SANDSE-142EC
SAND--98~/ 4 LC

Building an FTP Guard CWF-9¥/0/0 ~

—

Paul D. Sands
Sandia National Laboratories 1ECEl VED
P. O. Box 5800
Albuquerque, New Mexico 87185-0806 JUN 2 6 1338
pdsands@sandia.gov 0 S T l

ABSTRACT

This paper shows how an FTP Guard was constructed and implemented without degrading the
security of the underlying B3 platform. The paper then shows how the guard can be extended to
an FTP proxy server or an HTTP proxy server. The extension is accomplished by allowing the
high-side user to select among items that already exist on the low-side. No high-side data can be
directly compromised by the extension, but a mechanism must be developed to handle the low-
bandwidth covert channel that would be introduced by the application.

KEYWORDS

File Transfer, FTP, guard application, proxy server

INTRODUCTION

Classified designs usually include lesser classified (including unclassified) components. An
engineer working on such a design needs access to the various sub-designs at lower classification
levels. For simplicity, the problem is presented with only two levels: high and low. The
solution presented could be propagated as needed to create a solution for an arbitrary number of
classification levels and categories, as shown in Figure 1. The figure shows a separate guard
between each pair of enclaves. In practice, all guards going to an enclave (e.g., secret) could be
combined.

If the low-classification component designs are stored in the high network, they become
inaccessible to persons working on a low network. In order to keep the networks separate, the
component designs may be duplicated in all networks, resulting in a synchronization problem.
Alternatively, they may be stored in the low network and brought into the high network when
needed. The latter solution results in the use of sneaker-net (copying the files from the low
system to a tape and carrying the tape to a high system) or a file transfer guard.

Figure 1 shows the direction of data flow in the networks. However, whether by network,
telephone, or other means, there is an implied request-flow in the direction opposite the data
flow. If the request can be stated in advance, e.g., “get every file in directory D of machine M,”
then no additional reverse flow is needed. This is the method used by Phase I (the FTP Guard, as
implemented). However, if requests are to occur spontaneously, some method of real-time

reverse flow is required, as described in the proposed extensions. Sandia is a multiprogram Iaboratory
Operated by Sandia Corporation, g

R Los:kheed Martin Company, for the
M AS United States Department of Energy

DISTRIBUTION OF THIS DOCUMENT 1S UNUMeD § 1 s conese DEACOH94AL830,

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

FTP
GUARD FTP

GUARD

UNCLASSIFIED

— FTP
NETWORK

cuarp [fCONFIDENTIAL
NETWORK

Figure 1. A Generalization Using an FTP Guard between Each Network Pair

DESIGN OF THE GUARD

The guard was designed to meet the following criteria:
e The high-side user can get low-side files using a standard (unmodified) FTP client.

e The high-side user cannot put files, rename files, or make any other change that would be
visible to a low-side user.

¢ The low-side network contains hundreds of servers and millions of files. Files cannot be
pulled up to the guard except as needed.

e High-side users are not allowed access to all low-side files. The guard must preserve low-
side discretionary access controls.

e (Phase I) No reverse flow is permitted. The FTP sofiware is unprivileged (subject to all
restrictions of the security model).

¢ The guard system does not run any extraneous software.

The base platform for the MLS FTP Guard is a Pentium-based Wang XTS-300 computer running
the STOP operating system. Its predecessor, the 486-based XTS-300 was evaluated by the
National Computer Security Center and given a rating of B3. The Pentium configuration is
being evaluated under the RAMP program and is expected to be rated soon. The XTS-300 uses

separate network cards for the high and low-side networks. Each network card is controlled by
its own Internet Protocol (IP) daemon'. Network traffic is not forwarded from one network to
the other.

