block exi: statement. In the above case, it
exits three levels of blocks: the if, while, and for, and execation continues after the endfor.
Labels can only appear on blocks (at the beginning and end) and are only used with the
bresk, loop, and retry (in critical regions) statements.

The statement sequence above would have had to be preceded by a declaration in
which the variables, types, and constants are declared. All items must be declared before their
use. The declaration for the above could be

Declare
min—size = 0 // a constant
mid_size = 25
max—size = 50

size : integer initially min size // a variable

bound : jnteger initially 0

Onoff is [on, off] initially off // an enumeration type

Motor —size : array [0..9] of integer // array variable

Motor : array [0..9] of Onofl // array variable
enddeclare

Notice the use of initialization clauses on variable and type declarations, which
allow for variables to be declared with initial values. For instance, the variable bound is
declared with the initial value zero, and the variable moror is declared as an array of
enumerated data values, initially all elements being the value off. The declaration form is
declares new data types and is discussed more fully below.

The break and loop example above also introduced the multiarm if statement that
allows the programming of a branch-tree. Only one arm of the statement is elaborated on
each iteration of the while loop, depending on the boolean expressions in cach arm. Any ~
number of orif clauses may be present, and the otherwise clause is optional. Thus, the forms
below are valid if statements:

if (x = 0)or (y = 15) do

endif
if x = ydo

otherwise
endif
Another form of flow control statement in Praxis is the select statement, which

selects a sequence to claborate from a set of cases according 1o a selection expression. For ex-
ample:

Declare
subsystem is [power, align, beam, target] // a type
system : subsystem initially beam // a variable
enddeciare

select system from
case power : Print (“Power subsystem™)
case align : Print (“Alignment™)
default : Print (“Others™)

endselect

Only one of the Print procedure invocations is executed. depending on the value of the
enumerated variable system. Note that the default clause will be executed for any values
other than power or align. The strong typing and declarations ensure that the only other
enumerated values the system can take on are beam and targer.

Another control application that can be run on the PDP-11 uses data structures,
procedure variables, and interrupt procedures to quickly and easily program an application
that normally must be done in assembly language:

interrupt procedure clock _service ()
ticks := ticks + |
endprocedure {clock _service}

declare
vector is structure
routine : interrupt procedure () initially clock __service
status : logical initially 8#340
endstructure
clock : location (8!100) vector
ticks : static integer initially 0
enddeclare

The variable ticks gets incremented for each interrupt from the line clock on the PDP-11.

Note that because the interrupt procedure is executed asynchronously, communica-
tion with the other code must be done through static variables. Only one copy exists of any
static variable.

The user-defined structure data-type vector has two fields: the first is the routine,
which is of type Interrupt Procedure and is initialized to be the address of the clock service
routine; the second field is a logical (i.e., bit-string) variable, which is set to the value desired
for the processor status word. The actual declaration and positioning of the clock vector are
accomplished by the variable declaration clock and the location attribute.

The above sequence would most likely be used in conjunction with a read routine of
the form

function Read_licksfy() returns t : integer

t := ticks ’
endfunction {Read__ticks}

The empty parentheses (i.e., (}) denote a routine with no parameters and would be invoked
with the form

count := Read.—ticks () // get # of ticks
The interrupt-procedure example utilized the structure data type (i.e.. the user-

defined vector) and the procedure data type. These data types are two of the predefined data
types in the language, all of which are listed below:

Discrete types

integer - signed
cardinal - unsigned integer
char - ASCII character
boolean - true/false
enumeration - programmer-specified values
Control types
interlock - locked/unlocked
logical - bit string
pointer - pointer to a typed object
Floating types
real - floating point
long real - double precision real
Aggregate types
array ~ array of any type. access by index
structure - various type components. access by name
set - set of discrete type
Routine types
procedure - typed procedure variables
function - typed function cariables
Other types
general - union of all types (used as formal parameter)

'

descriptor tyvpe descriplor

L'ser-defined data types may be characterized in terms of the predefined types or
other user-defined types. The is form declares a user-defined data type. The semaphore in the
example below is a user-defined data type. Sync is a variable of type semaphore:

declare
semaphore is structure J type decl
lock : interlock
count : integer initially 0
endstructure
Sync : semaphore '/ a semaphore variable
enddeclare

This method for synchronization was proposed by Dijkstra in 1968. The semaphore is a
special variable that can be manipulated only by the primitives Wait (also called the P
operator} and Signal (also called the V operator). defined as follows:

procedure Wait (Sem : inout ref semaphore)
Region Sem.lock do
if Sem.count = 0 do
retry
endif
Sein.count *= -|
endregion
endprocedure {Wuit]

procedure Signal (Sem ¢ inout ref semaphore)
Region Sem.lock .

