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An introduction to Praxis 

ABSTRACT 

Praxis is the practice of the programming art, science, and skill. It is 
a high-order language designed for the efficient programming of control and 
systems applications. It is a comprehensive, strongly typed, block-structured 
language in the tradition of Pascal, with much of the power of the Mesa and 
Ada languages. It supports the development of systems composed of 
separately compiled modules, user-defined data types, exception handling, 
detailed control mechanisms, and encapsulated data and routines. Direct 
access to machine facilities, efficient bit manipulation, and interlocked critical 
regions are provided within Praxis. 

Keywords: Praxis, high-level control language, compilers, real time. 

Section 1 

INTRODUCTION 

This report describes the control-system implementation language Praxis, which 
has been developed in the Laser Fusion Program at the Lawrence Livermore National 
Laboratory (LLNL) for control applications. It serves as an introduction to the language so 
that the reader can get a feel for what the language is and find out if it is applicable to the 
reader's needs. 

Most of the report consists of graduated examples that provide an overview of the 
language. The definition and details of the language can be found in the Praxis: Language 
Reference Manual and in other companion reports that follow the publication of this report. 

Section 2 

DEVELOPMENT HISTORY 

In the summer of 1978, it became apparent in the laser fusion program at LLNL 
that we needed a control-oriented language for use in programming the control system of the 
Nova laser system. Our experience in developing the laser control system for Shiva, con­
sisting of 55 processors, clearly indicated that if a controls-oriented programming language 
were available we could save considerable time and effort with respect lo Nova. 

After carefully evaluating potential languages, including DOD's current develop­
ment of Ada, we chose to implement Praxis. Although Ada would meet our needs, it would 
not be available in time for Nova (compilers had to be available before the mid-1980's to 
meet the needs of the Nova controls programming). In retrospecl, our selection of Praxis 
proved correct, since a Praxis compiler now exists and is in use while the more ambitious Ada 
development is still ongoing. 
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The development of Praxis originated from an initial study by Bolt, Beranek, and 
Newman (DBN), Inc., funded by the Defense Communications Agency (DCA.), to determine 
the requirements of a language for communications programming. The result of that study 
(BBN Report 3261) concluded that no current language fulfilled the rigorous needs of com­
munications programming. 

The DCA then funded BBN to design an appropriate programming language. This 
resulted in a preliminary design of the COL language described in BBN Report 3534, May 
1977 (A. Evans, C. R. Morgan). Also, the DCA funded BBN to design a compiler described 
in BBN Report 3533, May 1977. 

In January 1979 LLNL funded BBN to augment the design of COL and to imple­
ment a COL compiler for the PDP-1 i series of computers from Digital Equipment Corpora­
tion. With the clarification of the Nova controls design and schedule, BBN's work has been 
expanded to include the development of a VAX/VMS native-mode compiler, documenta­
tion, additional language design, and a high-level input/output package. BBN is scheduled to 
complete their work by fall 1980, with the delivery of documented operational compilers for 
Praxis, on both the PDP-11/RSX-ll and VAX/VMS systems, written in Praxis. 

In January 1980 we changed the name of the language from COL to the current 
Praxis. We felt that the language had evolved significantly from that of the original COL 
study and that a new name would better reflect its power. 

In March 1980 the preliminary PDP-11 compiler successfully passed two critical 
milestones. The first milestone was that the compiler, which is written in Praxis, had to com­
pile itself successfully on the PDP-11/RSX-11M system. This would demonstrate that the 
compiler was self-supporting on the PDP-11 systems, and that the bulk of compiler was 
correctly implemented. 

The tecond milestone was the implementation of a Nova controls application of the 
language, for a "OM-based LSI-11 processor. A 2000-line assembly-language, stepper-
motor control program had to be recoded in Praxis, compiled, and burnt into read-only 
memory (ROM). This would demonstrate that the language was indeed powerful enough to 
replace detailed, assembly language sequences and that the compiler correctly implemented 
the controls-oriented features. 

Section 3 

INTENDED APPLICATIONS 
Praxis is designed for programming control and communication applications. It is 

also useful for system programming applications, which require many of the same language 
facilities found in Praxis. All these applications impose stringent requirements on program­
ming in such areas as 

• Efficiency of object code. 
* Direct access to machine facilities. 
* Efficient bit manipulation. 
* Complex data and control structures. 
• Large programs developed by a team. 
• Maintenance and upgrades. 

The programming of these applications requires detailed control of the compiler-produced 
code, the optimization, the variable allocation, and the run-time support. In these applica­
tions, it is important for the programmers to explicitly control exactly what is going on. 
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Section 4 

DESIGN GOALS 
The design goals of Praxis are based on the requirement of the language being a 

useful tool for programming control applications. Consequently, the goals may be stated as 
follows: 

• Efficiency: first of the compiled code, then of the compiler. 
• Readability: particularly more important than writability. 
• Completeness; in the sense that 

* it must be possible to program all of any one application in Praxis without 
recourse to assembly language. 