The STOP operating system has a UNIX-like appearance, but is a secure system based on a four
ring architecture, a mechanism that physically isolates security domains of the operating system.
Communication between rings occurs only at designated gates between adjacent rings,
preventing untrusted processes from calling security kernel services. The rings are

Ring 0 - the Security Kernel

Ring 1 - Trusted System Services

Ring 2 - Operating System Domain / Some applications
Ring 3 - Unprivileged Applications

The guard consists of four processes, which are replicated as needed to service users. The high-
side process (server) is a modified FTP daemon, a process that listens for network requests and
processes them. It allows users to get files that have been spooled by the low-side processes.
The low-side processes are minion (a modified FTP client), cronjob (a time-driven job that
processes user requests by calling a minion), and gman (the garbage collector). No processes are
privileged. The high-side process cannot talk to any of the low-side processes nor delete any
files (including spooled files).

The Cronjob Process

The Cronjob process creates a child process for each FTP Guard user. Every person wanting to
use the FTP Guard must provide the Guard administrator with the following information:

the name of a low-side computer from which to get files

the directories and files to be obtained

an account name and password to be used to get the files

how often the files should be obtained (spooled).

The cronjob process starts a minion (FTP client) process to contact the low-side system and get
the files. Interprocess communication messages are used to send requests to the minion. This
mechanism was used in anticipation of later phases where a high-side process would be
permitted to communicate with a minion process.

The Minion Process

The minion process looks like an FTP client to the low-side servers. It logs in as the appropriate
user, gets the requested files, and writes them to the FTP Guard spool disk. It creates a directory
index file that the server process will use to map low-side file names to spool file names. The
directory structure created by minion allows discretionary access to be preserved for spooled
files.

' A daemon process is one that controls a device, as opposed to one that talks to a user terminal.

LOW-SIDE

SERVER SERVER
MINION CRONJOBS CHILD
PROCESSES PROCESSES
4 < HIGH-SIDE
CLIENT

CONTROL CONNECTIONS

| PR <——) HIGH-SIDE
b 4

CLIENT

LOW-SIDE
SERVER

\

4—) 4 <¢—)p HIGH-SIDE

CLIENT
DATA
CONNECTIONS

7

Figure 2. FTP Guard Processes (Phase I)

The Server Process

The server process runs at the security level of the high-side and looks to a high-side user like an
FTP server. High-side users must authenticate themselves to gain access. Once connected, the
user appears to be looking at the low-side system. The standard FTP commands (CHDIR, LIST,
GET, etc.) are available and appear to be acting on the low-side system. In actuality, this process
never communicates with the low-side, but reads spool and index files that were created by a
minion process.

Since the server is a high-side process and the spooled files are at a lower security level, the
server cannot delete spool files when they are no longer needed. Nor can it send any kind of
message to a low-side process that it should delete the files. Either of these actions would
constitute a write-down, which is not permitted by the security model. Therefore, spool files
must be deleted by gman based on their age, irrespective of whether or not they have been
retrieved.

The Gman Process

Gman deletes files based on their age. On the Phase I system, all spool files are deleted seven
days after they are created. It is the user’s responsibility to retrieve them before they go away.
The system has a 2 Gb spool disk, and usage is currently light, so this is adequate. Gman could
be tuned to have different aging times for different users or sizes of files. It can also be tuned to
delete sooner as the spool disk fills up.

ENHANCING THE GUARD

The guard, as described above, contains no privileged processes. Since each component must
obey all the rules of the security model, the final product does nothing to nullify the B3 rating of
the underlying system. The guard is unfortunately less functional than it would be if we could
develop a mechanism for allowing the high-side to request unspooled low-side files
spontaneously. This capability would also provide a mechanism for extending the guard to other
protocols, such as HTML. The enhanced capability described is not part of the FTP Guard, but is
being considered for future implementation.

The remainder of this paper describes a mechanism for allowing requests from the high-side to
the low-side. Unlike “dirty-word” filters, that generally catch high-side information accidentally
being sent to the low-side, the proposed mechanism absolutely prevents the flow of high-side
data to the low side. The selection mechanism is functionally equivalent to allowing a user to
select from a low-side menu or pick a card from a deck of cards. No information is passed
except a numeric selection code (“I’ll take that one.”). Any selection mechanism might be used
to covertly signal information to the low side. However, the covert signaling mechanism can be
made sufficiently difficult to exploit that it does not introduce a significant risk. The enhanced
configuration is shown in Figure 3.

