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TESTING UNCONSTRAINED OPTIMIZATION SOFIWARE

by

Jorge J. Moré
Burton S. Garbow
Kenneth E. Hillstrom

ABSTRACT

Much of the testing of optimization software is inadequate
because the number of test functions is small or the starting
points are close to the solution. In addition, there has been
too much emphasis on measuring the efficiency of the software and
not enough on testing reliability and robustness. To address
this need, we have produced a relatively large but easy-to-use
collection of test functions and designed guidelines for testing
the reliability and robustness of unconstrained optimization
sof tware.

1. Introduction

When an algorithm is presented in the optimization literature, it has
usually been tested on a set oflfunctions. The purpose of this testing is to
show that the algorithm works and, indeed, that it works better than other
algorithms in the same problem area. In our opinion these claims are usually
unwarranted because it is often the case that there are only a small number of

test functions, and that the starting points‘are,close to the solution.

Testing an algorithm on a relatively large set of test functions is
bothersome because it requires the coding of the functions. This is a tedious
and error-prone .job that is avoided by many. However, not testing the algo-
rithm on a large number of functions can easily lead the cynical observer to
conclude that the algorithm was tuned to particular functions. Even aside from

the cynical observer, the algorithm is just not well tested.

It is harder to understand why the standard starting points are usually
close to the solution. One possible reason is that the algorithm developer is
interested in testing the ability of the algorithm to deal with only one type
of problem (e.g., a curved valley), and it is easier to force the algorithm to

deal with this problem if the starting point is close to the solution.

~



Thus, a test function like Rosenbrock's is useful because it tests the
ability of the algorithm to follow cﬁrved valleys. However, test functions
like Rosenbrock's are the exception rather than the rule; other test functions
have much more complicated features, and it has been observed that algorithms
which succeed from the standard starting points often have problems from
points farther away and fail. Hillstrom [15] was one of the first to point
out the need to test optimization software at non-standard starting points.,

He proposed using random starting points chosen from a box surrounding the
standard starting point. This approach is much more satisfactory, but it tends
to produce large amounts of data which can be hard to interpret. Moreover,

the use of a random number generator complicates the reproduction of the re-

sults at other computing centers.

A final complaint against most of the testing procedures that have
appeared in the literatureAis that there has been too much emphasis on com-
paring the efficiency of optimization routines and not enough emphasis on
testing the reliability and robustness of optimization software -~ the ability
of a computer .-program to solve an optimization problem. It is important to
measure the efficiency of optimization software, and this can be done, for
example, by counting function evaluations or by timing the algorithm. How-
ever, either measure has problems, and with the standard starting points it
is usually fairly hard to differentiate between similar algorithms (e.g., two
quasi-Newtori methods) on either count. In contrast, the use of points farther
away from the solution will frequently reveal drastic differences in reliabil-
ity and roBustness between the programs, and hence in the number of function

evaluations and in the timing of the algorithms.

To deal with the above problems, we have produced a relatively large
collection of carefully coded test functions and designed very simple proce-
dures for testing the reliability and robustness of unconstrained optimization
software. The heart of our testing procedure is a set of basic subroutines,
described in Sections 2 and 3, which define the test functions and the start-
ing points. The attraction of these subroutines lies in their flexibility;
with them it is possible toAdesign many different kinds of tests for optimiza-
tion software. Finally, in Sections 4 and 5 we describe some of the tests

that we have been using to measure reliability and robustness.



It should be emphasized that the testing described in this'paper is only
a beginning and that other tests are necessary. For example, the ability of
an .algorithm to deal with small tolerances should be tested. However, the
testing of Sections 4 and 5 does examine reliabiiity and robustness in ways

which other testing procedures have ignored.

2. The Basic Subroutines

Testing of optimization software requires a basic set of sSubroutines
which define ‘the test functions and the starting points. We consider the

following three problem areas:

I. Systems of nonlinear equations. Given fi: R® + R for

i=1,...,n, solve

£(x) =0, 1<i<n, xekR

II. Nonlinear least squares. Given fi: Rn -+ R fori=1,...,m

with m > n, solve

o 2 n
min z f. (x): xeR .
. i
i=1

IIT. Unconstrained minimization. Given f: R - R, solve

min{f(x): x ¢ Rn}

The subroutines which define the test functions and starting points
~depend ovir the Jdimension paramerers M and N and on the problem number NPROB.

We first describe the subroutines for the test functions.

For systems of ﬁonlinear equations, the subroutine
VECFCN(N,X,FVEC,NPROB)
returns in FVEC the wvector
[ENCOPIE HCODRN

In order to prevent gross inefficiencies with solvers which only require one

component at a time,



" COMFCN(N,K,X, FCNK,NPROB)
returns in FCNK the k-th component fk(x).A For nonlinear least squares
SSQFCN(M,N,X,FVEC,NPROB)
returns in FVEC the vector

(£1G) 55 £ () ,
and

SSQJAC(M,N,X,FJAC,LDFJAC,NPROB)

returns in FJAC the Jacobian matrix

Bfi(x)

9xX,
]

, 1i=1,...,m, j=1,...,n .

