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Algorithm for Singular Value Decomposition
D. C. Rcss

Electronics Division
Los Alamos National Laboratory
P.O. Box 1663, Los Alamos, New Merico 87545

Abstract

An iterative algorithm for the singular value decomposition (SVD) of a non-zero m X n
matrix M s described and illustrated numerically. Derivations of the algorithm and suf-
ficient conditions for convergence are outlined.

SVD is one of the most important procedures in digital processing of signals and images,
and in applied mathematics generally. SVD providas an effective way to find the rank of a
matrix, to comprees data, to find the pseudo-inverse of a matrix and, in general, to cal-
culate with rectangular and square asymmetric matrices almost as easlly as with square sym-
metric matrices, The eigansystem of covariance matrices and other symmetric matrices of
the form A zf may be found accurately from the SVD of A. The theory of the SVD is well
presented In a famous 1958 paper by Cornelius Lanczos in American Mathematical Monthly.

The basic facts are that any non-zero matrix M of rank r may be written as the product
of three factors: (1) mx r partial isometry g; (2) positive-definite r x r diagonal
matrix D, (3) r x n partial isometry V.,

#=Tpy 1T -vT-: D=UN

1<?

p-ly,
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The pseudo-inverse of M is then: ﬂ* -

Each pass of the aigorithm produces one set of corresponding singular elements; that is,
one diagonal element of , along with the corresponding rows of U and V. Each pass
starts with a trial row of U and a trial row of V. A trial singular value corresponding
to the starting rows is then found along with measures of error. The alqgorithm then finds
a new pair of trial singular rows to start the next iteration. The matrix M .8 progres-
sively deflated and the deflated matrix is used to start each pass, but the original matrix
is used for all computations within each pass to avoid unnecessary accumulation of round-
off error.

L2222 2 2R 2K}

1. An important procedure that is often used in the digital processing of signals and
images, and in applied mathematics generally, is the singular value decomposition (SVD) of
a non-zero m X n matrix M of rank r.

M=TpDy = j& T v Ui =1=v¥ 1
ey X Ty w(k 0T -x-y8 W
DeumY v = (U BT yM=pyv MV=-Tp (2)
D is a ponitive-definite r x r diagonal matrix and I the r x r diagonal matrix
(Larcwos 1958)., Fach set

{_Q‘ Yy '(!ﬁ} k=1, 2, voux (3

ie called a set of corresponding singular elements of the matrix M ind Lpei; product {s
an m x n matrix called the corresponding dyad. "The n x m matrix MT = Vv D-'U {8 the
pseudo-inverse of M. The m x m matrix M M? « WU and the n x n matrix MtM « Vv

represant perpendicular projectores on the row space and on the column apace, respectively,
of the matrix M.

Tha main purpose of this paper is to pregent an iterative algorithm for the SVD. The
Buclidean norm is used thrqughout, along with the standard inner product and Di-ac notation
(Huggina 1963). A vector 2X in a primal space (a apaze of signals for example) {8 repre-
cented by a row {(X. A vector |F) in the dual apace (for example, the net of linear measur-
ing devicen appropriate for the given nignals) is represented by a column [) . Baues are
orthonormal unlesp otherwine indicated. Though our resultn may be extended easily tu com-
plex vector apacen, we confine attent.on in thia paper to reul apacea ao that ~ means
tranaposition of rows and columns,
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2. It 18 convenient to scale M initially so that the magnitude of its largest el :ment
ia near one and then to scale D appropriately at the end uf the algorithm. A unit trjal
m-row (U and a unit trial n-row (V are needed to start the algcrithm. The normallzed
transpoae of the largest column of M is a reasonable choice for (U along with the
normalized largest row of M for (V.

