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Abstract

Conformalfieldtheoriescomprisea vastclassof exactlysolvabletwo

dimensionalquantum fieldtheories.Conformaltheorieswithan enlarged

symmetry group,thecurrentalgebrasymmetry,are a key ingredientto

possiblestringcompactificationmodels. The followingwork exploresa

Lagrangianapproachtothesetheories.

In thefirstpartofthisthesis,a largeclassofconformaltheories,the

so-calledcosetmodels,arederivedsemi-classicallyfrom a gauged version

ofthe Wess-Zumino-Wittenfunctional.A non-localfieldtransformation
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to the parafermionic field description is employed in the quantization pro-

cedure. Classically, these parafermionic fields satisfy non-trivial Poisson

brackets, providing insight into the fractional spin nature of the confor-

mal theory. The W-algebra symmetry is shown to appear naturally in

this approach.

In the second part of this thesis, the connection between the fusion

algebra structure of Wess-Zumino-Witten model_ a_d the quantization

of the Chern-Simons action on the torus is made explicit. The modular

properties of the conformal model are also derived in this context, giv-

ing a natural demonstration of the Verlinde conjecture. The effects of

background gauge fields and monopoles are also discussed.
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1 Introduction

The central mathematical apparatus employed in describing modern particle

physics is the quantum field theory "QFT." As an axiomatic system, QFT is

laden with ambiguities. Even in its linearized, or perturbative form, unitarily

inequivalent canonical coordinates exist, renormalization procedures must be

prescribed, and often the resulting series is only asymptotic. From this view-

point, we have barely scratched the surface of the richness inherent in the full

non-linear field theory consistently combined with the quantum theory.

The complexitie_ of a full non-linear theory can be observed at the classicai

level as well. A reh:vant example of such a theory is Einstein's theory of general

relativity. Taken perturbatively, this theory correctly describes large scale phe-

nomena such as the perihelion advance of Mercury, overcoming the shortcomings

of Newton's theory of gravity. Taken as a full non-linear theory, however, ex-

act solutions exist only for trivial systems, and very little is known concerning

solutions to the Cauchy problem with non-trivial energy-momentum tensor.

In the last two decades, much attempt has been made at probing the inher-

ent non-linear, or nonperturbative effects of a given QFT. In 1984, in the pio-

neering work of Belevin, et al. [14], a large class of non-trivial QFTs was shown

to be completely solvable. These theories were a subclass of two-dimensional

QFTs carrying a conformal symmetry. These theories were solvable in the sense

that all field operators could be characterized, and in principle the correlators

of these fields were finite and could be computed exactly. Thus began the age

of conformal field theory "CFT."

Besides being an important class of solvable QFTs, conformal field theories

arise naturally in string theory and the critical behavior of statistical systems.

For this reason understanding the structure of CFTs and possibly classifying

the space of rational CFTs (rationality is a technical point, implying a finite set

of primary fields) has become a major endeavor of modern particle theorists.

An important class of conformal field theories, carrying an enlarged sym-

metry group, the current algebra symmetry, plays a key role in string compact-

ification models. These conformal models have been shown by Witten [58] to

. be derived from a sigma model type Lagrangian, containing a topological Wess-

Ztunino term. These are the Wess-Zumino-Witten (or WZW) models. Gauging



the WZW action gives a wide class of conformal models, the so-called coset mod-

els. This follows a long history beginning with Witten's work on the skyrmion

model [57].

The conformal symmetry group in two dimensions gives rise to _ infinite

dimensional algebra, the Virasoro algebra, admitting a non-trivial central ele-

ment. Thus, the Hilbert space of a CFT can be defined by its decomposition

under this algebra. The Hilbert space of a WZW model can further be decom-

posed under the action of the current algebra symmetry; this algebra is described

as the semi-direct product of the Virasoro algebra with the corresponding affine

Lie algebra. This characterization also provides a simple description of the op-

erator product expansions of the field variables. Classifying the allowable fusion

algebras by employirlg general consistency requirements is one intriguing classi-

fication scheme under investigation [20].

The following work can be divided into two parts. The first is a thorough

investigation of the WZW action functional and its application to conformal

field theories. The construction of the WZW model is described, followed by a

description of the gauging prescription. The parafermionic fields are introduced,

and their classical Poisson bracket relations are investigated. A semi-classical

treatment of these relations is shown to be consistent with known relations of

the coset models. FinMly, the recently discovered W-algebra symmetry is shown

to arise naturally in this approach.

The second part of this thesis concerns the fascinating connection between

the WZW models and the quantization of a three-dimensional "topological"

(topological in the sense that the action is independent of the spacetime metric)

action functional called the Chern-Simons action. Although much of the infor-

mation of the conformal model is not explicitly present (eg. descendent field

structure, correlation functions, etc.), the Chern-Simons theory gives a simple

description of the fusion algebra, leading to a new demonstration of the Verlinde

conjecture (that the modular transformation S : r _ --1/r diagonalizes the fu-

sion rules). Finally, the Chern-Simons view is considered in solving some open

questions concerning the existence and uniqueness of coset models containing
so-called fixed points.

The original work embodied in this thaqis has appeared previously in three

published articles. The work on the non-abelian gauged WZW model and the



observance of the W-algebra symmetry was co-authored by my advisor K. Bar-

dakci, my fellow graduate student, Michael Crescimanno, and myself [10, 11].

The work on Chern-Simons theory was co-authored by Michael Crescimanno

and myself [23]. I would like to thank them for allowing me to reproduce these
results in thesis form.
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Part I

Parafermions and Conformal

Field Theory

2 Lagrangian Models in Conformal Field Theories

The first constructions of conformally invariant field theories were algebraic in

nature [7, 14, 30, 34, 49]. If these models are to be useful in constructing physical

models it _s desirable that they be given a classical or Lagrangian foundation.

One obvious example of this is in the application of conformal field theories to

string compactification models. In a seminal paper [58] Witten showed that

the quantization of the Wess-Zumino-Witten (WZW) Lagrangian gives rise to a

conformally invariant theory, correctly implementing the Sugawara construction

and the underlying affine current algebra. The coset constructions, which can be

thought of as a generalization of the Sugawara constructions, were then shown

to follow from a "gauged" version of the WZW Lagrangian. In fact, the gauged

field is not dynamical, but acts as a Lagrange multiplier to project out the

currents belonging to a particular subalgebra.

In the non-gauged WZW model it is convenient to formulate the model in

terms of conserved currents. As a consequence of conformal invariance in two

dimensions there exists two sets of conserved currents. In light-cone coordinates,

we have one set of conserved currents independent of the x+ coordinate and one

set independent of the x_ coordinate. The connection to CFT is made when a

careful analysis reveals that these currents form a representation of the affine

Lie algebra corresponding to the group in which the classical field takes its val-

ues. When constructed in the gauged WZW model, these local currents will be

gauge dependent, and therefore only covariantly conserved. The fundamental

idea of the following work is to construct a new set of gauge invariant currents

by attaching Wilson lines to the original gauge dependent currents. These new

currents are gauge invariant as well as conserved classically, at the cost of being

non-local. We will call these new currents the "classical parafermionic currents"

in that they are reminiscent of the parafermionic fields introduced by Zamolod-

4
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chikov [61].

To construct the quantum theory in terms of the parafermionic currents, the

commutation relations between them must be computed. Because the currents

are non-local, equal-time commutation relations are ill-defined. Instead we first

compute the classical Poisson brackets of the parafermionic currents, which are

the classical analogue of the operator product expansion. For abelian coset

models (that is, the gauged subalgebra is abelian) the resulting Poisson bracket

is quite simple, although the calculation is somewhat laborious• For non-abelian

cosets however, a number of difficulties arise. Because of complicated base point

contributions, the Possion brackets do not close for non-abelian cosets. These

base point contributions are gauge artifacts, and we show that the PBs close

among gauge invariant currents (color singlets). Also in the non-ablian coset

models, an interesting problem concerning the independence of axial and gauge
transformations is addressed.

The fact that the Possion bracket closes for color singlet products of cur-

rents, but not for the individual parafermionic currents, gives rise to an interest-

ing interpretation. These color singlet composite fields are the classical analogue

of the primary fields. In this sense, the parafermionic currents are analogous to

"quark" fields and the primary fields are the composite fields formed from the

"quarks". In computing the Poisson bracket of primary fields from that of its

constituent "quark" fields, it is observed that the base point dependent terms

cancel. It is natural then to consider the Poisson algebra of the "quark" fields

without the base point dependent terms. This algebra can be considered to be

the generating algebra of the Poisson algebra of the primary fields. Because the

base point dependent terms have been dropped, this algebra no longer satis-

fies the Jacobi identity; that is, the "algebra is no longer associative. (The loss

of associativity is true only for non-abelian cosets). In a natural way then, we

have seen how non-associative algebras may play a role in conformal field theory.

Compare this to the quasi-Hopf algebra structure of conformal field theory, in

wlfich the tensor product operation on algebra representations is non-associative

[27].

Certainconformalfieldtheoriesderivedfrom the cosetconstructionare

• known to carry an enlarged symmetry algebra called a W algebra [4, 5, 15, 29, 55,

56, 60]. The W algebra can be viewed as a natural generalization of the Virasoro
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algebra. It is not surprising then that the classical limit of the W algebra cazl

be derived from the Poisson algebra discussed above. We demonstrate this

connection, and introduce a natural generalization of these classical W algebras

by considering the Poisson algebra of multilocal fields.