(The parameter LDFJAC is the leading dimension of the array FJAC as defined in

the main program.) For unconstrained minimization
OBJFCN(N,X,F,NPROB)

returns in F the objective fuﬁction value f(x) and
CRDFCN(N,X,C,NPROB)

returns in G the gradient vector

f (%) 9f (%)
‘ Bx1 2t exn _

For each problem area, the starting points are generated by a subroutine
INITPT(N,X, NPROB,FACTOR)

which returns in X the starting point corresponding to the parameters NPROB
and FACTOR. If XS denotes the standard starting point, then X will contain

FACTOR*XS, except that if XS

all the components of X will be set to FACTOR.

is the zero vector and FACTOR is not unity, then



3. Test Functions

Almost all of the test functions that have appeared in the optimization
literature are nonlinear least squares. Given a nonlinear least squares prob-

lem defined by f ..,fm, we can obtain an unconstrained minimization problem

1°°
by setting

T .2
(3.1) £x) = ] £,°@ .
i=1

If m = n, this problem can be posed as the system of nonlinear equations

(3.2) fi(x) =0 , l<i<n,

and if m > n, the optimality conditions for (3.1) lead to the system of non-

linear equations

m Bfi(x)
(3.3) Z e JE1® =0, 1<j<n.
i=1 i

Note that in geﬁeral it is inefficient to solve nonlinear least squares prob-
lems by general minimization algorithms, since they tend to ignore the
structure in (3.1). As far as the nonlinear equations approach is concerned,
(3.2) may not have any solutions, while (3.3) will have as a solution any
critical point of (3.1). However, for testing purposes, (3.1), (3.2), and
(3.3) are valid problems. All of our test functions are formulated for prob-
lem area II (nonlinear least squares). The correséonding test function for
problem area III (unconstrained minimization) is (3.1), while for problem
area I (systems of nonlinear equations), the. function is (3.2) if m = n and
(3.3) if m > n. A given test function may appear in more than one problem
area; coding differences among its various versions depend on the particular
area. For nonlinear least squares, we need to generate the Jacobian matrix
which requires an m by n array, while for unconstrained minimization and

systems of equations, this two-dimensional array is not needed.
To define the test functions we have adopted the following general format:

Name of function [reference]

a) Dimensions

b) TFunction definition

c) Standard starting point (designated xo)
d) Minima .
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‘In d) we give the minima of the function (3.1) that we have found, and if

convenient, the corresponding minimizer.

for example, of the form (a,B,+®).

lim V£(o,8,y) = 0,
Yot

In a few cases, the minimizer is,

.This means that

and thus an algorithm may decide that a minimizer is in a neighborhood of

(o,B,Y) for some large value of v.

1)  Rosenbrock function [24]

a) n=2, m= 2

- : )
B)  £,(x) = 10(xy-x,)

fz(x) =‘l—xl

c) xo = (-1.2,1)

d) f=0at (1,1)

2) Freudenstein and Roth function [13]

‘a) n=2, m= 2
b) fl(x) = -13 + x, + ((5—x2)x2—2)x2
fz(x) = =29 + Xy + ((x2+l)x2—14)x2
Q) XO = (0.5,-2)
d) f =0 at (5,4)
£ = 48.9842... at (11.41..., -0.8968...)

3) Powell badly scaled function [22]

_ 4
= 10 x1x2 1

= exp[-xl] + exp[—xz] - 1.0001



c) Xq = (0,1)

d) £ =0 at (1.098...107°, 9.106...)

Brown badly scaled function [unpublished]

>a) n=2, m=3

' _ 6
b) fl(x) =% 10
_ -6
fz(x) —-x2—2010 .
f3(x) = xlx2—2
d) £ =0 at (0%, 2.107%

Beale function [2]

a) n= 2, m= 3

b) fi(x) = yi—xl(l—xzi)

where ¥y = 1.5, Yy = 2.25, vy = 2.625
c) Xy = (1,1)

d) f =0 at (3,0.5)

a) n=2, m>n
b) fi(x)-= 2421 - (exp[ix1]+exp[ix2])
c) Xg = (0.3,0.4)

d) £ = 124.362... at x; = %, = 0.2578... for m = 10
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7)

8)

Helical valley function [11] .

a) n = 3, m= 3
b) fl(x) = 10[x3—106(xl,x2)]
£.(x) = 10[(x, 2+x.2)%1]
2 1 2
f3(x) = X,
where .l x2 .
— arctan | — if x, > 0
| 2m xl 1
. O(xl,xg) = |
1 %2 ‘
— arctan <——> + 0.5 if x, < 0
2w x 1
. - 1
C) XO = (-1)0’0)
d) f =0 at (1,0,0)
Bard function [1]
a) n=3, m=15
Yy
RO PR b B v‘x_rw—x—>
i2 i3/
where u; = i, v, = 16-1, w, = mﬁn(ni,vi)‘ and
i Y4
1 0.14
2 0.18
3 0.22
4 0.25
5 0.29
6 0.32
7 0.35
8 0.39
9 0.37
10 0.58
1L 0.73
12 0.96
13 1.34
14 2.10
15 4.39




c) X = (1,1,1) -

8.21487... 10>

d) f

f

9) Gaussian function [unpublished]

a) n=3, m= 15
t,-x )2
27173

where t; = (8-1i)/2 and

-

X, (
B () = x) exp[————ji———-—

1 | y +
1,15 0.0009
2,14 0.0044
3,13 0.0175
4,12 0.0540
5,11 0.1295
6,10 0.2420
7,9 0.3521
8 0.3989

C) XO = '(004,190)
d) £ =1.12793... 107

10) Meyer function [18]

a) n=3, m= 16
b) fi(x) = x

where ti = 45+5i and

- xz ]
exXp|T———5| - ¥.
1 _(ti+x3) i

17.4286... at (0.8406...,-o, =)

i V. i Yy

1 34780 9 8261
2 28610 10 7030
3 23650 11 6005
4 1 19630 12 5147
5 16370 13 4427
6 13720 14 3820
7 11540 15 3307
8 9744 16 2872

c) Xy = (0.02,4000,250)

d) f = 87.9458...

