MULTIPLE ANTIBIOTIC RESISTANT ESCHERICHIA COLI FROM A TROPICAL RAIN FOREST STREAM

bу

Clara E. Carrasco, Hector J. Alvarez, Nayda Ortiz, Miguel Bisbal, William Arias, and Carmen Baerga Department of Biology College of Natural Sciences University of Puerto Rico Rio Piedras, Puerto Rico 00931

Terry C. Hazen
Correspondent Author
Savannah River Laboratory
E. I. du Pont de Nemours and Company
Aiken, SC 29808-0001

RECEIVED MAY 2 6 1998 OST I

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This paper was prepared in connection with work done under Contract No. DE-ACO9-76SR00001 with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

INTRODUCTION

2

1

Antibiotic resistant bacteria have been isolated from a large
number of water sources around the world (4, 20, 32, 36, 37). Grabow
tet al. (21) has suggested that antibiotic resistant coliforms may also be
more resistant to conventual sewage treatment including primary,
secondary, and chlorination. Since antibiotic resistance (R plasmids)
may be transferred to pathogenic bacteria via conjugation,
transformation, or viral transduction (21, 30), indigenous or long
surviving environmental coliform bacteria that harbour R plasmids
could pose a serious health hazard. Especially if the surface water that
these bacteria are found in is used for recreation and as a drinking
water source.

It is common to find very high densities of coliform bacteria in tropical waters, even when no known human fecal source can be demonstrated (15-17, 24, 28, 33, 35, 40, 42). Several studies have even demonstrated that Escherichia coli, the target of the coliform assay, can survive for extended periods in tropical waters (10, 24, 29, 41) and may even be indigenous in tropical rain forests (8). DNA homology studies suggest that E. coli isolates from epiphytic plants 20 m above the ground in the rain forest are the same species as E. coli B, a clinical isolate (8). These strains were also found to have some resistance to antibiotics (34).

The present study examines the occurrence of multiple antibiotic resistant (MAR) plasmids in <u>E. coli</u> at a contaminated and at a pristine

```
1 site in a tropical rain forest watershed. These plasmids will be isolated
2 and tested for their ability to be transferred to other bacteria via
3 conjugation and transformation.
 7
 8
9
10
11
i 2
13
14
15
16
17
18
19
20
21
22
23
24
```

MATERIALS AND METHODS

Study site. The Mameyes River is located at the northeast of the island of Puerto Rico (Fig. 1). The river originates in cloud rain forest in a pristine portion of the Luquillo Experimental Forest, U.S. Forest Service. Samples were taken from two sites. Site 1 was a pristine area high in the rain forest, the highest point in the watershed. Site 9 was several km downstream, just below the outfall for a primary sewage treatment plant. For a more complete description of the Mamayes River watershed and sites 1 and 9, see Carrillo et al. (10).

Water sampling. Water samples were collected slightly below the surface with sterile 180 ml Whirl-Pak bags (NASCO, Ft. Wilkinson, Wis). Samples were brought to the lab at ambient temperature and analyzed within 3 h of collection.

Sample portions of 0.2, 1 and 10 ml from site 9, and 10 ml from site 1 were filtered through 0.45 µm pore size, 47 mm diameter membrane filters (GN-6, Gelman Instrument Co., Ann Arbor, Mich.). Each filter was incubated at 44.5°C for 24 h on mFC agar (Difco Laboratories, Detroit, Mich.) Dark blue colonies were considered fecal coliform positive (3). Random isolates were isolated and streaked on trypticase soy agar (Difco), incubated at 37°C for 24 h and later kept at room temp.

Characterization of Bacteria. Colonies were characterized by Gram staining reaction, and API 20E strips (Analytab Products, Plainview, N.Y.). Antibiotic resistance was assayed on Mueller-Hinton

agar (Difco), using antimicrobial discs (Sigma Chemical Co., St. Louis, MO) with ampicillin (Amp), chloramphenicol (C), penicillin (PS), sulfathiazol (St), tetracycline (Te), rifampicin (Ra), and streptomycin (S2).

Susceptibility was determined according to the National Committee for Clinical Laboratory Standards, Approved Standards ASM2 (3).

