13381

5 -
< > =
- o a
- =
2 . 23
S kS 2 H A
£ = g
A EEa &
s 558 2 43
E SICL- - : 5
T T - i
o 2a3 = g
m UCR H mg
L QOP _..nu..d
& ERM il
g = o <
ta - S
RO
- Z
L i
< &
E
<
>

O

S




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
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ABSTRACT

The objective of this work was to investigate the beneficial effect of the variable frequency.
microwave (VFM) technology to cure thermosetting prepreg laminates. Further, it was to
investigate the interrelationship and effect on the curing process of frequency, band width, and curing
time with different types of laminates.

Previous studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and
carbon fiber laminates with a fixed frequency of 2.45 GHz, have shown that a substantial reduction
in the curing time was obtained [1]. Results of this earlier work indicate that the microwave-assisted
curing of multidirectional glass fiber laminates also show a substantial reduction of the required
curing time. This may be explained by the penetration of microwave energy directly and throughout
the laminate with enhancement of the kinetics of the chemical reaction.

The fixed frequency microwave radiation of 2.45 GHz has been demonstrated to be a partially
acceptable method to cure unidirectional carbon fiber laminates. Multidirectional carbon fiber/epoxy
laminates demonstrate a lack of coupling during the curing process. A direct curing of these
laminates was not possible by microwave radiation with the experimental approach used in
agreement with previous work [1,2]. In addition to this short coming, the unidirectional laminate
samples cured with the fixed frequency are visually nonuniform. Localized areas of darker colors
(burn, hot spots, overheating) are attributed to the formation of standing waves within the microwave
cavity. For this reason, the laminates are subject to proper rotation while curing through fixed
frequency.

The present research indicates that variable frequency microwave technology is a sound and
acceptable processing method to effectively cure uni-, bi- or multi-directional thermosetting glass

- fiber laminates. Also, this methodology will effectively cure unidirectional thermosetting carbon
fiber laminates. For all these cases, this technology yielded a substantial reduction in the required
cure time of these laminates. Multidirectional carbon fiber laminates demonstrated a lack of
coupling of VFM energy during the curing process.

vi




1. INTRODUCTION

Advanced polymer matrix composites have a combination of physical attributes that make them
potentially attractive for many applications, particularly where high specific strength and stiffness
are needed. One barrier to their widespread use is the long cycle time typically required to
consolidate and cure a finished component. Composites are often hand-assembled as a lay-up of
prepreg tape, vacuum bagged, then cured in an autoclave under heat and pressure for 2 to 12 hours.
Similar metal parts can usually be made in seconds to minutes by stamping or machining. As a
result, some composite materials are competitive only in applications where specific performance
is required or the cost savings due to lower weight can be shown to overshadow the increase in
original manufacturing cost.

If processing cycle times could be reduced significantly, composites would be used in a much
broader range of applications. Microwave heating may potentially speed the curing process because
the volumetric deposition of microwave energy is more efficient than conduction from the surface.
Furthermore, microwave heating seems to enhance polymerization kinetics in some systems,
although the exact mechanism by which this occurs is still not understood.

Preliminary work was undertaken with ERL 2258 neat epoxy-based resin samples. These initial
results were very encouraging. Samples ranging from 1/16 in. to 1 in. (1.6 mm to 25 mm) thick were
cured at times varying from 2 minutes to 30 minutes using a fixed frequency of 2.45 GHz. The
microwave power required for this experiment was astonishingly small, on the order of 100 to 200
watts. Similar samples of neat resin cured by conventional oven required a time of 360 minutes.
A comparison between microwave processed and oven cured resin shows equivalent mechanical and
physical properties. The curing time was reduced significantly (factor of 10 to 12) by using
microwave radiation in the processing of neat resin [1]. The results were in accordance with the
fundamental theoretical hypothesis, that microwave energy would accelerate the curing
(crosslinking) in polymers. These results indicate the feasibility of curing polymers and encourage
further studies in the composite area.