13
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11)

12)

13)

Gulf research and developmerit function [10]

a) <m <

IYXI
b) f. (x) -t

where t, = i/100 and

vy = 25 + (750 En(ti))2/3

c) Xg = (5,2.5,0.15)

d) f=0 at (50,25,1.5)

Box 3-dimensional function [4]

a) n =.3, m > n variable

b) fi(x) = exp[—tixll - exp[-tikz]

where ti = (0.1)1

c) Xy = (0,10,20)

d) f =0 at (1,10,1), (10,1,-1) and wherever (=g

Powell singular function [23]

a) n=4, m=4

b) fl(x) = % 4+ 10x
fz(x) - 5%(x3-xa)
f3(x) = (x2—2x3)2

.
f4(x)'= lOz(xl-x4 2

c) X = (3,-1,0,1)

d)_ f = 0 at the origin

= leand X

- x3-(exp[—ti]-eXp [-lOti})

3



14) Wood function [9]

a) n=4, m=6

b) fl(x) = lO(xz-xl2
fz(x) = l-xl
£,(x) = (90) X(x, x,”
f4(x) = l-x3
fS(x) = (10)%(x2+x4—2)

f6(x) = (10)_1/2(x2—x4
c) xo = (-3,-1,-3,-1)

d) £ =0 at (1,1,1,1)

15) Kowalik and Osborne function [17]

- a) n=4, m=11

2
x. (u, +u.x,)
b) f(x) =y, - =1 12
* = (u 2+u x.+x,)
i THETRy
where
i yi ui
1 0.1957 4.0000
2 0.1947 2,0000
3 0.1735 |- 1.0000
4 0.1600 0.5000
5 0.0844 0.2500
6 0.0627 0.1670
7 0.0456 0.1250
8 0.0342 0.1000
9 |.0.0323 0.0833
10 0.0235 0.0714
11 0.0246 0.0625 |
¢)  x, = (0.25, 0.39, 0.415, 0.39)
d) £ = 3.07505... 1074
1.02734... 107> at (4=, -14,07...,-=,-x)

Hh
]



16) Brown and Dennis function [5]

a) n =4, m>n variable

b)  £.(x) = (k) + £x, - exp[ti])z + (x + x,sin(t)) - cos(ti))z

where t, = i/5.
i
c) X = (25,5,-5,-1)

d) f = 85822.2... if m= 20

17) Osborne 1 function [21]

a) n=295 m= 33

b) fi(x) =y - (xi + xzexp[—tix4] + x3exp[—tix5])

where 'ti = 10(i-1) and

i yi i Yi
1 0.844 18 0.558
2 0.908 19 0.538
3 0.932 20 0.522
4 0.936 21 0.506
5 0.925 22 0.490
6 0,908 23 0.478
7 0.881 24 0.467
8 0.850 | 25 0.457
9 0.818 26 0.448
10 0.784 27 0.438
11 0.751 28 0.431
12 0.718 29 0.424
13 | 0.685 30 0.420
14 0.658 31 0.414
15 0.628 32 0.411
16 0.603 33 0.406
17 0.580

c) X5 = (0.5, 1.5, -1, 0.01, 0.02)

d) £ = 5.46489... 1072



18)

19)

Biggs EXP6 function [3]

a) n =26, m>n variable

b) fi(x) = x3exp[—tixl] - xaexp[-tixz] + xéexp[—tixs] -y

where £, = (0.1)1i and

y; = exp[—ti] - Sexp[—lOti] + 3exp[—4ti]

c) X = (1,2,1,1,1,1)

d) f = 5.65565... 10723 if n

Osborne 2 function [21]

a) n=11, m= 65

b)_ fi(X) =y

= 13

2
(xlexp[—tixs] + xzexp[-(ti-xg)}xs]

2 2.
+ x3exp[-(ti—xlo) x7] + x4exp[-(ti—xll) x8])

where t, = (i-1)/10 and

i i i Vi + Yi
1 1.366 23 0.694 45 0.672
2 1.191 24 0.644 46 .0.708
3 1.112. } 25 0.624 47 0.633
4 1.013 26 0.661 48 0.668
5 ©0.991 27 0.612 49 0.645
f 0.885 28 0.558 50 0.632 .
7 0.831 29 0.533 51 0.591
8 0.847 30 0.495 52 0.559
9 0.786 31 0.500 53 0.597
10 0.725 32 - 0.423 54 0.625
11 0.746 33 0.395 55 0.739
12 0.679 34 0.375 56 0.710
‘13 0.608 35 0.372 57 0.729
14 0.655 36 0.391 58 0.720
15 0.616 37 0.396 59 0.636
16 0.606 38 0.405 60 .0.581
17 0.602 -39 0.428 61 0.428
18 0.626 40 0.429 62 0.292
19 0.651 41 0.523 63 0.162
20 0.724 42 0.562 64 0.098
21 0.649 43 0.607 65 0.054
22 0.649 44 0.653




c) Xy = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5)

d) £ = 4.01377... 1072
20) Watson function [17]
a) 2<n<3l, m=31
v n i9 n i1 2
B) £ (x) = ] G-Dxe; 0 - I =t -1
| j=2 ; j=1
where t. = 1/29, 1 <i <29,
_ .2
f30(x) = X, f3l(x) = %, xl -1
@) %y = (0,...,0)
d) £ = 2.28767... 1070 if n =6
£ =1.39976... 10°° if n=9
£=4.72238... 10050 if n = 12

21) Extended Rosenbrock function [25]

a) n variable but even, m = n

)

b) i q(®) = 10(x, %y, 4
£y ™) = 1%
_C) X, = (Ej) where ng-l = -1.2, EZj =1

d) f=0 at (1,...,1)

22) Extended Powell singular function [25]

a) n variable but a multiple of 4, m=n

b) f (x)

41-3F) = Xy g+ 10%,,
1
_ 3 _
Fhga ) = 57(xgy 17%4)
. 2

41-189) = O5q 572%45 1)

- 107 2
£, = 1070xy4_37%y4)



c) Xy = (gj) wheré -1,

443 = 3 B4y2 T h5-1 7 00 &4y

d) f = 0 at the origin

23) Penalty function I [14]

a) n variable, m = n+l

1
2

b) f.(x)=a(x.-—l), 1<i<n

1
n+l <_)Z Xs > ey
where a =
c) x,= (§,) where &, = j
| 0 3 , i J
d) £ = 2.24997... 10 if n = 4
£ = 7.08765....10"° if n = 10