Antibiotic resistant bacteria were identified from each site (Table 1). The strains chosen for R-plasmid extracts were <u>E. coli</u> strain 1 and 7 afrom site 1, and <u>E. coli</u> strain 14 and 15 from site 9.

Plasmid DNA Extraction. Plasmid DNA was isolated according to Dillon et al. (13). Bacterial cells were grown on TSB (Difco) at 37°C. At midlog phase, plasmids were amplified through the addition of 150 µg/ml chloramphenicol (Sigma) and further incubated for 3-5 h. The cells were harvested by centrifugation at 10,000 rpm for 15 min at 4°C. The pellet was digested with lysozyme (10 mg/ml) in TES buffer (30 mM Tris HCl, pH 8, 50 mM EDTA, 5 mM NaCl) and 20% Triton X-100 (Sigma). The lysate was centrifuged at 18,000 rpm for 20 min at 4°C. The supernatant was adjusted to 4 ml with TES buffer, 3.65 g CeCl2 (Sigma) was gently dissolved into the solution along with 100 ml Ethidium bromide (10 mg/ml, Sigma). This final mixture was centrifuged in ultra-clear tubes at 44,000 rpm at 5°C for 42 h.

The plasmid band was located in the resulting CsCl₂ gradient under a longwave ultraviolet light source and removed with a syringe. The plasmids were washed several times with aqueous isobutanol to remove the ethidium bromide before being precipitated in 2.5 vol 95% EtOH, and NaAc to a final concentration of 300 mM and stored at -20°C.

The precipitate was centrifuged at full speed in an Eppendorf microcentrifuge, pelleted and dried. The pellet was dissolved in 1 ml TE buffer, and dialyzed for 24 h as described in Maniatis et al. (31).

Sample concentration was determined in a Beckman uv/vis spectrophotometer at 254 nm (1 OD = 50 µg/ml of double stranded DNA). Ten microliter samples (#1 - 0.65 µg; #7 - 2.55 µg; #14 - 2.25 µg; #15 - 1.15 µg) were electrophoresed in a Bio Rad mini Sub DNA Cell through an 0.5% agarose gel in TBE (89 mM Tris / 89 mM boric acid / 2 mM EDTA) at 6v for 15 h at room temperature in 1 x TBE buffer and 0.5 µg/ml Ethidium bromide. Whole DNA (48 kb) and Hind III DNA digests (23.1, 9.4, 6.7, 4.4, 2.3, 2.0, and 0.56 kb fragments. BRL) were used as markers.

Transformation Experiments (Competent Cells). The
plasmids extracted from E. coli strain 14 were chosen to transform
HB101 E. coli from Te sensitive to Te resistant. The recipient HB101
cells (9) were made competent with CaCl₂ following Maniatis et al. (31).

HB101 cells were grown in L broth at 37°C for 2-4 h with vigorous shaking, chilled for 10 min on ice and centrifuged at 4,000 x g for 5 min at 4°C. The cells were resuspended in 50 ml of ice cold, 50 mM CaCl₂ and 10 mM Tris HCl pH 8, chilled for 15 min and centrifuged as before. Cells were resuspended again in 7 ml of the same CaCl₂ / Tris HCl solution, dispensed in 200 µl aliquots into prechilled tubes and stored for 24 h at 4°C.

Transformation. The plasmid DNA (40 ng / 100 µl) from strain 25 14 was added in TE buffer to competent HB101 cells mixed and stored

on ice for 30 min. The mixture was heat shocked at 42°C for 2 min and incubated at 37°C for 30 min after the addition of 1 ml of L broth.

Transformed cells were tested for tetracycline resistance on LBA plates (L broth + 15 g Agar / l according to Hanahan (22)) as follows:

- 1. Positive control: HB101 E. coli cells in LBA.
- 2. Negative control: HB101 <u>E</u>. <u>coli</u> cells LBA plus tetracycline 100 μl / 20 ml of LBA. Te stock used was 12.5 mg / ml in 50 / 50 EtOH water.
- 3. Second positive control: 50 ml HB101 plus Te plasmid mixture in LBA.
- 4. Experimental plates: HB101 plus Te plasmid mixture in LBA with Te; different amounts of the mixture, from 40 μ l to 200 μ l were spread on the plates.