7 P operator

" protect count access
check count value
loop. uniock. a retoca lock.

deerement count
end of eritical region
. return from procedure

/7 V operator
¢ enter critical region

Sem.count *= +] // increment count
endregion /7 exit critical region
endprocedure {Signal} // exit from Signal

The Wait procedure allows a process to delay while waiting for an event to occur. The Signal
procedure is used to signal another process that an event his occurred. In the ubove example.
it is assumed that the semaphore would be shared between two processes. and each process
would have its own copy of the Wair and Signal procedures. The interlock is utilized to
Luaraniee atomic access to the semaphore count without worrying about actual code se-
quences.

The form “*="" assignment statement can be read as rransformed by. Thus, the
statement

Sem.count *= +1

increments the count field of the semaphore passed as an argument to Signal and is equivalent
to the statement

Sem.count := Sem.count +1

The formal parameter specification on Wait (and Signal) explicitly specifies that the
actual parameter be passed by Ref (i.c., reference) and that the parameter will be both read
(i.c.. in) and written (i.e., out). Parameters may be pussed by Ref or Val (i.e., value, by copy)
with the default being by Val. The programmer would usually specify by Ref, for large
aggregates, in the interest of efficiency. The data-passing direction can be specified as in,
inout, or out with the default being in. The compiler checks at compile-time to cnsure that the
usage of the parameter, within the routine, is consistent with the passing direction.

The semaphore, Wait, and Signal definitions can be encapsulated within a Module
for separate compilation, or for data abstraction, or for both. Thus, the definition module
would be

Meodule Semaphore— package
Export semaphore. Wait, Signal
Declare
semaphore is hidden structure
lock : interlock
count : integer initially 0
endistructure
enddeclare
Procedure Wait (Sem : inout ref semaphore)
endprocedure {Wait}
Procedure Signal (Sem : inout ref semaphore)
endprocedure {Signal}
endmodule {Semaphore_ package}

The declarations of semaphore, Wait, and Signal are made available by the Export
10 other modules (i.e., if this module wus within unother) or to other separately compiled
modules that Import the declarations. Note that typ. < as well as data and routines, cun be
imported and exported.

10

The hidden attribute specified on this new declaration of the semaphore type imple-
ments what is referred to as an abstract data type. That is, the type name is known outside of
the module. but the internal structure is unknown. Thus, an application program can import
the type and declare and use variables of type semaphore without knowing the details of the
structure. For instance:

Main Module Joe__Schmoe
Import semaphore, Wait, Signal from Semaphore__package
Declare
Async : segment (control_area) volatile semaphore
Bsync : segment (control _area) volatile ssmaphore

enddeclare
While true do // infinite loop
Wait (Async) // process synchronization
Signal (Bsync) // process synchronization
endwhile

endmodule {Joe_Schmoe}

The main module allows the use of top-level code (i.e., code not within a routine) and is the
main program or process, depending on the operating system employed. In the example, two
variables, Async and Bsync, are declared, using the imported semaphore definition. These
variables are then used with the Wair and Signal procedure calls to synchronize this process
with other processes. Note that the language makes no assumptions about the run-time
system: no tasking or multiprocess operuations are built into Praxis. These facilities can be
programmed in the language, or provided by existing operating environments.

The segment storage class on the declarations of Async and Bsync specify that the
semaphores are static in a named (i.e., control area) data area. This data area cun be
associated with program sections or location counters (depending on the implementation) by
means of the %Segment compiler directive. For instance, for a PDP-11/RSX-11M implemen-
tation. the directive

%Segment control—area = RW, D

creales a program section {i.e., PSECT) which can be controlled and positioned at
link-time. Segment can be viewed as a named location.
The Print routine used in a previous example could be written as

Procedure Print (string : in ref array [1..%2length)] of char)
For index := | to length do
Put_character (string [index])
endfor
endprocedure |Type}

The formal parameter specifies a flexible array of characters as the type of the parameter: this
allows the arrays of characters of any length to be passcd, with an implicit-size parameter
length. A quoted string is considered an array of characters indexed 1 through N, where N is
the number of characters between the quotes.

