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After introducing essential, qualitative concepts and results, we discuss the application
of Dyson-Schwinger equations to QCD at finite T and p. We summarise the calculation
of the critical exponents of two-light-flavour QCD using the chiral and thermal suscepti-
bilities; and an algebraic model that elucidates the origin of an anticorrelation between
the p- and 7-dependence of a range of meson properties. That model also provides an
algebraic understanding of why the finite-T behaviour of bulk thermodynamic properties
is mirrored in their y-dependence, and why meson masses decrease with i even though f,
and —(gq) increase. The possibility of diquark condensation is canvassed. Its realisation is
uncertain because it is contingent upon an assumption about the quark-quark scattering
kernel that is demonstrably false in some applications; e.g., it predicts the existence of
coloured diquarks in the strong interaction spectrum, which are not observed.

1. DYSON-SCHWINGER EQUATIONS

The Dyson-Schwinger equations (DSEs) provide a Poincaré invariant, continuum ap-
proach to solving quantum field theories. There are many familiar examples, among them:
the gap equation in superconductivity; and the Bethe-Salpeter equation (BSE) and co-
variant Fadde’ev equation, which describe relativistic 2- and 3-body bound states. The
DSEs are a system of coupled integral equations and a truncation is necessary to obtain a
tractable problem. The simplest truncation scheme is a weak-coupling expansion, which
generates every diagram in perturbation theory. Hence, in the intelligent application of
DSEs to QCD, there is always a tight constraint on the ultraviolet behaviour. That is
crucial in extrapolating into the infrared, and in developing uniformly valid, efficacious,
symmetry-preserving truncations.

The task of development is not a purely numerical one, and neither is it always obviously
systematic. For some, this last point diminishes the appeal of the approach. However,
with growing community involvement and interest, the qualitatively robust results and
intuitive understanding that the DSEs can provide is becoming clear. Indeed, those
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Figure 1. G(k?)/k? from a solution [3] of the gluon DSE (dash-dot line) compared with
the one-loop perturbative result (dashed line) and a fit (solid line) obtained following the
method of Ref. [4]; i.e., requiring that the gluon propagator lead, via the quark DSE, to
a good description of a range of hadron observables.

familiar with the application of DSEs in the late-70s and early-80s might be surprised
with the progress that has been made.

The DSEs have been used extensively [1] in developing an understanding of confinement
and dynamical chiral symmetry breaking (DCSB), and their wide application [2] to the
description of hadron properties in terms of their quark and gluon constituents is built
upon that success. In understanding and unifying these phenomena, the DSEs point to
the key role played by the necessary, momentum-dependent dressing of the elementary
propagators and vertices in QCD. :

1.1. Gluon propagator
Important in the application of DSEs is the gluon propagator, which at 7' = 0 has the

form:
2 _ kuky\ G(K?) n._ &
9" D (k) = (‘Zw i ) R G(k%) == T )]’ (1)

where I1(k?) is the vacuum polarisation that contains all the dynamical information about
gluon propagation. Studies of the gluon DSE have been reported by many authors [1] with
the conclusion that, if the ghost-loop is not significant, then the charge-antiscreening 3-
gluon vertex dominates and, relative to the free gauge boson propagator, the dressed gluon
propagator is significantly enhanced in the vicinity of k> = 0. The enhancement persists
to k? ~ 1-2GeV?, where a perturbative analysis becomes quantitatively reliable. In the
neighbourhood of k? = 0 the enhancement can be represented [3] as a regularisation of 1/k*
as a distribution, and this behaviour is illustrated in Fig. 1. A dressed-gluon propagator of
this type generates DCSB and confinement without fine-tuning. (We identify confinement
as the absence of a Lehmann representation for coloured propagators, with the obvious
analogue for other coloured n-point functions.)
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Figure 2. M(p?) := B(p®)/A(p?) obtained in solving the quark DSE. The solution of
M?(p?) = p? defines M %, the Euclidean constituent-quark mass.

1.2. Quark propagator
At T =0 = p in a covariant gauge the dressed-quark propagator has the form

1 1
SO = N IR T h A T B 2

Z(p) is the renormalised dressed-quark self energy, which satisfies

. A Ae .
Ep)=(Za—1)iv-p+ Zsm*+ Z; /q 9°D,.(p — q);vuS(q)Fu(q,p), (3)

where I"%(g; p) is the dressed-quark-gluon vertex, m¢ is the current-quark mass, ¢ is the
renormalisation point, and ;" : A= A d*q/(27)* represents mnemonically a translationally-
invarient regularisation of the integral, with A the regularisation mass-scale. Using G(k?)
similar to that depicted in Fig. 1 and current-quark masses corresponding to

m}ﬁfv mlGeV m};dev m} GV W
6.6 MeV 140MeV 1.0GeV 3.4GeV

one obtains [5] the dressed-quark mass function depicted in Fig. 2.

