
A major purpose of tne I ecnnl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

TITLE: DESIGN AND DESCRIPTIVE TOOLS FOR SYSTOLIC ARCHITECTURES

AUTHOR(SL Paul Steven Lewis

SUBMITTED TO: Conference on Real Time Signal Processing}: V11, Part of SPIE’a
28th Annua’. Interna~ional Technical Symposium nnd ln~trumcnt
Exhibit, being held Ln San Diego, California on August 19-24. 1984.

DIS(”l.AIMER

-.

\a
y \

?“ ‘

LosAlamos NationalLaborator
LosAlamos,New Mexico 8754 8

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Deeign and descriptive toci8 for syerolic architecture

Paul Steven Lewle

Loe Alamoe National Laboratory, Electronics Dlvi!aion
Mail Stop 1957, Loe Alamoe New):exlco 87545

Abatrnct

Automated denign and descriptive tools are eeaential for the practical applic~tion :i
highly parallel spcclal-~urpone hardware ench aa systolic tirraya. rnc UK* of npaci~l-
purpoee hardware can gre~tly increaec the capabilities of signal proreeoin~ eyetems.
However, the ❑ore limited applicatiune bane makea design costa d criLl:.,i LdcLor in ue:*r-
mining technical and ●conmnlc vl~bllity. Sy8tolic uy~ttima t~n be u~d~ri~.d hit Iibv~r~l
lcvela of abstraction, eacn of ailicn hua unique deacripLive requlrencnLu. lnis pti”er
focuses on the descriptive iaeuee involved at the system arcnltecturtil level. f100 s ac
thle level ❑ust orlcigo the gap between logic- und circuit-oricntea cxaputtir-alaeu aesixn
tools and al orlthmlc deacrlptlonn of nyatolic archltecturca.
description f

Traaillunaiiy, hJrawJre
anguagee (IIDLIJ) have been ueed at thla level LIJ acscribe convention~~

computer archltecturee. Syatollc irrchltectures, hawever, have dlfterent requlre=encs.
This ptiper ●xamlncn thcae rcqulrciuentu ~nd dcvelopa J nut of criLuriJ for dvdLuJcing
llDLe. Four popular IIDIJI dre evalutILmi .ind their titren~~na .Inti wJhncdaus noted.
[[IM1 Eectian Gf the p-lpcr aummarizea ongoing eilortu iJL LLJM AL~mos Lo dC\’ulap J ~y’s.o~i:

Aae

array HDL baaed on the I.I)NLAN family of Ldngudgeu,

Hardware description IanguaPes

DA ital systems can be viewed at numerous levels of abstraction,
?

riin~ing from circuit
speci Lcation.s at the transistor level-to ❑athematically oriented algorithmic descrip-
tions. Special-purpose hardware can be divided into the levels defined below.

#

Data intensive ~roblem. The definition of the problem being addresaed by the
special-purpose hardware.

.-
Htghly mtra!lel algorithm. The general solution to the pro~lem th~t will be

imp~emented in the hardware .

Abstract machine. A high-level view of the hurdware th~t will implement the
algorithm. This Includes the overall structure and l~ta [low.

System architecture. Description of how the abstr~ct machine will ~ctu~lly De tIuIlc.
This level seals wir.h the hardware components to bc utilized, the inLCKCOnll~CtlOn betwten
Lhe6e components, and ttreir detailed operation.

Circuit/component. The design of the circuits ~nd components used in the syste=
irrch [tecture la ueff ned. Tnls encompaaaea the tr~ditir.rniil logic dnd device levels.

S stem im lamentation.
thc%tirflrea~

The lowest level oi abstraction ior di~ital circuits in which
iz.aLion in a pdrtlcular technology i~ dciinea.

TOOLH and notutions e~ist (or de~cribing e~ch oi these levels, For Lhe higher and
lower levels mdny of Lhcse tools ure widely accepted. hor example, .Idtheo.iticai nutulion
Is normully uacd ~t the algor[Lhmlc level, whcreds high- level progr.lmaing ~nu duta ilofi
l:lngu,l~es Jre usetul In rle~cribing the dbdLract nmchinc. The circuiL/co~poilcnt ~usi<n
level ciin bc addrrsscd by loAic dl~Kriims itnd Boolu;ln cqu~li(lnb ior di,JiL:ll ~:.]tes .ln~ by
schcmilLics ,Inu d[[ferenti~l Cquilt[(>nR fOr ! ilrir .In:l lo): r~>;ll IZ, IL i.)n. 1[~ .lLdiL ion, r.osL 01
Lhe currunL COil?~ULCS-ii idcd dcHign (CAD) tools .Iddruss Lhis lUVC1.