* it must be possible to write the compiler for Praxis in the Praxis language. 
• Portability: Praxis should be reasonably machine-independent. 
• Modularity: it must be possible to program large projects within Praxis, requir­

ing separate compilation of modules and configuration control. 
• Usability: primarily used by experienced programmers, so that the ease of 

learning Praxis is less important than the ease of using Praxis. 
The primary requirements for control applications are efficiency of the compiled 

code, completeness, and portability. Praxis must produce programs that make effective use 
of hardware resources directly controlled by the programmer. Also, the programs should be 
as portable as possible between machines. In general, the language features are portable but. 
where machine-dependent parts are necessary, they are as conspicuous as possible. For ex­
ample, the programmer can override the language's type-checking mechanism, but it is easy 
to see when this is being done. 

The requirement for efficiency has had one other impact on the language design. All 
proposed features and facilities have to be scrutinized for the run-time and the compile-time 
efficiency of their implementation. No matter how desirable a particular feature might be, it 
had to be rejected if a reasonably efficient implementation could not be designed. 

Section 5 

LANGUAGE OVERVIEW 
Praxis is a modern, block-structured, fully typed, algorithmic progi.imming lan­

guage in the tradition of Pascal. Its design has been influenced by the languages Simula, 
BCPL, Euclid, PL/I, Jovial, CS-4, Alphard, Mesa, and Bliss languages, as well as by the 
DOD's language development work and the proposed Ada language. In scope and power. 
Praxis most closely resembles Ada and Mesa. 

Since the control environment differs in important ways from application to ap­
plication and machine to machine. Praxis has features to handle these differences. High-level 
facilities that mask machine dependencies and foster machine independence (portability) 
usually prevent the use of exactly the programming capability needed for real-time, control 
applications programming. However. Praxis is a high-level language that has controlled 
access to machine dependencies. 

Praxis is strongly typed. The programmer is given a collection of predefined types 
and has the ability to construct new types. Every variable, constant, parameter, and expres­
sion has a type. All types can be deduced at compile-time and the compiler requires that each 
value be used in a way that is consistent with the rules associated with its type. For instance. 
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it is a compile-time error to attempt to pass an integer parameter to a routine that requires a 
real parameter. 

The language is blocked structured. Blocks are a method of packaging statements 
and declarations so that the scope of the statements is clearly specified and controlled. Praxis 
has more than 10 block-structured statements, each of which is delimited by an 
XXX/endXXX pair, where XXX represents the particular statement name. For instance: 

for endfor 
if endif 
procedure endprocedure 
select endselect 

The block structuring also enforces a particular programming style that is more readable and 
maintainable than that of unstructured programming. 

A simple example in ;he language is the matrix multiply of two N by N matrices 
named SpecA and SpecB and storing the result in Spectrum: 

for I := 1 to N do 
for J := I to N do 

Spectrum [I,J] := 0 
for K := 1 to N do 

Spectrum [I,J] := Spectrum [I,J] + SpecA [I,K]* SpecB [K,J] 
endfor 

endfor 
endfor 

This example only makes sense within the scope of the declarations for the variables used. All 
the variables, except the one for loop indices, must be declared before use. Thus, the code 
above would be preceded by something of the form 

declare 
N = 32 / / constant 
SpecA : array [l..N,l..N] of integer / / an array variable 
SpecB : array [1..N.1..N] of integer / / an array variable 
Spectrum : array [I..N.1..N] of integer / / an array variable 

enddeclare 

This declaration block could be written more concisely in various forms. One method would 
be to use a user-defined type for the array declarations which then would ensure that the 
three arrays are all the same type and remain so with subsequent software maintenance. 
Thus, the declarations could take the form 

declare 
N = 32 / / a constant 
matrix is array [I..N.I..N] of integer / / a type 
SpecA : matrix / / an array variable 
SpecB : matrix / / an array variable 
Spectrum : matrix / / an array variable 

enddeclare 

Note that we have used the language's comment convention " / / . " which designates that all 
text to the right on the line is treated as a comment. Here, all language-reserved words are 
boldface in the examples, but no distinction is made in actual programs. 
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Anoihcr example is a simple exchange son in uhich a values array is sorted into 
ascending order: 

lare 
N = 100 / / a constant integer 
data : array [1..N] of integer / / an integer array variable 
done : boolean / / a true/false variable 

/ / nothing out of order found 

/ / if out of order, exchange them 
/ / not done yet 

enddeclare 
... code to store values in data ... 
repeat 

done := true 
for K := 2 to N do 

if data [K-l] > data [K] do 
swap (data [K-l], data [K]) 
done := false 

endif 
endfor 

until done 
The repeat block-structured statement is the exception to the ending sjntax rule, in that the 
until is the end for the repeat block. The repeat/until has the semantics that the included 
statements are executed repeatedly until the expression after the until is true. Other looping 
constructs are available in Praxis, including the while/endwhile, and four forms of for/endfor. 

A more detailed control programming application is shown below, it directly reads 
a hardware input/output device on a PDP-11 computer in a multi-process environment. In 
this example, the resource (i.e., I/O device) is protected by the interlock variable padlock in a 
critical region. Another process with similar code, using the same resource, cannot preempt 
the critical-region code sequence. 

Declare 
status : location (8! 176420) volatile logical / / status register 
datum : location (8! 176422) volatile char / / input register 
padlock : static interlock / / exclusion variable 
temporary : char 

enddeclare 

Region padlock do 
Repeat until (status and 8#200) < > 
temporary := datum 

endregion 

/ / wait for device ready 
/ / read the character 
/ / lock the interlock 
/ / unlock the interlock 

The attribute volatile on the variables status and datum informs the compiler that the 
variables must be referenced directly each time they are mentioned in the program, and no 
optimizations are to be performed on these variables. It allows variables to be used as I/O 
registers, as above, as well as to be used in shared memory. 

