LBL"“33185

Understanding Conformal Field Theory through
Parafermions and Chern Simons Theory

Scott A. Hotes
Ph.D. Thesis

Department of Physics
University of California

and
Physics Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

November 1992

MASTER

This work was supported in part by the National Science Foundation under grant PHY90-21139 and by the
Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy
Physics, of the U.S. Department of Energy under Contract No. DE-AC03-765F0(058.

S

DISTRIBUTION OF THIS DOCUIAMENT IS LING (AT

N




November 19, 1992 LBL-33186
UCB-PTH-92/40

Understanding Conformal Field Theory through
Parafermions and Chern Simons Theory *

Scott A. Hotes

Department of Physics
University of California
and
Theoretical Physics Group
Physics Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

Abstract

Conformal field theories comprise a vast class of exactly solvable two
dimensional quantum field theories. Conformal theories with an enlarged
symmetry group, the current algebra symmetry, are a key ingredient to
possible string compactification models. The following work explores a
Lagrangian approach to these theories.

In the first part of this thesis, a large class of conformal theories, the
so-called coset models, are derived semi-classically from a gauged version
of the Wess-Zumino-Witten functional. A non-local field transformation
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to the parafermionic field description is employed in the quantization pro-
cedure. Classically, these parafermionic fields satisfy non-trivial Poisson
brackets, providing insight into the fractional spin nature of the confor-
mal theory. The W-algebra symmetry is shown to appear naturally in
this approach.

In the second part of this thesis, the connection between the fusion
algebra structure of Wess-Zumino-Witten models and the quantization
of the Chern-Simons action on the torus is made explicit. The modular
properties of the conformal model are also derived in this context, giv-
ing a natural demonstration of the Verlinde conjecture. The effects of
background gauge fields and monopoles are also discussed.
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1 Introduction

The central mathematical apparatus employed in describing modern particle
physics is the quantum field theory “QFT.” As an axiomatic system, QFT is
laden with ambiguities. Even in its linearized, or perturbative form, unitarily
inequivalent canonical coordinates exist, renormalization procedures must be
prescribed, and often the resulting series is only asymptotic. From this view-
point, we have barely scratched the surface of the richness inherent in the full
non-linear field theory consistently combined with the quantum theory.

The complexities of a full non-linear theory can be observed at the classical
level as well. A relevant example of such a theory is Einstein’s theory of general
relativity. Taken perturbatively, this theory correctly describes large scale phe-
nomena such as the perihelion advance of Mercury, overcoming the shortcomings
of Newton'’s theory of gravity. Taken as a full non-linear theory, however, ex-
act solutions exist only for trivial systems, and very little is known concerning
solutions to the Cauchy problem with non-trivial energy-momentum tensor.

In the last two decades, much attempt has been made at probing the inher-
ent non-linear, or nonperturbative effects of a given QFT. In 1984, in the pio-
neering work of Belevin, et al. [14], a large class of non-trivial QFTs was shown
to be completely solvable. These theories were a subclass of two-dimensional
QFTs carrying a conformal symmetry. These theories were solvable in the sense
that all field operators could be characterized, and in principle the correlators
of these fields were finite and could be computed exactly. Thus began the age
of conformal field theory “CFT.”

Besides being an important class of solvable QFTs, conformal field theories
arise naturally in string theory and the critical behavior of statistical systems.
For this reason understanding the structure of CFTs and possibly classifying
the space of rational CFTs (rationality is a technical point, implying a finite set
of primary fields) has become a major endeavor of modern particle theorists.

An important class of conformal field theories, carrying an enlarged sym-
metry group, the current algebra symmetry, plays a key role in string compact-
ification models. These conformal models have been shown by Witten [58] to
be derived from a sigma model type Lagrangian, containing a topological Wess-
Zumino term. These are the Wess-Zumino-Witten (or WZW) models. Gauging



the WZW action gives a wide class of conformal models, the so-called coset mod-
els. This follows a long history beginning with Witten’s work on the skyrmion
model [57].

The conformal symmetry group in two dimensions gives rise tc an infinite
dimensional algebra, the Virasoro algebra, admitting a non-trivial central ele-
ment. Thus, the Hilbert space of a CI'T can be defined by its decomposition
under this algebra. The Hilbert space of a WZW model can further be decom-
posed under the action of the current algebra symmetry; this algebra, is described
as the semi-direct product of the Virasoro algebra with the corresponding affine
Lie algebra. This characterization also provides a simple description of the op-
erator product expansions of the field variables. Classifying the allowable fusion
algebras by employing general consistency requirements is one intriguing classi-
fication scheme under investigation [20].

The following work can be divided into two parts. The first is a thorough
investigation of the WZW action functional and its application to conformal
field theories. The construction of the WZW model is described, followed by a
description of the gauging prescription. The parafermionic fields are introduced,
and their classical Poisson bracket relations are investigated. A semi-classical
treatment of these relations is shown to be consistent with known relations of
the coset models. Finally, the recently discovered W-algebra symmetry is shown
to arise naturally in this approach.

The second part of this thesis concerns the fascinating connection between
the WZW models and the quantization of a three-dimensional “topological”
(topological in the sense that the action is independent of the spacetime metric)
action functional called the Chern-Simons action. Although much of the infor-
mation of the conformal model is not explicitly present (eg. descendent field
structure, correlation functions, etc.), the Chern-Simons theory gives a simple
description of the fusion algebra, leading to a new demonstration of the Verlinde
conjecture (that the modular transformation S : 7 — —1/7 diagonalizes the fu-
sion rules). Finally, the Chern-Simons view is considered in solving some open
questions concerning the existence and uniqueness of coset models containing
so-called fixed points.

The original work embodied in this thesis has appeared previously in three
published articles. The work on the non-abelian gauged WZW model and the
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observance of the W-algebra symmetry was co-authored by my advisor K. Bar-
dakci, my fellow graduate student, Michael Crescimanno, and myself [10, 11].
The work on Chern-Simons theory was co-authored by Michael Crescimanno

and myself [23]. I would like to thank them for allowing me to reproduce these
results in thesis form.
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Part 1

Parafermions and Conformal
Field Theory

2 Lagrangian Models in Conformal Field Theories

The first constructions of conformally invariant field theories were algebraic in
nature [7, 14, 30, 34, 49]. If these models are to be useful in constructing physical
models it is desirable that they be given a classical or Lagrangian foundation.
One obvious example of this is in the application of conformal field theories to
string compactification models. In a seminal paper [58] Witten showed that
the quantization of the Wess-Zumino-Witten (WZW) Lagrangian gives rise to a
conformally invariant theory, correctly implementing the Sugawara construction
and the underlying affine current algebra. The coset constructions, which can be
thought of as a generalization of the Sugawara constructions, were then shown
to follow from a “gauged” version of the WZW Lagrangian. In fact, the gauged
field is not dynamical, but acts as a Lagrange multiplier to project out the
currents belonging to a particular subalgebra.

In the non-gauged WZW model it is convenient to formulate the model in
terms of conserved currents. As a consequence of conformal invariance in two
dimensions there exists two sets of conserved currents. In light-cone coordinates,
we have one set of conserved currents independent of the x coordinate and one
set independent of the z_ coordinate. The connection to CFT is made when a
careful analysis reveals that these currents form a representation of the affine
Lie algebra corresponding to the group in which the classical field takes its val-
ues. When constructed in the gauged WZW model, these local currents will be
gauge dependent, and therefore only covariantly conserved. The fundamental
idea of the following work is to construct a new set of gauge invariant currents
by attaching Wilson lines to the original gauge dependent currents. These new
currents are gauge invariant as well as conserved classically, at the cost of being
non-local. We will call these new currents the “classical parafermionic currents”
in that they are reminiscent of the parafermionic fields introduced by Zamolod-
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chikov [61].

To construct the quantum theory in terms of the parafermionic currents, the
commutation relations between them must be computed. Because the currents
are non-local, equal-time commutation relations are ill-defined. Instead we first
compute the classical Poisson brackets of the parafermionic currents, which are
the classical analogue of the operator product expansion. For abelian coset
models (that is, the gauged subalgebra is abelian) the resulting Poisson bracket
is quite simple, although the calculation is somewhat laborious. For non-abelian
cosets however, a number of difficulties arise. Because of complicated base point
contributions, the Possion brackets do not close for non-abelian cosets. These
base point contributions are gauge artifacts, and we show that the PBs close
among gauge invariant currents (color singlets). Also in the non-ablian coset
models, an interesting problem concerning the independence of axial and gauge
transformations is addressed.

The fact that the Possion bracket closes for color singlet products of cur-
rents, but not for the individual parafermionic currents, gives rise to an interest-
ing interpretation. These color singlet composite fields are the classical analogue
of the primary fields. In this sense, the parafermionic currents are analogous to
“quark” fields and the primary fields are the composite fields formed from the
“quarks”. In computing the Poisson bracket of primary fields from that of its
constituent “quark” fields, it is observed that the base point dependent terms
cancel. It is natural then to consider the Poisson algebra of the “quark” fields
without the base point dependent terms. This algebra can be considered to be
the generating algebra of the Poisson algebra of the primary fields. Because the
base point dependent terms have been dropped, this algebra no longer satis-
fies the Jacobi identity; that is, the algebra is no longer associative. (The loss
of associativity is true only for non-abelian cosets). In a natural way then, we
have seen how non-associative algebras may play a role in conformal field theory.
Compare this to the quasi-Hopf algebra structure of conformal field theory, in
which the tensor product operation on algebra representations is non-associative
[27].

