

Steady-State and Transient Modeling of Tracer and Nutrient Distributions in the Global Ocean

DOE/ER/61202--T1

Final Report
for Period August 1, 1993 - July 31, 1995

Thomas F. Stocker*, Jean Lynch-Stieglitz, and Wallace S. Broecker

Lamont-Doherty Earth Observatory of Columbia University
Palisades, New York, 10964

*Now at Physics Department, University of Bern, Switzerland

May 17, 1998

Prepared for
The U.S. Department of Energy
Agreement No. DE-FG02-1ER61202

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

ABSTRACT

We have completed the studies using the inorganic carbon cycle in the zonally averaged ocean circulation model to calculate anthropogenic uptake of CO_2 and bomb radiocarbon. While our results are in broad agreement with previous studies, we have learned that horizontal mixing processes due to gyre circulation are important for transient tracer experiments over a few decades. These findings are in press (Stocker et al., 1994). Using the inorganic carbon cycle model we have started to look at the distributions of $\delta^{13}\text{C}$ in the ocean. The model is able to reproduce faithfully the air-sea fractionation of $\delta^{13}\text{C}$.

The effect of changing sea surface temperature in the middle and low latitudes of the world ocean on $\rho\text{CO}_2^{\text{atm}}$ is studied in this model and compared to the organic carbon cycle model of the Hamburg group. We find significant differences in sensitivity and are in the process of investigating possible reasons.

Incorporation of the organic component is still ongoing. In the present version the surface concentrations of phosphate are still too high indicating strong upwelling.

RESEARCH RESULTS

In this final report we describe the research results that have been obtained under U.S. Department of Energy Agreement No. DE-FG02-91ER61202 from June 1, 1993 to July 31, 1997. Stocker has taken up a faculty position with the Physics Institute, University of Berne (Switzerland) as of October 1, 1993. Part of the work described here was done by Jean Lynch-Stieglitz as part of her Ph.D. thesis at LDEO and her post doctoral period at WHOI. She is now a professor at Lamont-Doherty Earth Observatory.

INORGANIC CARBON CYCLE

The apparent gap between the 1-dimensional box models and the few 3-dimensional models of the global carbon cycle has been closed by developing an inorganic component to the zonally averaged ocean circulation model of Wright and Stocker (1992). We have performed $2\times\text{CO}_2$ -experiments and simulated the uptake of anthropogenic CO_2 over the last 200 years. Results are in broad agreement with the previous models. The obvious advantages of the 2-d model are its efficiency and the ability to yield detailed information about the geographical distribution of tracer uptake.

We demonstrated that the model is able to simulate tracer uptake on timescales of decades using bomb radiocarbon. In order to obtain realistic surface distributions it was necessary to introduce additional meridional mixing in the top 500 meters. This mixing was related to the wind-driven gyre circulation, and we have proposed a parameterization of this effect. The results are in press (Stocker et al., 1994).

AIR-SEA COMPONENT OF $\delta^{13}\text{C}$

The stable isotope ^{13}C was added as a tracer to the inorganic carbon cycle model. Surface fluxes of ^{13}C follow those of ^{12}C but with a temperature-dependent equilibrium fractionation factor (Mook et al., 1974) as well as a small kinetic fractionation (Siegenthaler and Münnich, 1981). Although the distribution of $\delta^{13}\text{C}$ in today's ocean is primarily driven by biological cycling (Kroopnick, 1985), air-sea exchange does effect the $\delta^{13}\text{C}$ signature to a lesser degree (Broecker and Maier-Reimer, 1992). The air-sea exchange signature $\delta^{13}\text{C}_{\text{as}}$ can be calculated by using the nutrient content to subtract the portion of the oceanic $\delta^{13}\text{C}$ that can be attributed to nutrient cycling.

The $\delta^{13}\text{C}$ distribution in the inorganic carbon cycle model agrees well with the observed $\delta^{13}\text{C}$ values in both the surface and the deep ocean (Figures 1 and 2). Although both stable isotopes of carbon, ^{12}C and ^{13}C reach steady state in the model within about 2000 years, the distribution of the ratio $\delta^{13}\text{C}$ requires about 10,000 years of integration. The relatively fast 2-D ocean model proves ideal for making the long integrations necessary to study the distribution and evolution of $\delta^{13}\text{C}$.