This microwave study has been extended to the area of polymer matrix composites. The results in
these works also indicate a reduction in the curing time with an overlap in the mechanical property
values in the microwaved processed samples compared with the conventionally processed samples

[1,3].

Most studies reported in recently published literature have used fixed frequency microwave systems
at 2.45 GHz. The reason for this is the ready availability of magnetrons at this frequency. However,
fixed frequency systems have unpredictable power non-uniformity distribution within the microwave
cavity due to the formation of standing waves, resulting in an extremely heterogeneous energy
distribution. The negative effect will be the generation of very high power density areas (hot-spots),
over heating, etc. of the part being processed. In the processing of thermosetting polymer
substances, this problem will be aggravated by the low thermal conductivity and the fact that the
crosslinking (polymerization) process is highly exothermic. The processing of thermoset laminates




via fixed frequency microwave radiation often show visible areas of over curing (black, charred
areas) that are attributed to these poor non-uniformities inside the microwave cavity.

This investigation pertains to the beneficial effect of variable frequency microwave (VFM) radiation
on the processing of thermosetting laminates. Prior work with this type of technology in the
processing of neat resins indicates an improvement in this area. It has been shown that frequency
sweeping greatly improves heating uniformity in the slabs or disks of neat resin reducing the required
curing time [4].

VFM technology uses a traveling wave tube to sweep a range of frequencies. This sweeping of
frequency range will excite many different microwave modes within the microwave cavity, thus
enhancing the power uniformity. Continuous sweeping through several modes within a very short
time interval (milliseconds) results in an averaged, more uniform energy distribution in the
processing cavity. The result of this effect is the elimination of non-uniform heating (power
distribution) in the workpiece. This technology also provides a better consistency and reproducibility
of the heating characteristic in the workpiece, independent of its location inside the processing cavity
[5,6]. Figure 1 schematically compares the power distributions in a fixed frequency and in a variable
frequency microwave cavity. Note the homogenization effect in the power distribution within the
variable frequency cavity. This technology also has the advantage of selection of a frequency (center
frequency), which can maximize the power absorption in the workpiece. Subsequent sweeps in a
range of frequencies on both sides of this center frequency will optimize the energy absorption in
the workpiece. In some cases, a variable frequency microwave system can be made to function as
a single frequency source by choosing a center frequency and making the sweeping frequency range
equal to zero. In this case, the center frequency becomes the fixed frequency.

Conventional curing processes involve ovens, presses and autoclaves that are large and expensive
capital investments. These devices are very energy inefficient. Only a small portion of the total
energy consumed by these conventional curing systems goes into the chemical kinetics to produce
crosslinking in the polymeric material. VFM technology is expected to be more efficient by
providing volumetric energy deliverance into the polymeric material or workpiece, directly at the
intergranular or molecular level.

The application of this technology to thermoset laminates will permit the advancement toward the
needed manufacturing breakthrough in this area. Furthermore, it is imperative to explore the
interrelationship between center frequency, band width, applied microwave power, resin and cure
times, and different types of fibers and their orientation in the composite. Special attention should
be given to the study of the effect of higher frequencies in the processing of these laminates. It is
expected that these higher frequencies (10 - 20 GHz) will have a more positive impact in the
processing of these materials due to their potential for a higher density of energy deposition per time
unit.
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2. EXPERIMENT

2.1 Experimental Materials

In these VFM assisted composite studies, two different kinds of composite laminates were selected
for evaluation:

a) Carbon fiber/epoxy (Hercules IM6G-3501-6)
b)  Glass fiber/epoxy (Scotchply 1003-UMI)

With this selection, the different microwave coupling behaviors with these two types of reinforcing
fibers, can be observed. The 6 in. x 6 in. (15 cm x 15 cm) composite laminate samples for the initial
experiments were manufactured using eight superposed layers of each basic thermoset prepreg
material, where the fibers in each layer were oriented in various directions to obtain the desired fiber
configuration. Three basic (laminate) configurations of fiber orientation were selected:

[0]s : 0/0/0/0 / 0/0/0/0 (unidirectional)
[0/90],5 : 0/90/0/90 / 90/0/90/0 (bidirectional)
[0/45/90/-45] : 0/45/90/-45 / -45/90/45/0 (multidirectional)

These numbers are degrees and indicate the fiber orientation of each single layer of prepreg in the
laminate relative to a O degree reference.