Certain conformal field theories derived from the coset construction are
known to carry an enlarged symmetry algebra called a W algebra (4, 5, 15, 29, 55,
56, 60]. The W algebra can be viewed as a natural generalization of the Virasoro

T "o " 0 [T '} " DR [ I AR TE



algebra. It is not surprising then that the classical limit of the W algebra can
be derived from the Poisson algebra discussed above. We demonstrate this
connection, and introduce a natural generalization of these classical W algebras
by considering the Poisson algebra of multilocal fields.

After developing these classical Poisson algebras, we present a realization of
the parafermion fields which we call the free current construction. For abelian
coset models, the realization in free fields has been known for some time [16, 53].
The free current construction is a generalization of this construction in which
the free fields are replaced by currents satisfying the affine Lie algebra. This
structure can be inferred by thinking of the Wilson lines attached to the local
currents as path ordered exponentials of free fields.

The free current construction suggests a natural method of quantization.
We wish to replace the classical free currents satisfying the affine Possion bracket
algebra by operators which satisfy the corresponding commutator algebra. This
process leads to difficult problems concerning operator renormalization. As a
conclusion we discuss some of the many open questions remaining concerning
the full quantum theory.

3 Review of the Wess-Zumino-Witten Model

We begin with the Wess-Zumino-Wiiten action,

k k
Twzw = 4 / d’zTr(d497'0-g) + o / d*zTr(g 0,997 '0-g97 029) (1)

where z4 = To+ 1,0+ = %(80 + 01), g(x) is a field defined over some two-
manifold taking values in a Lie group G, and the trace is taken in some represen-
tation of g, the Lie algebra of G. We normalize the trace so that T'r(7°71%) = 26%.
In computing the second integral, we treat the two dimensional space-time man-
ifold as the boundary of a three-sphere, extending the field g(x) smoothly. The
field g(x) may be extended in topologically distinct ways. The space of topo-
logical classes of smooth extensions of the field g(x) is isomorphic to Z, the
integers, and thus a given extension may be labelled by an integral winding
number [25, 26]. The coefficient of the Chern-Simons term has been chosen so
that under a change of winding number 1, the action changes by a factor of 2nk,
and thus the contribution to the path integral is unchanged if and only if k is
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an integer. Therefore, for the path integral to be well-defined, it is necessary
that k satisfy the quantization condition k¥ € Z. The constraint leading to the
coeflicient of the first term concerns the anticipated equations of motion and is
discussed next.

The variation of Iwzw is a local functional of the two-manifold. In fact,
under g — g + 6g we have,

k k
Slwzw = é;/dzmTr(g"l6g8“(g"13“g)) - é—;/damTr(g'lége“" “(g'l&,g)).

(2)
Thus the variational equations are given by,
k -
—0-(97'0+9) = 0. (3)
Defining the currents,
Lotk o .tk 1
J+ =97 0495 j-=——(0-9)g7", (4)
gives the desired result,
d_jy =0. (5)
Note that the following identity (which holds for arbitrary field g(x)),
O4j-+0-jy =0, (6)
along with the above equation of motion gives rise to the partner,
8+j_ = 0. (7)

We will see how these equations are modified in the gauged Wess-Zumino-Witten
model.

4 The Gauged Wess-Zumino-Witten Model

We would like to add a term to the WZW action that will remove components
of the currents corresponding to some subgroup H C G. To this end, we will
introduce a gauge field A, that will act as a non-dynamical Lagrange multiplier.

We have,
k ) -1 .
I=Iwzw+ o /d'z:cTr(zA.,.a_gg '—iA_g7'0,9— AtgA_g '+ ArAL). (8)
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Note that the last verm has been added to ensure that the entire action is gauge
invariant, that is, that the action is invariant under the transformation:

g(z) — B Y(z)g(z)B(z), ©)
Aufz) — B ' z)Au(z)B(z)+iB~'(2)9,B(z),

B(x) € G. The currents generating these transformations are the covariant ver-
sions of the currents of the WZW model,

ik _ ik _
Jy=—g"'Dig; J.=——(D-g)g™". (10)

Where the covariant derivative D, is defined by,

D,g(z) = dug(z) — i[A.(z),9(z)]. (11)

Invariance of the action under an arbitrary variation of A, and A_ gives the
desired constraint equations:

Tr(h®J,) =0 = Tr(h*J.) Yh*eh. (12)

Where h is the Lie algebra of H (a subalgebra of g). These equations may be
inverted, providing a description of the Lagrange multiplier A(z) in terms of the
dynamical field g(z):

A% = §[1— MI3! Tr(g=8,gh"),
Ab = 3 Tr(8-gg7'h%) [1 - M]3, (13)
My, = 3 Tr(h®g'hbg).

Where 1 is the identity matrix.

The variation of the action under the change ¢ — &g is given by,
R k
6 = = / F2Tr(g™89(D-J; — ZF)). (14)
Where the field strength F' is defined by,
F=0,A.—-0-Ay —i[A4,A). (15)

Since the gauge field A(z) takes values only in the subalgebra h, the same must
be true for F'(z). From eq.(12), we see that the covariant current J, takes values
in the coset g - h and therefore so does the expression D_J,. Thus, asking that

8
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the variation of I vanishes implies the separate cancellation of F and D_J,. We

have,
D+J_ = 0,
16
F=0. (16)

Similar to the ungauged model, we have the following general identity,
k
DyJ_+gD_Jig7' = ";(F —-gFg™). (17)
Which gives rise to the equation of motion,

DiJ_=0. (18)

5 The Parafermionic Currents

In order to simplify the quantization procedure, we would like to characterize
the observable quantities of the theory in terms of chirally conserved currents.
We may expect also that these currents take values only in the coset g - h, and
not in the subalgebra h. To this end, we introduce the parafermionic currents,

Yulz,z0) = U~ (2, 20)JU(z, 20), (19)

with, .
U(z,zo) = Poexp (z[ d:L'LA“(a:')) . (20)

To
Pc represents “path ordering” the exponential along a curve C which connects
the base point o to z. In constructing Poisson brackets, we will identify z,

with the time coordinate and . with a space coordinate. We will concentrate
on the space component of 1, and define,

¥(z) = Y- (z) = U™ (2, 20)J-(2)U (2, z0), (21)

where the integration of the path ordered exponentials is carried out at fixed
time (z4). Note that U(x,y) satisfies the following important properties,

I Uz,y)U(y,2) =U(z,2),
11 8U(z,y) =iA_(2)U(z,y) ; 8,U(z,y) = —iU(z,y)A-(y), (22)
III 8U(z,y) = [; dz2U(z,z) 10, A_(2)U(2,y),

e [ N T A 1] [ T TR
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where in the last identity, t refers to the time coordinate, and z,y and 2 refer
to space coordinates.

From the equations of motion (eq.(12)) and the fact that v is the conju-
gation of a coset valued current by an element of the subgroup H, we have the
desired properties,

Tr(h%p)=0 V heeh,

04 = 0. (23)

Physical observables are not dependent on the base point 9. A complete
set of such variables constructed from the local parafermions is given by the
following set of “multilocal” observables,

O(z1,T2, .y n) = Tr((z1)Y(z2) - - - Y(zy))
= (—1)"Tr(J-(z1)U(z1,z2)J-(22) - - - J(zn)U(z 1, T1))-

(24)
The term “multilocal” is used in the following sense: the local parafermion has
a non-abelian tail, analogous to the Dirac tail of the electromagnetic monopole.
When we “tie” these tails together in a gauge invariant manner, as shown
above, we remove this non-local dependence. If we were to reinstate the full
two-dimensional freedom of these objects, we would find that non-overlapping
observables O; and O, would satisfy Bose statistics with respect to one another.

Truly local observables can also be extracted from these observables by
letting the space variables approach each other and expanding in the differences
(z; — z;). When we quantize, this procedure will give us the operator product
expansion, the coeffiecients of this expansion being identified as the primary
fields. In analogy to the quark model, the parafermionic currents are treated as
the building blocks of the physical observables.

6 The Poisson Bracket of the Parafermionic Currents

In order to quantize the theory, treating the parafermionic currents as local
observables, we will need to first compute their classical Poisson bracket. The
details of this calculation for the case of abelian cosets is given in ref. [9].

In the case of non-abelian cosets (that is, the subgroup H is non-abelian),
two important complications arise. The first concerns base-point dependent

10
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terms. These terms result in complicated expressions for the Poisson bracket
of the parafermionic currents, which detract from a clear understanding of the
algebraic structure. Observable quantities should be independent of the base-
point and, in retrospect, the base-point dependent terms can be dropped in the
intermediate calculation. When these terms are dropped, the resulting Poisson
algebra for the parafermionic currents is non-associative, associativity being
restored only after projecting onto the “multilocal” observables discussed earlier.
The second difficulty concerns the linear independence of the components of the
field strength tensor on shell. This technical matter can be considered from a
purely group theoretic viewpoint and is considered below.

