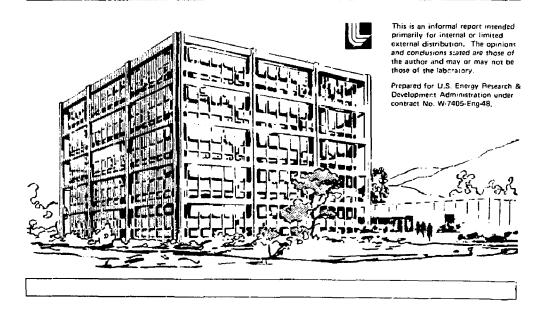
25 to MT 15

MASTER


UCID- 17895

Lawrence Livermore Laboratory

THERMAL ANALYSES OF THE IF-300 SHIPPING CASK

John K. Meier

July 1978

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
DESCRIPTION OF CASK	2
PRESENTATION OF RESULTS	2
REFERENCES	24
APPENDICES	
Appendix A Analytical Technique	A-1
Appendix B Listing of TRUMP Model	B-1
Appendix C Lead-Lined Cask Analysis	C-1

LIST OF TABLES

			<u>Page</u>
TABLE 1	1	CASK OPERATING CONDITIONS	5
TABLE 2	2	SUMMARY OF CASK TEMPERATURES IN °C	6
TABLE 3	3	TEMPERATURE OF THE CASK (2 hrs at 35°C)	7
TABLE 4	ŀ	TEMPERATURE OF THE CASK (S.S. at 54.4°C)	8
TABLE 5	5	TEMPERATURE OF THE CASK (S.S. at 54.4°C WITH NO MECHANICAL COOLING)	9
TABLE 6	5	TEMPERATURE OF THE CASK (S.S. at -40°C)	10
TABLE 7	,	TEMPERATURE OF THE CASK (30 minutes at 801.7°C)	11
TABLE 8	3	TEMPERATURE OF THE CASK (3 hrs after fire in 544°C air)	12
TABLE A	41	MATERIAL PROPERTIES	A-5

This epon was prepared as an account of work operanced by the United States Government. Nother the United States are the United States of the United States

LIST OF FIGURES

		<u>Page</u>
FIGURE 1	SECTION VIEW OF CASK WITH PWR CASK HEAD	13
FIGURE 2	HEAT UP OF CASK INSIDE BUILDING	14
FIGURE 3	HEAT UP OF CASK IN 54.4°C AMBIENT	15
FIGURE 4	HEAT UP OF CASK AFTER LOSS OF MECHANICAL COOLING (AT 54.4°C)	16
FIGURE 5	TRANSITION TO -40°C AMBIENT	17
FIGURE 6	TRANSITION FROM 54.4°C to 40°C AMBIENT	18
FIGURE 7	TRANSIENT DURING FIRE	19
FIGURE 8	FIRST 20 MINUTES OF SOAK AFTER THE FIRE	20
FIGURE 9	SOAK AFTER FIRE (20 MINUTES + 3 HOURS)	21
FIGURE A1	TRUMP NODE DIAGRAM OF PWR CASK	A-4

SUMMARY

In order to supply temperature data for structural testing and analysis of shipping casks, a series of thermal analyses using the TRUMP thermal analyzer program were performed on the GE IF-300 spent fuel shipping cask pictured in Figure 1. The results of these analyses are summarized in Table 2 and presented in more detailed form in Figures 2 through 9 and Tables 3 through 8. The location of the nodes listed in these figures and tables may be determined using Figure Al which is a node diagram of the computer model used for these analyses. Major conclusions of these analyses are:

- Under normal cooling conditions and a cask heat load of 262,000 BTU/hr, the seal area of the cask will be roughly 100°C (180°F) above the ambient surroundings.
- Under these same conditions the uranium shield at the midpoint of the cask will be between 69°C (125°F) and 92°C (166°F) above the ambient surroundings.
- Significant thermal gradients are not likely to develop between the head studs and the surrounding metal.
- A representative time constant for the cask as a whole is on the order of one day.

INTRODUCTION

As a part of the project to develop improved methods for structural analysis of spent fuel shipping containers a series of thermal analyses were performed on the GE IF-300 spent fuel shipping cask under the conditions specified in Ref. 1 and listed in Table 1. This shipping cask was selected as one that was representative of those that are used for shipping spent fuel. This analysis was done to obtain approximate values of temperatures and is not intended to be a comprehensive evaluation of the IF300. This program is geared at determining the

likelihood of leakage of radioactive material from a shipping container subject to the accident conditions detailed in Ref. 1. The temperature profile of two areas of the shipping container are of special importance in this program.

- The seal area is important since thermal stresses could cause improper operation of the seal.
- The temperature of the materials in the side of the cask determines its resistance to puncture test it must pass.

In these analyses not only steady state but also transient temperature distributions were obtained for transitions from one required condition to another. A detailed description of the analytical techniques used in the analysis of the cask is presented in Appendix A. The main body of this report will concern itself with a presentation and discussion of $t \neq results$ of the analysis.

DESCRIPTION OF CASK

The cask which was analyzed in its PWR configuration is shown in Figure 1. A maximum of 7 fuel assemblies with 196 rods each are contained within a water shield in the center of the cask. Surrounding this are 0.5 inches of steel, 4 inches of uranium shielding and 1.56 inches of steel. Surrounding this, approximately 6 inches of water, acting as a neutron shield, is contained by a 0.12 inch thick corrugated steel barrel. The head of the cask is covered with steel fins whose primary purpose is kinetic energy absorption in case of an accident and whose secondary role is to transfer heat from the cask. The trailer upon which the cask sits also contains fans and air distrubution ducting which provide forced air flow over the corrugated exterior of the cask. The maximum power level in the cask is 262,000 BTU/hr.

PRESENTATION OF RESULTS

A typical procedure in loading a fuel cask is as follows. The cask is placed in the water pool holding the spent fuel. The fuel assemblies are loaded into the cask. The head is placed on the cask and the cask is removed from the pool where the head is then bolted to the body of the cask. Since roughly 2 hours

might be required before the cask is removed from the building housing the water pool, the first analysis performed simulates this period of time.

Figure 2 shows that, as expected, the temperatures within the cask increase due to the fuel's heat generation even though the ambient temperature surrounding the cask remains a constant 35°C (95°F). It is important to note that the stud (node 237) and the metal surrounding it (node 256) follow almost identical paths during this transient. The final temperature (+ 2 hours) reached by all the nodes in the model is presented in Table 3.

Figure 3 presents the response of the cask when it is moved into a 54.4°C (130°F) environment after the 2 hour soak period within the containment building. Note again that the heat up of the stud and metal surrounding it are almost identical. Table 4 presents the steady-state temperature distribution of the cask under the 54.4°C (130°F) soak conditions.

The response of the cask for the case of mechanical cooling failure with the cask in a 54.4°C (130°F) environment is given in Figure 4 and Table 5.

If the cask had been removed from the containment building into a -40° C (-40° F) ambient environment, the calculated response of the cask is given in Figure 5 and Table 6.

In the highly unlikely event that the case were transferred immediately from a 54.4°C (130°F) environment to a -40°C (-40°F) environment, the response of the cask is given in Figure 6.

The fire part of the accident condition requires that the case be exposed to a 801.7°C (1475°F) fire for 30 minutes. An assumption is made that the accident causes the loss of the water in the outer neutron shield of the cask. Therefore, heat is transferred between the cask barrel and the cask body by radiation and a small amount of convection in the air, rather than convection in water. Figure 7

and Table 7 show the effect of the 30 minute fire exposure on the cask originally at steady-state in a 54.4°C (130°F) environment.

