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TESTING UNCONSTRAINED OPTIMIZATION SOFTWARE 

by 

Jorge J. More 
Burton S. Garbow 

Kenneth E. Hillstrom 

ABSTRACT 

Much of the testing of optimization software is inadequate 
because the number of test functions is small or the starting 
points are close to the solution. In addition, there has been 
too much emphasis on measuring the efficiency of the software and 
not enough on testing reliability and robustness. To address 
this need, we have produced a relatively large but easy-to-use 
collection of test functions and designed guidelines for testing 
the reliability and robustness of unconstrained optimization 
software. 

1. Introduction 

When an algorithm is presented in the optimization literature, it has 

usually been tested on a set of functions. The purpose of this testing is to 

show that the algorithm works and, indeed, that it works better than other 

algorithms in the same problem area. In our opinion these claims are usually 

unwarranted because it is often the case that there are only a small number of 

test functions, and that the starting points are .close to the solution. 

Testing an algorithm on a relatively large set of test functions is 

bothersome because it requires the coding of the functions. This is a tedious 

and error-prone job that is avoided by many. However, not testing the algo­

rithm on a large number of functions can easily lead the cynical observer to 

conclude that the algorithm was tuned to particular functions. Even aside from 

the cynical observer, the algorithm is just not well tested. 

It is harder to understand why the standard starting points are usually 

close to the solution. One possible reason is that the algorithm developer is 

interested in testing the ability of the algorithm to deal with only one type 

of problem (e.g., a curved valley), and it is easier to force the algorithm to 

deal with this problem if the starting point is close to the solution. 

5 
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Thus, a test function like Rosenbrock's is useful because it tests the 

ability of the algorithm to follow curved valleys. However, test functions 

like Rosenbrock's are the exception rather than the rule; other test functions 

have much more complicated features, and it has been observed that algorithms 

which succeed from the standard starting points often have problems from 

points farther away and fail. Hillstrom [15] was one of the first to point 

out the need to test optimization software at non-standard starting points. 

He proposed using random starting points chosen from a box surrounding the 

standard starting point. This approach is much more satisfactory, but it tends 

to produce large amounts of data which can be hard to interpret. Moreover, 

the use of a random number generator complicates the reproduction of the re­

sults at other computing centers. 

A final complaint against most of the testing procedures that have 

appeared in the literature is that there has been too much emphasis on com­

paring the efficiency of optimization routines and not enough emphasis on 

testing the reliability and robustness of optimization software -- the ability 

of a computer.program to solve an optimization problem. It is important to 

measure the efficiency of optimization software, and this can be done, for 

example, by counting function evaluations or by timing the algorithm. How­

ever, either measure has problems, and with the standard starting points it 

is usually fairly hard to differentiate between similar algorithms (e.g., two 

quasi-Newton methods) on either count. In contrast, the use of points farther 

away from the solution will frequently reveal drastic differences in reliabil­

ity and robustness between the programs, and hence in the number of function 

evaluations and in the timing of the algorithms. 

To deal with the above problems, we have produced a relatively large 

collection of carefully coded test functions and designed very simple proce­

dures for testing the reliability and robustness of unconstrained optimization 

software. The heart of our testing procedure is a set of basic subroutines, 

described in Sections 2 and 3, which define the test functions and the start­

ing points. The attraction of these subroutines lies in their flexibility; 

with them it is possible to design many different kinds of tests for optimiza­

tion software •. Finally, in Sections 4 and 5 we describe some of the tests 

that we have been using to measure reliability and robustness. 
I 



It should be emphasized that the testing described in this paper is only 

a beginning and that other tests are necessary. For example, the ability of 

an algorithm to deal with small tolerances should be tested. However, the 

testing of Sections 4 and 5 does examine reliability and robustness in ways 

which other testing procedures have ignored. 

2. The Basic Subroutines 

Testing of 9ptimization software requires a basic set of subroutines 

which define ·the test functions and the starting points. We consider the 

following three problem areas: 

I. 

II. 

Systems of nonlinear equations. 

i = l, ... ,n, solve 

n Given f.: R + R for 
1. 

f. (x) = 0, 
1. 

1 < i ~ n, 
n 

X E R 

Nonlinear least squares. 

with m ~ n, solve 

{ 

m 2 
min L f. (x): 

i=l 1. 

Given f.: Rn + R fori= l, .•. ,m 
1. 

III. Unconstrained minimization. Given f: Rn + R, solve 

The subroutines which define the test functions and starting points 

· depend on tla~ J.i:rueusion paramet:ers 'M and N and on the problem number NPR.OB. 

We first describe the subroutines for the test functions. 

For systems of nonlinear equations, the subroutine 

VECFCN(N,X,FVEC,NPROB) 

returns in FVEC the vector 

In order to prevent gross inefficiencies with solvers which only require one 

component at a time, 
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/ 

COMFCN(N,K,X,FCNK,NPROB) 

returns in FCNK the k-th component fk(x). For nonlinear least squares 

SSQFCN(M,N,X,FVEC,NPROB) 

returns in FVEC the vector 

(f
1

(x), .•. ,f (x)) , , m 

and 

SSQJAC(M,N,X,FJAC,LDFJAC,NPROB) 

returns in FJAC the Jacobian matrix 

af. (x) 
l. 

ax. i l, ... ,m, j = l, ... ,n . 
J 

(The parameter LDFJAC is the leading dimension of the array FJAC as defined in 

the main program.} For unconstrained minimization 

OBJFCN(N,X,F,NPROB) 

returns in F the objective function value f(x) and 

CRDFCN(N;X,C;NPROB) 

returns in G the gradient vector 

(
af(x) af(x)) 

"' ' ... ' "' aXl aX . .. n . 

For each problem area, the starting points are generated by a subroutine 

INITPT(N,X,NPROB,FACTOR) 

which returns in X the starting point corresponding to the parameters NPROB 

and FAC'l'OR. If X denotes the standard starting point, then X will contain s 
FACTOR*X5 , except that if x5 is the zero vector and FACTOR is not unity, then 

all the components of X will be set to FACTOR. 

·' 



3. Test Functions 

Almost all of the test functions that have appeared in the optimization 

literature are nonlinear least squares. Given a nonlinear least squares prob­

lem defined by f 1 , ..• ,fm, we can obtain an unconstrained minimization problem 

by setting 

(3.1) f(x) = 
m 2 L fi (x) • 
~1 

If m = n, this problem can be posed as the system of nonlinear equations 

(3.2) 

and if m > n, the optimality conditions for (3.1) lead to the system of non­

linear equations 

(3.3) 1 < . _J < n 

Note that in general it is inefficient to solve nonlinear least squares prob­

lems by general minimization algorithms, since they tend to ignore the 

structure in (3.1). As far as the nonlinear equations approach is concerned, 

(3.2) may not have any solutions, while (3.3) will have as a solution any 

critical. point of (3.1). However, for testing purposes, (3.1), (3.2), and 

(3.3) are valid problems. All of our test functions are formulated for prob­

lem area II (nonlinear least squares). The corresponding test function for 

problem area III (unconstrained minimization) is (3.1), while for problem 

area I (systems of nonlinear equations), the function is (3.2) if m =nand 

(3.3) if m > n. A given test function may appear in more than one problem 

area; coding differences among its various versions depend on the particular 

area. For nonlinear least squares, we need to generate the Jacobian matrix 

which requires an m by rt array, while for unconstrained minimization and 

systems of equations, this two-dimensional array is not needed. 

To define the test functions we have adopted the following general format: 

Name of function [reference] 

a) Dimensions 
b) Function definition 
c) Standard starting point (d~~ignated x

0
) 

d) Minima . 

9 
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1In d) we give the minima of the function (3.1) that we have found, and if 

convenient, the corresponding minimizer. In a few cases, the minimizer is, 

for example, of the form (ex, 8,-+<x>). .This means that 

lim Vf(cx,S,y) = 0 , 
y-+fa> 

and thus an algorithm may decide that a minimizer is in a neighborhood of 

(cx,S,y) for some large value of y. 

· 1) Rosenbrock function [24] 

a) n = 2, m = 2 

£1 (x) 
2 .. 10(x2-x1 ) b) 

f 2 (x) = 1-x 
1 

c) x
0 

= (-1.2,1) 

d) f = 0 at (1,1) 

2) Freudenstein and Roth function [13] 

a) n = 2, m"" 2 

b) £1 (x) = -13 + xl + ((5-x2)x2-2)x2 

£2 (x) = -29 + xl + ((x2+l)x
2
-14)x

2 

c) X = 0 (0.5,-2) 

d) f = 0 at (5,4) 

f = 4R.q842 •.• at (11. 41. ... -0.8968 ..• ) 

3) Powell badly scaled function [22] 

a) n = 2, m = 2 

b) f
1 

(x) 4 = 10 x
1

x
2
-l 

£2 (x) = exp[-x1 ] + exp[-x2J - 1. 0001 



•. 
·' 

c) xo = (0,1) 

d) -5 f = 0 at (1.098 ... 10 , 9.106 ... ) 

4) Brown badly scaled function [unpublished] 

a) 

b) 

n = 2, 

f
1

(x) 

f 2 (x) 

m = 3 

6 = X -10 
1 

-6 = ·x -2•10 2 . 

f
3

(x) = X X -2 
1 2 

c) x
0 

= (1,1) 

d) f = 0 at (106 , 2•10-6) 

5) Beale function [2] 

a) n = 2, m = 3 

b) fi(x) 
i 

= yi-x1(1-x2) 

where y1 = 1. 5' y = 2 2.25, 

c) X = 0 (1,1) 

d) f = 0 at (3,0.5) 

y3 

6) · "Jeruttich and Sampson "fti.rtctiori. [16] 

a) n = 2 , m .::._ n 

= 2.625 

d) f = 124.362 •.• at x1 = x 2 = 0.2578 •.. form= 10 

11 
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7) Helical valley· function· [11] . 

a) n = 3, m = 3 

b) f 1 (x) = lO[x
3
-loe(x

1
,x2)] 

2 2 1: 
f 2 (x) = 10[(x1 +x2 ) 2-1] 

f
3

(x) = x
3 

where 

~ )i~ arctan (:~) 

11 (x2) · ~arctan -- + 0.5 
-"" '11' "1 

c) x 0 = (-1,0,0) 

d) f = 0 at (1,0,0) 

8) Bard function [1] 

a) n = 3, m = 15 

b) 

T.Yhere u
1
_. i, v = 16...:.i., w. = min(ll. ,v1), anrl i l. l. . 

i yi 

I 1 0.14 
2 0.18 
3 0.22 I 4 0.25 

l 5 0.29 
6 0.32 

I 7 0.35 
8 0.39 
9 0.37 

10 0.58 
lL o. 73 
12 0.96 
13 1.34 
14 2.10 
15 4.39 



.. 

c) xo = (1,1,1) . 

d) f = 8.21487 ... 10-3 

f = 17.4286 ... at (0.8406 ... ,-~,-00) 

9) Gaussian function [unpublished] 

a) n = 3, m = 15 
2 

r.-x2(ti-x3) J 
· b) f i (x) = x1 exp L 2 - y i 

where t
1 

= (8-i)/2 and 

i yi 

1,15 0.0009 
2,14 0.0044 
3,13 0.0175 
4,12 0.0540 
5,11 0.1295 
6,10 0.2420 
7,9 0.3521 

I 8 0.3989 

c) x
0 

= (0.4,1,0) 

d) f = 1.12793 ... 10-8 

10) Meyer function [18] 

a) n = 3, m = 16 

b) fi(x) "xl exp[(t:~3)] - yi 

where t. = 45+5i and 
l. 

i Y; i 

1 34780 9 
2 28610 10 
3 23650 11 
4 19630 12 
5 16370 13 
6 13720 14 
7 11540 15 
8 9744 16 

c) x0 = (0.02,4000,250) 

d) f = 87.9458 ... 

yi 

8261 
7030 
6005 
5147 
4427 
3820 
3307 
2872 

.13 
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11) Gulf research and developmertt'function [10] 

a) n = 3, n < m < 100 

b) f. (x) 
1 [ 

IY i-x2 (
3

] 
exp- -t. 

x
1 

1 

where t. = i/100 and 
1 

yi = 25 + (-so ln(ti))
213 

c) x0 = (5,2.5,0.15) 

d) f = 0 at (50,25,1.5) 

12) Box 3-dimensional function [4] 

13) 

a) n = 3, m > n variable 

b) fi(x) = exp[-tixl]- exp[-tix2]- x3 (exp[-ti]-exp[-10ti}) 

where t. = (O.l)i 
1 

c) x0 = (0,10,20) 

d) fa 0 at (1,10,1), (10,1,-1) and wherever (x1 ~ x2 and xJ = 0) 

Powell singular function [23] 

a) n = 4, m = 4 

b) £1 (x) = x1 + 10x2 
!.:: 

f 2 (x) • 5 ~(x -x ) 3 4 

f 3 (x) 2 = (x2-zx3) 

f 4(x) = 
~ . 2 10 (x1-x4) 

c) X = 0 (3 ,-1 '0 ,,1) 

d) f = 0 at the origin 
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14) Wood function [9] 

a) n = 4, m = 6 

b) f 1 (x) 2 10(x2-x1 ) 

f 2 (x) = 1-x 1 

f
3

(x) 
k: 2 

= (90) 2 (x4 -x
3 

) 

f 4 (x) = 1-x 3 

f
5 

(x) = 
k: 

(10) 2 (x2+x4 -2) 

f 6 (x) = -~ (10) (x2-x4) 

c) X = 0 (-3,-1,-3,-1) 

d) f = 0 at (1,1,1,1) 

15) Kowalik and Osborne function [17] 

. a) n = 4, m = 11 

2 

b) f. (x) 
xl(ui +uix2) 

= yi - 2 l. 
(ui +uix3+x4) 

.where 

i yi u. 
l. 

1 0.1957 4.0000 
2 0.1947 2.0000 
3 0.1735 1.0000 
4 0.1600 0.5000 
5 0.0844 0.2500 
6 0.0627 0.1670 
7 0.0456 0.1250 
8 0.0342 0.1000 
9 0.0323 0.0833 

I 
10 0.0235 0.0714 
11 0.0246 0.0625 i 

c) x0 = (0.25, 0.39, 0.415, 0.39) 

d) f = 3.07505 ... 10-4 

f = 1.02734 ... 10_3 .at (~, -14.07 ..• ,-~,-~) 
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16) Brown and Dennis function [5] 

a) n = 4, m ~ n variable 

b) 2 2 
fi(x) = (x1 + tix2 - exp[ti]) + (x3 + x4sin(ti) - cos(ti)) 

where t. = i/ 5. 
~ 

c) x0 = (25,5,-5,-1) 

d) f = 85822.2 ... if m = 20 

17) Osborne 1 function [21] 

a) n = S, m = 33 

b) fi(x) = yi- (xi+ x 2exp[-tix4] + x3exp[-tix5]) 

where ·t. = lO(i-1) and 
~ 

I i yi i yi I 

1 0.844 18 0.558 
2 0.908 19 0.538 
3 0.932 20 0.522 
4 0.936 21 0.506 
5 o. 92.1 22 0.490 
6 0.908 23 0.478 
7 0.881 24 0.467 
8 0.850 25 0.457 
9 0.818 26 0.448 

10 0.7'd4 27 0.438 
11 0.751 28 0.431 
12 0.718 29 0.424 
13 0.685 30 0.420 
14 0.658 31 0.414 
15 0.628 32 0.411 
16 0.603 33 0.406 
17 0.580 

c) x0 = (0.5, 1.5, -1, 0.01, 0.02) 

d) f = 5.46489 ... 10-5 

,. 



18) Biggs EXP6 function [3] 

Ci) n = 6, m ~ n variable 

b) fi(x) = x3exp[-tix1] - x4exp[-tix2] + x6exp[-tix5] - Yi 

where t. = (O.l)i and 
~ 

· y. = exp[-t.] - 5exp[-10t.] + 3exp[-4t.] 
~ ~ ~ ~ 

c) x0 = (1,2,1,1,1,1) 

d) -3 f = 5.65565 ... 10 if m = 13 

19) Osborne 2 function [21] 

a) n = 11, m = 65 

2 
b) fi(x) = yi - (x1exp[-tix5] + x2exp(-(ti-x9) x6] 

2 2 
+ x3exp[-(ti-xl0) x7] + x4exp(-(ti-xll) xaJ) 

where t. = (i-1)/10 and 
~ 

i yi i yi i yi 

1 1.366 23 0.694 45 0.672 
2 1.191 24 0.644 46 .0.708 
3 1.112 25 0.624 47 0.633 
4 1.013 26 0.661 48 0.668 
5 0.991 27 0.612 49 0.645 
6 0.885 28 0.558 50 0.632 
7 0.831 29 0.533 51 0.591 
8 0.847 30 0.495 52 0.559 
9 0.786 31 0.500 53 0.597 

10 0. 725 32 0.423 54 0.625 
11 0.746 33 0.395 55 0.739 
12 0.679 34 0.375 56 0.710 
13 0.608 35 0.372 57 0.729 
14 0.655 36 0.391 58 0.720 
15 0.616 37 0.396 59 0.636 
16 0.606 38 0.405 60 . 0. 581 
17 0.602 . 39 0.428 61 0.428 
18 0 .. 626 40 0.429 62 0.292 
19 0.651 41 0.523 63 0.162 
20 0. 724 42 0.562 64 0.098 
21 0.649 43 0.607 65 o. 0,54 
22 0.649 44 0.653 

17 
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c) xo = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5) 

d) 
. -2 

f = 4.01377 ... 10 

20) Watson function [17] 

a) 2 .::_ n .::_ 31, m = 31 

b) n · 2 ( n · 1)2 - t . J- t J-f.(x)- L (J-l)x.ti - L x.t. 
1 ·2 J ·1J 1 

J= J= 

where t. ~ i/29, 1 < i < 29. 
l. 

f3l(x) 
2 = X -X -1 2 1 

. c) x
0 

= (0, ... ,0) 

d) f = 2.28767 ... 10-3 if n = 6 

f = 1.39976 ... 10-6 if n = 9 

f = 4.72238 ... 10-lO if n = 12 

21) Extended Rosenbrock function [25] 

a) n variable but even, m = n 

b) f2i-l(x) = 10(x2i-x2i-l) 

f2i(x) = l-x2i-l 

- 1 

c) where ~2j-l = -1.2, ~2j = 1 

d) f = 0 at (1, ... ,1) 

22) Extended Powell singular function [25] 

a) n variable but a multiple of 4, m ~ n 

f4i-2 (x) 

f4i-l(x) 

f
4

. (x) = 
l. . 



c) x
0 

= (C) 
. J 

where 3 , ~4j-2 = -l, ~4j-l = 

d) f 0 at the origin 

23) Penalty furic tion I. [ 14] 

a) n variable, m = n+l 

1:: 
b) f. (x) = a 2 (x .-1), 1 < 'i < n 

l. l. 

fn+l(x) = u x.2) 1 

"=1 J 
--;; 

where a = 10-5 

c) x 0 = (~j) where ~j = j 

d) f = 2.24997 ... 10-5 if n = 4 

f = 7.08765 ... 10-5 if n = 10 

24) Penalty function II [14] 

a) n variable, m = 2n · 

b) 

c) 

d) 

f
1

(x) 

f. (x) 
l. 

t. (x) 
l. 

f2n(x) 

where a = 

xo -(l· 1-2) 2J ••• ' 

f = 9.37629 ... 

f 2.93660 ... 

and 

10-6 

10-4 

if n = 4 

if n = 10 

2 < i < n 

n < i < 2n 

0, ~4. = 1 
.J 

19 
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25) Variably dimensioned function [unpublished] 

a) n variable, m = n+2 

b) 

l:) 

f.(x) = x.-1, 
~ ~ 

i·= l, ... ,n 

fn+l (x) 
n 
I j (x.-1) 

j=l J 

( r j (x.-1))
2 

j=l J 

where ~. ~ 1-(j/n) 
'J 

d) f = 0 at (1, ... ,1) 

26) Trigonometric function [25] 

a) n variable, m = n 

n 
b) f. (x) = n -

~ 
I 

j=l 
cos x. + i(l - cos x.) - sin x. 

J ~ ~ 

c) x0 = (1/n, ... ,l/n) 

d) f = 0 

27) Brown almost linear function [6] 

a) n variable, m = n 

n 
b) f.(x) = x. + I x.- (n+l), 1 < i < n 

~ ~ j=l J . . 

f (x) = ( ~ x ·) - 1 
n j""l .1 

c) 

d) 1-n f"" 0 at (a,., .,a,a ) where a satisfies 

n n-1 
na - (n+l)a + 1 = 0; in particular, a = 1. 

f = 1 at (O, ... ,O,n+l) 



28) Discrete boundary value function [19]. 

a) n variable, m = n 

b) f. (x) 
1. 

where h = 1/(n+l), ti = ih, and x0 = xn+l = 0. 

where t.(t.-1) 
J J 

29) Discrete integral function [19] 

a) n variable, m = n 

b) f. (x) 
1. 

X. + h[(l-t.) 
1. 1. 

i 
L t.(x.+t.+l) 3 

j=l J J J 

n 

+ t. L 
1. j=i+l 

(1-t.) (x. +t. +1) 
3
1/2 

J J J J 
where h = 1/(n+l), t. = ih, and xo = xn+l 1. 

c) X = (~.) where ~j = t.(t.-1) 0 J J J 

d) f = 0 

30) Broyden tridiagonal function [7] 

a) n variable, m = n 

b) f.(x) = (3-2x.)x. - x. 1 - 2x
1
.+l + 1 

1. 1. 1. 1.-

where x0 = xn+l = 0 

c) xo=(-1, •.• ,-1) 

d) f = 0 

= o. 
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31) Broyden banded function [8] 

a) n variable, m = n 

b) f. (x) 
1 

= x. (2+5x~) + 1 - L x. (l+x.) 
1 1 jEJ. J J 

1 

where Ji = {j: j#i, max(l,i-ml) 2 j 2 min(n,i+mu)} 

and ml = 5, 

c) x0 = (-1, ... ,-1) 

d) f = 0 

m ·= 1. 
u 

32) Linear function - full rank [unpubiished] 

a) n variable, m > n 

b) f. (x) = 
1 

X. - ~ ( r X.) 
1 m . 1 J 

J= 

-1, .1 < i < n 

f. (x) = - ~ ( r X ·)· - 1 , n < i < m 
1 m . 1 J 

J= 

c) x 0 = (1, ... ,1) 

33) Linear function -·rank 1 [unpublished] 

a) n variable, m > n 

b) f. (x) = i( r jx ·) - 1 
l. j=1 J 

c) xo = (1' ••. '1) 

m(m-1) ~ 
f = 2(2m+1) at any point where l jx. 

j=l J 
d) 3 =--

2m+l 



34) - Linear function - rank 1 with zero columns and rows [unpublished] 

a) n variable, m > n 

b) 

c) 

f
1 

(x) = -1, f (x) = -1 
m 

f. (x) = 
~ 

(i-l)(nil jx .\ 
j=2 j) 

xo = (1, .•• ,1) 

2 

- 1, 

6 d) f = m +3m- at any point 
2(2m-3) 

35) Chebyquad function [12] 

a) n variable, · m > n 

2 < i < m 

m-1 
where L jx. 

j=2 J 

b) 
1 n 

fi (x) = - L T. (x.) 
n . 1 ~ J 

J= J
l 

- Ti(x)dx 
0 ' 

3 = 
2m-3 

where T. is the ith Chebyshev polynomial shifted to the 
~ 

interval [0,1] and.hence, 

J
1

Ti(x)dx = 0 for i odd, f
1
Ti(x)dx 

0 0 

xo = (~j) where ~- = j./ (n+l) 
J 

c) 

d) f = 0 for 1 < n < 7 and n = 9 

f- 3.51687 •.. 10-
1 

for n = 8 

f = 6.50395 ..• 10-3 for n = 10 

-1 for i = even 
(i 2 -1) 

For ease of reference, we list the functions appearing in the three test 

problem collections. Note that the number in parentheses after the name of 

the function refers to the number of the function in the main list. Also note 

that some o.f .. the basic subroutines of Section 2 can be used to test algorithms 

from more than one problem area.· For example, GRDFCN effectively defines a 

collection of ~onlinear equation problems and therefore can be used to test 

nonlinear equation solvers, while SSQFCN and SSQJAC can be .used together tn 

test unconstrained minimization algorithms. 
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Systems of nonlinear equations 

1. Rosenbrock function (1) 

2. Powell singular function (13) 

3. Powell badly scaled function (3) 

4. Wood function (14) 

5. Helical valley function (7) 

6. Watson function (20) 

7. Chebyquad function (35) 

8. Brown almost-linear function (27) 

9. Discrete boundary value function (28) 

10. Discrete integral equation function (29) 

11. Trigonometric function (26) 

12. Variably dimensioned function (25) 

13. Broyden tridiagonal function (30) 

14. Broyden banded function (31) 

Nonlinear least squares 

1. 