We begin by reviewing the computation of Poisson brackets for Lagrangians
linear in time derivatives of the field variable. Let,

dg; |
I= / dtAi(9) 2. (25)
The variation of I is given by,
_ . 9%
61 = [ dtoeiF; =22, (26)
with, 'y
et b}
LA Ty T 27)
In terms of the variation 6¢;, the Poisson bracket is given by,
{601,605} = (F71)i;. (28)
More generally, the following variation in the action,
, d
5T = [ sV En($) WS, (29)
gives the Poisson bracket,
{Vi, W} = (B™");. (30)

If the tensor E is not invertible, constraints must be imposed on the dynamical
fields. For our action (eq.(8)), invertibility is achieved through gauge fixing. The
detailed form of this constraint is not important here since we will be dealing

11
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only with gauge invariant quantities (up to surface terms at the base point). For
example, we will write,

£(&) = U™ (2, 20)g(«)U (=, zo), (31)
giving, "
$=—0-Nf (32)

At this point, we need to rewrite the variation of the action in a convenient
form and one which will involve only gauge invariant quantities. During the
following calculation, the gauge field A, and the corresponding field strength
tensor F, will be treated as functions of g(z) (see eq.(13) and eq.(15).) Define
the following variation,

: _ _ oo
s=5- M} Tr(g " 6gh%). (33)

Note that As is simply A, with O,g replaced by 6g. Recalling our earlier
expression for the variation of the action (eq.(14)), we can rewrite the second
term in the following way,

Tr(g~'6gF) = —i Tr(As(F — gFg™")). (34)

The identity given in eq.(17), along with the fact that the currents J; and J_
take values only in the coset, gives,

Tr(g™'6gF) = %Tr(g"[As,g]D—h)- (35)
We have then,
51 = o [ @aTr(g™ (59 — ilAs, ) O — ilA-,)g™Osg — ilAs, D). (36)
At this point we make the following gauge transformation,
9(z) = f(z) = U} (z,z0)g(z)U(z, zo), (37)
with U(z, zo) defined in eq.(20). Defining,

H(z) = — [*d2'U(z0,2")F(z")U(z’, z0),

H,s(m) = _f:n d(l}’U((Bo,.’B')F,s(.‘l:')U(:E',mo). (38)

12
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Where Fs(z) is derived from F(z) by replacing 9,g(z) with 6g(z). The variation
of the action can be rewritten,

§I = 2—’;- f PzTr{f (8 — i[Hs, f)O-(f71 (04 f —i[H:, f)).  (39)
This variation takes the form of eq.(29). Defining,
R = fY(04f —i[Hs, f]) = Ra7®; T € g —h, (40)

we have the Poisson bracket,

{Ra(2), Bo(y)} = —5-base(® — v), (41)
where ¢(z — y) is defined by,
_ +1 z>y
e(m—-y)_{_l r<y (42)

Consider the axial transformation,

8g = --;-[h“, g]+60%; h® € h. (43)
(Here [, ]+ refers to the anti-commutator.) Using eq.(8) and ;eq.(17), we have,
k g a a
61=2= / Pz Tr(h*F)60°, (44)
which gives the Poisson bracket,
T
{60°%(z), F*(y)} = £oab(x — ¥). (45)

These two Poisson brackets (eq.(41) and eq.(45)) will, after some algebraic ma-
nipulation, provide us with the Poisson bracket of the parafermionic currents.

Following Witten [58], we work with an index free notation by defining,
vp = / dzTr(P(2)8%(z)), P(z) € g —h. (46)
Using eqs.(32,40), we can rewrite p as,

Yp =% [deTr(P(e)fO-(f761)f)
= —% [ deTr(f16f0-(f 7 Pf)) (47)
= —k [ deTr(RO_(f*Pf) +if~'[Hs, flo-(f ' Pf)),

13
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We can break up the Poisson bracket of the parafermionic currents into two
parts,

{¥p(2),vo(y)} =B+, (48)

where we have defined,

= & [ dudy{Tr(R(z)0_(f~Pf)), Tr(R)-(FQf))},
v = =5 [ dedy{Tr((R+ if~[Hs, f1)0-(f~*PS)], (49)
Trlif~[Hs, f]0-(f71QN]}.

Using eq.(41) we can readily compute 3, we have,

B

— 4 S e e g—h J dzdy(O-(fPf))a(8-(F72QS))o{ R*(z), R*(y)}
— 2 S aeg-h S dz(fIP)ad-(f'Qf)a
= Z [dzTr(f7'Qf)0- f~1Pf))
—& T heen [ dzTr(he f1Q f)Tr(h*0-(f*Pf))
= 2t [ deTr(QO-P) + 2i [ dzTr([P,QlY)
—E S heen S dzTr(R* f1Qf)Tr(h*0-(f-1 Pf)).

(50)
To compute ~y, we rewrite the left-hand side of the Poisson bracket as,

Trl(f461 - £ [Hs, /O-(FPS)]. 5

Employing the equality,

Hs(z) = U™ (z,20) As(z)U(z, To) + iUz, 20)8U (z, xo), (52)

we have the following expression for the left hand side of 4 under the axial
transformation of eq.(43),

Trl(f~16f - §f 7' [Hs, ))O-(f*Pf)] = Tr(~(3f[f,UhU]+d0O"

~ 4 U, ] - U AU, ). )

The last two terms of this expression have a relative sign opposite of the two
terms of the right hand side of 4. This relative sign, after antisymmetrizing,
results in cancellation. This leaves,

y= —5 [ dedy{Tr(~4f[f,U"*h*U)4d0%0_(f~'Pf)),

Tr(-iHsd_(f7Qf) — LHsly, Q))}. (54)

14
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We require the Poisson bracket of d®® with HZ, which follows from eq.(45), we
have,

{d6°(x), Hy(w)} = - Tr(U™ KUR)e(x ~ ). (55)

Combining these gives, after some algebraic manipulation,

v= & Theen S dzTr(h*fQf)Tr(h*d-(f7 Pf))

56
+ 2 Chaen J dedyTr([h®, Plp)e(x — y)Tr([h%, Qb). (56)
The first term cancels with the third term of 3, and finally,

+3% Thoen [ dedyTr([h?, Plp)e(z — y)Tr([h%, Q).
7 The Poisson Algebra and Multilocal Observables

The Poisson algebra of the Parafermionic currents derived in the previous section
is remarkably simple, considering the lengthy derivation. In this section, we will
consider the structure of this algebra and its extension to multilocal observables.

The Poisson algebra presented in eq.(57) should satisfy the Jacobi identity,

> {¥r (1), ¥rs(22)}, ¥y (23)} =0, (58)

cyclic
the sum being taken over cyclic permutations of the three currents. This follows
from the fact that the Jacobi identity is preserved under canonical transforma-
tions. Under direct calculation, however, we find that the identity is not satisfied
in general for the case of non-abelian subgroup H. The error in our calculation
can be traced back to the derivation of eq.(45) from eq.(44). This step is valid if
and only if the components of F' are linearly independent, that is, only if there

- is no linear constraint of the form,

S F*(z)Ca(g(z)) = 0. (59)

Note that C, may depend on g(z) but not 8:g(z). If such relations exist, we
have a constrained system, and the right hand side of eq. (45) must be modified
to,

{d0*(a), F*(y)} = 76(z — y) P*, (60)

15
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where P is the projection of the unit operator §° in the subspace orthogonal
to the constraints. The existence of such a constraint can be seen from a purely
group theoretical point of view. In addition to the axial transformations of
eq.(43), consider the infinitesimal vector (gauge) transformations,

)
bvg = —5[h®, gldx". (61)

The existence of a linear relation between éy ¢ and §,49 would imply that a certain
linear combination of axial transformations is equivalent to a gauge transforma-
tion, which leaves the action unchanged. Since d© is arbitrary, this implies a
linear relation on F of the form eq.(59). If h is the Cartan subalgebra of g then
no such relations exist, and eq.(45) is unchanged. This can be proved simply by
diagonalizing h and writing out such a linear relation on components. However,
if h is non-abelian the situation is quite different. We consider the case: G =
SU(2) ® SU(2), and H = SU(2) (diagonal subgroup). If we take SU(2) in the

fundamental representation, we can parameterize (g1, g2) in the following way,

g1 = agly +1d - &1 ; g2 = bola +1b - F2,

with (ao)? + (@)% = 1; (bo)* + (B =1. (62)

Here o represents the Pauli matrices and I the unit matrix. In this notation,
we can parameterize the subalgebra h by,

h=h (814+8); h € h. (63)
The desired linear relation is given by,

(91 ® g2, 72 - (64 +5"22]+ = [g1 ® g2, + (F1 + 52)],

R = &3(?_3. C = 9_96—&95 (64)
jaxs| |a@xb|

It follows that,

3 apa
a:lnF ‘“07

{d0°(z), F¥(y)} = £8(z — y)(6* — n°n®). (65)

The existence of linear relations of this type, in many cases, follow from simple
counting arguments. For example, consider the coset SU(5)/SU(4). The dimen-
sion of SU(5) is 24, while for generic g the rank of §4 and év are 15 and 12
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respectively. Since 15 + 12 > 24, linear relations must exist. It is not true that
such degeneracies exist for all non-abelian cosets; however, they were found in
most of the cases we studied.