After the fire, the cask must remain in a 54.4°C (130°F) environment with no artificial cooling for 3 hours. The effect of this soak on the cask during the first 20 minutes is given in Figure 8. At this time, the bulk coolant temperature of the water around the fuel reaches a sufficient value (225°C) to cause boil-off and venting of the coolant. The next 160 minutes of the 3 hours soak are then given in Figure 9 and the final temperatures reached by the cask are given in Table 8.

A summary of the steady-state temperatures of important points within the cask under the various environments analyzed is presented in Table 2. The maximum temperature reached by the region in which the seal is located is 155°C (311°F) under accident conditions. The minimum temperature of the seal region is 80°C (176°F). It should be noted that these temperatures are based on a thermal load of 262,000 BTU/hr. If the thermal load were less, the temperatures would be lower. More particularly, the temperature of the seal could approach -40°C under a very small thermal load.

A comparison of the temperatures given in Table 2 with those given in Ref. 2 shows that some of our predictions are higher. The principle reason for these differences is that we analyzed the end of the cask to which the head is bolted, whereas, in the Ref. 2 analysis, the base end of the cask was analyzed. Since the forced convection cooling does not extend as close to the head end of the cask as it does to the base end, temperatures in the head end reach higher values.

For example, the maximum temperature reached by the fuel during normal cooling in a 54.4° C environment is 209° C in our analysis, whereas, in the GE analysis the maximum fuel temperature was 158° C. Our calculated temperature for the fuel at the

cask midpoint (159 $^{\rm O}$ C) compares very well to the value given in the GE analysis however.

In examining Figures 2 through 7, two important conclusions may be reached: (1) the temperature of the head study and the metal surrounding them are always almost identical. This should tend to minimize thermal stress problems, and (2) the time constant of the cask as a whole for normal hot or normal cold transition is on the order of a day. Thus, temperature changes within the cask take place very slowly.

TABLE 1

CASK OPERATING CONDITIONS

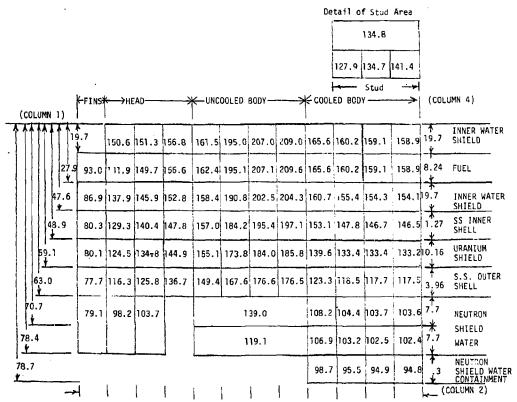
OPERATING CONDITION	AMBIENT TEMPERATURE		
*Post Loading (no fans)	35°C (95°F) for 2 hours		
Normal Hot (w/fans)	54.4°C (130°F)		
Normal Cold (w/fans)	-40°C (-40°F)		
Accident (no fans)	801.7°C (1475°F) for 30 minutes		
· · -	+ 3 hour soak @ 54.4°C (130°F)		

^{*}Not in Reference 1 but typical of cask loading routine.

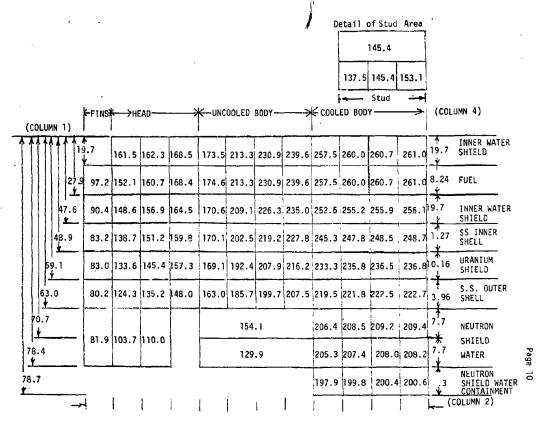
				/ .		_	
			1	cooling at cooling at loss of 169.	Mechanical C Mechanical C at 54.4°C	ooling	30 Winutes at 807.75 S. Hours s.
	ue's		Car at 333	001100 gr	Mechanica.	oling at	Q Minute's
	wode humber	E KO	ur soak alcal	sa a of Loss of	at 54 Norm	Cooling at	30 Minutes at 801.700 Minutes at 801.700 Minutes at 801.700 Minutes at 800 Minute
8	8 Seal Area	48.	155.	169.	81.	282.	206.
23	7 Ave. Head Stud	42.	135.	145.	57 <u>.</u>	311.	184.
L	1 Neutron Shield Containment	39.	95.	201.	3.	682.	124.
	1 Neutron Shield Water	40.	104.	209.	18.	*	*
Cask Midpoint Temperature (°C)	Outer Steel Shell	46.	118.	223.	40.	300.	212.
e in 8	l Uranium Shield	52.	133	237.	57 <u>.</u>	227.	217.
10	ll Inner Steel Shell	59.	147.	249.	72.	191.	222.
12	Inner Water Shield	63.	154.	256.	82.	174.	225.
14	l Fuel	67.	159	261.	87.	175.	228.
	4 Neutron Shield Containment	39.	99.	198.	7.	683.	125.
) (3) 4	4 Neuton Shield Water	41.	108.	206.	24.	*	
	55 Outer Steel Shell	52.	177.	208.	104.	247.	211.
atu a	5 Uranium Shield	55.	186.	216.	114,	220.	217.
Temperature	5 Inner Steel Shell	60.	197.	228.	126.	214.	222.
12	5 Inner Water Shield	64.	204.	235.	136.	210.	225.
14	5 Fuel	68.	209.	240.	141.	214.	228.

¹⁴⁵ Fuel *Shield Water Lost

TEMPERATURE OF THE CASK (2 hrs at 35°C) TEMPERATURE IN °C


-> 24.2 5.12 7.68 2.56 9.86 9.86 9.86 9.86 34.4 39.4 39.4 39.4 (COLUMN 2)

DIMENSIONS IN CM


TABLE 3

į

TEMPERATURE OF THE CASKS (S.S. at 54.4°C) TEMPERATURE IN °C DIMENSIONS IN CM TABLE 4

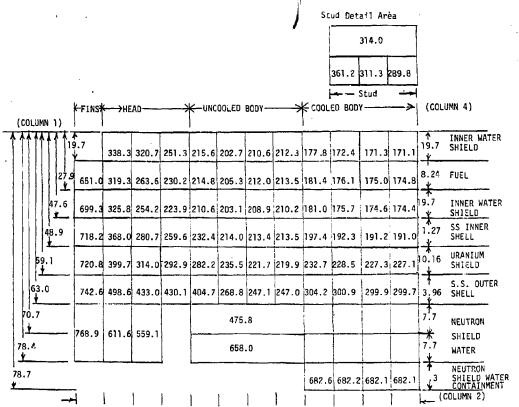
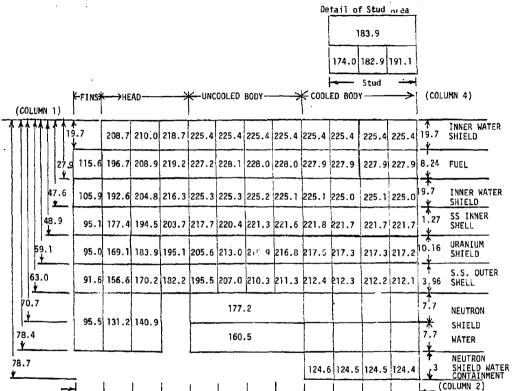

TEMPERATURE OF THE CASK (S.S. at 54.4°C with no mechanical cooling) TEMPERATURES IN °C DIMENSIONS IN CM

TABLE 5

TEMPERATURE OF THE CASK (S.S. AT -40°C) TEMPERATURE IN °C DIMENSIONS IN CM


TABLE 6

TEMPERATURE OF THE CASK (30 minutes at 801.7°C)
TEMPERATURE IN °C
DIMENSIONS IN CM

TABLE 7

Page 1

TEMPERATURE OF THE CASK
(3 HRS after fire in 544°C air)
TEMPERATURE IN °C
DIMENSIONS IN CM

TABLE 8

d.