The location attribute informs the compiler to place the variable in the physical ad­
dress specified by the octal (8!) integer constant in the parentheses. The variable is static and 
always resides at that location. The static interlock is at a fixed location determined by the 
compiler. 

The logical predefined data type may be thought of as a bit-string data type on 
which bil-by-bit operations may be performed. In the until clause, a bit in the status variable 
is tested by the bit-by-bit and with the octal (8#) logical constant and comparison to a logical 
zero. 



A more complex application, which demonstrates the ability in Praxis to bypass the 
strong typing (when desired), is the sequence that extracts the exponent value from a real 
number on the PDP-11: 

/ / floating point variable 
/ / signed integer variable 
/ / 16-bit bit-string variable 

Declare 
scale : real 
power : integer 
temporary : logical 

end declare 
... code assigning value to scale ... 

temporary := ((force logical (scale)) rsh 8) and 8#I77 
power := integer (temporary) - 81100 / / make -N to N 

The force explicitly overrides the lype-checking mechanism and specifies that the variable 
scale is to be handled as a logical in this expression. The logical value (i.e., 16 bits) is shifted 
right 8 bits and masked with the logical constant. Temporary is assigned the resulting value 
that was the exponent of the real variable scale. The logical value is then converted to an in­
teger and stored in the variable power. 

Note the distinction between force and type conversion; force informs the compiler 
to treat a variable as a particular type regardless of its actual type; conversion causes the 
variable to be converted to the desired type. 

Another application of type conversion is shown in the function upper, which con­
verts a possible lower-case letter to an upper-case letter: 

function Upper (incriarxhar) returns outchanchar 
if inchar < Sa or inchar > Sz do 

outchar := inchar 
return 

endif 
outchar := char (integer (inchar) - 8!40) 

endfunction I Upper | 

/ / set returned value 
/ / exit if not lower-case letter 

/ / convert to upper-case 

The previous function example utilized the return statement for explicit exit from a 
routine (i.e., procedure or function). This statement is one of several such statements that 
eliminates the need for a GOTO in the language. An imporlant/ea/wre in the language is the 
lack of the GOTO statement. The following example uses two other control flow statements, 
together with block labeling, to program an application that normally requires a GOTO 
statement. 

primary : For index := 0 to Bound do 
size:= Motor—size index 
While Motor [index] = on do 

if size < mid—size do 
loop primary 

orif size < max—size do 
break primary 

otherwise 
Slew—motor (index) 

endif 
endwhile 

endfor {primary! 

/ / labeled statement 
/ / assignment 
/ / inner loop 
/ / conditional statement 
/ / iterate for loop 
/ / alternative 
/ / exit for loop 
/ / default alternative 
/ / procedure invocation 
/ / end of alternatives 
/ / end of inner loop 
/ / end of labeled block 
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The loop statement above causes the for loop iteration to occur; that is, it acts like a GOTO 
the for, which causes the iteration count of the loop to be incremented, the lest for comple­
tion to be performed, and the for block to be executed if the iterations have not been com­
pleted. The break statement on the other hand is a block exi: statement. In the above case, it 
exits three levels of blocks: the if, while, and for, and exec ution continues after the endfor. 
Labels can only appear on blocks (at the beginning and end) and are only used with the 
break, loop, and retry (in critical regions) statements. 

The statement sequence above would have had to be preceded by a declaration in 
which the variables, types, and constants are declared. All items must be declared before their 
use. The declaration for the above could be 

Declare 
min—size = 0 / / a constant 
mid—size — 25 
max—size = 50 
size: integer initially min size // a variable 
bound : integer initially 0 
Onoff is [on, off) initially off / / an enumeration type 
Motor_size: array [O..9]of integer / / array variable 
Motor : array [0..9] of Onoff / / array variable 

enddeclare 

Notice the use of initialization clauses on variable and type declarations, which 
allow for variables to be declared with initial values. For instance, the variable bound is 
declared with the initial value zero, and the variable motor is declared as an array of 
enumerated data values, initially all elements being the value off. The declaration form is 
declares new data types and is discussed more fully below. 

The break and loop example above also introduced the multiarm if statement that 
allows the programming of a branch-tree. Only one arm of the statement is elaborated on 
each iteration of the while loop, depending on the boolean expressions in each arm. Any 
number of orif clauses may be present, and the otherwise clause is optional. Thus, the forms 
below are valid if statements: 

if (x = 0)or (y = 15) do 

endif 

if x = y do 

otherwise 

endif 

Another form of flow control statement in Praxis is the select statement, which 
selects a sequence to elaborate from a set of cases according to a selection expression. For ex­
ample: 

Declare 
subsystem is [power, align, beam, target] / / a type 
system : subsystem initially beam / / a variable 

enddeclare 

7 



select system from 
case power : Print ("Power subsystem") 
case align : Print ("Alignment") 
default : Print ("Others") 

endselect 

Only one of the Print procedure invocations is executed, depending on the value of the 
enumerated variable system. Note that the default clause will be executed for any values 
other than power or align. The strong typing and declarations ensure that the only other 
enumerated values the system can take on are beam and target. 

