A major purpose Of the 1ecnni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained n
DOE’'s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1




LA-UR-84-2343 NOTICE
PARTIONS OF THIS REPORT ARE ILLEGIBLE. !-

has been reproduced from the bast availabls ,
c:;:ﬁ:pmltmumdoumhhqvﬂ- L..‘C'/‘}"Fiﬂﬂ AS T - - 5
ab .

Los Alamos National Labormory is nperated by the University of California for the Unitsd States Department of Energy under contract W-7403-ENQG-38.

TITLE: DESIGN AND DESCRIPTIVE TOOLS FOR SYSTOLIC ARCHITECTURES

AUTHOR(S): Paul Steven Lewis La=Un==4-23.3

DECA Q165821

SUBMITTED TO: Conference on Real Time Signal Processinyg V1I, Part of SPIE's
28th Annua‘ International Technical Symposium and Instrument
Exhibit, heing held in San Diego, California on August 19-24, 1984.

DISCLAIMER

This report war prepared as an account of work sponsored by an agency of the Uniled States
Ciovernment. Neither the Uniled States CGovernment nor any agency thereol. nor any of Ihm
employess, makes any warr:nty, eaprexs of impled, or sxsumes any legal linbility or resnonsi-
bility for the ucvuracy, completeness, or usefulness of any information, apparatus, product, or
process diciosed, or represents that its usc would not infringe privately owned righs. lel‘cr
ence herein o any speaific commarcial product, procew, of wervice by trade name, trademark,
manulacturer, or otherwise diwa ot necevanly combitute or imply its endorsement, recom
mendation, or favoring by the United States Giovernment o uny agency thereol. The vh-l

am. opinions of authors expressed herein do not necensarily state or reflect those of the
United States Gaivernment or sny agency thereol.

By accepiance of 1this article, the pubiisher recogmizes thal tha U B Government retams & nonerciugive. royaity.11ee icenss to publish o reproduce
the pubighed torm of this contribution, or 10 allow oihars 10 4O 80, tor US QGovernmen Luzposes

The Los Alamos National Laboratory requests thal the pubiisher idenhily Ivs ashcle as work periormed under ihe suspces of the U 8 Depariment of Energy

,)\ { N‘
Los Alamos National Laborator
L@S A @[ﬁm@ Los Alamos,New Mexico 8754

7O NO 36 Re
81 NO MM /80



About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Design and descriptive tocis for systolic architectures
Paul Steven Lewis

Los Alamos National Laboratory, Electronics Division
Mail Stop 1957, Los Alamos New Mexico 87545

Abstract

Automated design and descriptive tools are esaential for the practical application i
highly parallel special-purpose hardware such as systolic arrays. Ine use of special-
purpose hardware can greatly increasc the capabilities of signal processing seysteas.
However, the more limited applications base makes design coats a criticai tucior in geier-
mining tecknlcal and economic viubility. Systolic systems cuan be uzscrizca at aswveral
levels of abstraction, eacn of wihicn has unique descriptive requiresents. 1nif paper
focuses on the descriptive i8sueas Involved at the system arcnitectural level. 100ls ac
this level must oridge the gap between logic- und circuit-orientea coaputer-alded aesizn
tools and algorithmic deacriptions of systolic architectures. Traaitlionaiiy, haraware
description ?angunge- (HDLe) have been used at this level Lo describe conventional
computer architectures. Systolic architectures, however, have different requirezents.
This puper examinecs these requircuents und develops a set of criteria for evdluacing
liDLa. Four popular HDLR are evaludted and their strenglhs .nd weaancsses noted. ae
final section of the piper summarizes ongoing ellorts at Lod Alumos to develop g sys.olic
urray HDL based on the «.(ONLAN family of languages.

Syatolic prlnclglunl can be uReu to construct Rpecidl=-puruose roal-tlze siznai
processing systemsé that acaleve high throuphput by expluoiting alg ritnaie propestics.
‘lhese principles ol repuiarity, localized comnunications, aad paratlelspigelines execti:isn
nlcely mateh the capatilities of Integrated clreull technolocy. heace, gvstolic arrays
are an actractive methou lor bullulng highespred speclal-purpuse paruwdre wo rtapiuly soove
syphlisticated probloms.  However, tne use of speclal-purpose hardware Lizits the apptica-
tiona buse, making Lixed corts such as those ansoclated with syste: design muen zoro
critical.  Although denivn conts are In part reduced by the very gavure o sv.toric
syn‘umu. turther reduction can rcesult trom the ude ol dutomated desizn Jand descriptive
touls.

