‘ INEEL [LoN-96- o009
CONF-9%07'33 -~
EXPERT SYSTEM TECHNOLOGY FOR NONDESTRUCTIVE WASTE ASSFYEIC E| V/ [5 b

G K. Becker, J.C. Determan, Lockheed Martin Idaho Technologies Company |
P.O. Box 1625, Idaho Falls, Idaho 83415, 208/526-4544, gkbl@inel.gov Jw‘ 1 * w

ABSTRACT | Oo8STY

Nondestructive assay waste characterization data generated for use in the National TRU Program
must be of known and demonstrable quality. Each measurement is required to receive an
independent technical review by a qualified expert. An expert system prototype has been developed
to automate waste NDA data review of a passive/active neutron drum counter system. The expert
system is designed to yield a confidence rating regarding measurement validity. Expert system rules
are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms.
Expert system performance is assessed %gamst confidence assignments elicited from waste NDA
domain experts. Performance levels varied for the active, passive shielded, and passive system assay
modes of the drum counter system, ranging from 78% to 94% correct classifications.

INTRODUCTION

Management of U. S. Department of Ener%y (DOE) defense generated containerized transuranic
(TRU) waste requires determination of the entrained TRU mass and associated parameters.
Nondestructive assay (NDA) techniques are the most common and efficient means to determine the
TRU material quantity. Quality assurance objectives (QAOQOs) for NDA techniques used to
characterize TRU waste destined for the Waste Isolation Pilot Plant are delineated in the National
TRU Program Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) [1].

Technically justifying compliance with applicable requirements and QAOs for TRU waste forms in
the DOE inventory can be a complex process. Some waste form configurations manifest NDA
system response complexities that diminish the ability to clearly establish compliance. Such
complexities lead to the requirement that technical reviews be performed at the data generation level
for each assay to ensure operational boundaries are maintained relative to QAPP requirements.

Technical review of waste NDA measurement data, though warranted with respect to present day
waste NDA system capabilities, is labor intensive. Hence it is desirable to have an automated system
to perform the technical review. The automated system must be capable of providing a
comprehensive waste assay data assessment, and must ge reproducible, auditable and compatible
with the overall throughput requirements of the waste characterization process. Therefore, an
evaluation of expert system technology was undertaken.

EXPERT SYSTEM

The expert system design is predicated on the SWEPP Assay System (SAS) passive/active neutron
counter operating dprmmples. The means by which the SAS detects the presence of TRU materials,
processes detected signals and reduces the information to a mass estimate defines the attainable
performance and associated data validity. Hence, the SAS data input to the expert system must
embed base SAS response to allow for proper data evaluation. The expert system described is an
evaluation of the technology, and is not intended for deployment at this stage.

Knowledge represented in the expert system was derived using methods of automatic fuzzy rule
eneration from data[2, 3]. The automatic rule generation process is an instance of supervised
earning; therefore, correctly classified input data elicited from NDA experts was required. The
expert system input data is a set of figures of merit that a domain expert has deemed significant. This

section first discusses selection of the expert system input variables. Classification of the training and

testing data is then discussed. Finally, the expert system training algorithm is presented. The
training algorithm is discussed in detail in [4]; modifications to the initial procedure are discussed in

this paper. T .
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EXPERT SYSTEM INPUT VARIABLES

A number of signals from the SAS signal processing modules provide output carrying the response
of the passive and active detection assemblies. These signals are combined into figures of merit that
contain system response information. These figures of merit are the expert system input variables. A
fuzzy rule set is then defined in terms of these input variables. A set of expert system input variables
has been determined for each of the three SAS measurement modes: passive system, passive shielded
and active, as listed in Table 1. Ranges that define regions of acce}gtable operation based on the
physical design of the SAS neutron detection system can be specified for each input variable. These
regions can be defined either by the functional limits of the detection system components or response
perturbations from waste form parameters such as matrix density. The selected variables are not
intended to be all inclusive, but a reasonable set containing sufficient SAS neutron response
information to develop and analyze exgert system utility for assay data assessments. In particular,
gamma spectroscopy data was unavailable during initial testing.