Resistance to Nalidixic Acid. Strain 14 E. coli and HB101

E. coli were grown on LB with nalidixic acid 100 µl / 20 ml LB.

Nalidixic acid stock used was 20 mg / ml in water.

23

24

RESULTS AND DISCUSSION

The density of fecal coliforms at both sites was high for natural waters, > 80 CFU/100 ml (Fig. 2), but typical for tropical areas (35). Densities of fecal coliforms were significantly higher at site 9 (the sewage contaminated site). However, since site 9 is lower in the watershed and previous studies have shown a long survival time for 3 Escherichia coli in these waters, a concentration phenomena can not be 9 ruled out (10, 29, 41). Only 70% of the fecal coliform positive isolates were confirmed as E. coli, this is considerably lower than temperate waters but typical for tropical waters, and undoubtedly due to the dominance of mesophilic background flora in tropical waters (34, 35). Previous studies in this watershed have demonstrated that E. coli - isolated from epiphytes in trees 10 m above the ground has the same %mol G+C as E. coli B, a clinical strain (8). In addition, these rain forest isolates were shown to have at least 70% homology with E. coli B, further verifying that they were the same species. Thus, as suggested by Hazen (23) E. coli continues to appear as a part of the indigenous microbial flora of this and other tropical waters and an inappropriate indicator of recent human fecal contamination.

The most common isolate resistance was to penicillin (16/17, 94%), followed by ampicillin (47%); the most common sensitivity was to tetracycline (94%) and chloramphenicol & chloromycetin (88%) (Table 1). Multiple antibiotic resistance (MAR), to 3 or more antibiotics, was most common in bacteria from site 9 (17.6%) when compared to site 1

(6%) (Table 2). The most common pattern of resistance was, again, to penicillin only (41%), followed by penicillin, ampicillin (23.5%).

Resistance to penicillin was widespread (94%) among the environmental isolates obtained. Moreover, all the fecal coliforms isolated from the highest point in the watershed (site 1), were penicillin resistant (Table 1). Multiple resistance to antibiotics was common, particularly in bacteria growing in sewage contaminated waters, site 9 (Table 2). The percentage of environmental <u>E. coli</u> strains which were resistant to two or more antibiotics (53%) was higher than the range previously reported (21, 27, 38).

Four strains (1, 7, 14, 15) were selected on the basis of possible R plasmid antibiotic resistance. According to their behavior in an agarose gel, the R plasmid DNA in these bacteria are approximately 1 Kb (ca. 6 x 10^5 mw based on a standard of 1.5 Kb = 1 x 10^6 mw, 1). Kabori et al. (1984) detected a plasmid with a molecular weight of ca. 1.0 Mdal (ca. 1.5 Kb) and they have suggested that this may be the smallest plasmid so far reported in natural environments. Plasmids ranging in molecular weight from 2.7 x 10⁶ to 79 x 10⁶ have been previously reported (25). Since Hanahan (22) has demonstrated that the probability of transformation increases linearly with decreasing plasmid size, these small plasmids have a very high transforming potential. Glassman et al. (19) suggested that there is a preponderance of small plasmids in isolates from clean sites but larger ones (> 30 Mdal) in isolates from The isolation of small plasmids in this study would 24 polluted sites. suggest that this site was unpolluted. Site 9 was the only site in the

watershed known to receive sewage contamination. Low concentrations of phosphorus and nitrogen reported for this watershed by other studies (10, 14, 29, 41) supports this finding.

Resistance transfer results to <u>E. coli</u> HB101 are given in Table 2.

Tetracycline sensitive (Tes) HB101 were cultured with Te-R-plasmid

DNA from <u>E. coli</u> strain 14 (Table 2). All resistance acquisition occurred through transformation since the DNA preparation excluded all other possibilities (i.e. conjugation and transduction). Resistance to Te was transferred in all cases, but was clearly evident after 24 h in those cultures where, at least, 100 µl of the mixture (HB101 plus Te-R-plasmid DNA) was plated. Where smaller amounts were plated (20 to 75 µl), growth was barely evident at 24 h; by 72 to 96 h higher counts were obtained. The assay was successful in as much as untransformed HB101 cells did not grow on the LBA Te medium (Table 3). Growth on the experimental plates were scarce, as would be expected if only transformants were to grow.