3. A trial singular value corresponding to the trial rows is then found by

y= {eny¥) = (xrT) (4)

vhich must be positive, by reversing the sign of one of the trial rows if necessary. The
squared norms of the residual rows

RE& QE-Y(u (s 8Qn-v{v

are then found by

(RE) = v?.- v VA (vErY)
EF) - -4 W' & (unEY) 8 (rR)+ (%) (5)
If both residuals are sufficiently small as measured by 1, then {U r Yo (!}

closely equals one cf the sets of corresponding =ingular elements of as can be seen

from the following theorem:.,

Theorem 1: R L (ul _ —— - - . -~
Froof: (R[T) = (RU) = (YHET) - (umM¥V) (UU) = (urV) - {UMV) =0 o
Theorem 2: {s|__ | (v ~ - 7 7 - -~
Proof : (sm SV) =, (umMy) - (_!! (_! ﬂ!)-(!ﬂ!)-ou
Theorem 3: is the L projection of (vI¥| {u]
Proof: 1s collinear with (u] ) ﬂ self oist and 1dempotent
Y <u Gty Gof- Gy o vm] o
Theorem 4: Yy <V} is the L projection of (UIH] onto (Vl
Proof: Similar to Theorem 3. a
Theorem 5: ((U - (Uk ;y {v= ( o Y- Yk} \<5 - (g r {8 = (Ox
Proof: Substitute premices into Equation {(1).
Theorem 6: {g) 'Y s (!} is one of {U 18 an eigenrow of M N
tHe sets of corfesponding =2 { heloncing to eigenvalue Yzl
singular elements orf M. (V is an eigenrow of
belonging to eigenvalue y
Theorem 7: {(B- <_ <}-}{(U - e (- VR Yk}
4. If elther residual di€fers appreciably from zero, then the algorithm is repeated
with the trial rows perturbed in a direction intended to reduce the residuals. Lat i
and (V he replaced with normalized vers:ons of (U + (P and (v + (Q where {P and
are small perturhations. The residual normes squared then become
%) (v + (Q M v) +9)
(r ®) i
(6)
(s ) - []

Setting both residuals to zero and dropping terms in (P and (Q of aecond and higher
order ylelds,

u2+z(g‘lnv)+zv (pﬁ')] l_y +zy(pn§'}+2y(g'g‘§')] -0
M+ 2{enTT) + 22 ()] - [P+ (enT) + 2y (2 ¥ T))

which can e rewritten in partitioned matrix form.

& T &

(7)
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With these definztions, oyr problem reduces to solving Equation (11) for (g and then

the direct sum of P and Q 1s given approximately by 2.

(zw=-3(z (11)

[ <& (JE = (2 (12)

The general solution for (z in Equatio &11) is (1/2) (le Wi~ 1w + ¢ (A where
<;A is any unit row orthogonal to T 'WT Clearly, the solution of least norm is
the one with ¢ = 0.

The method used here to locate a minimum of T is an example of the Newtun-Raphson
algorithm which i2 analogous to the use of Newton's Methcd to locate the vertex of an
erect parabola starting from any point on the parabola. As shown in Pigure 1, doubling
the cgmputed perturbation greatly accelerates convergence, assuming in our case that 2
and are small., Applying this principle to our SVD algorithm, we redefine 2
follows.

¢ TG ] = G wi )

After approximate perturbation rows gg and Sg are found from Equation (13) and added
respectively to (g and V, the resulting sums dre normalized and used as new trial rows

for the next iteration of the inner loop of the algorithm.

SLOPE =1{'(x)

[x, 0]

®

: f(x)
[ ]

— -

L ft— a—o 1
2 -—

"igure 1. Acccleration of convergence.

5. The inner loop of the algorithm, defined in Sectione 3 and 4, is repeated until] hoth
residual norms are sufficlently small as measured hy their sum T. The current set of
trial rows and corresponding trial singular value is then selected as a close appruximation
to one of the sets of corresponding singular elements of M. This step ends the pass that
started with the selection of initial trial sinqular rows and returns control to the outer
loop of the algorithm for the selection of a new pair of trial singular rows to use in re-
atarting the inner loop. To accomplish this objective, the dyad '%§ V is found yrom
the results of the previous pass, subtracted from M to form a deflated matrix N which
18 then used to determine a new pajr of starting rows U and (! N in progreas.vely
deflated at the end of each pans. The original matrix M is umsed for all calculations in
the inner loop of the algorithm in order to avold unnecessary accumulation of round-off
error,

A reasonable stopping rule for the outer loop of the algorithm can be based on the com-
putation of the Euclidean norm of the deflated matrix N at the end of each pass and
atopping the algorithm when the norm of N 1is sufficiently small. Additional measures of

error in the SVD representatiﬁp M may b2 obtained from the Fuc'idean norm of any of
the following matrices DV, D-UM ?ﬁ v - I,V V'- 1. These mearures are rela-
tive if applied to the scaled version of M and absolute If applied to M.
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6. An outline of the inner loop of the SVD algorithm is8 given in Table 1 along with a

- measure of complexity of each step. For the sake of simplicity, only multiplications are
counted. The total number of multiplications in each iteration in which all four tests are
pasced is 4mn + 12(m + n) + 10. Tests 2-4 will be discussed later in this paper. Entry
to the inner loop from the outer loop is at Step 0 and return to the outer loop follows
Step 5.