, uge

16 January 201

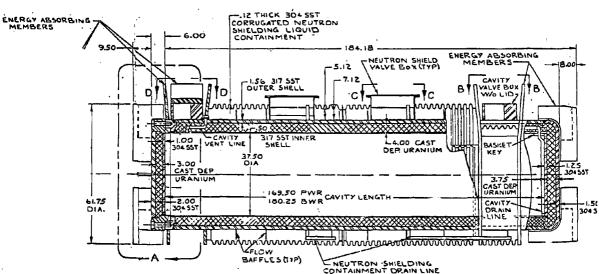
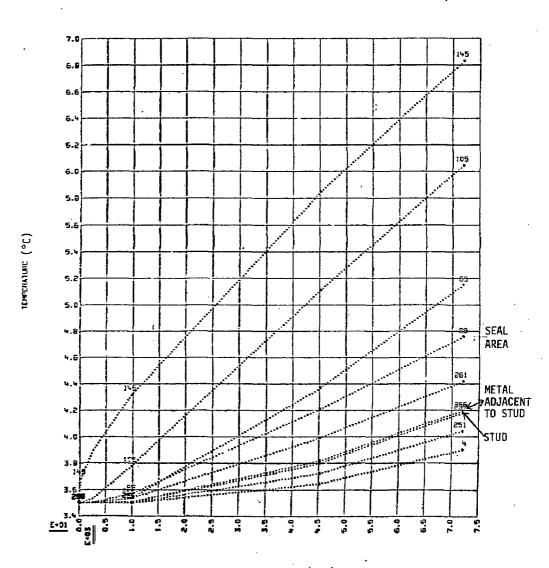
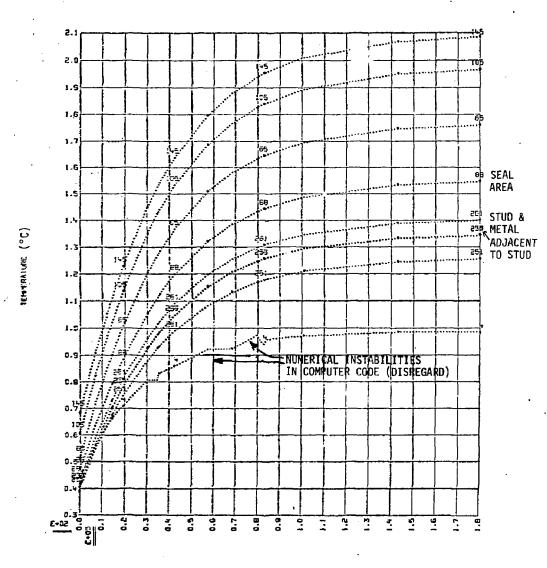



FIGURE 1. SECTIONAL VIEW OF CASK WITH PWR CASK HEAD

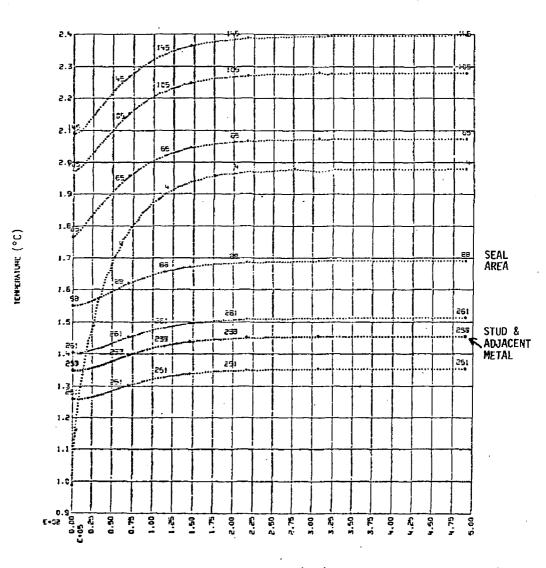


TIME (SEC)

FIG. TEMPERATURE VS TIME.
TRUMP CASK PROBLEM, SCAK AT 35 C. CASKF9A

PROBLEM NUMBER 1 10:10:292 05/12/77

FIGURE 2. HEAT UP OF CASK INSIDE BUILDING

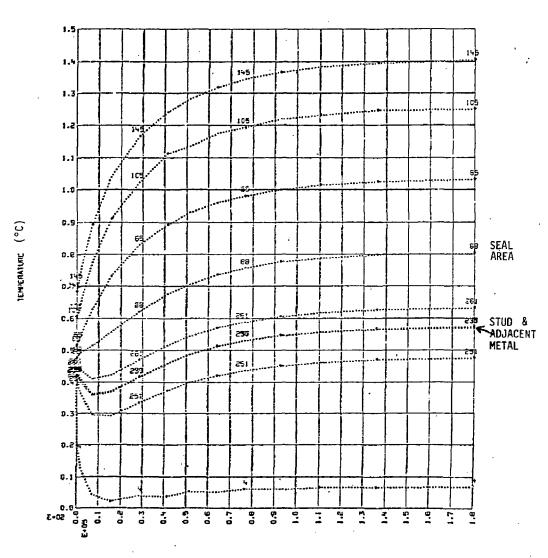


TIME (SEC)

FIG. TEMPERATURE YETTIME. TRUMP CASK PROBLEM, SCAX AT 54.4 C. CASKF9C

PROBLEM NUMBER 1 10:23:002 05/12/77

FIGURE 3. HEAT UP OF CASK IN 54.4°C AMBIENT

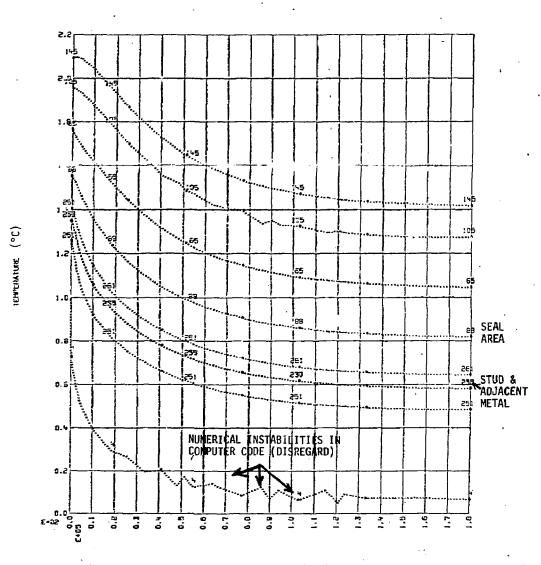


TIME (SEC)

FIG. TEMPERATURE VS TIME. TRUMP LOSS OF COOLING AT 54.4 C.CISKFRIA

PROBLEM NUMBER | 09:10:162 05/13/77

FIGURE 4. HEAT UP OF CASK AFTER LOSS OF MECHANICAL COOLING (0 54.4°C)