Smith et al. (39) reported that transformation has been found to occur in both gram positive and gram negative bacteria in nature. The latter have evolved mechanisms which favor the development of competent cells under conditions which inhibit cell division.

Transformable Acinetobacter strains become competent when entering a stationary phase (26). Although homologous DNA is preferentially transferred in gram negative bacteria, there is evidence that transformation also occurs by uptake of non-homologous DNA though less efficiently (39). Thus, the transformation which we have evidenced

in vitro could actually be taking place in nature. Recent studies by

2 Cruz-Cruz et al. (12) have shown that in situ genetic transfer can take

3 place between Pseudomonas aeruginosa strains at these sites. Their

4 study, using diffusion chambers placed in the stream, showed that

5 transfer occurred within 3 h, and that transconjugants did not decrease

6 in survivability. Considering that even under stressed conditions E. coli

7 could survive in appreciable densities for 3 h, it is highly likely that R
8 plasmids that reach these tropical waters through E. coli could

9 transform other E. coli, pathogenic bacteria, or other indigenous

10 microbiota. Shaw and Cabelli (36) reported an outbreak of recreational

11 waterborne enteric disease caused by MAR Shigella. Several other

12 investigators have also reported a number of deaths in several parts of

13 the world due to MAR containing bacteria (5, 18).

The fact that antibiotic resistance may be readily transferred among the genera that comprise the Enterobacteriaceae has been studied extensively in recent years (2, 6, 7, 11, 20, 22, 26). The current studies demonstrate that tropical waters may present an even greater danger to public health due the rapid genetic transfer rates of R-19 plasmids, and the long survival time to E. coli in these environments.

Adequate indicators of recent human fecal contamination for monitoring water contamination in the tropics are desperately needed to increase the health of the 65% of the world's population that lives in tropical areas.

Acknowledgements

The authors are indebted to Graciela Candelas and Fernando
Renaud who kindly allowed the use of their laboratory equipment and
materials. Thanks also to Millie Viera and Nilsa Rodríguez for their
assistance in typing this manuscript. The <u>E. coli</u> HB101 were obtained
from Dr. Luis Torres-Bauza; Medical Sciences, UPR.

:0

LITERATURE CITED

1

- 1. Adams, R. L. P., R. H. Burdon, A. M. Campbell, D. P. Leader, and R. M. S. Smellie. 1981. The Biochemistry of the Nucleic Acids. Ninth Edition. Chapman and Hall.
- 2. Alcaide, E., and E. Garay. 1984. R-plasmid transfer in Salmonella species isolated from wastewater and sewage contaminated surface waters. Appl. Environ. Microbiol. 48:435-438.
- 3. American Public Health Association. 1985. Standard Methods for the Examination of Water and Wastewater. 16th ed. Washington, D.C.
- 4. Al-Jebori, M. M. 1985. A note on antibiotic resistance in the bacterial flora of raw Sewage and sewage polluted River Tigris in Mogul, Iraq. J. Appl. Bacteriol. 58:401-405.
 - Baine, W. B., J. J. Farmer, E. J. Gangarosa, G. T. Herman, C.
 Thornberry, and P. A. Rice. 1977. The typhoid fever in the United States associated with the 1972-1973 epidemic in Mexico. J. Infect. Dis. 135:649-653.
- 6. Bell, J. B., G. E. Elliott, and D. W. Smith. 1983. Influence of sewage treatment and urbanization on selection of multiple resistance in fecal coliform poymitations. Appl. Environ. Microbbiol. 46:227-232.
- 7. Bell, J. B., W. R. Macrae, and G. E. Elliott. 1980. Incidence of R factors in coliform, fecal coliforms and Salmonella populations of the Red River in Canada. Appl. Environ. Microbiol 40:486-491.

- 8. Bermúdez, M., and T. C. Hazen. 1988. Phenotypic and genotypic comparison of Escherichia coli from pristine tropical waters. Appl. Environ. Microbiol. 54:979-983.
- 9. Boyer, H. W., and D. Roulland Dussoix. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459-472.
- on the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl.