Flexible arrays can also be allocated from the free memory storage (i.e.. heap) and
accessed through pointers. The free memory is only utilized when the programmer explicitly

It

specifies it by the allocate and free operations. There is no implicit heap usage or garbage
collection in the language, an essential requirement in real-time control applications. Data
objects in the heap are referenced by pointers. For instance:

Declare
node is pointer structure
address : integer
status : logical imitially 8#201
data : array [-3..2] of real
next : node initially nil
endstructure
head : node initiaily nil
enddeclare
head := allocate node (address : 8!177560)
if head@.data [2] = 0 do

endif

The node declaration is a pointer to a structure of the form shown. Head is a declaration of a
pointer object, and the assignment statement creates an object within the heap and places the
location of the object in the variable head. The field address will be initialized to the octal
value 177560, and the field status will be initialized to the octal value 201 via the type in-
itialization clause.

The object is referred to with the “@" operator. That is, since head is a pointer to a structure,
then

head@ ~ whole structure
head@.address — an integer field
head@.data {J] ~ an element of a field
head@.next - a field

hcad@.next@.address - a field of an object pointed to by a field

are valid references. Note that the last reference only makes sense if the value in the next field
points to something (i.e., not nil).

The node pointer structure atlows a linked list to be allocated at runtime from the
heap. The iterator form of the for loop is useful for stepping through such a list.

For p := head then p@.next while p <>nil do
if p@.status and 84200 <> 8#0 do

endif

endfor

The pointer variable p is de..lared and is assigned the value from head; if the value is not nil
then the body of the for block is elaborated. The expression between the then and while is the
iteration expression that specifies the subsequent values of p.

Objects allocated from the heap must be explicitly returned with the free procedure,
which has the form

12

Free (p, head) // release £ and head

Free may be called with any type of pointer and any number of parameters.

An important consideration in real-time systems is the ability to handle abnormal
conditions and catastrophic failures. In Praxis, this is accomplished with named exceptions
and guard blocks. Both predefined and user-defined exceptions are available and can be
caught with a guard block. Thus,

catch
case divide—zero : Print (*Whoops™)
endguard

would catch any divide-by-zero exception in the code between the gu ird and catch phases, or
in any nested routines invoked from within the code. When and if a named exception occurs,
the first (deepest) dynamically nested catch case for the named exception is elaborated. The
catch clause can specify various named exceptions as well as use a default clause (i.e., all
others).

Guard blocks may be used to contain exceptions in a Jarge program or to catch an
exception from a localized section. For instance, the Praxis input /output package uses excep-
tions for abnormal condition handling:

Imper: Open, Open—error, fiie, Name—error frem 10 package

Declare
myfile : file
enddeclare
Guard
Open
with
name : “DB3: [Shiva) Test.dat™
file—id: myfile
access : default— access
endwith
catch

case open—error : Print (**Bad [/O")
raise Bad_10
case name—error : Print (“*Bad filenume™)
endguard

The Open proceduie invocation is surrounded by a guard block: the procedure
upon detecting an error will raise the exception open— err that is declared in the /O_ package.
Control is transferred to the case clause in the catch block for the exception numed. The
clause is then elaborated. In the open— err case, a routine is invoked and then a user-defined
exception is explicitly raised, and elaboration continues in a higher-level guard block. For the
name-err exception, the case clause is elaborated and elaboration continues after the
endguard. If no exceptions are raised within the open, then elaboration continues after the
endguard. :

The Open example also introduced an alternate procedure invocation, using named
formal parameters and the list (i.e., with-endwith) format. The named parameters allow the
use of optional parameters and parameter specification in any order. The name on the left of
the colon (:) is the name of the formal parameter, and the name on the right is the actual
parameter of the invocation. The declaration of the Open procedure could be of the form

~rocedure Open
param
file_ id : in val file
name : in ref arvay {1..N] of char
access : in val set of access... lype
window : optional in val 8 bit integer
initially 0
share : optional in val set of sharing
initially empty_ share
.. more optional parameters . .
endparam
.. procedure body . .
endprocedure Open

Only formal parameters declared as optional may be omitted in any actual invocation. Each
formal parameter specified as optional must have a default value specified by the initially
clause.