2.2 Sample Preparation

The preparation of these laminate specimens is a time consuming, and intricate process. After each
new superposed layer is positioned, the partially manufactured specimen is placed under a vacuum
to assure an air-free interlayer condition.

The laminate sample is placed between two thick glass cloths with the objective to collect the excess
resin which is squeezed out of the laminates during the curing process. To avoid adhesion between
the laminate sample and thick glass-cloth, a teflonated, fine-screen film (bleeder screen-cloth) is
used. The bleeder cloth allows the resin to percolate towards the thick glass-cloth. Similarly, to
avoid bonding at the quartz or pyrex glass plates, a release film is placed at these location. See
Figure 2.

For the processing, these laminate samples are placed in the consolidation press inside the
microwave furnace (Figure 3) or between the metal plates of the standard heating press for
conventionally processed samples.
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2.3 Processing Equipment

A multimode, variable frequency microwave furnace, Model T-4001E (prototype furnace) was
utilized in this project. This furnace is manufactured by Lambda Technologies, Inc. This equipment
is capable of delivering a maximal nominal (forward) power of 200 watts over two selected
frequency ranges of 2.5 - 7.5 GHz and 7.5 - 17.5 GHz. This VFM oven may be operated at a fixed
frequency, or the entire bandwidth or any segment therein may be swept at a discrete interval rate
of 100 milliseconds to 2 minutes. The dimensions in this VFM oven are: 12.0 x 12.0 x 10.0 inches.

To prevent the possible migration of any volatiles or generated gases into the waveguide and
subsequently contaminating the power sensors, a thin sheet of polyimide film was placed over the
opening of the waveguide to the cavity.

This microwave oven features a built-in pneumatic driven consolidation press, capable of delivering
the required specific compression load on the laminate with curing.

Prior to the start of the testing program, a calibration check of the clamping force of the pneumatic
built-in press was undertaken. A leakage check in the VFM cavity was also conducted.

2.4 Microwave Processing

For conventional processing, the standard curing sequence and time recommended by the material
manufacturer was followed. The required time exceeded five hours for the standard cure cycle. If
an additional postcure cycle is required, then the overall curing cycle can be as long as eight to ten
hours. The conventional cure cycle for the carbon laminate is depicted in Figure 4. In the
conventionally cured samples, due to the dynamics of the heat transfer during the curing, the resin
is heated very slowly, inwardly over a relatively long period of time.

In the preliminary stages of this program, start-up and pre-run experimental processing of the
laminates with the VFM system was undertaken. The intent of these pre-runs was to evaluate the
microwave oven for its stability, uniformity and repeatability of the process parameters, such as
temperature inside the cavity, and forward and reflected power as a function of the selected center
frequency and bandwidth. All these pre-runs were undertaken with the laminate samples in the
cavity and were carried out with the low band frequency (2.5 to 7.5 GHz).

Evaluative trials were also undertaken to gain knowledge about the microwave energy deposition
on the glass plates of the sample configuration. The principle of microwave processing is the
deposition of energy directly and volumetrically quasi-equally into the workpiece. A substantial
energy deposition on the system containing or surrounding the part to be processed will cause an
“indirect” curing, called hybrid heating. In this case, the container or mold is heated and then the

heat is transmitted by conduction, convection, or radiation to the workpiece. In this project, it is very

important to reduce this hybrid heating to a minimum. Here, an evaluation of the temperature
increases of the glass plates in the sample configuration, (Figure 2) without a laminate specimen in
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between plates, was undertaken under similar conditions to when laminate samples are processed.
The results are shown in Figures 5 and 6. The pyrex plates suffer a remarkable temperature increase
compared to the quartz plates where both types of plates were processed for 15 minutes under equal
conditions (Figure 5). For the contrary, the quartz plates demonstrated a minute temperature increase
when subjected to an extended processing of 60 to 90 minutes (Figure 6). For this reason, only
quartz plates were used in this VFM project.