The modification of the Poisson bracket of dO and F' changes the computa-
tion of the Poisson bracket of the parafermionc in a subtle way. This modification
tells us that a subset of chiral transformations is made up of gauge transforma-
tions, and we are instructed to project out these variations in the Poisson bracket
relations. Such a projection is unnecessary when computing Poisson brackets
between gauge invariant quantities. For example, both R and Hj are formally
gauge-invariant. When we co.npute the Poisson bracket of R and Hs with F,
we isolate the part of R and Hjs corresponding to chiral variations d©. However,
if those chiral variations are along a gauge direction, then the corresponding
variation of R and Hj is zero by gauge invariance. This would seem to indicate
that the naive calculation based on eq.(45) was correct. However R,Hs and 3
are not completely gauge invariant; rather, there is gauge dependence at the
base point z5. When computing the Poisson bracket, base point contributions
arise that depend on the projection operator P of eq.(60). We do not compute
these extra terms explicitly, however, since the advantage of working solely with
the one-body s is lost.

We can avoid these complications by recalling that ultimately we are inter-
ested only in the truly gauge invariant observables of eq.(24). In computing the
Poisson bracket of two such observables, the base point contributions cancel. It
follows that although eq.(57) is not correct as it stands for non-abelian cosets,
it is still perfectly all right to use it as an intermediate step in computing the
Poisson bracket of gauge invariant quantities, such as those given in eq.(24).

To conclude this section, we verify that the Jacobi identity is satisfied for
the multilocal observables defined in eq.(24). When we substitute the Poisson
bracket of eq.(57) into eq.(58), we get an expansion in k', where 7 takes values
in the set, z € {—~2,—1,0,1,2}. It is not difficult to show that all these terms
cancel, with the exception of : = 0 and 7 = -2. The term independent of k
(i = 0) has two contributions: one term where the k-independent term of the
Poisson bracket is used twice and one where the non-local term proportional to
¢(xz — y) is in the inner Poison bracket and the “central charge” term is in the
outer Poisson bracket. These terms combine to give a restatement of the Jacobi
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identity for the underlying semi-simple Lie algebra, and in this manner give a
non-trivial restriction on the coefficients of the Poisson bracket of eq.(57). If we
label the coefficients of the three terms of eq.(57) as a,b and c respectively, this
restriction takes the form,

4ac = —b, (66)

which is indeed satisfied. Letting this expression fix c in terms of a and b, we can
arbitrarily scale the parafermions 1 to fix b. This leaves an overall normalization
constant for the right hand side of the Poisson algebra. We now concentrate on
the leading term (¢ = -2) and work with the truncated algebra,

{¥r(2),o(v)} = [ dedye(@ —y) L Tr(P(@)h*, $(@)Tr(Q)[A pW)),

(67)
the sum being carried out over the subalgebra h. With O(z) = O(x1,z2,...,Tn)
defined in eq.(24), we wish to show that,

g {{01(=), 02(y)}, Os(2)} = 0. (68)
Define,
Xi =Tr(¥(z1) - [2% ()] - ¥(za)), (69)
o = { Tr((os - [0 (@) (B pla)]- b)) i 5, o
v TT(¢($1) T [ha’ [hb,z,b(:z:,)]] e ‘l)(wn)) 1=,
and similacly for Y and Z. Note that Xf‘jb satisfies the identity,
X5~ X3 = 8iifase X5 (B K] = fanch). (71)
We have,
{01(z), 0a(y)} = e(z — y) X7YF, (72)

where the index “a” is summed over the subalgebra h, and the indices “:” and

“” are summed over the multivariable index range of “=” and “y” respectively.

Taking the bracket with Oz(z) gives,

{01(2), 02()}, Oa(2)} = e(wi — y;) (XY} Zie(m — i) + XPY Zye(yr — ).
(73)
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Since we are summing over permutations, we are free to permute the second term
of eq.(73) twice in (z,y, z). After rearranging dummy indices and employing eq.
(71), this expression reduces to,

fach{‘ijZ,‘je(mi - y;)e(zi — z1). (74)
We sum permutations and rewrite dummy indices to arrive at,

Yeyetic{{01(2),02(y)}, 03(2)} = fabe X{Y} Z{(e(zi — y5)e(zi — 2k)

+e(y; — zr)e(y; — i) + (2 — zi)e(2zk — yj5))- (75)

Employing the ‘dentity,

e(r—y)e(z—2)+e(y—2)e(y—~z)+e(z—z)e(z—y) =1V z,y,z € R, (76)

gives,
> ({01(2), 02} 05(2)} = 3 fare XV} 2 = 3 fuc¥y 25 3O X (T0)
cyclic i3 ik i :

By color neutrality, the sum over “i” on the right hand side of eq.(77) vanishes,

giving the desired result. Notice that for the Jacobi identity to be satisfied, it
is only necessary that at least one of the observables be a color singlet.

8 The Classical W Algebras

We wish to generalize this procedure to include coset g/h models of a very
particular type: we take g to be the direct sum of two copies of an affine Lie
algebra with arbitrary central charges ky and k; and take h to be the diagonal
subalgebra,

g~ g(kl) ® g(kZ)ah = g(kl + k?)diagonal- (78)

This choice is dictated solely by the fact that these cosets have been discussed
at length in many previous works [4, 5, 6, 17]. Much of this section can be
easily generalized to other types of coset models. The gauged WZW action
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corresponding to the coset of eq.(78) is,

I=5L+ 1+ 1, 2

=& [PrTr(B,97"'0-01) + 355 ,,4,, I Tr(dgigi')?,

= & [dzTr(049; 0-92) + 3% 24,, J Tr(dgg3")?

11 2= & [ aTr(iA+(k:1(0-91)g7" + k2(0-g2)97")

—iA_(kigT (Or 1) + k203" (8492)) — knAvgi A-gi”

—k2A4g2A-gs' — (b + k2)ALAL).

Note that the gauge field A, takes values in the diagonal subalgebra h. The

currents of the model are given by,

(79)

Jp=%®g"Dig + %2 651D, ga,

J. = —%(D_g\)gi" — #2(D_g2)g2",
with D,,, the covariant derivative, as defined in eq.(11). As before, these currents
are not chirally conserved. We define,

1/) = '4)— = —U_l(:c,.’lto)J_(.’I:)U(m,IBo), (81)

with U(z, o), the Wilson line, defined as in eq.(20). The parafermionic current
¥(z) is chirally conserved (943 = 0) and gauge invariant up to base point
dependent terms. The computation of the Poisson bracket of the parafermionic

(80)

currents is similar to the derivation given in Section 6, and we will simply present
the result,

W@ W)} =~ — )+ RN - @) oy
) N L S
Where we have defined,

P(z) = P*(x)r* = (@) (77 = 75) 5 [, 77) = fabeTy. (83)

As in our earlier calculation, dropping base point dependent terms has ren-
dered this algebra non-associative (that is, the Jacobi identity is not satisfied),
a property which is restored only after projecting onto color-singlet observables.
The simplest neutral combination one can form is obtained by taking the

trace of an arbitrary power of ¢. Compactifying to the circle and scaling appro-
priately to conform to the literature we define,

wl = —1—- " de exp(imz)Tr(Y°(z)). (84)

1as Jo
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Where we have defined the constant,

4k ky
us (k‘l + kg) '
For concreteness we take g = SU(N). We compute the Poisson brackets of the
operators in eq.(84) using eq.(82),

a

Ii

(85)

(W), W0} = (m(t — 1) — n(s — ))WEH™

ia(s—1)( 86

In the limit N — oo only the first term survives and we have the SU(c0)
classical W algebra,

{WP, W0} = (m(t - 1) — n(s — D)) W™, (87)

For finite values of N both terms are present and furthermore all W, s > N
can be expressed in terms of W), 2 < s < n. For example in the case of SU(3),
we have that,

Witk = g LWL, (58)
which follows from the trace identity,
Tr() = 5(TrW)), (89)
valid for traceless 3 X 3 matrices. We therefore find the closed algebra,

(WO, WP} = (m — )W,

(WD, W} = (2m ~ n)W,, %0
(WO, WP} = &(m - n) o, W2, W,

This agrees with the classical limit of the quantum Wj3 algebra in which one
retains only the term with the least singular short-distance behavior. Similarly,
closed algebras can be deduced for Wp;, N > 3. We note that these algebras
have the simple universal form given in ref. [15]. For finite N, we see that the
W algebra is nonlinear. This is simply due to structure constant identities used
to reduce algebra elements W), for s > N. It is interesting to note that these
algebras are insensitive to the second two terms of the algebra given in eq.(82).
We now turn to a generalized algebra without this property.
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We discuss a generalization of W algebras that is suggested by analyzing
WZW models in terms of parafermionic currents. As before, the Poisson alge-
bra of eq.(82) may be used to compute the Poisson bracket of gauge invariant,
multilocal observables. In an effort to simplify the resulting algebra, we define
a new basis for the multilocal observables (compare eq.(24)),

W (21,22, ...@n) = Tr((z1)[$(22), [¥(23), - $(2n)]-.]). (91)

This is a natural gerecralization of eq.(84).

We now illustrate this non-local algebra with a simple example. Consider

the coset g = (SU(2)k, XSU(2).;,)/ SU(2)k,+k,- In this case, the algebra closes
on the first two observables,

W(zy, z2) = Tr(v(z19(z2)),
W(z1, z2,z3) = Tr(Y(z1[y(z2)¢(x3)]).