The Guard example introduced two procedures from the Input/Output package.
The package is implemented as a series of procedures, functions. and abstract data types
written in the language. Each implementation will have slightly different [/O packages,
tailored 10 the particular operating environment. Under the PDP-11/RSX-11M and VAX-
/¥MS operating systems, the /0O package supports the full RMS-11 capabilities including
indexed files. The standard, 1/0-related. encapsulated data types are

file record stream attribute

and some of the routines are

Create Open Close Extend
Display Erase Connect Disconnect
Find Delete Flush Reiease
Get Put Rewind Update

In addition. a set of conversion routines for the predefined data types are supplied, which
convert to/from ASCII text.

Other packages are supplied with implementations, or are supplied as interfaces to
existing packages in other languages. Praxis routines can invoke other language subroutines
and functions, or they may be called from other languages. For instance, a Fortran
mathematics package would be defined as

Module Math_. package
Export Sin, Cos, Log
Fortran Function Sin (X : real) returns Y : real

endfunction {Sin}

endmodule {Math_ package}

Other than the Fortran linkage, Praxis provides the linkages

Inline - Place routine code in pluce of invocation
Interrupt - PDP-11 Interrupt service routine

Different compiler implementations could supply additional iinkages.

An important feature that is necessary in the control environment is the ubility 10
control the actual code generated for differing applications: for instance, the ability to
generate code ihat would reside in ROM. This control is supplied by means of both
predefined and user-defined compiler variables (comp— var), in conjunction with compiler
directives. For instance:

%define Author, three_ D

%Set Author = **J R Greenberg™ // string comp - var
%Set Object— ROM // predefined comp— +
%Set three_ D = true /7 user defined

Declare
span is 0..3
%if three— D or All - three
data : array |span. span. span] of real
%otherwise
data : array [span. span] of real
Fendif
enddeclare

Compiler variables can be either boolean or string types and are explicitly declared and
assigned 1o by the %Set compiler directive. The comp—. var Object_ ROM specifies that the
code generation should be such that the code and constant data can he burned into ROM.
The %if-%otherwise-%endil allows conditional compilation under control of a booiean
comp _ var expression. The referenced comp— var values can be set either within program
text or upon compiier invocation.

Another feature that needs mentioning is the ability to generate specific instructions
or nonstandard calling sequences. This is provided by the block-structured code statement
shown below for a PDP-11 application:

Procedure Trigger (X : integer)
Declare
timer : static integer
index : integer

enddeclare
code “PDP-11"" do
MOV #33, index(SP) ‘/ set u count
MOV X(SP), RI 7 pass parameter
LP: INC timer '/ strobe
TRAP // go to another routine
DEC index(SP) // count
BNE LP 1/
endcode

if timer = X do

endif
endprocedure {Trigger}

The concluding example outlines a simple task processor, using arrays of procedure
variables and the set data type:

Declare
number is integer range 0..5 // range of integers
active is set of number // set of integers
active_ tasks : static active initially active () // a set variable
task is procedure () // procedure type
task_ list : static array [number] of task // list of possible tasks
enddeclare

Procedure Activate (task — id:number)
Active_ tasks *= + Active (task _ id) // place in set
endprocedure |Activate]

For index in active . tasks do // scan all active tasks
task— list {index] () // invoke task
endfor /7

The set data type in the declaration of active is used as an attribule associated with each rask.
The set has six possible members denumerated by the values O through 5. Sets can be of any
discrete type and can be arbitrarily large (i.c., limited by memory size of muchine). The active
1+ after the initially clause und in (he assignment statement is the set constant constructor.
which allows items from the set to be included or removed. The For statcment iterates
through the set of active - 1asks and will invoke any active task.

Section 6
SUMMARY

The preceding section, although introducing many features of the Praxis language,
is by no meuns exhaustive. Some features have not been mentioned. and uothers have only
been partially described. The full language is described in Praxis: Language Reference
Munual and the Programming in Praxis manual.