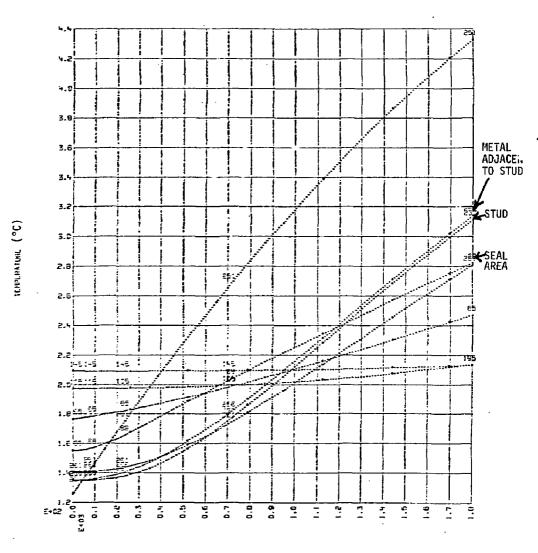


TIME (SEC)

FIG. TEMPERATURE VS TIME, TRUMP TRANS TO 40 C. CASKFOZA

PROBLEM NUMBER | 1 11:20:36Z 05/12/77

FIGURE 5 TRANSITION TO -40°C AMBIENT



TIME (SEC)

FIG. TOPPERATURE VS TIME. TRUMP TRUMS TO -40 C. CASGOZS

PROBLEM NUMBER | 11:20:372 05/12/77

FIGURE 6. TRANSITION FROM 54.4°C to-40°C AMBIENT

TIME (SEC)

FIG. TOPPERATURE VS TIME. TRUMP TRANSIENT CURRING FIRE, CASHETHA FROELEM NUMBER 1

FIGURE 7. TRANSIENT DURING FIRE

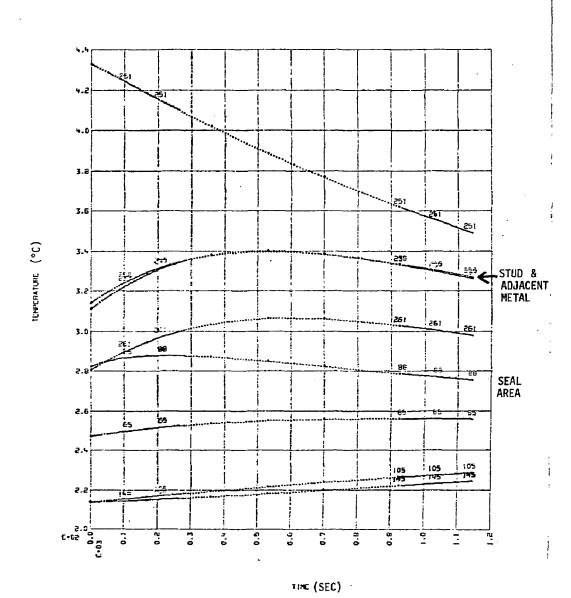


FIG. TEMPERATURE VS TIME. TRUMP TRANSIENT AFTER FIRE, CASKFEED.

PROBLEM NUMBER 1 14:08:032 05/24/77

FIGURE 8. FIRST 20 MINUTES OF SOAK AFTER THE FIRE

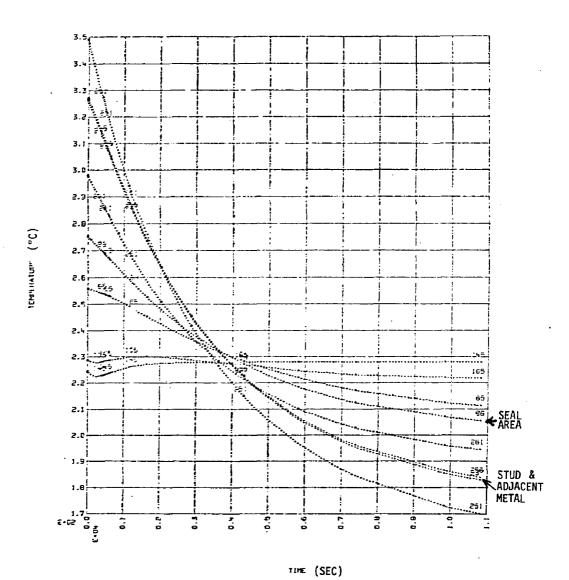
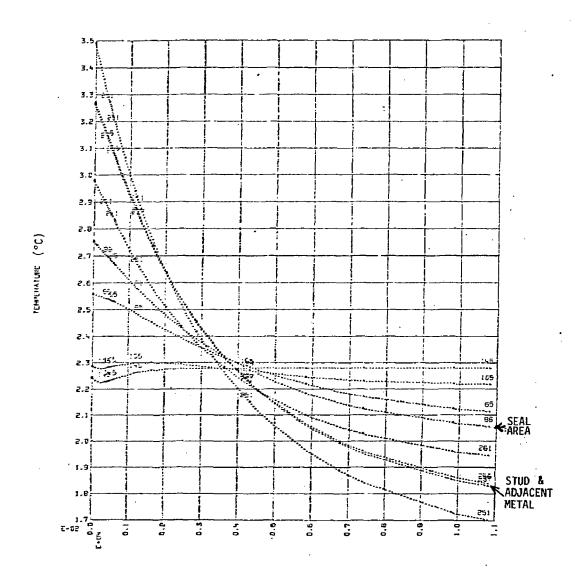



FIG. LEMPERATURE VS TIME.
TRUMP TRANSIENT AFTER FIRE, CASAFFIE, VAPORIZATION

PROBLEM NUMBER 1 09:02:012 05/26/77

FIGURE 9. SOAK AFTER FIRE (20 MINUTES+ 3 HOURS)

THE (SEC)

FIG. IMPERATURE VS TIME.
TRUMP TRANSIENT AFTER FIRE, CASAFFRE, VARCHIZATION

PROBLEM NUMBER 1 09:02:012 05/26/77

FIGURE 9. SOAK AFTER FIRE (20 MINUTES+ 3 HOURS)

REFERENCES

- United States Regulatory Commission, Rules and Regulations, Title 10 Chapter 1, Code of Federal Regulations - Energy Part 71 "Packaging of Radioactive Material for Transport and Transportation of Radioactive Materials Under Certain Conditions" Appendices A & B.
- General Electric Nuclear Fuel Department, "Design and Analysis Report IF-300 Shipping Cask," NEDO-10084-1, February 1973.
- Glasstone & Sesonske, "Nuclear Reactor Engineering," D. Van Nostrand Company, Inc., Princeton, New Jersey, 1963.
- Kreith, F., "Principles of Heat Transfer," International Textbook Company, Scranton, Pennsylvania, 1960.
- Edwards, A. L., "TRUMP: A Computer Program for Transient and Steady-State Temperature Distributions in Multi-dimensional Systems," UCRL-14754, Rev. 3, (Lawrence Livermore Laboratory, Livermore California, September 1, 1972).

NOTICE

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."