I;v,IIu,I(IIJI1 criL(*ri.1..-. —.— .—.—__ —.— .-

.

A wide range is desirable in an HDL that is to be uaerl as a tool for the design of
systolic architectures. Because the principal objective of systolic systems is to ❑atch
the architecture to the problem, a top-down design approach Is generally used. It iS
useful to be able to express the more abstract architectural structures of the solution
firet, then to refine them into more detailed hardware implementations within che same
framework.

One powerful ❑ethod of providing a wide language range is through abstraction of data
and operations. This abstraction allows a single language to address lower levels of
description with primitive data types and operation, and to address Iligher levels using
abstract com orients defined in terms of the primitive constructs.

!
Abstraction also helps

control comp exity by allowing detail to be hidden in higher-levei descriptions.

Def!cription structure

This refers to the propertisa of the hardware descriptions written in the language. A
language ought to provide the ability to partition syfitem descriptions in a hierarchical,
modular manner. This ca ability allowa a system to be described aa a series of aoaules

fwith more complex apecia ized modules builL out of simpler ones. The language should also
allow mixed deacriptione ao that different ayatem components can be aescribed tit difiering
levels of detail.

To hanale ayatolic arrays, the langufige must have constructs for describing reg.uliir
architecture. Thaae constructs ❑ust include caputillties for describing the regular
topology of the architecture and for defining modules ~nd then replicating copies ut
them. The language should allow control over whether references to a particular module
cause a replication ot the structure (Instantiation of the moaule) or Lhe sharing of ~n
existing structure. Also, the cupabiliLy of defining modules parametrically Is desir-
~ble. Parametric definition allows Lhe speciiic~Lion of module [wniliea. A bl~eCiiiC
f~mlly member ia then nelected upon module inatontiation by the values of the p~riimeters.

The Hi)L must ulso huve Lhe c~pubIllLy to dcHcribc vllrious (orms of coanunicdtion
beLween module~ and wlLhin modules. “rhls cup~lbiliLy is criticiil [LJr systolic arvaya in
modeling the diILa ~nd conLrol fl.>w. In generul, the 1.lllAU+~ (Ju{:hL Lc Jllow Lhc sLrucCure
or ptirtit(nning 0[thu deHcrlption to nmtch Lhilt oi Lhc Il:lrduure being uescribud (]L Lhe
luwer lCVC1!J or Lhilt of Lhc ~l&oriLhm ill the ill~hur lL!vuiJJ.

l)eticripLive meLhod#——

This rulcr~ to lhc meLhod~ ;Ivilll:thle in Lhc IIDI. LIJ duscrlbc sytiLemH, The IIDL MUSL bu
.Ibl(?, ;It ilny level, LO deHcr[l]c iLcmH by !+LrucLure, (UnCL i On, Ur bcnilvior. Structur~ll
(It.scr ipt ionx Iru tho~u in which ;I Inudulc iH defined in Lerms 0[InLcrcunnuct ion 01
pruviouHly rlciincd m.)dulcsm tlchilVic)r id impliciL in Lhu lnterconnecLlon between und
buhilvior LJ(thu componunLr!. A b~hilviuri]l dcscripLion dV(lnL”6 ~1 pflrL in L’ur.nJi 0[iLs
.ICI ion~, iIr4 .I kind ol” I)lilck box wiLh uuLpuLM us lunct ions U(inpuLt? :Ina inLern:l] sL:ILu.
[n rhlN ciisc, the !!trU4!tUrL’ citilur i~ left un(lCfinLd or is impiiciL in Lhc hcn.lvior. :\
fu[lCLil)niil tiuticriptiun fililH ill bCtWCCn, UNllnlly dc~cribing il lnodule In terms 01
con(]iLIoni]l cunnecLiunH.