In addition, ^{13}C has been incorporated also into the organic carbon cycle models. For this, it is necessary to include not only the fractionation due to air-sea exchange, but also the fractionation due to biological processes. Primary production in the surface ocean discriminates against ^{13}C making organic material approximately 20‰ lighter than surface ocean water. There is no fractionation of carbon isotopes upon production and dissolution of calcium carbon shell material.

The organic carbon cycle model is still being improved by exploring the range of parameters and evaluating different formulations of vertical particle fluxes and new production.

CARBON CYCLE MODEL COMPARISON

The solubility of CO_2 in sea water is strongly temperature-dependent. In order to reassess the sensitivity of typical glacial-to-interglacial SST changes in various models we have started a comparison with the Hamburg 3-dimensional carbon cycle model (Heinze et al., 1991). Instead of changing SST and hence the circulation, solubility was decreased in the latitude band of 40°S to 40°N. Since $\text{pCO}_2^{\text{atm}}$ is predicted in both models, the outgassing due to decreased solubility results in an increase of $\text{pCO}_2^{\text{atm}}$ which is partially compensated by an increased uptake of CO_2 in the high latitudes.

Sensitivity experiments for the different models indicate that the 2-D model is less sensitive than the 1-D or the 3-D models (Figure 3). At present, only a tentative comparison is possible because the 3-D carbon cycle model is organic and seasonal whereas the other two are inorganic and annual mean. This question will be addressed in the continuation of this project.

ORGANIC CARBON CYCLE

The organic carbon cycle model consists of 6 tracers: the 3 isotopes of carbon ($\Sigma^{12}\text{C}$, ^{13}C , and ^{14}C), alkalinity, phosphate and oxygen. In the ocean interior these tracers are mixed by advection, diffusion and convection, and the carbon isotopes are exchanged with the atmosphere through gas exchange at the sea surface. The temperature-dependent fractionations from ^{13}C and ^{14}C are now included. The formulation of the biological pump follows that of Maier-Reimer (1993).

We have now relaxed our previous boundary condition of restoring to observed surface values in that we relate new production to the surface phosphate concentration. Further, $\text{pCO}_2^{\text{atm}}$ is also predicted assuming that the global carbon inventory is constant. All carbon isotope air-sea exchange fluxes are now calculated as functions of the pCO_2 -contrast between the ocean and the atmosphere.

PUBLICATIONS

Broecker W.S., and E. Maier-Reimer, The influence of air and sea exchange on the carbon isotope distribution in the sea. *Global Biogeochem. Cyc.*, 6, 315-320, 1992.

Stocker, T.F., D.G. Wright and W.S. Broecker, The influence of high-latitude surface forcing on the global thermohaline circulation. *Paleoceanography*, 7, 529:541, 1992.

Broecker W.S., and T.-H. Peng, Evaluation of the ^{13}C constraint on the uptake of fossil fuel CO_2 by the ocean. *Global Biogeochem. Cyc.*, 7, 619-626, 1993.

Broecker, W.S., An oceanographic explanation for the apparent carbon isotope-cadmium discordancy in the glacial Antarctic? *Paleoceanography*, 8, 137:139, 1993.

Broecker, W.S. and T.-H. Peng, Interhemispheric transport of SCO_2 through the ocean. *NATO SI Series, I 15, The Global Carbon Cycle*, ed. by M. Heimann, 551:570, Springer-Verlag, 1993.

Stocker, T.F., W.S. Broecker and D.G. Wright, Carbon uptake experiments with a zonally-averaged global ocean circulation model. *Tellus*, 46B, 103:122, 1994.

Zaucker, F., T.F. Stocker, and W.S. Broecker, Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. *Jour. Geophys Research*, Special Issue on North Atlantic Deep Water Formation: Observ. and Modeling, 99, 12,443:12,457, 1994.

Zaucker, F., T.F. Stocker, and W.S. Broecker, Atmospheric freshwater fluxes and their effect on the global thermohaline circulation.. *Jour. Geophys. Research*, Special Issue on Observation and Modeling of North Atlantic Deep Water Formation and its Variability, 99, 12,443: 12,457,1994.