For light quarks (u, d and s) there are two distinct domains: perturbative and non-
perturbative. In the perturbative domain the magnitude of M (p?) is governed by the the
current-quark mass. For p? < 1 GeV? the mass-function rises sharply. This is the nonper-
turbative domain where the magnitude of M (p?) is determined by the DCSB mechanism;
i.e., the enhancement in the dressed-gluon propagator. This emphasises that DCSB is
more than just a nonzero value of the quark condensate in the chiral limit!

For a given flavour, the ratio £L; := M f / mg is a single, quantitative measure of the im-
portance of the DCSB mechanism in modifying that quark’s propagation characteristics.
As illustrated in Eq. (5),

flavour |u/d| s | c | b | ¢

W|150l10}23|14|—>1 (5)
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Figure 3. First two orders in a systematic expansion 7] of the quark-antiquark scattering
kernel. In this expansion, the propagators are dressed but the vertices are bare.

this ratio provides for a natural classification of quarks as either light or heavy. For
light-quarks L is characteristically 10-100 while for heavy-quarks it is only 1-2. The
values of £; signal the existence of a characteristic DCSB mass-scale: M,. At p? > 0
the propagation characteristics of a flavour with m§ < M, are altered significantly by the

DCSB mechanism, while for flavours with m§ > M, it is irrelevant, and explicit chiral
symmetry breaking dominates. It is apparent from Eq. (5) that M, ~ 0.2GeV ~ Agcp.
This forms a basis for many simplifications in the study of heavy-meson observables.[6]

1.3. Hadrons are bound states

The properties of hadrons can be understood by studying covariant bound state equa-
tions: the Bethe-Salpeter equation (BSE) for mesons and the covariant Fadde’ev equation
for baryons. The mesons have been studied most extensively and their internal structure
is described by a Bethe-Salpeter amplitude obtained as a solution of

Ca(tiP)l, = [ lxaei Pl Ki2(a, ki P), ©)

where xu(q; P) := S(¢+)Tu(q; P)S(q-); S(q) := diag(Su(q), Sa(q), Ss(q),--); @+ = g+
np P, g- = g— (1 —np) P, with P the total momentum of the bound state and observables
independent of np; and r,...,u represent colour-, Dirac- and flavour-matrix indices.

In Eq. (6), K is the renormalised, fully-amputated, quark-antiquark scattering kernel
and important in the successful application of DSEs is that it has a systematic skele-
ton expansion in terms of the elementary, dressed-particle Schwinger functions; e.g., the
dressed-quark and -gluon propagators. The particular expansion depicted in Fig. 3, with
its analogue for the kernel in the quark DSE, provides a means of constructing a kernel
that, order-by-order in the number of vertices, ensures the preservation of vector and
axial-vector Ward-Takahashi identities and hence Goldstone’s theorem.

1.4. Phenomenological applications

Some of the many applications of DSEs to the calculation of hadron observables at
T = 0 = p are summarised in Refs. [2] so here we make only two brief observations. Using
the DSEs one obtains a mass formula for pseudoscalar mesons that unifies the small and
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Figure 4. t-meson electroproduction cross section: solid line; the dashed line is the
p-meson cross section for comparison. The data are from Refs. [10].

large current-quark mass regimes. For mesons composed of quarks with small current-
quark masses the formula yields [4] the Gell-Mann-Oakes-Renner relation. However, when
the current-quark mass of one or both of the constituents is large, the formula predicts [8]
that the meson mass increases linearly with the current-quark mass. In model studies [5]
the linear increase is dominant for masses as low as that of the s-quark. The approach has
also been extensively employed in the study of scattering processes, and one example is the
calculation [9] of the cross section for the diffractive electroproduction of vector mesons.
This application makes the striking prediction, confirmed by recent data, that although
two-orders of magnitude smaller than the p-meson cross section at the photoproduction
point, the 1-meson cross section is equal to that of the p-meson at Q? = 15 GeV?, Fig. 4.