Another control application that can be run on the PDP-11 uses data structures, 
procedure variables, and interrupt procedures to quickly and easily program an application 
that normally must be done in assembly language: 

interrupt procedure clock —service () 
ticks := ticks + I 

endprocedure |clock_service| 
declare 

vector is structure 
routine: interrupt procedure () initially clock_service 
status : logical initially 8#340 

endstructure 
clock : location (81100) vector 
ticks : static integer initially 0 

enddeclare 

The variable ticks gets incremented for each interrupt from the line clock on the PDP-11. 
Note that because the interrupt procedure is executed asynchronously, communica­

tion with the other code must be done through static variables. Only one copy exists of any 
static variable. 

The user-defined structure data-type vector has two fields: the first is the routine. 
which is of type Interrupt Procedure and is initialized to be the address of the clock service 
routine: the second field is a logical (i.e., bit-string) variable, which is set to the value desired 
for the processor status word. The actual declaration and positioning of the clock vector are 
accomplished by the variable declaration clock and the location attribute. 

The above sequence would most likely be used in conjunction with a read routine of 
the form 

function Read—ticks'() returns t : integer 
t := ticks 

endfunction I Read—ticks) 

The empty parentheses (i.e., ()) denote a routine with no parameters and would be invoked 
with the form 

count := Read—ticks() / / get # of ticks 

The interrupt-procedure example utilized the structure data type (i.e.. the user-
defined vector) and the procedure data type. These data types are two of the predefined data 
types in the language, all of which are listed below: 
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Discrete types 
integer 
cardinal 
char 
boolean 
enumeration 

Control types 
interlock 
logical 
pointer 

Floating types 
real 
long real 

Aggregate types 
array 
structure 
set 

Routine types 
procedure 
function 

Other types 
general 
descriptor 

- signed 
- unsigned integer 
- ASCII character 
- true/false 
- programmer-specified values 

- locked/unlocked 
- bit string 
- pointer to a typed object 

- floating point 
- double precision real 

- array of any type, access by index 
- various type components, access by name 
- set of discrete type 

- typed procedure variables 
- typed function variables 

- union o\' all t\pes (used as formal parameter* 
- type descriptor 

User-defined data types may be characterized in terms of the predefined types or 
other user-defined types. The is form declares a user-defined data type. The semaphore in the 
example below is a user-defined data type. Sync is a variable of type semaphore: 

declare 
semaphore is structure 

lock : interlock 
count : integer initially 0 

endstructure 
Sync : semaphore 

enddeclare 

type deel 

' a semaohore variable 

This method for synchronization was proposed by Dijkstra in 1968. The semaphore is a 
special variable that can be manipulated only by the primitives Wait (also called the P 
operator) and Signal (also called the V operator), defined as follows: 

procedure Wait (Sem : inout ref semaphore) 
Region Sem.lock do 

if Sem.count = 0 do 
retry 

end if 
Sem.count *= -1 

endregion 
endprocedure |Wait| 

P operator 
protect count access 
check count value 
loop, unlock, a relock lock. 

decrement count 
end of critical region 
return from procedure 

procedure Signal (Sent : inout ref semaphore) 
Region Sem.lock 

/ / V operator 
. / enter critical recion 



Sem.count *= +1 / / increment count 
endregion / / exit critical region 

endprocedure (Signal) / / exit from Signal 

The Wait procedure allows a process to delay while waiting for an event to occur. The Signal 
procedure is used to signal another process that an event has occurred. In the above example, 
it is assumed that the semaphore would be shared between two processes, and each process 
would have its own copy of the Wait and Signal procedures. The interlock is utilized to 
guarantee atomic access to the semaphore count without worrying about actual code se­
quences 

The form ••* = " assignment statement can be read as transformed by. Thus, the 
statement 

Sem.count *= +1 

increments the count field of the semaphore passed as an argument to Signal and is equivalent 
to the statement 

Sem.count : - Sem.count +1 

The formal parameter specification on Wait (and Signal) explicitly specifies that the 
actual parameter be passed by Rcf (i.e., reference) and that the parameter will be both read 
(i.e.. in) and written (i.e., out). Parameters may be passed by Ref or Val (i.e., value, by copy) 
with the default being by Val. The programmer would usually specify by Ref, for large 
aggregates, in the interest of efficiency. The data-passing direction can be specified as in, 
inoul, or out with the default being in. The compiler checks at compile-time to ensure thai the 
usage of the parameter, within the routine, is consistent with the passing direction. 