After developing these classical Poisson algebras, we present a realization of

the paxafermion fields which we call the free current construction. For abelian

coset models, the realization in free fields has been known for some time [16, 53].

The free current construction is a generalization of this construction in which

the free fields are replaced by currents satisfying the a_ne Lie algebra. This

structure can be inferred by thinking of the Wilson lines attached to the local

currents as path ordered exponentials of free fields.

The free current construction suggests a natural method of quantization.

We wish to replace the classical free currents satisfying the affine Possion bracket

algebra by operators which satisfy the corresponding commutator algebra. This

process leads to difficult problems concerning operator renormalization. As a

conclusion we discuss some of the many open questions remaining concerning

the full quantum theory.

3 Review of the Wess-Zumino-Witten Model

We begin with the Wess-Zumino-Witten action,

k k

Zwzw = _ / d2xTr(O+g-'O-g) + _ f daxTr(g-'O+gg-'O-gg-'O=g) (1)

where x± = xo 4-x,,i):_ = ½(00 4- 0,), g(x) is a field defined over some two-

manifold taking values in a Lie group G, and the trace is taken in some represen-

tation of g, the Lie algebra of G. We normalize the trace so that Tr(r_r b) = 25"b.

In computing the second integral, we treat the two dimensional space-time man-

ifold as the boundary of a three-sphere, extending the field g(x) smoothly. The

field g(x) may be extended in topologically distinct ways. The space of topo-

logical classes of smooth extensions of the field g(x) is isomorphic to Z, the

integers, and thus a given extension may be labelled by an integral winding

number [25, 26]. The coefficient of the Chern-Simons term has been chosen so

that under a change of winding number 1, the action changes by a factor of 2rk,

and thus the contribution to the path integral is unchanged if and only if k is

6



• an integer. Therefore, for the path integral to be well-defined, it is necessary

that k satisfy the quantization condition k E Z. The constraint leading to the

coefficient of the first term concerns the anticipated equations of motion and is
discussed next.

The variation of Iwzw is a local functional of the two-manifold. In fact,

under g _ g + 5g we have,

k k

5Iwzw = 2-'_/d2xTr('q-'SgO'(g-'O'g))- _ /aaxTr(g-'Sgc"_co"(g-'co_g))"
(2)

Thus the variational equations are given by,

kco_(g-lO+g) = 0. (3)7r

Defining the currents,

ik ik (4)J"l-= vg-lO+g; J-- =- (O--g)g-1,_r

gives the desired result,

cO_j+=0. (5)

Note that the following identity (which holds for arbitrary field g(x)),

cO+j_+ cO_j+ = 0, (6)

along with the above equation of motion gives rise to the partner,

CO+j_=0. (7)

We will see how these equations are modified in the gauged Wess-Zumino-Witten
model.

4 The Gauged Wess-Zumino-Witten Model

We would like to add a term to the WZW action _hat will remove components

of the currents corresponding to some subgroup H C G. To this end, we will

introduce a gauge field Au, that will act as a non-dynamical Lagrange multiplier.

We have,

" I = Iwzw + _ d2xTr(iA+O-gg -_ - iA-g-_O+g- A+gA_g -_ + A+A_). (8)

7
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Note that the last _erm has been added to ensure that the entire action is gauge

invariant, that is, that the action is invariant under the transformation:

g(x) -. B-_(_)g(=)B(x),

, A.(=) --, B-'(=)A.(x)B(x) + iB-'(x)O.B(x), (9)

B(x) E G. The currents generating these transformations are the covariant ver-

sions of the currents of the WZW model,

J+ = ikg-'D+g;lr J- =-i--kr(e-g)g-'" (10)

Where the covariant derivative D. is defined by,

D..q(x) = O.g(x) - i[A.(x),g(x)]. (11)

Invariance of the action under an arbitrary variation of A+ and A_ gives the

desired constraint equations:

Tr(h"J+) = 0 = Tr(h"J_) V h" E h. (12)

Where h is the Lie algebra of H (a subalgebra of g). These equations may be

inverted, providing a description of the Lagrange multiplier A(x) in terms of the

dynamical field g(x):

A a i [1- M].,._I Tr(g-'O+ghb),+--2

Ab._= -_ Tr(O_gg-'h') [1 - Ml2 , (13)

Mab = ] Tr(h"g-'hbg).

Where 1 is the identity matrix.

The variation of the action under the change g --, 6g is given by,

1

61 = -_ ] d=xTr(g-'_g(D_J+ - k F)). (14)

Where the field strength F is defined by,

F = O+A_ - O_A+ - i[A+, A_]. (15)

Since the gauge field A(x) takes values only in the subalgebra h, the same must

be true for F(x). From eq.(12), we see that the covariant current J+ takes values

in the coset g - h and therefore so does the expression D_J+. Thus, asking that

8

E

..... II r, rilr ' lr ' ' ' I_ ' " , , , ,' , _,, ' ,=" ==,_p' ,_I, ,i ,iiI rl " ', ai,, II ' ' =' , 'ir's I'I11 I'F'PillIII'



• the variation of I vanishes implies the separate cancellation of F and D_ J+. We

have,

• D+J_ =0, (16)F=O.

Similar to the ungauged model, we have the following general identity,

D+J_ + gD_J+g -1 -- -k (f - gFg-1). (17)7r

Which gives rise to the equation of motion,

D+J_ = 0. (18)

5 The Parafermionic Currents

In order to simplify the quantization procedure, we would like to characterize

the observable quantities of the theory in terms of chirally conserved currents.

We may expect also that these currents take values only in the coset g - h, and

not in the subalgebra h. To this end, we introduce the parafermionic currents,

¢u(x, x0)--V-'(x, xo)JuV(x, xo), (19)

with,

(20)

Pc represents "path ordering" the exponential along a curve C which connects

the base point x0 to x. In constructing Poisson brackets, we will identify x+

with the time coordinate and x_ with a space coordinate. We will concentrate

on the space component of ¢, and define,

¢(x) - _b=(x) = -V-a(x, xo)J_(x)V(x,xo), (21)

where the integration of the path ordered exponentials is carried out at fixed

time (x+). Note that U(x,y) satisfies the following important properties,

I
II OxU(x,y) --"iA_(x)U(x,y) ; OuU(x,y) -- -iU(x,y)A_(y), (22)

III OtU(x,y) "- f_dzU(x,z)iOtA_(z)V(z,y),

9
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where in the last identity_ t refers to the time coordinate, and x, y and z refer

to space coordinates.

From the equations of motion (eq.(12)) and the fact that ¢ is the conju-

gation of a coset valued current by an element of the subgroup H, we have the

desired propertie%

Tr(h_¢) = 0 V h_ eh, (23)0+¢ = 0.

Physical observables are not dependent on the base point x0. A complete

set of such variables constructed from the local parafermions is given by the

following set of "multilocal" observables,

O(xl,x2, ..., x,) = Tr(¢(xl)¢(x2) . . . ¢(x,,))

=
(24)

The term "multilocal" is used in the following sense: the local parafermion has

a non-abelian tail, analogous to the Dirac tail of the electromagnetic monopole.

When we "tie" these tails together in a gauge invariant manner, as shown

above, we remove this non-local dependence. If we were to reinstate the full

two-dimensional freedom of these objects, we would find that non-overlapping

observables O1 and 02 would satisfy Bose statistics with respect to one another.

Truly local observables can also be extracted from these observables by

letting the space variables approach each other and expemding in the differences

(xi - xi). When we quantize, this procedure will give us the operator product

expansion, the coeffiecients of this expansion being identified as the primary

fields. In analogy to the quark model, the parafermionic currents are treated as

the building blocks of the physical observables.

6 The Poisson Bracket of the Parafermionic Currents

In order to quantize the theory, treating the parafermionic currents as local

observables, we will need to first compute their classical Poisson bracket. The

details of this calculation for the case of abelian cosets is given in ref. [9].
=

In the case of non-abe[ian cosets (that is, the subgroup H is non-abelian),

two important complications arise. The first concerns base-point dependent
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• terms. These terms result in complicated expressions for the Poisson bracket

of the parafermionic currents, which detract from a clear understanding of the

• algebraic structure. Observable quantities should be independent of the base-

point and, in retrospect, the base-point dependent terms can be dropped in the

intermediate calculation. When thee terms are dropped, the resulting Poisson

algebra for the parafermionic currents is non-associative, associativity being

restored only after projecting onto the "multilocal" observables discussed earlier.

The second difficulty concerns the linear independence of the components of the

field strength tensor on shell. This technical matter can be considered from a

purely group theoretic viewpoint and is considered below.