2. FINITE TEMPERATURE AND CHEMICAL POTENTIAL

The contemporary application of DSEs at finite temperature and chemical potential is
a straightforward extension of the T = 0 = p studies. The direct approach is to develop
a finite-T extension of Ansdtze for the dressed-gluon propagator and then solve the quark
DSE. Having the dressed-quark and -gluon propagators, the response of bound states to
increases in T and u can be calculated. As a nonperturbative approach that allows the
simultaneous study of confinement and DCSB, the DSEs have a significant overlap with
lattice simulations: each quantity that can be estimated using lattice simulations can also
be calculated using DSEs. That means they can be used to check the lattice simulations,
and importantly, that lattice simulations can be used to constrain their model-dependent
aspects. Once agreement is obtained on the common domain, the DSEs can be used to
explore phenomena presently inaccessible to lattice simulations.

The renormalised dressed-quark propagator at finite-(7’, 1) has the form

STH P ax) = 7 PAWD, @) + iva@eC (P, D) + B(D, @x) (7)




where @y 1= wyg + tp with wy = (2k + 1) 7T, k € Z, and satisfies the DSE

S_l(ﬁ, (:Jk) = Z; WP+ Zs (Z"}’4 Wy + mbm) + Z’(ﬁ, (.:Jk) ; : (8)
where the regularised self energy is
(p,a) = Z"_Y"ﬁz'/a(ﬁ, W) + 174 O B (P, @) + Sp(P, x) (9)
~31 o o~ e o~
(P, ) = / 39 ? Dy ('~ @, n — @) 71 [PryuS(q, @)T(q, 0 7 @k)] (10)
Ly 1= e 2::3 and Py := —(Z{#/p%)iv - p, P := Z1, Pc = —(Z1/in)ivas.
f,q T Z fA (d

The complex scalar functlons. A(p,@x), B(p,@r) and C(p, @) satisfy: F(F,wx)* =
F(p,&-k-1), F = A, B,C, and although not explicitly indicated they are functions only
of |p]? and @?2. The dependence of these functions on their arguments has important con-
sequences in QCD. It can provide a mechanism for quark confinement and is the reason
why bulk thermodynamic quantities, such as the pressure and entropy, approach their
ultrarelativistic limits slowly.

2.1. Chiral phase transition at 4 =0
One order parameter for the chiral symmetry restoration transition is the quark con-
densate, defined via the renormalised dressed-quark propagator:

_ A
—(@0)? = lim Zy(¢%AY) N, [ trbicac [Smol9)] (1)
Since trpirac [Sm=0(¢)] o< B(P, @r), a simpler and equivalent order parameter is
T ¢
X(t,h) :=Re Bo(5 = 0,d0); t := 7 — 1, h::fnf, (12)

which makes it clear that the zeroth Matsubara mode determines the character of the
chiral phase transition. (An order parameter for confinement, valid for both light- and
heavy-quarks, was introduced in Ref.[11]. It is a single, quantitative measure of whether
or not a Schwinger function has a Lehmann representation, and has been used [12] to
striking effect in QEDj.)

The chiral transition is completely characterised by two critical exponents: 3, 6, which
can be extracted from the behaviour of the chiral and thermal susceptibilities: [13]
o X(t,h) C xlth) = axX(t,h) .

oh . ot b
As a function of 7 the susceptibilities have a peak, which defines the pseudocritical points:
th_, t¢ _, and because the correlation length is infinite at a second order transition it follows

pc? Ypcr
that
1

—z —z 1
Xg = Xh(tpmh)och Pzn=1l— 4 X? = Xt(tpmh)OCh Y, 2= 6_5’(1_18) (14)

Hence the critical exponents can be obtained by plotting log;, x?°¢ vs. log;, &, as depicted
in Fig. 5. This figure makes one thing abundantly clear: very small values of the current-
quark mass must be used to obtain accurate values of the critical exponents. If one
retains only those values 5 x 107* < A < 5 x 1072 then an apparently good linear fit
yields: z, = 0.78, z; = 0.40, or B = 0.36, 6 = 4.5, which are quite close to the values
of the O(4) model. The small values of the current-quark mass we require to accurately
estimate the critical exponents are inaccessible in contemporary lattice simulations.

xn(t, h) = (13)
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Figure 5. Behaviour of the susceptibilities in the DSE model of two-light-flavour QCD
illustrated in Fig. 1,[14] which is a minor modification of that in Ref. [4]: w — 0.6 GeV,
that provides a slightly better description of 7 and K properties. The critical temperature
is T;¥ = 152 MeV and the critical exponents take mean-field values: z; = 0.67, z; = 0.33;
ie., 8 = 0.5, 6 = 3.0, as might be anticipated because at long-range the interaction
~ const. in configuration space. The other curves illustrate the slopes characterising
mean-field (labelled IR) and O(4) critical exponents.