The dealsn process stretenes Lrom the conception of Lhe didoritio alin 1L8 W, I0. 00t
an architeccure down to tne electronic {mplementation.  Priaary issuer involved n i
design ol special=purpone hardware such ad svstolic arrag® incluae dvvely; sent el tae
parallel alporitnm, itw mapping onto an appropriate arcofteclure, and the design ol the
circuitey to realice the arenitecoure,. At cach stage, dutomdleo gesian LoulR Ccud sfedl.y
akislsl the designer and make the svnchesis ol Bpeclal -purpose svstens ceonoatcalay
viaule,  For oxample, contitaing the currect pertornance ol oan algoritnm sust precece
putting sipnificant ettort into the desipgn ol the arcnhitecture and circult.y tor its
frprtementation.  Thin process 1 complicated by tae fact tpat toe olpozithn and arenite:-
ture can be highly interdepenaent.  Valildating operation ot on alporithin coulu be very
vestdy T new hardware hoa 'o be ausigned ana built to tert 1t Ajpropridte desian toc.s
can ease this burden by allowing an alperithm and {ts architectural sapping to be
doderibed and simulated (o oan abrtraet manner, with only cnousn detafl to cneck Uae
functioning of the aleorithn, but «lthout the extraneous detatls that would be necessdar.
in the complete desipn ut g nardware reallzatfons Derian tools ¢can also gaslat 1 trans-
torming the veritied absatract architecture {nto a particular naraware redalication,  In
gauvinerdl, o pood pet ol dowign touls allowk the derivner Lo describe, Lesl, amd trade ol
only those factors that are Jmportant at that particular point In the aesiin process,

A wvrincipal requicement (o gutoait ing the deslpgn process is a tersal notat lonal
mechaniem that is capable ol previding complete and unanbipguoun deseripticns ol tne
cancepts being explored,  This notationgl mechanism then provides o comaon hasis tor
comparinong hetween alternate sethodn and an Input mechanisn to gutoated Jderivn tools.
Hardware dese=iption Lamguaver (HDL) amd their assoc Lited aedien teals nave loss Jeen
used In this manner to add o the dediph and descrlption ol couvent jonal (oaputer arent-
tectures,  Ihis poser Bdentitiod tne pnotat bonal teatures that dre necesdarys tor he
deseriptlon ot hienly paralicl, vegqular avehitectured such as svstolice arravue, A wer
L muage criterta ia deve] s, Laur povular IDER are evaluated uaing tadse oriferia, o,
Ther atrensths aml weaknesses are noted,



Hardware description languages

Digital systems can be viewed at num;rous levels of abstraction, ranging from circuit
specifications at the transistor level«to mathematically oriented algorithmic Jjescrip-
tions. Speclal-purpose hardware can be divided into the levels defined below.

L]

Data intensive problem., The definition of the problem being addressed by the
special-purpose hardware.

Highly gara!lel algorithm. The general solution to the oroblem that will be
implemente n the hardware.

Abstract machine. A high-level view of the hardware that will implement the
algorithm. This Includes the overall strurture and lata [low.

System architecture. Description of how the abstract machine will actually pe built.
This level ageals with the hardware components to be utilized, the interconnection between
these components, and tneir detailed vperaiion.

Circuit/conponent. The design of the circuits and components used in the systex
archTtecture 18 delined. Tnis encompasses the traditional logic and device levels.

System implementation. The lowest level of abstraction 1or digital circuits in whnich
the haraware reallization in a particular technology is detined.

Tools and notations exist [or describing each of these levels. For Lthe higher and
lower levels many of these tools are widely accepted. For example, nathenatical notation
ls normally used at the algorithmic level, whereas high-level progzrumaing andg data flow
languages are usetul Iin describing the abstract machine. The circuil/compouent cesign
level can be addressed by logic diagrams and Boolean equations tor Jdizital pates and by
schematics und differential equations for thelr analoy realization. 1e audition. zost ol
the current computer-aided design (CADY tools address Lhis level.

The description of digital systems at the interm>diate svatem architectuse level is
usually far less lormal, many vtimes consisting o1 block diggrams and notations ia an
enpineer's notebook. NHDLs have evolved over the past U vears tu toraalice desian .ind
specitication at tnis level. Some benefits that can b derived Irom the use ot J more
foraal notation are listed below.