2. 

3. 

Linear function 

Linear function 

Linear function 

full rank (32) 

rank 1 (33) 

rank 1 with zero columns and rows (34) 

4. Rosenbrock function (1) 

5. Helical valley function (7) 

6. Powell singular function (13) 

7. Freudenstein and Roth function (2) 

8. Bard function (8) 

9. Kowalik and Osborne function (15) 

10. Meyer function (10) 

11. 

12. 

Watson function (20) 

Box 3-dimensional function (12) 

13. Jennrich and Sampson function (6) 

14. 

15. 

16. 

17. 

Brown and Dennis function (16) 

Chebyquad function (35) 

Brown almost-linear function (27) 

Osborne 1 function (17) 

18. Osborne 2 function (19) 

- -~---- --· ....-.... ~-. . . 
. ··: ., .· -·~. '·~~ .. ~~ 

.. -.-;,..·;.: 

'"",.-



'· 

i .. ' 

Unconstrained Minimization 

1. Helical valley function (7) 

2. Biggs EXP6 function (18) 

3. Gaussian function (9) 

4. Powell badly scaled function (3) 

5. Box 3-dimensional function (12) 

.6. Variably dimensioned function (25) 

7. Watson function (20) 

8. Penalty function I (23) 

9. Penalty function II (24) 

10. Brown badly scaled function (4) 

11. Brown and Dennis function (16) 

12. 

13. 

14. 

15. 

16. 

17. 

Gulf research and development function (11) 

Trigonometric function (26) 

Extended Rosenbrock function (21) 

Extended Powell singular function (22) 

Beale function (5) 

Wood function (14) 

18. Chebyquad function (35) 
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4. Testing I 

With the basic subroutines and the test functions described in Sections 2 

and 3, we have the tools for testing unconstrained nonlinear optimization algo~ 

rithms. In this section we would like to mention some of the possible tests 

that can be carried out. 

Suppose, for example, that we want to test a nonlinear least squares 

algorithm SOLVER on a given test function. This can be done by the following 

program outline. 

(4 .1) EXTERNAL FCN 
READ ( , ) NPROB ,N ,M,NTRIES 
FACTOR = 1. 0 
DO K = l,NTRIE~ 

CALL INITPT(N,X,NPROB,FACTOR) 
CALL SOLVER(FCN,M,N,X, .•. ) 
FACTOR= lO.O*FACTOR 

The choice of the integer NTRIES depends on the function defined by NPROB, 

and on how stringently we want to test SOLVER. If the function contains 

rapidly growing sub-functions such as exponentials, then NTRIES = 1 is probably 

all that should be allowed. For other functions, NTRIES = 3 may be a reasonable 

setting; this tests SOLVER with starting vectors of x , lOx , and lOOx where . . s s s 
x is the standard starting vector. The vectors x and lOOx are regarded as 

s s s 
being close to and far away from the solution, respectively; it l::;·nut unusual 

for algorithms to succeed with x but to fail with lOOx . s s 

In (4.1), SOLVER calls an interface subroutine FCN. The calling sequence 

for FCN should be identical to the calling sequence of the function subroutine 

in SOLVER; its main purpose is to call the testing functions with the appro­

priate· value of problem number. For example, if the calling sequence of the 

function subroutine in SOLV£R is 

FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) , 

then the body of FCN could be 

COMMON / llliFNUM/ NPROB, NFEV, NJEV 

IF 

I_ 

L 

IFLAG = 1 
CALL SSQFCN(M,N,X,FVEC,NPROB) 
NFEV = NFEV+ 1 

IFLAG = 2 
CALL SSQJAC(M,N,X,FJAC,LDFJAC,NPROB) 
NJEV = NJEV+l 



Note that the COMMON block REFNUM transm~ts the variable NPROB and provides 

counters for the number of function and Jacobian evaluations required by SOLVER. 

Nothing that has been said is intrinsic to the nonlinear least squares 

problem; the same type of driver can be used for nonlinear equations or uncon­

strained minimization. We emphasize that the test results provided by (4.1) 

can be quite reveali~g if NTRIES is set properly. For example, to compare the 

choices of scaling strategy, Table 1 was presented in [20]. In this table "FC" 

means failure to converge within 1000 function evaluations. 

I PROBLEM SCALING 

Initial 
1 .Adaptive 

Continuous 

Initial 
2 Adaptive 

Continuous 

Initial 
3 Adaptive 

Continuous 

Initial 
4 Adaptive 

Continuous 

Table 1 

X 
s 

! NFEV 

12 
11 
12 

19 
18 
18 

8 
8 
8 

268 
268 

FC 

NJEV 

9 
8 
9 

17 
16 
16 

7 
7 
7 

242 
242 

FC 

I 
lOx 

s 

NFEV 

34 
20 
14 

81 
79 
63 

37 
37 
FC 

423 
57 
FC 

NJEV 

29 
15 
12 

71 
71 
54 

36 
36 
FC 

400 
47 
FC 

lOOx 
s 

NFEV NJEV 

FC FC 
19 16 

176 141 

365 315 
348 307 

FC FC 

14 13 
14 13 
FC FC 

FC FC 
229 207 

FC FC I 
It is clear from this table that the adaptive scaling strategy is best 

in these four examples, and that we could not have reached this conclusion if 

we had only considered the standard starting points. 

We have shown how to use the basic subroutines to test different versions 

of the same algorithm, and in this case comparisons are straightforward. How­

ever, these subroutines will inevitably be used to test and compare different 

algorithms. Comparisons are then more difficult because the two algorithms 

will usually have different stopping criteria, and it may not be immediately 

clear how much of the success of the algorithm is due to its stopping criteria. 

However, the effect of the stopping criteria can be measured by running the 
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program with different tolerances or by looking at the progress of the 

iteration. 

To illustrate the use of the basic subroutines in the testing of algo­

rithms, consider two nonlinear least squares subroutines NLSQl and NLSQ2. The 

names have been changed to protect the innocent, but it should be realized 

that the development of each of these codes has received considerable atten­

tion; both of them appear in optimization libraries. These subroutines have 

an output parameter which indicates the status of the computation, and in 

Tables 2 and 3 we have used the parameter INFO to report this information. If 

the subroutine claims success then INFO is set to 1, and otherwise it is set 

to 0. 

We first ran these algorithms with the standard ~t;:rrting points;; thli 

results are shown in Tables 2 and 3. The following points are worthy of 

mention: 

(a) Ther~ are three problems (10,14,17) in which NLSQ2 required more than 

100 function evaluations. On each of these problems NLSQl required 

fewer function evaluations. 

(b) For problem 15 with n = 1, the standard starting point is a critical 

point. NLSQl claimed success on this problem while NLSQ2 classified 

this problem as a possible failure. 

(c) The results for problem 16 with n = 40 are not comparable because the 

algorithms converged to different local minima .. 

(d) A look at the progress of the iteration shows that both algorithms were 

converging at the same rate on problem 6, but differences in convergence 

criteria caused NLSQl to work much harder. 

(e) Problems.2 and 3 are rank-deficient linear problems, and the differences 

' in f!liu;form.:mce can be traced to the fact that NLSQl uses orthogonal trans-

formations to solve the linear least squares subproblems, while NLSQ2 

uses Cholesky decomposition on the normal equations. 

(f) On the remainder of the problems both algorithms required only a small 

number of function evaluations (less than 50). 
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Table 2 

SUMMABY OF 28 CALIS TC NLSQ1 

NPROB N M NFEV NJEV INFO FINAL 12 NORM 

1 5 10 3 2 1 0.22360680 01 
1 5 so 3 2 1 0.67082040 01 
2 5 10 3 2 1 0.14638500 01 
2 r:: 50 3 2 1 0.34826300 01 ~ 

3 5 10 3 2 1 0.19097270 01 
3 r:: 50 3 2 1 0.36917290 01 ... 
4 2 2 18 14 1 o. 0 
5 3 3 12 9 1 o. 91956 380-32 
6 4 4 68 62 1 0.95234480-35 
7 2 2 17 10 1 0.69988750 01 
8 3 15 7 6" 1 0.90635960-01 
9 4 11 23 21 1 0. 1 7 53 5 8 4 0- 0 1 

1 0 3 16 136. 120 1 0.93779450 01 
1 1 6 31 9 8 1 0.47829590-01 
1 1 9 31 9 8 1 0. 11 8 31 1 50- 0 2 
1 1 12 31 1 0 9 1 0.21731040-04 
12 3 10 8 7 1 0. 7 2 111 1 0 0- 1 6 
1 3 2 10 25 1 4 1 0.11151780 02 
1 4 4 20 315 282 1 0.29295430 03 
15 1 8 1 1 1 0.18862380 01 
1 5 8 8 44 24 1 0.59303240-01 
, 5 9 9 "1"1 8 1 0.33048720-15 
15 10 10 24 14 1 0.80647100-01 
16 10 10 17 15 1 0.89874080-15 
16 30 30 20 15 1 0.21701330-14 
1 6 40 40 19 14 1 0.12542290-12 
17 5 33 19 16 1 o. 73924930-02 
18 1 1 65 18 14 1 0.20034400 00 
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Table 3 

. SU~MARY OF 28 CALLS TO NLSQ2 

NPROB N M NFEV NJEV INFO FINAL L2 NORM 

1 5 10 3 2 1 o. 223 606 80 01 
1 5 50 3 2 1 0.67082040 01 
2 5 10 11 10 1 0.14638500 01 
2 5 50 1 1 10 1 0.34826300 01 
3 5 10 13 12 1 0.19097270 01 
3 5 50 13 12 1 0.36917290 01 
4 2 2 18 14 1 o.o 
5 3 .. 3 12 9 1 0.37316510-22 
6 4 4 23 22 1 0.72126340-12 
1 2 2 17 15 1 0.69988750 01 
8 3 15 1 6 , o. 90635960-01 
9 4 1 1 18 15 1 a. 17 53 s 8 4 o- o 1 

10 3 16 174 133 1 0.93779450 01 
11 6 31 10 9 1 0.47829590-01 
1 1 9 31 6 5 1 0.1183115D,.02 
1 1 12 31 7 6 1 o. 2 11 3 1 o 4 o- ·a 4 
12 3 10 7 6 , o. ·1 a o tn 1 2 o- 1 5 
13 2 10 17 9 1 0.11151780 02 
14 4 20 311 325 1 0.29295430 03 
15 1 8 1 1 0 0.18862380 01 
15 8 8 31 2 1 1 0·. 59303240-01 
15 9 9 10 7 1 0.11685220-07 
15 10 10 16 11 1 0 .. 80647100-01 
16 10 10 15 9 1 0.16064520-12 
16 30 30 33 14 1 0 ... 3 0 2 11 2 8 D- 1 0 
16 40 40 8 4 1 0.1000000D 01 
17 5 33 "167 117 i 0.73924930-02 
18 1 1 65 15 13 1 0.20034400 00 



The conclusion from Tables 2 and 3 is that although the use of standard 

starting points reveals some differences, none of these differences are sig­

nificant. This is not the case when NLSQl and NLSQ2 are run on the full set 

of starting points. These results ·appear in Tables 4 and 5, and the main 

differences are now as follows: 

(a) NLSQl only fails (failure is identified by the size of the final l
2 

norm) on problem 10 while NLSQ2 fails three times -- once on problem 5 

and twice on problem 10. Moreover, for both failures on problem 10, the 

INFO value of NLSQ2 incorrectly claims success. 

(b) Although this information does not appear in the tables, NLSQl does not 

generate any overflows while NLSQ2 produces overflows on problem 16 with 

n = 10 and 30. The overflows for n = 30 are generated by the function 

subroutine and occur on the first iteration; they are due to a large 

initial step. The overflows for n = 10 are generated by NLSQ2 and occur 

towards the middle of the iteration. 

(c) On all of the problems where NTRIES was set to 3 (problems 4, 5,. 6, 7·, 8, 

9, 10, 11, 14, 15 with n = 1, 16 with n = 10), the differences in perfor­

mance between NLSQl and NLSQ2 are most pronounced for the farthest start­

ing point, and here NLSQl is clearly superior to NLSQ2. For the standard 

starting point the algorithms perform very similarly, while for the 

intermediate starting point NLSQl seems to perform slightly better than 

NLSQ2. These observations are also based on a detailed examination of 

the progress of the iteration. These results show that Tables 4 and 5 

are not unduly influenced by the stopping criteria. The only exceptions 

occur when the problem has a continuum of solutions, and in these cases 

(problems 8 and 9 where the final l
2 

norms are 4.174 ... and 0.03205 ... , 

respectively), the convergence criteria of NLSQ2 are clearly inadequate. 

It should now be clear that on the basis of the above testing, NLSQl is 

a better piece of software than NLSQ2. Again we point out that the develop­

ment of NLSQl and NLSQ2 received considerable attention; had this not been 

the case, then our testing would have uncovered more drastic differences. 
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Table 4 

SOfUUBY OP 54 CALIS TC NLSQ1 

NPROB N M NFEV NJEV INFO FINAL 12 NORM 

1 5 10 3 2 1 0.22360680 01 
1 5 50 3 2 1 0.67082040 01 
2 5 10 3 2 1 0.14638500 01 
2 5 50 3 2 1 0.34826300 01 
3 5 10 3 2 1 0.19097270 01 
3 5 50 3 2 1 0.3691729.0 01 
4 2 2 18 14 1 0.0 
4 2 2 8 5 1 o.o 
4 2 2 6 4 1 0.13947000-15 
5 3 3 12 9 1 0.91956380-32 
5 3 3 21 16 1 0.11973490-34 
5 3 3 19 16 1 0.70622500-29 
6 4 4 68 62 1 0.95234480-35 
6 4 I~ 6J 61 1 0.95458250 .. 3.3 
6 ,, /j 69 65 1 o. 14294680-32 
7 2 2 17 10 1 0.69988750 01 
7 2 2 22 13 1 0.69988750 01 
7 2 2 25 17 1 0.69988750 01 
8 3 15 7 6 1 o. 90635960-01 
8 3 15 50 49 1 o. 41747690 01 
8 3 15 28 27 1 0.41747690 01 
9 4 1 1 23 21 1 o. 17535840-01 
9 4 1 1 93 85 1 0.32052190-01 
9 4 11 353 312 1 0. 17 53 58 4 0- 0 1 

10 3 16 136 120 1 0.93779450 01 
10 3 16 800 652 0 0.71561590 03 
10 3 16 279 245 1 0.93779450 01 
, 1 6 31 9 8 1 0.47829590-01 
11 6 31 15 1 4 1 0 .. 479~9590-01 
, 1 6 31 16 15 1 0.47R29590-01 
1 1 9 31 9 8 1 0.11831150-02 
1 1 9 .31 19 15 1 0 • 1 1 8 3 11 5 D- 0 2 
11 9 31 18 15 1 0.11831150-02 
1 1 12 31 10 9 1 o. 21731040-04 
1 1 12 31 14 12 1 0.21731040-04 
1 1 12 31 34 28 , 0. 2 1 73 1 0 4 0- 0 4 
12 3 10 8 7 1 0.72111100-16 
1 3 2 10 25 14 1 0.11151780 02 
14 4 20 315 28.2 1 0.29295430 03 
14 4 20 73 61 1 0.29295430 03 
14 4 20 328 300 1 0.29295430 03 
1 5 , a 1 , 1 0.18862360 01 
15 , a 30 29 1 0.18842480 01 
15 1 e 48 47 1 0.18842480 01 
15 8 8 44 24 1 0.59303240-01 
15 9 9 11 8 1 0.33048720-15 
15 10 10 24 14 1 0.80647100-01 
16 10 10 17 15 1 0.89874080-15 
16 10 10 13 8 1 o. 17089980-14 
16 10 . 10 44 42 1 0.56235020-15 
16 30 30 20 15 1 0.21701330-14 
16 40 40 19 14 1 0.12542290-12 
17 5 33 19 16 1 0.73924930-02 
18 11 65 18 14 1 0.20034400 00 
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Table 5 

S Ul!l! ARY OP 54 CALLS TO NLSQ2 

NPROB N f! NFEV NJEV INFO PINAL 12 NOR! 

1 5 10 3 2 1 0.22360680 01 
1 5 50 3 2 1 0.67082040 01 
2 5 10 11 10 1 0.14638500 01 
2 5 50 11 10 1 0.34826300 01 
3 5 10 13 12 1 0.19097270 01 
3 5 50 13 12 1 0.36917290 01 
4 2 2 18 14- 1 o.o 
4 2 2 6 4 1 o.o 
4 2 2 6 4 1 o. 0 
5 3 '3 12 9 1 0.37316510-22 
5 3 3 34 27 1 0.27346340-17 
5 3 3 800 685 0 0.44941760 03 
6 4 4 23 22 1 o. 72126340-12 
6 4 4 26 25 1 0.11269730-11 
6 4 4 29 28 1 0.17608970-11 
7 2 2 11 15 1 0.69988750 01 
7 2 2 16 14 1 0.69988750 01 
1 2 2 28 26 1 0.69988750 01 
8 3 15 1 6 1 o. 90635960-01 
8 3 15 148 50 1 0.41747690 01 
8 3 15 61 6 1 0.41747690 01 
9 II 11 18 15 1 0.175358110-01 
9 II 11 122 95 1 0.32052190-01 
9 4 11 470 382 1 0.17535840-01 

10 3 16 174 133 1 o. 93779450 01 
10 3 16 43 13 1 o. 37654550 .05 
10 3 16 16 2 1 0.62375990 05 
11 6 31 10 9 .1 0.47829590-01 
11 6 31 16 15 1 0.47829590-01 
11 6 31 19 18 1 0. 4782 9 590-01 
11 9 31 6 5 1 0. 11 8 3 1 1 50- 0 2 
11 9 31 13 12 1 0 • 11 8 3 1 1 50- 0 2 
11 9 31 43 31 1 0. 11 8 3 11 50- 0 2 . 
11 12 31 7 6 1 0. 2 11 3 1 0 4 0- 0 4 
11 12 31 36 21 1 o. 217 31040-04 
11 12 31 47 31 1 o. 217 31 040-04 
12 3 10 7 6 1 0. 1 8 0 4 1 1 2 0- 1 5 
13 2 10 17 9 1 o. 11151780 02 
14 II 20 377 325 1 0.29295430 03 
14" 4 20 8211 686 1 0.29295430 03 
14 4 20 890 760 1 0.29295430 03 
15 1 8 1 1 0 0.18862380 01 
15 1 e 29 28 1 0.188421180 01 
15. 1 8 56 55 1 0.188112480 01 
15 8 8 31 21 1 0. 593032110-01 
15 9 9 10 7 1 0. 11 6 8 52 2 0- 0 7 
15 10 10 16 11 1 0.80647100-01 
16 10 10 15 9 1 . o. 16064520-12 
16 10 10 22 18 1 0.35018530-14 
16 10 10 637 570 1 o. 46305290-10 
16 30 30 33 14 1 0.30211280-10 
16 40 40 8 4 1 0.10000000 01 
17 5 33 167 117 1 o .. 73924930-02 
18. 11 65 15 13 1 0.20034400 00 
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5. Testing II 

The test functions defined in Section 3 represent a basic set; in order 
\ 

to further test optimization software, it is desirable to modify this basic 

set to yield related problems. 'For example, consider the nonlinear least 

squares problem defined by a function F which is related to a function F from 

the basic set by the change of scale 

(5.1) 

where a is a positive scalar and L is a diagonal matrix with positive entries. 

A very desirable attribute of an optimization algorithm is scale 

invariance. This requires that for the above problems the algorithm should 

generate iterates which satisfy 

k > 0 

If an algorithm is scale invariant, it need not perform well on a problem; 

however, its performance will not change with the scaling of the problem. On 

the other hand, the performance of a scale dependent algorithm usually 
A 

deteriorates when it is applied to a badly scaled function F. 

For unconstrained minimization, the change of scale analogous to (5.1) 

is 

If f comes from our basic set, the minimum of f is still nonnegative, so it 

may also be worthwhile to choose B so that 

i(x) = af(Lx) + S 

has a negative minimum. For nonlinear equations, it is interesting to consider 

the more general change of scale 

(5.2) 

where both Ll and Lz are diagonal matrices with positive entries. 



It is very easy to arrange the above tests by suitable modifications of 

the interface function FCN. For example, for (5.1) the body of FCN would be 

DO 

IF 
I 
·I_ 
IF 

J = l,N 
Z(J) = SIGMA(J)*X(J) 

!FLAG = 1 
CALL SSQFCN(M,N,Z,FVEC,NPROB) 
DO I = l,M. 
I_ FVEC(I) = ALPHA*FVEC(I) 

!FLAG = 2 
CALL SSQJAC(M,N,Z,FJAC,LDFJAC,NPROB) 
DO J = l,N 
I DO I = 1 ,M 
'- I_ FJAC(I,J) = ALPHA*.PJAC(I,J)*SIGMA(J) 

In the above program outline, we assume that FCN has assigned storage space 

to the one-dimensional arrays Z and SIGMA. The elements of SIGMA can either 

be generated once and passed to FCN via COMMON, or they can be generated each 

'time FCN is called. We have found that setting 

(5.3) SIGMA(J) 10 ** [5(2j-n-l)] 
(n-1) J 

(if n = 1 no scaling is performed) is adequate for investigating the scaling 

properties of algorithms. 

To illustrate the type of results that can be obtained, consider two sub­

routines for the solution of systems of nonlinear equations, NEQl and NEQ2. 

As in Section 4, we have selected these two subroutines (with names changed) 

from optimization libraries. 

We first ran these algorithms with the standard starting points; the re­

sults are shown in Tables 6 and 7. It is not our intention to compare these 

results very carefully, but the following points are worthy of mention: 

(a) NEQ2 fails on problem 6 with n = 9 and quits near the solution of problem 

2, while NEQl succeeds on both problems. 

(b) Problem 7 with n = 8 is a system of nonlinear equations with no solution, 

and thus both algorithms fail. 

(c) NEQ2 quits near the solution of problem 8 with n = 40, while NEQl finds a 

pni_nt thAt minimize.s the sum· of squares which ia not a solution t:o the 

system of nonlinear equations. 
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Table 6: SUMMARY OF 22 CALlS TC NEQ1 

NPROB N NFEV INFO FINAL L2 NOBM 

1 2 24 1 0.10512420-11 
2 4- 32 1 0.52798970-10 
3 2 182 1 0.11515210-09 
4 4 94 1 0.39935700-10 
5 3 27 1 0.27534580-12 
6 6 95 1 0.98306240-10 
6 9 135 1 0.13072640-10 
7 c: 16 1 0.26301780-10 
7 6 28 1 0.14703890-12 
7 7 23 1 0 .. .3071£9850-10 
7 8 114 0 0.74830980-01 
7 9 52 1 0.63681680-11 
8 10 31 1 0.90491800-14 
a 30 711 1 0. 1 0 911 5 1.110-11 
0 1+0 102 0 0.10000000 01 
9 10 15 1 0.16976780-10 

10 1 6 1 0.85487170-13 
10 10 15 1 0.54220210-10 
11 10 44 1 0.92722530-10 
12 10 55 1 0.17221420-11 
13 10 23 1 0.76228680-10 
14 10 33 1 0.82518330-10 

Table 7: SUMMARY OF 22 CAli.S TC NEQ2 

NFROB N NFEV INFO FINAL L2 NOBM 

1 2 21.4 1 o.o 
2 4 89 0 a·. 3879041o-o9 
3 2 89 1 0.36300990-10 
4 4 33 1 0.31476090-11 
5 3 34 1 0.12380560-10 
6 6 42 1 0.11187300-10 
6 9 600 0 0.20942710 00 
7 5 16 1 0.19814720-12 
7 6 35 1 0.74590220-10 
7 7 28 1 0.25460150-11 
1 8 ' 139 0 0. 5Y3:J LJ940-0i' 
7 9 34 1 o. 46942950-1 0· 
8 10 29 1 0.17630580-10 
8 30 184 1 0.21263960-12 
8 40 451 0 0.28138780-04 
9 10 33 i 0.96721050-10 

10 1 6 1 0.85487170-13 
10 10 16 1 0.34201280-11 
11 10 42 1 0.32801800-10 
12 10 69 1 0.84359820-13 
13 10 25 1 0.53069150-11 
14 10 34 1 0.79196500-10 



These results seem to favor NEQl, but they are far from conclusive. 