24) | Penalty function II [14]

a) n variable, m = 2n-

'b) fl('x) = x.-0.2

1 X T [x _
£,(x) = a“lexp|7g1 + exp|—75 v;]p 2<iznm
1 X, .
ey = o E i-otl| 1
ti(x) a (exp[ 10 ] 'EXP[IO])’ n < i< 2n
n 2\
£, (x) = Y (n-j+l)x -1
n .
=1
where a = 10“5 and = 1 + ex
y 10 P70

) X, = (_;éa---,Lz')

d) f

9.37629....10 ° if n = 4

2.93660... 107% if =

rh
]

10
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25)

26)

27)

Variably dimensioned function [unpublished]

a) n variable, m = n+2

) £, =x-1, i=1l,...,n

n
£ x) = ) j(x.-1)
n+1l j=1 j

n 2
frpp (0 = jzla<gj-1>>

c) Xy = (gj) where gj.s 1-(j/n)

d) f=0 at (1,...,1)

Trigonometric function [25]

a) n variable, m =n

n
b) f (x) =n - Z cos x, + i(l - cos x.,) - sin x,
i j=1 i i

c) Xy = (1/n,...,1/n)

d) f=20

Brown almost linear function [6]

a) n variable, m =n

n
b) f. (x) = x. + z x, - (n+l), 1l <i<n
. 1 j:l :
n
fn(x) - <j£1xj> -1

C) X, = (%"003;5)

1-
d) f =0 at (gyesera,a n) where ¢ satisfies
ng" - (n+l)ccn-l +

£ =1at (0,...,0,n+1)

1 =90; in particular, a =1,



28)

29)

30) -

Discrete boundary value function [19].

a) n variable, m = n

_ 2 3
b) fi(x) = 2xi i X 1 X1 + h (xi+ti+l) /2

where h = 1/(n+1), t, = ih, and x, = x = Q.

0

é) X = (Ej) where Ej = tj(tj—l)

d) £=0

Discrete integral function [19]

a) n variable, m = n

i
b) fi(x) = x; + h[(l—ti) jzl tj (xj+tj+l)3

n
3
| + ot j=§+1 (1—tj)(xj+tj+l) J/z

where h
c) x,=(§,) where &, =t (t.,-1
0 3 3 i3 )

d f=0

Broyden tridiagonal function [7]

a) n variable, m = n

b) fi(x) = (3-2xi)xi - X 1" 2xi+l +1

where xo = xn+l =0

Q) x. = (-1,...,-1)

d) £f=20

1/(n+l), £, = ih, and x. = x = 0,

21
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31)

32)

33)

Broyden banded function [8]

" a) n variable, m = n

_ 2
b)  £,(x) = x, (245%)) + 1 - .Z x5 (L)
JEJi

where Ji'= {j: j#i, max(l,i—mz) <] j_min(n,i+mu)}

and m, = 5, m_ =1,

c) X, = (=1,...,-1)

d) f=0

Linear function - full rank [unpublished]

a) n variable, m > n

2 n
b) (%) i T ( ) xj> -1, 1<iz<n

1
g
I
I

fi(X)

1}
|
B~
TN
e
It o~
-
o
e
N——
t
’_I
3
A
}-l
A
B

c) X, = (1,...,1)

d) f = mn at (—1 yroa e 5"1)

Linear function - rank 1 [unpublished]

a) n variable, m > n

n
b) f.(x) = i<j§1jxj> - 1

0
_ mm-1) Toiw o3
d) f = 2 (2mrD) 2t 20 point where jzljxj Sl



34)

35)

For ease of reference, we list the functions appearing in the three test

Linear function - rank 1 with zero columns and rows {unpublished]

a) n variable, m > n

-1, fm(x) = -1

b) fl(x) =
n-1
£f.(x) = (-1 ] ix.} -1, 2<i<m
i . 3j -
j=2
c) Xy = (1,...,1)
2 m-1
e _m +3m -6 . . __3
d) f‘— ——3755:33-—-at any point where jZZij >3

Chebyquad function [12]

a) n variable, m > n

1 n 1
b) fi(x) = = Z Ti(xj) - J Ti(x)dx
j=l R

n
0
where Ti is the ith Chebyshev polynomial shifted to the

interval [0,1] and. hence,

2

1 1
J Ti(x)dx = 0 for i odd, f Ti(x)dx . for i even
0 0 (17-1)

c) X = (Ej) where Ej = j./(n+l)

d) £=0 for 1<n<7 and n=9
£ = 3.51687... 10°° for n=8
f = 6.50395... 10> for n = 10

problem collections. Note that the number in parentheses after the name of

the function refers to the number of the function in the main list.

that some of .the basic subroutines of Section 2 can be used to test algorithms

from more than one problem area. For example, GRDFCN effectively defines a

collection of nonlinear equation problems and therefore can be used to test

nonlinear equation solvers, while SSQFCN and SSQJAC can be .used together to

test unconstrained minimization algorithms.