- A more preclse and concise description of the dsyvsioen than is possivle usine intoraal
documentation, The HDL can provide i major portion »f svstem docusentation ang can also
serve Jas o medium ol comnunicat fon amony, system desipners Jdand beiweon desiiners ahd uers,

A mechanism Lo Input a system deseription fnto automated desicn Ltools, ke BDL can
serve ds the input specitication to CAD and engineering Loo!s sucn as harawiare coepllers
and system simulators.

- A cscriptive methodolopy that covers o wide range ot levels ot abstraction consise
tently and provides o well-detined interface to both lower- aug hlpner-level descriptiors,
An HDL can provide a coherent 1ramework in which to describe systess nierarchically ana to
vipress the Interfaces between separate modules,

Lvaluation criteria

Ine evaluation criterla developed in tnis paper are proupad into tive zajor caterorties.
lhese cateporfes include tonicen thiat are tmportant e Hola in general and Lo the descerl-
tion ot systolic systems in particular,  Ihe catevories are () lancuase ranee, ()
description atruciure, (3) descriptive methods, () tining. and (5) lanpudge provisiong.

A scectlion s dovoted to cach catepory. Fach section contarng g description ol «nat is
covered, along with overall poals In the catepory andg thedr Justltications,
Languagse range

The ranve of o Tanguape I8 measured by how many of the escriovtive levels ol yical
systems U can etlectively address,  ordiginally HDLs were ained at ceserioing retister
transter In dinital systems, although sone were developed Te descerite the prograanting
mod<l ol o P The teend han been towvard i widenlng ot the scope ol both tragitiondl ana
newer Languases, A wlder range increases the senerality ot the Tanaurce  and aliows it Lo
provide o ounitied acthod tor doeseribing sydboms ot any tevel ot decall. 8y provuding a
unbora desceriptive aotnod, the bantugee can support tap=dowh, bollod=up, atd
combinat fonal desipn stratoples,



A wide range is desirable in an HDL that is to be used as a tool for the design of
systolic architectures. Because the principal objective of systolic systems is to match
the architecture to the problem, a top-down design approdach is generally used. It is
useful to be able to express the more abstract ar:hitectural structures of the solution
girst, tten to refine chem into more detailed hardware impleumentations withiin cthe same

ramework.

One powerful method of providing a wide language range 1s through abstraction of data
and operations, This abstraction allows a single language to address lower levels of
description with primitive data types and operations, and to address lLigher levels using
abstract comgonenta defined in terms of the primitive constructs. Abstraction also helps
control complexity by allowing detail to be hidden in higher-level descriptions.

Description structure

This refers to the propertiss of the hardware descriptions written in the language. A
language ought to provide the ability to partition system descriptions in a hierarchical,
modular manner. This capability allows a system to be described as a series of modules
with more complex apeciafized modules builv out of simpler ones. The language should also
allow mixed descriptions so that different system components can be described at differing
levels of detail.

To handle systolic arrays, the language must have constructs for describing regular
architectures. These constructs must include capatilities for describing the regular
topology of the architectures and for defining modules and then replicating copies ot
them. The language should allow control over whether references to a particular module
cause a replication ot the structure (instantiation of the module) or the sharing of uan
existing structure. Also, the capability of defining modules parametrically Is desir-
able. Parametric definition alluws the specilication of module families. A specific
family member i3 then selected upon module instantiation by the values of the pdarameters.

The HDL must also have the capability to describe various forms of communication
between modules and within modules. This capability is critical for systolic arways in
modeling the data and control flow. In peneral, the language ought tc allow the structure
or partitioning of the description to match that of the hardware being described at Lhe
lower levels or that of the algorithm at the nlgher levels.

Descriptive methods

This reters to the methods avallable in the HDL to describe systems. The HDL must be
able, at any level, to describe ltems by structure, function, or benavior. Structura:
descriptions re those in which a module I8 defined in terins of Interconnection of
previously detfined modules. Behavior is lmplicit in the Interconnection between and
behavior of the componenta. A behavivral description defloes a part In teras of its
actions, as a kind of black box with vutputs as tunctions ol inputs and {nternal state.
In this case, the structure either is left undefinued or {8 iaplicit in the benavior. A
functional description talls in between, usually describing a moaule in terms ot
conditlonal connections,.