We begin by reviewing the computation of Poisson brackets for Lagrangians

linear in time derivatives of the field variabl& Let,

dci
I = f dtAi(¢)--_-. (25)

The variation of I is given by,

6I= f dt6¢i_-_-[ -, (26)

with,
OAi OAj

Fii - OCj cO¢i" (27)

In terms of the variation 8¢i, the Poisson bracket is given by,

{t_¢i,_¢j} = (F-1)ij. (28)

More generally, the following variation in the action,

l dci
,5I -- / dt_¢,V_. (¢)Ei_( ¢l W_,(¢)-_, (29 /

gives the Poisson bracket,

{vi,wj) = (E )ii. (30)

If the tensor E is not invertible, constraints must be imposed on the dynamical

fields. For our action (eq.(8)), invertibility is achieved through gauge fixing. The

detailed form of this constraint is not important here since we will be dealing

11
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only with gauge invariant quantities (up to surface terms at the base point). For

example, we will write,

f(x) = U-l(x, xo)g(x)V(x,xo), (31)

giving,
.I_

¢ : _---_(O_f)f-1. (32)
?r

At this point, we need to rewrite the variation of the action in a convenient

form and one which will involve only gauge invariant quantities. During the

following calculation, the gauge field A. and the corresponding field stren_h

tensor F, will be treated as functions of g(x) (see eq.(13) and eq.(15).) Define

the following variation,

A_-_ -_i[1- MJ2Tr(g-15gh b). (33)

Note that A6 is simply A+ with O+g replaced by 5g. Recalling our earlier

expression for the variation of the action (eq.(14)), we can rewrite the second

term in the following way,

Tr(g-_SgF) -'- -i Tr(A6(F - gFg-_)). (34)

The identity given in eq.(17), along with the fact that the currents J+ and J_

take values only in the coset, gives,

dr_ . 1
Tr(g-15gF) - --_'l'r(g- [A6, g]D_J+ ). (35)

We have then,

k
f d2xTr(g-'(Sg - i[ns, g])(O_- i[A_,)g-_(O+g - i[A+,g])). (36)6I -- 2"--_

At this point we make the following gauge transformation,

g(x) --+ f(x) = U-'(X, xo)g(x)V(x, xo), (37)

with U(x, xo) defined in eq.(20). Defining,

H+(x) - - f_ dx'U(xo,x')F(x')U(x',xo),
(38)

Hs(x) - - f_ dx'U(xo, x')Fs(x')U(x',xo).

12



• Where Fs(x) is derived from F(x) by replacing O+g(z) with _g(x). The variation
of the action can be rewritten,

k f d2xTr[f_l(_f _ i[H6, f])O_(f__(O+f _ i[H+,f])]. (39)_i = 2--4
Tb2s variation takes the form of eq.(29). Defining,

R - f-_ (O+j- i[g6, f]) = RJ _ ; 7_ e g - h, (40)

we have the Poisson bracket,

7r

{no(x),P_(y))= -_ob_(_ - y), (41)

where e(x- y) is defined by,

+1 x>y (42)e(x- y) - -1 x < y "

Consider the axial transformation,

gg = -2[h_,g]+gG_; h _ E h. (43)

(Here [, ]+ refers to the anti-commutator.) Using eq.(S) and eq.(17), we have,

5I = 2"--_kf d2xTr(h_F)50 _, (44)

which gives the Poisson bracket,
7r

{_o°(_),Fb(y))= _ob_(_- y). (4_)
These two Poisson brackets (eq.(41) and eq.(45)) will, after some algebraic ma-

nipulation, provide us with the Poisson bracket of the parafermionic currents.

Following Witten [58], we work with an index free notation by defining,

/ dxTr(P(x)_O(x)), P(x) e g- h. (46)oe

Using eqs.(32,40), we can rewrite OR as,

OR = i_ f dxTr(p(x)fO_(f-_f)f-,)lr

, = _i_k f dxTr(f-,_fO_(f-xpf)) (47)lr

= _ik f dxTr(RO_(f-xpf)+ if-_[Hs, f]O_(f-_pf)),



We can break up the Poisson bracket of the parafermionic currents into two

parts,

{_bp(x), CQ(y) } =/3 + -y, (48)

where we have defined,

/_= --_ f dxdy{Tr(R(x)O_(f-'P f)), Tr(R(y)O_(f-'Qf)) },
M k27 = -_ fdxdy{Tr[(R + if-l[Hs f])O_(f-lPf)], (49)2

Tr[i f-'[H6, f]O_(f-'Q.f)]}.

Using eq.(41) we can readily compute/_, we have,

-- 4k 2--'-_" _ha,hbeg_h f dzdy(O_ (f-1 pf))_(O_ (f-'Qf))b {Ra(x), Rb(Y)}

= _4_ _h_eg-h f dx(f -_pf)_O-(f-IQf)_

_ 2k fdxTr(f-,Qf)O_f-lpf))- -_

_k _h°e h f dmTr(haf -1Qf)Tr(haO_ (f-x Rf))

= 2_ f dxTr(QO_P) + 2i f dxTr([P, Q]¢)lr

--_" _h.e h f dxTr(h_f-lQf)Tr(h"O-(f -_ Pf)).
(50)

To compute -/, we rewrite the left-hand side of the Poisson bracket as,

Tr[(f-_,S f - 2f-X[Hs, fl)O-(f-X P f)]. (_1)

Employing the equality,

Hs(x) = U-l(x, xo)A6(x)U(x, xo) + iV-'(X,Xo)_U(x, xo), (52)

we have the following expression for the left hand side of 3' under the axial

transformation of eq.(43),

Tr[(f-l_f - i f-_[ H6,2f])O-(f-lPf)] = Tr(-(_f-_[f, V-_h_V]+ dO_
(53)

i f-, [U-1A6U, f]).-½ f -' [U-_,SU,f] - ._

The last two terms of this expression have a relative sign opposite of the two

terms of the right hand side of 7. This relative sign, after antisymmetrizing,

results in cancellation. This leaves,

,y : a:dy '= {Tr(-sf [f,U-_h"U]+dO"O_(f-aPf)),

, . (54)Tr(-iH_O_ (f-lQf) _ _ 8[_b Q])}
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We require the Poisson bracket of d®'_ with Hb, which follows from eq.(45), we

have,

{dO"(x),H_(y)} = _k Tr(U-1 h_Vhb)c(x - y). (55)

Combining these gives, after some algebraic manipulation,

"7"= _ _h*_hf dxTr(h'_f-lQf)Tr(haO-(f-lPf)) (56)
+_ _h*eh f dxdyTr([h% P]¢)e(x - y)Tr([h _',Q]¢).

The first term cancels with the third term of/3, and finally,

{CB, CQ} = 2_,f Tr(QO_P) + 2i f Tr([P, Q]¢) (57)
+_ _]h*eh f dxdyTr([h", P]¢)c(x - y)Tr([h a, Q]_b).

7 The Poisson Algebra and Multilocal Observables

The Poisson algebra of the Parafermionic currents derived in the previous section

is remarkably simple, considering the lengthy derivation. In this section, we will

consider the structure of this algebra and its extension to multilocal observables.

The Poisson algebra presented in eq.(57) should satisfy the Jacobi identity,

= 0, (58)
cyclic

the sum being taken over cyclic permutations of the three currents. This follows

from the fact that the Jacobi identity is preserved under canonical transforma-

tions. Under direct calculation, however, we find that the identity is not satisfied

in general for the case of non-abelian subgroup H. The error in our calculation

can be traced back to the derivation of eq.(45) from eq.(44). This step is valid if

and only if the components of F are linearly independent, that is, only if there

• is no linear constraint of the form,

F'_(x)C,_(g(x)) = 0. (59)

Note that C_ may depend on g(x) but not Otg(x). If such relations exist, we

have a constrained system, and the right hand side of eq. (45) must be modified

. tO_

{dO_(x),Fb(y)} = k6(X_ y)pab, (60)
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where pas is the projection of the unit operator 6ab in the subspace orthogonal

to the constraints. The existence of such a constraint can be seen from a purely

group theoretical point of view. In addition to the axial transformations of

eq.(43), consider the infinitesimal vector (gauge) transformations,

= °. (61)

The existence of a linear relation between 6vg and 6Ag would imply that a certain

linear combination of axial transformations is equivalent to a gauge transforma-

tion, which leaves the action unchanged. Since dO is arbitrary, this implies a

linear relation on F of the form eq.(59). If h is the Cartan subalgebra of g then

no such relations exist, and eq.(45) is unchanged. This can be proved simply by

diagonalizing h and writing out such a linear relation on components. However,

if h is non-abelian the situation is quite different. We consider the case: G =

SU(2) ® SU(2), and H = SU(2) (diagonal subgroup). If we take SU(2) in the

fundamental representation, we can parameterize (ga,g2) in the following way,

gx = aoI1 -b i_. _1 ; g2 = boI2 + ib. a2, (62)
with (a0)2 -b (_)2 = 1 ; (b0)2 + (_)2 = 1.

Here a represents the Pauli matrices and I the unit matrix. In this notation,

we can parameterize the subalgebra h by,

h = h. ((_ + _2); h e h. (63)

The desired linear relation is given by,

[q_®g_,ff. (_x + _)]+ = [g, @ g_,-_" (_, + _)],
_, _g _. ___,.g (64)
n=_ ; m= I_b'l "

It follows that,

3 r_aFaEa=l =0,

{dO_'(x),Fb(y)} -- -_5(x- y)(,_,.b_ nanb). (65)

The existence of linear relations of this type, in many cases, follow from simple

counting arguments. For example, consider the coset SU(5)/SU(4). The dimen-

sion of SU(5) is 24, while for generic g the rank of 6A and 5v are 15 and 12
a
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respectively. Since 15 + 12 > 24, linear relations must exist, lt is not true that

such degeneracies exist for all non-abelian cosets; however, they were found in
most of the cases we studied.

