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Algorithm for Singular Value Decomposition

D. C. RGSS

Electronics Division
Los Alamos National Laboratory

P.O. Box 1663, Los Alarnos, New MeYico 87545

Abstract

An iterative algorithm for the singular value decomposition (SVD) of a non-zero m x n
matrix ~ is described and illustrated numerically. Derivations of the algorithm and suf-
ficient conditions for convergence are outlined.

SVD is one of the most important procedures in digital processing of signals and images,
and in applied mathematics generally. SVD provides an effective way to find the rank of a
matrix, to compress data, to find the pseudo-inverse of a matrix and, in general, to cal-
culate with rectangular and square asymmetric matrices almost as easily as with square sym-
metric matrices. The ei~ensystem of covariance matrices and other symmetric matrices of
the form Ax may be found accurately from the SVD of ~. The theory of the SVD is well
presented ~n a famous 1958 paper by Cornelius Lanczos irI American Mathematical Monthly.
The basic facts are that any non-zero matrix ~ of rank r he written as the product
of three factors: (1) m x r partial isometry ~, (2) posit?%-defirrite rxr diagonal
matrix Q, (3) r x n partial isometry ~.

Uti=V~=I--- -.

The pseudo-inverse of ~ is then: _ _ _Mt . ~ ))-lyt

Each pass of the algorithm produces one set of corresponding singular elements; that is,
one diagonal element of ! along with the corresponding rows of ~ and Y. Each pass
starts with a trial row of ~ and a trial row of ~. A trial singular value corresponding
to the starting rows is then found along with measures of error. The algorithm then finds
a new pair of trial singular rows to start the next iteraiiorr. The matrix ~ s progres-
sively deflated and the deflated matrix is used to start each pass, but the original matrix
is used for all computations within each pass to avoid unnecessary accumulation of round-
off error.

************

1. An important procedure ktrat is often used in the digital processing sf signals and
images, and in applied mathematics generally, is the singular value decomposition (SVD) of
a non-zero mxn matrix ~ of rank r.

UT-J-VT.- -.

~ 1s a ponitive-definite r x r diagonal matrix and ~ the r x r diagonal matrix
(r.nP:xrra1958). Each set

{)U’k ,
‘k ‘(~}

k ■ 1, 2, ,.. r
--

(1)

(2)

(3)

ir?Cilled a set of uo~rea onrling singular elements of the matrix ~
an m x n mhtrix calT&&t e corrt~s on

* –-%% :’+ u“ :2 twxx !%Hf$i::Kpseuf!o-inverse of ~. Tho m x m mat.r x——. ___
repres~nk perpendicular prrrject,ornon the r;w–@pat; ~nd on the column npaco, r~~p=ct.i;~l-y~
of the matrix ~.

Thn main purpont? of thin paper iE!to present. an iterative algorithm for th{;sVD, The
Euclidean norm in used Lhr u hollt., Rlong with the standard inner product and Di-ac notation

(Ilugginr!1963). A vector ?1X in a primal space (n apas~ uf nignale for example) is repre-
sented by a row (X, h Wctor [F) in khe dual npacp (for exnmpl-, the net of linear mnasur-
tng rlevic@tI appropriate for th~ given nignala) in reprement~d by a column P’) . Baueri nre
orthonormn] unlnrjn ot,horwtne indicter!, Though our rc?nultn may ho extnnded ennily to com-
plex vector npacesi We r!onfinn nttent.;on in t}liHpap~r to reul npacoe no that - menn~
trannpo81tion of row~ atldcolumns,
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2. It is convenient to scale ~ initially so that the magnitude of its largest el:ment
ia near one and then to scale Q a propriately at the end of the algorithm.
m-row (IJ t

A unit t al
and a unit trial n-row ~ are needed to start the algcrithm. +The normal zed

tranepoae of the largeat column of ~ is a reasonable choice fOr (LJ along with the
normalized largest row of ~ for (~.