We next ran these algorithms on the scaled problem (5.2) where Ll is the 

identity matrix and Lz is chosen by (5.3); the results are shown in Tables 8 

and 9. It is now clear that NEQl is much less susceptible to changes in 

scale than NEQ2 and is thus the superior routine. We might add that the tests 

on the full set of starting points do not change this conclusion. 

To close this section we note that the routines NLSQl and NLSQ2 compared 

in Section 4 are both invariant with respect to scale changes, and thus the 

tests of this section would not affect their relative performance. 
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Table 8: SUMMABY OF 22 CALlS TC NEQ1 

NfBCB N NFEV INFO FINAL 12 NORM 

1 2 24 1 0.27790250-14 
2 4 32 1 0.50504540-10 
3 2 29 c 0.10149400-03 
4 4 148 1 0.23335140-10 
5 . 3 45 1 0.50300850-14 
6 6 41 1 0.75321810-12 
6 9 57 1 0.86185470-12 
7 c; 22 1 0.86991490-10 
7 6 29 1 0.28196540-11 
7 7 30 , 0~26390841)-08 ., 8 55 0 0.14951600 00 
7 9 43 c 0.14165330 00 
8 10 33 0 0.98827630 00 
8 30 10 1 1 0.83476040 02 
u 40 204 1 0.10000000 01 
9 10 15 1 0.35352040-10 

10 1 6 1 0.85487170-13 
10 1 c 16 1 0.23553560-12 
11 10 31. 0 0.84117530-01 
12 10 31 0 0.22402130 07 
13 10 23 1 0.44652300-08 
14 10 29 1 0.40917230-06 

Table 9: SUMMARY OF 22 CALLS TC NEQ2 

NPRCB N NFEV INFO FINAL L2 NOBM 

, :L· 39 0 0. ·t9772GGO 0 1 
2 4 55 0 0.88485240 01 
3 2 37 0 0.99974000 00 
4 4 56 0 O.o6190943D 04 
5 3 12 0 0.49751080 01 
6 6 114 0 0.63681510 01 
6 9 107 0 0.22617020 02 
7 5 54 0 0.20157430 00 
7 6 61 0 0.16758530 ·00 
7 1 71 0 0.20787390 00 
7 8 72 0 0.159!58350 00 
7 9 77 0 0.14934510 00 
8 10 80 0 0.11420240 01 
8 30 180 0 0.10940290 01 
8 40 274 0 0.11180470 01 
9 10 66 0 0.35177260-01 

10 1 6 1 0.85487170-13 
10 10 66 0 o. 24956010 00 
11 10 86 0 0.68257770-01 
12 10 53 0 0.32897820 01 
13 10 129 0 0.35007870 01 
14 10 89 0 0.16752280 02 
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c 
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c 

·c 
c 
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100 

200 

Basic Subroutines 

SUBROUTINE INITPT(N.X.NPROB.PACTOR) 
INTEGER N.NPROB 
DOUBLE PRECISION FACTOR 
DOUBLE PRECISION X(N) 
********** 

SUBROUTINE INITPT 

THIS SUBfiOUTINE SPECIFIES THE STANDARD STARTING POINTS FO& 
THE FUNCTIONS DEFINED BY SUBROUTINES CO!FCN AND VECFCN. THE 
SUBROUTINE RETURNS IN X A ~ULTIPLE (FACTOR) OF THE STANDARD 
STARTING POINT. fOR THE SIXTH FUNCTION THE STANDARD STARTING 
POINT IS ZERO, SC ~N THIS CASE, IF FACTOR IS NOT UNITY. THEN 
THE SUBRCUTINE RETURNS TliE VECTOR X (J) = FACTO&., J= 1 , ••• , N. 

THE SUBROUTINE STATE~ENT IS· 

SUBROUTINE INITPT(N,X,NPROB,PACTOR) 

N IS 1 POSITIVE INTEGER VARI1BLE. 

X IS A LINEAR AnRAY OF LENGTK N. nN nr.TPITT T r.nNTATNS TRP. 
!TANQAaO !TART!NG POINT POR PROBLEM NiiQS ~O,Tlf~I~D 61 
FACTOR. 

~PROS !S A POSITIVE INTEGER VARIABLE WHICH DEFINES THE 
NUMBEP. OF TRE PROBLEM. NPROB MOST NOT EXCEED 14o 

FACTOR SPECIFIES THE ~ULTIPLE OP THE S!ANDARD STARTING 
POINT. Ii FACTOR IS UNITY, NO ~ULTIPLICATION IS PEREORMED. 

~INPACK. VERSION OF SEPTEMBER 1977. 
BURTON S. GARBOW, KENNETH E. HILLSTRO!, JORGE j. !ORE 

•••••••••• 
INTEGER IVAR,J 
DOUBLE PRECISICN C1,H,HALF,ONE,THREE,TJ,ZERO 
DOUBLE PRECISION DFLOAT 
DATA ZERO,HALF,ONE.THREE,C1 /O.DO,S.D-1,1.DO,J.D0,1.2DO/ 
DFLOAT(lVAi) = IVAH 

3ElECTION CF INIT!AL POINT. 

GO !0 (100,200.300.~00,500,6C0,700,800,900,1000, 
1 1100, 1~00, 1300, 1400) .HPROB 

ROSENBROCK FUNCriuN. 

CONTINUE 
X ( 1) = -c1 
X (21 = ONE 
GO TO 1500 

POWELL SINGULAR FUNCTION. 

CONTINO! 
X ( 1) = THREE 

00000010 
00000020 
00000030 
00000040 
u0000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
OOOvODO 
00000140 
00000150 
00000160 
00000170 
OJ000180 
00000190 
O:J000200 
GC000210 
CJ0002~0 
00000230 
ili11)CH1;;;61) 

00000250 
JJ000260 
00000270 
00000280 
00000290 
OJ000300 
00000310 
00000320 
1)0000330 
000003~0 
00000350 
00000360 
00000370 
0~000380 
OJ000390 
00000~00 
00000410 
OJ000420 
OOOOO't30 
00000440 
OJ000450 
OJ000460 
00000470 
000 00~80 
00000490 
uOOOGSOO 
00000510 
00000520 
iJOOOOS.10 
00000540 
00000550 
00000560 
00000570 
00000580 
000 00590 



c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

X (2) = -ONE 
I (3) = ZERC 

.:<(4) =ONE. 
·Go ro 1500 

Basic Subroutines 

POWELL BADLY SCAlED FUNCTION. 

300 CONTINUE. 
X ( 1) = ZERO 
X(2) =ONE 
GO TO 1500 

WOCD FUNCTION. 

400 CONTINUE 
X (1) - -THFEE 
X (2) = -ONE 
X (3) = -THFEE 
X (4) = -ONE 
GO TO 1500 

HELICAL VALLEY FUNCTION. 

500 CONTINUE 
X(1) =-ONE 
X (2) = ZERO 
:\ (3) = ZERO 
GO ro 1500 

WATSON FUNCTION. 

6 00 CONTINUE 
DO 610 J = 1, N 

X (J) = ZEHO 
610 CCNT!NUE 

~0 TO 1500 

CHEBYQUAO FUNCTION. 

700 CONTINUE 
H = ONE/DFLOAT(N+1) 
DO 710 J = 1, N 

X (J) = DFLOAT (J) *fl 
710 CONTINUE . 

GO TO 1500 
/ 

BROWN AL~OST-LINEAE FUNCTION. 

800 CONTINUE 
DO 810 J = 1, N 

X (J) = HALF 
810 CONTINUE 

GO TO 1500 

DISCRETE BOUNDARY VALUE AND INTEGRAL EQUATION fUNCTIONSG 

900 CONTINUE 
1000 CCNTI.biUE 

H = ONE/DPlOAT(N+1) 

00000600 
00000610 
00000620 
00000630 
00000640 
00000650 
00000660 
00000670 
00000680 
00000690 

. 00000700 
00000710 
00000720 
00000730 
00000740 
00000750 
00000760 
00000770 
oooou780 
00000790 
00000800 
00000810 
00000820 
00000830 
coo 00840 
0:)000850 
00000860 
00000870 
00000880 
00000890 
00000900 
00000910 
000009~0 
00000930 
00000940 
0001)0950 
OJ000960 
ll0000970 . 
00000980 
000 00990 
00001000 
00001010 
00001020 
00001030 
00001040 
00001050 
00001060 
00001010. 
00001080 
00001090 
00001100 
00001110 
00001120 
00001130 
00001140 
00001150 
00001160 
00001170 
00001180 
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DO 1010 J = 1, N 
TJ = OFLOAT(J)*H 
X (J) = TJ* (TJ - ONE) 

1010 CONTINUE 
GO TO 1500 

c 
C TRIGONOMETRIC FUNCTION. 

c 

1100 CONTINUE 
H = ONE/DFLOAT(N) 
DO 1 1.1 0 J = 1, N 

X (J) = H 
1110 CONTINUE 

GO TO 1500 

C VARIABLY DI~ENSIONED FUNCTION. 
c 

c 

1200 CONTINUE 
a = CNE/DFLOAT(N) 
DO 1 ~ 1 0 J = 1 , N 

X(J) = GN"f- OFLOAT(.T) *A 
11·10 CCN'IINUE 

GO TC 1500 

C BRCYDEN TRIDIAGONAL ~ND BANDED FUNCTIONS. 
c 

c 

1300 CONTINUE 
1400 CONTINUE 

DO 1~10 J = 1, N 
X (J) = -ONE 

141~ CONTINUE 

C COMPUTE MUlTIPLE OF INITIAL POINT. 
c 

1500 CONTINUE 
IP (FACTCR • EQ. ONE) GO TO 1540 
I.F (NPROB • EQ. 6) GO TO 1520 
DO 1 5 1 C J = 1 , N 

X (J) = HCTO!i*X (J) 
1510 CONTINaE 

GO TO 1540 
15.20 CON~INUE 

00 1 ~30 J ~ i, N 
X(J) = FACTOR 

15.30 CONTINUE 
1540 CONTINUE 

RE'!'UP.N 

C LAST CARD OF SUBROUTINE INITPT. 
c 

END 

00001190 
00001200 
00001210 
00001.220 
0000123 0 
00001.2~0 
00001.250 
00001260 
OJ001270 
00001~80 
00001290 
00001300 
00001310 
00001320 
00001330 
OJ001Jij0 
00001350 
ciJ001360 
Q;)l)01370 
OJC01380 
000:>1390 
00001ijQO 
00001~10 

00001"20 
0 J 0 0143 0 
ooou1~"o 
00001450 
OJ001460 
00001470 
00001480 
00001490 
00001500 
()0001510 
00001520 
00 0 0153 0 
00001540 
00001550 
00001560 
00001570 
00001580 
oouo1~9o 

00001600 
011001610 
00001620 
OJ 0 0163 0 
000016"0 
OC001650 
000 0166 0 
00001670 
000011580 
iJOC01690. 



Basic Subroutines 

SUBROUTINE VECFCN(N,X,PVEC,NPROB) 
INTEGER N,NPROE 
DOUBLE PRECISION I(N) ,FVEC(N) 

c ********** . 
c 
C SUBROUTINE VECPCN 
c 
C ~HIS SUBROUTINE DEFINES FOUETEEN TEST FUNCTIONS. THE fiRST 
C FIVE TEST fUNCTIONS ARE OF DIMENSIONS 2,~,2,4,3, RESPECTIVELY, 
C WHILE THE &EHAINING !EST F~NCTIONS ARE OF VARIABLE DI!ENSION 
C N FOR ANY N GREATEli THAN OR EQUAL ro 1 (.i?F.OBLEM 6 IS AN 
C EXCEPTION TO THIS, SINCE IT 00ES NOT ALLOW N = 1). 
c 
C THE SUBROUTINE STATE~ENT IS 
c 
C SUEBOUTIN E VECFCN {N, X,FVEC, N I?ROB) 
c 
C !#HERE 
c 
C N IS A POSITIVE INTEGER VARIABLE. 
c 
C X IS A LINEAR AREAl OF LEN~TH N. 
c 
C FVEC IS A LINEaR ARRAY OF LENGTH N. ON OUTPUT fVEC 
C CONTAINS THE NPROB FUNCTION VECTOR EVALUATED AT X. 
c 
C NPROB IS A POSITIVE INTE~ER VARIABLE WHICH DEFINES THE 
C NU~BER OF THE PROBLEM. NPROB ~UST NOT EXCEED 14. 
c 
C SUBPPOGRAHS REQUIRED 
c 
C FORTRAN-SUPPLIED ••• DATAN,DCOS,DEIP,DSIGN,DSIN,DSQRT, 
C LiAXO,.UNO 
c 
C ~INPACK. VEBSION OF DECEMBER 1977. 
C 3URTON S. GA~BO~, KENNETH E. HILLSrROt!, JORGE J. t!ORF 
c 
c ********** 

INTEGER !,IEV,IVAR,J,K,K1,K2,KP1,~L,~U 
DOUBLE PnECISION C1,C2,C3,C~,CS,C6,C7,C8,C9,EIGHT,PIVE,H, 

1 CNE,2ROD,SUM,SUM1,SUM2,TEMP,TE~P1,TEMP2,TEN,THREE, 
2 TI,!J,TK,TPI,rWO,ZERO 

DOUBLE PRECIStON DPtOAT 
DATA ZEP.O,ONE,TWO,THREE,FIVE,EIGHT,TEN 

1 ;O.D0,1.D0,2.D0,3.DO,S.D0,8.D0,1.D1/ 
DATA c1,c2,cJ,c~,cs,c6,c7,cs,c9 

1 /1.04,1.0001D0,2.D2,2.02D1,1.98D1,1.SD2,2.5D-1,5.b-1,2.901/ 
DFLOAT(IVAA) = IVAR 

c 
C PROBLEM SELECTOR. 
c 

GO TO (100,200,300,400,500,600,70U,800,900,1000, 
1 1100,1200,1300,nOO),NPROB 

c 
C ROSENBROCK FUNCTION. 
c 

100 CONTINUE 
PV EC ( 1 ) = 0 N E - X ( 1 ) 
PVEC(2) = TEN*(X(2)- I(1)**2) 

00000010 
000 0002 0 
00000030 
00000040 
00000050 
C0000060 
00000070 
00000080 
00000090 
OJ000100 
00000110 
00000120 
00000130 
00000140 
00000150 
Ol000160 
00000170 
00000180 
OOOJ0190 
il0000200 
00000210 
00000220 
00000230 
ii00002~0 
00000250 
00000260 
00000270 
00000280 
00000290 
OCOJOJOO 
00000310 
00000320 
00000330 
0:>000340 
00000350 
000003&0 
OJ000370 
00000380 
000 00390 
uJ000400 
00000410 
00000420 
000 0043 0 
00000440 
00000450 
00000460 
00000470 
00000480 
00000490 
00000500 
00000510 
00000520 
00 0 0053 0 
00000540 
00000550 
00000560 
00000570 
00000580 
00000590 
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GO TO 1500 
c 
C POWELL SINGULAR FUNCTION. 
c 

c 

200 CONTINUE 
FVEC(1) = X(1) + TEN*X(2) 
FVEC(2) = DSQRT(PIVE:)*,(X(3) - X(4.) 
FVEC (3) = (X (2) - TWO* X (3)) **2 
FVEC(4) = DSQRT(TEN)*(X(1)- X(4))**2 
GO TO 1500 

C POWELL BADLY SCALED FONCTION. 
c 

c 

300 CONTINUE 
FVEC(1) = C1*X(1)*X:(2) -ONE 
FVEC (2) = DEXP (-X (1)) + DEXP (-X (2)) - C2 
GO TO 1500 

C WOOD FUNCTION. 
c 

c 

400 CONTINUE 
TEMP1 = X(2) - X(1) **2 
TEMP2 = X(4) - :<(3) **2 
FVEC(1) = -C3*X(1)*TEI!P1- (ONE- X(l)) 
FVEC(2) = C3*TEMP1 + C4*(X(2)- ONE) + C5*(X(4)- ONE) 
FVEC(3) = -C6*X(3)*TEMP2- (ONE- lC{3)) 
FVEC (4) = Co*TEMP2 + C4* (X (41 - ONE) + C5* (X (2) - ONE) 
GO TO 1500 

C HELICAL VALLEY EDNCTION. 
c 

c 

500 CONTINUE 
TPI = EIGHT*DlTAN(O~E) 
TEMP1 = OSIGN(C7,X(2)) 
IF (X(1) .GT. ZERO) TEf!P1 = DATAN(JC(2)/X(1))/TPI 
IF (X (1) .LT. ZERO) TEMP1 = OATH (X (2) /X ( 1)) /TPI' + C8 
TEMP2 = DSQRT(X(1)**2+X(2)**2) 
FVEC ( 1) = TEN* (I (3) - TEN*TE~P1) 
FVEC(2) ~ TEN*(T~!P2- O~E) 
F V EC ( 3) ;:; X ( 3) 
GO TO 1500 

C WATSON FUNCTION. 
c 

600 CONTINUE 
DO 610 K = 1, N 

FVEC(K) = ZEiiO 
610 CONTINUE 

DO 650 I= 1, 29 
TI • DPLOU (I) /C~ 
SUM1 = ZERO 
TEMP = ONE 
DO 620 J = 2, If 

SUIIl : SIH11 + DPLOlT(J-1.•U!S~*X(J) 
TEMP = TI*T!I!P 

620 COifTINU! 
SU!!2 = ZERO 
TEMP = ON! 
DO 630 J = 1, N 

0)000600 
00000610 
000006~0 
C0000630 
00000640 
OOOJ0650 
G0000660 
00000670 
00000680 
00000690 
00000700 
00000710 
UOC00720 
00000730 
Oi1000740 
00000750 
00000760 
00000770 
00000780 
00000790 
Ov0~0800 
00000810 
00000820 
OIJC00830 
00000840 
00000650 
00000860 
OG000870 
00000880 
00000890 
OJC00900 
00000910 
uoooo92o 
uoooo930 
00000940 
0)000950 
00000960 
00000970 
OOOJ0980 
00iJ0ii9QO 
00001000 
00001010 
00001020 
00001030 
00001040 
00001050 
00001060 
00001070 
00001080 
00001090 
00001100 
unon1o 
O!)C01120 
00001130 
00001140 
00001150 
00001160 
00001170 
00001180 



c 

Basic Subroutines 

SUM2 = SU~2 + TE!P*I(J) 
TEMP = TI*TEl!P 

630 CONTINUE 
TEMP1 = S0!1 - S0!2**2 - ONE 
TEHP2 = TWO*TI*S0~2 
·rEMP = ONE/T.I 
DO 640 K = 1, N 

FVEC (K} = FVEC (K) + TEMP*(DFLOAT (K-1) - TEMP2) *TEMP1 
TEMP = TI*TEMP 

640 CONTINUE 
650 CONTINUE 

TEMP = X(2) - X(1)**2 -ONE 
FVEC(1) = FVEC(1) + X(1)*(0NE- l'WO*TEMP) 
FVEC (2) = FVEC (2) + TEMP 
GO TO 1500 

C CHEBYQOAD FUNCTION. 
c 

c 

700 CONTINUE 
DO 7 1 0 K = 1 , N 

FVEC(K) = ZERO 
710 CONTINUE 

DO 13 0 J = 1 , N 
TEMP1 = ONE 
TEMP2 = TWO*X (J) - ONE 
TEMP = !WO*TEMP2 
DO 120 .I = 1, N 

FVEC(I) = FVEC(I) + TEMP2 
TI = TEMP*TEMP2 - TEMP1 
TEMP1 = TEMP2 
TEMP2 = TI 

720 CONTINUE 
730 CONTINUE 

l'K = ONE/DFLOAT(N) 
!EV = -1 
DO 740 K = 1, N 

FVEC (£<') = 'B*FVEC (K) 
IF (IEV • GT. 0) FVEC (K) = FVEC (K) + ONE/(DF!.OAT (K) **2 - ONE) 
IEV = -IEV 

740 CONTINUE 
.;o TO 1500 

C BROWN ALMOST-LINEAR FUNCTION. 
c 

c 

800 CONTINUE 
SUM = -DFIOAT(N+1) 
PROD = ONE 
DO 8 1 0 J = 1, N 

SUM= SUM+ X(J) 
PP.OD = X(J) *PROD 

810 CONTINUE 
DO 820 K = 1, N 

FVEC (K) = X (K) + SO! 
820 CONTINUE 

FVEC(N) = PROD - ONE 
GO TO 15CO 

C OISCB!T! BOUNDARY VALUE' FUNCTION. 
c 
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900 CONTINUE 
H = ONE/DFlOAT(N+1) 
DO 910 K = 1, N 

Basic Subroutines 

TE~P = (X(K) + DFlOAT(K)*H + ONE)**3 
TE~P1 = ZERO 
IF (K .NE. 1) TE!1P1 = X(K-1) 
TE!!P2 = ZERO 
IF (K • NE. N) TEMP2 = X (K+1) 
FVEC(K) = TwO*X(K)- TE~P1- TEL!P2 + TEMP*I:i**2/'IWO 

910 CONTINUE. 
GO TO 1500 

C DISCRETE INTEGRAL EQUATION FUNCTION. 
c 

c 

1000 CONTINUE 
B = ONE/DF!OAT(N+1) 
DO 1040 K = 1, N 

TK = DFlOAT(K)*H 
SUIS1 = ZERO 
DO 1010 J = 1, K 

TJ = DFlOAT {J) *H 
TEMP = (X (J) • TJ + ONE) n3 
SU1!1 = S0~1 + tJ*T~MP 

1010 CONTINq~ 
501!2 = ZERO 
KP1 = K + 1 
IF (N .LT. KP1) GO TO 1030 
DO 1020 J = KP1, N 

TJ = DYtCAT(J)*H 
TEMP = (X (J) + TJ + ONE) **3 
SU!f2 = SU1!2 + (ONE- TJ)*TEMP 

1020 CONTINUE 
1030 CONTINUE 

PVEC(~ = X(K) + H*((ONE- TK)*SU!11 + TK*SUM2)/Ti0 
10.40 CONTINUE 

GO TO 1500 

C TRIGONOMETRIC FUNCTION. 
c 

c 

1100 CONTINUE 
50!1 • ZI:!RO 
DO 1 , 1 0 J = 1 I N 

FVEC(J) = DCOS(I(J)) 
SO!! = SUM + FVEC(J) 

1110 CONTINUE 
PQ 1120 K = 1, N 

FVEC(K) = DFLOAT(N+K)- DSIN(X(K))- SUM- DFLOAT(K)*FVEC(K) 
1120 CONTINUE 

GO TO 1500 

C VARIABLY DIMENSIONED FUNCTION. 
c 

1200 CONTINUE 
SO! • ZERO 
DO 1210 J = 1, N 

SU! = SO!+ DFLOlT(J)*(X(J) -ON~ 
1210 CONTINUE 

TEMP = SUI!*(ONE + TWO*SOI!**2) 
DO 1220 K = 1, N 
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Basic Subroutines 

PVEC(K) = I(K) - ONE+ DPLOAT(K) *TE~P 
1220 · CONTINUE 

GO TO. 1500 

C BROYDEN TRIDIAGONAL FUNCTION. 
c, 

1300 CONTINUE 
DO 13 10 K = 1, N 

TEMP= (THREE- TWO*X(K))*X(K) 
TEMP 1 = ZERO 
IF (K .NE. 1) TEMP1 = X(K-1) 
TEMP2 = ZERO 
IF (K .NE. N) TEMP2 = X(K+1) 
FVEC(K) = TEMP- ~E~P1 - TWO*TEMP2 +ONE 

. 1310 CONTINUE 
GO TO 1500 

c 
C BROYDEN BANDED FUNCTION. 
c 

c 

1400 CONTINUE 
:!I. = 5 
MU = 1 
DO 1420 K = 1, N 

K1 = I!AX0(1,K-I!L) 
K2 = !UNO (K+MU,N) 
TE~P = ZERO 
DO 1410 J = K1, K2 

IF (J .EQ. K) GO TO 1410 
TEMP= TEMP+ X(J)*(ONE + X(J)) 

1410 CONTINUE 
FVEC (K) = X (K) *(TWO + FIVE*X (K) **2) + ONE - TEMP 

1420 CONTINUE 
1500 CONTINUE 

RETURN 

C LAST CARD OF SUBROUTINE VECFCN. 
c 

END 
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Basic Subroutines 

SUBROUTINE COMFCN(N,K,X,FCNK,NPiOB) 
INTEGER N,K,NPROB 
DOUBLE PRECISION FCN~ 
DOUBLE PRECISION X(N) 
********** 

SUBRCUTINE CO~FCN 

THIS SUBROUTINE DEFINES FOURTEEN T!ST FUNCTIONS. THE FIRST 
FIVE TEST FU~CTIO~S ARE OF DI~ENSIONS 2,~,2,~,3, RESPECTIVELY, 
WHILE THE EEMAINING TEST FUNCTIONS !RE OF VARIABLE DI!ENSION 
~ FOR .lNY N GBEATER THAN OR EQUAL TO 1 (PROBLEi! 6 IS AN 
EXCEPTION TO THIS, SINCE IT DOES NOT ALLOW N = 1). 