Flexibility of descriptive method Is required in wystolle array wock 8o that the 1bL
may be used at diftercat stages of the deslgn process, When we (lrst fnvestligate a
pystolic archilecture, the array topology §8 most casily described structurally with the
processing clements modeled behavivrally. This permits the study of the overall data tlow
tnrouph the array. As the desipgn petd more specille, 1t ts desfrable to aodel individual
parts tunctlonally or structurally, deta‘ling more expllcitly how the system will Lo
built. Then we can study how the proeces:iaing elements work and thelr interaction:s witn
their neighbors. In addition, being able to mix these dederiptions {8 valuable. tor
example, the procesding clements mipht be modeled by o detailed structure while the
boundiry cells and the host interlace are modeled behaviorally.,

The HDL must be capable of Jescriblng the data operations and control, deparately or
intertwined. In other waordsa, (U should be able to deline the data tlow and let the
controul be Implicit or define both explicitly. The capability to define both explicitly
{4 fmportant in many systolilc arrays where the contrul I8 not centrallzed but rather is
sproad over all of the processing elementa,  coatrol can also be dlsteibuted in levels,
where dsome ol the lucal control {8 apread over the processln: elements but where nmore
slobal control actfons might ordpdnate trom a central controller.  For these reamons it §=
fmpottant to have flegible methods ot handbing conrol and data 1 lew,



Timing

All hardware operates in the real world and has some sort of time properties associateg
with it. At the more ubstract levels a determination of the order of operatiuns may be
all that is required. However, at Jower levels a very accurate real-time modelil or gate
delays can be necessary. An HDL for systolic arrays must bte able to handle timing over
all levels of abstractions covered; seneral time constructs must be available at higher
levels and more detailed ones at lower levels. An HDL must "o able to describe bdoth the
traditlongl synchronous systolic arrays and asynchronous variations such as the waveiront
processor”. '

fo HDL for systolic arrays must have powerful methods of descrihing concurrent activi-
ties. It wust straipghtforwardly describe simultaneous events and the dependencies between
them. This is especially critical in systolic array descriptiona betause they are ovased
on highly parallel, pipelined computations that can have numerous levzls of concurrent
activities, botLh at the array level and within the proces-ing elcments.

Language provisions

Syntactic. In general the language ought to be clear, understandable, straightforward
to Tearn, and easy to remember. It should be constructed coherently trom a regular basis
rather than being a4 collection of speclal rases, Since it {8 a me:ium of comaunication,
it must bc readable and writable by pcople., Similar things should be treated in a siailar
manner in the language.

Basic types. Because much ol .ystelic array efforts are directed toward signal
processing applications with heavy numerical emphasis, the KDL ought to supporl lnteger
and (loating polnt numburs nf arbitrary sizes. ‘lthis includes all the cozaon atithmatie
operations associuted with these numbers. The HDL must alro suppur” pasic binary dgata
types and their arsocianted lopical operations to allov detailed ifugic aescripticons o
lower-level modu'es.

Langiage cvaluations

ihe lollowing svections cevaluate four jopular WDLs with rewpect to the above criteria,
The languages covered are CDL, AlUPL, DDL, and I5Ps,

tomputes Design Lanpguage (CDL)

Introduced in 19654, (DL was one ol tre carliest HILS and is protauly the oidest
still in use. CDL ham evolved over the vears fato a simple vot fair., powertul design
tool for the register tranater level of deaiga, 1L is suppuited by a truaslutur ana
.ls'lmulul.or.5 Its simple strructure and poitable dctiware nave aade Col o« jopular

anguane.

CLY is a wonprocedural languapge with slobal variablesa. CDL aescelptl.nr can Jdescrite a
dystem at only one level, No subroutine tacilities are provided, Structures such s
reglsters and memories are explicltly declured at the beginning of a description from a
set of nonextendible data types. Diata paths belween structures dare define! implicitly by
the speciflied data flow. Functional and control actions are described by built-in basi:
and user-defined operaturs, The structure ol the control section {s fmplicitly getineg by
the control operattons it must perfora,

COL Language range.  COL sup, U8 only 9 very narrow ranpe ot the leveis ot gistital
systems dealgn. To s sultable tor describing heterogencous systeas ot Lae register
transter level. It provides no wethods ot data abstraction ond only Liasited operations
abstraction throupgh user-del ined tunetional operations,

COUL dueper (pt fon_struciure, CDL jrovides no abllity to wodulaely structure
descrlptTons, Hence, hlerarcenical acscriptions ire not possible. It does not support
geparate detinltfon and fnst.ntlation ot modules,  kach plece ot hardware used aust be
explicitly dederibed. Buecause all descriptlors are on a single level, ©bL cannnt support
mixed-level hardware deacriptions. (L also does not support parametrie dvetinitions,