 Environ. Microbiol. 50:468-476.
- 11. Chatterjee, A. K., and M. P. Starr. 1972. Transfer among Erwinia species and other Enterobacteria of antibiotic resistance carried on R-factors. J. Bacteriol. 112:576-584.
- 12. Cruz-Cruz, N. E., G. A. Toranzos, D. G. Ahearn, and T. C. Hazen. 1988.

 In situ survival of plasmid and plasmid-less <u>Pseudomonas</u>

 aeruginosa in pristine tropical waters. Appl. Environ. Microbiol.

 54:0000-0000.
- 13. Dillon, J. R., A. Nasim, and E. R. Nestmann. 1985. Recombinant DNA Methodology. Chapt. 1. Wiley Press. New York.
- 14. Elías, E. E., A. Calvo, and T. C. Hazen. 1988. Survival and distribution of <u>Yersinia enterocolitica</u> in a tropical rain forest stream. Curr. Microbiol. 18:000-000.
- 23 15. Evison, L. M., and A. James. 1973. A comparison of the distribution of intestinal bacteria in British and East African water sources. J.

 Appl. Bacteriol. 36:109-118.

- 1 16. Feachem, R. G. 1974. Fecal coliforms and fecal streptococci in streams in the New Guinea highlands. Water Res. 8:367-374.
- 17. Fujioka, R. S., and L. K. Shizumura. 1985. <u>Clostridium perfringens</u>, a reliable indicator of stream water quality. J. Water Pollut. Control Fed. 57:986-992.
- 6 18. Gangarosa, E. J., J. V. Bennett, C. Wyatt, P. E. Pierce, J. Olarte, P. M.
 Hernandes, V. Vazquez, and P. Bessudo. 1972. An epidemic
 associated episome. J. Infect. Dis. 126:215-218.
- 9 19. Glassman, D. L., and L. A. McMicol. 1981. Plasmid frequency in natural population estuarine microorganisms. Plasmid 5:231.
- 20. Goyal, S. M., C. P. Gerba, and J. L. Melnick. 1979. Transferable drug resistance in bacteria of coastal coral canal waters and sediment.

 Water Res. 13:349-356.
- 21. Grabow, W. K. O., W. O. Prozesky, and J. S. Burger. 1975. Behaviour in a river and dam of coliform bacteria with transferable or non-transferable drug resistance. Water Res. 9:777-782.
- 22. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580.
- 23. Hazen, T. C. 1988. What do fecal coliforms indicate in tropical wates? Int. J. Tox. Asses. 00:000-000.

24

25

24. Hazen, T. C., F. A. Fuentes, and J. W. Santo Domingo. 1988. In situ survival and activity of pathogens and their indicators.

Proceedings IV ISME 406-411.

- 25. Helinski, D. R. 1973. Plasmid determined resistance to antibiotics:
- molecular properties of R-factors. Ann. Rev. Microbiol. 27:437-
- ³ 470.
- 4 26. June, E. 1972. Interspecies transformation of Acinetobacteria,
- genetic evidence for a ubiquitous genus. J. Bacteriol. 112:917-931.
- 6 27. Kelch, W. J., and J. S. Lee. 1978. Antibiotic resistance patterns of
- gram-negative bacteria isolated from environmental sources.
- 8 Appl. Environ. Microbiol. 36:450-456.
- 9 28. Lavoie, M. C., and P. Viens. 1983. Water quality control in rural 10 Ivory Coast. Trans. Royal Soc. Trop. Med. Hyg. 77:119-120.
- 29. López-Torres, A. J., T. C. Hazen, and G. A. Toranzos. 1987.
- Distribution and in situ survival and activity of Klebsiella
- pneumoniae and Escherichia coli in a tropical rain forest
- watershed. Curr. Microbiol. 15:213-218.
- 30. Mach, P. A., and D. J. Grimes. 1982. R-plasmid transfer in a wastewater treatment plant. Appl. Environ. Microbiol. 44:1395-1403.
- 31. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning:
- A Laboratory Manual Chap. 5 and 8. Cold Spring Harbor
- 20 Laboratory.
- 22 32. Niemi, M., M. Sihakov, and S. Niemela. 1983. Antibiotic resistance
- among different species of fecal coliforms isolated from water
- samples. Appl. Environ. Microbiol. 45:79-83.