3. A trial singular value corresponding to the trial rows ia then found hy

which must be positive, by reversing the eign of one of the trial rows if necessary. The
squared norms of the residual rows

(d {! E-Y{!! (g A(uby(y--

are then found by

If both residuala are sufficiently small aa meaaured by
t

?, then {~ , y, (~)

cloeely equals one cf the sets of corresponding eingular ●lements of _
from the following theorem!,.

as can be Been

Theorem 1:
rroof:

Theorem 2:
Proof:

Theorem 3:
Proof:

Theorem 4;
Proof :

Theorem 5:

Proof :

Theorem 6:

Theorem 7:

t~
Y U la the A projection of (Vfil onto ‘ ,

(d%”! ‘[$h]aylw Vffdem’otent” ❑‘ u ‘: c(:~;~c,r[Jh. ‘u’y (u
y (’”) is the ~ projection of
Simi ar to Theorem 3.

(UIM] nnto (V1 .

{{ Y-(U,J (Y-{v, r Y-Y,}+{@. @?{s -(Q}
❑

Subatitu~premi8ea i~~o Equation (1).
❑

4, If either residual differs appreciably from zero, then the a]gorithm is repeated
with the trial rows perturbed in a direction intend~d to reduce t e residuals.
and (~ be replaced with normalized v~ra:ona of
@ are small perturhatione.

(LJ + {P and ~~ + (Q whereL@/~ $~d
The residual norms squared ,~en become



m n

EqEE2q
V2-7 1“2- Y2

(9)

(lo)

With these defin tions, o r problem reduces to solving E uation (11) for <~ and then

the direct Bum of tI and ? 1
Q is given approximately by ~.

(1
@?Fq:;:l)isl/~ww@w+dA whereThe general solution for

~ is any unit row orthngona! to (~ ~ _ - ~. Clearly, th= ~oiuti=n of l;aat norm
t e one with $ = O.

(11)

(12)

i-,,

The method used here to locate a minimum of I is an example of the Newtun-Raphson
algorithm which is analogous to the use of Newton’s Methcd to locate the vertex of an
erect parabola starting from any point on the parabola. Aa shown in Figure 1, doubli g
the c reputed Perturbation greatly accelerates convergence, ass(~ming in our case

& (

hat ? ~
and are small, Applying this principle to our SVD algorithm, we redefine ~ as
follows.

m ‘---
= {q- {T [wi]-% (13)

After approximate perturbation rows
(lJ and (

~ and
(
Q are found from Equation and added

respectively to
(

V, the result ng sums re normalized and used as new trial rOWS
for the next iteration of Fe inner loop of the algorithm,

“igure 1. Acceleration of convergence,

5. The inner loop of the algorithm, defined in Sections 3 and 4, is repeated until both

residual norme are sufficiently sma]l as meaaured hy their sum T. The current eet.of
trial rows and corresponding trial singular value is then selected as a close approximation
to one of the eets of corresponding singular elements of M. This step ends the pase that
started with the selection of lniti~l trial singular rows ~nd returns control to the outer
loop of the algorithm for the selection of a new pair of trial sin 14r rows to use in te-
atarting the inn~r loop. To accomplish this objective, the dyad
the results of the previous pass, 8ubtracted from W
is then used to determine a new psir of starting rows
deflated at the end of each pans. The original ma~i;<[::; ‘;ey;$;:;::::::~::i;;his used for all calculation in
the inner loop of the algorithm in order to avoid Unnecessary accumulation of rouncl-off
error,

A reasonable stopping rule for the outer loop of the algorithm can be based on the com-
putation of the Euclidean norm of the deflated matrix N at the end of each pas8 ond
stopping the algorithm when the norm of ~ ia Sufflcielitly small, Additional measures of
error in the SVD repreaentati of H may bn obt ined from the F!ucl.idennnorm of any OE
the following matrices: M ‘&Q~, ~- UM~, U%-J, VV-I. These meaeures arw rela-
tive if applled to the sc=lecl version of- –~ an~ ~bsolut; If a~plied to ~.