CDL descrfipt ive metaods,  CDL describes hardware tunctionally. 1t does not support
seructural ot belavioral descriptions.  Data structure (s laplicit 1n the re dster
trandfers and connectlons specltied, whereas control structure {8 aerived by consitional
clhauses on each atatement,  COL bas no capabllities to specity repular arenftoctures utaer
thin explicitly detinfng every ploce and 4l Interconnections,  Because it {w
nunprocodurat, GDL 48 capable of dedcribing the data and control parts sepatdately amd can
desctibe decuntralized control gtructures,



CDL timing. CDL is based on a simple model of time, supporting synchronous system
description only. Each enabled statement is performed once on each clock cycle.  CDL does

support the description of concurrency. Its nonprocedural nature makes the description or
parallel operations very straightforward.

CDL language provisions. CDL is a simple language that is easy to understand. It is
internally conslstent and has a common syntax. Only integer and binary data types arte
supported. Operations ou these data types are . ivly extensive.

CDL is a simple. straightforwari language. This is both its strength aud its
weakness. CDL's inability to structure its descriptions modularly, along wicth its
iuability to differentiate between a module definition and instantiation, saverely limits
the class of p-oblems it can address. The nonprocedural nature of CDL has bo:h advantages
and disadvantages: On the plus side, it allows for explicit definition of both control
and data structure, which can be useful in distributed architectures such as ssstolic
arrays., On the negative side, this nonprocedural method can he cumbersoae wnen it is not
necessary to define the control flow explicitly.

A Hardware Programming Language (AHPL)

AHPL, developed in the early 1970s8,6 is a procedural lanyuage aimed at the register
transfer ’evel of digital design. It is suppurted by both a simulator and a4 hardwnre
compiler. This esaluation focuses on the second version of this languag=, AHPL I,
that Is supported by the simulator and compiler.

AHPL ie based on a subset of the programming language APL. The selection of the APL
subset was determined by which features suyggested a unique hardware tealization. APl's
notation and control syntax is carried through to AHPL. APL vector and zatrix notation is
extended to bit vectora (registers) and bit matrices (memories).

AHPL can describe a system at only one lavel. Descriptions can be vroeken up 1nto
modules, but a module cannot be delined in terms of other modules. Ko subroutine or
instantiation facility 1s provided. Each module used must be explicitly Jetineu. [ne
exceptions to this are combinational logic units, which are memoryless ana .nay ve getineu
once, like a function, and used In a number of places. Structures sucn .8 registers and
memories are explicitly declared at the beginning ot a module description trom 4 ser ol
non-cxtendible data types. Data patha between structures are defined faslicitly oy the
specitied data flow. The control structure is defined implicitly by tne control seguence
ot the AHPL statements.

AHPL language range, AHPL I8 aimed at the reglater transter level vt aigitul
descriptfon. Recent work has extended thls down to the pate level to gome degree. AHLL
is Inappropriate tor description at any higher levels. AHPL dves not support Juta
abstraction and only supports operalion abstraction to the gegree tnat coabinational logle
unit: can be deflned. 'The current version of che simulator does not even support tnis
amount of abstraction, as it does not haadle CLUs.

AHPL description structure. AlPL does support the partitioning of the system
description [nto modules. It does nut support hierarchical design because modules cannot
be defined {n terms of other modules, ‘The lanpuage does not ditfereatliate between ascdule
definition .nd Instontiation. cdach module used must be separately detined. The lungudee
cannot support mixed-level descrintions because it provides only a single level of
description. AHPL does nol duppur parametric dedinition ot either modules or units,

AUPL_descriptive methods,  AHPL provides only a funcclonal mode ot description,
Hardware entlt[es are dellned In declaratfons, but the facecconnections are laplled by the
control Aequence. No constructs for the dercripiion of regular structures are provideu.
The complle-time operationr ol the CLUS olfer soumie alo in Lhe descr ption ol recurdive and
lterantive combinational structures but are very awkward to use.  Because the derinizlooy
instantiution concept I8 not supported, each elemert in u systolle drray has to be
explicitly detined. Mixed mode deseriptiona are not possible since AUPL yrovides only the
functional deacriptive mode. The language does provide adequate descriptive methous tor
zontrul, but these are in an AL syntax and can be dilficult to decipher. AuPL goes not
support decentrallzed centrol smtructures very well.,  AHPL deacriptions fmply a central
aynchronous control structure that pgenerates the necessary control sipgnals,  Describing a
sel ot linked, lodependent tinlte wltate machines. auch an mipht be tound {n a svstolic
array, o dittreult,  [he ARPL control structures must be bypadsed, and the states ana
state transitlioad ol cach machine mest be described as il one were Jdeseriving data
trangdloeru.