We have the following algebra,

(92)

{W(z1,22), W(yr,32)} = —ab'(z1 — y1)W(x2,y2) + perm.
—tbé(z1 — y1)W (21,2, y2) + perm. (93)
+2°‘9(-’31,$2;ylayz)w(mhmz,yh yz),

{W(x1,22), W(¥1,92,¥3)} = —ab'(z1 — y1)V(z2,y2, y3) + perm.
—1b6(z1 — y1)W(z1, 22, Y2, ¥3) + perm.
+2c0(z1, 23 yl,ys)W(ﬂfl, T2,Y1, Y2, y3)
+2c0(z1, T2; Y2, y3) W (1, 2, Y2, Y3, Y1),

(94)

{W(z1, 22,23, Wy, ¥2,¥3)} = —ab'(z1 — y1)W(z2, x3, Y2, Y3) + perm.
—1b8\z1 -~ Y1) W (2, 3, Y1, Y2, ¥3) + perm.
+2c0(z1, 23391, y3) W (3, T2, T1, Y1, Y2, Y3)
+2c8(z2, 73; Y1, ya)W(-’Dz, T3,T1,Y1,Y2,Y3)
+2c0(z1, 35 Y2, y3) W3, T2, T1, Y2, Y3, 1)
+2c0(z2, 23; Y2, ya3) W (22, 23, 21, Y2, Y3, 11)-

(95)
We have defined for convenience the constants,
4(k1 - kz) 2r
b= = c= 77—, 96
f (k1 + k2) (F1 + ko) (96)
3 22
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and have indicated by “perm.” the terms obtained by symmetrizing or anti-
symmetrizing with respect to the arguments in the appropriate way. Note that
W(z1,z2) is symmetric in z; and z; and that W(z,,z2,z3) is antisymmetric in
T, T2, and z3. The 6 function is defined by,

29(931,982;1/1,1/2) = €(z1 — 1) + €(z2 — y2)

—€(z1 — y2) — €(x2 — Y1), (57)

and it measures the overlap between the intervals (z,,z;) and (y1,y2). If one
interval contains the other or they are disjoint, it vanishes. If they overlap, it
is &1 depending on the sense of the overlap. It is simple to extract a truly
local algebra from the multilocal observables by expanding in power series in
the differences of arguments, as in the operator product expansion.

Finally, we need to show that the functions appearing on the right hand
side of eqs.(93-95) can be written in terms of the functions given in eq.(92). This
follows from elementary identities between SU(2) structure constants. We need,

W(z1,T2,23,24) = W (x2,23)W(21,24)

98
—2W (z1, z3)W (22, z4), (%8)
W($1,$2,$3,:D4,m5)= %W($3,$4)W(.’L‘2,$5,x1) (99)
-%W(lfa,ws)w(xzyx«a,“f'x),
W(m1,$2,$3,$4,$5,$6) = %W(ﬁ],wa)W(.’Eh(L‘G)W(xg,ws)
+%W(.’B2,$3)W($4,$5)W($1,$6) (100)

— LW (22, 26)W (24, T5) W (1, T3)

—%W(.’El,$5)W(.'B4,$6)W($2,$3).
Using these equalities it is possible to express eqs.(93-95) as a closed algebra.
It should not be difficult to write down similar algebras for coset models based
on other groups. These algebras (like their local counterparts) take on their
complicated, nonlinear structure due to these types of reduction identities.

9 “Free Current” Realization of Parafermion Algebra

We would like to realize the classical algebras given in eq.(57) in terms of free
fields. We will do this in a two step process. First, we will realize these algebras
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in terms of a free current algebra, or affine algebra. The second step is the
well-known realization of affine Lie algebras by free fields [16, 53]: that is, we
give an explicit construction of the currents of the coset models in terms of the
currents of the ungauged WZW model. This construction is very simple, and it
opens the way for the construction of the full quantum theory [12, 13].

We want to find an explicit construction for 1 in terms of fields that satisfy
simple, local commutation relations (or Poisson brackets). We mimic eq.(19) by
writing,

Y(z) = V(z,20) E(z)V(z, z0), (101)

where V replaces U and F replaces J. V is a bilocal field valued in the subgroup
H, defined as a path ordered product, just as in eq.(20),

V(e, o) = Preap (i / d:n’B(m')) . (102)

We will require B and E to have local commutation relations. The non-locality
of eq.(57) will be entirely due to the non-locality of the Wilson line V.

It is possible to avoid path-dependent terms in the commutation relations of
the parafermions expressed in eq.(101) if we require B and E to satisfy an affine
algebra with correctly chosen central charge. We introduce the free current,

T(z) =r°T%=) ; ™ € g, (103)
with the following commutation relations,
(oY 1

[T°(@), T"@)] = ~ 58 ~ y)bu — 8@ —)Tr((s*,"|T(@)).  (10)

Define,
Ty =T°R", h* € h; Ty =T, € g—h. (105)

With these currents defined, we identify,
B =T ; E =T, (106)

with the constants o, # and v to be determined. Upon computing the com-
mutation relations of the parafermions defined in eq.(101), many base point
dependent terms will arise. As before, these terms vanish when projected onto
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color singlet observables, and we ignore them. After some calculation we have
the result,

[¥p(z), Ya(¥)] = Y*a [ dzTr(Q(z)0:P(z) — iv [ dzTr([P(x), Q(z))(z))
+35 J dzdye(z — y)Tr([h, P(2)](2))Tr([~%, Q)1 (),

(107)
with the important constraint a8 = 1. Taking a = k/2m and v = -2, we have
complete agreement with eq.(57). Note that the central charge of the affine
Lie algebra eq.(104) is the usual quantized value k/2r, k € Z, as required by
unitarity. Also note that this construction can easily be extended to the model
defined in eq.(79) by employing the tensor sum of two commuting affine Lie
algebras [10).

In closing this section, we check two simple consequences of our construc-
tion. Consider the gauge invariant quantity,

O(z,y) = Tf(_t/)(w)tb(y)) = 4Tr(Ti(2)V (2, y)T(0)(v)V (v, 2)). (108)

In an earlier. work [9], it was shown that the classical stress tensor should be
recovered from O(z,y) in the limit z — y. This is the classical analogue of the
leading term in the operator product expansion. From eq.(101), we have,
O(z,z) =8 Y THz)T!(x). (109)
l € coset

Up to an overall normalization constant, this is the classical analogue of the
Sugawara construction for the coset model.

One other check is to verify that all gauge invariant observables lie in the
coset. In an operator language, they should commute with currents that belong
to the subgroup H. The classical analogue is the following relation,

This can easily be shown to hold and in a straightforward way can be generalized
to all observables O(z,...z,) defined in eq.(24).

10 Quantization of the Parafermionic Current Algebra

To make a direct connection with previous work in the theory of two-dimensional
coset models, we would like to find a consistent quantum generalization of the
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classical Poisson bracket algebra derived in Section 6. Furthermore, we would
like to outline a scheme in which the known spectrum of primary fields may be
reproduced, as well as their conformal dimensions and fusion algebra.

Work in this direction has led to many interesting questions concerning
braid statistics and quasi-Hopf algebras; see ref.[12, 13] for recent progress in
this direction. The full primary field spectrum remains illusory, however. A
completion of this scheme holds many rewards, one of which I will now discuss.

In the second part of this thesis, a scheme is outlined whereby one may com-
pute the fusion algebra for the WZW model by employing symmetry properties
of the Chern-Simons Hilbert space. Another unsolved problem is the complete
extension of these methods to coset models. There exists a class of coset mod-
els, those with “fixed points,” which have resisted this calculation scheme. In
fact, it appears that from this point of view these models allow some freedom
in computing the primary field spectrum. If completed, the quantization of the
parafermionic current algebra could solve this important mystery.
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Part 11

The Chern-Simons Functional

and Conformal Field Theory

11 2D Conformal Field Theory and Topological Field
Theory

The axiomatic approach to 2D Conformal Field Theory, pioneered by Belavin,
et. al. [14], has led to a rich system of constraints through which we define a
rational conformal field theory (RCFT). One interesting aspect of this structure
concerns the monodromy, or braiding, constraints of the n-point functions. A
connection between these constraints and the defining relations of knot invari-
ants was noticed early on. Knot invariants are purely topological quantities
ascribed to objects living in three dimensions. A natural question then, posed
and finally solved by Witten [59]; what is the connection between RCFTs and
topological field theories?

In finding this connection, it is necessary to choose a topological, gauge
invariant action. A likely candidate, the Chern-Simons functional, had recently
been studied in detail because of its importance in the Lagrangian formulation
of the Wess-Zumino-Witten model discussed in part I of this thesis. Finding
a topological classical action, however, is not enough. In quantizing a classical
action it is necessary to prescribe a regularization scheme, which involves choos-
ing a Riemannian metric for the space-time, thus possibly ruining the general
covariance of the theory. It is necessary to show that the regularized quanti-
ties, that is, the relevant determinants, are in fact topological invariants. In the
weak-field limit of the quantum theory, we can concentrate on the path integral
about the classical field equation solutions, or in this case the flat gauge con-
nections. In this limit, with a natural choice of regularization scheme, Schwarz
showed that the path integral gives rise to the Ray-Singer analytic torsion of the
flat connection being expanded about [48, 59]. The Ray-Singer torsion of a flat
gauge connection is a known topological invariant, and thus in the weak field

27



limit the existence of a true topological quantum field theory is demonstrated.