Also note

23
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Systems of nonlinear equations

1.
2
3
4
5.
6
7
8
9

10.
1I1.
12.
13.
14,

Nonlinear

Rosenbrock function (1)

Powell singular function (13)

Powell badly scaled function (3)
Wood function (14)

Helical valley function (7)

Watson function (20)

Chebyquad function (35)

Brown almost-linear function (27)
Discrete boundary value function (28)
Discrete integral equation function (29)
Trigonometric function (26)

Variably dimensioned function (25)
Broyden tridiagonal function (30)
Broyden banded function (31)

least squares

O 0 ~N & U &~ W N

e e e e o
W N o W O

Linear function - full rank (32)
Linear function - rank 1 (33)
Linear function - rank 1 with zero colummns and rows (34)
Rosenbrock function (1)

Helical valley function (7)

Powell singular function (13)
Freudenstein and Roth function (2)
Bard function (8)

Kowalik and Osborne function (15)
Meyer function (10)

Watson function (20)

Box 3-dimensional function (12)
Jennrich and Sampson function (6)
Brown and Dennis function (16)
Chebyquad function (35)

Brown almost-linear function (27)
Osborne 1 function (17)

Osborne 2 function (19)



Unconstrained Minimization

1. Helical valley function (7)
2. Biggs EXP6 function (18)
3. Gaussian function (9)
4, Powell badly scaled function (3)
5. Box 3-dimensionil function (12)
6. Variably dimensioned function (25)
7. Watson function (20)
8. Penalty function I (23)
9. Penalty function II (24)
10. Brown badly scaled function (4)
11. Brown and Dennis function (16)
12. Gulf research and development function (11)
13. Trigonometric function (26)
14, Extended Rosenbrock function (21)
- 15. Extended Powell singular function (22)
~16.  Beale function (5)
17. Wood function (14)
18. Chebyquad function (35)

.25
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4. Testing I

With the basic subroutines and the test functions described in Sections 2
and 3, we have the tools for testing unconstrained nonlinear optimization algo-
rithms. In this section we would like to mention some of the possible tests

that can be carried out.

Suppose, for example, that we want to test a nonlinear least squares
algorithm SOLVER on a given test function. This can be done by the following

program outline.

(4.1) EXTERNAL FCN
READ ( , ) NPROB,N,M,NTRIES
FACTOR = 1.0 :
DO . K = 1,NTRIES
CALL INITPT(N,X,NPROB,FACTOR)
CALL SOLVER(FCN,M,N,X,...)
FACTOR = 10.0*FACTOR

e

The choice of the integer NTRIES depends on the function defined by NPROB,

and on how stringently we want to test SOLVER. If the function contains

rapidly growing sub-functions such as exponentials, then NTRIES = 1 is probably
all that should be allowed. For other functions, NTRIES = 3 may be a reasonable
setting; this pests SOLVER with starting vectors of xS, les, and lOOxS where

X is the standard starting vector. The vectors X, and lOOxS are regarded as
being close to and far away from the solution, respectively; it is not unusual

for algorithms to succeed with Xg but to fail with lOOxS.

In (4.1), SOLVER cails an interface subroutine FCN. The calling sequence
for FCN should be idéntical to the calling sequence of the function subroutine
in SOLVER; its main purpose is to call the teSting functions with the appro-
priate value of problem number. For example, if the calling sequence of the

function subroutine in SOLVER is
FCN(M,N,X,FVEC, FJAC,LDFJAC, IFLAG) ,
then the body of FCN could be

COMMON /REFNUM/ NPROB,NFEV,NJEV

IF IFLAG = 1
' CALL SSQFCN(M,N,X,FVEC,NPROB)
_ NFEV = NFEV+1

F

F IFLAG = 2

CALL SSQJAC(M,N,X,FJAC,LDFJAC,NPROB)
NJEV = NJEV+1



Note that the COMMON block REFNUM transmits the variable NPROB and provides

counters for the number of function and Jacobian evaluations required by SOLVER.

Nothing that has been said is intrinsic to the nonlinear least squares
problem; the same type of driver can be used for nonlinear equations or uncon-
strained minimization. We emphasize that the test results provided by (4.1)
can be quite revealing if NTRIES is set properly. For example, to compare the
choices of scaling strategy, Table 1 was presented in [20]. In this table "FC"

means failure to converge within 1000 function evaluations.

Table 1
X 10x 100x
s s s
PROBLEM SCALING ] NFEV NJEV I NFEV | NJEV NFEV NJEV

Initial 12 9 34 29 FC FC
1 _Adaptive 11 8 20 15 19 16
Continuous 12 9 14 12 176 141
Initial 19 17 81 71 365 315
2 Adaptive 18 16 79 71 348 307
Continuous 18 16 63 54 FC FC
Initial 8 7 37 36 14 13
3 Adaptive 8 7 37 36 14 13
Continuous 8 7 FC FC FC FC
Initial 268 242 423 400 FC FC
4 Adaptive 268 242 57 47 229 207
Continuous FC FC FC FC FC FC

It is clear from this table that the adaptive scaling strategy is best
in these four examples, and that we could not have reached this conclusion if

we had only consideréd the standard starting points.

*

We have shown how to use the basic subroutines to test different versions
of the same algorithm, and in this case comparisdns are straightforward. How-
ever, these subroutines will inevitably be used to test and compare different
algorithms. Comparisons are then more difficult because the‘two algorithms
will usually have different stopping criteria, and it may not be immediately
clear how much of the success of the algorithm is due to its stopping criteria.

However, the effect of the stopping criteria can be measured by running the

27
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program with different tolerances or by looking at the progress of the

iteration.

To illustrate the use of the basic subroutines in the testing of algo-
rithms, consider two nonlinear least squares subroutines NLSQl and NLSQ2. The
names have been changed to protect the innocent, but it should be realized
that the development of each of these codes has received considerable atten-
tion; both of them appear in optimization libraries. These subroutines have
an output parameter which indicates the status of the computation, and in
Tables 2 and 3 we have used the parameter INFO to report this information. If
the subroutine claims success then INFO is set to 1, and otherwise it is set

to O.

We first ran these algorithms with the standard starring points; the

results are shown in Tables 2 and 3. The following points are worthy of

mention:

(a) There are three problems (10,14,17) in which NLSQ2 required more than
100 function evaluations. On each of these problems NLSQl required

fewer function evaluations.

(b) TFor problem 15 with n = l, the standard starting point is a critical
point. NLSQl claimed success on this problem while NLSQ2 classified

this problem as a possible failure.

(c) The results for problem 16 with n = 40 are not comparable because the

algorithms converged to different local minima. .