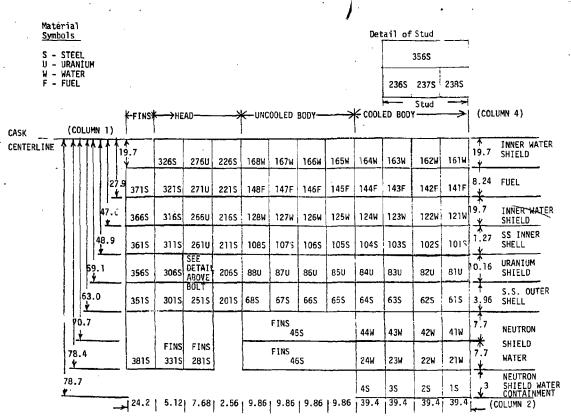
APPENDIX A

ANALYTICAL TECHNIQUE

SYMBOL LIST

1.356 x 10 ⁻⁴	=	conversion factor between $\frac{BTU}{FT^2-HR-°F}$ and $\frac{CAL}{Cm^2-sec-°C}$
b	=	spacing between outer shell and neutron shield containment
D	=	diameter of cask
g	=	gravity constant
Gr	=	Grashof number
hç	=	convection heat transfer coefficient
K	£	artificial conductivity used in Ref. 2.
Km	=	materi.1 conductivity
L	£	length of flow path in free convection
Nu	=	Nusselt number
PA	#	total perimeter of annulus representing the fuel
PR	=	combined perimeter of the fuel rods
Pr	-	Prandtl number
Ta	=	temperature of the air
Tw	=	temperature of the water
X	=	length of the vertical plate
β	=	temperature coefficient of volume expansion
ΔΤ	E	delta temperature
ρ	=	mass density
π	=	3.14
θ	=	angle of plate from the vertical
μ	=	absolute viscosity

GENERAL


The approach taken in this analysis was to construct a TRUMP [5] thermal analyser model of the cask. The model was then used to simulate the reponse of the shipping cask to various required environmental conditions. Figure Al is a node diagram of the model. Due to the large differences in thickness of the various materials used in the model no attempt was made to maintain a common scale in drawing Figure 2. However, the dimensions given at the side and bottom of the diagram apply to all of the nodes in that row or column. Thus node 256 has an inner radius of 48.9 cm as does node 81. A detailed description of the TRUMP Program may be found in Reference 5.

Material properties given in Reference 2 were compared to those given in Reference 3. Since differences were insignificant those given in Reference 2 were used. They are listed in Table A1.

Thermal radiation heat transfer coefficients used in the model were based on the projected area of the cask body and head with appropriate increases made to thermal emissivity values. In other words, the effect of the fins or corregations on radiation heat transfer, as calculated by the model, was to increase the emissivity of a node not to increase the area radiating.

GEOMETRY

The dimensions inputed into the cask program are those given in Figure AI with the following exceptions. Rather than model the entire cask a.1/8 pie shaped segment of the cask was modeled. This required dividing certain of the dimension in the model by 8. For instance the length of some of the nodes as input into the program for use in calculation of node volume was divided by 8.

DIMENSIONS IN CM

FIGURE AT TRUMP NODE DIAGRAM OF PWR CASK

STEEL

Specific Gravity = 7.84

Specific Heat = .12 CAL/GM - °C

Temperature (°C)

Conductivity (CAL/CM-SEC-°C)

37.8	149.	260.
.00142	.03514	.0397

URANIUM

Specific Gravity = 19.29

Temperature (°C)

Specific Heat (CAL/GR-°C)
Conductivity (CAL/CM-SEC-°C)

	24.0	37.8	149.0	260.0
	.028			.033
)		.05912	.06573	.07400

WATER

Specific Gravity = 1.0

Temperature (°C)

Specific Heat (CAL/GR-°C)
Conductivity (CAL/CM-SEC-°C)

	0.0	21.	93.	500.
	1.01	.998	1.0	1.08
)	.00132	.00143	.00163	.00158

FUEL

Specific Gravity = 6.9

Specific Heat = .085 CAL/GM-°C

Conductivity = .021 CAL/CM-SEC-°C

TABLE A1

MATERIAL PROPERTIES

It should also be noted that the program allows use of different geometries in inputing the data. Those nodes associated in the listing of the model (App. B) with the word asymmetric have the value of D $_{\mbox{rad}}$ multiplied by 2π while those associated with the word "rectangular" are multiplied by 1.

Nodes - 141 + 321

The fuel was assumed to be concentrated in an annulus 23.82 cm. from the center of the cask. There are 7 (14 x 14) fuel rod assemblies with an individual rod area of .8992 cm² for a total of 1234 cm² in cross-sectional area. If $D_{re.} = 23.82$ then

$$p_{WIDF} = \frac{1234}{2 \times \pi \times 23.82} = 8.24 \text{ cm}$$

CALCULATION OF CONVECTION HEAT TRANSFER COEFFICIENTS

Note that the TRUMP computer program allows a delta temperature dependence for the heat transfer coefficient. Thus in the calculations presented below the heat transfer coefficient is first calculated using an arbitrary delta temperature and then the influence of delta temperature is factored out. This resulting value along with the power of delta temperature upon which the heat transfer coefficient depends are then input into the TRUMP program.

The value of the heat transfer coefficient between the outer shell (modes 61 through 64) and the neutron shielding liquid containment (modes 1 through 4) was calculated using (Eq. 6.10) from Ref. 2, and Equation (7-36) from Reference 4. Since both gave similar results and the correlation given in Reference 2 was based on a configuration more nearly matching the cask, Eq. 6.10 was used.

CONVECTION IN WATER

OUTER CHAMBER (Nodes $1 \rightarrow 4$ to $21 \rightarrow 24$ and $41 \rightarrow 44$ to $61 \rightarrow 64$)

Assume

$$Tw \approx 107^{\circ}C \approx 225^{\circ}F$$

 $\Delta T = 40^{\circ}F = 22.2^{\circ}C$

Let b = 5.0 inches = .417 ft

Using eq. (6.10) from Reference 2,

$$hc = \frac{K}{b} = \frac{.135 \text{Km}}{b} \left(\frac{\text{Pr}^2 \text{Gr}}{1.36 + \text{Pr}} \right) .278$$

$$Gr = \frac{g\beta p^2}{L^2} \times L T \times b^3 = 1.63 \times 10^9 \times 40 \times .417^3 = 4.716 \times 10^9$$

hc =
$$\frac{.135 \times .395}{.417} \left(\frac{1.67^2 \times 4.716 \times 10^9}{1.36 + 1.67} \right)^{.278} = 61.1 \frac{BTU}{FT^2 - HR - °F}$$

= 61.1 x
$$\left(1.356 \times 10^{-4}\right)$$
 = .00829 $\frac{\text{CAL}}{\text{CM}^2-\text{SEC}^{-0}\text{C}}$

$$\frac{hc}{\Delta T^{278}}$$
 = $\frac{.00829}{(22.2)^{278}}$ = .0035 $\frac{CAL}{CM^2 - SEC^{-0}C^{-0}C^{278}}$

Since there are two walls in my model each one would have twice the heat transfer capability given above.

$$\frac{hc}{\Delta T}$$
. 278) $\frac{cAL}{225^{\circ}C} = .007 \frac{cAL}{cM^2 - SEC^{-\circ}C^{-\circ}C^{-2}C^{-278}}$

$$Gr = 18.4 \times 10^6 \times 40 \times .417^3 = 5.33 \times 10^7$$

hc = .135 x
$$\frac{.340}{.417} \left(\frac{8.03^2 \times 5.33 \times 10^7}{1.36 + 8.03} \right) \cdot ^{.278} = 26.4 \frac{BTU}{FT^2 + IR - ^0F}$$

$$\frac{hc}{\Delta T \cdot ^{278}} \Big)_{60^{\circ}F} = .007 \times \frac{26.4}{61.1} = .0031 \frac{CAL}{CM^2 - SEC^{\circ}C^{\circ}C^{\circ}C^{\circ}278}$$

CONVECTION IN AIR

During the accident the shield water is lost so that convection is via air rather than water.

$$T_{\tilde{a}} = 150^{\circ} \text{C} \approx 300^{\circ} \text{C}$$

 $\Delta T = 40^{\circ} \text{F} = 22.2^{\circ} \text{C}$
 $b = 5.0 \text{ inches} = .417 \text{ ft}$

Using EQ (6.10) from Reference 2,

$$hc = \frac{.135 \text{ Km}}{b} \left(\frac{\text{Pr}^2 \text{ Gr}}{1.36 \text{*Pr}}\right)^{.278}$$

$$Gr = \frac{g\beta\rho^2}{\mu^2} \times \Delta T \times b^3 = .444 \times 10^6 \times 40 \times .417^3 = 1.29 \times 10^6$$

hc =
$$\frac{.135 \times .0193}{.417} \left(\frac{.71^2 \times 1.29 \times 10^6}{1.36 + .71} \right)^{.278} = .211 \frac{BTU}{FT^2 + IR - {}^{0}F}$$

hc = .211 x(1.356 x
$$10^{-4}$$
) = 2.86 x $10^{-5} \frac{CAL}{CM^2 - SEC^{-0}C}$

Note that the above heat transfer coefficient is so small that most heat transfer between the outer shell and the corrugated containment will be by radiation under this condition.