Tatle 1 Inner Loop of Algorithm
Step Computations _ Mu catjons
0 Given: m x n matrix M, starting m-row (g,
starting n-row ‘x
1 (UM anda (V¥ 2mn
2 p2 and v2 m+ n
3 Y, including check m+n

RS VR C VR 1

5 Test 1: Compare T with stopping limit of inner loop.

6 Test 2: Compare with previous iteration to ensure

supstantial reduction in v
7 y(!'ﬁ', vzfg, <gh_1§ 2n + mn
8 Y (UM, w2V, (y¥n 2n + mn
9 Agsemble (g and W.
10 W W and Det [W W] 3(m + n) + 2
11 Test 3: Compare determinant with lower limit.
12 (wT)-1 3
13 (Tl 4
14 (P Q@] = (rmmWi-lw 2(m + n)
15 Test 4: Compare norm of perturbation row with upper m+n

limit to prevent excessive overshoot.
16 (u+ (B and (v + (Q

17 Normalize to find new (g and <!. 2(m + n)

18 teturn to Step 1.

7. Several numerical exampler of the application of the SVD algorithm to gome rela-
tively small matrices (J x 5) have been developed and studied. In meveral of these ex-
amples, the starting rules normally employed with the algorithm were ignored and intention-
ally poor cholces were made for the starting rows. In all of these examples, one {teration
of the inner loop of the algorithm resulted in substantial reduction of the residual rorma
and of the yum of the angies between the trial vectors and the singular pair to which the
trial vectors were converging. In view of the tedium of the required calculations even for
small matrices, only one numerical example is presented here. In this example, the {nitial
trial rows are determined by reasonable starting rules.

1 640 -, 640 1.008 2304 2640
Given that M = . 480 -, 480 .816 . 2118 . 480
~-.300 . 300 .240 .820 -.300

We obtain atarting rows by normalizing the largest row and largest column of M.



(u=- |[Toe | .816 ] .240 ] 1 _

. 9072

(v- [.640 [-.640 [1.088 [ .384 | .640

756
{um= | .735691 |-.735691 ] 1.381014] .615200] .735631]
(v¥E=- [1.6 [1.2 1o.0 |
v= [(yET) = 1.969567 check: [(uM]T) = 1.969567
¥2 = 3.879194 u? = 3,909394 v2 = 4.000000
(RE) = v2 - y2 = 0.120806 {s3) = u2 - 42 = 0.030200
EB+ (8T = 0.151006 {r - [L120806 ] .030200 ]
00000  [.00000 |-.69514 | -.15101 | .15101 | .00000 | .25168 | ~.15101
W=
- .00000 |.00000 |-.17378 || -.11476 | .11476 | .0616) .27342 | ~-.11476
- .614974 | .241605 e 7y 1 [-148263 ] -.241605)
WWHa= hh - -
== .241605 | .148263 -037805 | 541605 | -.61497
(peWilw - | (2 f (@

- (ZO0000 ] .00000 |-.16669 J-.01173 ]-.01175 ]-.01994 ] -.00706 ] -.01173 ]

After adding these perturbation rows to the initial trial rows and normalizing, we have
a new pair of trial rows with which to start the next iteration.

{u=- [.79998 [ .59998 [ .n0517 ]

{v = [[T40000 T. 40000 J .e68n0G ] .23998] .40000]

In this example, the SVD of M is known exactly and we can deduce that the algorithm
is converging to th: following set of corresponding singular elements.