The Praxis language is specifically within the state of the art of language design, par-
ticularly designed for control and system implementation needs. Complex language features,
such as generic procedures, overloading of operators, and parallel processes, have been inten-
tionally left out. We felt that these concepts were either not understood enough to be incor-
porated at this time, or that they need not be part of the language.

In conclusion, Praxis is an extremely powerful, modern programming language that
goes beyond Pascal and is available today.

ACKNOWLEDGMENTS

The original language was designed by Arthur Evans. Jr.. and C. Robert Morgan of
BBN in 1977. Additional language design in 1979 by Evans and Morgan was augmented by
James R. Greenwood (LLNL) and Michael C. Zarnstorff (University of Wisconsin). The
final language design in 1980 was developed by the above individuals, with contributions
from Earl Killian (BBN), Graeme Williams (BBN), and W. Nowicki (Stanford University).

The continued support of the management of the laser fusion program and the
Nova laser project at LLNL, in particular J. L. Emmett, J. F. Holzrichter, R. O. Godwin,
and W. W. Simmons, is gratefully acknowledged. The encouragement and support of H.
Ahistrom and L. Coleman of the fusion experiments program at LLNL is also greatly ap-
preciated.

The tremendous effort by F. Holloway in developing the first application program
in Praxis for the Nova control system is hereby acknowledged. His patience with early com-
piler releases, his persistence in developing the application acceptence test. and his constant
enthusiasm were invaluable 1o the success of the project.

Additional thanks go to G. J. Suski, P. Rupert, and the controls development group
at LLNL for their willingness to attempt the project and suffer through the preliminary ver-
sions of the product.

Also, the dedicated support and documentation efforts by W. Nowicki was essen-
tial. [In particular, his work on the Programming in Praxis manual came at a critical time.

The documentation and support role of J. Walker and R. Shapiro at BBN was ex-
tremely valuable. J. Walker created the Language Reference Manual in a short period of time
from an everchanging definition.

BIBLIOGRAPHY

Many languages are identified in the body of this report without specific references.
Citations are as follows:

Ada (Ichbiah-79A-79B)
ALGOL-60 {Naur-63)
ALPHARD (Wulf-76)
BCPL (Richard-69), (BBN-74)
BLISS (Wulf-71)
CS5-4 (Intermetrics-75)
EUCLID (Lampson-77)
FORTRAN (FORTRAN-76)
IMP (Irons-70)
JOVIAL (Shaw-63)
Mesa (Mitchell-79)
Pascal (Jensen-74)
PL/I (IBM)
Simula (Dahl-70)

(BBN-74)
BCPL Manual, Bolt, Beranek, and Newman, Inc., Cambridge, Massachusetts
(1954).

(Brinch-Hansen-72)
P. Brinch Hansen, “Structured Multiprogramming,” Comm. ACM 15, 7, 574-578
(1972).

{Brinch-Hansen-73)
P. Brinch-Hansen, Operating Systems Principles, Prentice-Hall, Inc.. Englewood

Cliffs, New Jersey (1973).

(Dahl-70)
0.-J. Dahl, B. Myhrhaug, and K. Nygaard, Common Base Language, Norwegian
Computing Center, Publication S-22 (1970).

(Dob-77)
“Department of Defense Requirements for High-Order Computer Programming

Language—Ironman,” January 14, 1977.

(Evans-76)
A. Evans, Jr.. and C. R. Morgan, Develop of a C ications Oriented
Language, Bolt, Beranek, and Newman. Inc., Cambridge, Massachusetts, Report

No. 3261 (1976}

(Evans-77)
A. Evans, Jr., and C. R. Morgan, 4 Communications Oriented Language (COL):
Language Design, Bolt, Beranek, and Newman, Inc., Cambridge. Massachusetts,
Report No. 3534 (1977).

(Evins-79)
A. Evans, Jr.. C. R. Morgan, E. S. Roberts. and E. M. Clarke. The Impact of Mul-

tiprocessor Technology on High-Level Language Design. Boli. Beranek. and New-
man, Inc., Cambridge. Massachusetts, Report No. 4188 (1979).

(Fisher-76)
D. A. Fisher, “A Common Programming Language for the Depariment of
Defense—Background and Technical Requirements,” Institute for Defense
Analysis, Paper P-1191, June 1976

(FORTRAN-76)
“Draft proposed ANS FORTRAN." ACM Sigplan Notices 11. 3 (1976) (entire
issue).