Table 1
Expert System Input Variables

Input Variable Derivation
Passive System Mode
Passive System Total Rate System Total Count/(10 kHz clock ticks/10000)
System Total/Gated Event Ratio System Total/Long Gate System Events
Early Barrel/Cavity Count Ratio Barrel Flux Monitor/Flux Monitor
Passive Shielded Mode
Passive Shielded Total Rate Shielded Total Count/(10 kHz clock ticks/10000)
Shielded Total/Gated Event Ratio Shielded Total/Short Gate Shielded Events
Early Barrel/Cavity Count Ratio Barrel Flux Monitor/Flux Monitor
Active Mode .
Early/Late Count Ratio Shielded Counts/Shielded Bkg
Early Barrel/Cavity Count Ratio Barrel Flux Monitor/Flux Monitor

The variables chosen to represent passive system neutron function are system total rate, system
total/gated event ratio and active early barrel/cavity count ratio. The passive shielded input variables
are analogous to the passive system variables except that shielded detector data are used. The
system total rate is used to assess SAS function using the known count rate limitations of the

etection and data acquisition system. Count rate limits may be defined that identify rates that are
too low to provide statistically meaningful mass estimations and too high such that saturation of the
coincidence circuitry occurs and dead-time corrections begin to have large uncertainties or are
inapplicable.

The system total/gated event ratio is a convenient ratio for assessing the quality of the coincidence
count measure. In general, above a certain value, this variable indicates that an (o,n) component of
the emitted neutron spectrum is degrading the coincidence measure. Low values of this variable
indicate high count rates beyond the capabilities of the coincidence counting circuitry and associated
dead-time correction. Mid-range values of this variable generally indicate proper system function
and provide substantive evidence of data integrity. :

The third passive system variable is the active early gate barrel/cavity count ratio. This ratio carries
information on the macroscopic neutron transport characteristics of the waste matrix. Low values of
this ratio indicate either strong neutron absorption or high moderator matrix properties, or both.
Medium values indicate somewhat better neutron transport in the matrix, and high values represent
minimum neutron loss in the matrix. Hence, this ratio provides information on the ability of emitted
neutrons to leak from the matrix and be detected.

The active mode input variables consist of the early/late count ratio and the early barrel/cavity count
ratio. The early/late count ratio, for certain waste configurations, is a reasonable representation of
neutron lifetime in the matrix. For all but matrices with high concentrations of moderating materials,
a longer neutron lifetime generally indicates good active neutron interrogation. A high value of this




ratio indicates a matrix composition that quickly absorbs the interrogating flux, and to a certain
extent, lack of a strong éa,n) neutron component. Finally, the early barrel/cavity count ratio
provides information regarding the neutronic characteristics of the matrix (i.e., scatterer or absorber).
The higher the ratio, the greater the transport mean free path of the matrix, which in general means
better interrogation of the matrix.

Each of the input variables described above carries some information regarding system response. No
single variable is sufficient to characterize the performance of the system for a given waste container
assay. The variables each contribute information on system function and must therefore be
processed as a cohesive set. The selected input variables are a reasonable attempt to extract
pertinent response information from the system to support an assessment of data validity. As the
SAS does not provide unique response data that can be used to account for all possible interferences,
the input variable set does not s_upfort a rigorous performance assessment over all possible waste
configurations. If existing analytical methods were capable of this, it is expected that they would be
incorporated into the algorithms of present day waste NDA systems.

TRAINING AND TEST SET CLASSIFICATION

A panel of three waste NDA experts was assembled and given a set of SAS generated waste assays
to assign validity confidence ratings, on a scale from zero to ten. They rated their confidence in each
of the three measurement modes of the system, for each assay. The set contained 99 assays evenly
selected from the graphite, combustibles, and glass waste types. Disagreement existed between the
experts as to the proper classification of each assay, due partg' to differing internal scales of
judgment used by each expert, and partly to uncertainty associated with the interpretation of NDA
results. A normalization procedure was adopted to reduce the scaling bias of each expert. Assays
with normalized scores that did not agree were removed from the test set.