THE SUBROUTINE STATFMENT IS 

SUBROUTINE COMFCN(K,K,X,FCNK,N?&OB) 

WHERE 

N IS A fQSI!IV! INT~~~~ VAiiADLi. 

K IS A POSITIVE INTEGER VARIABLE NOT GREATER ~HAN N. 

X IS A LINEAR ARRAY OF LENGTH N. 

FCNK IS A REAL VARIABLE WHICH ON OUTPUT CONTAINS THE VALUE OF 
THE K-TH CO~PONENT OF THE NPiOB FUNCTION EVALUATED AT X. 

NPROB IS A POSITIVE INTE~ER VARIABLE WHICH DEFINES THE 
NUMBER OF THE PROBLEM. NP40B ~UST NOT EXCEED 1q. 

SUEPRCG&AMS &EQOIRED 

FORTPAN-SUP~LIED ••• DATAN,DCOS,DEXP,DSIGN,DSIN,DSQRT, 
IU :X:O, MI NO, .!00 

~INPACK. VERSION OP SEPTEMBER 1977. 
BUNTON S. GARBOW,KENNETH E. HI~LSTROM, JORGE J. ~ORE 

********** 
INTEGER I,IVAP,J,K1,K2~KP1,~L,~U 
OOOeL! PRECISION C1,C2,CJ,C~,CS,C5,C7,C8,C9,EIGHT,FIVE,H, 

1 ONE,fROD,SUM,SUM1,SUM2,TEMP,TE!P1,TE~P2,TEN,THREE, 
2 TI,TJ,TK,TPI,TWO,ZERO 

DOUBLE ~RECISION DFLOAT 
DATA ZERO,ONE,TiO,TRREE,FIVE,EIGHT,TEN 

1 ;O.D0,1.00,2.DO,J.D0,5.D0,8.D0,1.01/ 
DATA C1,C2,CJ,C~,C5,C6,C7,C&,C9 

1 j1.04,1.0001D0,2.D4,2.02D1,1.98D1,1.802,2.5D-1,5.D-1,2.9D1/ 
OFLOAT (IVAI\) = IVAR 

PROBLE! SELECTOR. 

GO TO (100,200,300,400,500,600,700,800,900,1000, 
1 1100,1200,1300,1400),tfP!lOB 

ROSENBROCK FUNCTION. 
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Basic Subroutines 

100 CONTINUE 
IF (K .EQ. 1) FCNK = ONE - I{1) 
IF (K .EQ. 2) FCNK = TEN*(I(2) - X(1)**2) 
GO TO 1500 

C POWELL SINGULAR FUNCTION. 
c 

c 

200 CONTINUE 
IF (K .EQ. 1) FCNK = X(1) i> TEN*X(2) 
IF (K • EQ. 2) FCNK = DSQR'r (FIVE)* (X {3) - X: (14)) 
IF (K .EQ. 3) PCNK = (.t(2) - TWO*I(3)) **2 
IF (K .EQ. 4) FCNK = DSQ.IiT(TEN)*(I(1) - X(4))**2 
GO TO 1500 

C POWELL BADLY SCALED FUNCTION. 
c 

c 

300 CONTINUE 
IF (K .EQ. 1) FCNK = C1*X{1)*X:(2) - ONE 
IF (K • EQ. :4) FCNK = DEXP (-X: ( 1)) • OEX:P (-X (2)) - C2 
GO TO 1500 

C WOOD FUNCTION. 
c 

c 

~00 CON'IINUF 
TEMP1 = X:(2) - X(1)**2 
TEMP2 = I (4) - X (J) **2 
IF (K .FQ. 1) FCNK = -C3*lC{1) *TEMP1 - (ONE- ;((1)) 
IF (K • EQ. 2) FCNK = C3*TEMJ?1 i> C4* (X (2) - ONE) + C5* (X (4) 
IF (K • EQ. 3) FCNK = -C6*X: (3, *TEMJ?2 - (ONE - X: (3)) 
IF (K • EQ. 4) FCNK = C6*TEt!P2 i> C4* (X (4) - ONE) i> CS* (X (.2) 
GO ·ro 1soo 

C HELICAL VALLEY FUNCTION. 
c 

c 

500 CONTINUE 
IF ( K • N E. 1 ) GO TO 5 1 0 
TPI = ElGHT*DATAN(ONE) 
TEMP1 = DSIGN(C'7,X(2)) 
IF (X{1) .GT. ZERO) TEMP1 = DATAN(X(2)/X(1))/TPI 
IF (X ( 1) • LT. ZERO) TEMP1 = DlTAN (X (2) /X ( 1)) /TPI i> C8 
?CNK = TEN*(X(3) - TEN*TEMP1) 

510 CONTINUE 
!F (K .EQ. 2) PCNK = TEN*(DSQRT(X(1)**2i>X:(2)**2) -ONE) 
IF (!C .EQ. 3) FCNK = X(3) 
GO ro 1500 

C WAXSON FUNCTION. 
c 

600 CONTINUE 
FCNK = ZERO 
DO 630 I = 1, 29 

TI = DFLOAT(!)/C9 
SUPI1 :: ZERO 
TE!P = CNE 
DO 610 J = 2, N 

SOM1 = SUM1 + DPLOAT~-1)*TE~P*X:(J) 
TEMP = TI*TEMP 

610 CONTINUE 
SUK2 = ZERO 
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Basic Subroutines 

TEMP = ONE 
DC 620 J = 1, · N 

SUM2 = SUM2 + !E!P*X(J) 
TEMP = TI*TE!P 

620 CONTINUE 
TEMP1 = SUM1 - SUM2**2 - ONE 
TE~P2 = TWO*TI*SU~2 
FCNK = FCNK + TI**(K-2)*(DFLOAT(K-1)- TE!!P2)*TE!!P1 

630 CONTINUE' 
TEMP= X(2) - X(1)**2- ONE 
IF (~ .EQ. 1) F·CNK = FCNK + X(1)*(0NE- TWO*TE!P) 
IF (K • EQ •. 2) FCNK = FCNK + TE.aP . 
.;o TO 1500 

C CHEBYQUAD FUNCTION. 
c 

c 

700 CONTINUE 
50!1 = ZEPO 
00 7 3 0 J = 1 I N 

TE!!P1 = ONE 
TEMP2 = TWO*X(J) - ONE 
~~MP = 1WO*TE~P2 
IF (!( • U. 2) GO TO 720 
1)(1 7 1 0 I ., ~, K 

TI = TEMP*TEMP2 - TEMP1 
TE!'!P1 = TEMP2 
'IEMI?2. = TI 

710 CONTINUE 
720 CONTINUE 

SUM = SUM + TEHP2 
730 CONTINUE 

FCNK = SUM/OFLOAT(N) 
IF'. (MOD (K, 2) • EQ. 0) FCNK = FCNK + ONE/ (DFLOAT (K) *"'' - ONE) 
GO TO 1 5CO 

C BRORN ALMOST-LINEAR FUNCTION. 
c 

L: 

800 CONTINUE 
IF (K • EQ. N) GO TO 820 
SUM = -DFLCAT(N+1) 
UU ~10 J = 1, N . 

.SU~ • ~UM • X(J) 
810 CONTINUE 

P'CNK = X (K) + SU~ 

GO !'0 840 
820 CONTINUE 

I?P.OD = ONE: 
DO 830 J ,. 1, N 

P~CD = X(J) *PROD 
831) CONTIN!J! 

FCNK = PROD - ONE 
640 CONTIN:JE 

GO TO 1500 

C DISCRETE 90UNDlBY VALUE FUNCTION. 
c 

900 CONTINUE 
H = ~NE/DFLOAT(N+1) 
TEMP= (X(K) + DFLOAT(K)*H + ONE)**3 
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Basic Subroutines 

TEMP1 = ZERO 
IF (K .NE. 1) TEMP1 = X(K-1) 
TEI!P2 = ZERO · 
IF (K • NE. N) TEMP2 = X (K+ 1) 
FCNK = TWO*X(K) - TEMP1 - TEMP2 + TEMP*H**2/TWO 
GO TO 1500 

C DISCRETE INTEGRAL EQUATION FUNCTION. 
c 

c 

lJOO CONTINUE 
H = ONE/DFLOAT(N+1) 
TK = DFLOAT (K) *H 
SUM1 = ZERC 
DO 1010 J = 1, K 

·:rJ = DF'LO.II.T (J) *H 
TEI!P = (X(J) + TJ + ONE)**3 
SUM1 = SUI!1 + TJ*TEI!P 

1010 CONTINUE 
SUI!!2 = ZERO 
KP1 = K + 1 
IF (N • LT. KP1) GO TO 1030 
DO 1020 J = KP1, N 

!.J = DFLOAT(J)*H 
TEMP = (X (J) + TJ + ONE) **3 
SUM2 = SUM2 + (ONE- TJ)*TEMP 

1020 CONTINUE . 
10 30 CONTINUE 

FCNK = X (K) + H* ((ONE - 1: K) *SUM1 + TK*SUM.2) /TWO . 
GO TO 1500 

C TRIGONOMETRIC FUNCTION. 

c 

11 OIJ CONTINUE 
SU!'! = ZERO 
DO 1 1 1 ~ J = 1, N 

SUM= SUM+ OCOS(X(J)) 
1110 CONTINUE 

FCNt<: = DFLOAT (N+K) - DSIN (X (K)) - SUM - DFLOAT (K) *DCOS (X (K)) 
GC '!0 1500 

C VARIABLY DIMENSIONED FUNCTION. 
c 

c 

1200 CONTINUE 
SUM = ZERO 
DO 1 2 1 0 J = 1 , N 

SQM = SUM+ DFtOAT{Jl*(XCJ) - ONI) 
121G CONTINUE 

TEMP = SUM*(ONE + TWO*SUM**2) 
FCNK = X(K) -ONE+ DPLOAT(t<:)*TEMP 
GO TO 1500 

C SaCYOEN TiiDIAGONAL FUNCTION. 
c 

1'300 CONTINUE 
TEMP = (THREE- T;O*I(K))*X(K) 
TEMP1 = ZEBO 
IF (!C' .U~ 1) T!MP1 = X(K-1) 
TEMP2 :a ZEFO 
IF (K .NE. N) TEI!P2 = X(K+1) 
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Basic Subroutines 

FCNK = TEMP - TEMP1 - TWO*TEMP2 + ONE 
GO TO 1500 

C BROYDEN BA~DED FUNCTION. 

c 

HOO CONTINUE 
11L = 5 
~u = 1 
K1 = MA10(1,K-!U) 
K2 = MINO(K+MU.N) 
!EMP = ZEPO 
DO 1410 J = K1, K2 

I F ( J • E Q • K) GO T 0 H 1 0 
TE~P =TEMP+ X(J)*(ONE + X(J)) 

1410 CONTINUE 
PCNK = X(K)*(TWO + FIVE*I(~**2) + ONE -TEMP 

1500 CONTINUE 
LiET!JP N 

t iAST CARD CF SUBROUTINE CO~FCN. 
c 

END 
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Basic Subroutines 

SUBROUTINE INITPT(N,X,NPROB,FACTOR) 
INTEGER N,NPROB 
DOUBLE PRECISION FACTOR 
DOUBLE PRECISION I(N) 
********** 

SUBROUTI~E INITPT 

rHIS SUBROUTINE SPECIFIES THE STANDlRD STARTING POINTS FOR THE 
FUNCTIONS DEFINED BY SUBROUTINE SSQFCN. THE SUBROUTINE RETURNS 
IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINT. FOR 
THE 11TH FUNCTION THE STANDARD STARTING POINT IS ZERO, SO IN 
THIS CASE, IF FACTOR IS NOT UNITY, THEN THE SUBROUTINE RETURNS 
THE VECTOR X (J) . = F!lCTOR, J=1 I ••• , tf. 

THE SUEROUTINE STATE~ENT IS 

SUBPOUTINE INITPT(N,X,NPROB,FACTOR) 

llHERE 

N IS A POSITIVE INTEGER VARIABLE. 

X IS A LINEAP ARRAY OF LENGTH N. ON OUTPUT X CONTAINS THE 
STANDAPD ST~ETING POINT ~OR PROBLE~ tfPROB ~ULTIPLIED BY 
FACTOR. 

NPROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE 
NUMBER OF THE PROBLE!. NPROB MUST NOT EXCEED 18. 

FACTOR SPECIFIES THE MULTIPLE OF THE STANDARD STARTING 
POINT. IF FACTOR IS UNITY, NO MULTIPLICATION IS PERFORMED. 

~INPACK. VERSION OF OCTOBER 1977. 
BURTON S. GARBOW, ~ENNETB E. HILLSTHOM, JORGE J. MO&E 

********** 
!~lTEGER IVAR,J 
DOUBLE PRECISION C1,C2,C3,C4,CS,C6,C7,C8,C9,Ct0, 

1 C11,C12,C1J,C14,C15,C16,C17,FIVE,H,HALF, 
2 ONE,SEVEN,TEN,TBREE,!WENTY,iWNTF,TWO,ZERO 

DOUBLE PRECISION DFLOAT 
DATA ZERO,HALF,ONE,TWO,THREE,FIVE,SEVEN,TEN,TWENTY,TWNTF 

1 ;O.DC,S.D-1,1.D0,2.D0,3.DO,S.D0,7.D0,1.D1,2.D1,2.5D1/ 
DATA C1,C2,C3,C~,CS,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17 

1 /1.2D0,2.5D-1,3.9D-1,~.15D-1,2.D-2,4.D3,2.5D2,3.D-1,4.D-1, 
2 1.500, 1.D-2,1.300,6.SD-1,7.D-1,6.D-1,4.5DO,S.SDO/ 

OFLOAT(IVAR) = IVAR 

SELECTION OF INITIAL POINT. 

GC TO (100,200,300,~00,500,600,700,800,900,1000,1100, 
1 1200,1300,1400,1500,1600,1100,1800) ,liPROB 

LINE~i FUNCTION - FULL RANR 0! aAdK 1. 

100 CONTINUE 
200 CONTINUE 
300 CONTINUE 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000140 
00000150 
00000160 
00000110 
00000180 
00000190 
00000200 
00000210 
00 0 0022 0 
00000230 
000002140 
00000250 
00000260 
00000270 
00000280 
00000290 
00000300 
00000310 
C0000320 
00000330 
000003140 
00000350 
000 00360 
00000370 
00000380 
00000390 
00000400 
00000410 
00000420 
00000430 
0)000440 
00000450 
000QQU60 
OJv00470 
00000480 
00000490 
OOOJ0500 
vJ000510 
00000520 
00000530 
00000540 
00000550 
ooc 00560 
00000570 
00000580 
00000590 
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c 

DO 310 J = 1, N 
X: (J) = ONE 

310 CONTINUE 
GO TO 1900 

C ROSENBaOCK FUNCXION. 
c 

c 

qCO CONTINUE 
x < 1) = -c 1 
X (2) = ONE 
GC TO 1900 

C HELICAL VALLEY FUNCTION. 
c 

c 

500 CONTINUE 
X(1) =-ONE 
X(2) = ZEP.O 

· X (3) = ZERO 
GC TO 1900 

C POWELl SINGULAR FUNCTION. 
c 

c 

~00 C~N·r.I.NUE 
X ( 1) ,. ·tHREE 
X (2) = -ONE 
X (3) = ZERO 
X (4) = ONE 
GO TO 1900 

Basic Subroutines 

C FBEODENSTF.IN AND ROTH FUNCTION. 
c 

c 

700 CONTINUE 
lC(1) = HALF 
X (2) = -TWO 
GO TO 19JO 

C BARD FUNCTION. 
c 

c 

8vO CONTINUE 
X:(1) =ONE 
X (2) ~ ONE 
X(3) = ONF 
GO TG 1900 

C KOWALIK AND OSEORNE FUNCTION. 
c 

c 

900 CCNriNUE 
I ( l) = C2 
X (2) = CJ 
X(3) = C4 
X(4) = CJ 
GO TO 1900 

C !EYER FOSCTION. 
c 

1000 CONTINUE 
X:(1) = C5 
X (2) = C6 
I(3) = C7 

00000600 
00000610 
00000620 
00000630 
00000640 
00000650 
00000660 
00000670 
00000680 
00000690 
00000700 
00000710 
00000720 
00000730 
00000740 
00000750 
00000760 
00000770 
00000780 
00000790 
OJ000800 
00000810 
OIJ IJ (}01;1:.1 U 
UUUUUtUU 
O:l000840 
00000850 
00000860 
000 00870 
00000880 
00000890 
00000900 
00000910 
00000920 
00000930 
000009~0 
00000950 
vOOOC960 
00000970 
00000980 
00000990 
00001000 
00001010 
00001020 
00001030 
00001040 
00001050 
00001060 
00001070 
00001080 
OC001090 
00001100 
0000'1'110 
000011~0 
00001130 
00001140 
00001150 
90001160 
00001170 
00001180 



GC TO 1900 
c 
C WATSON FUNCTIOH. 
c 

c 

1100 CONTINUE 
DO 1110 J = 1, N 

X (J) = ZERO 
1110 CONTINUE 

GO TO 1900 

Basic Subroutines 

C BOX 3-DIME~SIONAL FUNCTION. 
c 

c 

1200 CONTINUE 
X(1) = ZERC 
X (2) = TEN 
X (3) = TWENTY 
GO TO 1900 

C JENNRICH AND SAMPSON FONCTION. 
c 

c 

1300 CONTINUE 
X(1) =C8 
X(2) = C9 
GO TO 1900 

~ BROWN AND DENNIS FUNCTION. 

c 

1400 CONTINUE 
X (1) = TWNTF 
X (2) = FIVE 
X(3) =-FIVE 
X (4) = -ONE 
GO TO 1900 

C CHEBYQUAD FUNCTION. 
c 

c 

1500 CONTINUE 
H = ONE;~FlOAT(N+1) 
DO 1 51 C J = 1, N 

X:(J) = DFLOAT(J)*H 
,510 CONTINUE 

GO TO 1900 

C BROWN ALMOST-LINEAR FUNCTION. 
c 

c ,.. 
'-

c 

1600 CONTINUE 
DO 1 6 1 0 J = 1 , N 

X (J) = HALF 
1610 CONTINUE 

1100 

GO TO 1900 

OSBOBNE 1 FUNCTION. 

CONTINUE 
X (1) = HALF 
X (2) = C1 0 
X (3) = -ONE 
X(ij) = C11 
X(S) = CS 

J0001190 
00001200 
00001210 
00001220 
00001230 
00001~ij0 
~i0001250 
00001260 
00001270 
00001280 
0.)001290 
00001300 
00001310 
00001320 
oood'u3o 
00001340 
00001350 
00001.360 
00001370 
00001380 
00001390 
00 001400 
00001410 
00001420 
00001430 
00001440 
00001450 
oo o a 146 o 
00001_470 
OOOQ1480 
00001490 
OJ 001500 
00001510 
00001520 
00 0 0153 0 
00001540 
00001550 
00001560 
00001570 
00001580 
000 01590 
00001600 
00001610 
00001620 
00001630 
nno o 1640. 
00001650 
00001660 
00001670 
1)1)00 1680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001150 
00001760 
0.)001770 
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GO TO 1900 
c 
C OSBOBNE 2 FUNCTION. 
c 

c 

1800 CONTINUE 
X(1) = C12 
X(2) = C13 
X(J) = C13 
X(U) = C14 
X: ( 5) = c 15 
X (6) = THREE 
:< {7) = FIVE 
X(8) =SEVEN 

\ JC(9) = TWC 
X:(10) = C16 
X(1i) = C17 

C CO~PUTE ~ULTIPLE OF INITI~L POINT. 
c 

c 

1900 C:C NTHH:J E 
IF (FACTOR • EQ. ONE) GO 'IO 19~0 
IF (NPROB .EQ. 11) GO TO 1920 
DC 1 910 J -:; 1 I N 

:< (J) = HCTOR*X (J) 
1910 CONTINUE 

GO TO 1940 
1920 CON'!INUE 

DO 1930 J = 1, N 
K (J) = FACTOR 

1930 CONTINUE 
19 40 CONTINUE 

RETURN 

C LAST CARD OP SUBROUTINE INITPT. 
c 

END 

00001780 
00001790 
·aooo1800 
00001810 
00001820 
00001830 
000018"0 
Cil001850 
oc 0 01860 
00001870 
00001880 
OOG01890 
00001900 
00001910 
00001920 
00001930 
OJ0019"0 
00001950 
000 01960 
00001970 
·00001980 
C0001S90 
J0002000 
00002010 
00002020 
J0002030 
000020"0 
00002050 
OOOJ2060 
:)00 02070 
00002080 
00002090 
00002100 
00002110 
00002120 
00002.13 0 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

Basic Subroutines 

SUBROUTINE SSQFCN(M,N,X,FVEC,NPROBt 
INTEGES M,N,NPROB 
DOUBLE PRECISION I(N~ ,FVEC(!) 
•••••••••• 
SUBROUTINE SSQFCN 

THIS SUBROUTINE DEFINES THE FUNCTIONS OF EIGHTEEN NONLINEAR 
LEASI SQUARES PRCBLE!!S. ·rHE ULOWABLE VALUES OF (M,N\ FOR 
?UNCTIONS 1,2 AND 3 ARE VARI!BLE BUT WITH ~ .GE. N. 
FOR FUNCTIONS 4,5,6,7,8,9 AND 10 THE VALUES OF (l!,N) AB.E 
( 2 , 2) , ( 3 1 3 ) 1 ( 4 , 4 ) , ( 2 , 2) , ( 1 5, 3 ) , ( 1 1 , 4 t AND ( 1 6 , 3 ) , R ESP EC T IV ELY. 
FUNCTION 11 (WATSON) HAS~= 31 WIIii N US!JALLY 6 OR 9. 
HOWEVER, ANY N, N = 2, ••• ,31, IS PERMITTED. 
FUNCTIONS 12,13 AND 14 HAVE N = 3,2 AND 4, RESPECTIVELY, BUT 
ALLOW ANY K .GE. N, iiTH THE USUAL CHOICES BEING 10,10 AND 20. 
FUNCTION 15 (CHEBYQUAD~ ALLOWS ~ !NO N VA4IABLE WITH ~ .GE. N. 
FUNCTION 16 (BROWN) ALLOWS N VAFI.lBLE WITH I!! = N. 
FOR FUNCTIONS 17 !NO 18, THE VALUES OF (!!,N) ARE 
(33,5) lND (65,11), RESPECTIVELY. 

THE SUBROUTINE STATE~ENT IS 

SUBROUTINE SSQFCN(~ 1 N,X 1 FVEC,NPROB) 

if HERE 

M AND N ARE POSITIVE INTEGER VARIABLES. N ~UST NOT EXCEED !. 

X !S A LINEAR ARRAY OF LENGTH N. 