Lynch-Stieglitz, J., T.F. Stocker, W.S. Broecker, and R.G. Fairbanks, The influence of air-sea exchange on $\delta^{13}\text{C}$ of SCO_2 in the surface ocean: Observations and Modeling. *Global Biogeochem. Cyc.*, 9, 653-665, 1995.

Peng, T-H, and W.S. Broecker, Estimate of interhemispheric ocean carbon transport based on ΣCO_2 and nutrient distribution, (T.M. Powell and J.H. Steele, eds.), Chapman & Hall, NY, Ecological Time Series, 28:47, 1995.

FIGURES

Figure 1: Comparison of the surface ^{13}C due to air-sea exchange in the 2-d inorganic carbon cycle model (top) and the observations (bottom) for the three ocean basins. Note that the model does not include the anthropogenic decrease of atmospheric ^{13}C .

Figure 2: Distribution of the ^{13}C due to air-sea exchange in Atlantic (top) and Pacific (bottom).

Figure 3: Sensitivity of various carbon cycle models to changing the solubility of CO_2 in surface water. Dots represent the 1-d, squares the 2-d and triangles the 3-d model results. The equilibration factor defined as the relative change of $\text{pCO}_2^{\text{atm}}$ increases with a decrease in solubility.

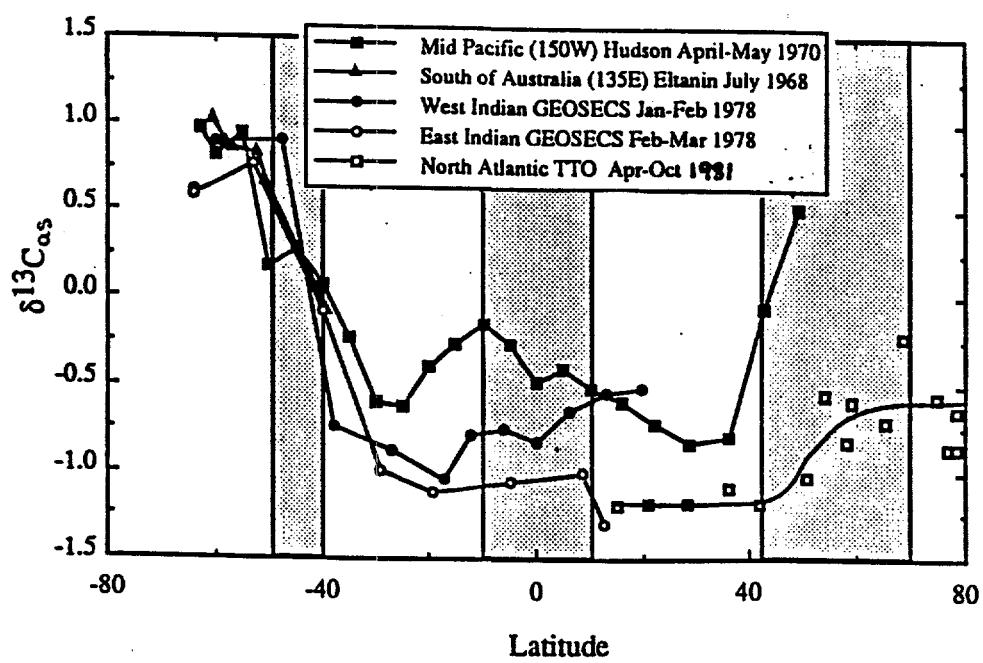
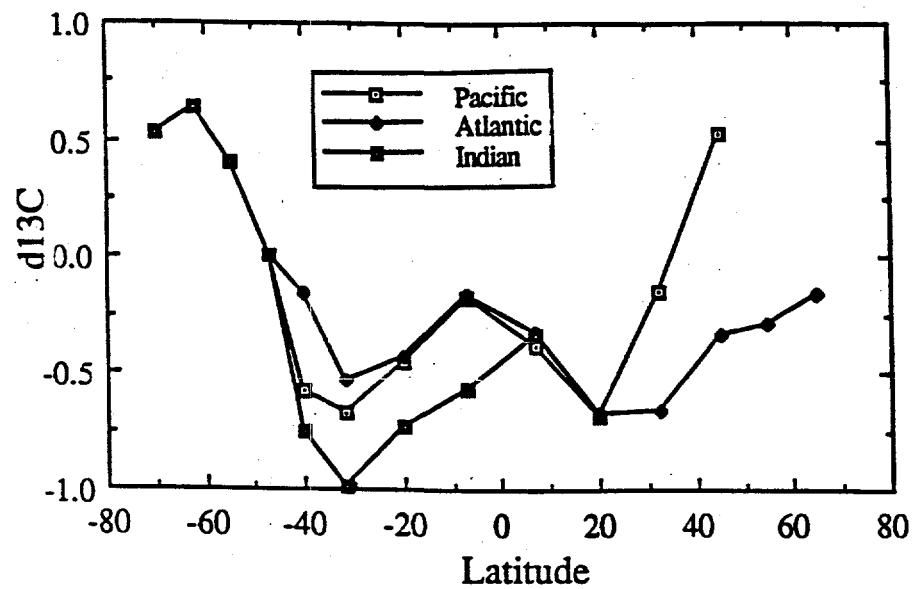