- 1 33. Oluwande, P. A., K. C. Sridhar, A. O. Bammeke, and A. O. Okubadejo.
- 2 1983. Pollution level in some Nigerian rivers. Water Res. 17:957-
- ³ 963.
- 4 34. Rivera, S., T. C. Hazen, and G. A. Toranzos. 1988. Isolation of fecal
- s coliforms from pristine sites in a tropical rain forest. Appl.
- 6 Environ. Microbiol. 54:513-517.
- ⁷ 35. Santiago-Mercado, J. and T. C. Hazen. 1987. Comparison of four
- 8 membrane filtration and MPN methods for fecal coliform
- enumeration in tropical waters. Appl. Environ. Microbiol.
- 53:2922-2928.
- 36. Shaw, D. R., and V. J. Cabelli. 1980. R-plasmid transfer frequencies
- from environmental isolates of Escherichia coli to laboratory and
- fecal strains. Appl. Environ. Microbiol. 40: 756-764.
- 37. Smith, H. W. 1970. Incidence in river water of Escherichia coli
 - containing R factors. Nature 228:1286-1288.
- 38. Smith, H. W. 1971. Incidence of R+ Escherichia coli in coastal
 - bathing waters of Britain. Nature 234:155-156.
- 28 39. Smith, H. W., B. D. Danner, and R. Deich. 1981. Genetic
- transformation. Ann. Rev. Biochem 50:41-68.
- 40. Thomson, J. A. 1981. Inadequacy of Escherichia coli as an indicator
- of water pollution in a tropical climate: a preliminary study in
- Botswana. S. Afr. J. Sci. 77:44-45.
- 23 41. Valdes-Collazo, L., A. J. Schultz, and T. C. Hazen. 1987. Survival of
- 24 <u>Candida albicans</u> in tropical marine and fresh waters. Appl.
- Environ. Microbiol. 53:1762-1767.

wright, R. C. 1982. A comparison of the levels of faecal indicator bacteria in water and human faeces in a rural area of a tropical developing country (Sierra Leone). J. Hyg. 89:69-78.

6

10

: :