6. An outline of the inner loop of the SVD algorithm is CJiVt2n in Table 1 along with a
measure of complexity of each step. For the sake of simplicity, only multiplicatior,s are
counted. The total number of multiplications in each iteration in which all four tests are
passed ia 4mn + 12(m + n) + 10. Teats 2-4 will be discussed lster in this paper. Entry
to the inner loop from the outer loop is at Step O and return to the outer loop follows
Step 5.

m

o

1

2

3

4

5

6

7

B

9

10

11

12

13

14

15

16

17

18

Table 1 Inner Loop of Algorithm

Computations MultiPli— cations

Given: mxn matrix ~, starting m-row
starting n-row

(y,

(~~ and Qg

IJ2and V2

Y, including check

{~~’ (s Y), T.-

Test 1: Compare T with stopping limit of inner loop.

Test 2: Compare with previous iteration to ensure

({

su stantial reduction in T
UM~y{~;, V2 g, __

Y{I!J(L (VUM

{T and ~.- -Aesemble _

W~ and Det [W%]-- --

Test 3: Compare determinant with lower limit.

[Wv]-1

&; 17]-1

Teat 4: Compare norm of perturbation row with upper
limit to preve t excessive overshoot.

(LJ+ (~ and {!!+ IQ

Normalize to find new (LJ and (~.

,leturn to Step 1.

2mn

m+n

m+n

1

2m + mn

2n + mn

3(m + n) + 2

3

4

2(m+n)

m+n

2(m + n)

1. Several numerical examples of the application of the SVD algorith~ to some rela-
tively small matrices (3 x 5) have been developed and etudied. In-several of these ex-
amples, the starting rules normally employed with the algorithm were ignored and intention-
ally poor choices were made for the starting rows. In all of these examples, one iteration
vf the inner loop of the algorithm resulted in substantial reduction of the residual corms
and of the gum of the angies beLween the trial vectors and the singular pair to which the
trial vect~ra were converging. In view of the tedium of the required calculations even for
small matrices, only one numerical example is presented here. In this ~xample, th,e initial
trial lows are determined by reasonabl? starting rules.

Given that !4=

Wc obtain starting rows by normalizing the largest row and largeat c~~lumn of ~.
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{LJ= 1.080 I .816 1 .240
{1.9;72

{y - I
.640 1-.640 11.088 .384 1 .640 1

. 56

(~Ll= I .735691 [-.735691 ] 1.3810141 .6152001 .735691

<“~= 11.6 11.2 10.0-- J

ym [(@) = 1.969567 Check :

Y2 - 3.879194

!{~~m - ,.,6,,67

~2 . 3,9(39394 V2 - 4.000000

{R=} =v2-y2=0.120i306 {~@ =IJ2-y2M 0.030200

T : ’63+ (E3 = 0.151006 (~= ~.120806 ].030200 1

.00000 .00000 -.69514 v -.15101 .15101 .00000 .25168
y=

-.15101

.00000 ,.00000 -.17378 -.11476 .11476 .06161 .27342 -.11476

(Z[W R]-lw ---- Bcml
m 1“00000 I . 00000 -. -. 73 ]-.01173 1-.01994 ] -.00706 ] -.01173 I

After adding these perturbation rows to the initial trial rows and normalizing, we have
a new pair of trial rows with which to start the next iteration.

(Q- ~.79!398 ].599981 .00517]

{~= l“400@o:-~400001 ‘68n0GI “23998[ “400°01

In this example, the SVD of ~ is known exactly nridwe Cd17 deduce that the algorithm
is converging to th,?following set of corresponding t!ingular elements.

(% m 1 .80 I .60 I .00 1 Y1 - 2.00

{< - .40 1 -.40 1 .68 1 .24 ] .40 J

(~o~. tear ~’fromoThe angle betweer, the trial row ~~ and the singular row is reduced by one iteration of
the inner loop of the algorithm irom arccos(.9d4784) = 10. CCOS( 999972) = 0.429°t
that la, by a factor of more ,than 20. The initial trial row (-y was chosen equal to (Vl
and the e~fect of one iteration ia to change the angle between (~ and

t
“to-

arccos( .999995) - 0.177°. Thus, even when the algorithm is converging 75Lmally, one of
the two angles may Increase by a small amount and this effect is more than cancelled by a
large rt?duction in the other angl@. This behavior is relnted to the zig-zag approach to
solution called “hemstitchlng” w)lich IS common with algorithms of the Newton-Raphson or
steopebt-descent type.