The semaphore. Wait, and Signal definitions can be encapsulated within a Module 
for separate compilation, or for data abstraction, or for both. Thus, the definition module 
would be 

Module Semaphore— package 
Export semaphore. Wait, Signal 
Declare 

semaphore is hidden structure 
lock : interlock 
count : integer initially 0 

enrtstructure 
enddeclarc 
Procedure Wait (Sem : inout ref semaphore) 

endprocedure |Wail| 
Procedure Signal (Sem : inout ref semaphore) 

endprocedure (Signal] 
endmodule {Semaphore—package) 

The declarations of semaphore. Wait, and Signal are made available by the Export 
to other modules (i.e.. if this module was within another) or to other separately compiled 
modules that Import the declarations. Note that typ. *' as well as data and routines, can be 
imported and exported. 
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The hidden attribute specified on this new declaration of the semaphore type imple­
ments what is referred to as an abstract data type. That is, the type name is known outside of 
the module, but the internal structure is unknown. Thus, an application program can import 
the type and declare and use variables of type semaphore without knowing the details of the 
structure. For instance: 

Main Module Joe_Schmoe 
Import semaphore. Wait, Signal from Semaphore__package 
Declare 

Async: segment (cintrol—area) volatile semaphore 
Bsync: segment (control _area) volatile semaphore 

enddeclare 
While true do / / infinite loop 

Wait (Async) / / process synchronization 

Signal (Bsync) / / process synchronization 
endwhile 
endmodule |Joe_Schmoej 

The main module allows the use of top-level code (i.e., code not within a routine) and is the 
main program or process, depending on the operating system employed. In the example, two 
variables, Async and Bsync, are declared, using the imported semaphore definition. These 
variables are then used with the Wait and Signal procedure calls to synchronize this process 
with other processes. Note that the language makes no assumptions about the run-time 
system; no tasking or multiprocess operations are built into Praxis. These facilities can be 
programmed in the language, or provided by existing operating environments. 

The segment storage class on the declarations of Async and Bsync specify that the 
semaphores are static in a named (i.e.. control area) data area. This data area can be 
associated with program sections or location counters (depending on the implementation) by 
means of the %Segment compiler directive. For instance, for a PDP-11/RSX-11M implemen­
tation, the directive 

%Segment control— area = RW, D 

creates a program section (i.e., PSECT) which can be controlled and positioned at 
link-time. Segment can be viewed as a named location. 

The Print routine used in a previous example could be written as 

Procedure Print (string : in ref array [l..?length] of char) 
For index : = 1 to length do 

Put—character (string [index]) 
endfor 

endprocedure IType} 

The formal parameter specifies a flexible array of characters as the type of the parameter: this 
allows the arrays of characters of any length to be passed, with an implicit-size parameter 
length. A quoted string is considered an array of characters indexed 1 through N, where N is 
the number of characters between the quotes. 

Flexible arrays can also be allocated from the free memory storage (i.e.. heap) and 
accessed through pointers. The free memory is only utilized when the programmer explicitly 
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specifies it by the allocate and free operations. There is no implicit heap usage or garbage 
collection in the language, an essentia] requirement in real-time control applications. Data 
objects in the heap are referenced by pointers. For instance: 

Declare 
node is pointer structure 

address : integer 
status : logical initially 8#201 
data : array [-3..2] of real 
next : node initially nil 

endstructure 
head : node initially nil 

enddeclare 
head := allocate node (address : 81177560) 
if head@.data [2] = 0 do 

endif 

The node declaration is a pointer to a structure of the form shown. Mead is a declaration of a 
pointer object, and the assignment statement creates an object within the heap and places the 
location of the object in the variable head. The field address will be initialized to the octal 
value 177560, and the field status will be initialized to the octal value 201 via the type in­
itialization clause. 

The object is referred to with the "®" operator. That is, since head is a pointer to a structure, 
then 

head@ - whole structure 
head@.address - an integer field 
head@.dala [J] - an element of a field 
head®.next - a field 
head®.next®.address - a field of an object pointed to by a field 

are valid references. Note that the last reference only makes sense if the value in the next field 
points to something (i.e., not nil). 

The node pointer structure allows a linked list to be allocated at runtime from the 
heap. The iterator form of the for loop is useful for stepping through such a list. 

For p := head then p@.next while p O n i l do 
if p@.stalus and 8#200 < > 8#0 do 

endif 

endfor 

The pointer variable^ is deJared and is assigned the value from head; if the value is not nil 
then the body of the for block is elaborated. The expression between the then and while is the 
iteration expression that specifies the subsequent values of p. 

Objects allocated from the heap must be explicitly returned with Ihe free procedure, 
which has the form 
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I-'ree (p, head) / / release P and head 

Free may be called with any type of pointer and any number of parameters. 
An important consideration in real-time systems is the ability to handle abnormal 

conditions and catastrophic failures. In Praxis, this is accomplished with named exceptions 
and guard blocks. Both predefined and user-defined exceptions are available and can be 
caught with a guard block. Thus, 

Guard 

X := Y/Z 

catch 
case divide—zero: Print ("Whoops") 

endguard 

would catch any divide-by-zero exception in the code between the gu ird and catch phases, or 
in any nested routines invoked from within the code. When and if a named exception occurs. 
the first (deepest) dynamically nested catch case for the named exception is elaborated. The 
catch clause can specify various named exceptions as well as use a default clause (i.e., all 
others). 