The score sets for each confidence value were normalized as follows. The mean and standard
deviation for each expert’s score set, and for the total population were calculated. Each expert’s
score set was adjusted by scaling factors to have the mean and standard deviation of the total
population. Where there was good agreement for each confidence value between all three experts
the normalized confidence scores were considered reliable. Assays for which disagreement occurred
were removed, yielding a total of 67 scored assays. Sixteen assays were used for training, and 51 for
testing. The training sets were selected to represent the spectrum of confidence values.

AUTOMATIC RULE GENERATION ALGORITHM

Classified training data are viewed as input/output vectors in a hyperspace, the dimension of which is

the sum of the number of input and output elements. A cluster of data points represents an

approximate relationship from input to output, a relationship that can be represented as a rule. A

1Qua,ra.meter called the cluster radius, discussed below, determines how many clusters will be found. A
zzy clustering algorithm is used in the current application, producing a set of fuzzy rules.

Fuzzy sets are used extensively in control, decision-support, and pattern recognition. Fuzzy sets

represent classes of items that are separated by imprecise boundaries, such as “the set of tall men”.

Fuzzy sets are used in data clustering applications where the data do not necessarily form distinct

clusters. Likewise, fuzzy rules are used in expert systems when distinct decision boundaries are not

present. There are no hard or Premse boundaries separating regions of acceptable and unacceptable
erformance of the SAS, therefore the use of fuzzy methods is justified. See Zadeh’s seminal paper
or information regarding fuzzy sets [6].

A genetic algorithm is used to determine the cluster radius. Genetic algorithms are a class of
optimization techniques that are broadly applicable to many types of problems. = Their usefulness
derives from the fact that they do not rely on gradient information, but instead attempt to imitate the
forces of natural selection in seeking out superior solutions to problems. When using genetic
algorithms, a data structure (“chromosome”) to represent the problem and an objective function that
measures the performance level (“fitness”) of a solution to the problem must be specified. The
genetic algorithm generates and evaluates a large number of these data structures (“population”) and
employs the objective function to select superior solutions. The population of solutions is evolved by




recombination of superior solutions in a manner that simulates the genetic processes of crossover and
mutation. Detailed discussion of genetic algorithms is beyond the scope of this paper. Interested
readers are referred to the classic text by Goldberg [7].

For n input elements in each datum, the generated fuzzy rules take the following form:

if (x; matches A;) and ... c(ixn matches A,) then (y is B), where
X ... X, are normalized rule input values,
A; ... A, are exponential membership functions,
y is the rule output, and
Bis a symmetric membership function.

Using a standard method of defuzzification (the center of gravity algorithm), y is found from:

y-«- Zi=1(|.liyi*)/ z i=1Hi, i=1...l, where
y: is a vector of output membership function centroids, and
b (xj) =exp(-5 X (5% )/ 6j)), j=1..n.

The .parameters.xjf, y; and o are initialized using subtractive clustering[3], a fuzzy data clusterin
routine, and optimized in a procedure involving backpropagation [5] and genetic algorithms. See [4%
for a more thorough discussion of the rule-generation procedure.

The cluster radius, and the learning rate and the convergence criteria from the backpropagation
routine must be chosen. These parameters uniquely determine a solution, and are represented in the
genetic algorithm as a real-valued array. Determination of the cluster radius sets the number of data
clusters. Many cluster validity indices have been proposed to deal with this issue [8]. The Xie-Beni
index [9], Sxs, has been proposed for evaluating the validity of fuzzy clusters. This index is the ratio
of the compactness of the clusters (a measure of the variance of the data points from the centers of
the data clusters) to the square of the minimum distance between the cluster centers. In general,
small values of Sy indicate well-formed data clusters, provided the number of clusters does not
approach the number of data points in the training data. Therefore, Sxg may be used as a principle
component of the objective function.