FVEC IS A LINEAR ARRAY OF LENGTH M. ON OO!P~T FVEC 
CONTAINS THE NPROB ?UNCTION EVALUATED AT X. 

NP!iOB IS A POSITIVE INTE3E.U VARIABLE WHICH DEFINES THE 
NUMBER OF THE PROBLEH. NPROB ~UST NOT EXCEED 18. 

SUBPFOGRAMS aEQUIRED 

FOPTRAN-SUPPLIED ••• DATAN,OCOS,DEXP,DSIN,OSQRT,DSIGN 

~~NPACK. VERSIOH OF OCTOBER 1977. 
BURTON S. GARBOW, KENNETH E. HILLSTRO!, JORGE J. MORE 

********** 
INTEGEB I,IEV,IVAR,J,NM1 
DCUDLE PnSCI5ION C1J,C14,C29,C4~,DIVID!,EIGHT,FIVE~ONE, 

1 PROD,SUM,S1,S2,TE!P,TEN,TI,T!P1,T~P2 1 T!23,T!E4, 
2 TPI,TWO,ZERO,ZP25,ZP5 

DOUBLE PRECISION V(11) ,!1 (15) ,Y2(11) ,Y3(16),Y4(33) ,Y5(65) 
DOUBLE PRECISION DFLOAT 
DATA ZERO,ZP25,ZP5,0NE,TiO,FIVE,EIGHT,TEN,C13,C14,C29,C45 

1 ;O.D0,2.5D-11S.D-1,1.D0,2.DO,S.D0,8.D0,1.D1, 
2 1.3D1,1.4D1,2.9D1,4.5D1/ 

DATA V(1) ,V(2) ,V(3) ,V(4) ,V(S) ,V(6, ,V(7) ,V(8) ,V(9) ,V(10) ,V(11) 
1 /4.0D0,2.0D0,1.0D0,5.D-1,2.5D-1,1.67D-1,1.2SD-1,1.D-1, 
2 8.33D-2 17.14D-2,6.25D-2/ 

DATA Y1 (1) ,!1 (:Z) ,!1 (3) ,Y1 (4) ,!1 (St ,Y1 (6) ,Y1 (7) ,Y1 (8) I 

1 Y1 (9) ,Y1(10) ,!1(11, ,Y1P2) ,Y1 (13t 1Y1 (1~t ,Y1 (15) 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
OJ000100 
00000110 
00000120 
00000130 
00000140 
0:>000150 
00000160 
00000170 
OJ o oorao 
00000190 
00000200 
00000210 
(10000220 
00000230 
00000240 
00000250 
00000260 
00000270 
00000280 
00000290 
1)0000300 
00000310 
OJ000320 
00000330 
00000340 
00000350 
00000360 
00000~70 
OOOOG380 
OJ000390 
00000400 
OJ000410 
oooou420 
00000430 
00000440 
OJ000450 
000004&0 
000001470 
00000480 
00000490 
00 000500 
OJ000510 
000 00520 
00000530 
00000540 
00000550 
00000560 
OJ000570 
00000580 
OJ000590 
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2 /1.4D-1,1.80~1,2.2D-1,2.S0-1,2.90-1,3.2D-1,J.S0-1,3.90-1, 
3 3.7D-1,5.8D-1,7.30-1,9.6D-1,1.34D0,2.1000,4.3900/ 

DATA Y2(1) ,Y2(2) ,Y2(3) ,Y2(4) ,I2(5) ,Y2 (6), 
1 Y2(7) ,Y2(8) ,Y2(9) ,Y2(10) ,Y2(11) 
2 /1.957D-1,1.9470-1,1.735D-1,1.6000-1,8.44D-2,6.27D-2, 
3 4.56D-2,3.42D-~,3.2JD-2,2.350-2,2.46D-2/ 

DATA Y 3 ( 1 ) , Y 3 ( 2) , Y 3 ( 3) , Y3 ( 4) , Y 3 ( 5) , Y3 ( 6 ) , Y 3 ( 7) , Y 3 ( 8) , Y3 ( 9) ·' 
1 Y3(10) ,Y3(11) ,0(12) ,Y3(13) ,Y3(14) ,Y3(15) ,I3(16) 
2 /3.~7804,2.86104,2.365D4,1.963D4,1.63704,1.372D4,1.154D4, 
3 9.744D3,8.26103,7.03D3,6.005D3,5.14703,4.42703,3.8203, 
4 3.30703,2.87203/ 

DATA Y4(1),Y4(2),Y4(3),Y4(4),Y4(5),Y4(6),Y4(7),Y4(8),Y4(9), 
1 Y4(10) ,Y4(1 1) ,Y4(12) ,Y4(13) ,Y16(14) ,Y4(15) ,Y4(16) ,Y4(17), 
2 Y4 ( 1 8) , Y4 (19) , I 4 (20) , Y4 (2 1) , I 4 (2 2) , Y4 (2 3) , I4 (2 4) , I 4 ( 2 5) , 
3 Y4(26) ,I4(27) ,Y4(28) ,Y4(29) ,I4(30) ,Y4(31) ,Y4(32) ,I4(33) 
4 /8.44D-1,9.08D-1,9.32D-1,9.36D-1,9.250-1,9.080-1,8.81D-1, 
5 6.500-1,8. 180-1,7.816D-1,7.51D-1,7.18D-1,6.85D-1,6.58D-1, 
6 6.28D-1,6.0JD-1,5.80D-1,5~580-1,5.38D-1,5.220•1, 
7 5.06D-1,4.90D-1,4.78D-1,4.67D-1,~J.57D-1,4.48D-1,4.38D-1, 
8 4.31D-1,4.24D•1,4.2QD•I,~J.1~D-1,4.11D-1,4.0nD-1/ 

uA'iA YS(1) ,YS(2) ,!5(3) ,YS(4) ,I5(5) ,Y5(6) ,Y5(7) ,Y5(8) ,I5(9), 
1 Y5(10) ,I5(11) ,Y5(12) ,YS(U) ,Y5(14) ,Y5(15),Y5(16) ,Y5(17), 
2 Y5(18),Y5(19),I5(20),Y';(21),Y5(22),Y5(~3),Y5(24),IS(2S), 
.3 Y5(26) ,Y5(27) ,Y5(28) ,Y5(2.9) ,YS(30) ,Y~(l1) ,X'~ (32i ,i5(33J, 
4 YS (34), YS (35), IS (36) , YS (37), Y5 (38) , Y5 (3 ~),IS (40) , YS (41) , 
5 Y5(42) ,I5(4'3) ,Y5(44) ,Y5(45) ,Y5(46) ,YS(47) ,I5(48) ,Y5(49), 
6 YS(SO) ,Y5(51) ,IS(52) ,Y5(53) ,Y5(54) ,I5(55) ,I5(56) ,Y5(57), 
7 Y5(58) ,!5(59) ,Y5 (60) ,I5(61) ,!5(62) ,Y5(63) ,I5(64) ,Y5(65) 
8 /1.366D0,1.19100,1.112D0,1.013D0,9.91D-1,8.85D-1, 
9 8.31D-1,8.47D-1,7.66D-1,7.25D-1,7.46D-1,6.79D-116.08D-1, 
A 6.55D-1,6.16D-1,6.06D-1,6.02D-1,6.26D-1,6.51D-1,7.24D-1, 
B 6.49D-1,6.49D-1,6.94D-1,6.44D-1,5.24D-1,6.61D-1,6.12D-1, 
C 5.58D-1,5.33D-1,4.95D-1,5.00D-1,4.23D-1,3.95D-1,3.75D-1, 
D 3.72D-1,3.91D-1,3.96D-1,~.05D-1,ij.28D-1,4.29D-1,5.23D-1, 
E 5.62D-1,6.07D-1,6.53D-1,6.72D-1,7.08D-1,6.33D-1,6.68D-1, 
F 6.45D-1,6.32D-1,5.910-1,5.59D-1,5.97D-1,6.25D-1,7.39D-1, 
G 7.10t-1,7.29D-1,7.20D-1,6.36D-1,5.81D-1,~.28D-1,2.92D-1, 
H 1. 620-1,9.80-2,5.40-2/ 

DFLOAT (IVA1i) = IVAR 
c 
C FUNCTION ROUTINE SELECTOR. 
c 

Go ro (100,200,J00,400,5oo,6oo,7oo,aoo,9oo,1coo,,,oo, 
1 1200,1300,1400,1500,1600,1700,1800),liiPROB 

c 
C LINEAR FUNCTION - FULL RANK. 
c 

c 

100 CONTINUE 
SUM = Z.ERO 
DO 110 J = 1, N 

SUit = SO! + JC (J) 
110 CONTINUE 

TE!P = TWO*SU!/DPLO~T(~) +ONE 
DO 120 I= 1, !! 

FVEC(I) = -TE!P 
IF (I .LB. H) FVEC (I) = FVEC (I) + I (I) 

120 CONTINUE 
GO TO 1900 

00000600 
OJ000610 
00000620 
00000630 
oooooo40 . 
00000650 
00000660 
00000670 
OJ000680 
00000690 
00000700 
00000710 
00 000720 
00000730 
00000740 
00000750 
00000760 
.>0000770 
uoooo1ao 
00000790 
00000800 
00000810 
OOOOC820 
00000830 
00000840 
00000850 

. 00000860 
00000d70 
00000880 
00000890 
00000900 
00000910 
00000920 
00000930 
00000940 
00000950 
00000960 
00000970 
00000980 
00000990 
00001000 
00001010 
00001020 
00001030 
00001040 
00001050 
OC001060 
00001070 
000010SO 
00001090 
00001100 
oo·oo 1,, o 
000011;l0 
00001130 
00001140 
0:>001150 
00001160 
00001170 
00001100 
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C LINEA4 FUNCTION - RANK 1. 
c 

c 

200 .cONTINUE 
SIJH = ZEBO 
DO 210 J = 1, N 

SUM= SUM+ DFtOAT(J)*X(Jt 
210 CONTINUE 

DO 220 I= 1, M 
FVEC (I) = DFLOAT (I) *SU~ - ONE 

220 CONTINUE 
GO TO 1900 

C LINEAR FUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS. 
c 

c 

300 CONTINUE 
SUM = ZERO 
Nll1 = N - 1 
IP (Ni'11 .LT. 2) GO TO 320 
DO 310 J = 2, NM1 

SU~ =SUM+ DFLOAT(J)*X(J) 
310 CONTINUE 
320 CONTINUE 

DO 330 I = 1, I! 
FVEC (I) = DFLOAT (I-1) *SOl'! - ONE 

330 COttTINUE 
FVEC (M) = -ONE 
GO 'IO 1900 

C ROSENBBOCK FuNCTION. 
c 

c 

400 CON'IINOE 
FVEC(1) = TEN*(X(2) - :<(1)**2) 
F V EC ( 2) = 0 N E - X ( 1) 
GO TO 1900 

C fiELICAL VALLEY FUNCTION. 
c 

c 

500 CONTINUE 
TPI = E!GHT*DATAN(ONE) 
r!!P1 = DSIGN (ZP25,X (2)) 
IF (X(1) .GT. ZERO) TMP1 = DATAN(X(2)/I(1))/TPI 
I?' (lC(1) .LT. ZEBO) TMP, = DATAN(lC(2)/X:(1))/TPI + ZP5 
!!!P2 = DSQRT(X(1)**2+X(2)**2) 
FVEC (1) = TEN* (X (3) - TEN*TMP1) 
FVEC(2) = TEN*(Tl'IP2- ONE) 
FVEC(3) = X(3) 
GO TO 1900 

C POWELL SINGULAR FUNCTION. 
c 

c 

600 CONTINUE 
FVEC(1) = X(1) + TEN*I(2) 
PVEC (2) = DSQBT (FIVE)* (X (3) - I (4)) 
FVEC(3) = (1(2) - TWO*X(3))"'*2 
FVEC(4) = DSQIT(TEH)*(X(1) - X(4))**2 
GO :ro 1900 

C PREUDENSTEIN AND ROTH FUNCriON. 
c 

00001190 
00001200 
00001210 
OQ001220 
00 0 0123 0 
000012LJO 
00001250 
00001260 
00001270 
00001280 
00001290 
00001300 
00001310 
00001320 
00001330 
00001340 
00001350 
00001360 
ooc·o1370 
00001380 
OJOOD90 
00001400 
000011410 
00001420. 
00001430 
00001440 
00001450 
Oll00H60 
oooo1 :no 
00 0 01480 
00001490 
000 01500 
00001510 
00001520 
00001530 
00001540 
00001550 
oooo15oo 
00001570 
00001580 
00001590 
00001600 
00001610 
00001620 
00001630 
00001640 
0000 "1650 
00001660 
00001670 
00001680 
00001690 
00001700 
000 01710 
00001720 
00001730 
00001740 
00001750 
00001760 
00001770 
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c 
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700 CONTINUE 
FVEC(1) = -C13 + X[1) + ((FIVE- X(2))*I(2) - TliO)*I(2) 
FVEC(2) = -C29 + X(1) + ((ONE+ X(2))*X(.2) - C14)*X(2) 
GO TO 1900 

C BARD FUNCTION. 
c 

c 

800 CONTINnE 
DO 81 0 I = 1, 15 

TMP1 = DPLOAT (I) 
TMP2 = DFLOAT(16-I) 
T~P3 = TMP1 
IF (I .GT. 8) T!!P3 = TMP2 
FVEC(I) = Y1 (I) - (1(1) + TMP1/(X(2) *TMP2 + X(3) *TMP3)) 

810 CONTINUE 
GO TO 1900 

C KOWALIK AND OSBOfNE FUNCTION •. 
c 

c 

900 CONTINUE 
DO 9 1 0 I = 1 , 11 

T~P1 = V(I)*(V(I) + X(2)) 
TME2 = V (I)* (V (I) + X (3)) + X (4) 
rvtc (I) "' yz (I) - x p) •uP 1;rru2 

910 CONTINUE 
GC TO 1900 . 

C ~EYEF FaNCTION. 
c 

c. 

1000 COUTINUE 
DO ,~10 I = 1, 16 

TEMP = FIVE*DPLCIA! (I) + C45 + X: (3) 
TMP1 = X(2)/TEMP 
IMP2 = DEXP(TMP1) 
E'VEC (I) = X (1) *Tl!P2 - Y3 (I) 

1010 CONTINUE 
GO !0 1900 

C ~~TSON'FUNCTION. 
c 

1100 CONTINUE 
DU l'iJO I = 1, 29 

DIV = DFLOAT(I)/C29 
S1 = ZEEO 
OX = ONE 
D01110'J::2.,N 

51 =51 + DFLOAT(J-1)*DX*X(J) 
DX = DIV*DX 

1110 CONTINUE 
S2 = ZEl\0 
OX = ONE 
DO 1120 J • 1., N 

S2 = S2 + DX*I(J) 
OX = DIV•ox. 

1120 CONTINUE 
FVEC(I) = 51 - 52**2 - ONE 

1130 CONTINUE 
FVEC (30) = X (1) 
FVEC (.31) = X(2) - I (1) **2 - OU 
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Basic Subroutines 
r 

GO TO 1900 
c 
C BOX 3-DI!ENSIONlL FU~CTION. 
c 

c 

1200 CONTINUE 
DO 1 2 1 0 I = 1 , lf 

·rEMP = DnOAT (I) 
Tl'!P1 = TE!!P/TEN 
fV,EC(~) = D.EIP(-T:1P1*lC(1))- DEXP(-TMP1*X(2)) 

1 + (DEJCP (-TEMP) - DEXP (-TMP1)) *X (3) 
1210 CONTINUE 

GO TO 1900 

C JENNRICH AND SAMPSON FUNCTION. 
c 

13 OJ CONTINUE 
DO 1 3 1 0 I = 1 , 1! 

TE!'!P = DFLOAT (I) 
FVEC(I) =TWO+ TWO*TEl'!P- DEXP(TEMP*X(1)) - DEXP(TEKP*X(2)) 

1310 CONTINUE 
Go ro 1900 

c 
C 3RO~N ANC DENNIS FUNCTION. 
c 

c 

c 

c 

11400 CONTINUE 
DO 1410 I= 1, .~ 

TE~P = DFLOAT(I)/FIVE 
TMP1 = X ( 1) + TEMP* X (2) - DEIP (TEMP) 
IMP2 = X (3) + DSIN (TEMP) *X (41 - DCOS (l'E!Ht 
FVFC(I) = TMP1**2 + TiiP2**2 

1i+ 10 CONTINUE 

1500 

1510 

1520 
1530 

GO TO 1900 

CHEBYQUAD FUNCTION. 

CONTINUE 
DO 1 5 1 0 I = 1 , .'f 

FVEC(I) = ZEliO 
CONTINUE 

DO 1 53 0 J = 1 , N 
TMP1 = ONE 
Tl'!P2 = TWO*X(J) - ONE 
TEMP = 'IWO*TMP2 
DO 1 520 I = 1, M 

FVEC {I) = FVEC {I) + TMP2 
TI = TEMP*TKP2 - TMP1 
TMP1 = TMP2 
T:!P2 = TI 
CONTINUE 

CONTINUE 
OX = ONE/DFLOAT(N) 
IEV = -1 
DO 1540 I = 1, M 

FVEC(I) = DX*FVEC(I) 
IF (lEV • GT. 0) FVEC(I) = FVEC (I) + OHE/ (DFLOAT (I) **2 - ONE) 
!EV = -IEV 
CCN't'INUE 

GO TO 1900 
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64 Basic Subroutines 

C 8P.OWN ALHOST-LINEAB FUNCTION. 
·c 

c 

1600 CONTINUE 
SO~ = -DFLOAT(N+1) 
PROD = ONE 
DO 1 610 J = 1, N 

SUM = SUM + X: (J) 
PROD = X(J) *PROD 

1610 CONTINUE 
i)0 1620 I = ,, N 

FVEC (I) = X (I) + SUM 
1620 CONTINUE 

FV::C (N) = PROD - ONE 
GO TO 1900 

C OSEO&NE 1 FUNCtiON. 
c 

,.. .... 
c 
c 

c 

17 00 CONTINUE 
DO 1 7 1 a I = 1 , 3 3 

TE~P = TEN*DFtO!T(!-1) 
T~Pl = DEXP(-X(4)*TE~P) 
TMP2 = DEXP (-X (5) *TE!'IP) 
FVEC(I) = YIJ(I) .. (X(1) + JC(2)*T11P1 ~ '(()l*'l:rl~~~ 

1'/10 CONT!Ntl'E 
GO TC 1900 

CSEORNE 2 FUNCTION. 

1800 CONTINUE 

1 

DO 1 e 10 I ::; 1, 65 
TEMP = DFLOAT(I-1)/TEN 
!MEl = D£XP(-X(5) *TEMPI 
TMP2 = DEXP(-X(6) *(TE~P- X:(9))**2) 
!ME3 = DEXP (-X (7) * ('!E:!P - X (1 0)) **2) 
!~P14 = DEXP (-X: (8) *(TEMP - I (1 1) I **2) 
FVEC(I) = YS(I)- (X(1)*T!'IP1 + X(2)*'!1iP2 

+ X: (3) *TiiP3 + X (ij) *TMP4) 
11310 CONTINUE 
1900 CONTINUE 

1! ETO FiN 

C LAST ClRD OF SUBROUTINE SSQFCN. 
c 

END 
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c 
c 
c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c: 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c ,.. .... 
c 
c 
c 

c 
c 
c 

c 
c 
c 

Basic Subroutines 

SG~ROUTINE SSQJAC(!,N,X,FJAC,LDFJAC,NPROB} 
INTEGER ~.N,LDFJAC,NPROB 
DOUBLE PRECISION X(li) ,FJAC(LDFJAC,N) 
********** 

SUBROUTINE SSQJAC 

THIS SUBROUTINE DEFINES THE JACOBIAN M~TRICES OF EIGHTEEN 
~ONLINEAR LEAST SQUARES PROBLEMS. THE PROBLEM DI~ENSIONS !BE 
~S DESCRIBED IN THE PROLOGUE COMMENTS OF SSQFCN. 

!HE SUBROUTINE STATE~ENT IS 

SUBROUTINE SSQJAC(~,N,X,FJAC,LDFJAC,~~ROB} 

WHERE 

! AND N ARE POSITIVE INTEGER VARIABLES. N MUS! NOT EXCEED ~. 

X IS A LINEAB ARRAY OF LENGTH N. 

FJ~C IS AN M BY N ARRAY. 0~ OUTPUT FJAC CONTAINS THE 
JACOBIAN MATRIX OF THE NPROB FUNCTION EVAtDATED AT X. 

1DFJAC IS A POSITIVE INTEGER VARIABLE NOT LESS THAN M 
WHICH S~ECIFIES IHE LEADING DIME~SION OF THE ARRAY FJAC. 

NPP.OB IS A POSITIVE INTEGER VARIABLE iHICH DEFINES THE 
NUMBER OF TfiE PROBLEM. NPROB MUST NOT EXCE!D 18. 

SUBPROGRAMS REQUIRED 

FORTRAN-SUPPLIED ••• D~TAN,DCOS,DEIP,DSIN,DSQRT 

MINPACK. VERSION OF OCTOBER 1977. 
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. ~CRi 

********** 
INTEGER I,IVAR,J,K,MM1,NM1 
DOUBLE PRECISIO~ C1~,C20,C29,C45,C100,DIV,DX,EIGHT,FIVE,FOUP., 

1 ONE,PROD,S2,TE~P,TEN,!HREE,TI,TMF1,TMP2,T~P3,TMP~, 
2 IPI,TWO,ZERO 

DOUBLE PRECISION V(11) 
DOUBLE PRECISION DFLOAT 
D~TA ZERO,ONE,!WO,THREE,FOUR,FIVE,EIGHT,TEN,C14,C20,C29,C~5,C100 

1 ;o.nn,1.D0,2.D0i3.D0~4.DO,S.D0,8.D0,1.D11 
2 1.~D1,2.D1,.2.901,4.5D1,1.D2/ 

DATA V(1} ,V(2) ,V(3) ,V(~) ,V(S) ,V(6} ,V(7) ,V(8) ,V(9) ,V(10) ,V(11) 
1 /~.OD0,.2.0D0,1.0DO,S.D-1,2.SD-1,1.67D-1,1.25D-1,1.d-1, 
2 8.330-2, 7. 1~D-2,6.25D-2/ 

DFLOAT(IVAE) = IVAR 

JACOBIAN ROUTINE SELECTOR. 

~0 TO (100,200,300,400,500,600,700,800,900,1000,1100, 
1 1200,1300,1400,1500,1600,1700,1800) ,HPROB 

LINEAB FUNCTION - FULL RANK. 