Guard blocks may be used to contain exceptions in a large program or to catch an 
exception from a localized section. For instance, the Praxis input/output package uses excep­
tions for abnormal condition handling: 

Import Open, Open— error, Hie, N ame—error from IO— package 
Declare 

myfile : file 
enddeclare 
Guard 

Open 
with 

name : "DB3: [Shiva] Test.dal" 
file—id: myfile 
access : default—access 

endwith 
catch 

case open—error : Print ("Bad I/O") 
raise Bad—lO 

case name—error: Print ("Bad filename") 
endguard 

The Open procedure invocation is surrounded by a guard block: the procedure 
upon detecting an error will raise the exception open- err that is declared in the 10- package. 
Control is transferred to the case clause in the catch block for the exception named. The 
clause is then elaborated. In the open— err case, a routine is invoked and then a user-defined 
exception is explicitly raised, and elaboration continues in a higher-level guard block. For the 
name-err exception, the case clause is elaborated and elaboration continues after the 
endguard. If no exceptions are raised within the open, then elaboration continues after the 
endguard. 
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The Open example also introduced an alternate procedure invocation, using named 
formal paramelers and the list (i.e., with-endwith) format. The named parameters allow the 
use of optional paramelers and parameter specificalion in any order. The name on the left of 
the colon (:) is the name of the formal parameter, and the name on the right is the actual 
parameter of the invocation. The declaration of the Open procedure could be of the form 

-rocedure Open 
param 

f i le- id : in val file 
name : in ref array l l . .?N] of char 
access: in val set of access- type 
window : optional in val 8 bit integer 

initially 0 
share : optional in val set of sharing 

initially empty— share 
. . more optional parameters . . 

endparam 
. . procedure body . . 
endprocedure Open 

Only formal parameters declared as optional may be omitted in any actual invocation. Each 
formal parameter specified as optional must have a default value specified by the initially 
clause. 

The Guard example introduced two procedures from the Inpu t /Outpu t package. 
The package is implemented as a series of procedures, functions, and abstract data types 
written in the language. Each implementation will have slightly different I /O packages, 
tailored to the particular operating environment. Under the PDP-11 /RSX- l 1M and VAX-
/ V M S operating systems, the I /O package supports the full RMS-11 capabilities including 
indexed files. The standard, l /O-related. encapsulated data types are 

•file record stream attribute 

and some of the routines are 

Create Open Close Extend 

Display Erase Connect Disconnect 
Find Delete Flush Release 
Get Put Rewind Update 

In addit ion, a set of conversion routines for the predefined data types are supplied, which 
convert to/from ASCII text. 

Other packages are supplied with implementations, or are supplied as interfaces to 
existing packages in other languages. Praxis routines can invoke other language subroutines 
and functions, o r they may be called from other languages. For instance, a Fortran 
mathematics package would be defined as 

Module Math—package 
Export Sin, Cos, Log 
Fortran Function Sin (X : real) returns Y : real 

endfunction {Sin} 

eodmodule | M a t h _ package! 
14 



Other than the Fortran linkage. Praxis provides the linkages 

Inline - Place routine code in place of invocation 
Interrupt - PDP-11 Interrupt service routine 

Different compiler implementations could supply additional iinkages. 
An important feature that is necessary in the control environment is the ability to 

control the actual code generated for differing applications: for instance, the ability to 
generate code that would reside in ROM. This control is supplied by means of both 
predefined and user-defined compiler variables (comp— var), in conjunction with compiler 
directives. For instance: 

%define Author, three_ D 
%Set Author = "J R Greenberg" 
%Set Object- ROM 
%Set three— D = true 

/ / siring comp_ var 
/ / predefined comp-
' I user defined 

Declare 
span is 0..5 
%if three.- Dor AIU three 

data : array [span. span, span] of real 
%otherwise 

data : array [span, span] of real 
%endif 

enddeclare 

Compiler variables can be either boolean or string types and are explicitly declared and 
assigned to by the %Set compiler directive. The comp_var Object- ROM specifies that the 
code generation should be such that the code and constant data can be burned into ROM. 
The %if-%otherwise-%endif allows conditional compilation under control of a boolean 
comp_var expression. The referenced comp— var values can be set either within program 
text or upon compiler invocation. 

Another feature that, needs mentioning is the ability to generate specific instructions 
or nonstandard calling sequences. This is provided by the block-structured code statement 
shown below for a PDP-11 application: 

Procedure Trigger (X : integer) 
Declare 

timer : static integer 
index : integer 

enddeclare 
code "PDP-11" do 

MOV 433. index(SP) 
MOV X(SP). Rl 

LP: INC timer 
TRAP 
DEC index(SP) 
BNE LP 

endcode 
if timer = X do 

/ set a count 
; pass parameter 

,7 strobe 
/ / go to another routine 
/ / count 
// 
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endif 
end procedure {Trigger) 

The concluding example outlines a simple task, processor, using arrays of procedure 
variables and the set data type: 

Declare 
number is integer range 0..5 
active is set of number 
active—tasks: static active initially active () 
task is procedure 0 
task_ list: static array [number] of task 

enddeclare 

/ / range of integers 
/ / set of integers 
/ / a set variable 
/ / procedure type 
/ / list of possible tasks 

Procedure Activate (task-id:number) 
Active-tasks *= + Active (task- id) 

end procedure | Activate) 
/ / place in set 

For index in active_ tasks do 
task—list [index] () 

endfor 

/ / scan all active tasks 
/ / invoke task 

These* data type in the declaration of active is used as an attribute associated with each task. 
The set has six possible members denumerated by the values 0 through 5. Sets can be of any 
discrete type and can be arbitrarily large (i.e., limited by memory size of machine). The active 
11 after the initially clause and in the assignment statement is the set constant constructor, 
which allows items from the set to be included or removed. The For statement iterates 
through the set of active- tasks and will invoke any active task. 