An objective function employing the information embodied in Sxg was sought. Sxg is small for low
compactness and large minimum inter-cluster distance. Figure 1 defines Sxg and illustrates the
remainder of the discussion in this paragraph. The compactness generally decreases with increased
cluster number, whereas the minimum inter-cluster distance generally increases with decreased
cluster number. Because Sxs measures two opposing trends, Pareto optimization [7] was employed
on these two trends simultaneousl?r. Pareto optimization ranks data into subsets of approximately
equal worth with respect to multiple criteria. The criteria used were the reciprocal of the numerator
o% Sxg, and the denominator of Sxz. Maximizing these quantities tends to reduce Sxs. Pareto
rankings were combined with Sxg in the objective function. The objective function is shown in
Figure 1, and was designed such that maximizing the function resulted in small Sxz. As shown in the
foﬁgwing section, this composite objective function resulted in calculations in which Sxg averaged
over an entire generation of solutions converged on a low value. The solution from the convergence
generation with the minimum Sxs was chosen as the solution to the problem.

SYSTEM PERFORMANCE

Expert system performance for each measurement mode indicates the level of agreement between the
manually classified test set and the classifications produced by the expert system. A simple function
has been used to roll system performance into a single number:

performance = 4*number of data points in test set agreeing within 10% -+
2* number of remaining data points agreeing within 25% +
1* number of remaining data points.




compactness objective
= variance/number of data points, o/n = f(Pareto rank, Sxg)
n/c =1f(R, Sxs)
SxB = (6/n)/dmin’, Where =Rmax - R + ¢ (1/8xs), where
dmin = minimum inter-cluster distance R=3 R=2 R=1 ¢ Is a scaling constant.

2
dmin

Fig. 1 Definition of the Genetic Algorithm Objective Function

In words, points with a lesser degree of agreement receive less weight in the performance total. The
performance of every solution produced during operation of the genetic algorithm was calculated
and has been used to evaluate the quality of the final solution arrived at by the method described in
the preceding section. Pareto optimization resulted in generations with steadily decreasing average
Sxs, Sxs , as shown in Figure 2. It is also observed in the figure that the performance averaged over
all solutions in a given generation tended to increase through the generations. The genetic algorithm
is considered to have converged when the ratio of the current Sxs , to the ten-generation average of
Sxp is less than 0.01. The point of convergence is indicated on each plot.
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Fig. 2 Observed Trends in the Generation Average Performance and Sxg

Table 2 lists the average, maximum, and selected solution performance from the generation at which
convergence occurrec% for each measurement mode. It is observed that the selected solution
(minimum Sxg) is the solution with maximum performance in two out of three cases, and a high
performer in the remaining case. The Xie-Beni index and Pareto oFtimization combined produce a
%ood objective function for guiding genetic algorithms to find well-formed clusters in subtractive

ata clustering. The expert system resulting from rules formed from this clustering procedure can
achieve a high, if not optimal, Kevel of performance.

CONCLUSIONS

An expert system was developed to operate on data acquired from a waste NDA system. The
system performed well, especially considering that only partial waste NDA data was available for
expert system processing (i.e. neutron data only). System performance was benchmarked against




domain expert assessments of the quality of the test and training data.

Initial requirements on the function of the expert system have for the most part been demonstrated.
These requirements include representation of domain expert NDA knowledge, and reasoning with
supplied data and represented knowledge. At the present time there is ample indication that the
expert system technique can be refined to accommodate the balance of avalxl)able NDA data (e.g.,
gamma measurements), needed to make a comprehensive assessment of waste NDA data quality in
accordance with the National TRU Program requirements.

The Xie-Beni index has been shown to be useful in determining the cluster radius used in subtractive
clustering. The components of the index, the compactness of a set of fuzzy clusters and the square
of the minimum distance between the centers of the fuzzy clusters, were used to perform Pareto
optimization on the training data. The Pareto rankings determined in the optimization were then
combined with the Xie-Bem index to obtain an objective function. This objective function was used
by a genetic algorithm to determine the rule generation parameters of the subtractive clustering
method. Three independent test sets were shown to be classified with 78% to 94% accuracy.

Table 2
Unique Values of Sxg and Performance at Convergence
Passive System Passive Shielded Active
Performance Perf. S % Correct | Perf. S % Correct | Perf. S % Correct
Selected 194 0.095 94 184 0.101 80 178 0.046 78
Maximum 194 0.095 94 186 0.108 82 178 0.046 78
Average 193.6 | 0.101 - 184.0 | 0.116 - 177.6 | 0.047 -
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