The modification of the Poisson bracket of dO and F changes the computa-

tion of the Poisson bracket of the parafermiona in a subtle way. This modification

tells us that a subset of chiral transformations is made up of gauge transforma-

tions, and we are instructed to project out these variations in the Poisson bracket

relations. Such a projection is unnecessary when computing Poisson brackets

between gauge invariant quantities. For example, both R and H6 are formally

gauge-invariant. When we co,npute the Poisson bracket of R and H_ with F,

we isolate the part of R and H6 corresponding to chiral variations dO. However,

if those chiral variations are along a gauge direction, then the corresponding

variation of R and H6 is zero by gauge invariance. This wou|d seem to indicate

that the naive calculation based on eq.(45) was correct. However R,H6 and g2

are not completely gauge invariant; rather, there is gauge dependence at the

base point x0. When computing the Poisson bracket, base point contributions

arise that depend on the projection operator P of eq.(60). We do not compute

these extra terms explicitly, however, since the advantage of working solely with

the one-body Cs is lost.

We can avoid these complications by recalling that ultimately we are inter-

ested only in the truly gauge invariant observables of eq.(24). In computing the

Poisson bracket of two such observables, the base poiat contributions cancel. It

follows that although eq.(57) is not correct as it stands for non-abelian cosets,

it is still perfectly all right to use it as an intermediate step in computing the

Poisson bracket of gauge invariant quantities, such as those given in eq.(24).

To conclude this section, we verify that the Jacobi identity is satisfied for

the multilocal observables defined in eq.(24). When we substitute the Poisson

bracket of e%(57) into eq.(58), we get an expansion in k_, where i takes values

in the set, i E {-2,-1,0, 1,2}. It is not difficult to show that all these terms

cancel, with the exception of i -- 0 and i -- -2. The term independent of k

(i = 0) has two contributions" one term where the k-independent term of the

Poisson bracket is used twice and one where the non-local term proportional to

. c(x- y) is in the inner Poison bracket and the "central charge" term is in the

outer Poisson bracket. These terms combine to give a restatement of the Jacobi

17
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identity for the underlying semi-simple Lie algebra, and in this manner give a

non-trivial restriction on the coefficients of the Poisson bracket of eq.(57). If we

label the coefficients of the three terms of eq.(57) as a, b and c respectively, this

restriction takes the form,

4ac = -b 2, (66)

which is indeed satisfied. Letting this expression fix c in terms of a and b, we can

arbitrarily scale the parafermions ¢ to fix b. This leaves an overall normalization

constant for the right hand side of the Poisson algebra. We now concentrate on

the leading term (i = -2) and work with the truncated algebra,

/ dxdye(x - y) _ Tr(P(x)[h _, ¢(x)])Tr(Q(y)[h _, _(y)]),{_(_), ¢_(y)}
f£

(67)
the sum being carried out over the subalgebra h. With O(x)- O(xx,x_,...,x,)

defined in eq.(24), we wish to show that,

{{O,(x),O_(y)},O_(z)} = O. (68)
c_dic

Define,

X_' = Tr(¢(xx)... [h_, ¢(xi)]'.. ¢(x,)), (69)

{ i, (70)X_ = Tr(¢(z_) •[h_, [hb,_(xi)]]..._(x,) i = j,

and similarly for Y and Z. Note that X_ b satisfies the identity,

':1 -- Xji -" _iJ fabcXc ; ([h'`,hb] = fab_h_)• (71)

We have,

{o,(_),o_(u)}= _(_- u)x_'Y?, (72)
where the index "a" is summed over the subalgebra h, and the indices "i" and

"j" are summed over the multivariable index range of "x" and "y" respectively.

Taking the bracket with Oa(z) gives,

{o,(=) o_(u)},o_(_)} ,(_, u_) obo b x._vj?_z_,(ut, = - (x;__ z_(_t- _) + - zk)).
(73)
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Since we are summing over permutations, we are free to permute the second term

of eq.(73) twice in (z,y,z). After rearranging dummy indices and employing eq.

(71), this expression reduces to,

fi,a:X._YjbZ_e(xi - yj)e(xi - z::). (74)

We sum permutations and rewrite dummy indices to arrive at,

= (75)

Employing the :dentity,

e(x - y)e(x - z) + e(y - z)c(y -- x) + e(z - x)c(z - y) = 1 Y x,y,z e R, (76)

gives,

cyclic i,j,k j,k i

By color neutrality, the sum over 'T' on the right hand side of eq.(77) vanishes,

giving the desired result. Notice that for the Jacobi identity to be satisfied, it

is only necessary that at least one of the observables be a color singlet.

8 The Classical W Algebras

We wish to generalize this procedure to include coset g/h models of a very

particular type: we take g to be the direct sum of two copies of an affine Lie

algebra with arbitrary central charges kl and k2 and take h to be the diagonal

subalgebra,

g = g(kl) @ g(k2),h = g(kl + k2)diagonal. (78)

This choice is dictated solely by the fact that these cosets have been discussed

at length in many previous works [4, 5, 6, 17]. Much of this section can be

easily generalized to other types of coset models. The gauged WZW action
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corresponding to the coset of eq.(78) is,

I = 11 -t-/2 + I1,2

I1 - _ f d2xTr(O+g_O-g_) + _ f Tr(dg_g_) 34¢r 24_r

12 -- _ f d2xTr(O+g_lO-g2) + _ f Tr(dg2g2-_)34. 24. ' (79)
I,,2 = _ f d2xTr(iA+(kl(O-g_)g_ 1 + k2(O-g_)g_')
-iA_(k_g_'(O+g_) + k2g_l(O+g=)) - k,A+g_A_g_'

-kuA+g=A_g_ _ - (k_ + k2)A+A_).

Note that the gauge field A, takes values in the diagonal subalgebra h. The

currents of the model are given by,

ik__-1D _ i__ -1
J+ = ,ul +_1+ , g2 D+g2, (80)
J_ -- _i.k(D_al)g_'- _--_(D_g2)g_ _,If If

with D,, the covaxiant derivative, as defined in eq.(ll). As before, these currents

axe not chirally conserved. We define,

¢ - d2- = -U-_(x, xe)J-(x)V(x, Xo), (81)

with U(x,xo), the Wilson line, defined as in eq.(20). The parafermionic current

_b(x) is chirally conserved (0+_b - 0) and gauge invariant up to base point

dependent terms. The computation of the Poisson bracket of the parafermionic

currents is similar to' the derivation given in Section 6, and we will simply present

the result,

{¢o(_),Cb(_)}= _k,_ _,(__ y)+--_(k_+k2) (k_+k2) (82)
4_ _.(X

--(kl+k2) X -- Y)fadcfbec_d(x)_)e(Y)

Where we have defined,

¢(_)=¢°(_)_o=¢°(_)(ff- _) ; [_, _] = A_ff. (8a)

As in our earlier calculation, dropping base point dependent terms has ren-

dered this algebra non-associative (that is, the Jacobi identity is not satisfied),

a property which is restored only after projecting onto color-singlet observables.

The simplest neutral combination one can form is obtained by taking the

trace of an arbitrary power of ¢. Compactifying to the circle and scaling appro-

priately to conform to the literature we define,

w(,) fo=_ .--- dx exp(imx)Tr(_b_(x)). (84)_as
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" Where we have defined the constant,

4klk2
a _= . (85)

For concreteness we take g --- SU(N). We compute the Poisson brackets of the

operators in eq.(84) using eq.(82),

.LI] rr m+n

jw2,))w(,+],). (86)- "2_N _ -

In the limit N --, 0<9only the first germ survives and we have the SU(oo)
classical W algebra,

_ _ _,_r(_+t-2) (87){W(_O,Wff)} = (rn(t 1) n(s- lj,,,m+_ .

For finite values of N both terms are present and furthermore ali W (0, s > N

can be expressed in terms of W(O, 2 < 8 < n. For example in the case of SU(3),
we have that,

Wm4) ia
+n- w. w. (88)-- . m-j n+j,

3

which follows from the trace identity,

1

Tr(,/,,") = _(Tr(¢2)) 2, (89)

valid for traceless 3 X 3 matrices. We therefore find the closed algebra,

{w2) w2)}=
{W_2), W(3)} = (2m - n _'zz(3),,, m+_, (90)

, _(m- n) E, m-,"n+,"

This agrees with the classical limit of the quantum W3 algebra in which one

retains only the term with the least singular short-distance behavior. Similarly,

closed algebras can be deduced for WN, N > 3. We note that these algebras

have the simple universal form given in ref. [15]. For finite N, we see that the

WN algebra is nonlinear. This is simply due to structure constant identities used

to reduce algebra elements W('), for s > N. It is interesting to note that these

algebras are insensitive to the second two terms of the algebra given in eq.(82).

We now turn to a generalized algebra without this property.
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We discuss a generalization of W algebras that is suggested by analyzing

WZW models in terms of parafermionic currents. As before, the Poisson alge-

bra of eq.(82) may be used to compute the Poisson bracket of gauge invariant,

multilocal observables. In an effort to simplify the resulting algebra, we define

z_new basis for the multilocal observables (compare eq.(24)),

W(xl,x_,...x,) =- Tr(¢(Xl)[¢(x2),[¢(xs), ... ¢(x,)]...]). (91)

This is a natu,al ger_eralization of eq.(84).