AHPL timing. AHPL contains no general time model and supports mainly synchronous
system description. It provides some support ftor asynchrounous system description with
one-shot entity types and unclocked transfers. However, most of this is girectea at tne
specification of asynchronous interface between internally synchronous modules. AHPL
supports the description of concurrent activities fairly well. Etach control sequence step
can have multiple events happening in a clock period, providing local concurrtency. Global
concurrency 1s supported by different modules operating in parallel.

AHPL languape provisions. AHPL is a fairly simple, consistent language. It suppor:ts
no numeric types, only binary types. The operations provided for binary types are
reasonably complete.

AHPL's preatest weakness is {ts lack of definition/instantiation support. A further
flaw {s its lack of data and operations abstractlon mechanism. For describing
heterogeneous hardware at the register transfer level it {s adequate, but for describing
highly parallel, :regular digital systems across the spectrum of abstraction ir is
inadequate.

Digital Desian Language (DDL)

DDL was introduced in 19688 and is supported by a translator? and a simulatorl®,
DDL is based on the concept of block-structured automatons or FS5Ms. Hardware entities are
called facilities and have scope over blocks, much as variables in ALGOL co. Facllities
are accessible only wichin the blocks In which they are declared. By convention, the
system block concaius only facility declaratiuns that, In effect, function as system
global facilities do. DDL also provides operator blocks that are like function defini-
tiona {n programming languages and segment blocks that are slmilar to the subroutine
constructs of FORTRAN or the procedures of ALGOL.

DDL language range. DDL Is a powerful and complex language that can cover u wide range
of descriptive [evefs. When its basic nonprocedural constructs are usea, it can explizitly
describe data flow and control in the same manner that CDL does. By deiining automatons
ind using state abstracticns, modules can be defined procedurally, us tney are in AHPL.

By taking uadvantage of the block structure and the subroutine-like segsment taciiities, one
cun extend DDL detfinitlons to more abstract levels than those possivle with CDL or Ah?P..
DDL also supports data and operation abstractlon of a sort with Its ability to detine
complex fucilities in terms of simple facilities.

LDL description structure. WDL allows hierarchical modular descriptions. It proviues
rud [mentary support Tor the concept of separation of module detinition ana instuntiation,
although these constructs do not seem to be repularly used. Because of tae modular
hierarchy and wide ranpe of DDL, mixed-level dJdescriptions ol systems cuan te written. in a
single system one dutomaten could be described in great detail, with all o1 the controi
paths explicitly defined and with all operations of a primitive lozic nature, while an
adjoining automaton could be described as a hipgher-level FSM, with outputs determinea by
Inputs and current state. DDL does not supporl the concept ol paranetrlc module
detinition, so it I8 not possible to detine tamilles of similar modules.

DDL descriptive methuds, DDL is mainly pgeared toward functional detinitiovns, much as
UDL and AHPL are. llowever, ils power makes both behavioral ard structural detinitions
possible, although not stra'ghtforward. The division of a system (nto autumatons is
strongly structural, as i« much of the block structure of the language. !he specification
ol operations as a FSM ia to a depree behavioral. Cunstructs are provided for specitying
repgular structure, both Implicitly through stagpered array connections ang explicitly
through a structural {teratlon construct. UODL alswo supports decentralized control struc-
tures very nlcely, allowing each automaton and, to a degree, cach block tu tunction
indenendently. DDL has a good set ot control operetions dand  cenditionals that support
both procedural and nonprocedural control descriptlons.

DUI,_thuing. UDL supports the description of concurrenc; on both the lucal and the
aslobal Tevels. Each statement can be glven a unique conditional under wnicn It occurs,
and larger blocks can be det up to lunctlion in parallel. DDL sup;vrts hoth event-driven
and cycle-driven systems., Its asynchronous latches and transport Jelay constructs allow
it to model lower-level arynchronous clrcults, while Its registers and periodic clocks
support synchronous systems. DDL supports multiple multiphase clocks and is able to uix
clocked and unclocked descriptions,

DDL_language proviglons. DOL 14 a complicated language. 1L uses g very large, unigue,
and nonstandar T character set.  In addition, DDL has some unusual gdelimiter cotventions.
DDL'A basde powase 18 tairly coherent, but {ts syntactic implementatlion 14 not. Many
primitive objects are special cases ot other primitive vbjects, and vbjects ol the gaae
clasd (e.g., faciliticesa) have numerous and diilecing r29trictiond b how they can be




used. The semantics are reasonably unambiguous--but complex. DDL supports a ricn set of
primitive operators for binary types. It supports a more limited set for integer (not
including multiplication) and does not support any floating point types,.