At finite coupling, the use of quantum field theory techniques to show that
topological invariants exist is more subtle. Hence a large effort from both the
mathematics and physics communities has been made in putting this process
on firmer ground. Aside from bringing together researchers from these often
distant branches, a great development has been seen in the fields of integrable
models and quantum groups, as well as axiomatic topological quantum field
theory. This work has culminated in a direct connection between the existence
of a certain class of quantum groups, the “ribbon Hopf algebras,” and the knot
invariants found by Witten. Thus the ambiguities of the quantum field theory
have been circumvented, or more precisely, they have been axiomatized in the
language of Hopf algebras.

The connection between the Chern-Simons quantum theory and RCFTs
appears also in the structure of the Chern-Simons Hilbert space without sources
(18, 19, 28, 41, 42] (that is, without knots present.) In the following section of
this thesis, we demonstrate that the Hilbert space of Chern-Simons theory with
space-time manifold ¥ ® R (X being the two-torus and R the real line) provides
the fusion rules of the corresponding Wess-Zumino-Witten model, as well as an
efficient method of explicitly calculating the modular transformations on the
primary fields. The effect of monopole background charges is also considered in
detail. The mathematical structure is surprisingly intricate and allows a clear
geometric description.

12 The Chern-Simons Action Functional

Let M be a 3-manifold. The gauge field A, is a one-form on M taking values
in g, the Lie algebra of some semi-simple group G. The Chern-Simons action
functional is given by,

Acs=:5r-fMTT(A/\dA+§A/\A/\A)

111
= it Jy PP Tr(Au0. A, + FALALA). (1D

The Chern-Simons functional has a number of important properties. First,
it is independent of the space-time metric. This will ensure that observable
quantities will be generally covariant. A second property concerns its gauge
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invariance. Because the homotopy group 3 of a simple Lie group G satisfies:
m3(G) =~ Z, the set of gauge transformations is a disconnected set where each
component can be labelled by an integer m, called the winding number. The
Chern-Simons functional is invariant under gauge transformations connected to
the identity (winding number zero) and changes by,

Acs — Acs + constant - m (112)

under a general gauge transformation. The constant depends linearly on the
normalization of the trace and on the overall constant k. We will normalize the
trace so that the constant is given by 27 - k. When computing the path integral,
the contribution ezp(i - Ags) will be invariant under a general gauge transfor-
mation if and only if k € Z, thus providing an argument for the quantization of

k.

The Euler-Lagrange equations of motion give,
e"PF,, =0, (113)

where F,, is the field strength tensor. In other words, the field equations are
satisfied if and only if the field strength vanishes.

13 Quantization of the Chern-Simons Action

We study the quantization of the Chern-Simons action functional restricted
to the case where the 3-manifold, M, is diffeomorphic to the product of a 2-
torus, ¥, and the real line. With appropriately quantized k, the action is gauge
invariant, and we choose the axial (i.e. physical) gauge A; = 0 (with t defining
the coordinate along the real line in M). After integrating by parts the action
reduces to,

k
Ios = 5 /M PrTr(A8,As), (114)

with the constraint (the equation of motion derived from varying A;,)
Flg = 0 = alAz - 3-2A1 + [A],Ag]. (115)

Instead of first quantizing the system and then imposing the constraints as
a projection on the Hilbert space, we will first determine classically the space of
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solutions to the constraint eq.(115) and quantize this simpler (finite dimensional)
space.

The constraint F),, = 0 requires that the connection be flat. The space
of flat connections on a Riemann surface ¥, modulo gauge transformations, is
isomorphic to the space of maps,

¢ :m(E) = G, (116)

modulo a global gauge transformation at the base point. Here m1(X) is the
fundamental group of the manifold ¥. In our case ¥ is the torus, and we can
present (%) as,

m(Z) = { A, BJABA™'B' =1} (117)

We represent the generators A and B as the holonomies of the gauge field A,
about the two non-contractible loops C} and C; (see Figure 1) of the torus,

A = Pezp [, A,dz*,

118
B = Pezp [, A dz*. (118)

In other words, the resulting classical phase space is given by the arbitrary
embedding of A and B into the group G, subject to the constraint AB = BA
and the global gauge transformation at the base point of C; and C;. Since A and
B commute, we can use this global gauge transformation to put them both in the
maximal torus of G. Given that any two flat gauge configurations with the same
holonomies are equivalent up to gauge transformations, one can conveniently
choose gauge field representations of a given class (or holonomy) to be constant
over the torus. Also, since A and B are in the maximal torus of G one can
require that the constant gauge field A, take values in the Cartan subalgebra
of g. Thus, the path-ordered exponentials reduce to ordinary exponentials, and
so,

A = ezp [, Audzt = e,

B = ezp [, Audz* = ),

implicitly defining a(t) and b(t) as functions of the “time” variable taking values
in the Cartan subalgebra of g.

(119)

Substituting these identifications into the functional eq.(111), and letting
the coordinate x, define the position on the torus along C1, z, the position along
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C,, we perform the integral over L. We have overlooked a possible change in
the measure associated with the Jacobian arising from the change of variables
A, to A, B. This is discussed in ref.[3, 21, 22, 28, 40, 41, 42, 59], where it is
shown that the Jacobian simply shifts the coupling k to k+ ¢ where c is the dual
Coxeter number of the Lie algebra (in our normalization we have ¢ = N for g =

SU(N).) With this shift we have,

Ics = —k;; < f dtTr(a(t)d.b(t)). (120)

At this point, we must choose a basis for the Cartan subalgebra of g. The
classical observables A and B are periodic under certain shifts in a(t) and b(t).
We would like to choose a basis which gives a primitive cell with respect to this
periodicity. To ensure this, we choose the simple roots as our basis,

a(t) = a;(t)*, b(t) = bi(t)v . (121)

The +* are the simple roots. Once we have chosen a basis, we can perform the
trace, where we define,

Tr(v'v) = CY, (122)

If g is simply-laced we can normalize the trace so that C¥ is equal to the
Cartan matrix. If g is not simply-laced, the above trace is not proportional to
the Cartan matrix. For these algebras, C'/ will be defined by eq.(122) where
the normalization is determined by requiring that Tr(vv?!) = 2, and ! is a
longer root. As an example of the simply-laced case, consider G = SU(3). In
the fundamental representation we have,

0
—~1
0

<
I
o o -
o o o
I
\]

. (123)
0 | =-37+ %57'8.
—1

<

(S

fl
o O O
o = O

And we see that it is natural to scale the trace by a factor of 2 to get the
Cartan matrix from eq.(122). Note that choosing the simple roots in a different

31



representation would result only in a different scaling. Therefore, from this point
on we will work with the effective action,

k

+c ii '
= / dtai(t)CY8,b; (t), (124)

where C¥ is equal to the Cartan matrix for simply-laced g and given by eq.(122)

Ics =—

for non-simply-laced g (with the normalization prescription discussed below
eq.(122).)

The action given in eq.(124) is linear in time derivatives, and thus canonical
quantization gives the following commutation relations:

lai, b;) = =2 (C7Y)5,

k+c
[ai,a;] = 0, (125)
[bh bJ] = 0.
We define the quantum operators,
A;=€%, B;=eY, (126)

As an example, consider G = SU(3) in the fundamental representation. (The
simple roots were given above.) We have,

A; 0 0 B, 0 0
A=| 0 A4, 0 |, B=| 0 B'B, 0 |. (127)
0 0 A 0 0 B!

The commutation relations of eq.(125) imply,

AiB;A7'Bj' = exp(ZL(C)i5),

k4¢c
AiA; = AjA;, (128)
B,'Bj = BjB,‘.

We realize these commutation relations on a finite dimensional Hilbert
space. For simplicity of exposition, we will work out the details for G = SU(N).
For the simply-laced case, C¥ is just the Cartan matrix. The column vectors of
the inverse of the Cartan matrix define the fundamental weight vectors of the
Lie algebra. We diagonalize the A operators (they commute with each other)
and define the eigenstates,

| i
Aipa =n"“va, where n=exp (F(Tcl:-iﬁ)) ' (129)
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In this basis, the B; operators act as raising operators along the fundamental
weight vectors. We have,

Bt = Yaya, (130)
where w; are the weight vectors. To see this explicitly, consider the example
N=3, k=1. We have,

Ari; = n'ij,

Agthij = n7ti;,

(131)
Bii; = big2,541,
Byti; = Yitr,542,
n'? =1 (132)

If we start at the state =0, j=0, we can raise to any state such that ¢ + j=0
(mod 3). We call this restricted subspace the state space. Note that two states
i; and Yy are equivalent if and only if ¢ = k (mod 12) and 7 = ! (mod 12).
In Figure 2 we have plotted these states. Note that the states (3,0) and (0,3)
lie along the simple root vectors, and the states (2,1) and (1,2) lie along the
primitive weight vectors.