00000010 
00000020 
0~000030 
00000040 
00000050 
00000060 
00000070 
ooooooao 
00000090 
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00000110 
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C0000130 
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00000190 
00000200 
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J0000220 
00000230 
00000240 
00000250 
00000260 

. 00000270 
;)0000280 
00000290 
00000300 
OO<i00310 
00000320 
o:>oo03Ju 
00000340 
OJOJOJSO 
ooovoJoo 
00 0 0037 0 
00000380 
GJOOC390 
OJOOO~GO 
00000410 
0:>000420 
00000~30 
00000440 
0:>000450 
J0000~60' 
00000470 
~0000480 
00000490 
00000500 
00000510 
00000520 
0~000530 
00000540 
00000550 
00000560 

'00000570 
OJOOOSSO 
000 00590 
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c 

100 CONTINUE 
TE!P = TWO/DPLOAT(!) 
DO 120 J = 1, N 

DO 110 I = 1, 15 
FJAC{I,J) = -TE!P 

110 .CONTINUE 

Basic Subroutines 

PJAC(J,J) = FJAC(J,J) +ONE 
120 CONTINUE 

GO 1'0 1900 

C LINEAR FUNCTION - RANK 1. 
c 

~00 CONTINUE 
DO 220 J = 1, N 

DO 210 I = 1, M 
FJAC(I,J) = DFLOAT(I)*DFLOAT(J) 

210 CONtiNUE 
220 CONTINIJE 

GO TO 1900 
c 
C LINEAa FU.NCTION - RANK 1 WITS: ZERO COI.IJI!NS AND ROWS. 
c 

c 

300 CONTINUE 
DO 320 J = 1, N 

DO 3 1 0 I = 1 , !i 
FJ AC (I ,J) = ZERO 

310 CONTINUE 
320 CONTINUE 

N1!1 = N - 1 
:i!S1 : M - 1 
!F {Nf!1 .LT. 2) t20 TO JSO 
DO 3~0 J = 2, ~M1 

DO 330 I = 2, ~!!1 
FJAC(I,J) = DFLOAT(I-1)*DFL01X(J) 

330 CONTINUE 
3 "0 COlHINUE 
350 CONTINUE 

GO !'0 1900 

C ~OStNBROCK FUNCt~UN. 
c 

c 

400 CONTINUE 
FJAC(1,1) = -C20*X(1) 
FJAC(1,2) = TEN 
FJAC (2, 1) = -ONE 
FJAC(2,2) = ZEBO 
GO ·ro 1900 

C BELICAL VALLEY FUNCTION. 
c 

500 CONTINUJ:: 
TPI = EIGHT*DA~AH(ONE) 
!!HP = 1(1)•*2 + X(2)•~2 
T!P1 = '!PI*TEI!P 
T!P2 = DSQBT (TEIH?, 
FJAC(1,1) = C100*X(2)/'!!!P1 
FJAC(1,2) c -C100*X(1)/T!P1 
FJAC(1,3) :'!EN 
PJAC(2,1) = TEN•~(1)/T!P2 
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c 

FJAC(2,2) = TEN*X(2)/T!!P2 
FJAC(2,3) = ZEBO 
PJAC(3,1) = ZERO 
PJAC(3,2) = ZERO 
FJAC(3,3) = ONE 
GO ro 1900 

Basic Subroutines 

C POWELL SINGULAR FUNCTION. 
c 

c 

600 CONTINUE 
DO 620 J = 1, 4 

DO 610 I = , I 4 
FJlC (I,J) = ZERO 

610 CCNTINOE 
620 CONTINUE 

FJAC(1,1) =ONE 
FJAC(1,2) = '!EN 
FJ AC (2, 3) = CSQRT (FIVE) 
F'J~C(2,4) = -FJAC(2,3) 
FJAC(3,2) = !ilO*(lC(2)- TWO*lC(3)) 
FJAC(3,3) = -TWO*FJAC(3,2) 
?'JAC(4,1) = TWO*DSQRT(TEN)*(X(l) - I(4)) 
FJAC(4,4) = -FJAC(U,1) 

. GO TO 1900 

C FREODENS'IEIN AND ROTR FUNC!ION. 
c 

c 

700 CONTINUE 
F J AC ( 1 , 1 ) = C N E 
FJAC(1,2) = X(2)*(TEN- TRREE*X(2)) -TWO 
FJ!C (2, 1) = ONE 
FJAC(2,2) = X(2)*(Ti0 + THREE*X(2)) - CH 
GO TO 1900 

C dARD FUNCTION. 
c 

800 CONTINUE 
Db 8 1 0 I = 1 , 15 

TMP1 = DFlOAT (I) 
TMP2 = DPLOAT(16-I) 
TMt-3 = TMP1 
IP (I .G'I. 8) TMP3 = TMP2 
TMP4 = (X(2)*T~P2 + X(3)*TMP3)**2 
FJAC(I,l) =-ONE 
FJAC(I,2) = Tl5P1*TI'1P2/TMP4 
FJAC(I,J) = TMP1*TitP3/TI!P14 

810 CONTINO~· . 
GO TO 1900 

c 
C KOWALIK AND OSBORNE FUNCTION. 
c 

900 CCNTINUE 
DO 910 I = 1, 11 

T!!1?1 = V (I)* (V (I) + X (2)) 
TMP2 = V (I)* (V (I) + X (31J + X (41 
FJAC(I,1) = -T!P1/T!P2 
FJ~C(I,2) = -V(I)*X(1)/T!!i2 
FJAC(I,J) = FJAC(I,1)*FJAC(I,2) 
PJAC(I,4) = FJAC(I,3)/V(I) 
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910 CONTINUE 
GO TO 1900 

c 
C ~EYER FUNCTION. 
c 

c 

1000 CONTINUE 
DO 1 01 0 I = 1 , 1 6 

TEMP = FIVE*DFLOAT (I) + C45 + I (3) 
T~P1 = X(2)/TE!tP 
TMP2 = CEXP(TMP1) 
FJAC(!,,) = TMP2 
FJAC(I,2) = X(1)*TMP2/TEHP 
?JAC(I,3) = -THP1*FJAC(I,2) 

1010 CONTINUE 
GO TO 1900 

C iiATSON FUNCTION. 
c 

c 

1100 CONTINUE 
DO 1130 I= 1, 29 

DIV = OFLOAT(I)/C29 
52 = ZERO 
DX = ONE 
00 1 1 1 0 J .- 1, N 

52 = 52 + DX*X(J) 
OX = DIV*OX 

1110 CONTINUE 
TEMP = TWO*DIV*S2 
OX = ONE/DIV 
DO. 1120 J = 1, N 

FJ AC (I,J) = DX* (OF LOU (J-1) - TEMP) 
OX = DIV*DX 

1120 CONTINUE 
1130 CONTINUE 

DO 1150 J = 1, N 
DO 1140 I =· 30, 31 

FJAC(I,J) =ZERO 
1140 CONTINUE 
115C CONTINUE 

FJAC (30 ,1) = ONE 
PJAC(31,1) = -TWO*I(1) 
PJA(.. (3i ,~) = ONE 
GO TO 1900 

C BOX 3-DIMENSIONAL FUNCTION. 
c 

c 

1200 CONTINUE 
DO 1210 I = 1, M 

!EM~ = OfLOAT (I) 
TMP1 = TEtfP/TEN 
FJ AC (I, 1) = -TMP 1*DEX2 (-Tit.P1*I (1)) 
FJAC (I,2) = T!P1*DiiP (-·r!!P1*I (2)) 
N~C(I.J) = DEXP(-TE!P)- il~XP(-Tr!l?1) 

1210 CONTINO! 
GO TO 1900 

C JENN&ICH AND SA!PSON FUNCTION. 
c 

1300 CONT:ttllJ"E 
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c 

00 13 1 0 I = 1 , M 
TE!!P = DFLOU' (I) 

Basic Subroutines 

PJAC(I,1) = -TEMP*DEXP(TE!!P*X(1)) 
FJAC(I,2) = -TEMP*DEXP(TE!'IP*X{2)) 

1310 CONTINUE 
GO ro 1900 

C .BROWN AND DENNIS FUNCTION. 
c 

c 

1*00 CONTINUE 
DO 1 41 0 I = 1, /! 

TEMP = DFLOAT(!)/FIVE 
r! = DSIN (TEMP) 
T!'IP1 = X(1) + TE"'P*X(2)- DEXP(TEMP) 
T!!P2 = X (3) + TI*lC (4) - DCOS (TEMP) 
FJAC(I,1) = TWO*TMP1 
FJAC(I,2) - TE!!P*FJAC(I,1) 
FJAC(I,J) = !WO*TMP2 
FJAC(I,4) = TI*FJaC(I,3) 

h10 CONTINUE 
GO TO 1900 

C CHEBYQUAD FUNCTION. 

c 

1500 CONTINUE 
OX = ONE/DFLOAT(N) 
DO 1520 J = 1, ~ 

!!'IP1 = ONE 
T!'IP2 = !~O*X(J) - ONE 
TEMP = TWO*!I'IP2 
T!'IP3 = ZERO 
T!'IPij = TWO 
DO 1510 I = 1, M 

FJAC(I,J) = DX*T~P~ 
TI = FOUR*TI'IP2 + TElP*TMP4 - TMP3 
TMP3 = TMP4 
TMP4 = TI 
TI = !E!'IP*TMP2 - T!'IP1 
T:1P1 = TMP2 
TMP2 = T! 

1510 CONTINUE 
1520 CON'l'HUE 

Go ro 190.0 

C BROWN ALMOST-LINEAR FUNCTION. 
c 

1600 CONTINUE 
PBOD = ONE 
DO 1620 J = 1, N 

P!!CD = X(J)*PBOD 
DO 16 1 0 I = 1 , N 

PJAC(I,J) = ONE 
1610 CONTINUE 

FJ AC (J ,J) = TWO 
1620 CONTINUE 

DO 1650 J = 1, N 
TE!!P = X (J) 
IF (TEl'!P • N E. ZEBO) GO TO 1640 
TEISP = ONE 
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70 Basic Subroutines 

PROD = ONE 
DO .1630 K = 1, N 

IF (K .NE. J) PROD= X(K)*PBOD 
1630 CONTINUE 
1640 CONTINUE 

FJAC(N,J) = PROD/TEMP 
1650 CONTINUE 

GO TC 1900 
c 
C OSBOFPE 1 FUNCTION. 
c 

1700 CONTINUE 
DO 1710 I = 1, 33 

TEMP= !EN*DFLOAT(I-1) 
TMP1 = DEXP(-X(4t*TEMP) 
T~P2 = DEXP(-X(S)*TEMP) 
FJAC(I,1) = -ONE 
FJAC(I,1) = -TI!P1 
FJAC(I,J) = -TliP~ 
FJAC(I~4) = l'EM.P*X(2)*T.'1P1 
FJAC(I,S) = TE~P*X(3)*T!!P2 

1710 CONTINUE 
Go ro 1goo 

C OSBORNE 2 FUNC~!O~. 
c 

c 

1800 CONTINOE 
DO 1810 I= 1, 65 

TEMP= DfLOAT(I-1)/TEN 
TMP1 = DEXP(-X(St*TEMP) 
TMP2 = DEXP(-X(6)*(TEMP- X(9))**2) 
TMP3 = DEIP(-X(7)*(TE!P- X(10)) **2) 
TMP4 = DEXP(-X(S)*(TE~P- X{11))**2t 
FJAC(I,1) = -TI!P1 
FJ lC (I, 2) "' -TMP2 
~JlC(I,3) = -TMP3 
FJAC(I,4) = -!I!P4 
F.JAC (!,5) = T.EMP*X ( 1) *TMP1 
FJ AC (I, 6) = lC (2) *(TEMP - X: ( 9)) **2*TMP2 
FJAC (I, 7) = X: (3) * ("rEMP - :C (10)) **2*'T'!'IP3 
FJAC(I,8) = I(4)*(TEMP- X(11))**2*THP4 
FJAC(I,9) ·= -TiiO*X(2)*l!(6)*(TEMP- :<(9))*TMP2 
FJAC(l,10) = -TWO*X(3)*X:(7)*(TEMP- X(1Q))*T:JP3 
FJAC(I,11) = -TWO*X(4)*X(8)*(TE!1P- X(11))*T~P" 

1810 CONTINUE 
1900 CONTINUE 

RETURN 

C LAST CARD OF SUBROUTINE SSQJAC. 
c 

ENP 

00002960 
•J0002970 
OQO 02980 
00 0 02990 
00003000 
(;,0003010 
00003020 
00003030 
00003040 
00003050 
00003060 
J0003070 
00003080 
00003090 
00003100 
00003110 
00003120 
O:JOOJ130 
0:>003140 
oon:1~1c;o 

0000.3160 
00003170 
U U 0 U 3 'I 8 0 
01)0031'30 
00003200 
00003210 
00003220 
00003230 
00003240 
00003250 
00003260 
00003270 
0000~280 
00003290 
00003300 
O:J003310 
00003320 
00003330 
0:)003340 
00003350 
OJOOJ360 
00003370 
00003380 
0::1003390 
00 003400 
00003410 
OJ 0 034~ 0 
00003430 
00003440 
OJ003450 
00 0 03460 
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SUBROUTINE INITPT(N,l,NPROB,cACTOR) 
INTEGER N,NEiOE 
DOUBt! PRECISION PlCTOB 
DOUBLE PRECISION I(N) 

c ********** 
c 
C SUBROUTINE INIIPT 
c 
C THIS SUBROUTINE SPECIFIES THE STANDARD STA~TING POINTS FOR THE 
C FUNCtiONS DEFINEC EY SuBROUTINE OBJPCN. THE SUBROUTINE RETURNS 
C IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINT. FOR 
C TBE SEVENTH FUNCIION THE STANDARD STARTING POINT IS ZERO, SO IN 
C THIS CASE, If FACTOR IS NOT UNITY, !HEN THE SUBROUTINE RETURNS 
C THE VECTOR ;((J) = FACTOR, J=1, ••• ,N. 
c 
C THE SUB&OUtiNE STATEMENT rs 
c 
C SUBROUTINE INITPT(N,!,NPiOS,FACTOR) 
c 
C WHERE 
c 
C N IS l POSITIVE INTEGER VlRIABLZ. 
c 
C ~ IS A LINEAF ARRAY OF LENGTH N. ON OUTPUT X CONTAINS THE 
C STANDAED STARTING POINT FOR PROBLEM NPROB ~ULTIPLIED BY 
c FAc:oa. 
c 
C NPRCB IS A POS!TIVB INTEGER VARIABLE WHICH DEFINES THE 
C NUnBER OF THE PROBLEM. NPuOB MUST NOT ~XCEED 18. 
c 
C FACTOR SPECIFIES THE ~ULTIPtE OF rHE STANDAaD STARTING 
C POINt. IF FACTCR IS UNITY, NO ~ULTIPLICATION IS PERFORaED. 
c 
C liNPACK. VERSION OF JANUARY 1978. 

'C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE 
c 
c ********** 

c 

UITEGEit !VAR,J 
uOUBLE fRECISIGN C1,C2,C3,C~,fiVE,d,HALF, 

1 ONE,TEN,THF.EE,TWENIY,TWNTF,TWO,ZERC 
DOUBLE PRECISION DFLOAT 
~ATA ZEBO,HALF,O~E,TWO,THREE,FIVE,TEN,TWENTY,rWNTF 

1 jO.o0,0.5D0,1.00,2.D0,3.D0,5.00,1.D1,2.D1,2.5D1/ 
DATA C1,C2;~3,C4 /4.D-1,2.500,1.5D-1,1.2DO/ 
DFLOA!(IVAB) = IVA& 

C SELECTICN OF INITIAL PCINT. 
c 

GO TO (100,200,Juv,~00,500,600,700,800,900,1000,1100, 
1 1200, 1300,1400, 1500,1600, 1700, 1800) , NPROB 

C aELICAL VALLEY FUNCTION. 
c 

c 

100 CONTINUE 
X(1) =-ONE 
I (2) = ZERO 
X (3) = ZEI<O 
1;c TO 1900 

00000010 
0000002 0 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
000001~0 
OJ000150 
00000160 
00000170 
00000180 
00000190 
00000200 
00000210 
00000220 
00 0 0023 0 
OJ000240 
00000250 
aoooo26o 
00000270 
OJ000260 
00000290 
00000300 
0:>000310 
00000320 
00000330 
00000340 
00000350 
00000360 
00000370 
00000380 
00000390 
00000400 
00000410 
00000420 
00000430 
00000440 
()0000450 
00000460 
00000470 
00000480 
00000490 
o:>ooo5oo 
00000510 
00000520 
00000530 
00000540 
00000550 
00000560 
00000570 
00000580 
00000590 
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C diGGS EXP6 FUNCTION. 

c 

200 CCN'riNtJE 
I(1) = ONE 
x ( 2) = T we 
X (3) = GNE 
X (q) = ONE 
X·(S) = ONE 
X (6) = ONE 
;c ro 1300 

C GlUSSIAN FUNCTION. 
c 

c 

300 CONTINUE 
X(1) = Cl 
X (2) = ONE . 
X (3) = ZEBO 
c;o TO 1900 

Basic Subroutines 

~ POWELL SADLY SCALED FUNCTION. 
c 

c 

400 CONTINUE 
X: (1) = :l.EitO 
X (2) = CNE 
GO TO 1900 

C dCI 3-DI~ENSIONAl FUNCTION. 
c 

c 

500 CONT!NUE 
X ( 1) = ZEBO 
X (2) = TEN 
X (3) = IWEXTY 
uO TO 1900 

C V ARIAELY DII!SENSICNED FUNCTION. 
c 

c 

6v0 CONTINUE 
H = ONE;DFLOAT(N) 
DO 6 1 0 J ·= 1 , N 

X (J) = ONE - DFLOU (J. *Ef 
610 CON!INUE 

o:;o ·To 1900 

C WATSON FUNCTION. 
c 

c 

700 C:UNTIN!JF 
DC 710 J = 1, N 

t. (J) = ZERO 
710 CONTINO~ 

GO TO 1900 

C PENALIY tUNCIION I. 
c 

c 

800 CONTINUE 
DO 810 J = 1, N 

t.(J) = DFLOlT(J) 
810 CONTINUE 

GO TO 1900 

,00000600 
OJ000610 
00000620 
00000630 
00000640 
00000650 
00000660 
00000670 
00000680 
JJOOJ690 
.)~0:))700 

00000710 
00000720 
00000730 
00000740 
(;0000750 
00000760 
00000770 
00000780 
00000790 
00000800 
00000810 
000:1118.(1) 
J0000830 
00 0 ()0840 
00000850 
00000860 
00000870 
00000880 
00000890 
00000900 
00000910 
000 00920 
00000930 
(;0000940 
00000950 
GOO 00960 
00000970 
00000980 
0:.1000990 
1)0001000 
OOJ01010 
00001020 
00001030 
00001040 
00001050 
00001060 
00001070 
00001080 
00001090 
ooou1100 
00001110 
00U01 120 
0()001130 
00001140 
00001150 
00001160 
0001)1170 
00001180 



C PENALTY FUNCTION II. 
c 

c 

900.CONTINU.E 
DO 910 J = 1, N 

X(J) = HALF 
910 CONTINUE 

GO TO 1900 

Basic Subroutines 

C BROWN BADLY SCALED FUNCTION. 
c 

c 

1000 CONTINUE 
X(1) = CNE 
1(2) =ONE 
Go ro 1900 

C BROWN AND DENNIS FUNCTION. 
c 

c 

1100 CONTINUE 
I ( 1) = TWN'IF 
X (2) = FIVE 
X (3) = -FIVE 
X (4) = -ONE 
GC ro 1soo 

C GULF RESEA~CH AND DEVELOP!ENT FUNCTION. 
c 

c 

1200 CONTINUE 
X (1) = .FIVE 
X (2) = C2 
X(.J) = C3 
GO ·:ro 1900 

C !RIGONO~ETR1C FUNCTION. 
c 

c 

1300 CONTINUE 
H = ONE/DFLOAT(N) 
DO 13 10 J = 1, N. 

X (J) = H 
13 10 CONTINUE 

GO TO 1900 

C EXTENDED ROSENEROCK FUNCTION. 
c 

c 

1400 CONTINUE 
DO 1410 J = 1, N, 2 

X(J) = -C4 
X:(J+l) =ONE 

1410 CONTINUE 
GC TO 19u0 

C EXTENDED POWELL SINGULAR FUNCTION. 
c 

1500 CONTINUE 
DO 1510 J = 1, 8, 4 

I(J) = THBEE 
X(J+1) = -ONE 
X (J+2) = ZERO 
X(J+3) = CNE 

1510 CONTINUE 

0~001190 
00001200 
00001210 
00001220 
00001230 
00001240 
00001250 
00001~60 
00001270 
00001280 
00001290 
00001300 
00001310 
00001320 
00001330 
000013iJO 
00001350 
00001360 
00001370 
ooov13ao 
00001390 
uo o o 1400 
00001410 
00001420 
00001430 
00001440 
OJ001450 
OuOO 1460 
J0001tHQ 
00001480 
ooc 01490 
00001500 
00001510 
00001520 
00001530 
00001540 
C0001550 
000 01560 
00001570 
00001580 
00001590 
00001600 
00001610 
0 0 0 I) 162 (j 
00001630 
00001nUO 
00001650 
0:>001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001750 
00001760 
00001770 
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Go ro 1900 
c 
C BEALE PU~CTION. 
c 

c 

1600 CONTINUE 
X(1) = ONE 
X (2) = ONE 
GO TC 1900 

C WCOD FUNCTION. 
c 

c 

1700 CONTINUE 
X (1) = -THBEE 
X (2) '= -ONE 
X (3) = -THEEE 
X (4) = -ONE 
GO TO 1900 

~ CHBSYUUAD ~UNCTION. 
c 

c 

18v0 CONTINUE 
a = ONE/DFlOAT(N+1) 
DC 1 810 J = 1,. N 

X (J) = DFLOAT (J) *R 
1810 CONTINUE 

Basic Subroutines 

C COMPUTE ~UlTIPLE OF INITIAL POINT. 
c 

c 

1900 CONUNUE 
IF (FACTOR .EQ. ONE) GO TO 1940 
IF (NPBOB .EQ. 7) GO TO 1920 
DC 1 910 J = 1, N 

I (J) = FACTOB*lC (J) 
1910 CONTINUE 

GO TO 1940 
1920 CONTINUE 

UO 1Y30 J = 1, N 
X (J) = FACIOR 

19 30 CONTINUE 
1940 CONTINUE 

IIETU R N 

: LAST CABD OF SUBROUTINE INITPT. 
c 

.END 

00001780 
00001790 
00001800 
00001810 
00001820 
00001830 
000018~0 
00001850 
oo o o 186 o· 
00001870 
00001880 
00001890 
00001900 
00001910 
00001920 
00001930 
00001940 
00001950 
00001960 
00001970 
00001980 
000 01990 
00()02000 
ooou201o 
00002020 
OOOiJ2030 
00002040 
00002050 
00002060 
00002070 
1)0002080 
00002090 
00002100 
00002110 
0000~120 
1)0002130 
00002140 
00002150 
00002160 
00 OiJ~ 170 
1);)002180 
00002190 
0000~200 
00002210 
(jJQ02220 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Basic Subroutines 

SUBROUTINE OBJPCH(N,X,F,NPROB) 
IHTEGE.R N,NPROB 
DOUBLE PRECISION F 
DOUBLE PRECISION X(N) 
********** 

SUB&OOTINE OBJFCN 

THIS SUBROUtiNE DEFINES THE OBJECTIVE FUNCTIONS OF EIGHTEEN 
NONLINEAR UNCONSTRAINED !INI~IZATION PROBLEMS. THE VALUES 
OF N FOR'FUNCTIOlliS 1,.2,3,~,5,10,11,12,16 AND 17 ARE 
3,6,3,2,3,J,4,3,2 AND 4, RESPECTIVELY. 
FOR FUNCTION 7, N ~AY BE .2 OB GREATER BUT IS USUALLY 6 OR 9. 
FOR FUNCTIONS 6,8,9,13,1ij,15 1ND ld N ~AY BE VARIABLE, 
HOWEVER IT ~OST BE EVEN FOB FUNCTION 14, A ~ULTIPLE OF 4 FOR 
FUNCTION 15, AND NOT GRE~TER THAN 50 FOE FUNCTION 18. 

THE SUBaOUTINE SfATE!ENT IS 

SUBROUTINE 08JFCN(N,X,F,NPR08) 

WHERE 

N IS A POSITIVE INTEGER VARIABLE. 

X IS A LINEAR ARRAY OF LENGTH N. 

F IS ! REAL VARIABLE WHICH 08 OUTPUT CONTAINS THE VALUE OF 
THE NPP.OS OBJECTIVE FUNCTION EVALUATED AT I. 

NPROB IS A POSITIVE INTEGER VARIADLE WHICH DEFINES THE 
NU!BER OF THE P~OBLEM. NPROB ~UST NOT EXCEED 1d. 