(h' [ .80 | .s0 | .00 | Y, = 2.00
M1t [ 40 ] -.40 J .68 | .24 ] .40 )

The angle betweer the trial row (U and the singular row (U is reduced by one iteration of
the inner loop of the algorithm from arccos(.934784) = 10;008° to arccos(.999972) = 0.429°,
that ls, by a factor of more than 20. The jinitial trial row (v vas chosen egual to (vl

and the effect of one iteration is to change the angle between (V and ] from 0° to
arccos(.999995) = 0.177°. Thue, even when the algorithm is converglng hdimally, one of
the two angles may increase by 4 small amount and this effect is more than cancelled by a
large reduction in the other angle. This behavior is related to the zig-zag approach to
solution called "hemstitching® which 18 common with algorithms of the Newton-Raphson or
stecpest~descent type,

in normal uee of the algorithm, we muat rely on 1, the Lotal residual norm squared,
to measure distance betwaen our trial solution and the final solution. Let us carry the
calculation of our numerical example through the second iteraticn as far as finding .

(v M= (79843 | -.79843] 1.36120] .468423] .79843 ]
{v¥= [159999 ] 1.19999 [ -.00002]
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[(g 5]3) = 1.99994 Check: [(g‘ﬂ']g) = 1.99993
2 = 3.99982 v2 = 3,99994 1 = .00020 + .00008 = .C0028

Note that one iteration of the inner loop has reduced both (Bfi) and (§-E> , and that it
reduced /T by a factor of more than 20.

8. There are several special cases to consider. First, we note that the null matrix
0 has no SVD. If the source of matrices to be factored by the algorithm can possibly pro-
duce 0, then the outer loop of the algorithm must first test the given matrix to ens.re
that it is not 0 before proceeding. Second, it is important that the <y found in
Step 3 of the inner loop be positive, s0 we need to consider situations where could
be zero. If (U 1is orthogonal to all of the singular rows <Uk, then (U M = (0 and
y = 0. Similarly, if (V is orthogonal to all of the singular Tows Vi then (VﬁF $
and v = 0. Another way that vy can be zero is: (U = (Uj and {v'¥ (Vx where neither
i nor k exceed r and i ¥ k. Thus, the check in Step 3 must ensure th the two ways
of finding Yy agree within allowable round -off error and that exceed zero by more
than allowable round-off error. If vy =0, then either U or {V must be replaced
betore proceeding. If u2 < v2, replace (U; if u? > v2,'Treplac (Y. The replacement
ought to be orthogonal to all previous tridl rows.

Let us consider cases in which Det[W WI = 0. The cases described above that lead to
Yy = 0 also lead to zero for the determinant. The cure is the same as that described in
the preceding paragraph. Another way that the determinant can be zero i{s: (U =
k £r. Thls case corresponds to normal convergence behavior and causes'ﬁo
p oblem 'Eecause any iteration that would lead to Det[w'W] = 0 with vy 4 0 would be
terminated at Step 5 and the determinant calculation in Step 10 would not be reached.
Further study may show that the check in Step 3 may eliminate the need for Test 3.

9. In order to study the behavior of the algorithm and sufficient conditions for con-
vergence, let the trial rows be described in terms of deviations from a pair of corre-
sponding singular rows (Uk and Vk of the given m x n matrix M of rank r. Let N be

the deflated matrix definé® by: NW® M - 61) Tk (V-
(o= A -2 {ug + x(x 0 <x? <1
Qu=sA-y2 e+ v{c 0 <y2 <1

The rows <é and <g may be any unit rows such that (F_L<Uk and (G_L<V and such

that (F N >0 for (x%X,y) in the first or third quadrants or _ C ) <0 for
(x,y) 1in the second or fourth quadrants.

(Um= v A-x2 (vc+x {(EN
(VE= v A-yZ {u+y (cF
W= (UMHETY - vg(1 - x2) + x2(ENFNT)
e (yEHT) = g1-y) +y2{(c TN T)

v (UBT) = (YHET) = v A1 - x2(1 - y2) +xy (ENT)

At this point, we can see that the condition on the sign of <£ E'E) is necessary to
ensure that Yy 1s positive for all (x,y).