Finally, we need to understand the residual gauge symmetry, Weyl invari-
ance. It is clear how the Weyl reflections act on this state space (that is, by the
usual action on the weight lattice). Vectors in this state space fall into various
Weyl orbits. For our example, the result is shown in Figure 3. We see that for
a simply-laced gauge group, the Hilbert space is,

- Aw
E+IARD W’

with Aw the weight lattice, Ag the root lattice and W the Weyl group. Also,
B> implies the semi-direct product. Note that in the case of g non-simply-laced,
this expression must be altered (see ref. [28] and the note below eq.(122).) The
general result, consistent with the normalization discussed, is given by,

T 2k+oh, DWW’

H

(133)

H

(134)

A, is the dual-root lattice, defined by the basis vectors o;/|a;|?,a; being the
simple roots.

33

LK



E.

14 Modular Tranformations

In the variables defined in Section 18, the modular transformations act in the
following way,

T: (a,b) — (a,b—a), S:(a,b)— (b,—a). (135)

We want to show that these transformations act on the operators A; and B; in a
well defined, representation independent way. We start with the T' transforma-
tion. For the purpose of exposition consider the case SU(3) in the fundamental
representation. Using eq.(125) we have,

T(B) = &t~ = eilotlgite=ia = RBA™Y, (136)

R, A, and B are diagonal matrices in the Lie algebra space. For a general repre-
sentation R will contain different phases along the diagonal. In the fundamental
representation, eq.(123) and eq.(127), we have,

(a1 0 0
a=apt=| 0 —a;+a; O s
k\ 0 0 —Q2
( b 0 0 (137)
b=by'=| 0 —by+by 0 y
\0 0 -b
R=q"11.

The transformation eq.(135) can be realized with the operators A; and B; in the
following way (see eq.(128) and eq.(129),)

T(A) = A,

T(B)) =77 'B; A7 (138)

In Section 17 it is shown that the transformation given in eq.(138) is consis-
tent with eq.(136) for any representation. It is also shown how this argument
generalizes to arbitrary g.

The S transformation is simpler, and it is easy to verify that the following
transformations are consistent with eq.(135):

S(Ai) = B;,

S(BY) = A (139)
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At this point, we need to realize these transformations on the state space.
For the purpose of exposition we restrict to the case G = SU(N). It is not difficult
to verify that these relations are satisfied by the identifications,

Tag = Saa' (), with t(7) = 5" AT, (140)

1 1
Szo = —=——===n*(@,?), with s(i,?) = —T AT, (141
VN(k-+ N)? N )
where A is the Cartan matrix of SU(N). The normalization factor in front of S

ensures that S is hermitian. It can be easily shown that S and T' commute with
Weyl reflections in this state space as required by gauge invariance.

At this point, we consider the shift of the vacuum by p. (p is one-half the
sum of the positive roots (see ref.[28])). We notice that for SU(3), the number of
maximal Weyl orbits at a given level k (an orbit is maximal if its order is equal
to the order of the Weyl group) is equal to the number of primary fields in the
corresponding conformal field theory. Also, if we shift the vacuum by p, we see
that each maximal orbit has a representative state equal to the highest weight
of one of the integral representations (see Figure 4). For each maximal Weyl
orbit, define a state 1, in the state space, which is an eigenstate of the Weyl
reflections corresponding to simple roots, with eigenvalue -1. We make the fol-
lowing conjecture: for a given semi-simple gauge group G, the collection of states
¥, defined above is in one-to-one correspondence with the primary fields of the
corresponding WZW model. Furthermore, when the modular transformations
S and T, defined above for the state space, are projected onto this collection of
states, the resulting transformations S’,T” are equal to those calculated by Kac
[37] (see also ref.[38, 45]) for the corresponding WZW model. In Section 17 we
prove equivalence of these S matrices for the case G = SU(N) at arbitrary level
k.

15 Fusion Rules and the Verlinde Conjecture

The fusion rules of the WZW model can now be easily understood in terms of

Chern-Simons theory. We define the folowing gauge invariant operator:
Or = Trg(B). (142)
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The subscript “R” labels a given representation of g, defining the representation
in which the trace is to be taken. The operators B; act as raising operators in
the state space defined in Section 13. For all examples we have checked, the
operator Og consistently projects onto the “primary field” states ¢, and gives
the correct fusion algebra. That is, let P be a representation and p be the
state associated +-ith that representation. We find that,

Or - ¢¥p = N3py?, (143)

where ng are the fusion coefficients. To see this explicitly, consider the case G
= SU(3). Letting A be the fundamental representation we have,

Or =Trr(B) =B, + B'E, + i ;L. (144)

In Figure 5 we demonstrate how this operator is used to derive the fusion rule
3®8 = 3®6 for SU(3) level 2. Note the strong similarity between this technique
and that of Walton [54].

To further motivate eq.(143) note that since the B;s commute among them-
selves (see eq.(128)) Og, - Op, = Op, - Op,. It is more difficult to show that
Nfp = NBg directly from eq.(143), but the commutativity and associativity of
the Nfps indicates that they are likely candidates for the fusion coefficients.
Further, computation of ng via eq.(143) in many particular cases reproduces
the known results [31]. We see that the fusion algebra is generated by Weyl-
invariant combinations of the operators B;. In Section 2, it was shown that the
modular transformations S maps B into A~! and that, on the state space A is
diagonal. Thus S diagonalizes B, and subsequently S diagonalizes the fusion
algebra. This is the celebrated Verline conjecture [51, 52]. |

16 Background Gauge Fields 2nd Monopoles

Having developed the quantization of Chern-Simons theory to the point where
the structure of the underlying conformal field theory emerges clearly and explic-
itly, we now generalize our construction to include classical (i.e., background)
field configurations. The notion of coupling the degrees of freedom of a confor-
mal model to background gauge fields is an old one [1, 2, 8, 35, 39, 50]. In this
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section, we study Chern-Simons theory with background gauge fields, particu-
larly focusing on the twisted sectors and the modular properties of these sectors
in the presence of a monopole.

To begin with, again consider taking the gauge A; = 0 and satisfying the
flatness condition Fj2 = 0 on a torus with a point removed, ¥. We do not
consider the holonomy around this point removed to be an additional quantum
degree of freedom but instead specify the holonolmy about the hole entirely
in terms of the classical part of the gauge field. By the monopole quantiza-
tion condition we learn that the moduli space of flat connections modulo gauge
transformations on ¥ is again 2R-dimensional (R is the rank of G). An excellent
review of monopoles is ref.[24]. As before, a nonsingular gauge transformation
may be used to put the gauge field entirely into the Cartan subalgebra. We then
have the following decomposition:

Ay = AL + AQ, (145)

Here A‘(f) is the quantum fluctuation about A{f) which may have both monopole
and nontrivial holonomy about the canonical cycles of the torus (we imagine the
monopoles as having all their flux concentrated at the point removed.) Since A{®)
is a background field, it is time-independent and so, putting the decomposition
eq.(145) into the action of eq.(111), we find the Poisson bracket (and thus the
commutator) for A® is as before (eq.(125)).

The classical holonomy pieces “twist” the theory whereas the monopole
pieces of Aff) simply changes the modular properties of the theory. We discuss
these points in turn below.

As before, quantization consists of representing the operators A = Pezp [ A
as unitary operators on a vector space. Using the full A, of eq.(145) we see
that the classical holonomy pieces of Aff) correspond to choices of boundary
conditions for the vectors in the Hilbert space if viewed in terms of the operator

A = Pexp [ AW):
Aiho = 1o = Aipo = Yo, with ~; € U(L). (146)

Here the A;s are, as described before, components of the full Pezp [ A and
thus correspond to transport of the s under A,. Along the chosen cycle (here
Ch, in a two-dimensional sense, is along the “time” direction), the individual
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A’s ¢ correspond to components of g(0)g~!(2~), and so requiring Zy boundary
conditions for g is implemented by the ;s being nontrivial phases. Following
ref.[33], first implement the twisting along the C; cycle and then use modular
transformations to build up the remaining shifted sectors. One may furthermore
compute the fusion rules by following the procedure described in Section 15.

It was shown in ref.[8] that the modular properties of the theory on the torus
depend on the topological type of the gauge field AL"‘). One way to understand
this result heuristically is as follows: instead of concentrating the flux in a single
point, imagine spreading it out evenly over the entire torus. Then S simply
interchanges the cycles whereas T actually combines the cycles, as seen in Figure
6. The new cycle so generated (C}) is homotopically equivalent to C7'C; but
the path ordered exponential of A, along these cycles differ due to the fact
that the triangle bounding them contains 1/2 the flux of the monopole. This
is the simple explanation of a more rigorous calculation in which one considers
arbitrary flux distributions. Thus, in the presence of a monopole background of
charge n, the T matrix of eq.(138) is modified,

T.(A;)) = A Ta(B;) = s_.,'mer_,'A;l (147)

where s;, is an additional phase that is a solution to eq.(170 of Section 17
and all other variables are as before (compare with eq.(138) of Section 14.) In
Section 17 it is shown that for SU(N)/Zn, s;n = a®" where &¥ = 1. As before,
in the sector without a monopole (n=0), the T,, (n # 0) matrix may be found
by studying eq.(147) on the untwisted sector. This matrix is then also used to
study the modular properties of the twisted sectors.