Ficxibillty of dc~crlpLivu method IM rcquirud In MyMLollc ~lrruy work so Lh.lL LiIQ Ili)L
m;ly be UFJC(I ;IL d[flcrc,lL HLiIgL*s u!’ Ihe dcHifin ilroceHs, \Jhcn we ilrst iIIVCSLiAiILC (I
Myul.IJlic ;lrchiLecLule, the (:rr{ty LopI)iI)I:y IH most IJLI:Jily ucscrlbud :JLrucLur,JLLy ;iiLh lh~
iJrocessing ulumenLH mmieiud lJ~’huViurui]y. ‘lhiti ijvrmiLM Lhe NLudy U(LhIJ (Ivt’ruii dIIL~i liud
Lnruu):h Lhu ilrr~y, AfI Ihc duJJi){n):uL14 muru tJijrcilic, iL iJI deti[riJLJlc L(J ::ludcl in!ilvid~,ll
i)ilrtfl IunctionillLy or tiLrucL(lr;lll~, LJel;]: iing m[]rc uxpliciLiy Iluw Lhe syHLLIm will bc
huiiL. ‘1’hcn wu Ciln HLudy how LIIC prf’~uti:lin~ L$iLImL!nlH w(Jrk .Ind Lheir inLur.luLiwn:” wiLn
Lh(lir nui~;hborh. In :Idditiun, being ,IIJIu [u mix LheMv dcti~’rli)t[uns iH V:liu.iblcm ~,, r

L!x:lmpiu, Lt]u llroCCHIJ[ll~ uiClllUll[t4 llli):IIL LJU Ill(ldu[(’(i by ,1 IiuLiIiiud slrucLuru while Lil(~

buunddry CULIH JIII(I Lhe huI!L inLuri,lcc ilfU llludvl~!d b~’h.lViOrillLy.

Ww!a

All hardware operates in the real world and has some sort of time properties ~ssociatea
with it. At the more tibtitract levels a determination of the order of’ operations may be
all that is required. I+owever, at lower levels a very accurate real-time modei ot gate
delays can be necessarv. An HDL for systolic arrays must be able to handle timing ovar
all levels of abuLracL”ions covered; ~eneral time constructs must De avail~ble at higher
levels and more detailed ones at lower levels. An HDL must !~c able to describe ooth the
tradition L synchronous systolic arrays and aaynchronoua vari~tions such as the xdvefront

!processor .

}rI HDL for systolic tirrays must h:ive powerful methods of describing concurrent a,”tivi-
ties. It mat straightforwardly dcacribe simultaneous events it[ld Lhe dependencies between
them, This 1s especially critical in aystoltc array descriptions bc:tause they ~rt ~aseu
on highly parallel, pipelined computation thut cirn have numerous levttls of concurrent
activities, boLh at the irrray level and within the processing elements,

LanguaRe provisions

In general the language ought to bu clc.lr, undurstanciablc, hcr.{i~htforward
to -.4 easy to remember. It should be construct~’ri cohercnLly troa a regular basis
rather than being Ii collection of fipeclal ,Saaea. Sisce it Is ~ me:ium oi co:municacton,
it must bc readablr and writable by proplc. Similar things should be tru~te(i in J simil~r
manner In the langua~e.

v“ llcc~ust’ much (IL .y!:L(I1i(~rr~y efforts Ire dlrectc(, LnwJrti sign~l
process ng applica[ions with he..’,y !lumcri~al emphasis, the lii)L OiIgi)L Lo sutiporl ir,reger
~nd floating polnL numbers of drbitrdry sizes, ‘Ihls Lncludes .{11 Lhe c,):,.rron ariLnc:sLlc
operation LISSIJCiJILed with Lhuse numhurs. ‘rhe IIDL mu’;L JIFO Huppur’ ousic binary uiit~
types and their ~ssuci~tted lo~ic~l oper~t[ona to :I11OJ ,deL,lilud iugic uescrlpticns IJi
lower-level modul.eti.

Ihe (ollowin~; nuctlons uvaluiLLe (our 1 ,)puld: IIIII,s ,w’ILII rU:.:U..L Lu Lhe lbt~vu criLeri.1.
“rhe Ltinguagcs cuvered ilre CDL, AIIIJL, IJDL, ,111(1 1’,1)S,

,’,

%-+-” CDL in baaed on a aim~le model of time, supporting synchronous system
deacr pt on only. Each enabled statement is performed once on each clock cycle, CDL does
support the description of concurrency. Its nonprocedural nature makes the description or
parallel operationa very straightforward.