(RE) = v2 - y2m v1 - y2x2+ y2 (g W NT) - x%2(r nT) 2
- 2xy/1 - x9(1 - y) v {F & T)
(sT) =@ - v2 = g1 - x2)y2 + x2(ENNF) - x2y2 (E N T) 2
-2y - (1 - yHw(ENT)
te (REY + (ST = vhx2 + y2 - 2x2y2) + 2{r NTF) + y2{c TN )
~2x2y2 (E N T) 2 - axy/M1 - x2)(1 - y2)y (E NG (14)

Note that +t(x,y) > 0 and .iJ,M = n,



In order to develop a geometric plcture of the +t(x,y) surface, let us consider a
few of its cross-sections: X = 0; y = 0; x = y,

x=od t=[vg+ (cFNT)]y? (15)

y = 0% 1-[yi+ (rg'ﬁ‘f)] x2 (16)
. - 2 - x4 2 T - x4 24 x2

X =y 1= 2Yf(x x4) + ix2((%§¥7:f2k <F2: ‘ch NTY 2+ x (c ¥ N T)

= x2(2¢2 + D2) - x45zc2) where C2 = (17

(E NI -T) (G)EN'?) 1_%(1 -F) (A %)

Note that E) (5, §> (ﬂ, I —_'F_) (f_, and I - '_3_) <§ represent perpendicular projectors.
We see that Equations (15,16) represent parabolas and Equation (17) rep.esents a quartic

t hat approaches a parabola for small x2 as showr :n Figure 2. Our algorithm was

desxgneg to work well with paraboloids, so we expect convergence for almost any vy

when is small and for almost any X2 when Yy is small. To_obtain some

initial ideas of conditions for convergence when neither X< nor Yy are small, let us

consider Equation (17) and its first derivative.

dt/dx = 2x[(2C2 + D2) - 2x2(2C2)] (18)

The stationary points of 1T(x,x) are at x = 0 and at x = txy where

2 _2¢ + D% >1

2
2 2 )

= (sin 45° (19)

and T(Xy, Xp) = (2C2 + D2)2/8C2 while 1(1,1) = D2. The stationary point at x = 0 is a
g lobal minimum where T(O 0) - 0 The other stationary points are local maxima of 1Tt(x,X)
which do not occur if 5 Note that the smallest xf§ is 1/2 corresponding to the
case where both trial vectors are 45° from one of the vectors in a pair of singular
vectors.

g X
@ode — -
XM 0.5 B 0 0.5 1

Figure 2. T(x,x) for D2 < 2C2,

A somewhat oversimplified view of the behavior of the algorithm can be seen by studying
Figure 2 where point A represents the initial choice of trial rows. One jteratior of the
inner loop of the algorithm would yield a new trial represented by the point B which would
lie at or near the origin 1f =+t(x,y) where parabholoidal or nearly parabolcoidal. Because
of the quartic nature of the «t(x,y) surface, the point B will lie beyond the point
nearest to the origin along the direction of the perturbation vector. That _is, the al-
gorithm will overshoot The amount of overshoot will be small for small xﬁ but will be-
come very large for x4 near xﬁ. However, as long as xi < Xf, the ulgorithm will make
changes in the correct direction. This observation suggeets that the length of each
perturbation vector obtained, at least in the first iteration in each pass, be checked and
reduced, if necessary, to some preset maximum allowahle length. Thus, Test 4 is included
at Step 15 of the inner loop just before the vector addition and renormalization steps.
Calculations have been made on the example of Figure 2 and on several other examples for
two values of the maximum length of the perturbation vector: 1//7 and 1/2. Best re-
sults have been obtained with this 1limit set at 1//7.

If xi exceeds xﬁ , the algorithm may make changes in the wrong direction,
Many, i{ not all, of Buch caces may be detected hy noting that the new pair of trial rows
results in only a relatively small decrease in 1 or, rarely, a small increase. Such
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cases mayv be treated by reversing the direction of the calculated perturbation by inserting
Test 2 at Step 6 of the inner loop. Further study is needed to set the limiting reduction
ratio used in this test. A reasonable choice appears to be that 1 not exceed 1/

times the value obtained on the previous iteration. It appears likely that Test 2 will be
needed only on the second iteration in each pass. Further study an¢ computer testirg may
show that the use of reasonable starting rules may make Test 2 unnecessary.