1.2

: 3

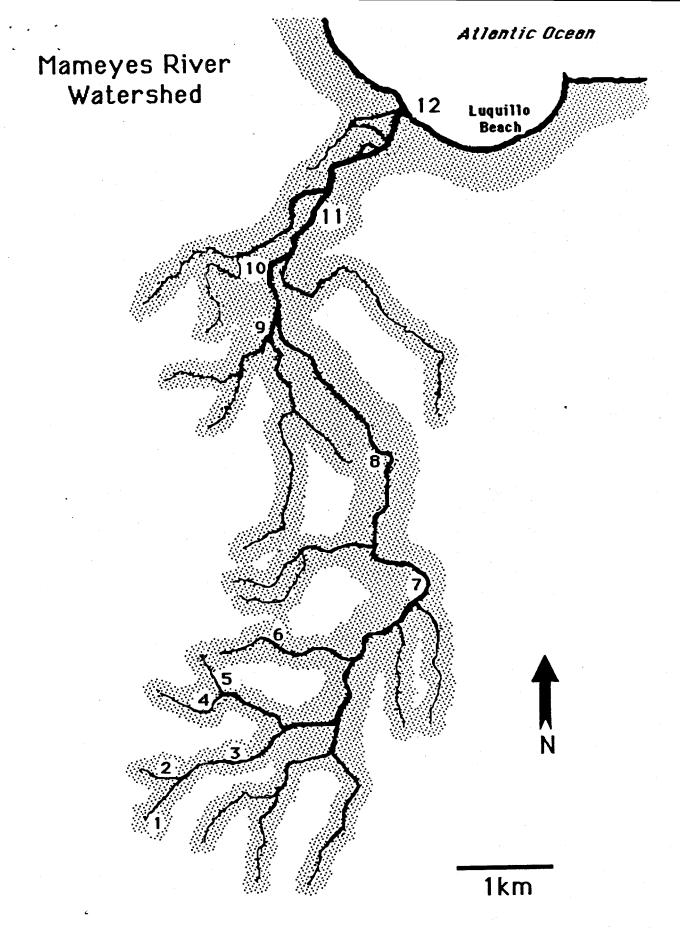
4

1 1

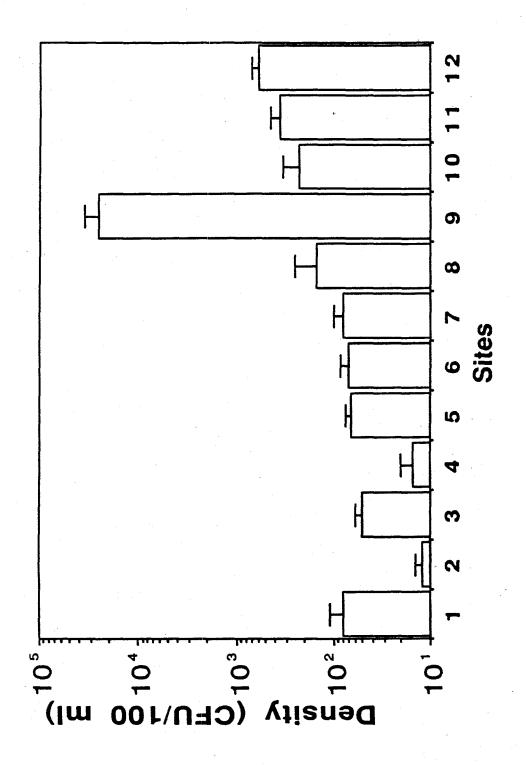
. ċ

. 5

<u>: 9</u>


20

23


22

23

24

3 Figure 1. Map of study sites in Mameyes River.

⁴ Figure 2. Density of fecal coliforms by site in the Mameyes River (mean

 \pm one standard error, N = 36)

Table 1. Antibiotic sensitivity of fecal coliform positive environmental isolates.

Isolate	Antibiotics								
	С	A m	PS	St	Te	Ra	S ₂		
1		+	+	+	-	ND ND	ND		
2	-	Mate :	+	-	-	ND	ND		
3	-	du >	+	-	-	ND	ND		
4	-	40	+	-	-	ND	ND		
5	+	40	+	-		ND	ND		
7	_	43-	+	-	-	ND	ND		
8	-	+	+	-	-	ND	ND		
9	· <u>-</u>	+	+	-	-	ND	ND		
10	-	-	+	-	-	ND	ND		
1 1	-	-	+	-	-	ND	ND		
1 2	+	+	+		· •	+	+		
13		+	+	-	-	ND	ND		
1 4	-	+	+	+	+	ND	ND		
15	-	+	+	+	-	ND	+		
16	-	+	+	-	-	ND	ND		
17	-	-	+	-	-	ND	ND		
18	-	· ••	-	- .	-	ND	ND		

Am = Ampicillin, St = Sulfathiazol, C = Chloromycetin, $S_2 = Streptomycin$, Ps = Penicillin, + = Resistant, Te = Tetracycline, - = Sensitive, Ra = Rifampicin, ND = not determined

Table 2. Antibiotic resistance patterns of rain forest isolates

Antibiotic Pattern	Number of Strains	%	Site
Ps	7/17	4 1	1, 9
Ps, Am	4/17	23	1, 9
Ps, Am, St	1/17	6	1, 9
Ps, Am, St, Te	1/17	6	9
Ps, Am, St, S ₂	1/17	6	9
Ps, C	1/17	6	1
Ps, Am, C, Ra, S ₂	1/17	6	9
None	1/17	6	9

Am = Ampicillin, Ra = Rifampicin, C = Chloromycetin, St = Sulfathiazol, Ps = Penicillin, S2 = Streptomycin, Te = Tetracycline

Table 3. Transformed E. Coli HB101 with R-Plasmid DNA.

Transformation	24 h	96 h
Mixture (ml) *		
20 (2) *	0*	1
40 (2)	0	0
50 (8)	0	60
75 (3)	0	14
100 (7)	3	TNTC
150 (1)	TNTC	TNTC
200 (3)	4	TNTC
ΗΒ101 100 μl (2)	0	0
(LBA-Te ⁻).100 μl (2)	TNTC	TNTC
HB101 Mixture (LBA-Te-) 100 μl (2)	TNTC	TNTC

^{*} number of \underline{E} . coli HB101 cells transformed with R-plasmid DNA from \underline{E} . coli strain 14 from site 9, TNTC = too numerous to count.