2.2. T and p nonzero

This is a difficult problem and the most complete study [15] to date employs a simple
Ansatz for the dressed-gluon propagator that exhibits only the infrared enhancement
suggested by Ref. [3]: :

2D, (7. ) = Pubv ) g3 5 g3 15
9°Dy (P, Q) = 5uu—m ™ 7 ko (), (15)

with Q, = 2k7T and n a mass-scale. It is an infrared-dominant model and does not
represent well the behaviour of D, (7, ) away from |p]* + Qf ~ 0. Consequently some
model-dependent artefacts arise. However, there is significant merit in its simplicity and,
since the artefacts are easily identified, the model remains useful as a means of elucidating
many of the qualitative features of more sophisticated Ansdtze.

Using Eq. (15) and the rainbow truncation [[', — 7, in Eq. (10)], the quark DSE is[7]

1/ — 1= ~ 1 o~
S l(pawk) :Sol(p7wk)+Z772A/V5(pawk)’7ll7 (16)

and we see that the simplicity of the Ansatz allows the reduction of an integral equation
to an algebraic equation. Its solution exhibits many of the qualitative features of more
sophisticated models.

In the chiral limit Eq. (16) has two qualitatively distinct solutions. The Nambu-
Goldstone solution, with

B(pi) = { /7" — 45, Re(B) < é, C(pe) =

, otherwise

2
, | Re(7}) < Z-

2
1 ’ (17)
2

2
(1 +4/1+ 2}%) , otherwise
k




Figure 6. The quark pressure, P,(T, ), normalised to the free, massless (or Ultra-
Relativistic) result.

where p;, := (p,@;), describes a phase of the model in which: 1) chiral symmetry is
dynamically broken, because one has a nonzero quark mass-function, B(py), in the absence
of a current-quark mass; and 2) the dressed-quarks are confined, because the propagator
described by these functions does not have a Lehmann representation. The alternative
Wigner solution, for which

Ba)=0 , C) =3 (1 + \/:%?) , | (18)

describes a phase of the model with neither DCSB nor confinement.

The relative stability of the different phases is measured by a (7', u)-dependent vacuum
pressure difference: B(T, ). B(T, 1) = 0 defines the phase boundary, and the deconfine-
ment and chiral symmetry restoration transitions are coincident. For y = 0 the transition
is second order and the critical temperature is 70 = 0.1597, which using the value of
n = 1.06 GeV obtained by fitting the © and p masses corresponds to 70 = 0.170 GeV.
This is only 12% larger than the value reported in Sec. 2.1, and the order of the transition
is the same. For any u # O the transition is first-order. For T = 0 the critical chemi-
cal potential is u? = 0.3 GeV, which is =~ 30% smaller than the result in Ref.[16]. The
discontinuity in the order parameter vanishes at u = 0.

The quark pressure is easily calculated and is depicted in Fig.6. Confinement means
that P, = 0 in the confined domain. In the deconfined domain it approaches the ultrarel-
ativistic, free particle limit, Pyg, at large values of T and g but the approach is slow. For
example, at T ~ 2T2, or u ~ 3p%, P, is only 0.5 Pyg. This feature results from the persis-
tence of momentum dependent modifications of the quark propagator into the deconfined
domain, as evident with C # 1 in Eq. (18). The figure also highlights the “mirroring” of
finite-T" behaviour in the p-dependence of the bulk thermodynamic quantities.

The vacuum quark condensate is given by the simple expression [17]
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Figure 7. —{(Gq), f» and m, as a function of x for a range of values of T. m, is only weakly
sensitive to changes in x4 and 7 because of mutual cancellations between the effects of
these intensive variables on —(gg) and f,. That is a result of Goldstone’s theorem; i.e.,
the preservation of the axial-vector Ward-Takahashi identity.