CDL language Provisions. CDL is a simple language that Is eaay to under~tand. It is
internally conaletent and has a common eyntax. Only integer and binary data typee are
supported. Operations 011 these daLa types are , IL”lY extenalve.

CDL ia a simple. atralghtforwari language. This Is both its strength aud its
weakneaa. CDL’s inability to structure ita deacrlptions modularly, along with its
inability to differentiate between a ❑odule definitio,l and instantiation, severely limits
the class of p-oblems it can addreas. The nonprocedural nature of CDL has bo?h advantages
and dlaadvantagea: On the plus side, it al.lows for explicit definition of ~oLh control
and dbta structure, which can be useful in distributed architectures such as s.~stolic
arrays. On the negative aide, this nonprocedural method can he cumberaoae wnen it is not
neceeeary to define the control flow explicitly.

A Hardware Programming Language (AHPL)

AHPL, developed in the early 1970a,6 is a procedural lan&uage ~imed at the rsgister
tranefer]evel of digital design. It ia supported by both a simulator ~nd a hartlw?re
compiler. This e~aluation focuses on the eecond version of thi~ Languuge, AHPL 1:,
that 1a supported by the simulator and compiler.

AHPL is based on a subset of the programming language APL. The selection of the .iPL
subset was determined by which features auggetited a unique hardwtrre real.iz.lt ion. APL ‘5
notation and control syntax is carried through to AHPL. APL vector und =~trix not~ti~~n is
extended to bIL vectord (registers) and bit matrices (memories).

AI!PL can describe a system at only one L2vc1. Descriptions can bc or.ien up Into
modules, but u module cannot be Llel ined in terms of other mudulea. M subroutine or
Instantiation fitcllity la provided, Each module utted muar I]e explicitly ~clinou. Ine
exceptions to this tiro combinational logic unitu, wh~.ch ~re memoryless tInu .n~y De ucline.1
once, like d [unction, und used In a numlnr of places. S:rucLurea sucn tis L’c&isters ~nd
memories are explicitly declured ut tho bcglnnlng oi J moLluLo description Lrom .I set 01
non-cxtenrlible dutu types. Datd p~th~ bctwccn structures ,Ire defined l.~:j~itltl)’ uy Lhc
spcclt [cd data [low. Ih.c control tiLrucLurc is Uciincd impti~[lly by Lne Control Scquen<e
01 the AllPL stutemcnts.

AII1’L de#criptlon ~trucLuru, AIIP1 duu~ Muppurt the p.lrLitioninl: ,~i Lhc sysLew
du~criptlon [rrto modules. IL dOCa n~t Muppurt hiurtirdh[(:ill deta[~() b~~ilutl~ CNNLILC?N cilnnoL
bu dcflncd [n termn 0[other modules. t“[he lun)~u~lge doeM nut LIll urenLi:lte butweun timduic
~leflnit[on .Ind lnHLtintiution. Luch module u~cd mUHL bc ticp~rilLcly del ined, “Ihc I,II)4UJ<U
cilnnot Muppurt mixed- Ievcl de~crl’,tiuna bucauMu it prov1dur4 unly ,i Slfll:lu lv~’el ot
de8cript lun, AliPL dLJUH nul tLuppur purilmuLr~c duiinition ui clthur muiulus ur uniLM,

‘1

AHPL contains no general time model and supports mainly synchronous
flya-;ion. It providea some support tor aaynchrtmous ayscem description with
one-shot entity types and unclocked transfera. However, ❑ost of this ia airectea at tne
specification of asynchronous interface between internally synchronous ❑oaule~. AI-IPL
supports Lhe description af concurrent activities fairly well. Lath control sequenc~l~;~~
can have ❑ultiple events happening in a clock period, providing local concurrency.
concurrency is supported by different modules operating in parallel.

AHPL langua~e provisions. AHPL is a fairly simple, canaiatent language. It suppor:s
no numeric typea, only inary typea. The operationa pravided for binary types are
reaaanably complete.

AHPL’a greatest weakneaa ia Ita lack of definition/instanL1at ion support. A further
flaw (a ita lack of data and operationa abstraction ,ncchanism. For describing
heterogeneous hardware at the ~egister transfer
highly parallel, t-gular digital syacems acrass
inadequate.