In normal uee of the algorithm, we muJt rely on T, the :otal residual norm squared,
to meamure distance between our trial salution and the final solution. Let US carry the
calculation of our numerical example through the second iteraticn ae far as findin9 T.

{Q~= [ 798431 -.79843[ 1.36120~ .484231 .798431

{y~- [1.59999 I 1.19999 [~~
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y - [(QqY) = 1.99994 check: [{~ qu) - 1.99993

u2 K 3099~82 V2 - 3.99994 T - .00020 + .00008 = .CO028

Note that one iteration of the inner loop has reduced botl~
C by a factor of more than 20.

—..— {~~) and {@’ and’ha’itreduced

8. There are sev~ral special cases to consider. First, we zate that the null matrix
~ has no SVD. If the source of matrices to be factored by the alqorithm can possibly pro-
duce Q, then the outer loop of the algorithm must first test the given matrix to ens~re
that it is not Q before proceeding. Second, it is important that the -y found in
Step 3 of the inner loop be positive, so we need to consider situations where
be zero.

could
If {Q is orthogonal to all of the singular rows (Uk, then (~ ~ = ( O and

y-o. Similarly, if (~ is orthogonal to all of the singular70ws
and Y-o. Another way that y can be zero is: (g -
i nor k exceed r and i~k.

@i and (vc~’ ‘hen ‘~~~e$~her
‘~ t:! two waysThus, the check in Step 3-must ens;re th

of finding y agree within allowable round-off error and that

{

exceed zero by more
than allowable round-off error. If y =0, then either (u or

If P2 < d, replace ~; if p~ > v2, ~eplac
~ must be replaced

before proceeding.
i

(~. The replacement
ought to be orthogonal to all pre~ious tri 1 rows. -

Let us consider casea in which Det[Wfi] = O. The cases described above that lead to
y-o also lead to zero for the determ~n=nt. The cure is the same aa that described in

~~b~~~~ed~n~ ~a~~graphm

Another way that the determinant can be zero is: {L!- (~:

‘%ecau~ea nyiterationt hatwouldleadto Det[WW]=Owithy~O would be
This case corresponds to normal convergence behavior and causes

terminated at Step 5 and the determinant calculation in–S~ep 10 would not be reached.
Further study may show that the check in Step 3 may eliminate the need for Teat 3.

9. In order to study the behavior of the
vergence, let the trial rows be described in
spending singular rows (Uk and _~Mof the
the deflated matrix defin~ by: i -- Gk)

algorithm and sufficient
terms of deviations from
given mxn matrix ~
yk (V&O

I-J5X2<

o~yz<

conditions for con-
a pair of corre-
of rank r, Let N be

1

1

that (F $&;nf $-for
The rows G may(;;y;ny Unit rows such that <~~{u~ and {Gl<v

in the first or third quadra~ts or
(X,Y) In-the s;cond or fourth quadrants.

7E &) a:dosu::r

m{vk++fi{~~-yk –

{gE- yk~= &+Y{~~

P2-{UETO -,~(1-x2)+x2(FNTF)

#.(yE;i) .,$(, -Y2, +Y2{;;;;;

Y- {Q14~j . (V~~} .Tk~l-X2)(l -y2]+Xy(FN6)—— --- ---

At this point, we can see that the condition on the sign of
ensure that y is positive for all (X,Y).