DDL is one of the more powerful HDLs. 1Its capabilities include most of what is
required for systolic array design and description. However, DDL also includes many
features, aimed at general-purpose digital designs, that are not really nccessary for
systolic arrays. DDL suffers from a nonstandard character set aud inconsistent syntax.
In general, it does not seem to be a regular language but rather one of many exceptions
and special cases.

Instruction Set Processor (ISPS)

The ISPS computer description language is based on the Instruction Set Processor (ISP)
notation developed for the description of computer instruction sets. ISP, originally an
informal notation, uai formalized into the ISPL language and later uppraded into the
current ISPS languagell and simulator.

The original intent of ISP was to «#id in the specification and description of
inetruction sets. The language was used to produce a behavioral description uf the
functioning of a CPU, as seen by the machine language user. ISPS has been expanded to
allow its use in many applications of machine description languages, even down to the
register transfer level. ISPS supports only behavioral and functional descriptlions; it
has no facilities to describe the structure of the physical hardware itself.

An ISPS description consists of - set of entities (registers, memory, etc.) and an
algorithmic description of the behavior. ISPS is block structured in the spirit uf
ALGOL. 1t handles concurrency at both the statement and the block levels. At the
statement level all statements are by default concurrent with any necessary ordering
explicitly described by the "next" statement. Statements can be blocked together, and
these blocks can be executed concurrently or sequentially.

ISPS language range. I[SPS is a powerful language and can cover a wide range ot the
higher descriptive levels. 1Its lacE of structural description lLimits its useftulness at
levels below Eehavloral register transfer descriptions. It supports some limited data ina
operation abatraction, allowing functlon-like definit{ons.

ISPS description structure. 1SPS supports modular hierarchical descriptions.
Descriptions can be ot mixed levele, with mudules described at differing levels or
detajl. ISPS does not support separate definition and instantiation of nogules our
parametric module definition.

1SPS descriptive methods. ISPS supports only hehavioral and to some extent functional
descriptions of hardware. Mixed behavioral and functional wode descriptions are possible.
For these modes ISPS provides an excellent collectlion of control primitives. [SPS has no
special provisfona for the description of regular architecrur:--.

ISPS timing. ISPS offers littie support for timing T . t has only a verv
eneral primitive In which one can specify the average - .. : ution time for a
lock. A'rhough ISPS iR based on an inherently synchro c. .  the statement levcel,

it does not really squort either synchronous or asynchr« - ' gn explicitly. ISPS
descriptions are really a level of abstraction above that v .lar issue. At thls

austract level 1SPS does support the descriptlon of concucrtvacy at both the local and the
&lobal levels,

[SPS languuge provisionsa. Syntactically JSPS is reasonably clear and stralghctorward.
It has been used with yreat success to describe Instruction sets of numerous computers.
The languuge has a simple etructure, and {ts syntax ls regular, predictable, and reaa-
able. ISPS does have some ambiguities In its semantlcs. 1t su;_orts integer bhut oot
floating point numeric data types. For Integevs, {t provides ull of the necessary
primitive operations. ISPS suppourts binary !ypes and a rich set of loglc operaturs for
them.

ISPS 18 o very goud lanpuage [or [ts Intended appilcatluns, but it Is not well suited
for systeolic arrays. Itd main drawback {8 Its lack of support [or structural description.
Almost as Important {s its inability to deline and then Instantiate parumeterized (ur even
nonperianeterized) modules. In perspective, [t I8 easy to sec why ISPS {s not well suited
for systollc arrays, Its driving rativnale bhas bteen the description of the operation of
progrunmable CPUs, whose purpose {8 the implementation of a specific instruction set.

Much of the ratfonale behind systolic arrays {s the epeclaliziation ol the hardwiare to the
task. Any generaiity in this kind of approach ovccurs not in the hardware, but at the
design level above.

)



Conclusions

This paper hae explored the utility of HDLs to describe systolic architectures. The
rationale for this exploration can be described as follows: Systolic architectures arte
good candidates for the {mplementation of special-purpose hatrdware. The use of special-
purpose hardware can increase the capabilities of systems. However, special-purpose
hardware has a limited applications base, making design ccsts highly critical. Design
costs can be minimized by the use of automated design tools. The {irst step towatd
automated tools is the development of an appropriate formal descriptive notation.