LOW-SIDE <
SERVER ERVER
MINION CRONJOBS CHILD
PROCESSES PROCESSES
Y < HIGH-SIDE
CLIENT
CONTROL CONNECTIONS
y « . HIGH-SIDE
LOW-SIDE / CLIENT
SERVER -
<«—> « €——) HIGHSIDE
CLIENT
DATA
CONNECTIONS

—

Figure 3. FTP Guard Processes (Enhanced)

Filtering the High-Side Request

High-side requests for low-side data consist of the following items:
¢ alow-side user name (for logging in to the low-side server)

a low-side password

the name of a low-side system

the name of a low-side directory or file

standard FTP commands.

Clearly none of these items can be high-side data since all exist on low-side systems. To ensure
that no high-side data is accidentally sent out, a high-to-low request contains only a request type
and a request item index. The valid request types are the following:

1. OPEN/USER/PASS - connect to a specified low-side system, as a specified username, with a
specified password. The system, username, and password are specified by the line on which
they occur in the FTP password file. The FTP password file is a file maintained by the Guard
for FTP users. It is not the XTS-300 password file.

2. CHDIR - change to another directory.

3. GET - get the nth file from the current directory.

4. QUIT

Each request from the server to a low-side process (minion) will have a single numeric argument
that references a low-side list. For example, user “bob” wants to get files from system
“servadori” where his password is “TamBob”. The high-side server will search the FTP password
file for an entry that includes “bob,servadori,JamBob.” If the entry is found, e.g., at line n, the
server will tell its minion process to connect based on line n. If the entry is not found, the server
tells bob his request is invalid. This means that users must be registered on the guard before they
can use it. Selection of directories and files is done in the same way, but from a dynamic list.
When the guard first connects to a system, it changes directory to the root and lists the directory.
The list is written to the spool disk. A high-side user request is processed as follows:

A high-side process (server) accepts an FTP request, such as, “GET /aaa/bbb/file_c.” It
processes the command as described below. Messages from the high-side server to the low-side
minion are restricted to the four commands and numeric arguments described above.

1. Send a CHDIR message to a low-side minion process to change to the root directory, /.
The CHDIR command supports two special arguments (root = -2 and parent = -1) in addition
to an index into a table.

2. When a minion process changes to a directory, it always does a listing of the directory and
updates the directory description on the spool disk. Whenever a minion completes a request,
it sends an interprocess message to its caller, which may be at a higher security level. A
high-side process (server) can read the spool data, which is at the low-side level. Read-down
and write-up are permitted by the security model.

3. The high-side process will see if “aaa” is a subdirectory in the root directory. If not, it will
tell the high-side user “File does not exist.”

. If “aaa” is the nth entry in the directory, the low-side will be told to change directory to the
nth entry and do another listing. This will cause the spool area to be updated again.

5. The high-side process will see if “bbb” is a subdirectory in the directory. If not, it will tell
the high-side user “File does not exist.”

6. If“bbb” is the kth entry in the directory, the low-side will be told to change directory to the
kth entry and do another listing.

7. The high-side process will see if “file_c” is a file in the directory. If not, it will tell the high-
side user “File does not exist.”

8. If“file_c” is the jth entry in the directory, the low-side will be told to get the jth entry. All
files are obtained using the binary transfer mode. FTP commands such as MODE are
supported between the high-side user and the Guard, but do not affect transfers between the
low-side server and the Guard. The minion will store the file on the guard spool disk.

9. The low-side process will notify the high-side that the file is ready and the high-side will

send it to the high-side user and delete it from the hard drive.

Since no information is sent to the low-side except what is already on the low-side, this process
cannot directly cause high-side information to be sent out.