{?!!1} is necessary to

{~ ~) m V2 - y? m y~(l - YW+Yqs EyE) -xzyz(~~~)z

- Zxyi(l - X2)(1 - y2)Yk(~ N ~)

(s?) .D2-y2. y~(l-x2)y2+ xz{~y~~) -X2Y2(ENIJ)2

2xymx2)(l .-

‘“ (E!!} + (s%) = -

y2)Yk (~!@

-- Y~(x2 +Y2-2x2Y2) +X2{FNFfi +y2{~~@

-2x2y2{~4%}2- 4xy~l - x2)(1 -y2)yk(~N%~ —— (14)

Note that T(X,y) ~ O end .,,l,~~- 0.



In order to develop a geometric picture of the
few of ita cross-sections:

T(X,Y) surface, let us consider a
x = 0; y= 0; x -y.

m

D$ = (F N(I -
x2(2C2 + D2) - x4 2C2) where C2 = (y - {F ~ z) 42 (17)

E) {s)%9 ‘+ ~ _(A - r) {x)21!E)---

Note that ~) {~~ ~} {~~ ~ - ?} {Et and 1 - ~) (~ represent perpendicular projectors.

We see that Equations (15,16) represent parabolas and Equation (17J represents a quartic
that approaches a parabola for small x2 as show; in Fi9UKe 2. our algorithm was

~~~~~n~! t~s~ma~~and fo~a~m~~~ any x’ when y’ ~ssm;~~~o;;~hk.~nsome
work well with paraboloids, so we expect convergence for almost anY Y’

initial ideas of conditions for convergence when neither are small, let us
consider Equation (17) and its first derivative.

dT/dx = 2X[(2C2 + D’) - 2X2(2C2)1 (18)

The stationary points of T(X,X) are at x-o and at x = tx)q where

2 .2C2+D2~;
‘M

= (sin 45°)2
4c’

(19)

and T(XH, Xm) = (2C2 + D2)2/13C2 while T(l,l) = D2. The stationary point at x = O iS a
global minimum where ?(0 O) = O. The other stationary points are local maxima of

‘C5 < D2.
T(X,X)

which do not occur if Note that the smallest x? is 1/2 corresponding to the
case where both trial vecto~s are 45° from one of the vectors in a pair of singular
vectors.

x

‘XM -0.5 B() 0.5 XM 1

Figure 2.7(x,x) for D2 < 2C2.

A somewhat oversimplified view of the behavior of the algorithm can be seen by studying
Figure 2 where point A represents the initial choice of trial rows. One iteration of the
inner loop of the algorithm would yield a new trial represented by the point B which would
lie at or near the origin if T(X,y) where paraholoidal or nearly paraboloidal. Because
of tkc quartic nature of the T(x,y) surface, the point B will lie beyond the point
nearest to the origin along the direction of the perturbation vector. That is, the al-
gorithm will overshoot The amount of overshoot will b gma 1 for small

x~near x$. However, aslongasx Ii
xl but will be-

come very large for < x , the ~lgorithm will make
ChtitICJeb in the correct direction. This observation suggeets that the length of each
perturbation vector obtained, at least in the first iteration in each pass, be checked and
reduced, if necessary, to some preset maximum allowable length. Thus, Test 4 is included
at Step 15 of the inner loop just before the vector addition and renormalization steps.
Calculations have been made on the example of Figure 2 and on several other examplea fc~
two values of the maximum length of the perturbation vector: l/fl and 1/2. Best re-
sults have been obtained with this limit set at 1/m.

If xl exceeds x? , ~e algotithm may mnke changes in the wrong direction,
Many, ii not all, of such cacea may be detected hy noting that the new pair of trial rows
reaulta in only a relatively small decrease in T or, rarely, a small increase. such
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cases may be treated by reversing the direction of the calculated perturbation by inserting
Test 2 at Step 6 of the inner loop. Further study is needed to set the limiting reduction
ratio used in this test. A reasonable choice appears to be that T not exceed 1//7
times the value obtained on the previous iteration. It appears likely that Test 2 will be
needed only on the second iteration in each pass. Further study an? computer testing may
show that the use of reasonable starting rules may make Test 2 unnecessary.

We proceed now to a more thorough analysis of the algorithm which is of the steepest-
descent type with an acceleration factor of two. The descent m~iybe best visualized in the