Below is a brief summary of the effect of including nontrivial background
gauge fields in Chern-Simons quantum mechanics on the torus:

1. Fusion Algebra of Twisted Sector. States in the twisted sector of eq.(146)
and the untwisted sector may be fused as described in Section 15. One
finds that the twisted representations behave as phased relabellings of the
untwisted representations. The familiar example of SU(2)2/Z, is given
below in Figure 7.

2. Shifted Sectors. Shifted sectors are found in the usual fashion [33] by ap-
plying modular transformations to the untwisted and twisted sectors. We
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thus generate a modular covariant set of sectors. This may or may not
lead to an irreducible representation of the modular group. For exam-
ple, in SU(2)x/Z,, letting (+,+) represent the untwisted sector and (-,+)
represent the twisted sector, one finds using the above S and T

T : (4, +) invariant, (—,+) = (—,—),

148
S : (+,+) invariant, (—,+) = (+,-). 9

3. Monopoles and the Modular Properties of the Twisted Sector. Including
monopole backgrounds in the theory causes T to change. With this mod-
ified T matrix, one may find modular properties of the theory in higher
genus. Continuing with our example SU(2)x/Z, and using the procedure
described above, we find that T; given by eq.(147) yields,

Ty : (+,+) = (+,-),(—, +) invariant, (149)

and thus we see that, combined with eq.(148), the representation of the
modular group on the four “spin connections” is irreducible.

4. Monopoles and Projective Representations of the Modular Group. Al-
though the T}, of eq.(147) do satisfy (ST,)® = 1 as abstract group ele-
ments on the A;s and B;s, one discovers that as matrices on the Hilbert
space constructed above (ST,)2 = 8(k,n) - I where §(k,n) is a phase that
depends on the level and the monopole charge. Note that §(k,0) =1V k
but that for n # 0 this phase is not one and cannot be removed by unitary
transformations. (Of course, trying to redefine T, by a phase would mean
that as abstract generators S and 7, would no longer satisfy the defining
relations of the modular group.) For the example above one finds,

For g = SU(2)x/Z2, 6(k,1) = —{(—i)*. (150)

Therefore including monopole backgrounds compels one to consider only
projective representations of the modular group. This is expected for the
representation of the modular group at higher genus.

17 Three Necessary Calculations

1) Representation Dependence of Modular Transformation
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Recall that the modular transformation T maps,
T(B) = e3¥1BA-1, (151)

This is a representation dependent statement, since a and b, as well as A and
B are expanded in some representation (see eq.(120) and eq.(122).) We want to
show that eq.(151) can be projected consistently onto a modular transformation
of the operators B;. That is, we ask that there exist a consistent mapping,

T(B;) = TiB,'Afl, (152)

for some set of phases R; and such that eq.(151) will hold for any representation.
Let P be such a representation and let w be the j-th weight in this representation
(in some arbitrary ordering). This weight can be expanded in the weight basis
as,

w = Z nia; , (153)

with A; the primitive weight vectors and n; a set of integers. Then the cor-
responding diagonal element of * in the expansion of eq.(121) is given by the
coefficient n;. The consistency check thus reduces to a check for any given weight
in the weight lattice. Letting (T'(B)); correspond to the j-th diagonal element
of T'(B), we require,

(T(B)); = [I(T(B:))™. (154)
Inserting eq.(151) and eq.(152), we have,
(e2);(B);(A7); = [T (nBiAT ™.  (155)

Which can be further expanded to,
edtremtI TT B [T A7™ = [T v TL(BiAT™)™. (156)
1 1 1 4
On the right side, we can commute the B; factors through to the left by using the
commutation relations of eq.(128). Also, the commutator on the left side can be
computed using eq.(125). When this is done, the operator content is identical

on both sides of the equation and so we need compare only the resulting phases.
Equality demands,

ﬁ—%z.-,,- ni(C™)iny H,.?-' Hﬂ-(c'l)aeﬁ‘%‘:—ll I1 ﬂ—(C")ejn.-nj’ (157)
1 i i<
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where we have defined,

o=eop (775 (159

We can satisfy eq.(157) for arbitrary integers n;, and therefore arbitrary repre-
sentations, simply by letting,

ry = B3C N, (159)

2) Equivalence of Modular Transformation S from Chern-Simons Theory with
Kac Formula for SU(N) Models

We prove that the formalism outlined in Sections 13 and 14 correctly gen-
erates the modular tansformation S for the case G = SU(N), level k. We start
by defining a map ¢ from the root-space of g into an N-dimensional vector space
V.

qb He F e 4N / el f TS N (160)
where the o;s are the N-1 simple roots, a faithful basis of the root-space. In V,
the action of the Weyl group is simply permutation of coefficients of the vector.
To see this simply consider the action of the Weyl reflections corresponding to
simple roots acting on this basis,

—0j; i=7
Wi(ey) = a5 — Ajis = ai+ay; i—jl=1 . (161)
aj;  i—gl>1

In V, W; acts by permuting the :** and ¢ + 1°¢ coefficients. Consistency is easily
checked. Let & be the realization of ¢ in the simple-root basis. Define the matrix
K,

K =04, (162)
where A is the Cartan matrix for SU(N). At this point, we note that the matrix
K is exactly the mapping appearing in the formula of Kac [37] for the S matrix of
SU(N), taking the Dynkin coefficients (ai, ...,an—1) into the vector (¢, ..., pn—1)
with the appropriate shift p = (1,...,1).

Our prescription for S outlined in Sections 13 and 14 gives,

Su,u — Z(_ l)sign(w)nqu(v))/N, (163)
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where nN(+N) = 1; w is summed over the Weyl group; and sign(w) is +1 (-
1) if w is expressible as an even (odd) product of simple-root Weyl reflections.
Note also that u,v are vectors in the root basis, not in the weight basis. After
changing basis, employing eq.(162), and noting that w acts by a permutation
matrix in the correct basis (defined above), we can write,

271

Sus = T (1) eap { T gT(R) | (164)

This expression involves a sum over permutations. With the correct signs ob-
served, this is simply a determinant. We have, '

Sap = det(M) (165)
where M is given by,
2T
M(a,b); = eop { o2 8i@)ds0)} (166)

This is the Kac formula [36, 37].

3) Representation Independent Computation of T,

We show that for the T, of eq.(147) which represents the action of the T
transformation on the A; and B;s in the presence of a monopole charge n, the

s;n are independent of the representation chosen for the monopole field.

Whatever representation one chooses for the monopole background, one
knows that T, is still a diagonal matrix on the Hilbert space and that, as de-
scribed in the text, T, can, at most, pick up an additional phase s;,. Further-
more, whatever representation one chooses for the monopole, the resulting T,
matrix must be gauge invariant. We have found that in some cases the im-
position of gauge invariance is also a sufficient condition to ascertain all the
monopole contributions to the theory. In our construction we have locally fixed
the gauge but, as described in the text, one must impose gauge invariance with
repect to large gauge transformations, i.e., the Weyl transformations. Thus one
requires,

wilThw=T, VweW, (167)

where W is the Weyl group. Recall that, in any representation Pexp [ A will
have components of the form [; A® where the d;s are the dynkin indices of
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the particular representation and A;s are, for example, as in eq.(126). We now
study the individual A;s (and B;s) abstractly without reference to any particular
representation and see for example how they transform under T, and W. In
general, then,

Ta(A) = A; Tu(B;) = mBiATY, (168)

where the r;,1 < ¢ < rank(G) are some phases. For the Weyl reflection about
the plane orthogonal to the I** root we have,

wi(A;) = A; for j#land

—cm 169
wi(A) = ATl Anc' (169)

as well as a similar equation for the B;s under w;. Note that the necessary
condition (w;)? = I follows from C* =2V m.

Now we simply use eq.(168) and eq.(169) in eq.(167) and ask what the list
of acceptable r;s is. We find that gauge invariance of T,, (eq.(167)) implies the
following general condition on the r;s,

1,

Cl2 %C{ _lcicd
errmH(C—;j) e =1 vy, (170)

m#l J

where (;; are phases defined by,

AB;AT'B; =G . (171)
For example, for SU(N) using eq.(157) as a starting point,

r = s 3C i, (172)

where the s;,, represent additional phases due to the presence of the monopole.
Then, using eq.(172) in eq.(170) we find that all k-dependence cancels and one
has,

s [ s =1 VU, (173)

m#l

where we have suppressed the n index (same for all the s;s above.) For SU(N)
eq.(173) readily admits the solution S;, = o’ where « is a primitive N** root
of unity.
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Figure S -- the fusionrule 3X 8= 6 + 3 is demonstrated. Starting at
each state in the orbit of the 8 representation, we operate with Tr(B)
in the 3 representation. Taking into account relevant sign cancellations
only the states of the 6 and 3 orbits remain.
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Fusion rules : 0XS=SforallS
0'XS=S8"'for all S (note (§")' =9)
1/72%1/2=0+1 1/72X1/2'=0'+ t1° 1/72°%X1/2°=0+1
172X1=1/2 1/2X1'=1/2' 1/72'X1'=1/2
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Figure 7 ~- In G = SU(2) there is one twisted sector. The com-
bined fusion rules are shown. These can be derived by defining
the Verlinde operators of the primed fields as Tr(B), where the
trace is taken in the spin 2, 5/2 and 3 representations for
states 1°, 1/2' and O’ respectively.
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