~al DaaiAn LanAuaEe W&l

DDL was introduced in 19688 and is supported
DDL is baaed on the concept of block-structured

level it 1s adequate, but For describing
the spectrum of ~bstraction IK is

by a tr.snsLatorg and a simulatorLO.
automutona or ESNSO Hardware entities are

called facilities and hive @cope over blocks, much as Udridbles in ALGOL 90. Facilities
are accessible only wftihin the blocks In which they are declared. By convention, the
system block conc~ina only facility declarations that, in effect, function as syate.m
global facilities do. DDL also provides operator blocks that are like function oefini-
cion~ in programming languages Bnd segment blocks that are slmiliir to the subroutine
constructs of FORTRAN or the procedures of ALGOL.

DDL lcrnguage range. DDL Is a powerful and camplex language thut can cover J #[de r~nge
of descriptive Levels. When its basic nonprocedural constructs ~re useu, it c~n expli:icly
describe duta flow and control in the sumc manner thtit CDL does. By dclining dULOLILILO~S
iind using stute abstraclicns, modules c~n be defined ~rocudurully, ~s trrev Jre in AiiPL.
By takjng udvuntage of the block !ItrucLurc 1)and the su routine-like se~menL taciiities, one
c~n extend DDL detinltlons to more ~bstract levels thiln those possiul& wiLh CDL or AhP-.
DDL LIlso supporLs dnta und opcrution tibtitrdctlon of u sort with [Ls :Ibility to Jeline
cumplex f~cilities in terms 0[simple i:lcilitles.

DDL descrlptlofi ~trllc~urc. UIIL iIllowIi hlerurchicfll modul~r descripLionY. lt provides
rud],nuntary support Ior t~conccpt ot Aup;irut[on of mudulc dciinit[on LIEU i7sL~nListi~n,
ulLhough the~e constructs do not seem LO be regularly uMcd. Mecduse of Lfiu :J(J(Iul.Ir
hier;lrchy ~nci wide rilnl:c 0[l)DL, mlxud-level JutrcrfpL Ions O(syste::H cJn te ‘k’riLLen. itl .1
single riyMtcrn one Jutomuten could bc, uescr[bed in gruilt deL.1[1, ‘w[Lh itil OL the conLroi
p~LhS explicitly du[lnud ilnd w~tll iill upur(ltions of a primiL[ve lotic n~Luru, while -In
~djoining uutomtiton cuuld bc described iis il hlghur-lcvc!, FS}I,
inpuLs i.rnd current stuLc.

with outputs determines by
lNIL does nut HupporL Lhe conccpL U[pilrdL]cLrlC muaulc

dut’inition, MO it la nul purJrlibLc to dclinu t’il[]lill~~ of Similtir modules,

L)DL desc~lpLive methudti. DI)L is nwllnly georcd towtircl iunction:ll detinltlunH, nuch JS
CDL und At{PL urc. Ilowever, iLs power milkea both bchuvloriil .IEd structur:ll detiniLiuns
pu~sllrle, dlthou~h not stru ’,;htt’orwi]rd, ‘l’ho dlvls[on of iJ ~ystem into :luLum~lLons is
r4LrongLy utructur:l] , :IH ix n)u~-h of Lhe block ~LrucLur@ of Lhe l;lngu~gc. !he specific~~iun
()[upcriltlun~ iIH {I k%}! is tu J (ic~:rcc l)uh~lv;oritl. Gunstructs ilrc pruvlded tor ~l)~c~t~ing

rcl~ulilr Htructurc, buLh [mpl[citly Lhruugh ~tilggurcd Jrrily connecLiunH ,!nd cxpliciLly

Lhruugh ;I strucLuril[[Luriltlo[) conHLruct. Df)L IIiHIJ Hupporttr decenLr.Jlized cuntrui struc-
LurcH vury nicely, ;Illuwlng eilch .luLomilLull ;Ind, Lo ,1 dugrc.e, u;lch bLuCk Lu t’LJllGLlun
lndu!)undcnLly. L)I)L hiln ~1 good HUL 01 cunLrol upuroL[onM :Ind CCnUiL[olldlk LIIJL +upuurt
boLh procudur;ll ilnd nunprucud*Jrtil cunLrul duHcriptlunH.