_ 3 8N 7 ‘mx oA 2 L 24 p2_ 2 o
— {79y =n —;;—T;)/O dyy* Re \/Z—y + B - @ —2wwz) : (19)

T =T/n, i = p/M; linas is the largest value of ! for which @} _ < (1/4) + * and this also
specifies wy,,,, A2 =@} —&f, o= (@ + k). At T =0=p, (—{dg)) =n*/(807?) =
(0.117n)3. Obvious from Eq. (19) is that (—(gg)) decreases continuously to zero with T
but increases with p, up to a critical value of u.(7) when it drops discontinuously to zero.
This behaviour is driven by the combination u?> — w? and is exhibited by the calculated

result depicted in Fig. 7. In the chiral limit one also has the simple expression

) 1612Vc 7
T

S 2t (1+4/12-—4<D,2—— §A?) .
=0 3 5

It too involves the combination u? — w? and without calculation Eq. (20) indicates that
fr will decrease with T and increase with u, as exhibited by calculated result depicted in
Fig. 7. These results confirm those obtained [11,16] with more sophisticated Ansdtze, and
in doing so provide for their algebraic elucidation: the behaviour is a consequence of the
necessary momentum dependence of the dressed-quark self energy.

The (T, u)-response of meson masses is determined by the ladder BSE

1= (20)

2
.~ - 1~ JU - 1~
Cu(Pr; Po) = ~7 Re {’Yu S(p; + §Pz) L (Di; Pe) S(p; — §P£) ’Yp} ,

1 (21)

where P, := (13, £2,), with the bound state mass obtained by considering Pi—y. In this
truncation the w- and p-mesons are degenerate. The calculated mass of the 7- and p-
mesons is depicted in Fig: 8. The behaviour is easily understood by again considering the
chiral limit where the mass of the longitudinal component of the p-meson is
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Figure 8. M, = M,, and m, as a function of fi for T = 0,0.1. On the scale of this figure,
m, is insensitive to this variation of 7. The current-quark mass is m = 0.011 », which for
1 = 1.06 GeV yields M, = 770 MeV and m, =140MeV at T =0 = p.

1
M. = 5772 — 4(p® — 7T (22)

The characteristic combination u? — 7*T? appears again. It is responsible for the anti-
correlation between the response of M, to T and its response to y, and that M 3 rises
linearly with T2 for u = 0, just like a gauge-boson Debye mass. The mass of the transverse
component of the vector meson is insensitive to T and pu.

In a 2-flavour, free-quark gas at T = 0 the baryon number density is pp = 2u*/(372), by
which gauge nuclear matter density, pg = 0.16 fm 3, corresponds to p = g := 260 MeV =
0.2457. At this chemical potential the algebraic model yields

My(po) = 0.75M,(1e = 0) , My(t0) ~ 0.85My(p = 0), (23)

where My(p = 0) = 1.02GeV for m, = 180 MeV. The study of Ref. [16] indicates that a
more realistic representation of the ultraviolet behaviour of the dressed-gluon propagator
expands the horizontal scale in Fig. 8, with the critical chemical potential increased by
25%. This suggests that a better estimate is obtained by evaluating the mass at py =
0.20 n, which yields

M,(pg) = 0.85M, (1 =10) , My(rg) &~ 0.90M,(x = 0); (24)

a small, quantitative modification. The difference between Egs. (23) and (24) is a measure
of the theoretical uncertainty in the estimates in each case. Pursuing this suggestion
further, s = pg{/2, corresponds to 2pg, at which point M, = M, =~ 0.72 M,(p = 0) and
My =~ 0.85 M,(p = 0), while at the T = 0 critical chemical potential, which corresponds
to approximately 3pp in Ref. [16], M, = M, ~ 0.65 M, (¢ = 0) and My ~ 0.80 M,(n = 0).
These are the maximum possible reductions in the meson masses.

This simple model preserves the momentum-dependence of gluon and quark dressing,
which is an important qualitative feature of more sophisticated studies. Its simplicity
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means that many of the consequences of that dressing can be understood algebraically.
For example, it elucidates the origin of an anticorrelation, found for a range of quantities,
between their response to increasing T and that to increasing p. That makes clear why
the transition to a QGP is second order with increasing 7' and first order with u. Further
it provides an algebraic explanation of why the (7T, u)-dependence of (—{Gq)) and fr must
be opposite to that of M,,.