(x,Y) plane where the two components of the perturbation vector are given by

Ax-- 2TTx/(~ + T:]

Ay=- 2TTy/(T~ + T;)

where Tx and TY are the partial derivatives of T with respect to x and y. The
length of the perturbation vector is then

~(Ax)2 2+ (Ay) - ~ #p2T/~ + T2 (21)

As a measure of oVeEBhoot, we define Y as the ratio p/d. where do is the distance
from the starting point to the origin of the (X,y) plane. For the example of Figure 2,
we have

.LL2c2+D2)- x3(2c2)–
2X C2(1 - 2X2) + D2/2 .

where we have eliminated the zig-zag effect by considering the case where lY = Tx.
The overshoot effect grows in importance as D2/2C2 decreases.

D2 is negligible Compared to
Consider the worst

case where 2C2.

2C2 - ~c2x2

2C2(1 - 2X2)
m

1-X2

1 - 2X2
.

1 - dj2

1 - d:

The upper limit on the length of the perturbation vector does not have an effect for
init “al trials closer to the origin in the (x,y) plane than about do = 1/2. In the
example @f Figure 2, the smallest do for which pmax . l/fi has an effect can be
found by

1 - d:/2
—- do - 1//?
1 - d:

do= .57

Thus, oscillatory bt.navior does not OCcUK.

In general, the descent to the origin is not direct but follows a zig-zag path which
can be visualized in the (x,y) plane by studying Tx and Ty which ate found by
differentiating Equation (14),

(22)

(23)

(24)

(25)

(26)

{

T lr—=-4yl-
“O+x

Y2 yk@ ~~)
x

‘Y =
2Y [Y: +@@



(27)

(28)

Study of Equations (28) shows that (X,y) ~ (XM,XM) is not a stationary point of
T(x,y) in general, although it is a stationary point ot
of the

TWX ) along the intersection
T(x,y) surface with the plane x-y. W? see that the desc~,lt from points such

as T(O,y) OK T(x;O) ie not generally along the parabolas connecting such points with the
origin~ nor is the descen~rom T(X,X)

Equati2n (14).
generally along the quartic curve represented by

The effect of one iteration of the inner loop of the algorithm iS illus-

trated for a typical case in Figure 3 where the point A represents the initial trial and
AB represents the calculated perturbation (before renormalization). If the algorithm is
converging, U9 < UX.

Figure 3. Effect of one iteration.

In the worst cases, the algcrithm converges for all points inside the square S of side
~ centered on the origin of the (xJy) plane, that is, for

X2 < 1/2 Y2 < 1/2 (29)

corresponding to the cases where each krial vector is less than 45° from the corresponding
vector in a pair of singular vectors. The proof of this statement follows from Theorem 8,
from the steepest-descent nature of the algorithm and from the use of a limit on the length
of the perturbation vector which affects starting points near the corners of the square S.

Theorem 8: There are no stationary points inside the square S except for the global
minimum at the origin.

Proof: Set TM and T

x

as glve,l by Equations to zero and transfer the terms with
radicals to t e opposite side of the equals sign. Multiply the resulting two
equations to find f(x,y) - 0. St.lldy of f(x,y) shows that It is non-zero
for all points inside S,

❑

Study of T1/Tx 9 tan e shows that the direction of the perturbation vector never dif-
fers by more t an 45” from the direct path to the origin at all points in the square s;
and, in most caseg, the deviation in angle fr m the direct path is much less than ~5:.

t~~ib.

oint follows from the fact that {F N%) is usually small compared to (~ ~ ~ ~) ~!e---



It can also be shown that the algorithm converges for all points in the square of side
2 centered on the origin of the (x,y) plane, that is, for

x2<l ~2<1 (30)

provided that the following conditions are satisfied.

f

(31)

These conditions are unlikely t~ be satisfied on the first pass of the algorithm but are
almost always satisfied on subsequent passes associated with the smaller stngular values
of the given matrix.
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