(d) A look at the progress of the iteration shows that both algorithms were
converging at the same rate on problem 6, but differences in convergence

criteria caused NLSQl to work much harder.

(e) Problems.2 and 3 are rank-deficient linear problems, and the differences
in pegformance can be traced to the [act that NLSQl uses orthogonal trans-
formations to solve the linear least squares subproblems, while NLSQ2

uses Cholesky decomposition on the normal equations.

" (£) On the remainder of the problems both algorithms required only a small

number of function evaluations (less than 50).
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|

10
50
10
s0
10
sC

2

3

4

2
15
11
16
31
31
31
10
10
20

10
10
30
40
33

[~

-

Table -2

NFEV

wwwwww

136

10

25
315

44
1
24
17
<0
19
19
18

NJEV

-
wENDNDNDDDDN

- "
N O N

—
DN
O -2

N
- ad ek e d b (] D —a
EN e UVUVNEODE2ANE IDODO®

INFO

P e T e N N i S o e S S e S L WU W Wt WpEs W S Y

FINAL L2 NORM

0.2236068D 01
0.6708204D 01
0.1463850D C1
0.3482630D 01
0.1909727D 01
0.3691729D 01
0.0

0.9195638D-32
0.9523448D-35
0.6998875D 01
0.9063596D-C1
0.1753584D-01
0.9377945D 01
0.4782959D-01
0.1183115D-02
0.2173104D-04
0.7211110D-16
0.1115178D 02
0.2929543D 03
0.1886238D 01
0.5930324D-01
0.3304872D-15
0.8064710D-01
0.8987408D-15
0.2170133D-14
0.1254229D-12

0.7392493D-02

0.2003440D OO

- 29



30

"SUMMARY OF

NPROB

BN aad 200U ONOONEWWNN = -

S W S R |

w

-k o ek D ol ad md md D
O~ ULTI LV &

|~

-
OVoO=sMhMDLMODONWFWNDEWDLLLLLLULL

EWaa
MO OOO

—b
-—

28 CALLS TC NLSQ2Z2

|

10
50
10
50
10
50

2

3

4

2
15
11
16
31
31
31
10
10
20

10
10
30
40
33
65

 Table 3

NFEV

3
3
11
11
13
13
18
12
23
17
7
18
174
10
6.
7
7
17
377
1
31
10
16
15
33
8
167
15

NJEV

2

)]

B Y S G
WEMNMNVNOO

—
W o« - N
Wy

W
- - N N
O ] daNOGONWN WO

—_
- -
(YO |

INFO FINAL L2 NORM

- el o e e ed ed owd O D ad ed wd ed ad ad wdd d emd o) ad b add ad i d wnd wd

0.2236068D 01
0.6708204D 01
0.1463850D 01
0.3482630D 01
0.1909727D 01
0.3691729D 01
0.0

0.3731651D-22
0.7212634D-12
0.6998875D 01
0.9063596D-01
0.1753584D-01
0.9377945D 01
0.4782959D-01
0.1183115D-02
0.2173104D-04
0.1804112D-15
0.1115178D 02
0.2929543D 03
0.1886238D 01
0.5930324D-01
0.1168522D-07
0.8064710D-01
0.1606452D-12
0.3021128D-10
0. 1000000D 01
0.7392493D-02
0.2003440D 00



The conclusion from Tables 2 and 3 is that although the use of standard
starting points reveals some_differencés, none of these differences are sig-
nificant. This is not the case when NLSQl and NLSQZ2 are run on the full set
of starting points. These results appear in Tables 4 and 5, and the main

differences are now as follows:

(a) NLSQl only fails (failure is identified by the size of the final 22
norm) on problem 10 while NLSQ2 fails three times -— once on problem 5
and twice on problem 10. Moreover, for both failures on problem 10, the

INFO value of NLSQ2 incorrectly claims success.

(b) Although this information does not appear in the tébles, NLSQl does not
generate any overflows while NLSQ2 produces overflows on problem 16 with
n = 10 and 30. The overflows for n = 30 are generated by the function
subroutine and occur on the first iteration; they are due to a large
initial step. The overflows for n = 10 are generated by NLSQ2 and occur

towards the middle of the iteration.

(c) On all of the problems where NTRIES was set to 3 (problems 4, 5, 6, 7, 8,
9, 10, 11, 14, 15 with n = 1, 16 with n = 10), the differences in perfor-
mance between NLSQl and NLSQ2 are most pronounced for the farthest start-
ing point, and here NLSQl is clearly superior to NLSQ2. For the standard
starting point the algorithms perform very similarly, while for the
intermediate starting point NLSQl seems to perform slightly better than
NLSQ2. These observations are also based on a detailed examinétion of
the progress of the iteration. These results show that Tables 4 and 5
are not unduly influenced by the stopping critefia. The only exceptions
occur when the problem has a continuum of solutions, and in these cases
(problems 8 and 9 where the final 52 norms are 4.174... and 0.03205...,

respectively), the convergence criteria of NLSQ2 are clearly inadequate.

It should now be clear that on the basis of the above testing, NLSQ1l is
a better piece of software than NLSQ2. Again we point out that the develop-
ment of NLSQl and NLSQ2 received considerable attention; had this not been

the case, then our testing would have uncovered more drastic differences.
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SUMMARY QF
NERCB N
1 5
1 5
2 5
2 E
3 5
3 5
4 2
4 2
4 2
g 3
5 3
5 3
6 4
6 4
B 1
7 2
7 2
7 2
8 3
8 3
8 3
9 4
9 4
9 4
10 3
10 3
10 3
11 6
11 6
11 6
11 9
11 9
11 9
11 12
1112
1112
12 3
13 2
14 4
14 4
14 4
15 1
15 1
15 1
15 8
15 9
15 10
16 10
16 10
16 10
16 30
16 40
17 5
18 1