For the processing of the laminate samples with the VFM system, the sample configuration indicated
in Figure 2 is placed in the pneumatic press inside the oven and subsequently subjected to a specific
compressive load of 11 to 12 psi. (See Figure 3).

For the low frequency band (2.5 to 7.5 GHz) a center frequency of 5.00 GHz was selected. This
frequency was selected in the pre-run trials based in a high forward power deliverance and good
coupling characteristics of the laminates at this center frequency. The frequency was swept at £0.50,
+1.00 and +2.00 GHz on both sides of the center frequency (see Figure 7). The frequency range (Af)
will be defined as the entire swept region; i.e., 1.00 GHz, 2.00 GHz and 4.00 GHz. For the high
frequency band (7.5 - 17.5 GHz) a center frequency of 13.80 GHz was selected. Here the frequency
was swept £0.50 GHz on both sides of the center frequency only (see Figure 8).

The selected cure times for the entire program were 45, 60, 90, and 120 minutes. In some specific
cases a 75 minute cure time was selected in order to complement the experimental data with an
additional point.

3. RESULTS

Based on visual observation, the glass fiber laminates processed via VFM technology did not exhibit
any “brown spot” areas of overheating or heat damaged areas. This result was similar for the low
and high frequency ranges. Due to the natural light color of these glass laminates, any heat damaged
areas or burn spots on these samples will be revealed conclusively. Contrary to the VFM experience,
similar samples cured with fixed frequency microwave technology showed darker areas or regions
of overheating [1]. These localized areas of overheating are attributed to the formation of standing
waves within the fixed frequency microwave cavity. To avoid this common phenomenon in fixed
frequency processing, the samples are rotated, or moved to another location inside the cavity, at
discrete intervals throughout the complete curing process.

Similar qualitative visual observations can not be made with the carbon fiber laminates due to the
natural dark (black) color of these laminates. Unidirectional carbon fiber laminates demonstrated
very satisfactory curing with variable frequency technology. Frequency sweeping is undoubtedly
an excellent technology for the curing of all the above indicated composite laminates.
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Bidirectional and multidirectional carbon fiber laminates exhibited a lack of coupling with variable
frequency microwave energy. These two types of laminates were unable to be cured directly through
exposure to any.of the frequencies used in the processing spectrums. However, some degree of
curing was observed in the bidirectional carbon fiber laminates. This degree of curing appeared to
be acceptable and homogeneous throughout the samples. Similar results were achieved in the
processing of these laminates with fixed frequency microwave radiation [1]. Although proper
processing of these bi- and multidirectional carbon fiber laminates can not be obtained through direct
microwave radiation, curing is still achievable by hybrid curing. Here the quartz plates of the sample
configuration (see Figure 2) should be exchanged with another plate/material (e.g. specifically pyrex
glass) with high “lossy” characteristics. This alternate approach for curing of laminates is
recommended only for thin wall parts.

3.1 Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry was performed on representative samples from each processing
time to measure the degree of cure. Additionally, the homogeneity of the cure was examined by
taking several DSC samples from various locations on each sample. It was found that there is a
direct correlation between cure time and degree of cure. Glass fiber laminates that were exposed to
VEM radiation for 45 minutes exhibited an average glass transition temperature (T,) of only 155°C
while those samples that were processed for 120 minutes had an average T, of 178°C (see Figure 9).
With two hours processing time, the T, is equivalent to those samples conventionally processed for
approximately 7 to 10 hours. Unidirectional carbon samples exhibited somewhat lower glass
transition temperatures (approximately 140°C) as compared to the conventionally processed samples
(approximately 175°C). Bidirectional and multidirectional samples were unable to be cured using
5.0 GHz as the center frequency. However, the degree of cure appeared visually to be homogeneous
throughout all samples for the entire range of processing times.