SOBPBOGBA~S REQUIRED 

FORT~AN-SOPPLIED ••• DABS,DATAN,DCOS,DEXP,DLOG,DSIGN,DSIN, 
DSQRT 

MINPACK. VERSION OF JANUARY 1978. 
BORTON S. GARBOi, KENNETH E. HILLSTRO!, JORGE J. MORE 

********** 
INTEGER I,IEV,IVAB,J 
DOUBLE P&ECISION AP,ARG,bP,C2POH6,CP0001,CP1,CP2,CP25,CP5, 

1 C1PS,C2P2~,C2P625,C3P5,C25,C29,C90,C100,C10000,C1PD6, 
2 D1,D2,EIGBT,FIFTY,PIVE,FOOR,ONE,R,S1,S2,S3, 
3 T,T1,T2,T3,TEN,TB,TBBEE,TPI,TWO,ZERO 

DOO!LE PRECISIO~ iVEC(SO) ,f(15) . . 
DOUBLE PRECISION DFLOAT 
DATA ZERO,ONE,TWO,THREE,FOOR,FIVE,EIGHT,TEN,FIPTY 

1 /O.D0,1.D0,2.D0,3.D0,4.D0,5.D0,8.D0,1.D1,S.D1/ 
DATA C2PD!6,CP0001,CP1,CP2,CP25,CPS,C1PS,C2P25, 

1 C2P625,C3f5,C25,C29,C90,C100,C10000,C1PD6 
2 /2.D-6,1.D-4,1.D-1,2.D-1·,2.5D-1,5.D-1,1.5D0,2.25DO, 
3 2.625D0,3.SD0,2.SD1,2.9D1,9.D1,1.D2,1.D4,1.D6/ 

DATA AP,BP /1.0-5,1.00/ 
DATA Y(1) ,!(2) ,!(3} 1 !{4) ,!(5} ,!(6) ,!(7), 

1 y ( 8) , y ( 9) , y ( 10) , y (11) , y ( 12) , y ( 13) # y ( 1 4) , y ( 15) 
2 j9.D-4,4.4D•3,1.75D-2,5.4D-2,1.295D-1,2.42D-1,3.521D-1, 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
00000100 
0.)000110 
000001..i:O 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
00000190 
o:Jooo.2uo 
000%210 
00000220. 
0000(;.230 
OJ000.2~0 
00000250 
00000260 
00000270 
00000.280 
00000290 
00000300 
00000310 
00000320 
00000330 
OJ000340 
00000350 
00000360 
00000370 
I)J0003b0 
Ci0000390 
000001400 
0:>000410 
00000420 
00000 .. 30 
000004ll0 
CJ000450 
OJOOCJij6\J 
OJOOI)ij7Q 
00000480 
00000490 
00000500 
00000510 
00000520 
OJ000530 
00000540 
00000550 
00000560 
00000570 
00000580 
00000590 
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3 3.989D-1,3.521D-1,2.42D-1,1.295D-1,5.4D-2,1.75D-2, 
4 4.~0-3,9.0-4/ 

DFLOAT(IVA5) = IVAR 
c 
C FUNCTION ROUTINE SElECTOR. 
c 

GO IO (100,200,300,400,500,600,700,800,900,1000,1100, 
1 1200,1300, 140C, 1500,1600, 1700 I 1 800), NPROB 

c 
C HELICAL VAllEY FUNCTION. 

c 

100 CONTINUE 
TP~ = E!GHT*DATAN(ONE) 
TH = DSI~N(CP25,X(2)) 
IF (X(1) .GT. ZEiiO) TH = DATAN(X(2)/I(1))/TPI 
IF (X(1) .LT. ZERO) ·rH = DA'UN(X(2)/X(1))/TI?I +CPS 
ABG = X(1)**2 + 1(2)**2 
li = DSQ.&T (AliG) 
I = X(3) • T!N~TH 

F = C 10C* (T•*2 + · (R - ONE) *"'2) + X (3) **2 
GC ·ro 1900 

C BIGGS EXP6 FUNCTION. 
c 

200 CONTINUE 
E = ZERC 
DO 210 I= 1, 13 

01 = DFLOAT(I)/TEN 
D2 = DEXP(-01) - FIVE*DEXP(-TEN*Dl) + THREE*OEXI?(-FOUR*01) 
51 = DEXI?(-D1*X(1)) 
52 = DEXP(-D1*X(2)) 
S3 = DEXI?(-D1*X(5)) 
T = X(3)*S1- 1(4) *52+ X(6)*SJ- D~ 
F = F + T**2 

210 CONTINUE 
GC TO 1900 

c . 
C GAUSSIAN FUNCTION. 
c 

c 

300 CONTINUE 
F = ZEnO 
DO 310 I= 1,15 

01 = CI?S*DFLOAT(I-1) 
02 = C31?5- 01 - 1(3) 
ABG = -CP5*X(2)*D~**~ 
a = DEXP (ABG) 
T = X(1) *R - Y(I) 
i = F + T**2 

310 CONTINIJE 
GO '!0 1900 

C POWELl BADlY SCALED FUNCTION. 
c 

ijQO ·CON'UNfJB 
T1 = C1000.0*X{1)*I(2) -ONE 

·51 = DE~P(-X(1)) 
52 = DEXP(:-X(2)) 
T2 = 51 + 52 - ONE - CP0001 
F = T1**2 + T2**2 

00000600 
00000610 
00000620. 
00000630 
00000640 
00000650 
OJ000660 
00000670 
0:1000680 
00000690 
0:}000700 
00 0"0071 0 
oouoo120 
0:1000730 
OJ000740 
00000750 
00000760 
00000770 
llOooo78o 
00000790 
00000800 
uG000810 
00000820 
0~10008~0 

. 000 00840 
00000850 
00000860 
00000870 
00000880 
00000890 
00000900 
00000910 
00000920 
00000930 
00000940 
00000950 
ooooo96o 
00000970 
00000980 
00000990 
()0001000 
000010'10 
00001020 
00001030 
00001040 
uOOO 1050 
00001060 
00001070 
00001080 
iJ0001090 
00001100 
000·:11110 
00001120 
00001130 
00001140 
00001150 
0:>001160 
00001170 
00001180 
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GO TO 1900 
c 
C BOX 3-DI~ENSIONAL FUNCTIONo 
c 

c 

500 CONTINUE 
P = ZERO 
DO 51 0 I = 1, 10 

i) 1 = DFLOAT (I) 
D2 = 01/'IEN 
51= DEXP(-D2*X(1)) 
52= DEXP(-D2*X(2)) 
53 = DEXP(-02) - OEXP(-D1) 
T =51- 52- 53*X(3) 
F = F + T**2 

510 CONTINUE 
GO TC 1900 

C VABIABLY OI!EN5IONED FUNCTION. 
c 

600 CONTINUE 
T1 = ZERO 
·r2 = ZERO 
DO 610 J = 1, N 

!1 = !1 ~ DFLOAT(J)*(X(J) -ONE) 
T2 = 'I2 + (X (J) - ONE) **2 

610 CCNl'INUE 
F = 'I2 + T1**2*(CNE + T1**2) 
GO TO 1900 

C iA1'5CN FUNCTION. 
c 

c 

700 CONTINUE 
F = ZERO 
DO 730 I = 1, 29 

D1 = DFLOAT(I)/C29 
51 = ZEltO 
02 = ONE 
DO 710 J = 2, N 

51 = 51 + DFLOAT(J-1)*D2*X(J) 
D2 = 01*02 

710 CONTINUE 
52 =·ZERO 
02 = ONE 
DO 720 J = 1, N 

S~ = 52 ~ D2*X(J) 
02 = D1*D2 

720 CONTINUE 
T = 51 - 52**2 - ONE 
F = F + 'I**2 

7 30 CONriNUE 
T1 = X(2) - X(1)**2- ONE 
F = F + I(1)**2 + T1**2 
GO TO 1900 

C PENALTY FUNCTION I~ 

800 CONTINUE 
'1:1 = -CP25 
T2 = ZEBO 

OJ001190 
00001200 
00001210 
00001220 
OJ001230 
000012110 
00001250 
00001260 
0001270 
OOC01280 
00001290 
00001300 
00001310 
00001320 
00001330 
0:>001340 
00001350 
00001360 
00001370 
00001380 
00001390 
CJ 001400 
000011110 
00001420 
00001430 
000011140 
000011450 
OJOOH60 
00001470 
000011480 
000011490 
000 01500 
00001510 
00001520 
00001530 
000015140 
00001550 
00001560 
00001570 
OCOJ1580 

. 00001590 
00001600 
00001610 
00001620 
00001630 
000016110 
00001650 
00001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001150 
00001760 
00001770 
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DO 810 J = 1, N 
T 1 = T 1 + .X: ( J) ** 2 
T2 = 'I2 + (X (J) - ONE) **2 

810 CONTINUE 
F = AE*~2 + BP*T1**2 
GO TO 1900 

C· 
C PENALTY FUNCTION II. 
c 

c 

9v0 CONUNUE 
T1 = -ONE 
!2 = ZEBO 
TJ = ZERO 
D 1 = DEXP (CP 1) 
02 = CNE 
DO 920 J = 1, N 

T1. = T1 + DFLOAT(N-J+1)*X(J)**2 
51 = DEXP(X(J)/TEN) 
I·F (J .EQ. 1) GO TO 9,0 
53 = 51 + 52 - D2*(01 +ONE) 
T2 = T2 + 53**2 
T3 = 'I3 + (51 - ONE/01) **2 

910 CONTINUE 
52 = 51 
02 = D1*D2 

920 CONTINUE 
F = H*(T2 + TJ) + BP*(T1**2 + (X(1) - CP2)**2) 
GO TO 1900 

C BBCWH BAbLY SCALFD FUNCTION. 
c 

c 

1000 CONTINUE 
T1 =· X(1) - C1PD6 
T2 = X(2) - C2PD~6 
T3 = X(1)*X(2) - TiO 
F = T1**2 + 'I2**2 + X3**2 
c;u ro 1900 

C 8ROW5 AND DENNIS FUNCTION. 

c 

1100 CONTINUJ:. 
E' "' ZERO 
DO 1110 I = 1, 20 

01 = DFLOAT(I)/FIVE 
02 :: DSlN(D1) 
T1 = X(1) + D1*X(2)- DEXP(D1) 
T2 = X(3) + D2*lC(4) - DCOS(D1) 
T = !1**2 + T~**2 
F = F + T**2 

1110 CONTINUE 
GO TO 1900 

C GULF BESEABCB !HO DEVELOP!ENT FUNCTION. 
c 

14:00 CONTINUE 
F = Z!BC 
D1 = TWO/THREE 
DO 1210 I = 1, 99 

1SG = DFLOAT(I)/C100 

00001780 
00001790 
00001800 
00001810 
00001820 
00001830 
000018ij0 
000 01850 
00001860 
C0001870 
00001880 
00001890 
00001900 
00001910 
000 01920 
OC001930 
Ju0019"o 
0000"1950 
00001960 
O::l001970 
00001980 
001)01990 
OOJ02000 
vooo2010 
0(,002020 
00002030 
000020"0 
00002050 
00002060 
00002070 
00002080 
Ov002090 
0:>01)2100 
0000~110 
.00002120 
000021JU 
000:>21~0 
O:l002150 
O:l002160 
00002170 
00002180 
JOCI02190 
Q.j00:.::200 
00002210 
OOOJ2220 
0:>002230 
(;00022"0 
C000~250 
C:>OIJ2260 
0:>002270 
00002280 
00002290 
00002300 
00002310 
00002320 
OC002J30 
00002340 
ooo v2350 
oooo23oO 



Basic Subroutines 

R = JABS((~FIFTY*DLOG(ARG))**D1 + C25- X(2)) 
'I 1 = R**X (3) /X (1} 
T2 = DEXP (-T1) 
'! = T2 - ARG 
F = F + T**2 

1210 CONTINUE 
GO TO 1900 

C TRIGONOMETPIC FUNCTION. 
c 

1300 CCNTINUE 
S 1 = Z.EEG 
DO 1 3 10 J = 1, N 

S 1 = S 1 + DCOS (X (J) ) 
1310 CONTINUE 

F = ZE.RO 
DC 1320 J = 1, N 

T = DFLCAT(N+J) - DSIN(X(J)) -51 - DFLOAT(J)*DCOS(X(J)) 
F ::: F + T**2 

13 20 CONTINUE 
GO TO 1900 

C iX!ENDED HOSENBROCK FUNCTION. 
c 

c 

11+00 CONTINUE 
F = ZERO 
DO 1 I+ 1 0 J = 1, N, 2 

T 1 = ONE - lC (J) 
T2 = TEN*(X(J+l)- X(J)**2) 
F = F + T1**2 + T2**2 

1410 CONTIN!JE 
Gc ro 1900 

C EXTENDEt PuWEtl FUNCTICN. 
c 

c 

1500 CONTINUE 
F = ZEliO 
DC 1 510 J = 1 , N 1 4 

'I = X (J) + TEN*X (J+l) 
T1 X(J+2) - X(J+3) 
51 = FIVE*Tl 
~2 = X:(J+l) - Ili0*X(J+2) 
52 = T2**3 
!3 = X(J)- X(J+J) 
53 = IEN.*T3**3 
F = F + 'I**2 + S1*T1 + S2*T2 + S3*T3 

1510 CONTINUE 
GO TO 1900 

C 8EALE FbNCTION. 
c 

1600 CONTINUE 
S1 =ONE- 1(2) 
T1 = C125- X(1)*S1 

. 52= ONE- X(2)**2 
T2 = C2225- X(1)*S2 
SJ = ONE- X(2)••3 
T3 = C2P625 - I(1)*S3 
F = T1**2 + T2**2 + T3**2 

00002J70 
Ci)002380 
00002390 
00002400 
00 0 0 24,0 
00002420 
000021+30 
00002440 
00002450 
ouo02460 
00002470 
00002480 
00002490 
00002500 
00002510 
000 02520 
00 0 0253 0 
000 025"0 
00002550 
00002560 
u0002570 
o~oo2sao 
o.::oo259o 
00002600 
00002610 
00002620 
coo 0263 0 
00002640 
G0002650 
00002660. 
00002670 
00002680 
00002690 
00002700 
0000271 o. 
00002720 
00002730 
00002HO 
00002750 
00002760 
vOO 0277 0 
0000~780 
00002790 
v0002800 
00002810 
000028~0 
00002830 
000 02840 
00002850 
ooon860 
00002870 
00002880 
00002890 
00002900 
00002910 . 
00002920 

.00002930 
000 02940 
000 02950 
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GO TO 1900 
c 
C iOOD FUNCTION. 
c 

c 

1700 CONTINUE 
S 1 = X ( 2) - X ( 1) **2 
52 = ONE - X (1) 
53 = X (2) - ONE . 
'!1 = X(4) - X(3)**2 
T2 = ONE- X(3) 
TJ = .X(14) - ONE 
F = C100*S1**2 • 52**2 + C90*T1**2 + T2**2 • 

1 TEN*(SJ + T3)**2 + (53- T3)**2/TEN 
GO TO 1900 

C CHEBYQU~D FUNCTION. 
c 

c 

1800 CONTINUE 
DO 1810 I = 1, N 

FVEC (I) = ZERO 
1810 CONTINUE 

00 1 830 J = 1, N 
T1 = ONE 
I2 = fwu•X(J) - ONE 
·r = TIW•T2 
DC 1820 I = 1, N 

FVE:C (I) = FVEC (I) + T2 
·rH = T*T2 - T1 
T 1 = T2 
T2 "" Til 

1820 CONTINUE 
1830 CONTINUE 

F· = ZERO 
01 = ONf/DFLOAT(N) 
IEV a -1 
00 18 40 I = 1 I N 

T = 0 1*FVEC (I) 
IF (IEV .GT. 0) T = T + ONE/(DPLOAT(I)**2 - ONE) 
t: "" F .- T**2 
IEV :a -IEV 

1840 CONTINU~ 
1900 CONTINUE 

iiET'{JRN 

C LAST CABO OF SUBROUTINE OBJFCN. 
c 

END 

OJ002960 
00002970 
00002980 
00002990 
00003000 
00003010 
00003020 
00003030 
000030/JO 
00003050 
1)0003060 
00003070 
00003080 
00003090 
00003100 
00()03110 
000031~0 
00003130 
00003140 
1)0003150 
0;)003160 
00003170 
v0003180 
00003190 
00003200 
00003210 
00003220 
00 003230 
OOOIJJJ140 
00003250 
00003260 
00003270 
00003280 
00003290 
00003300 
00003310 
OC/003320 
OJ003330 
0000.1.3460 
0000.3350 
00003360 
OJ003370 
00003380 
00003390 
OJ 003400 
00003~10 
00003420 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

Basic Subroutines 

SUBROUTINE GRDFCN(N,X,G,NPROB) 
INTEGER .tl,NI?ROB 
DOOBLE PRECISION I(N),G(N) 
********** 

SUBROUTINE GRDFCN 

THIS SUBROUTINE DEFINES THE GRADIENT VECTORS OF EIGHTEEN 
NONLINEAR UNCONSTRAINED MINIMIZATION PROBLEHS. THE I?P.OBLE~ 
DIMENSIONS ARE AS DESCRIBED IN THE PROLOGUE COlMENTS OF OBJlCN. 

THE SUBFOUTINE STATE!ENT IS 

SUEROUTIN£ GRDFCN(N,X,G,NPROB) 

WHERE 

N IS A POSITIVE INTEGER VARIABLE. 

X IS A LINEAE ARRAY OF LENGTH N. 

G IS A LINEAR ARRAY OF LENGTH N WHICH ON OUTPUT CONTAINS 
THE COMPONENTS OP THE ;aADIENT VEC10R OP THE NPROB 
OBJECTIVE FUNCTION EVALUATED AT I. 

NfS06 IS A POSIIIVE INTEGER VARIABLE WHICH DEFINES THE 
NUMBER OF THE PROBLE!. NPROS MUST NOT EXCEED 18. 

5UBPROGBAMS REQUIRED 

FORTRAN-SUI?PLIE~ ••• DABS,DATAN,DCOS,DEXP,DLOG,DSIGN,DSIN, 
DSQRT 

MINPACK. VERSION JF JANOABY.1978. 
BORTON s. GABSOi, KENNETH E. HILLSTRO~, JORGE J. ~OiE 

********** 
INTEGER I,IEV,IVA&,J 
DOOELE ~RECISION AP,AFG,BP,C2PDM6,C?0001,CP1,CP2,CF25,CP5,C1P5, 

1 C2P25,C2P625,C31?5,C19P8,C20P2,C25,C~9,C100,C180,C200, 
2 C10000,C1PG6,D1,D2,EIGHT,liFTY,FIV~,FOOB,ONE,R,S1,S2,S3, 
3 t,T1,I2,X3,TEN,TH,TH~EE,TPI,TWENTY,TWO,ZERO 

DOUBLE PRECISION FVEC(50) ,Y(15) 
DOUBLE iRECISION OFLOAT 
DATA ZERO,CNE,TWO,THREE,POUR,fiVE,EIGHT,TEN,TWENTY,FIF~Y 

1 ;O.D0,1.D0 1 2~DO,J.D0,~.~0,5~D0,8.DO, I.DI,2.u1,5.Dl/ 
DATA C2PDM6,CP0001,CP1,CP2,C?25,CP5,C1P5,C2P25,C2P625, 

1 C3P5,C191?8,C20P2,C25,C29,C100,C180,C200,C10000,C1PD6 
2 /2.D-6,1.D-4,1.D-1,2.D-1,2.S0-1,5.D-1,1.5D0,2.25D0,2.625DO, 
3 3.SD0,1.98D1,2.02D1,2.5D1,2.9D1,1.D2,1.8D2,2.D2,1.D4,1.D6/ 

DATA AP,BP /1.0-5,1.00/ 
DATA Y(1) ,Y(2) ,Y(3) ,Y(4) ,Y(St ,Y(6) ,Y(7), 

1 Y(8) ,Y(9) .Y(10) ,Y(11) ,Y(12) ,Y(13) ,Y(U) ,Y(15) 
2 ;9.D-4,4.40-3,1.75D-2,Sa4D•2,1.J9S0-1,2.42D-1,J.S21D-1, 
3 3.989D-1,3.521D-1,2.42D-1,1.29SD-1,5.4D-2,1.7SD-2, 
4 4.40-3,9.0-4/ 

DlLOlT(IVAB) ~ IVAi 

GBADIEII &OUTIIE SELECTOR. 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
C0000070 
00000080 
00000090 
OJ000100 
00000110 
ooooo120 
C0000130 
00000141) 
00000150 
00000160 
00000170 
00000180 
00000190 
O:J000200 
00000210 
00000220 
000 00230 
O:J000240 
C:J000250 
:JJ000260 
00000270 
00000280 
00000290 
00000300 
00000310 
00000320 
00000330 
00000340 
O:JOOC350 
00000360 
OJ000370 
0(1000380 
O:J000390 
00000400 
00000410 
00000420 
00000430 
00000440 
00000450 
0)000460 
00000470 
00000480 
00000490 
lillCOOSOO 
00000510 
00000520 
00000530 
00000~40 
00000550 
0()000560 
OJ000570 
00000580 
00000590 

81 



82 Basic Subroutines 

c 
GO TO (100~200,300,400i500,600,700,800,900,1000,1100, 

1 1~00, 1300,1400, 1500,1600, 1700, 1800) , H.PROB 
c 
C HEliCAL VAlLEY FUNCTION. 
c 

c 

100 CONTINUE 
TPI = EIGHT*DATAN(ONE) 
TH = DSIGN(CP2S,X(2)) 
IF (X(1) .GT. ZERO) TH = DATAN(X(2)/X(1))/TPI 
IF (X(1) .LT. ZERO) TH = DAUN(X(2)/X{1))/TPI +CPS 
ARG = X: { 1) **2 + X (2) «*2 
B = DSQR! (ARG) 
T = X(3) - TEN*TH 
51 = TEN*T/(TPI*ARG) 
G(1) = C~OO*(X(1) - X:(1)/R + X(2)*51) 
G(2) = C200*(X(2) - :.<(2)/R- 1(1)*51) 
G(3) = TWO"'(C100*T + X(3)) 
~C TC 1900 

C BIGGS EXP6 FUNCTION. 

c 

200 CONTINUE 
DO 210 J ..- 1, M 

:; (J) = ZERO 
210 CONTINUE 

DO 220 I= 1, 13 
01 = DFlOAT(I)/TEN 
D2 = DEXP (-01) - .FIVE*DEX:P (-TEN*D1) + THiiEE*DEXP (-FOU1i*D1) 
51 = DE.XP (-D1*X(1)) 
52= DEXP(-D1*X(2)) 
53= DEXP(-D1*X(5)) 
T = X(3)*S1 - X(4)*52 + X(6)*SJ- D2 
TH = D1*T 
G(1) = G(1)- S1*TH 
G (2) = G (2) + S2*TH 
G(3) = G(3) + 51*T 
G ( 4) = G ( 4) - 52* T 
G(S) = G(S)- S3*TH 
,;(c) = G(6) + S3*T 

220 CONTINUE 
G(l) = '.!:ioiO•X{3)iiiG(1) 
G(2) = HO*X(4)*G(2) 
G(3) = TWO*G(3) 
:;(4) = TWO*G(4) 
~ (5) = TWO*X (6) *G (51 

"G(6) = T'iiO*G(6} 
.:;o TO 1900 

C GAUSSIAN FUNCTION. 
c 

JOO CONTINUE 
· G(1) = z~~o 

G (2) = ZERO 
G (3) = zno 
DC 310 I = 1, 15 

01 = CPS*DFLOAT(I-1) 
02 = C3PS- 01- X(3) 
ARG = -CP5*I(2)*D2**2 

00000600 
00000610 
00000620 
00000630 
00000640 
00000650 
00000660 
OJ000670 
00000680 
00000690 
00000700 
00000710 
00000720 
00000730 
00000740 
OJOJ0750 
OJ000760 
00000770 
00000780 
00000790 
00000800 
00000810 
00000820 
vJ000830 
00000840 
00000850 
00000860 
000 00870 
00000880 
00000890 
G0000900 
OJ000910 
00000920 
00000930 
00000940 
0:>000950 
OOOJ0960 
00000970 
vJooo9ao 
0001)0990 
00001000 
00001010 
00001020 
001)01030 
00001040 
00001050 
00001060 
000010.70 
iJ0001080 
00001090 
00001100 
00001110 
00001120 
00001130 
OJ001140 
00001150 
00001160 
00001170 
00001180 



c 

li = DEXP (ABG) . 
T = X(1) *li - I(I) 
51 = R*T 
52 = D2*51 
G(1) = G(1) +51 
G (2) = G (2) - D2*S2 
G(3) = G(3) + 52 

310 CCNTINUE 
G (1) = TWO*G (1) 
G(2) = X(1)*G(2) 
G (3) = 'IWO*X ( 1) *X (2) *G (3) 
GO 1'0 1900 

Basic Subroutines 

C PCiEll 9ADLY SCALED F~NCTION. 

c 

c 

400 CONTINUE 
T1 = C10000*X(1)*X(2) -ONE 
51= DEX.t'(-X(1)) 
S2 = OEXP(-X(2)) 
T2 = S1 + 52 - ONE- CP0001 
G ( 1) = TWO* (C1 OOOO*X (2) *T 1 - 5 1*T2) 
G(2) = TWO*(C10000*X(1)*T1- S2*T2) 
:;o ro 1900 