(IBM)
“PL/I Language Specification,” IBM Corporation. ANSI1 Standard for PL/I,
Subset G, Form GY33-6003-2 (undated).

(Ichbiah-79A)
1. D. Ichbiah, J. Heiard, O. Roubine, J. Barnes, B. Krieg-Brueckner, and B. A.
Wichmann, **Rationale for the Design of the Ada Programming Language.” 4CM
Sigplan Notices 14, 6 (1979).

(Ichbiah-79B)
J. D. Ichbiah, J. Heiard, O. Rout:ne, J. Barnes, B. Krieg-Brueckner, and B. A.
Wichmann, “The Preliminary Aca Language Reference Manual,” 4CM Sigplan
Notices 14, 6 (1979).

{Intermetrics-75)
CS-4 Language Reference Manual and Operating System Interface. |ntermetrics,
Inc., Cambridge. Massachusetts. Report iR-130-2 (1975).

(Irons-70)
E. T. Irons. “Experience with an Extensible Language.” Comm. ACM 13,1 (1970).

{Jensen-74)
K. Jensen and N. Wirth. PASCAL User Manual and Report {Second Edition).
Springer-Verlag, Berlin (1974).

(Knuth-73)
D. E. Knuth, A Review of Structured Programming, Stanford University, Stanford,
California, Computer Science Department, Report STAN-CS-73-371 (1973).

(Knuth-74)
D. E. Knuth, “Structured Programming with Goto Statements.” Computing
Surveys (December 1974).

(Lampson-77)
B. W. Lampson. J. J. Horning. R. L. London, J. G. Mitchel, and G. J. Popek.
“Report on the Programming Language EUCLID." ACM Sigplan Notices 12. 2
(1977) (entire issue).

19

(Mitcheli-79)
J. G. Mitchell. W. Maybury. and R. Sweet, Mesa Language Manual V5, Xerox Cor-
poration, Palo Alto, California. Report CSL-79-3 (1979).

(Morgan-77)
C. R. Morgan and A. Evuans, Jr.. Communications Oriented Language (COL):
L ge Impl i Bolt, Beranek, and Newman, Inc.. Cambridge,

Massachusetts, Report No. 3533 (1977).

(Nuaur-63) 4
“Revised Report on the Algorithmic Language ALGOL 60" (P. Naur, Ed.), Comn:.
ACM 6, 1, 1-17 (1963).

{Richards-69)
M. Richurds, *BCPL—A Tool for Compiler Writing and Systems Progrumnming,™
from Spring Joint Computer Conference (1969), pp. 557-566.

(Shaw-63)
C. J. Shaw. “A Specification of JOVIAL,” Comm. ACM 6. 12, 721-736 (1963).

(Wirth-76)
N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hail, Inc..
Englewood Cliffs. New Jersey (1976).

(Wuif-71)
W. A. Wulf, D. B. Russell, and A. N. Haberman, “BLISS: A Language for System
Programming,” Comm. ACAM 14, 12, 780-790 (1971).

(Wulf-76)
W. A, Wulf, R. L. London, and M. Shaw, .ibstractior and Verification in
ALPHARD: Introduction 10 Language and Methodology. Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, Department of Computer Science (June 1976).

(Zahn-74)

C. T. Zahn, **A Control Structure for Natural Top Down Structured Program-
ming,” from Symposium on Programming Languages, Paris. France (1974).

BJ/jvb U. . Government Printing Office: 1981/1—789-002/5531

Appendix
LANGUAGE SYNTAX
Backus-Naur Form (BNF)
Here, we describe the context-free syntax of the language, using a variant of the
Backus-Naur Form (BNF), In particular, we adhere to the following conventions in the BNF

representation:

® Lower-case words, perhaps containing underscores, denote syntactic categories.
such as:

function _ list
relation . operator
linkage
® Boldface words denote reserved words, for example.
select
function

or

® Square brackets enclose optional items. A quoted square bracket means that it
is part of the syntax (i.e.. array subscripts and enumerations).

endif [{labell] array ‘[’ subscript,..."]" of type
[mode] function for ID in [* enumeration,..."}’

[access _ mode] structure ...