We now illustrate this non-local algebra with a simple example. Consider

the coset g = (SU(2)k, XSU(2).,2)/SU(2)k,+_ 2. In this case, the algebra closes

on the first two observables,

W(x,,x2) = Tr(_b(xx¢(x2)), (92)
W(x,,x2, xa) --'-Tr(¢(xl[¢(x2)¢(x3)]).

We have the followin_ algebra,

(w(_,_2), w(y,,_2))- -_e(_, - y_)w(_2,u_)+v_m.
-ib6(xa - yl)W(xx,x2,y2) +perm. (93)

+2o0(_,_; Ul,u2)W(_l,_, Ul,y_),

{W(xx,x2), W(y_,y2,y3)_ = -a6'(x_ - yx)W(x2,y2,y3) + perm.

-ib6(x,- yi)W(xa,x2, y2_y3) + perm. (94)
+2c0(_,_2;y_,y3)w(_,_, u_,_2,y3)
+2_0(_,,_; y_,_) w (__,_2,u2,_, y,),

{W(xl,-z, X3', W(y_,y2,y3)} = -a6'(xx - yx)W(x2,x3,y2,y3) + petra.

-ib6(x_ -- y_)W(x2, x3, ya, y_.,y3) + petra.

+2_0(__,_; u_.,u_)w (_, _ ,__,v2,u_,u_)
+2_0(_2,_; u..,,u3)w (_, _, _, w,u_,u,).

(o_)
We have defined for convenience the constants,

4(kl - k2) 27r
b = ; c - (96)- (k_+ k_) (k,+k_)'
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and have indicated by "perm." the terms obtained by symmetrizing or anti-

symmetrizing with respect to the arguments in the appropriate way. Note that

W(xl,x2) is symmetric in xi and x2 and that W(xl,x2,xa) is antisymmetric in

xi, x2, and x3. The 0 function is defined by,

(97)
-_(_ - y2)- _(_ - y_),

and it measures the overlap between the intervals (xi,x2) and (y_,y2). If one

interval contains the other or they are disjoint, it vanishes. If they overlap, it

is 4-1 depending on the sense of the overlap. It is simple to extract a truly

local algebra from the multilocal observables by expanding in power series in

the differences of arguments, as in the operator product expansion.

Finally, we need to show that the functions appearing on the right hand

side of eqs.(93-95) can be written in terms of the functions given in eq.(92). This

follows from elementary identities between SU(2) structure constants. We need,

, _w (_, _3)w(_,,_,) (98)_lwc_,,_)w(x2,_),2

W(xl,z2,x3,x4,xs)= 1w(_, _,)w(_, _, _,) (99)1
-_w(_,_)w(_,_,,_,),

w(_,,_,_,_,,_,_)= _w(_,,_)w(_,_)w(_,_)

+¼W(x2,xa)W(x4,xs)WCx,,x_) (100)
-_-w(_,_)w(_,,_)w(_ _)4

-'-w(_, _)w(_,, _)w(_, _).4

Using these equalities it is possible to express eqs.(93-95) as a closed algebra.

It should not be difficult to write down similar algebras for coset models based

on other groups. These algebras (like their local counterparts) take on their

complicated, nonlinear structure due to these types of reduction identities.

9 "Free Current" Realization of Parafermion Algebra

We would like to realize the classical algebras given in eq.(57) in terms of free

fields. We will do this in a two step process. First, we will realize these algebras
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in terms of a free current algebra, or affine algebra. The second step is the

well-known realization of agine Lie algebras by free fields [16, 53]: that is, we

give an explicit construction of the currents of the coset models in terms of the

currents of the ungauged WZW model. This construction is very simple, and it

opens the way for the construction of the full quantum theory [12, 13].

We want to find an explicit construction for _ in terms of fields that satisfy

simple, local commutation relations (or Poisson brackets). We mimic eq.(19) by

writing,

_(x) = Y-_(X, xo)E(z)Y(x, xo), (t01)

where V replaces U and E replaces J. V is a bilocal field valued in the subgroup

H, defined as a path ordered product, just as in eq.(20),

(/; ))Y(x, Xo) = Pcexp i dx'S(x' . (102)
0

We will require B and E to have local commutation relations. The non-locality

of eq.(57) will be entirely due to the non-locality of the Wilson line V.

It is possible to avoid path-dependent terms in the commutation relations of

the parafermions expressed in eq.(101) if we require B and E to satisfy an agine

algebra with correctly chosen central charge. We introduce the free current,

T(x) = raTa(x) ; r a E g, (103)

with the following commutation relations,

i

[Ta(x), Tb(Y)] = - 26'(x - Y)gab - _6(z -- y)Tr([r a, rb]T(x)). (104)

Define,

T(h) = Tah a , ha E h ; T(_) -=Ttr t , r I e g - h. (105)

With these currents defined, we identify,

B = _T(h) ; E = 7T(c), (106)

with the constants a, fl and 7 to be determined. Upon computing the com-

mutation relations of the parafermions defined in eq.(101), many base point

dependent terms will arise. As before, these terms vanish when projected onto

_j
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color singlet observables, and we ignore them. After some calculation we have

the result,

[_p(X), _Q(y)] "- "/20tf dxTr(Q(x)OxP(x) - i-/ f dxTr([P(x), Q(x)]¢(x))

+_ f dxdye(x - y)Tr([h_,P(x)]¢(x))Tr([h a, Q(y)]¢(y)),
(107)

with the important constraint a_ = 1. Taking a = k/2_r and _/= -2, we have

complete agreement with eq.(57). Note that the central charge of the affine

Lie algebra eq.(104) is the usual quantized value k/2_r, k E Z, as required by

unitarity. Also note that this construction can easily be extended to the model

defined in eq.(79) by employing the tensor sum of two commuting affine Lie

algebras [10].

In closing this section, we check two simple consequences of our construc-

tion. Consider the gauge invariant quantity,

O(x,y) = Tr(_b(x)g2(y)) - 4Tr(T(_)(x)V(x,y)T(_)(y)V(y,x)). (108)

In an earlier work [9], it was shown that the classical stress tensor should be

recovered from O(x,y) in the limit x --, y. This is the classical analogue of the

leading term in the operator product expansion. From eq.(101), we have,

O(x,x) _ 8 E Tl(x)Tl(x) • (109)
I E coset

Up to an overall normalization constant, this is the classical analogue of the

Sugawara construction for the coset model.

One other check is to verify that all gauge invariant observables lie in the

coset. In an operator language, they should commute with currents that belong

to the subgroup H. The classical analogue is the following relation,

{O(x,y),T(h)(Z)} = 0. (110)

This can easily be shown to hold and in a straightforward way can be generalized

to all observables O(xl, ...x,) defined in eq.(24).

10 Quantization of the Parafermionic Current Algebra

. To make a direct connection with previous work in the theory of two-dimensional

coset models, we would like to find a consistent quantum generalization of the
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classical Poisson bracket algebra derived in Section 6. Furthermore, we would

like to outline a scheme in which the known spectrum of primary fields may be

reproduced, as well as their conformal dimensions and fusion algebra.

Work in this direction has led to many interesting questions concerning

braid statistics and quasi-Hopf algebras; see ref.[12, 13] for recent progress in

this direction. The full primary field spectrum remains illusory, however. A

completion of this scheme holds many rewards, one of which I will now discuss.

In the second part of this thesis, a scheme is outlined whereby one may com-

pute the fusion algebra for the WZW model by employing symmetry properties

of the Chern-Simons Hilbert space. Another unsolved problem is the complete
extension of these methods to coset models. There exists a class of coset mod-

els, those with "fixed points," which have resisted this calculation scheme. In

fact, it appears that from this point of view these models allow some freedom

in computing the primary field spectrum. If completed, the quantization of the

parafermionic current algebra could solve this important mystery.
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Part II

The Chern-Simons Functional

and Conformal Field Theory

11 2D Conformal Field Theory and Topological Field

Theory

The axiomatic approach to 2D Conformal Field Theory, pioneered by Belavin,

et. al. [14], has led to a rich system of constraints through which we define a

rational conformal field theory (RCFT). One interesting aspect of this structure

concerns the monodromy, or braiding, constraints of the n-point functions. A

connection between these constraints and the defining relations of knot invari-

ants was noticed early on. Knot invariants are purely topological quantities

ascribed to objects living in three dimensions. A natural question then, posed

and finally solved by Witten [59]; what is the connection between RCFTs and

topological field theories?

In finding this connection, it is necessary to choose a topological, gauge

invariant action. A likely candidate, the Chern-Simons functional, had recently

been studied in detail because of its importance in the Lagrangian formulation

of the Wess-Zumino-Witten model discussed in part I of this thesis. Finding

a topological classical action, however, is not enough. In quantizing a classical

action it is necessary to prescribe a regularization scheme, which involves choos-

ing a Riemannian metric for the space-time, thus possibly ruining the general

covariance of the theory. It is necessary to show that the regularized quanti-

ties, that is, the relevant determinants, are in fact topological invariants. In the

weak-field limit of the quantum theory, we can concentrate on the path integral

about the classical field equation solutions, or in this case the flat gauge con-

nections. In thi.,_ limit, with a natural choice of regularization scheme, Schwarz

showed that the path integral gives rise to the Ray-Singer analytic torsion of the

flat connection being expanded about [48, 59]. The Ray-Singer torsion of a flat

gauge connection is a known topological invariant, and thus in the weak field
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limit the existence of a true topological quantum field theory is demonstrated.