3.2 Mechanical Properties

During the microwave processing of the laminates it is interesting to observe the profiles of power
levels (forward and reflected) and temperature inside the cavity for the entire curing process. The
microwave equipment features only digital monitoring or display of these processing variables. No
real time data acquisition was available. Time related data of these process variables was taken
(read-out) at discreet intervals of time. These profiles of power and temperature in the microwave
cavity can be observed in Figures 10, 11, and 12. These figures indicate that the processing time for
each sample was 120 minutes at a frequency of 5.00 GHz (low frequency range). The temperature
profile in the microwave cavity can only be used as a reference value for comparison between
laminate samples. Figure 3 displays the location of this thermocouple inside the cavity. This
thermocouple is enclosed inside the lower quartz tube and sealed with a teflon plate at the top. In
addition to this fact, the thermocouple is located at a considerable distance from the sample being
processed. Under this condition, this thermocouple will provide temperature values of the air inside
of an enclosed system, quasi-independent of the microwave cavity temperature or sample
temperature.

14
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The forward power and the thermocouple read-out both changed steadily and gradually with the
processing time; forward power declined and the thermocouple signal increased. The reflected
power changed negligibly. The temperature differences measured on the quartz plate, immediately
after the completion of the curing process, for the carbon fiber laminates are recognizably higher than
for the glass fiber laminates. Possible reasons for these temperature differences include: i) different.
types of resin, ii) different exotherm characteristics, iii) different types of fiber with different
reflective properties, iv) different coupling/lossy characteristics of both types of laminates.

Figure 13 depicts the data of Tables I and III, which are for unidirectional glass fiber laminates
processed via VFM with a center frequency of 5.00 GHz. This data compares the ultimate tensile
strength (oy) for VFM cured samples with conventionally processed samples. The microwave
processing data were collected over various cure times. Both, carbon fiber laminates and glass fiber
laminates exhibited a smooth increase in the ultimate tensile strength as a function of sample cure
time. It is important to denote that different resin systems were used for the two different types of
studied laminates. The limit of a two hour microwave processing time was selected based on the
premise that any longer cure time would not represent a significant improvement between microwave
curing and conventional curing techniques. In spite of the fact that oy varies in a steadily increasing
manner, the samples that were microwave cured for 2 hours did not achieve strength values
equivalent to those for conventionally cured samples.

The difference in the ultimate tensile strengths observed between the conventionally cured fiber
laminates, subjected to a standard conventional cure cycle, and the carbon fiber laminate samples
cured via microwave process was of the order of ten percent. A larger difference in oy was observed
for the glass fiber processed with the different methodologies. The glass-fiber laminates cured
conventionally were subjected to an additional post cure cycle with a subsequent increase in 05, As
indicated in Figure 13 less than maximum nominal input power was utilized in the curing process
(forward power minus reflected power is approximately equal to 175 watts). A microwave
applicator with superior forward power capability would very likely produce an increase in og
observed values for identical processing times.

Table II represents data similar to Table I, but only the configuration in the ply orientation is
different. Ply orientation in these glass fiber laminates were [0/90],¢ and [0/45/90/-45]5. In both
studied ply configurations the fibers were the main contributor to the observed o, values and not the
resin. Very little variation in o5 was observed as a function of microwave curing time and also
between conventional and microwave processed samples. This is in accordance with the above
statement that the fibers are the main contributor for the o values. These results also point out that
no evident damage occurs to the fibers through exposure to microwave radiation.