Syatolic architectures can be described st numerous levels of abstraction, each requir-
ing different types of descriptive tools. At this :time, the level most lacking in a tormal
descriprive notation is the system architectural level. HDLs have been widely used in the
description of traditional systems a: this level; hence, it makes sense to investigate
their utility for systolic architectures.

The use of traditional HNLs for the description of systolic sy-tems at the system
archltectural level has been examined at Los Alamos. HDL evaluation criteria have been
developed in the areas of (l) language range, {2) description structure, (3) descriptive
methods, (4) timing, and (5) languaze provisions., These criteria were then usea to evalu-
ate the CDL, AHPL, ISPS, and DDL languages. None of these language+- provided all of the
features necessary for the description of systolic architectures. This points out the
need for a language specifically oriented toward systolic architectures.

A Systolic Array Hardwar.: DescriptiTn Language (SA:iDL) is currently under devz2lopment
at ‘he Los Alamos National Laboratory. 3 sampL i: being developfg as an application
language in the Consensus Language (CONLAN) fanily of languages. CONLAN is a
deve.opment methodology for HDLs based on the concept of abstract datatypes. CONLAN
family languages are HDLs developed for specific applications but tied together by a
comnon core syntax and common .emantic definition system.

SAHDL atteupts to provide all of the capabilities cutlined In this paper, along with
the Lusic capabilities needed for the romplete description of digital systems. A
translator 18 being written for the lunguage, and a simulator driven by »>AHDL is pianned.

References

1. Kung, H. T. and C. E. Leiserson, "Systolic Arruvs (for VLS])," Sparse Matrix Proc.,
Soclety for Iludustrial and Applied Mathematics, 1979, pp. 255-282,

2. Spelser, J. M. and H. J. Whitehouse, "Parallel Prucessing Algorithms and
Architectures for Real-Time Signal rProcessing,'" Proc. SPLE, Vol 298, Real-Time 3Signal
b'rocessing IV, 1981, pp. 2-9.

3. Kung, S. Y., R. J. Cal-Ezer, and K. 5. Arun, "Wavelront Array l'rocessor:
Architecture, Language, anu Applications,'" Proc. Cunf. Advanced Research in VLSI, M.l.I.,
Cambridge, MA, 1982,

4. Chu, Y., Computer Organlzation and Microprogramming, Prentice-Hall, 1972, Chap. 1.

5. Bara, J. and R. Born. "A CDL Compiler tor Designing and Simulating Digital
Systems," Proc. Int. Conf. CHDL's Applications, 1975, pp. 96-102.

6. Hill, F. J. and G. R, Peterson, Digltal Systems: Hardware Orpanization ard Desiuq,
Wiley, 1978, Chap. 5.
7. HilL, F. J., R. Swanson, and Z. Navabl, "User Manual for AHPL Simulator (HPS1:M2)

AHPL Compiler (HPCOM) " Engineering Experiment Statlon, Univ. Arizona, l938l.

4. Duley, J. R. and D, L. Dietimeyer, "A Dlgltal System Design Lunguage (DDL)," IEEE
Trans. Computers, Vol. C-17, No. 9, Sept. 19686, pp. 85u-861l.

9. Dietmeyer, D. L., "Digltal Desligr lLanguage Translator, DDLTRN 9.80," Univ.
Wlsconein-Madison Report ECE-80-35, Oct. 1940.

10. Shah, A., '"Digitai Deslgn Language 'lmulator." Unlv, wisconsin-Magison lanual, LCE
Dept., Nov. 1A780.

ll. Barbacci, M. R., G. E. Burnes, R, C, Cuttell, and D, P. Siewiorek, 'lhe Symvolic
Manipulation of Computer Descriptions: The [SPS Computer Description Language,"
Carnegie-Mellon Univ. Report CMU-CS-79-137, 1979.

l2. Barbacci, M. R., A, W. Nagle, and J. D. Northcutt, "The Symbolic Manipulution of
Computer Descriptions: An 1SPS Simulatecrc,” Carneglie-Mellon Univ. Repurt, 1981,

13, Lewls, P. S., "Hardware bDeacription Languapes for Svetolic Architectures,"
ng:er's Thesis, University of New Mexi. ,, Dept. Electrical and Computer Lngineering, July

l4.  PpPiloty, R., M. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, and P, Skelly. LUNLAN
Report, in Lecture Notes in Computer Science, Vol. 151, . Jvvos and J. tarbtimanis (ods.),
Spelinger-verlag, L[987.