CONVECTION IN THE WATER

INNER CHAMBER (Nodes 101 → 108 to 121 → 128)

$$\Delta T = 10^{\circ} F = 5.56^{\circ} C$$

$$\overline{G}_{\Gamma} = \frac{g B \rho^2 (\Delta T) L^3}{\mu^2} = 4 \times 10^9 \times 10 \times \frac{37.5}{12} = 1.22 \times 10^{12}$$

Using equation 7-22 from Kreith (Ref. 4) ,

$$\overline{NU} = .024 \times \left(\frac{Pr^{1.17}}{1 + .494 Pr^{2/3}} \overline{Gr} \right) .4$$

$$\overline{NU} = .024 \left(\frac{1.18^{1.17}}{1+.494 \times 1.18^{2/3}} \right)^{1.22} \times 10^{12} \right)^{4}$$

$$\overline{NU} = 1486.23$$

hc =
$$\overline{NU}$$
 $\frac{Km}{L}$ = $\frac{1486.23 \times .395}{37.5/12}$ = 187.9 $\frac{BTU}{FT^2 + HR^{-0}F}$

hc = 187.9 x
$$\left(1.356 \times 10^{-4}\right)$$
 = .0255 $\frac{\text{CAL}}{\text{CM}^2 - \text{SEC} - {}^{0}\text{C} - {}^{0}\text{C} \cdot {}^{4}}$

$$\frac{hc}{(\Delta T)^{-4}}\right)_{150^{\circ}C} = \frac{.0255}{(5.56)^{-4}} = .0128 \frac{CAL}{cM^{2}-SEC^{-9}C^{-9}C^{-4}} .$$

$$Tw \approx 70^{\circ}C \approx 150^{\circ}F$$

$$\overline{Gr} = .44 \times 10^{9} \times 10 \times \frac{37.5}{12}^{3} = 1.34 \times 10^{11}$$

$$\overline{NU} = .024 \left(\frac{2.74^{1.17}}{1 + .484 \times 2.74^{.66}} \cdot 1.34 \times 10^{11} \right)^{.4} = 828.8$$

$$\frac{hc}{(\Delta T)^{.4}} \right)_{70^{\circ}C} = .0128 \times \frac{828.8}{1486.23} = .0071 \frac{CAL}{CM^{2} - SEC^{-0}C^{-0}C^{-0}C^{-0}}.$$

CONVECTION IN WATER

INNER CHAMBER TO FUEL RODS (Nodes 121 → 128 to 141 → 148)

$$T_W = 150^{\circ}C \approx 300^{\circ}F$$

$$\Delta T = 10^{\circ} F = 5.56^{\circ} C$$

ROD DIAMETERS = .422 inches = .035 ft

from Kreith (Ref. 4) Eq. 7-28,

$$Nu = .53 (Gr P_r)^{.25}$$

$$Gr = \frac{gB\rho^2}{u^2}$$
 = 4 x 10⁹ x 10 x .035³ = 1.72 x 10⁶

$$Nu = .53 \times (1.72 \times 10^6 \times 1.18)^{.25} = 20$$

hc = Nu x
$$\frac{Km}{L} = \frac{20 \times .395}{.035} = 225.6 \frac{BtU}{FT^2 HR} - {}^{0}F$$

hc = 225.6 x
$$\left(1.356 \times 10^{-4}\right)$$
 = .0306 $\frac{\text{CAL}}{\text{CM}^2 - \text{SEC} - ^{\circ}\text{C}}$

$$\frac{hc}{\Delta T} \cdot 25 = \frac{.0306}{(5.56)^{-25}} = .020 \frac{CAL}{CM^2 - SEC - °C - °C \cdot 25}$$

The ratio of the total perimeter of all the rods to the inside and outside area of the anulus representing the rods is

$$\frac{PR}{PA} = \frac{1372 \times \Pi \times .422 \times 2.54}{\pi \times 27.93 + \Pi \times 19.7} = 30.9$$

Thus if we account for the area ratio in the heat transfer coefficient

$$\frac{hc}{\Delta T} \cdot 25$$
 = .02 x 30.9 = .62 $\frac{CAL}{CM^2 - SEC - {^{\circ}C} = {^{\circ}C} \cdot {^{25}}}$

Cutting this value in half to account for the flow restrictions of multiple rods

$$\frac{hc}{\Delta T}$$
.25) = .31 $\frac{CAL}{CM^2 - SEC - {^{\circ}C} - {^{\circ}C} \cdot {^{25}}}$

$$\overline{Gr} = .44 \times 10^9 \times 10 \times 035^3 = 1.89 \times 10^5$$

 $\overline{NU} = .53 \times (1.89 \times 10^5 \times 2.74)^{.25} = 14.2$

$$\frac{hc}{\Delta T} \cdot 25$$
 = $\cdot 31 \times \frac{14.2}{20} = \cdot 22 \frac{CAL}{CM^2 - SEC - \circ C - \circ C \cdot 25}$.

HEAD OF CASK

The head of the cask is covered with a series of fins. A calculation was performed to determine if the boundary layer from one fin conflicts with that of another fin. It was found that the spacing of the fins is sufficient that no conflict should occur, consequently standard vertical place heat transfer correlations adjusted for the angle of the fin from vertical may be used. Kreith (Ref. 4) Eq. 7-19 gives the following formula for a vertical plate.

$$hc = .48 \frac{Km}{X} (Gr)^{.25}$$

Evaluating the Equation at 100°F,

hc = .48
$$\frac{.0154}{X}$$
 (1.76 x 10^{-6} x $\Delta T - X^3$).25
= .27 $\left(\frac{\Delta T}{L}\right)$.25

This formula is nearly the same as Eq. 6.3 in Reference 2,

hc = .29
$$\left(\frac{\Delta T}{L}\right)$$
 .25

In the interest of maintaining similarity between Reference 2 and our analysis, the latter equation will be used as a bases for analyzing the cask. It, however, must be modified to account for the slant of the fins.

We will calculate separate heat transfer coefficients for the fins and the head of the cask proper since the uninterrupted path of the air flowing over the two is different.

CASK HEAD

The formula we shall use for free convection from a non-vertical plate is

hc = .29
$$\left(\frac{\Delta T}{L}\right)$$
 .25 cos 0.75 .

The average effect of the non vertical air path will be found by averaging Cos $9^{.75}$ for the 16 fins on the cask.

$$\cos \theta^{.75}$$
 ave = $\frac{1.0 + 1.0 + .806 * 4 + .77 \times 4 + .484 \times 4 + 0 + 0}{16}$
 $\cos \theta^{.75}$ ave = .641.