Figure 1

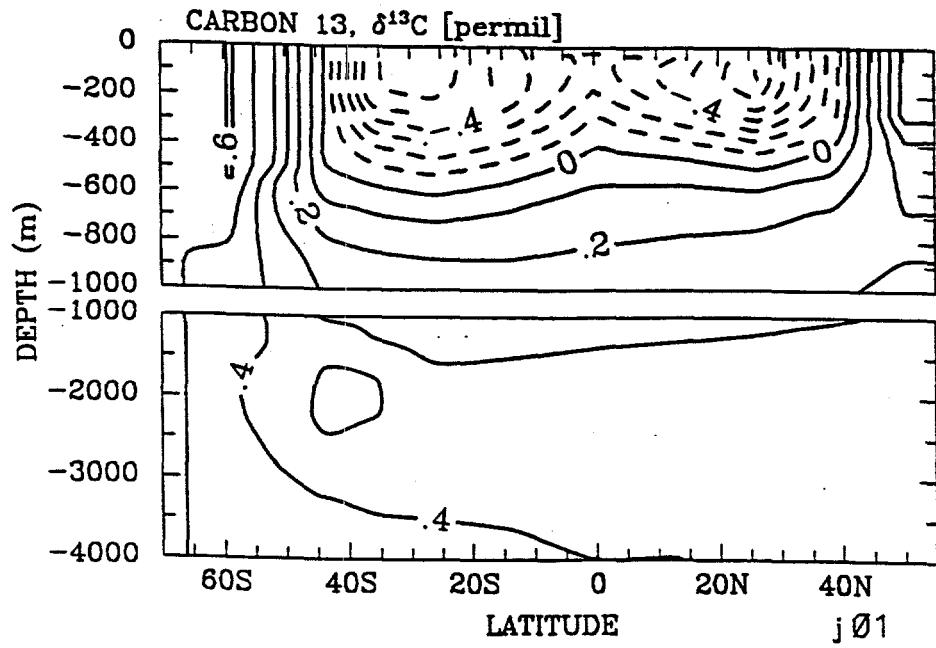
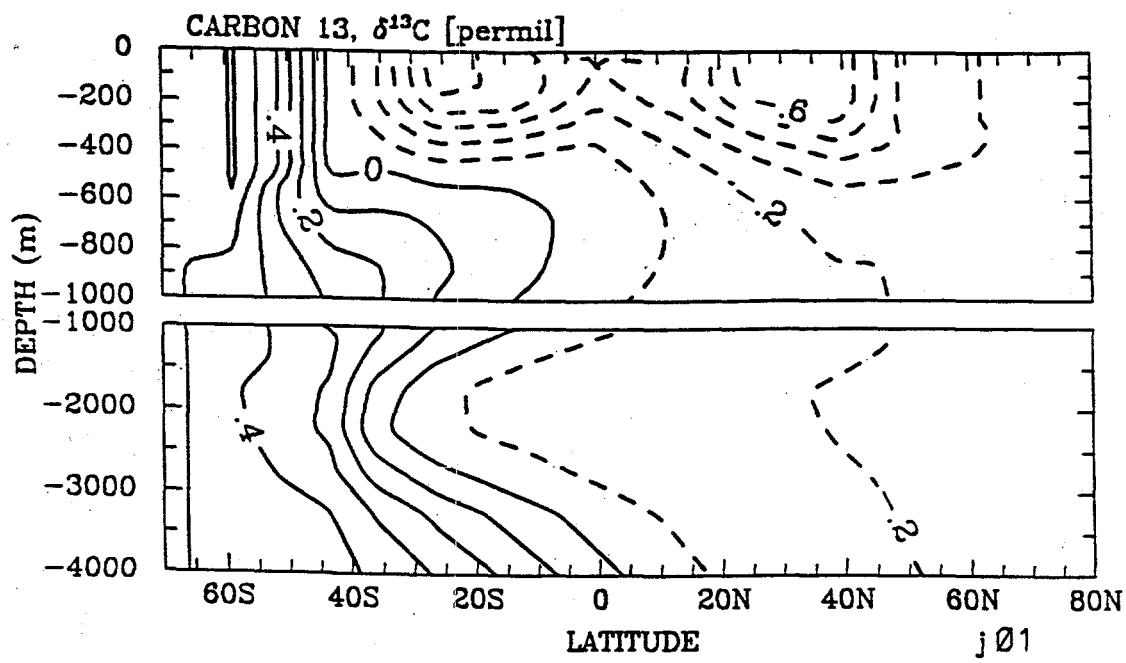