Section 6 

SUMMARY 
The preceding section, although introducing many features of the Praxis language, 

is by no means exhaustive. Some features have not been mentioned, and others have only 
been partially described. The full language is described in Praxis: Language Reference 
Manual and the Programming in Praxis manual. 

The Praxis language is specifically within the state of the art of language design, par­
ticularly designed for control and system implementation needs. Complex language features, 
such as generic procedures, overloading of operators, and parallel processes, have been inten­
tionally left out. We felt that these concepts were either not understood enough to be incor­
porated at this time, or that they need not be part of the language. 

In conclusion. Praxis is an extremely powerful, modern programming language that 
goes beyond Pascal and is available today. 
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Appendix 

LANGUAGE SYNTAX 
Backus-Naur Form (BNF) 

Here, we describe the context-free syntax of the language, using a variant of the 
Backus-Naur Form (BNF). In particular, we adhere to the following conventions in the BNF 
representation: 

• Lower-case words, perhaps containing underscores, denote syntactic categories, 
such as: 

function-list 
relation-operator 
linkage 

• Boldface words denote reserved words, for example. 

select 
function 
or 

• Square brackets enclose optional items. A quoted square bracket means that it 
is part of the syntax (i.e.. array subscripts and enumerations). 

endif [{label!] array '[' subscript,...']' of type 
[mode] function .... for ID in '[' enumeration,...']' 
[access- mode]structure .... 

• Repeated items are represented by a delimiter followed by three dots. Thus, a 
list of identifiers could be designated by 

identifier,... 

where the comma is the repeat delimiter. Thus, the BNF form, 

identifier- list := identifier... 

means that the identifier list can contain one or more identifiers separated by 
commas. Another example is 

statement _ list := statement;... 

where the semicolon is the delimiter. 

The syntax rules describing structured constructs in the language are presented 
in a form that is visually similar to their usage in programs. For example, the 
select statement is specified in the BNF as 
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select^statement := label: select expression from 
[casecase_ literal,...: sentence;... J... 
[default : sentence;...] 

endselect llabclt 

• Various syntactic items can be represented by the item prefixed by a qualifier 
corresponding to a category name. The prefix is intended to convey extra 
semantic information. For instance: 

module ..identifier module-ID function, identifier 

are all equivalent to: 

identifier 

• Some abbreviations used in the syntax description are 

ID identifier 
expr expression 
spec specifier 
c - constant compile-time constant 
! - constant link-time constant 

The slash (/) is used to delimit various cases of a BNF production. It can be 
read as "or." 

Thus: 

declaration ::= procedure-declaration 
/ function_declaration 

is just shorthand for 

declaration ::= procedure—declaration 
declaration ::= function _ declaration 

Syntax Definition 

module declaration ::= [main] module module-ID segment-list 
export ID,... [to module— ID,...]:... 
sentence;... 

endmodule [{module- ID|] 

module ID ::= ID / module-ID.ID 

sentence ::= statement / declaration / empty 

declaration ::= procedure- declaration 
/ function— declaration 
/ listed— declaration 
/ import- declaration 
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import- declaration 

segment—list 

/ module— declaration 
/ exception— declaration 

::= assignment—statement 
/ invocation- statement 
/ iterative— statement 
/ flow— statement 
/ special- statement 
/ miscellaneous-statement 

::= import ID,... from module- ID 
/ use module- ID 

::= segment (segment- ID,...) [aligned (c—const,...)] 

Declarations 

procedure— declaration 

mode 

procedure— spec 

parameter- spec 

::= forward [mode] procedure procedure— ID procedure- spec 

/ [mode] procedure procedure— ID procedure- spec 
sentence;... 

endprocedure [|procedure_ ID|] 

::= inline / fortran / interrupt 

::- parameter— spec [segment- list] 

:.= (parameter,...)/() 
/ param 

parameter;... 
endparam 

function—declaration ::= forward (mode]function function—ID function-spec 

/ [mode] function function—ID function - spec 
sentence;... 

endfunction [{function- ID}] 

function - spec 

variable—spec 

storage 

initial 

parameter 

::= parameter—spec returns variable—spec [segment list J 

::= variable- ID,...: [storage] type [initial] 

:;= static 
/ location (I_ constant) 
/ register (register— spec) 
/ segment-spec 

::= initially expression 

::= ID....: [call-type] [storage! type [default] [desc- clause] 
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segment— spec 

desc_clause 

call—type 

default 

Type 

attribute 

constraint 

abstract— list 

abstraction 

base- type 

listed—declaration 

decl 

basic— type 

discrete— type 

limit 

zone— declaration 

::= segment (segment- ID) [aligned (c_ constant)) 

:: = with descriptor— ID 

::= variadic call—type 
/ [optional] [volatile] [in / out / inout] 

[ref / v«l] 

::= initially expression 

:= [different] [attribute— list] base— type [constraint] 
[initial] [abstract- list] 

:= hidden / readonly 
/ volatile 
/ packed / packed packed / unpacked 
/ c constant bit 

:= range discrete— type 

:= abstraction / abstraction abstraction—list 

:= starting [mode] procedure procedure—spec 
/ finishing [mode] procedure procedure— spec 
/ in zone—ID 