At finite coupling, the use of quantum field theory techniques to show that

topological invaxiants exist is more subtle. Hence a large effort from both the

mathematics and physics communities has been made in putting this process

on firmer ground. Aside from bringing together researchers from these often

distant branches, a great development has been seen in the fields of integrable

models and quantum groups, as well as axiomatic topological quantum field

theory. This work has culminated in a direct connection between the existence

of a certain class of quantum groups, the "ribbon Hopf algebras," and the knot

invariants found by Witten. Thus the ambiguities of the quantum field theory

have been circumvented, or more precisely, they have been axiomatized in the

language of Hopf algebras.

The connection between the Chern-Simons quantum theory and RCFTs

appears also in the structure of the Chern-Simons Hilbert space without sources

[18, 19, 28, 41, 42] (that is, without knots present.) In the following section of

this thesis, we demonstrate that the Hilbert space of Chern-Simons theory with

space-time manifold E ® P_ (E being the two-torus and R the real line) provides

the fusion rules of the corresponding Wess-Zumino-Witten model, as well as an

efficient method of explicitly calculating the modular transformations on the

primary fields. The effect of monopole background charges is also considered in

detail. The mathematical structure is surprisingly intricate and allows a clear

geometric description.

12 The Chern-Simons Action Functional

Let M be a 3-manifold. The gauge field A, is a one-form on M taking values

in g, the Lie algebra of some semi-simple group G. The Chern-Simons action

functional is given by,

2
Acs= _ fM Tr(A AdA + -sA A A A A) (111)k 2

-- 4"-_fM daxeU_PTr(A,O_Ap + _A_,A_Ap).

The Chern-Simons functional has a number of important properties. First,

it is independent of the space-time metric. This will ensure that observable

quantities will be generally covariant. A second property concerns its gauge
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invariance. Because the homotopy group 7r3of a simple Lie group G satisfies:

lr3(G) "" Z, the set of gauge transformations is a disconnected set where each

component can be labelled by an integer m, called the winding number. The

Chern-Simons functional is invariant under gauge transformations connected to

the identity (winding number zero) and changes by,

Acs --* Acs + constant, m (112)

under a general gauge transformation. The constant depends linearly on the
normalization of the trace and on the overall constant k. We will normalize the

trace so that the constant is given by 21r. k. When computing the path integral,

the contribution exp(i. Acs) will be invariant under a genera] gauge transfor-

mation if and only if k E Z, thus providing an argument for the quantization of
k.

The Euler-Lagrange equations of motion give,

e_""F_,p=O, (113)

where F_, is the field strength tensor. In other words, the field equations are

satisfied if and only if the field strength vanishes.

13 Quantization of the Chern-Simons Action

We study the quantization of the Chern-Simons action functional restricted

to the case where the 3-manifold, M, is diffeomorphic to the product of a 2-

torus, E, and the real line. With appropriately quantized k, the action is gauge

invariant, and we choose the axial (i.e. physical) gauge At = 0 (with t defining

the coordinate along the real line in M). After integrating by parts the a_tion

_- reduces to,
k

/M d3xTr(AlO*A2) (114)I Ics = 2_r
i.

I with the constraint (the equation of motion derived from varying At,)

Ft2 = 0 = 01A2 - 02A_ + [Al,A2]. (115)

Instead of first quantizing the system and then imposing the constraints as

a projection on the Hilbert space, we will first determine classically the space of
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solutions to the constraint eq.(ll5) and quantize this simpler (finite dimensional)

space.

The constraint F_ = 0 requires that the connection be fiat. The space

of flat connections on a Riemann surface E, modulo gauge transformations, is

isomorphic to the space of maps,

¢ : _(_Z) -_ G, (116)

modulo a global gauge transformation at the base point. Here wl(E) is the

fundamental group of the manifold E. In our case E is the torus, and we can

present 7h(E) as,

r_(E) = { A,B[ABA-_B-_= 1 } (117)

We represent the generators A and B as the holonomies of the gauge field A,

about the two non-contractible loops Cx and C2 (see Figure 1) of the torus,

A = Pexp lc1Audx_, (118)
B = Pexp lc2 Audx""

In other words, the resulting classical phase space is given by the arbitrary

embedding of A and B into the group G, subject to the constraint AB = BA

and the global gauge transformation at the base point of C1 and (72. Since A and

B commute, we can use this global gauge transformation to put them both in the

maximal torus of G. Given that any two flat gauge configurations with the same

holonomies are equivalent up to gauge transformations, one can conveniently

choose gauge field representations of a given class (or holonomy) to be constant

over the torus. Also, since A and B are in the maximal torus of G one can

require that the constant gauge field A u take values in the Cartan subalgebra

of g. Thus, the path-ordered exponentials reduce to ordinary exponentials, and

SO,

A = exp lc, A_,dxu = eia(t),

B = exp lc2 Audxu = eib(t), (119)

implicitly defining a(t) and b(t) as functions of the "time" variable taking values

in the Cartan subalgebra of g.

Substituting these identifications into the functional eq.(lll), and letting

the coordinate xx define the position on the +orus along Ca, z2 the position along
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(72, we perform the integral over E. We have overlooked a possible change in

the measure associated with the Jacobian arising from the change of variables

A u to A, B. This is discussed in ref.[3, 21, 22, 28, 40, 41, 42, 59], where it is

shown that the Jacobian simply shifts the coupling k to k + c where c is the dual

Coxeter number of the Lie algebra (in our normalization we have c = N for g =

SU(N).) With this shift we have,

k+ f
Its =- 2"--_J dtTr(a(t)Otb(t)) (120)

At this point, we must choose a basis for the Cartan subalgebra of g. The

classical observables A and B are periodic under certain shifts "ina(t) and b(t).

We would like to choose a basis which gives a primitive cell with respect to this

periodicity. To ensure this, we choose the simple roots as our basis,

= b(t)= (121)

The v _ are the simple roots. Once we have chosen a basis, we can perform the

trace, where we define,

Tr(viv j) = C O, (122)

If g is simply-laced we can normalize the trace so that Cij is equal to the

Cartan matrix. If g is not simply-laced, the above trace is not proportional to

the Cartan matrix. For these algebras, C ij will be defined by eq.(122) where

the normalization is determined by requiring that Tr(vlv 1) = 2, and v 1 is a

longer root. As an example of the simply-laced case, consider G = SU(3). In

the fundamental representation we have,

(100)v1 = 0 -1 0 = r a,

0 0 0

(0 0 0 ) (123)

" v2: 0 1 0 = la-_r + _r s.
0 0 -i

And we see thatitisnaturalto scalethe traceby a factorof 2 to get the

• Cartanmatrixfromeq.(122).Note thatchoosingthesimplerootsina different
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representation would result only in a different scaling. Therefore, from this point

on we will work with the effective action,

k+_r
Its =- 2----_J dtai(t)CiJOtbj(t), (124)

where Cij is equal to the Cartan matrix for simply-laced g and given by eq.(122)

for non-simply-laced g (with the normalization prescription discussed below

eq.(122).)

The action given in eq.(124) is linear in time derivatives, and thus canonical

quantization gives the following commutation relations:

[_,bj]= _ -_-_-_(c)_j,
[ai, ai] = 0, (125)

[b_,bi]= 0.
We define the quantum operators,

Ai = ei_' , Bi = eib_. (126)

As an example, consider G = SU(3) in the fundamental representation. (The

simple roots were given above.) We have,

(a0 0 0)A= 0 A{aA2 0 , B= 0 B_IB2 0 . (127)

0 0 A_ 1 0 0 B_ 1

The commutation relations of eq.(125) imply,

AiBjA71B_X 2_i -1 .= _pC_(C )_),
A_Aj = AjA_, (128)

SiB_= BiBs.

We realize these commutation relations on a finite dimensional Hilbert

space. For simplicity of exposition, we will work out the details for G = SU(N).

For the simply-laced case, C ii is just the Cartan matrix. The column vectors of

the inverse of the Cartan matrix define the fundamental weight vectors of the

Lie algebra. We diagonalize the A i operators (they commute with each other)

and define the eigenstates,

Aig2_ = rlu'_b_, where TI = exp N(k + N) " (129)
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In this basis, the Bi operators act as raising operators along the fundamental

weight vectors. We have,

• Bi¢_ = _b_+_,, (130)

where wi are the weight vectors. 'To see this explicitly, consider the example

N=3, k=l. We have,

Al_i_ = _,_,

A2¢ij = qJ¢ij, (131)
81¢ij = ¢i+2,j+,,

B2¢ij = _+1,_+2,

r/a2= 1. (132)

If we start at the state i=O, j=O, we can raise to any state such that i + j=O

(mod 3). We call this restricted subspace the state space. Note that two states

Cii and em are equivalent if and only if i = k (mod 12) and j = l (mod 12).

In Figure 2 we have plotted these states. Note that the states (3,0) and (0,3)

lie along the simple root vectors, and the states (2,1) and (1,2) lie along the

primitive weight vectors.