The length of the air path taken by the air cooling the head of the cask is the diameter of the cask. Thus with ΔT = 50°F = 27.8°C ,

hc = .29 x
$$\left(\frac{50}{4.14}\right)^{.25}$$
 x .641 = .347 $\frac{BtU}{FT^2 - \mu_r - {}^{\circ}F}$
hc = .347 x.(1.356 x 10⁻⁴)=.000047 $\frac{CAL}{CM^2 - SEC - {}^{\circ}C}$.
 $\frac{hc}{\Delta T}$.25 = $\frac{.000047}{(27.8)^{25}}$ = .00002 $\frac{CAL}{CM^2 - SEC - {}^{\circ}C - {}^{\circ}C \cdot {}^{25}}$

CASK HEAD FINS

Calculation of the heat transfer coefficients from the fins on the head of the cask proceed in an indentical manner except the length of path the air takes is different:

FOR LONG FINS

$$\frac{hc}{\Delta T} \cdot 25 = .000024 \frac{CAL}{cM^2 - SEC - ^c - ^c \cdot ^{.25}}$$

FOR COMBINATION OF LONG AND SHORT FINS

$$\frac{hc}{\Delta T}.25 = .000026 \frac{CAL}{CM^2 - SEC - ^{\circ}C - ^{\circ}C \cdot ^{25}}$$

Side of Cask

FORCED CONVECTION

In lieu of any better data on the flow rate of the blowers and the configuration of the air distribution system used on the cask, the heat transfer coefficients calculated in Reference 2 page 6-33, which were based on Reference 5, were used in our analysis. The value of heat transfer coefficient (7.0 BTU/FT²-HR-°F) is a reasonable value for a forced air convection system.

FREE CONVECTION

Diameter of the Cask = 61.61 inches = 5.13 ft.
 Assume
$$\Delta T$$
 = 100°F = 55.6°C
 TEMP = 180°F
 Gr = $\frac{g \beta \rho^2}{\mu^2}$ x $\Delta T x L^3$ = 1.03 x 10⁶ x 100 x 5.13³
 Gr = 1.39 x 10¹⁰ .

From reference 4, Figure (7-4),

hc =
$$\frac{\text{Km}}{D}$$
 x.021 x (GrxPr)⁴ = $\frac{.017}{5.13}$ x .021 x (1.39 x 10¹⁰ x .73).⁴
hc = .7 $\frac{\text{BtU}}{\text{FT}^2 - \text{HR} - \text{°F}}$

hc = .17 x (1.356 x
$$10^{-4}$$
) = 9.49 x 10^{-5} $\frac{\text{CAL}}{\text{CM}^2 - \text{SEC} - ^{\circ}\text{C}}$

$$\frac{hc}{\Delta T} \cdot 4 = \frac{9.49 \times 10^{-5}}{55.6 \cdot 4} = .000019 \frac{CAL}{CM^2 - SEC - °C °C \cdot 4} .$$

APPENDIX B

LISTING OF TRUMP MODEL

BLOCK 4 1 21 41 61 81 101 121 141 161 65 85	8002K 1	8LOCK 5 281 4 351 4 351 5 356	BLOCK 45 45 236 351 356 351 366 371 391 391 281	BOX 280 TRUMP C BLOCK I 890 1
ASYMETRIC 3	1	ECTANGULAR 1 1 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	2 i	K PROBLEM. RECTAN
NODE CARDS 1 3 3 1 2 1 3 4 3	SYMETRIC 500 30 1.0	RES 1NTERNAL 7.7.7 1.986.35 7.4.635 7.4.556.6 8.7.556.6 2.5.556.2 2.5.566 2.5.	R NODE CARDS i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SOAK AT 35 C 598 38 1.0
5.38 5.38 5.38 5.38 5.38 5.38 5.38	1	ISTANCES . 100 . 100 . 100 . 5.08 . 55 . 4.12 . 1.96 . 2.50 . 12.08 . 12.08 . 12.08 . 12.09 . 12.09 . 1.09 . 1.09	129. 129. 13.55 3.62 3.62 3.62 3.62 3.62 3.62 7.62	. CASKF9A
.38 7.7 7.70 3.95 10.16 1.27 21.25		96422 96422 3.8.8.9.8.8.8 9.8.2.8.8.8 15.1.2.8.2.8 15.38 15.38 14.4.4.9 16.4.4.4.4 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	5. 4.45 20. 20. 15. 20. 20.	
78.72 74.69 66.91 61.04 53.98 49.27 37.79 23.82	7200.	162.555 162.556 162.556 162.556 162.556 20.332 20.322 20.332 20.3	9.99 9.496 10.127 2.5.24 15.44 15.44	?2 9 0.
	t.355E-12			1.355E-12

LISTING OF TRUMP MODEL

61234567890123456789012	14551461461461461461461461461461461461461461	3 3 3 3		1111	343111111111111111111111111111111111111		1.355 355 352 353 353 353 353 353 353 353	21.5 8.2.5 9.10 1.2.5 10.12.5	37.78 23.85548 9.1098 9.278 9.53.85548 9.278 9.259 9.259 9.278 9.2		
	BLOCK	รค คุร	YŞI	ME T	RIC 1	INTERNAL RES	ISTANCES 21.5	.375	49.27		
95 86	21 41	22 22 42	NEWNERNES	1	i	21.5	21.5 21.5	.971 .971	74.69 66.91		
97 ∷C	61 81	62 62	2	1	1	215	21.5 21.5	.499 1.270	61.84 53,98		
89 90	101 121	102 122	2	l 1	l 1	21.5 21.5 21.5 21.5	21.5 21.5	.151 2.460	49.27 37.78		
92 92	i-11 161	142 162	2	1	1	21.5	21.5 21.5	1.03 2.460	23.82 9.85		
93 94	54 84	, 65 , 85	0 8	9 8	Ð	21.5 21.5	5.38 5.38	.499 9.270	51.64 53.93		
95 96	184 184	125	9	8	Ø	21.5 21.5 21.5	5.38 5.38	.151 2.460	49.27 37.78		
97 98	144 164	145 165	0	0	3	21.5	5,38 5.30	0.03 2.460	23.82 9.85		
99 100	65 85	66 86	2	1	1	5.38 5.38	5.30 5.38	.409 1.270	61.04 53.98		
191 192 193	195 125 145	126 126 146	WNNNNN	!	ì	5.38 5.38	5.38 5.38	.151 2.460 1.03	49.27 37.78 23.92		
194	iez I	166	2	1	1 1 1	5.39 5.38 .15	5.38 5.38 .001	2.450 5.38	9.85 78.52	.00708	267
196	2î 41	41 61	3	i	i i	,01 .001	.01 1.98	5.3B 5.38	70.80 63.02	.00700	267
100	6 L	61 101	3	i	i	1.98 5.08	5.08	5.38 5.39	59.06 48.90	100,00	120.
110	10'	121	m co co co co co	1	1	.63 .001	. 991 . 360	5.38 5.38	47.63 27.93	.01280 .31	40 25
112	141	161	E) EN EN	1	ĩ	.360 1.90	.001 5.00	5.38 1.35	21.5 59.06	.31	25
114	95 185	105 125	3	1	1	5.08 .63	.63 199.	1.35	48.90 47.63	.01298	-,49
116	125 145	145 165	3	1	l l	. Bal	.360	1.35	27.93 21.5	.31 31	25 25
119	201 206	206				1.98 5.08	5.08 .53	.32 .32	59.06 49,90		
120	311	216				.63	6.85	.32	47.63		