Extending the Guard to HTML

The process of selecting from low-side choices could also be used to create a Web proxy server.
The guard would begin with a list of acceptable URLs”. A user moves about the Web by clicking
on pictures and text which are linked to other URLs. As each page is brought in for a user, a list
would be made of the URLs on the page. Selecting a URL then becomes a choice from a known
low-side list. Some Web requests, such as forms, do not fall into this description. Since they
allow the user to send arbitrary text, they would not be permitted. In addition, web pages would
be filtered to eliminate executable content, such as JAVA bytecode.

Limiting the Ability to Exploit the Signaling Mechanism

A covert data channel could be created by associating one or more bits of information with a
request for a specific low-side file. For example, suppose a process in the high-side network
requests file file_a on computer serverl to send a 0 and requests file file b on the same computer
to send a 1. If the computer is in the registration database and the file exists, a request would be
carried out. A privileged process operating on computer serverl could see that each file was
requested, thus receiving the “1” or “0”.

Various methods described below could be used to confuse or disrupt the covert channel, but it
could not be completely eliminated. The Orange Book recognizes the inevitability of covert
channels in multilevel systems:
“... for many types of covert channels, techniques used to reduce the bandwidth below a
certain rate (which depends on the specific channel mechanism and system architecture)
also have the effect of degrading system performance provided to legitimate system

2 A URL is a description of a resource on the Web, such as http://www.sandia.gov.

users. Hence, a trade-off between system performance and covert channel bandwidth
must be made.”

The guard can confuse this data channel in various ways: limiting the number of bits that can be
sent, adding bits to the message, omitting bits from the message, and reordering bits in the
message. Some methods for counteracting the covert channel are the following:

e The actual commands sent to the low-side computer are not the ones received from the high-
side computer. As described earlier, the high-side can only ask for directories or files that
exist and are accessible by the username given. The guard never asks for a file that doesn’t
exist, and will not ask for a file again until it has changed. The channel bandwidth can be
further limited by limiting the number of requests per day from each user and specifying a
minimum time between requests for the same file, even if changed. Limiting the number of
requests would limit the number of bits that could be sent covertly.

e Failed requests do not result in file requests to the low-side computer. The high-side user is
just told “File does not exist.” Not sending a request to the low-side would leave bits out of
the intended covert message.

e The low-side computer is not told which high-side computer is making the file request. All
requests come from the FTP guard. The low-side computer does know which user is
requesting the file.

e The Guard could randomly send commands that are not requested by any user, e.g., change
directory or get files that are not needed. Adding requests would confuse a covert message
by adding unintended bits.

e At any given time, more than one process may be requesting files of the same low-side
system('5 This could also result in bits being added to confuse a covert message.

The developers can further obstruct anyone attempting to use the covert channel by determining
the kinds of information that would be needed to exploit it and limiting distribution of that
information. This topic cannot be discussed in detail here without affecting the sensitivity of this

paper.

CONCLUSION

The Phase I FTP guard is an effective, but limited, means to allow a high-side user to get low-
side files. Because it is subject to the security model implemented in the B3 system, high-side
users cannot directly request low-side files. Instead they must arrange with the administrator of
the FTP Guard to have certain directories and files staged on a regular basis. This provides a
useful initial capability, but is not an efficient mechanisms for cases involving large numbers of
files or need for real-time access.

The system can be significantly enhanced and extended by allowing high-side users to send
requests that result in high-to-low request flow. No high-data can be directly lost in this way, but

? Trusted Computer Systems Evaluation Criteria (Orange Book) DOD 5200.28-STD, p81.

a covert signaling mechanism would be introduced in the guard application. The covert
mechanism introduced could not be easily exploited and could be slowed to an acceptable level
without seriously degrading the file transfer process. Furthermore, use of the covert data channel
can be detected by examining audit logs. If creating a versatile file transfer Guard requires the
addition of a covert signaling mechanism, it becomes the developer’s responsibility to make it
difficult to exploit.