Tables IV to VI represent similar results obtained using a center frequency of 13.80 GHz (higher
frequency band) over a frequency range of 1.00 GHz. (In tables V and VI, there is not data for
samples cured at 13.80 GHz for 45 minutes due to physical damage incurred during sample
preparation of the tensile strength specimens cutting the 6 x 6 inches laminates). Again the results
are a comparison of o, for microwave processed and conventionally processed samples. As before,
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in Figure 14, oy increased steadily up to a value below those obtained for conventionally cured
samples. Once more, the carbon fiber laminates cured at 13.80 GHz and two hours yielded values
of oy less than ten percent different than those samples cured conventionally. Evident is the fact that
Og values obtained from microwaved glass fiber laminates improved by using this higher center
frequency. ‘

In Figures 15 and 16 are illustrated the effects of varying the center frequencies on the mechanical
properties measured from the different types of laminates. Clearly, with the higher center frequency,
the mechanical properties experienced in both types of laminates can increase. The reason for this
is the increase in energy deposition associated to the higher energy photons incident on the laminates.

Figure 17 illustrates the effect of a variation in the frequency range (Af) and forward power level on
the mechanical properties of the unidirectional glass fiber laminates. Here, only resin properties
were evaluated. To be able to explain the overlapping data in Figure 17, many possible factors
should be taken into consideration. When the frequency is swept over a wider range or band, more
instantaneous modes are occurring and consequently the accumulative effect of these modes will

result in a better power homogenization or distribution in the workpiece. A wider frequency band
increases also the probability that a better coupling frequency for this specific material will reside
inside the new chosen frequency band. Nevertheless, the time-averaged real power in the cavity is
slightly reduced with the utilization of a wider frequency band. The selected property for the
evaluation of the advancement of the crosslinking process in this case was the ultimate tensile
strength. This test is not sensitive enough to detect tiny or minuscule changes in material
characteristics. The sum of all these factors may explain the overlapping of the data in Figure 17.

The data obtained with a frequency range of 1.00 GHz and a forward power of 115 to 120 watts.

depict a minimal variation in the values of the ultimate tensile strength over an extended range of
the processing time. This can be explained based in the low forward power level applied to the
sample. The applied power was unable to deposit or couple an adequate quantity of energy into the
material to carry out the chemical reaction further to reach the required speed and level.

Figure 18 illustrates the T, data from Figure 9 but at this time, this T, data is associated to the
corresponding ultimate tensile strength data of identical samples. As indicated in Figure 18, both
curves follow each other in a steady and smooth fashion and show an increase as a function of the
microwave processing time.

Similar to the results obtained with a fixed frequency (2.45 GHz) multimode cavity [1], VFM
processing was ineffective for the proper curing of multidirectional carbon fibers. It is interesting
to evaluate the processing of these laminates via hybrid curing. Through proper selection of the
clamping plates (sample configuration, Figure 2) with suitable dielectric loss characteristics, this type
of laminate may be processed when its thickness is limited such that a quasi-uniform thermal
gradient can be achieved throughout the thickness of the sample.
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Table VII indicates the effect of an additional conventional postcure cycle on already microwave
cured laminate samples. The ultimate tensile strength consistently experienced an increase with this
additional postcuring cycle. In spite of the long microwave process time of 120 minutes, these
results disclose a noncompleted microwave crosslinking process. The existing gap in the ultimate
tensile strength required an additional treatment of the microwaved laminate.

This gap in the mechanical properties can be closed through: 1) a longer process time with actual
microwave equipment, resulting in a too long and unacceptable processing; ii) utilization of more
powerful microwave equipment, capable of delivering higher forward power; iii) superimposing
conventional heat at a desired curing temperature while at the same time exposing the sample to
microwave radiation may accelerate the curing process and yield superior mechanical properties.
The presence of the conventional thermal field should enhance the coupling of the sample to
microwave radiation. ‘

From the results obtained, the use of a variable frequency microwave applicator with higher power
output at the higher possible frequency is strongly recommended for the processing of these
laminates.