121 122 123 124 125 126 127 128 129 131 131 133 134 135 136 139 141 142 144 144 146 147 149 149 149 149 149 149	2121561611616161616161616161616161616161	2265166161616161616161616161616161616161		8.415.06.8110.8282884.7484.75.06.8110.78878.784.7888.888.7887.78878.7887.788	85 8485 64859999999NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	85 98 65 98 195 98 98 98 98 98 98 98 98 98 98 98 98 98	3226666644444444444971163696666444444444497116369666644444444449711636996164696961466969614663696961466369696146636969614663696961466369696146636969614663696961466369696146636969614663696969696969696969696969696969696969	2. 25.56935.549.7.815.497.781.5497.885.497.815.4987.885.497.815.4987.885.497.897.497.497.497.497.497.497.497.497.497.4	.01200 .01299 .01299	48 40 40
	EL 301161616111616161111111111111111111111	6 550 1111111111111111111111111111111111	ASYMETRI	6 E	SISTANCE 1.495 1.27 1.159 2.814 40.96 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 193.28 236.64 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59	8545812.75669408498989408948612.75669458.5.1486814682.5.5.5.5.654581.2.5.654581.8.662.5.654581.8.662.5.654581.8.662.5.654581.8.662.5.654581.8.662.5.654581.8.662.5.654581.8.662.5.654581.8.662.5	041154 4041:40114 53	.000020 .000020 .000020 .000020 .000020 .000024 .000024 .000024 .000024 .000024 .000024 .000019 .000019 .000019	. 83 . 83 . 83 . 83 . 83 . 83 . 83 . 83	25 25 25 25 25 25 25 25 25 25 25 25 25 2

```
.00095
IBI
           501
                                      10.95
                                                78.87
        4
                                                               .00095
192
        3
           501
                                      10.95
                                                78.87
                                                78.97
                                                               .00095
183
        ž
           561
                                      10.95
                                                               .00005
194
            581
                                      18.95
                                                78.87
                                                               .000019
                                                                                           .4
105
      30 i
           501
                                                63.07
                                     .64
                                                                                           :4
                                     1.35
                                                27.31
                                                               .000019
196
       65
           gar
                                                70.47
197
      391
           501
                                     3.02
                                                78.42
                                                                        .84
198
      331
           501
                                      . 45
139
      291
           501
                                      .67
                                                79,42
                                                                        .84
      301
          501
                                                79,42
                                                                        .E4
190
                                      .19
191
      251 501
                                      .29
                                                78,42
                                                                        .84
                                      . 52
                                                                        .04
192
      201 501
                                                63.82
                                                                        .84
193
                                     3.12
                                                79.
194
       45 301
                                                79.
                                                                        .84
                                     1.18
                                                                        .84
195
       69
           501
                                     1.08
                                                79.
                                                                        .84
196
       4
           501
                                     5.38
                                                79.
197
        3
           501
                                                79.
                                                                        .134
                                     5.30
198
                                     5.38
                                                                        . R4
           501
                                                79.
                                                                        .84
139
        ī
           501
                                     5.36
                                                79.
209
201 BLOCK 7 BOUNDRY NODES
203
      501
              ø
                                 35.0
203
204 BLOCK 2
205 STEEL
                               Ø
                                  3
                                            7.94
                                                        . 17
206
       .03142
                      37.8
                               .03514
                                                     .03927
                                                                  260.
                                            149.
207 URANI 2
                               2 3
                                           19,29
298
           .028
                                 .833
                       24.
                                           268.
209
                               .06573
                                                     .07400
                                                                  2GP.
         .05912
                      8.56
                                            149.
218 WATER
                                                                               9.9
                                            1.00
212
          1.01
                         ១
                                 .998
                                                        1.0
                                                                    93.
                                                                              1.00
                                                                                         568.
                                            21.
         .00132
                               .00143
                                            21.
                                                     .00163
                                                                   93.
                                                                            .00158
                                                                                         500.
213 FUEL
              4
                               B
                                  0
                                            6.9
                                                        .085
                                                                   .021
214 WATR2
            5
                               4
                                            1.00
215
           1.81
                         0
                                 .998
                                            21.
                                                         1.0
                                                                    93.
                                                                              1.08
                                                                                         204.
216
               GRAPHICAL DUTPUT
217 BUBCKIL
        5
218
219
                 105
                      145
                                       261
220
221 888
            TRUMP CASK PROBLEM 130F, F
                                                   10:29:02Z 04/26/77
7.64553E+03
222 BLOCK 9. T. A. B. G AT TIME
                                                                                  91
223
       45
                                  35. 0.
                                                             Ð,
224
225
226
227
228
       46
                                  35. 0.
                                                  ē.
                                                             ø.
      236
                                  35. 0.
                                                  ø.
                                                             в.
      237
                                  35. U,
                                                  Ð.
                                                             Ö,
                                  35. 0,
      239
                                                  Ø.
                                                             0.
      351
                                                  Ö.
                                  35. 0.
                                                             Θ.
229
      356
                                  35. 7.
                                                  ε.
                                                             o.
230
231
233
233
234
235
236
      361
                                   35. 0.
                                                  n.
                                                             ø.
      366
                                   35. 0.
                                                  Θ.
                                                             Ð.
      371
                                   35. 0.
                                                  ø.
                                                             9.
      381
                                   35. 0.
                                                  Э.
                                                             Ð.
                                                  ø.
      331
                                   35. 0.
                                                             Ð,
      281
                                   35. 0.
                                                  ø.
                                                             ø.
                                                 ŋ,
                                  35. J.
                                                             ø.
237
                                  35. 0.
                                                 ø.
                                                             Θ.
23B
        3
                                                  ø.
                                   35. 0.
                                                             0,
239
        4
                                   35. 0.
                                                  ø.
```

35. 2.

ø.

240

21

241 243 244 245 245 245 246 247 247 247 258 259 259 259 261 257 262 263 264 267 267 267 267 267 267 267 267 267 267	22524449441888881888881888312534494441655866668868888888888888888888888888	55.1. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8000000000000000000000000000000000000	8.00.00.00.00.00.00.00.00.00.00.00.00.00
291 292 293	149 165 166	35. 8 35. 8 35. 8 35. 8 35. 8 35. 8	0. 0. 0.	0, 8. 0.	3.450E-02 0 8.

The Armite Control

8-6

70.	226			75	~	ø.	9.	
3 e 1	226			35.	0.	ь.		
302	251			35.	В.	0.	9.	
					ο.			
303	256			35.	8.	0.	0.	
							u •	
384	261			35.	0.	а.	0.	
							u.	
305	266			35.	Ð.	ø.	Э.	
200				22.			21	
386	271			35.	0.	Θ.	J.	
367	276			35.	Э.	ø.	0.	
398	301			33.	Β.	Θ.	13.	
389	7BC			35.	<u> </u>		0.	
	306				0.	Θ.		
310	311			35.	e,	₫,	и.	
					15 4			
311	316			35.	0.	9.	ŋ.	
312	321			35.	6.	υ.	0.	
313	326			35.	0.	ø.	0.	
					••			
314	Ð							
315	#A ID			TRIMO			BOX YOS**TRUMP***	30X YØ6
				TRUMP				
316	10.70 7	04/26 745	7.5	1 5	TRUMP/77	DOV	P90 ME1ER	R80
	10.23 4	U47 40 140	3/3	1 2	RUPPZ	DO.	HOD HEIGH	KDO
317								
318	ENDED-1							
= 1.2								
319	SPLIT							

بالهيد ويتبين بالميسلمين يتني

APPENDIX C
Lead-Lined Cask Analysis

SUMMARY AND DISCUSSION

A supplemental thermal analysis study was performed on the GE TF-300 shipping cask. Its purpose was to determine the effect of replacing the four inches of uranium in the cask walls with six inches of lead. The same thermal model described in the main report was used for this with the following exceptions.

- The appropriate dimensions in the cask body were increased by 50%.
- The thermal properties of lead were used instead of those for uranium.

Temperatures in the seal area did not appreciably change due to the use of lead as a liner. The effect on the side of the cask is shown in the table which compares the average temperature of the lead at the mid-point of the cask with the uranium at the same point as determined in the main report.

Condition	Lead	Uranium	
54.4°C (130°F)	135.5°C	133. 2°C	
Fire	236.7°C	227.1°C	

For further discussion of the analytical methods for this analysis, please see the main report.