:= basic-type 
/ discrete— type 
/ aggregate-type 
/ special—type 

:= declare (decl) 
/ declare 

decl;... 
endeclare 

::= variable-spec 
/ constant— ID,... = 1_ constant 
/ type— ID,... is [different] type [initial] 
/ zone—declaration 

:= integer / real / logical / char / long- real / 
/ interlock / cardinal / boolean 

:= limit..limit 
/ '[' enumeration- ID,...']1 

/ base- type 

:= expression /?ID 

:= zone-ID: storage zone (parameter,...) 
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special—type 

aggregate- type 

field 

case—label 

exception— declaration 

::= pointer type 
/ descriptor 
/ general 
/ [modej procedure procedure- spec 
/ [mode] function function- spec 

::= array'[' discrete- type,...']' of type 
/ structure 

field;... 
endstructure 

/ set of type 

::= fill (c_ constant bit) 
/ field- id,...: type 
/ select tag-ID from 

[casecase-label,...: field;...]... 
endselect 

::= c_ constant.. c_ constant / c_ constant 

::= exception exception- ID,... 
/ arm comp— var~ ID,... 
/ disarmcomp—var_ ID,... 

Statements 

assignment—statement 

invocation—statement 

procedure— expression 

iterative— statement 

::= expression := expression 
/ expression *= infix-op expression 

::= procedure- ID ( expression,... ) / procedure- ID () 
/ procedure- expression 
/ procedure—ID (parameter- ID: expression,...) 
/ procedure- ID 

with 
parameter- ID:expression;... 

endwith 

::= expr—10 

::= [loop— label:] while boolean- expression do 
sentence;... 

endwhile [{end- label)] 
/ [loop— label:] repeat 

sentence;... 
until boolean- expression [|end_ label|] 

/ [loop— label:] for for_ element do 
sentence:... 

endfor [{end- label]] 
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for_ element 

flow_ statement 

:: = for- 1D:= expression downto expression 
/ for- ID := expression to expression 
/ for- ID := expr (hen expr while boolean- expr 
/ for.- ID in discrete- type 
/ for- ID in set- type 

::= break label 
/ loop [loop- label] 
/ return 
/ (begin-label:] if boolean-expr do 

sentence:... 
orif boolean— expression do 

sentence;... 
otherwise sentence;... 
endif [{end—label]] 

flow— statement ::= [begin-label:] select expression from 
case case- label,... 

sentence; 
default : sentence;... 

endselect[{end_ label)] 
/ [begin—label:] upon viaduct-ID,... leave 

sentence;... 
through 

case viaduct- ID: sentence;. 
endupon [|end- label]] 

/ via viaduct-ID 

special-statement ::= [begin—label:] region interlock—expression do 
sentence;... 

otherwise 
sentence;... 

endregion [{end— label] 
/ retry 
/ [begin—label:] guard 

sentence;... 
catch 

case exception— ID,...: senter 
default : sentence;... 

endguard [|end_ label]] 
/ raise exception— id [finishing ID,...] 
/ reraise [finishing ID,...] 
/ [begin- label:] block 

sentence;... 
endblock [{end- label]] 

special—statement : [begin—label:] code "machine-designator" do 
instruction;... 

endcode [{end- label]] 
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instruction ::= assembler-instruction 

misc. _ statement ::= free (pointer-type., expression:...) 
/ swap (expression, expression) 
I assert boolean- expression 

Expressions 

The numeric values on the "expr" identifiers below represent the operator precedence levels. 

expression : :=expr -0 
/ when boolean expr then expr else expr 

expr_0 ::= [expr-Oeqv] expr- I 

/ expr- 0 xor expr.- I 

expr_ 1 ::= expr - 2 (or expr- 2] 

expr—2 :.= expr- 3 [andexpr- 3] 

expr_3 ::= [notlexpr_4 

expr_4 ::= expr—5 [relational, operator expr-5] 

expr—5 ::= expr- 6 [shift-operator expr- 6] 

expr—6 ::= [expr-6 addition, operation] expr. 7 

expr—7 ::= expr- 8 [multiplication- operator expr. 8] 

expr_8 ::= [unary sign)expr 9 

expr_9 ::= expr_ 10 
/ allocate expr_ 10 
/ force expr_ 10 

cxpr—10 : : = 1 D / constant /expr-10(expression....i 
/ expr-10 (field-value....) 
/ (expression) 
/ expr— 10 '[' expression,... 'J' 
/ expr- 10. field-ID 
/ expr- 10 <fi 
•' expr_ 10 with parameter-ID expression:... endwith 

fie!d_value ::= field- ID : expression / 
'[' case— element']' : expression 



Operators 

Infix— operator 

relational operator 

shift-operator 

::= eqv / *or/ or /and 
/ relational-operator / shifl_ operator 
/ addition-operator / multiplication- operator 

::= = /<>/< = /</> = /> 

::= Ish / rsh 

multiplication.-operator ::= * / ' / ' /mod 

Predefined Functions 

mux - maximum 
min - minimum 
succ - successor 
pred - predeccessor 
abs - absolute value 
round - real to integer rounded 
floor - largest integer not greater than real 
ceiling - smallest integer not less than real 
low - lower limit of discrete type 
high - upper limit of discrete type 
size- of - size in bits of data object 
descriptor— of - descriptor of a type 

L'SGPO-1980: 7B9-002/5531 
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