54 CALLS TC NLSQ1
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- e b b
- ntn

- md A
OO

Wwwwwwwww
b e ek b ol md ) e b

- d
el

N
[N e

Table 4

NFEV
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NJEV

CEUENDNDNDNDDDN

INFO FINAL L2 NORM

b ad o ) ad mmd wd ad b b md d cd md —d b d el b ad d b D d md md ed wd (D) wd ed ad ad el ad cd aed d d ol = md ol e oh e o e add ed D wd el i

0.2236068D 01
0.6708204D 01
0.1463850D 01
0.3482630D 01
0.1909727D 01
0.3691729D 01
0.0

0.0

0.1394700D-15
0.9195638D-32
0.1197349D-34
0.7062250D-29
0.95234438D-35
0.9545825p~31)
0.1429468D=32
0.6998875D 01
0.6998875D 01
0.6998875D 01
0.9063596D-01
0.4174769D 01
0.4174769D 01
0.1753584D0-01
0.32052190-01
0.1753584D-01
0.9377945D 01
0.7156159D 03
0.9377945D 01
0.4782959D-01
0.4782959Dp=-01
0.4782959D-01
0.1183115n-02
0.1183115D-02
0.1183115D=02
0.2173104D-04
0.2173104D-04
0.2173104D-04
0.7211110D-16
0.1115178D 02
0.2929543D 03
0.2929543D 03
0.2929543D 03
0.1886238D 01
0.1884248D 01
0.1884248p 01
0.5930324D-01
0.3304872D-15
0.8064710D-01
0.8987408D=15
0.1708998D-14
0.5623502D-15
0.2170133D-14
0.1254229D~12
0.7392493D-02
0.2003440D GO
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54 CALLS TC NLSQ2

NFEV

Table 5

NJEV

INFO FINAL L2 NORM

- ed e ad ad d ed b b omd b D D b ad e e od e e ed b oD b b ad nd evd b el e ah ed ed D e ed b o ood e (O b b b ad e oD e b ) b ad

0.2236068D 01
0.6708204D 01
0.1463850D 01
0.3482630D 01
0.1909727D 01
0.3691729D 01
.0

-0
0

[N e} e

0.3731651D-22
0.2734634D-17
0.4494176D 03
0.7212634D=-12
0.1126973D-11
0.1760897D-11
0.6998875D 01
0.6998875D 01
0.6998875D 01
0.9063596D-01
0.4174769D 01
0.4174769D 01
0.1753584D-01
0.3205219D-01
0.1753584D-01
0.9377945D 01
0.3765455D 05
0.6237599D 05
0.4782959D-01
0.4782959D-01
0.4782959D-01
0.1183115D-02
0.1183115D-02

0.1183115D-02 .

0.2173104D-04
0.2173104D-04
0,2173104D-04
0.1804112D-15
0.1115178D 02
0.2929543D 03
0.2929543D 03
0.2929543D 03
0.1886238D 01
0.1884248D 01
0.1884248D 01
0.5930324D-01
0.1168522D-07
0.8064710D-01

- 0.1606452D-12

0.3501853D-14
0.4630529D-10
0.3021128D-10
0.1000000D 01
0.7392493D0-02
0.2003440D 00

. 33
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5. Testing II

The test functions defined in Section 3 represent a basic set; in order
to further test optimization software, it is desirable to modify this basic
set to yield related problems. ' For example, consider the nonlinear least
squares problem defined by a function F which is related to a function F from

the basic set by the change of scale

%(x) = aF(Zx)

(5.1)
=714

"o

0 0
where a is a positive scalar and z is a diagonal matrix with positive entries.

A very desirable attribute of an optimization algorithm is scale
invariance. This requires that for the above problems the algorithm should
generate iterates which satisfy

~ _l'
x =L %, k>0.

If an algorithm is scale invariant, it need not perform well on a problem;
however, its performance will not change with the scaling of the problem. On
the other hand, the performance of a scale dependent algorithm usually

deteriorates when it is applied to a badly scaled function F.

For unconstrained minimization, the change of scale analogous to (5.1)

is
E(x) - af(Zx) .

If f comes from our basic set, the minimum of f is still nonnegative, so it

may also be worthwhile to choose B so that
£(x) = af(Jx) + 8

has a negative minimum. For nonlinear equations, it is interesting to consider

the more general change of scale
(5.2) F(x) = [;F(],%)

where both zl and 22 are diagonal matrices with positive entries.
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It is very easy to arrange the above tests by suitable modifications of

the interface function FCN. For example, for (5.1) the body of FCN would be

DO J=1,N
Z(J) = SIGMA(J)*X(J)

IF  IFLAG = 1
CALL SSQFCN(M,N,Z,FVEC,NPROB)
DO I =1,M.

_|_ FVEC(I) = ALPHA*FVEC(I)

IF IFLAG = 2 '

CALL SSQJAC(M,N,Z,FJAC,LDFJAC,NPROB)

DO~ J = 1,N

| DO I=1,M

FJAC(I,J) = ALPHA*FJAC(I,J)*SIGMA(J)

SR

In the above program outline, we assume that FCN has assigned storage space
to the one~-dimensional arrays Z and SIGMA. The elements of SIGMA can either
be generated once and passed to FCN via COMMON, or they can be generated each

“time FCN is called. We have found that setting

(5.3) SIGMA(J) = 10 ** [5(2 '“'l)]
(n-1)
(if n = 1 no scaling is performed) is adequate for investigating the scaling

"~ properties of algorithms.

To illustrate the type of results that can be obtained, consider two sub-
routines for the solution of systems of nonlinear equations, NEQl and NEQ2.
As in Section 4, we have selected these two subroutines (with names changed)

from optimization libraries.

We first ran these algorithms with the standard starting points; the re-
sults are shown in Tables 6 and 7. It is not our intention to compare these

results very carefully, but the following points are worthy of mention:

(a) NEQ2 fails on problem 6 with n = 9 and quits near the solution of problem

2, while NEQl succeeds on both problems.