3. DIQUARKS

It is not implausible that diquark (quark-quark) correlations play an important role in
the strong interaction. To see why, consider the class of models that can be characterised
by an effective interaction of the form:

a

[ ¢ 'y dem g o(@) 6Dl — 1) 21 4(0) 23

Field theories defined by such an interaction admit [18] a meson-diquark bosonisation that
at tree-level predicts a mass for both mesons and diquarks. The procedure corresponds
closely to solving the Bethe-Salpeter equations obtained by combining the ladder trunca-
tion of the quark-antiquark and quark-quark scattering kernels, depicted in Fig. 3, with
the rainbow truncation of the quark DSE. Any form of ¢°D,,(z — y) that is accurately
able to reproduce the mass of the 7 and p mesons in this truncation will predict [19] the
existence of stable, colour-antitriplet diquark bound states with masses:

myd x~ 740 MeV, m¥ ~ 950 MeV, m¥¢ ~ m3¢ ~ 1500 MeV. (26)

This points to a possibly important attraction in the quark-quark channel.

However, it also presents a problem, of course, because asymptotic diquark states are
not observed. The defect is in the truncation.[7] If one proceeds beyond the ladder-
truncation in the quark-quark scattering kernel; e.g., including the other diagrams de-
picted in Fig. 3, one uncovers a repulsive contribution from the crossed-box diagram that
eliminates the pole in the quark-quark scattering matrix; i.e., the full kernel does not sup-
port spurious diquark bound states. (The same procedure applied to SU(N, = 2)-QCD
predicts [20] that the mesons and diquarks are degenerate in that theory.) It is clear there-
fore that analyses of diquark correlations based solely on an effective interaction of the
type in Eq. (25) can yield erroneous results, and the suggestion of diquark condensation
may be amongst them.

The consequences of a putative diquark condensate are easy to elucidate. It is adequate
to consider a simple separable model [21]

9° Dy (F = §wi — wi) =8, Do g(B° + wi) (7% + w}), g(k?) = exp(—k*/A?), (27)

which preserves Goldstone’s theorem and ensures the absence of a Lehmann representation
for the quark propagator. This Ansatz has two parameters that can be fixed by requiring
a good description of pion properties at T = 0 = y; e.g., Dy = 106/A%, A = 0.71 GeV
yield fr = 93MeV and —(dq) = (238 MeV)?. A feature of the model is that it admits
a semi-algebraic analysis and at g = 0, with these parameter values, it has second-order
deconfinement and chiral symmetry restoration transitions at 7, 2 130 MeV, while for
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Figure 9. Quark and diquark mass gaps: A, Agy. Agg =0at T =0.15A, A = 0.71 GeV.

T = 0 these transitions are first-order at u. = 330 MeV neglecting the effect of a diquark
condensate.

A meson-diquark bosonisation yields a tree-level auxiliary-field effective action whose
extremum is determined by a pair of coupled equations for the quark and diquark mass
gaps, A, and Ay,

3 d*p g% &(P7) + 1
S = Ba3nT 3 f @) o (o g )
1

Dgg = Agg=DoT / g9 ”2)[ -+ {u— u}] (29)
0 = AniDT Y [ | e
with
€(B7) = 0"+ An *(B1) , €q,(B)) = 25 8 (57) - (30)
The first equation arises from the confined-quark contribution to the effective action,
while the second is the contribution from unconfined diquarks. The preliminary result of
Ref. [21] for the (T, u)-dependence of A, and A,, is depicted in Fig.9. The indications
are that at T = 0 there is a first order transition from a A,, # 0 phase to a Ag # 0
phase at p = 280 MeV. This behaviour persists until 7"~ 100 MeV when only A, # 0 is
possible. There appears to be a tricritical point in the (7, u)-plane.
Clearly the formation of a diquark condensate is a simple and direct consequence of as-
suming that attraction dominates in the quark-quark scattering matrix. However, equally

clearly, the validity of that assumption requires further consideration, with a first subject
being the effect of the often-ignored repulsive terms in the quark-quark scattering kernel.

4. CLOSING REMARKS

The DSEs are an efficacious tool for studying the strong interaction. In this application
they expose the qualitative importance and quantitative effect of the nonperturbative
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dressing of propagators and vertices in QCD. The modelling involved is based on this
observation, and it is necessary because of the need to make truncations. Questions will
always be asked about the fidelity of that modelling, and the answers will come as more is
learnt about about the constraints that Ward and Slavnov-Taylor identities in the theory
can provide. That approach has already been particularly fruitful in QED,[22] and in
the development of a systematic truncation procedure for the kernel of the quark DSE
and meson BSE.[7,20] In the meantime the judicious application of DSEs will continue
to provide a flexible, intuition-building framework for the prediction, correlation and
validation of observables.
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