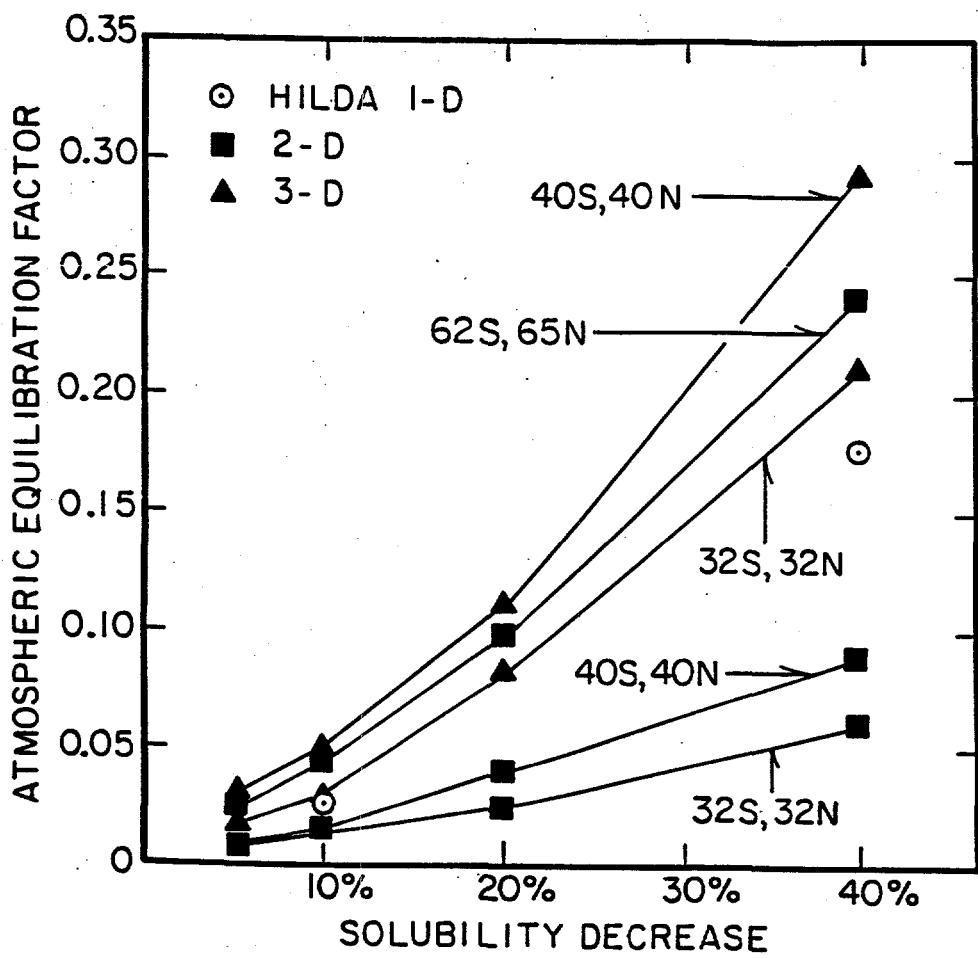




Figure 2