LJL)L HupporLM Lhc du,qcrlptlon O(cuncurrencj
Alo&%-*: Mch MLutument ciln I,U)llvun i, uniquu cundlt[onnl under

Un bUth LIIU l.Jd.1~ dn(f Lhc
wnicn It t~ccurH,

,In[l l~lrgur block~ c,ln bu MC(Up L(J luncL[un in ~ilri]llcl. DDL MUl)~orL!4 l]i)Lh uvunL-driven
illl(l cycle -drive, n My MLL1mIJ. lLH ;l~ynchrunuuH Li]tches ilnd tr.lnspurL duliIy cunstruct~ ;I1lCW
[L Lo Inodcl iuwcr-level .vxynchrunuuH c[rcu[Ls, while ILR rt~gisLers ,IIId puri(ldic cLucks
HuppurL HynchronuuH HYHLMIH. I)L)L r!UIJpOr’Lll Inultlple multli)hilMe ~lotkM ilI\u is ilblu 10 :.ix
C[{)ckud ,Irld unclt)cked tlc,MCr[pLIUnM.

L)D~ liln~U~$ JrUVltilf)nr?. I)I)L [:{ ;I ~~)ml)lll:ilLUd liln~u;l~e.
k~~~”tiul . In ,Iddi L i,)r),

IL u~ies .1 vury l~Jr,:c, uni.{uc,
,Irld nl]tlr+[illl(lilr 1)[)1, h,l~ Hulne UrlUHUill \lcllmlLUr CUI vunLi(.llM.
1)1)1.’~ lI~I:Ilc IJI .,.,,Mu IH I(lirly ci]hl~r~,nL, tJll[lltI llyntd(”Lic i,tll)le[nu[lLi!LluIl 1.! IIUL. !I,lny
lJt~lll[LIVU UbjCCLH ,Iru MIJ(!cI:II C,IHUH Ilt llt~lur I)[fllilr. jvc ub]t?CIH, ilrld I)lJJuCLri ut thu !4iltilU

Cl~lHH (c.<., t’dcilll[ur!) h:Ive numclrouH ilnd ,l[i[vrln!~ roqtricti[lnH (in how Lhl,y u.in be

J!

.

.

usied. The semantics are reasonably unambiguous--but complex. DDL supports a ricn aet of
primitive operatora for binary typea. It supports a more limited set ior integer (not
including ❑ultiplication) and does not support any floating point typea.

DDL ie one of the more powerful HDLa. Ita capabilities include most of what is
required for systolic array design and description.
featurea,

However, DDL aleo includes ❑any
aimed at general-purpoee digital deaigna, that are not really ncceaaary for

systolic arraya. DDL auffera from a nonstandard character set arid inconsistent syntax.
In gen@ral, it does not seem to be a regular language but rtither one of ❑any exceptions
and epecial caaes.

Instruction Set Processor (ISPS>

The ISPS computer description language is based on the Instruction Set Proceseor (ISP)
notation developed for the description of computer instruction acts.
informal notation, wa

ISP, Originally an
~ formaliz ed into the ISPL language and later upgraded into the

current ISPS language 1 and simulator.lz

The original intent of ISIJ was to ~,id in the specification and description of
instruction sets. The language was used to produce a behavioral description uf the
functioning of a CPU, aa seen by the ❑achine language user. ISIS haa been expanded to
allow ita use in ❑any application of ❑achine description languagea, even down to the
regieter transfer level. ISPS supporta only behavioral and functional descriptions; :
has no facilities to describe the structure of the physical hardware itself.

An ISPS description cons!eta of - set of entities (registers, ❑emery, etc.) and an
algorithmic description of the behavior. ISPS la block structured in the spirit uf
ALGOL. It handlea concurrency at both the statement and the block levels. At the
statement level all statement are by default concurrent with any neceaaary ordering
explicitly deecribed by the “next” statement. Statements can be blocked rogether, dnt
these blocks can be executed concurrently or sequentially.

t

ISPS language range. ISPS is a owerful language and can cover a wide range ot the
higher deacri tive levels.

E
Its lac~ of structural description Limits lts usefulness at

levels below ehavloral register transfer descriptions. It supports some limited d~ta Jnd
operallon abatractlon, allowing function-like definitlona.