® Repeated ilems are represented by a delimiter followed by three dots. Thus, a
list of identifiers could be designated by

identifier,...
where the comma is the repeat delimiter. Thus. the BNF form,
identifier_ list := identifier....

means that the identifier list can contain one or more identifiers separated by
commas. Another example is

statement ... list := statement;...
where the semicolon is the delimiter.
® The syntax rules describing structured constructs in the language are presented

in a form that is visually similar to their usage in programs. For example, the
select stalement is specified in the BNF as

select_statement := label: select expression from
[case case_ literal,... : sentence:...] ...
[default : sentence;...]
endselect {labcl}
® Various syntactic items can be represented by the item prefixed by a qualifier
corresponding to a category name. The prefix is intended to convey extra
semantic information. For instance:

module _ identifier module _ ID function _ identifier
are all equivalent to:
identifier

® Some abbreviations used in the syntax description are

1D identifier

expr expression

spec specifier

¢.- constant compile-time constant
1..constant link-1ime constant

@ The slash (/) is used to delimit various cases of a BNF production. It can be
read as “or.”

Thus:

declaration ::= procedure_declaration
/ function_declaration

is just sharthand for
declaration ::= procedure_ declaration
declaration ::= function _declaration
Syntax Definition
module declaration ::= [main] module module_ ID segment__list
export ID,... [to module ID,.

sentence:...
endmodule [{module_ I1D}]

module D = 1D / module... ID.ID
sentence = statement / declaration / empty
declaration 2= procedure_ declaration

/ function_ declaration
/ listed— declaration
/ import_ declaration

22

/ module_. declaration
/ exception— declaration

statement ::= assignment_ statement
/ invocation statement
/ iterative_ statement
/ flow_ statement
/ special - statement
/ miscellaneous_. statement

import— declaration ::= import [D,... from module_ iD
/ use module— 1D

segment —list 1:= segment (segment . [D,...) (aligned (c— const,...)]
Declarations
procedure_ declaration ::= forward [mode] procedure procedure_ D procedure_ spec

/ [mode] procedure procedure— ID procedure— spec
sentence;...
endprocedure [|procedure_ ID]]

mode := inline / fortran / interrupt
procedure - spec ::- parameter— spec [segment—_ list)
parameter._ spec 1= (parameter....) / ()
/ param
parameter;...
endparam
function —declaration ::= forward {mode] function function_ ID function_. spec

/ [mode] function function... ID function - spec
sentence;...
endfunction [{function_ ID}]

funiction - spec 1= parameter— spec returns variable_ spec {segmert _list]
variable —spec ::= variable— ID.,... : [stor2ge] type [initial]
storage ;= static

/ location (I constant)
/ register (register— spec)
/ segment_spec

initial = initially expression

parameter 2= [D.... : [call— type] [storage] type [default] [desc- clause]

23

segiment— spec
desc_clause

call—type

default

Type

attribute

constraint
abstract__ list

abstraction

base_ type

listed —declaration

decl

basic_ type

discrete—type

limit

zone-- declaration

1= segment (segment - 1)) [aligned (c.- constant)]
::= with descriptor— D
::= variadic call— type

/ [optional] [volatile] [in / out / inout]
[ref / val]

initially expression

1:= {different] [attribute_. list] base_ type [constraint]
[initial] fabstract— list]

hidden / readonly

/ valatile .

/ packed / packed packed / unpacked
/ ¢ constant bit

W

::= range discrete— lype
::= abstraction / abstraction abstraction__ list

1:= starting [mode] pracedure procedure — spec
/ finishing [mode] procedure procedure— spec
/ inzone_ID

::= basic— type
/ discrete—type
/ aggregate_ type
/ special—type

= declare (decl)
/ declare
decl;...
endeclare

= variable_ spec
/ constant—ID.,... = I constant
/ type—ID.,... s [different] type [initial]

/ zone—declaration

= integer / real / logical / char / long— real /
/ interlock / cardinal / boolean

2= limit..limit

/ '[' enumeration... ID,..."]'
/ base— type '
== expression / 71D

::=zone—ID: slorage zone (parameter,...)