Finally, we need to understand the residual gauge symmetry, Weyl invari-

ance. It is clear how the Weyl reflections act on this state space (that is, by the

usual action on the weight lattice). Vectors in this state space fall into various

Weyl orbits. For our example, the result is shown in Figure 3 We see that for

a simply-laced gauge group, the Hilbert space is,

Aw

H- (k+ c)ha L>W' (133)

•withAw theweightlattice,AR therootlatticeand W theWeyl group.Also,

I>impliesthesemi-directproduct.Notethatinthecaseofg non-simply-laced,

this expression must be altered (see ref. [28] and the note below eq.(122).) The

general result, consistent with the normalization discussed, is given by,

Aw

g = 2(k+ c)A_t>W' (134)

A_ isthe dual-rootlattice,definedby the basisvectors(_{/la{[2,albeingthe

• simpleroots.
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14 Modular Tranformations

In the variables defined in Section 13, the modular transformations act in the

following way,

T: (a, b) ---+(a, b- a), S: (a, b) ---, (b,-a). (135)

We want to show that these transformations act on the operators Ai and Bi in a

well defined, representation independent way. We start with the T transforma-

tion. For the purpose of exposition consider the case SU(3) in the fundamental

representation. Using eq.(125) we have,

T(B) - e i(b-a) -- e_[a'b]eibe-ia = RBA -1, (136)

R, A, and B are diagonal matrices in the Lie algebr& space. For a general repre-

sentation//will contain different phases along the diagonal. In the fundamental

representation, eq.(123) and eq.(127), we h&ve,

(al0 0)a -- aiu _ = 0 --al + a2 0

0 0 -a2

(bl 0 0) (137)

b= biv i= 0 -bl+b2 0 ,

o o -b2
R =I?-II.

The transformation eq.(135) can be realized with the operators Ai and Bi in the

followingway (seeeq.(128)and eq.(129),)

T(Ai) = Ai, (138)
T(Bi) - v]-IBiA71.

In Section 17 it is shown that the transform&tion given in eq.(138) is consis-

tent with eq.(136) for any representation. It is also shown how this argument

generalizes to arbitrary g.

The S transformation is simpler, and it is easy to verify that the following

transformations are consistent with eq.(135):

S(Ai)=
S(Bi) = A71. (139)
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At this point, we need to realize these gransformations on the state space.

For the purpose of exposition we restrict to the case G = SU(N). It is not difficult

to verify that these relations are satisfied by the identifications,

Ta,e = 6a,_t(u)," with t(ff)= _-_ul,TAu,.-. (140)

1 .¢/.._.
1 _18(_,_), with s(ff, _) = -_u Av, (141)= /g(k +N)

where A is the Cartan matrix of SU(N). The normalization factor in front of S

ensures that S is hermitian. It can be easily shown that S and T commute with

Weyl reflections in this state space as required by gauge invariance.

At this point, we consider the shift of the vacuum by p. (p is one-half the

sum of the positive roots (see ref.[28])). We notice that for SU(3), the number of

maximal Weyl orbits at a given level k (an orbit is maximal if its order is equal

to the order of the Weyl group) is equal to the number of primary fields in the

con'esponding conformal field theory. Also, if we shift the vacuum by p, we see

that each maximal orbit has a representative state equal to the highest weigh_

of one of the integral representations (see Figure 4). For each maximal Weyl

orbit, define a state Ca in the state space, which is an eigenstate of the Weyl

reflections corresponding to simple roots, with eigenvalue -1. We make the fol-

lowing conjecture: for a given semi-simple gauge group G, the collection of states

Ca defined above is in one-to-one correspondence with the primary fields of the

corresponding WZW model. Furthermore, when the modular transformations

S and T, defined above for the state space, are projected onto this collection of

states, the resulting transformations S', T' are equal to those calculated by Kac

[37] (see also ref.[38, 45]) for the corresponding WZW model. In Section 17 we

prove equivalence of these S matrices for the case G = SU(N) at arbitrary level
k.

15 Fusion Rules and the Verlinde Conjecture

The fusion rules of the WZW model can now be easily understood in terms of

Chern-Simons theory. We define the folowing gauge invariant operator:

On = Trn(B). (142)
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The subscript "R" labels a given representation of g, defining the representation

in which the trace is to be taken. The operators Bi act as raising operators in

the state space defined irl SectioD 13. For ali examples we have checked, the

operator On consistently projects onto the "primary field" states _b_,and gives

the correct fusion algebra. That is, let P be a representation and _bp be the

state associated '_';th that representation. 'We find that,

eR. _P -- r¢_ Q, (143)

where N_m, are the fusion coefficients. To see this explicitly, consider the case G

= SU(3). Letting _ be the fundamental representation we have,

.-x , " -' (144)OR=TrR(B)=Bx+B 1 152+ ___ .

In Figure 5 we demonstrate how this operator is used to derive the fusion rule

3®8 = 3_6 for SU(3) level 2. Note the strong similarity between this technique

and that of Walton [54].

To further motivate eq.(143) note that since the Bis comrrmte among them-

selves (see eq.(128)) OR1 • Ok = Ok •OR1. It is more difficult to show that

N0m, = NpORdirectly from eq.(143), but tim commutativity and associativity of

the NO_s indicates that they are likely candidates for the fusion coefficients.

Further, computation of N0ap via eq.(143) in many particular cases reproduces

the known restdts [31]. We see that the fusion algebra is generated by Weyl-

invariant combinations of the operators Bi. In Section 2, it was shown that the

modular transformations S maps B into A -1 and that, on the state space A is

diagonal. Thus S diagonalizes B, and subsequently S diagonalizes the fusion

algebra. This is the celebrated Verline conjecture [51, 52].

16 Background Gauge Fields end Monopoles

Having developed the quantization of Chern-Simons theory to the point where

the structure of the underlying conformal field theory emerges clearly and explic-

itly, we now generalize our construction to include classical (i.e., background)

field configurations. The notion of coupling the degrees of freedom of a confor-

iii mal model to background gauge fields is an old one [1, 2, 8, 35, 39, 50]. In this
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' section, we study Chern-Simons theory with background gauge fields, particu-

larly focusing on the twisted sectors and the modular properties of these sectors

• in the presence of a monopole.

To begin with, again consider taking the gauge At = 0 and satisfying the

flatness condition F12 = 0 on a torus with a point removed, IE. We do not

consider the holonomy around this point removed to be an additional quantum

degree of freedom but instead specify the holonolmy about the hole entirely

in terms of the classical part of the gauge field. By the monopole quantiza-

tion condition we learn that the moduli space of flat connections modulo gauge

transformations on E is again 2R-dimensional (R is the rank of G). An excellent

review of monopoles is ref.[24]. As before, a nonsingular gauge transformation

may be used to put the gauge field entirely into the Cartan subalgebra. We then

have the following decomposition:

A, = A(__}+ A(uq). (145)

Here A(_Ois the quantum fluctuation about A{__}which may have both monopole
and nontrivial holonomy about the canonical cycles of the torus (we imagine the

monopoles as having all their flux concentrated at the point removed.) Since A(__}
is a background field, it is time-independent and so, putting the decomposition

eq.(145) into the action of eq.(111), we find the Poisson bracket (and thus the

 on ut tor) A(2) asbaor
The classical holonomy pieces "twist" the theory whereas the monopole

pieces of A(__) simply Changes the modular properties of the theory. We discuss
these points in turn below.

As before, quantization consists of representing the operators ft. -- Pexp f A

as unitary operators on a vector space. Using the full A, of eq.(145) we see

that the classical holonomy pieces of A(__} correspond to choices of boundary

conditions for the vectors in the Hilbert space if viewed in terms of the operator

A = Pexp f A(q):

AiC0 = ¢0 =_ Ai¢o - 7i¢0, with 7i E U(1). (146)

Here the ft.is are, as described before, components of the full Pexpf A and

, thus correspond to transport of the Cs under A u. Along the chosen cycle (here

C!, in a two-dimensional sense, is along the "time" direction}, the individual
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A's c correspond to components of g(O)g-X(2_r), and so requiring ZN boundary

conditions for g is implemented by the _/is being nontrivial phases. Following

ref.[33], first implement the twisting along the C1 cycle and then use modular

transformations to build up the remaining shifted sectors. One may furthermore

compute the fusion rules by following the procedure described in Section 15.

It was shown in ref.[8] that the modular properties of the theory on the torus

depend on the topological type of the gauge field A(_c). One way to understand

this result heuristically is as follows: instead of concentrating the flux in a single

point, imagine spreading it out evenly over the entire torus. Then S simply

interchanges the cycles whereas T actually combines the cycles, as seen in Figure

6. The new cycle so generated (C_) is homotopically equivalent to C_1C2 but

the path ordered exponential of A u along these cycles differ due to the fact

that the triangle bounding them contains 1/2 the flux of the monopole. This

is the simple explanation of a more rigorous calculation in which one considers

arbitrary flux distributions. Thus, in the presence of a monopole background of

charge n, the T matrix of eq.(138) is modified,

7_(Ai) -" Ab T,(Bj) -- sj,,rjBjA_ _ (147)

where si,, is an additional phase that is a solution to eq.(170 of Section 17

and all other variables are as before (compare with eq.(138) of Section 14.) In

Section 17 it is shown that for SU(N)/ZN, sj,, = c¢/" where aflv = 1. As before,

in the sector without a monopole (n-0), the Tn (n _ 0) matrix may be found

by studying eq.(147) on the untwisted sector. This matrix is then also used to

study the modular properties of the twisted sectors.