ISPS description structure. lSPb supports modula~ hierarchical descriptions.
Descriptions cun be ot mixed levels, with mudules described at differing Levels ot
deta~ 1. ISPS does not support separate definition and instantiation of modules or
parametric module definition.

ISPS descriptive methods, ISPS supports only behavioral and to ~ome extent functional
descriptions of ‘Mixed behavioral iind functional mode deacriptlons are possible.hardware.
For these morfea ISPS provides an excellent collection of control primitives. lSPS haa no
special provlsionn for the description of regular tirchitel’l”urt.-’

ISPS offer~ Ilttie support for timing r
fi:-ive in which one can spec[fy the average ~~ , ~ ‘;;;~n~;; ;~;va

. A! though ISPS iR baaed on an inherently aynchrol ~.. c the statement levul,
It doea nol really su port either synchronous or asyncht{ i ‘

!
gn explicitly. ISPS

descrlptiona are reul y ii level of abatructlon tibove that p l~r laaue. At this
abstract level lSfJS does support the description of concuct~,lc~ trt both the local dnd the
~lobal levels.

[SW ldn~uuge ~rovisionso !iynttictlcally]SPS ia reasonably clear und str~lghctorwurd.
It ~n used with greut ~uccesa to describe lnutructlon sets of numcroua computers.
‘l”hc landuuge haa a aimpLe rtructure, iind Ita syntax [S regular, predictable, and reaa-
able. ISPS doea huve some nmblguitlea In lLS semtintics.
floatlng point numeric dutti types.

It au;.rorta integer h(lt not
For lntegera, it provldea .111 of the necessary

prlmltive operation. lSPS Mupporl.a bin~ry !ype~ ~nd H rich aeL of Logic opertito[s for
them.

ISPS 1S u very good Lunguage [or Its Intended appllcnLluns, but [t in not well suited
for systcllc urruyst Itti muin druwbuck [M its lurk of auuuort [or titructuraL deticri~tiun.
Almosi tin lmportu~t IM lL~ lnilbllity Lu delinc tind then lfi~tuntlatc ptirmnuterlzea (~~-
nonptir:mleterizod) modulus. In perMpecLlve, iL is e~tiy to Her why lS1)S [n nOL we!i uu
[or ~ystOllC ilrrily~. ILn drlvlng r~tlunale huN Leen Lhu dc~crlptioll of the opcriiLlon
programmable GPUH, whotie purpuHa [H the Implomcnttit!un of ~ speci[ic instruction Met,
Much 0[the rtitlon{lle behind tIyIJLollc ilrr~ys [M Lhc FpCL’l{lllZilLIOn U[Lhe hilrdwilre Lu
tusk. Any guner~li[ly in thlu kind UC opprouch uccurs not In the htirdwure, but ut the
dealgn level above.

1

even
tcd
o f

Lllu

Conclusions

This paper ha~ explored the utility of HDLs to describ~ systolic architectures. The
rationale for this exploration can be described as follows: Systolic architectures are
good candidates for the implementation Of SpeCial-pUrpObe hardware. lhe u.ee of special-
purpoae hJrdware can increaae the capabilities of systems. However, special-purpose
hardware has a limited applications baae, ❑aking design ccata highly criticaL. Design
costs can be ❑ inimized by the use of automated design cools. The [irst step tOk~rd
automated tools ia the development of an appropriate formal descriptive notation.

Systolic architecture can be described at numerous levels of abstraction, each requir-
ing different types of descriptive tools. At this time, the level most lacking in a tormal
descriptive notation is the system architectural level. HDLa have been widely used in the
description of traditional syatema a: this level; hence, l,t makes sense to invefitigace
their utility for syetolic architectures.

The ~se of traditional H~Ls for the description of systolic sy,tems at the system
architectural level hss been examined at Los Alamos. HDL evdluiltiOn criteria have IJeen
developed in the areas of (1) language range, (2) description structure, (3) descriptive
❑ethods, (4) timing, and (5) language provisions. These criteria were then uses to evalu-
ate the CDL, AHPL, ISPS, and DDL languages. None of these language’: pravlded all of the
features necessary for the description af systolic archicecturee. This points o-~t the
neel! for a language specifically oriented toward systolic architecture.