It is apparent that a direct comparison or correlation between variable frequency microwave and
fixed frequency microwave technologies is difficult to establish. This is based on the fact that
variable frequency microwave eliminates such weaknesses as hot-spots and heterogenous energy
deposition into the workpiece. However, fixed frequency units are much less expensive and are
available with much greater output power ratings. It is clear that an area of improvement in fixed
frequency systems is the applicator design to be able to remove or reduce the effect of nonuniform
field distribution (hot-spots).

4. CONCLUSIONS

Thermoset glass fiber reinforced laminates/composites can be effectively cured through exposure
to variable frequency microwave radiation.

Variable frequency microwave heating can significantly reduce the curing/crosslinking time of
unidirectional and multidirectional glass fiber/epoxy laminate up to 1/4 to 1/5 of conventional cure
time. '

Results indicate that variable frequency microwave curing caused no burning or hot-spots to appear
on the processed laminates. This fact makes the technology very attractive for large or extended
parts with complex geometries, e.g. shells. This is an improvement compared to fixed frequency
microwave technology. ’

Tensile strength tests indicate that unidirectional and multidirectional glass fiber laminates processed

by either variable frequency microwave, or conventional techniques exhibit values of the ultimate
tensile strength approaching those of conventional curing techniques.
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Table VII
Comparison Of The Ultimate Tensile Strength Of
Unidirectional Laminates Tested Perpendicular To The Fibers
On Microwave Processed Laminates And Subsequently With
An Additional Conventional Postcuring Cycle
Of 4 Hours At 350°F

Microwave Processing Conditions:
Frequency: 13.80 GHz Frequency Range:  1.00 GHz
Forward Power: 162 - 174 watts Reflected Power:  1-2 watts
Sweeping Rate: 100 ms

Glass Fiber Laminates:
a) Sample Number: G2 Microwave Cure Time:
Ultimate Tensile Strength: 5595 psi
~ After an additional, conventional postcuring cycle,
Ultimate Tensile Strength: 6922 psi
b) Sample Number: G5 Microwave Cure Time: 120 min
Ultimate Tensile Strength: 5850 psi
— After an additional, conventional postcuring cycle,
Ultimate Tensile Strength: 7218 psi

Carbon Fiber Laminate:
a) Sample Number: C22 Microwave Cure Time: 120 min
Ultimate Tensile Strength: 6080 psi
— After an additional, conventional postcuring cycle,
Ultimate Tensile Strength: 6313 psi

Straight Conventionally Cured Laminates:
a) Glass Fiber Laminate (with an extra postcuring cycle, total cure time: > 7h)
Ultimate Tensile Strength: 6920 psi
b) Carbon Fiber Laminate (no postcuring cycle, standard cure time = 4.5 h)
- Ultimate Tensile Strength: 6567 psi
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Unidirectional carbon fiber laminates demonstrated satisfactory coupling (curing) to 5.00 GHz and
13.80 GHz microwave radiation. Tensile strength tests of these samples also exhibit values
approaching the conventionally cured samples with an observed difference of less than ten percent.

Although multidirectional carbon fiber laminates could not be directly processed through exposure
to 5.00 GHz and 13.80 GHz variable frequency microwave radiation, a reduction from the
conventional cure time may be achieved by hybrid curing. This alternate approach for curing
laminates is only applicable to thin wall laminates.

The highly uniform variable frequency microwave energy distribution, evaluated on a time averaged
basis, allowed these results to be obtained with a low real net power of approximately 160-170 watts,
as compared to an industrial fixed frequency, multimode configuration of 1 to 2 kwatts. The power
requirement is also low when compared with the nominal power required in conventional processing
equipment, for example, rubber curing presses.

Variable frequency microwave processing of composite laminates with a higher center frequency
will result in an increase of the ultimate tensile strength of the laminate resins. This is valid under
the condition that all the remaining process parameters are kept unchanged. A variable frequency
microwave applicator with higher output power at higher frequencies should reduce the curing time
for these types of samples.
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