Below is a brief summary of the effect of including nontrivial background

gauge fields in Chern-Simons quantum mechanics on the torus:

1. Fusion Algebra of Twisted Sector. States in the twisted sector of eq.(146)

and the untwisted sector may be fused as described in Section 15. One

finds that the twisted representations behave as phased relabellings of the

untwisted representations. The familiar example of SU(2)2/Z2 is given

below in Figure 7.
•

2. Shifted Sectors. Shifted sectors are found in the usual fashion [33] by ap-

plying modular transformations to the untwisted and twisted sectors. We

38

.......... _II' , , , IPliV' rlii ,',,,, ', r'l "' i



v

thus generate a modular covariant set of sectors. This may or may not

lead to an irreducible representation of the modular group. For exam-

ple, in SU(2)k/Z_, letting (q-,h-) represent the untwisted sector and (-,+)

represent the twisted sector, one finds using the above S and T:

T: (., +) invariant, (-, T) ¢ (-, -), (148)
S" (h', d') invariant, (-,-t-) _- (h-,-).

3. Monopoles and the Modular Properties of the Twisted Sector. Including

monopole backgrounds in the theory causes T to change. With this mod-

ified T matrix, one may find modular properties of the theory in higher

genus. Continuing with our example SU(2)k/Z2 and using the procedure

described above, we find that T1 given by eq.(147) yields,

T1 : (+, +) _ (+, -), (-, + ) invariant, (149)

and thus we see that, combined with eq.(148), the representation of the

modular group on the four "spin connections" is irreducible.

4. Monopoles and Projective Representations of the Modular Group. Al-

though the Tn of eq.(147) do satisfy (STh) a = 1 as abstract group ele-

ments on the Ais and Bis, one discovers that as matrices on the Hilbert

space constructed above (ST_) 3 -- 15(k,n). I where 5(k,n) is a phase that

depends on the level and the monopole charge. Note that 6(k,0) -- 1 V k

but that for n :_ 0 this phase is not one and cannot be removed by unitary

transformations. (Of course, trying to redefine Tn by a phase would mean

that as abstract generators S and Tn would no longer satisfy the defining

relations of the modular group.) For the example above one finds,

For g -- SU(2)k/Z2, _(k, 1) = -(-i) k. (150)

Therefore including monopole backgrounds compels one to consider only

projective representations of the modular group. This is expected for the

representation of the modular group at higher genus.

17 Three Necessary Calculations

1) Representation Dependence of Modular Transformation
m
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Recall that the modular transformation T maps,

T(B)= e½b'blBA -1. (151) '

This is a representation dependent statement, since a and b, as well as A and

B are expanded in some representation (see eq.(120) and eq.(122).) We want to

show that eq.(151) can be projected consistently onto a modular transformation

of the operators Bi. That is, we ask that there exist a consistent mapping,

T(Bi) =tiBiA7 _, (152)

for some set of phases R_ and such that eq.(151) will hold for any representation.

Let P be such a representation and let w be the j-th weight in this representation

(in some arbitrary ordering). This weight can be expanded in the weight basis

as,

w -- _ niai, (153)
i

with Ai the primitive weight vectors and ni a set of integers. Then the cor-

responding diagonal element of vi in the expansion of eq.(121) is given by the

coefficient ni. The consistency check thus reduces to a check for any given weight

in the weight lattice. Letting (T(B))j correspond to the j-th diagonal element

of T(B), we require,

(T(B))_ = II(T(Bi))"'. (154)
i

Inserting eq.(151) and eq.(152), we have,

(e½[a'b])j(B)j(A-1)j = rI(riBiA:,')"'. (155)
i

Which can be further expanded to,

e½['a'"'b'] l'I B_" rx AT"' = II r'_' I'I(BiAT')"'. (156)

On the right side, we can commute the Bi factors through to the left by using the

commutation relations of eq.(128). Also, the commutator on the left side can be

computed using eq.(125). When this is done, the operator content is identical
Y

on both sides of the equation and so we need compare only the resulting phases.

Equality demands,
4

= 1-I IIZ II z (157)
i i i<j

i ,o
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• where we have defined,

( 27ri _ (158)
l_ = exp \k + c] "

We can satisfy eq.(157) for arbitrary integers ni, and therefore arbitrary repre-

sentations, simply by letting,

ri = fl-½(z-'),,. (159)

2) Equivalence of Modular Transformation S from Chern-Simons Theory with

Kac Formula for SU(N) Models

We prove that the formalism outlined in Sections 13 and 14 correctly gen-

erates the modular tansformation S for the case G = SU(N), level k. We start

by defining a map ¢ from the root-space of g into an N-dimensional vector space
V.

¢" (_i -' _i - rli+l , (160)

where the alS are the N-1 simple roots, a faithful basis of the root-space. In V,

the action of the Weyl group is simply permutation of coefficients of the vector.

To see this simply consider the action of the Weyl reflections corresponding to

simple roots acting on this basis,

-ai; i = j

Wi(aj) = (_j - Ajic_i = a, + ai; li - Jl = 1 . (161)

ai; [i - Jl > 1

In V, W_ acts by permuting the ith and i + 1st coefficients. Consistency is easily

checked. Let (I)be the realization of ¢ in the simple-root basis. Define the matrix

K,

K - OA-', (162)

whereA istheCartanmatrixforSU(N).At thispoint,we notethatthematrix

K isexactlythemappingappearingintheformulaofKac [37]fortheS matrixof

SU(N),takingtheDynkin coefficients(a,,...,aN-,)intothevector(¢,,...,eH-,)

with the appropriate shift p - (1,..., 1).

Our prescription for S outlined in Sections 13 and 14 gives,

• = (163)
_J
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where 97N(kq'N) --- 1; w is summed over the Weyl group; and sign(w) is +1 (-

1) if w is expressible as an even (odd) product of simple-root Weyl reflections•

Note also that u,v are vectors in the root basis, not in the weight basis. After

changing basis, employing eq.(162), and noting that w acts by a permutation

matrix in the correct basis (defined above), we can write,

27ri .T-p.-. 1

This expression involves a sum over permutations. With the correct signs ob-

served, this is simply a determinant. We have,

&,b = det(M), (165)

where M is given by,"

2ri k ¢i(a)¢j(b) } . (166)M(a, b)i_ exp l N +

This is the Kac formula [36, 37].

3) Representation Independent Computation of Tn

We show that for the T, of eq.(147) which represents the action of the T

transformation on the Ai and Bis in the presence of a monopole charge n, the

si,, are independent of the representation chosen for the monopole field.

Whatever representation one chooses for the monopole background, one

knows that T_ is still a diagonal matrix on the Hilbert space and that, as de-

scribed in the text, T, can, at most, pick up an additional phase si,_. Further-

more, whatever representation one chooses for the monopole, the resulting Tn

matrix must be gauge invariant. We have found that in some cases the im-

position of gauge invariance is also a sufficient condition to ascertain all the

monopole contributions to the theory. In our construction we have locally fixed

the gauge but_ as described in the text, one must impose gauge invariance with

repect to large gauge transformations, i.e., the Weyl transformations. Thus one

requires,

w-lT_w = Tn _/ w E W, (167)

where W is the Weyl group. Recall that, in any representation Pexp f A will

have components of the form Iii Ad_ where the dis are the dynkin indices of
d
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• the particular representation and Ais are, for example, as in eq.(126). We now

study the individual Ais (and Bis) abstractly without reference to any particular

• representation and see for example how they transform under T_ and W. In

genera], then,

T,,(Ai) - Ai T,,(Bi) = tiBiA7 x, (168)

where the ri, 1 <_ i <_rank(G) are some phases. For the Weyl reflection about

the plane orthogonal to the lth root we have,

wt(Aj) - Aj for j y: l and

wt(At) - Az YI_A_,c_' , (169)

as well as a similar equation for the Bis under wl. Note that the necessary

condition (wl) 2 = I follows from C_ = 2 V m.

Now we simply use eq.(16S) and eq.(169) in eq.(167) and ask what the list

of acceptable rjs is. We find that gauge invariance of T, (eq.(167)) implies the

following general condition on the rjs,

1-I (iJ ½clcl -- 1 v l, (170)\ ]J i,j

where (ii are phases defined by,

AiBjA:, :Bj 1 = (0. (171)

For example, for SU(N) using eq.(157) as a starting point,

rj = sj.,,f1-½(c-_bi, (172)

where the sj,n represent additional phases due to the presence of the monopole.

Then, using eq.(172) in eq.(170) we find that all k-dependence cancels and one

has,
_C m

s/"2 1-I s,,, = 1 vi, (173)
inel

where we have suppressed the n index (same for all the sis above.) For SU(N)

eq.(173) readily admits the solution Sj,, = a j= where a is a primitive N th root

of unity.
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18 Figures
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Figure5--thefusionrule 3XS=6+3isdemonstrated. Startingat
each stateinthe orbitof the 8 representation,we operatewith Tr(B)

in the 3 representation.Taking intoaccountrelevantsigncancellations
i

onlythe statesof the 6 and 3 orbitsremain.

I 45

ii , ,i , , i i, NI ' ' r I_



CI

Figure6
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O'X S = S'fora11S (note(S')'= S)
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Figure7 -- InG = SU(2)thereisone twistedsector.The com-

binedfusionrulesare shown. These can be derivedby defining
the Verlindeoperatorsof the primed fieldsas Tr(B),where the

traceistaken inthe spin2,5/2 and 3 representationsfor

states I',112'and 0°respectively.
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