C SOX 3-di~ENSIONAL FUNC'IION. 
c 

c 

500 CONTINUE 
·:; (1) = ZERO 
G (2) = ZEF.O 
G (3) = ZEFC 
DC 510 ! = 1, 10 

01 = DPLOAT(I) 
D2 = 0 1,1TEN 
51 = OEXP(-02*X(1)) 
52= DEX2(-D2*X(2)) 
53= OEXP(-02) - DEXP(-01) 
T = 5.1 - 52 - S3*X(J) 
TH = 02*T 
G(1) = G(1) - 51*TH 
G (2) = G (2) + S2*TH 
G(J) = G(3) - S3*T 

510 CONTINUE 
G(1) = 'IIl0*G(1) 
G (2) = TWC*G (2) 
G (3) = UO*G (3) 
GO TO 1500 

C VABIABLY DI~ENSIONED FUNCTION. 
c 

600 CONTINUE 
T1 = ZEBO 
DO 610 J = 1, N 

T1 = T1 + Dl'LOAT(J)*(X(J) - OtiE) 
610 CONTINUE 

T = T1*(0NE + TWO*T1**2) 
DO 620 J = 1, N 

G (J) = twO• (X (J) - ONE + OPLOAT (J) *T) 
620 CONTINUE 

GO TO 1900 

00001190 
00001200 
00001210 
0()001220 
00001230 
000012140 
00001250 
G00012b0 
00001270 
00001280 
00001290 
OJ001300 
00001310 
00001320 
00001330 
00001340 
00001350 
00001360 
00001370 
00001380 
CJOOU90 
000011+00 
00001410 
OOOOH~O 
00001430 
00001440 
00001450 
0000 H60 
00001470 
00001480 
0000'11490 
00001500 
00001510 
000 01520 
000 01530 
00001540 
00001550 
00001560 
00001570 
00001580 
00001590 
GOIJ01600 
00001610 
00001620 
00001630 
C0001640 
00001650 
00001660 
00001670 
0.)001680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001750 
0()001760 
00001770 
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c 
C WATSON FUNCTION. 
c 

700 CONTINUE 
DO 11 0 J = 1 I N 

G (J) = ZERO 
710 CONTINUE 

DO 750 I= 1, 29 
01 = DFLOAT(I)/C23 
S 1 = ZERO 
02 = ONE 
DO 720 J = 2 1 N 

51 = 51 + OFL01T(J-li*D2*I(J) 
02 = 01*02 

720 CONTINUE 
52 = ZEBO 
02 = ONE 
00 730 J = 1, s 

52= 52 + D2*X(J) 
o2 n1*n'2 

730 CONTINUE 
T = Sl - 52**2 - ONE 
53= twu.caui•sL 
D2 ~ ".l:WU/U"i 
DC 74J J = , I N 

G(J) = G(J) + 02*(DFLOAT(J-1) - 53)*T 
D~ = D1*C2 

740 CONTINUE 
750 CONTINUE 

!1 = X(2) - X(1)**2- ONE 
G(1) = G(1) + X(1)*(TWO- FOOR•T1) 
G (2) = G (2) + !WO*T1 
;;a TO 1900 

C ~ENAL!Y FUbCTION I. 
c 

c 

BOO CONTINUE 
·r 1 = -CP25 
OC o 1 0 J "' 1; II 

·r1 = r1 + x(.Tl**2 
810 CON'ri!H.IE 

;) 1 ='IWO*AP 
TH = FOUR*BP*·! 1 
DC 820 J = 1, N 

G(J. = D1*(X(J) - ONEI + x:(J)*TH 
82G CONTINUE 

.;a TO 1900 

C ~~NaLTY FUNC~ION II. 
c 

900 CON'IINUE 
I1 = •ON! 
DO CJ 1 ;J .1 .. 1, N 

T1 = T1 + DFLOAT(N-J+1)*X(J)**2 
910 COliTINUE 

0 1 = DEXP (CP 1) 
D2 = ONE 
TS = FOUR*Bl?*T1 
DO 930 J -= 1 1 N 

00001780 
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00001800 
00001810 
00001820 
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00001840 
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00002140 
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00002170 
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00002200 
00002210 
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00002240 
00002250 
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00002340 
00002350 
000023&0 



c 
c 
c 

c 
c 
c 

c 
c 
c 

9 20 

930 

1000 

1100 

1 1 10 

1200 

Basic Subroutines 

G (J) = I)FLOAT (N-J+1) *X (J) *TH 
51 = DEXP(X(J)/TEN) 
IF ( J • E Q. 1t GO TO 92 0 
53 = 51 + 52 - 02*(01 t-ONE) 
G(J) = G(J) t- A.I?*S1*(S3 +51- ONE/01)/FIVE 
G(J-1) = G(J-1) + AP*52*S3/FIVE 
CONIINUE 
32 = 51 
02 = 01*02 
CONTINUE 
G(1) = G(1) + TWO*BP*(X(1) - C.l?2) 

GO TO 1900 

BBOiN BADLY SCALED FUNCTION. 
I 
CONTINUE 
T1 = X(1) - C1PD6 
T2 = X (2) - C2PD~6 
T3 = X(1)*X(2) -riO 
G(1) = TwO*(T1 t- X(2) *T3) 
G (2) = IWO* (T2 + X (1) *T3) 
GO TO 1900 

BROWN AND DENNIS FUNCTION. 

CONTINUE 
G (1) = ZERO 
G (2) = ZERC 
G (3) = ZERO 
G(4) = ZERO 
DO 1110 I= 1, 20 

01 = DPLCAT(I)/PIVE 
02 = DSIN (01) 
T1 =·X(1) + D1*X(2) - DEX.I?(D1) 
T2 = X(3) t- D2*X(4)- DCOS(D1) 
T = T1**2 + T2**2 
51 = !1*T 
52 = T2*T 
G(1) = G(1) t- 51 
G(2) = G(2) + 01*.31 
G(3) = G{:;) +52 
G(4) = G(4) + D2*S2 
CONTINUE 

G(1) = FOOR*G(1) 
G (2) = FOUR*G (2) 
G (3) = FOUB*G ( 3) 
G(4) = FOUP.*G(4) 
GO TO 1900 

GDLP RESEARCH AND DEVELOP~ENT FUNCTION. 

CONTINUE 
G(1) = ZEBO 
G (2). = ZERO 
G (3) = ZEBO 
D 1 = 'IiC/TBBEE 
DO 1210 I = 1, 99 

ABG = DFLOAT(I)/C100 
B = DABS((-PIPTY*DLOG(ABG))**D1 + C25- X(2)) 

00002370 
00002380 
00002390 
000021JOO 
00002410 
00002420 
00002430 
00002440 
00002450 
OJ 002460 
0~002470· 
0001)2480 
00002490 
00002500 
00002510 
C0002520 
00002530 
00002540 
00002550 
00002560 
00002570 
00002580 
00002590 
00002600 
00002610 
00002620 
00002630 
00002640 
00002650 
00002660 
00002670 
00002680 
00002690 
00002700 

. 00002710 
00002720 
00002730 
00002740 
00002750 
00002760 
00002770 
00002780 
00002790 
00002800 
00002810 
00002820 
00002830 
000 02840 
C0002850 
00002860 
CI0002870 
00002880 
00002890 
00002900 
00002910 
1)000.2920 
00002930 
00002940 
00002950 
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c 
c 
c 

c 

rt = a••x(3)/X(1) 
T2 = OEXP (-T1) 
T = T2 - ABG 
51 = T1*T2*T 
G(1) = G(1) ._51 
G(2) = G(2) i- 51/R 

Basic Subroutines 

G (3) = G (3) - 51 *DLOG (R) 
1210 CONTINUE 

1300 

G (1) = TllO*G (15 /I (1) 
G (2) = TWO* X (3) *G (2) 
G(3) = TWO*G(3) 
GO ro 1900 

TBIGONC~ETiiC FUNCTION. 

CONTINUE 
S1 :: ZEBO 
DO 1310 J = 1 1 N 

li(J) = OCQS(X(J)) 
S 1 = 51 • G (J) 
C08IINUE 1310 

'S2 
DO 

= ZERO 
1J2U J = 1, N 
TH = D5IN (X (J)) 

1320 

13,j0 

T = OFLCAT(N+J) - TH- 51- DfLOAT(J)*G(J) 
S2 = S2 • T 
G (J) = (DFLOA'I (J) *TH - G (J)) *T 
CONTINUE 

DO 1330 J = 1, N 
G (J) = TliO* (G (J) ._ O.SIN (X (J)) *S2) 
CONtiNUE 

GO TO 1900 

C . EXTENDED ~OSENBBCCK FUNCTION. 

c 

1400 CONTINUE 
DO 1410 J = 1, N, 2 

T1 = ONE - X(J) 
G (Ji-1) = C200* (X (J+ 1) - X (J) **2) 
C;(.T) :; -TWO• (.X(.J) *G (Ji-1) + T1) 

11+10 CONTINUE 
GO TO 1900 

C EXTENDED POWELL FUNCTION. 
c 

1500 CONTINUE 
DO 151C J = 1, N, 4 

t. = x (J) + ·rEN•x (J+ 1) 
T1 = X: (J+2) - X (J+3) 
S 1 = FIVE*T1 
T2 = X(J+1) - TWO•X(J+2) 
S2 :: I'OUB*T2**3 
T3 = l(J)- X(J+3) 
S3 = TWENTY*T3**3 
G (J) = TWO* (T + S3) 
G(J+1) = TiENTY*T + S2 
G(J+2) = TWO*(S1 - S2) 
G(J+3) = -TiO*(S1 + 53) 

1510 CONTINUE 

• 

00002960 
00002970 
00002980 
00002990 
00003000 
00003010 
00003020 
000030~0 
00003040 
J0003050 
00003060 
00003070 
00003080 
00003090 
0000.3100 
00003110 
0~003120 
00003130 
OOOOJ1~0 
00003150 
00003160 
OQQQJ170 
C0003180 
00003190 
OOOJ3200 
00003210 
0:>003220 
0:>003230 
000 03240 
000 03250 
00003260 
00003270 
00003280 
00003290 
00003300 
00003310 
00003320 
00003330 
00003340 
00003350 
00003360 
00003370 
00003380 
00003390 
00 003400 
00003410 
00 003420 
0:>003430 
00003440 
i.l0003450 
00003460 
0000.31t70 

. 00003480 
00003490 
00003500 
00003510 
000 03520 
000 03530 
00003540 



Basic Subroutines 

GO TO 1900 
~ 
C BEALE FUNCTION. 
c 

c 

1600 CONTINUE 
51= ONE- X(2) 
T1 = C1P5 - X(1)*51 
S2 =ONE- X(2)**2 
I2 = C~P25- X(1)*52 
S3 =ONE- X(2)**3 
T3 = C2P625- X(1)*53 
3(1) = -TWG*(S1*T1 + S2*T2 + S3*T3) 
G(2) = TWO*X(1)*(T1 + X(2)*(TWO*T2 + THREE*X(2)*T3)) 
GO TO 1900 

C ROOD FUNCTION. 
c 

c 

1700 CONTINUE 
51= X(2) - X(1)**2 
52 = ONE - X (1) 
53= X(2}- ONE 
!1 = X(4) - X(3)**2 
·r2 =ONE- X(3) 
I3 =X(!+) -ONE 
G(1) = -·£WO*(C200*X(1)*51 +52) 
G (~) = C200*S1 + C20P2*53 + C19P8*T3 
G (3) = -TWO* (C 180*X (3) *T1 + T2) 
G (!+) = C180*T1 + C20P2*T3 + C19P8*53 
GO TO 1900 

C CHEBYQUAD FUNCTION. 
c 

1800 CONTINUE 
DC 1810 I= 1, ~ 

FVEC (I} = ZERO 
1810 CONTINUE 

DO 1830 J = 1, li 
'!'1 = ONE 
!2 = T~O*X(J) - ONE 
T = TIJG*T2 
DO 1820 I = 1, N. 

fVEC(I) = FVEC(I) + T2 
TH = T*T2 - T 1 
T1 = I2 
T2 = TH 

1040 CONTINUE 
13 30 CONTINUE 

01 = ONE/DFLOAT(N) 
IEV = -1 
DO 1840 I = 1, N 

FVEC(I)= D1*.FVEC(I) 
IF (lEV .GT. 0) PVEC(I) = PVEC(I) + ONE/(DPLOAT(I)**2 - ONE) 
IEV = -IEV 

1840 CONTINUE 
DO 1860 J = 1, N 

G (J) = ZERO 
'r1 = ONE 
T2 = TiO*X(J) - ONE 
T = !110*T2 

00003550 
00003560 
00003570 
00 c 03580 
00003590 
00003600 
00003610 
00003620 
00003630 
00003640 
00003650 
00003660 
00003670 
00003680 
00003690 
00003700 
0()003710 
00003720 
00003730 
00003740 
00003750 
00003760 
00003770 
00003780 
000 03790 
00003800 
00003810 
00003820 
000 03830 
00003840 
00003850 
00003860 
00003870 
00003860 
00003690 
00003900 
00003910 
00003920 
00003930 
00003940 
00003950 
00003960 
00003970 
00003980 
00003990 
00004000 
uooo4o1o 
00004020 
()0004030 
00004040 
00004050 
li000 .. 060 
00004070 
0000 .. 080 
00004090 
00004100 
0000 .. 110 
00004120 
00004130 
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88 Basic Subroutines 

51 = ZERO 000014140 
52 = TWO 00004150 
DO 1850 l = 1, N 00004160 

G (J) = G (J) + FVEC(I)*S2 00004110 
IH = POUR*T2 + ·T*S2 - 51 00004180 
51 = 52 00004190 
52 = TH 00004200 
TH = !*T2 - T1 OJ00~210 
Tl = T2 0000~220 

T2 = TH 0000~230 

18 50 CONTINUE 00004240 
1860 CONTINUE 00004250 

02 = TiiO*D1 00004260 
DO 1870 J = 1, ~ vOOO~t270 

G (J) = D2*G (J) 00004280 
1870 CONTINUE 00004290 
1900 CONTINUE 00004300 

RETURN 00004310 
.:: 00004320 
c LAST CABO OF SUBROUTINE GRDFCN. 00004330 
c 000043110 

.BUD . 000043~0 
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A P P E N D I X 2 

·sample Driver and Interface Function 

' 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c ,.. .... 
c 
c 
c 
c 
c 
c 
c 

c 

Driver 

********** 

THIS PP.OGBA! TESTS CODES FOR THE LEAST-SQUARES SOLUTION OF . 
M NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER 
ANL AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, 
CALLS tHE NONLINF!P. LEAST-SQUARES SOLVER, AND FINALLY PRINTS 
OUT INFORMATION ON THE PERFOR!ANCE OF THE SOLVER. THIS IS 
ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ABE POSSIBLE. THE 
INTERFACE SUBROUTINE FCN IS UECESSARY TO TAKE INTO ACCOUNT THE 
FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN 
SUERCUTINES IN THE VARIOUS NONLINEAR LEAST-SQUARES SOLVERS. 

SUBPROGEAMS REQUiaED 

USER-SUPPLIED •••••• FCN 

MINPACK-SUPPLIED ••• ENOi!,INITP!:,SOLVER,SSQFCN 

~INPACK. VERSION OF OCTOBER 1977. 
SOB!ON S. GA~~UN, KhNNETH E. HILLSTROM, JOBGE J. ~ORE 

********** 
INTEGER I,IC,INFO,K,LDFJAC,LWA,K,N,NFEV,NJEV, 

1 NPEOE,NBEAD,NTliiES,NWRITE 
IN'IEGEB IWA(40) ,.:H(60) ,NA(60) ,NF(60) ,NJ(60) ,NP(60) ,NX(60) 
DOUBLE PRECZSrCij FACTOR,FNORK1,FNORH2,0NE,TEN,TOL 
DOUBLE PHCISION FJAC (65, 40), F NM (60), FVEC (65) , llA (265) ,X (40) 
DOUBLE PRECISION ENORM 
EXTERNAL FCN 
COMKON /REFNUM/ NPROB,NFEV,NJEV 

C LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5. 
C LOGICAL OUTPUT UNIT IS ASSUMED TO ·Bf NOMBER 6. 
c 

c 
DATA NREAD,NWRITE /5,6/ 

DATA ONE,TEN,TOL j1.DO,l.D1,1.D-10/ 
LI:FJAC = 65 
LH "' ~65 
IC = 0 

10 CCNTINUE 
READ (NBEAD,1000) NPROB,N,d,NT4IES 
IF (NPhOS .LE. 0) GO TO 30 
FACTOR = ONE 
DO 20 K • 1, NTBIES 

LC = IC + 1 
CALL !NITPT(N,X,NPROB,FACIOR) 
CALL SSQFCN(!,N,I,!VEC,N2ROB) · 
FNORM1 = ENOR!(M,FVEC) 
WBITE (NWBITE,200~) NPROB,N,M 
!fFEV :::; 0 
NJEV = 0 . 
CAlL SOtVS&(FCH,M,N,I,PV!C,FJlC,LDPJAC,TOL,INFO,IiA,WA,LiA) 
CALL SSQFCN(!,N,I,PVEC,NPiOB) 
FHORM2 = !HOBK(ft,PVEC) 
NP (IC) = N2BOB 
NA (IC) = N 
!A (IC) = ! 
IF (~C) = HP EV 

00000010 
00000020 
00000030 
00000040 
00000050 
00000060 
00000070 
00000080 
00000090 
OJOOOlOO 
00000110 
000001~0 
00000130 
00000140 
00000150 
00000160 
00000170 
00000180 
OQO QQ1~0 
00000200 
00000210 
00000220 
OU0002.30 
00000240 
00000250 
00000260 
00000210 
00000280 
00000290 
00 000300 
00000310 
00000320 
00000330 
00000340 
00000350 
00000360 
~0000370 
00000380 
Qi)000390 
OOOOO!fOO 
OOC00410 
00000420 
00000~30 
00000440 
00000450 
00000460 
00000470 
00000480 
00000490 
00000500 
00000510 
0000.0520 
00000530 
00000540 
00000550 
00000560 
00000570 
00000580 
1)0000590 



c 
c 
c 

20 

NJ (IC) = NJEV 
NX (lc.) = INFO 
FN! (IC} = PNOR!2 
iRITE (NWRITE,JOOO) 
FACTOR = TEN*FACTOR 
CG!iTINUE 

GO TO 10 

Driver 

PtlORt11,FNORii2,NFEV,NJEV,IBFO, (X(I) ,l=1,ll) 

30 CONTINUE 
WRITE (NWRITE, 4000) IC 
WHITE (NWRITE,50UO} 
DO 40 1 = 1, IC 

WEITE (N.W&ITE,6000) 
CONTINUE 

NI?(I} ,NA(I) ,MA(I),NF(I) ,NJ(I) ,NX(I) ,FN!(I) 

STOP 
1000 E'OBiUT 
2000 POlH!AT 
3000 FORMAT 

1 
2 
3 
4 
5 

4000 FOBtUT 
SvOO FORMAT 
6000 FOR!Ut 

(415) 
(/Ill SX,8B PBOBLEK,IS,SX,11H DI!ENSIONS,2IS,SX // 
(SX,3JB INITIAL 12 NORM OF THE RESIDUALS,D15.7 // 
5X,J3H FINAL L2 NOB~ OF THi RESIDUALS ,D15.7 // 
SX,3JH NUMBER OF FUNCTION EVALUATIONS ,I10 // 
SX,JJH NUMBER CF JACOBIAN EVALUATIONS ,110 // 
5X,15H EXIT PARAMETER ,18I,I10 // 
5X,27H FINAL APPROXIMATE SOLUTION // (SX,SD15.7)) 

(12H1SOMMARY OF ,I3,16B CALLS TO SOLVER/} 
(49H NPROE N ~ NFEV NJEV INFO FINAL L2 NOR!/) 
(JI5,3I6,2I,D15. 7) 

LAST CA~D OF DRIVER. 

END 

00000600 
00000610 
uoooo620 
00000630 
00000640 
00000650 
00000660 
00000670 
00000680 
00000690 
00000700 . 
00000710 
00000720 
00000730 
0()000740 
00000750 
00000760 
00000770 
00000780 
00000790 
00000800 
00000810 
00000820 
00000830 
00000840 
00000850 
00000860 
00000870 
00000880 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

Interface Function 

SUBROUTINE FCN(~,N,I,FVEC,PJAC,LDFJAC,IFLAG) 
INTEGER H,N,LDPJAC,IFLAG 
DOUBLE PRECISIOIII I(N) ,PVEC(!f) ,FJ!C(LDPJlC,III) 
********** 

!HE CALLING SEQUFNCE FOR PCN SHOULD BE IDENTICAL WITH THE 
CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR 
L~AST-SQUAP.ES SOLVER. FCN SHOULD ONLY CALL THE TESTING 
FUNCTION AND JACOBIAN SUBROUTINES SSQPCN AND SSQJAC WITH 
THE APPROPRIATE VALUE OF PROBLE!f NU!fBER (NPROE). 

SUBPROGRAMS FEQUIRED 

!fiNPACK-SUPPLIED ••• SSQFCN,SSQJAC 

~INPACK. VERSION OF OCTOBEB 1977. 
BUaTON S. GARBOW, KENNETH. E. H!LLSTRO!, JOBGE J. !fOBE 

********** 
INTEGER NPROB,NFEV,NJEV 
COMMON /REFNOM/ NPROB,NFEV,NJEV 
IF (!FLAG .EQ. 1) CALL SSQFCN(M,N,X,PVEC,NPeOB) 
.l.f (lf1A 1.> .r.:u. ~~ t:A11 !::i!;)UJAt.;(l'!l,N,X.,f'JAt:,1UiJAl.,Ntol.HJBI 
IF (IFLAG .EQ. 1) NFEV = NFEV + 1 
IF (IFLAG • EQ. 2) NJEV = NJEV + 1 
RETURN 

LAST CARD OF INTERFACE SUBROUTINE FCN. 

END 

U0000890 
00000900 
00000910 
00000920 
00000930 
0:>000940 
000 00950 
00000960 
00000970 
00000980 
00000990 
00001000 
00001010 
00001020 
00001030 
000010~0 
00001050 
00001060 
00001070 
00001080 
00~ 01090 
u0001100 
0.)001110 
00001120 
~0001130 
0000111+0 
OJ001150 
(};)001160 
00001170 
00001180 
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.. 
94 Sample Data for Nonlinear Equations 

NPROB N NTRIES 

1 2 3 00000010 
2 4 3 00000020 
3 2 2 00000030 
4 4 3 00000040 
5 3 3 00000050 
6 6 2 00000060 
6 9 2 00000070 
6 12 2 00000080 
7 5 3 00000090 
7 6 3 00000100 
7 7 3 00000110 
7 8 1 00000120 
7 9 1 00000130 
8 10 3 000001"0 
8 30 , 00000150 
9 10 3 00000160 

10 1 3 00000170 
10 10 3 00000180 
11 10 3 00000190 
12 10 3 00000.200 
13 10 3 00000210 
14 10 3 OJ000220 

0 0 0 00000230 



Sample Data for Nonlinear Least Squares 95 

" 
NPROB N M NTRIES 

1 5 10 1 00000010 
1 5 50 1 00000020 
2 5 10 1 00000030 
2 5 50 1 00000040 
3 5 10 1 00000050 
3 5 50 1 00000060 
4 2 2 3 000 00070 
5 3 3 3 00000080 
6 4 " 3 oouoco9o 
7 2 2 3 OOC00100 
8 3 15 3 00000110 
9 4 1 1 ~ 00000120 

10 3 16 3 OJ00013.0 
1 1 6 31 3 00000140 
11 9 31 3 CJ000150 
11 12 31 3 00000160 
12 3 10 1 CJ000170 
13 2 10 1 ~;)000180 

14 i4 20 3 00000190 
15 1 8 3 . 00000200 
15 8 8 1 vOC00210 
15 9 9 1 00000220 
15 10 10 1 00000230 
16 10 10 3 00000240 
16 30 30 1 1.10000250 
16 40 40 1 OOOJ0260 

( 17 5 :,3 1 00000270 
18 11 65 1 00000280 
·o 0 0 0 OJC00290 

• 
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