24

special— type

aggregate.- type

field

case—label

exception—. declaration

Statements

assignment—statement

invocation--statement

procedure— expression

iterative— statement

1= pointer type

/ descriptor

/ generai

/ Imodej procedure procedure_ spec
/ [mode] function function_ spec

1= array '[’ discrete— type,..."]' of type
/ structure
field;...
endstructure
/ set of type

::= fill (c— constant bit)
/ field—id,... : type
/ select tag— 1D from
[case case_ label,... : field....] ...
endselect

1= ¢_ constant .. c constant / c_. constant

1= exception exception_ ID,...
/ armcomp- var- ID....
/ disarm comp...var— ID....

1= expression := expression
/ expression *= infix— op expression

2= procedure-- ID (expression,...) / procedure— 1D ()
/ procedure— expression
/ procedure— ID (parameter— 1D: expression,...)
/ procedure— ID
with
parameter—. ID: expression;...
endwith

2= expr— 10

::= [loop— label:] while boolean_ expression do
sentence;...
endwhile [{end_ label}}
/ [loop— label:] repeat
sentence:...
until boolean... expression [{end— label}}
/ [loop— label:] for for_ element do
sentence:...
endfor [fend_ label]]

for_ element

flow_ statement

flow_ statement

special . statement

special —statement

::= for— 1D := expression downto expression

/ for— ID := expression to expression

/ for_ 1D := expr then expr while boolean_. expr
/ for_ ID indiscrete— type

/ for_IDinset— type

== break label

/ loop [loop— label]
/ return
/ [begin— label:] if boolean_ expr do
sentence;...
orif boolean . expression do
sentence;...
otherwise sentence;...
endif [Jend_ label}]

::= [begin_. label:] select expression from
case case— label,...:
sentence:... ...
default : sentence;...
endselect[{end _ label}]
/ [begin—- label:] upon viaduct_ ID,... leave
sentences...
through
case viaduct— 1D : sentence... ...
endupon [{end_ label}]
/ viaviaduct_ ID

= [begin—label:] region interlock_ expression do
sentence;...
otherwise
sentence;...
endregion [{end— label}
/ retry
/ [begin_ label:] guard
sentence:...
catch
case exception_ 1D.,... : sentence:...
default : sentence;...
endguard [fend_ label}]
/ raise exception.- id [finishing [D....]
/ reraise [finishing 1D,...]
/ [begin-. label:] block
sentence:...
endblock [{end_ label}]

::= [begin_ label:] code “machine_ designator™ do

instruction;...
endcode [{end— labelj]

26

instruction = assembler_. instruction
misc. - stalement == free (pointer . type_. expression:...)

/ swap (expression. expression)
/ assert boolean_ expression

Expressions

The numeric values on the “expr™ identifiers below represent the operator precedence fevels.

expression ’ s=expr-0
/ when boolcan expr then expr else expr

expr—0 = [expr— O egv}expr. |

/ expr- 0 xor expr.. |
expr—1 = expr- 2 [or expr- 2]
expr—2 .= expr- 3 {and expr_. 3]
expr—.3 = [not]expr.. 4
expr—d4 1= expr-- S relational. operator expr— 5]
expr—5 1= expr— 6 [shift— operator expr-. 6]
expr—6 := [expr.- 6 addition . operation]expr. 7
expr—7 == expr- § [multiplication - operator expr - 8}
expr—8 = lupary . sign) expr. 9
expr—9 = expr- 10

/ allocate expr._ 10
[/ forceexpr_ 10

expr— 10 == 1D/ constant / expr._ 10 (expression....)
Jexpr— 10 (field— value....)
/ (expression)
/ expr—10 '} expression.... ')’
Jexpr— 10. field_ 1D
/ expr--10@

* expr— 10 with parameter— 1D . cxpression:... endwith

field_ value = field— 1D : expression /
'|" cuse— element '} : expression

Operators

Infix_ operator

relational operator
shift_ operator

multiplication.- operator

Predefined Functjons

mix
min

succ

pred

abs

round

floor

ceiling

low

high

size. of
descriptor— of

;= eqv / xor / or / and
/ relational_ operator / shifi_ operator

/ addition - operator / multiplication - operator

= o= > K=< >=>
::= Ish / rsh

u=r Y [med

mitximum

minimum

SUCCESSOr

predeccessor

- absolute value

reil to integer rounded

largest integer not greater than real
smaliest integer not less than real
lower limit of discrete type
upper limil of discrete type

size in bits of data object

- descriptor of a type

USGPO-19680:

789-002/5531