We proceed now to a more thorough analysis of the algorithm wnich is of the steepest-
descent type with an acceleration factor of two. The descent may be best visualized in the
(x,y) plane where the two components of the perturbation vector are given by

2 4
AX = - 21T _/( + 15)
X X Y (20)

2 2
Ay = - 211y/(1x + Ty)

where 1Ty and Ty arte the partial derivatives of t with respect to x and y. The
length of the perturbation vector is then

(ax)2 + (ay)? = 21//43 + Tj 2 p (21)

As a measure of overshoot, we define Y as the ratio p/d, where do is the distance

from the startinag point to the origin of the (x,y) plane. For the example of Figure 2,
we have

2t/ 427
- - 2, .2 2 F X _ _1u/x%
b4 p/d0 [21/ 'JT)( + Ty]/-\ﬁ( +y {2 xz -

X
(22)
_xec® + 0% - ¥¥ac?)
2x C2(1 - 2x%) + p%/2
where we have eliminated the zig-zag effect by considering the case where 1y = T1y4.
The overshoot effect grows in importance as D2/2C2 decreases. Consider the worst
case where D2 is negligible compared to 2C2
2 2.2 2 1 - d%2
2C° - 2C™«x l - x o
YV = == et e (23)
2C°(1 - 2.7) 1 - 2x l -4
X o
The upper limit on the length of the perturbation vector does not have an effect for
init "al trials closer to the origin in the (x,y) plane than about do = 1/2. In the
example of Figure 2, the smallest d, for which ppax = 1//27 has an effect can be
found by
1 —d§/2 Ve 3 2
—1_—d§— a, = 1/7/2 do-/fdo—zdo+/!'-o 4, = .57 (24)
o]

Thus, oscillatory b«navior does not occur.

In general, the descent to the origin is not direct but follows a zig-zag path which
can be visualized in the (x,y) plane by studying T4 and Ty which are found by

differentiating Equation (14),.
6}2 - 4},_"}_—_}_2 'Y(F N 'U)(l-sz)
1 - x2 ¥

~ Z
A Zin(l - 2% + 2y<g E_N’g‘) - 4xy2<£ N 9_)2 - 4x.Ji—f—$ -yk(E EE)(I—Zyz)

vom vl - 29ty + a(ENTT) - axy (e

=

-4

(25)

X =0 wp (26)
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y=0 = (27)

X BN
Y=1x * Ty - ZX[[Yk (F N g)]z(l - 2)(2) + <§E!a‘> ( ‘a>2] (28)

Study of Equations (28) shows that (x,y) = (xm,¥%y) 1is not a stationary point of
T(x,y) 1in general, although it is a stationary point ot T(x,x) along the intersection
of the 1t(x,y) surface with the plane x = y. W> gee that the desceat from points such
as T(0,y) or T(x,0) if not generally along the parabolas connecting such points with the
origin, nor 1s the descent from T(X,X) generally along the quartic curve represented by
Equatiosn (14). The effect of one iteration of the inner loop of the algorithm is 11lus-
trated for a typical case in Figure 3 where the point A represents the initial trial and
AB represents the calculated perturbation (before renormalization). If the algorithm is
converging, UB <

y
f— 1] —
: c
A
Be” —
0 D X
AT = d,
AB=p

Figure 3. Effect of one iteration.

In the worst cases, the algcrithm converges for all points inside the square S of side
centered on the origin of the (x,y) plane, that is, for

x2 < 1/2 y2 < 1/2 (29)

corresponding to the cases where each trial vector is less than 45° from the corresponding
vector in a pair of singular vectors. The prcof of this statement follows from Theorem 8,
from the steepest-descent nature of the algorithm and from the use of a limit on the length
of the perturbation vector which affects starting points near the corners of the square S.

Theorem 8: There are no stationary points inside the square S except for the global
minimum at the origin.

Proof: Set 1y and T as give, by Equations (2%) to zero and transfer the terms with
radicals to t%e opposite side of the equals sign. Multiply the resulting two
equations to find f(x,y) = 0. Study of ¢f(x,yYy) shows that it is non-zero
for all points insgide S, O

Study of T,/Ty 4 tan 8 shows that the direction of the perturbation vector never dif-
fers by more t*an 45° from the direct path to the origin at all points in the square §S;

and, in most cases, the deviaticn in angle m the direct path is much less than 45°. The

zagﬁer E&int follows from the fact that (F N N G) is usually small compared to (F NN E) and
G N
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It can also be shown that the algorithm converges for all points in the square of side
2 centered on the origin of the (x,y) plane, that is, for

x2 < ] y2 <1 (30)
provided that the following conditions are satisfied.

) '

< [Y: + 2\ -'13)2] ' (31)

Pas
o
1)
1}

(s

These conditions are unlikely to be satisfied on the first pass of the algorithm but are
almost always satisfied on subsequent passes asgssociated with the smaller singular values
of the given matrix.
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