A Systolic Array Hardwar,, Deacripti n Language (SAliDL) ia currently under development
at :he Los Alamoa National Laboratory. 73 SAHDL i> being develop

‘~ ag0t4LAN 1S a
an application

language in the Consensus Language (CONLAIt) family of languages.
deveiopmecL methodology for HDLa based on the cancept of abstract datatypes. CONLAX
fami~y languages b:e HDLa developed for specific applications hut tied together by a
common core syntax and common .:emantic deflni~ion system.

SAHDL attempts to pravide all of the capabilities cutlined In this paper, along ‘dith
the IJ,Jsic capabilities needed for the romplete description of digitol systems. A
translator LS being written for the l~llguage, and a sirr.ulator clriven by aAhDL is pianned.

References

10 Kung, H. r. and co E. Leiaeraon, “Systolic Arr~y’s (for VLSI),” Spurse !Iatri% proc.,
Society for I[ldustrial and Applied Mathematics, 1979, pp. 255-2S2.

2. Speiaer, J. M. and Ii, J. Hhitchouse, “1’JraLLel Processing Al,40rithns and
Architectures for Real-Time Signal Processing,” Proc. SPIE, Vol
l’ru;cssing IV, 1981, pp. 2-9.

29b, Real-’rime SignaL

. Kung, S. Y., R. J. Cal-Ezer, and K, S. Arun, “lJave[ront Arr~y I’rocessor:
.Irchitecture, Language, dnu Applicutlons,” Proc. Conf. Advunced Kesedrch in VLSI, ?l .1.1.,
(;ambridge, MA, 1982.

4. Chu, Y., Computer Orgunlzdtlun and Nicroprogr~]rmmlng, Prentice-Hull, 1972, Chap, 1.
5. Bara, J. and R. Born. “A UL)L compiler fur Designing ~nd Slmuluting Jigital

Sy9tema,” Proc. Int. Conf. ,;HDL’~ Applic~tions, 1975, pp. 96-1U2.
6. Hill, t“. J. ~nd G. R. Peterson, I)igltal Sy~tems: Ilardware Orgunizacion arid Desi<n,

Niley, 1978, Chup. 5.
Hill, F. J., R. Swenson, and Z. Nuv:Jbl, “User :.lanu~l for AHPL Simulator (HPS1A2)

AllP~”COmpiler (HPCOM) “ Engineering LxperimenL LiL~L’Ion, Llniv. Ar!zond, L$dl.
8. Dulcy, J, K. and D. L. I)ietmeyer, “A LllAIL~l System Design LInguage (L)DL),” IEEL

Tr~ns. Cumputers, Vol. C-17, f40. 9, Sept. 196b, pP. tl>lJ-861,
5. Dietmeyer, D, L., “l)lgltal Deb[g! Ijilnguilge ‘rr~n~liitur, LIDL”IRN 9.50,” Univ.

Wlacon~ln-Madison Report LCE-ML)-35, Oct. 19H0.
10. Shah, A., “Dlglt~i Deslgll Language ::imul~tor,” Unlv, klsconsin-~lil(]is~]n ;l~nu~l, LCE

Dept., Nav. 1Q80.
11. Btirbacci, M, R., G. E. B~rne@, R. G. L~ttell, tind D, P. Slewiorek, “’lne Symuolic

Manipulntlon ut’ Computer L)escrlptl(ms: The ISI% CompuLer Descriptiuc Lun&uii#e, ”
Gdrneg!e-NelLon Univ. Iteport CMU-GS-79-137, 1979.

12. durbaccl, M. R., A. M. Nagle, and J. D. Northcutc, ““rhc Symbolic }I:lnipulation of
(;umputet l)eHcrIptlons: An lsPS Slm~latcr,” CurneJ16-MulLon Univ. Aepurt, lYd!;

13. Lcwia, P. S., “llurdware Descrlptlon Lunguales fur Svatollc Architectures
}l~~ter’s ‘Ihcsifi, University of New Mpx{ ,, Dept. Electrical ,Ind CompuLer Lnginee
19t14.

1/,. I’ilwty, K., M. l!:irb:!ccl, D. I!orrlone, D. l)ieLmuycr, F, 11111, .Ind P. Skel
Rc Ort, in l,ecLure Nutc~ in l;umpuLer Scivnce
*er-Ve~ug, L9H3.

v{)1. L>l, (;.t;uus ,ln~l J. iltirLMtinis—,

II

inp, July