(b) Problem 7 with n = 8 is a system of nonlinear equations with no solution,

and thus both algorithms fail.

(c) NEQ2 quits near the solution of problem 8 with n = 40, while NEQl finds a
point that minimizes the sum of squares which is not a solution to the

system of nonlinear equations.
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Table 6: SUMMARY OF
NEROB N
1 2
"2 4.
3 2
4 4
5 3
6 6
6 9
7 g
7 6
7 7
7 8
7 9
8 10
8 30
0 40
9 10
10 1
10 10
11 10
12 10
13 10
14 10
Table 7: SUMMARY OF
NERCB N
1 2
2 4
3 2
4 4
5 3
6 6
6 9
7 5
7 6
7 7
7 8
7 9
8 10
8 30
8 40
9 10
10 1
10 10
1 10
12 10
13 10
14 10

22 CALLS TC NEQ1

NFEV

24
32
182
9y
27
95
135
16
28
23
114
52
31
1M
102
15
6
15
4a
55
23
33

INFO

e ed D e ad ad a3 D e ad A O D ed d ) ed D D D e e

FINAL L2 NORM

0.1051242D-11

.£279897D-10
0.1151521D-09
0.3993570D-10
0.2753458D-12
0.9830624D-10
0.1307264D-10
0.2630178D-10
0.1470389D-12
0.3074985D0-10
0.7483098D-01
0.6368168D-11
0.9C49180D-14
0.10694541D=-11
0.1000000D 01
0.1697678D-10
0.8548717D-13
0.5422021D-10
0.9272253p-10
C.1722142D-11
0.7€22863D-10
C.8251833D-10

22 CALLS TC NEQ2

NFEV

24
8¢S
8¢9
33
34
42
600
16
35
28
139
34
29
184
451
33
6
16
42
69
25
34

INFO

e b e ad ed O D C DO e O

FINAL 12 NORHM

0.0

0.3879041D-05
0.3630099D-10
0.31476C9D-11
0.1238056D-10
0.1118730D-10
0.2094271D 00
0.1981472D-12
0.7459022D-10
0.2546C15D-11
0.5933494D-01
0.46942950-1C
0.1763058D-10
0.2126396D=12
0.2813878D-04
0.8672105D-10
0.8548717D-13
0.3420128D-11
0.3280180D-10
0.8435982D-13
0.5306915D-11
0.7919650D-10
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These results seem to favor NEQl, but they are far from conclusive.

We next ran these algﬁrithms on the scaled problem (5.2) where 21 is the
identity matrix and 22 is chosen by (5.3); the results are shown in Tables 8
and 9. It is now clear that NEQl is much less susceptible to changes in
scale than NEQ2 and is thus the superior routine. We might add that the tests

on the full set of starting points do not change this conclusion.

To close this section we note that the routines NLSQl and NLSQ2 compared
in Section 4 are both invariant with respect to scale changes, -and thus the

tests of this section would not affect their relative performance.
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Table 8:

Table 9:

SUMMARY OF
NERCB N
1 2
2 4
3 2
4 u
5. 3
6 6
6 9
7 g
7 6
7 7
7 8
7 9
8 10
8 30
8 40
9 10
1C 1
10 1C
11 10
12 10
13 10
14 10
SUMMARY OF
NPROB N
1 2.
2 4
3 2
4 4
5 3
6 6
6 9
7 5
7 6
7 7
7 8
7 9
8 10
8 30
8 40
9 10
10 1
10 10
11 10
12 10
13 10

14 10

22 CALLIS TC NEQ1

NFEV

24
32
29
148
45
41
57
22
29
30
55
43
33
101
204
15
6
16
31
31
23
29

INFO

- et DO o e D D OOOO A ) e dd et a0

FINAL L2 NORM

0.2779025D-14
0.5050454D=10
0.1014940D-03
0.2333514D-10
0.5030085D-14
0.7532181D-12
0.8618547D-12
0.8699149D-10 .
0.2819654D~11
0.2639084D-08
0.1495160D 00
0.1416533D 00
0.9882763D 00
0.8347604D 02
0.1000000D 01
0.3535204D-10
0.8548717D-13
0.2355356D-12
0.8411753D-01
0.2240213D 07
0.4465230D-08
0.4091723D-06

22 CALLS TC NEQ2

NFEV

39
55
37
56 .
12
114
107
S4
61
71
72
77
80
180
274
66
6
66
86
53
129
89

INFQ

[eReoNoNoNeYoleNoNeoRoeNoNoNoloNoNeoNoNoNoNa)

FINAL L2 NORM

0.197726G6D 01
0.8848524D 01
0.9997400D 00
0.6190943D Ou
0.4975108D 01
0.6368151D 01
0.2261702D 02
0.2015743D 00
0.1675853D 00
0.2078739D 00
0.139%835p 00
0.1493451D 00
0.1142024D 01
0.1094029D 01
0.1118047D 01
0.3517726D-01
0.8548717D-13
0.2495601D 00
0.6825777D-01
0.3289782Dp 01
0.3500787D 01
0.1675228D 02
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Basic Subroutines

SUBROUTINE INITPT(N,X,NPROB,FACTOR)
INTEGER N,NPROB .
DOUBLE PRECISION FACTOR

DOUBLE PRECISION X(N)
L EETEEELE L

SUBROUTINE INITPT
THIS SUBKOUTINE SPECIFIES THE STANDARD STARTING POINTS FOR
THE FUNCTIONS DEPINED BY SUBROUTINES COMFCN AND VECFCN. THE
SUBROUTINE RETURNS IN X A MULTIPLE (FPACTOR) OF THE STANDARD
STARTING PQINT. FOR THE SIXTH FUNCTION THE STANDARD STARTING
POINT IS 2ERO, SC IN THIS CASE, IF PACTOR IS NOT UNITY, THEN
THE SUBRCUTINE RETURNS THE VECTOR X£(J) = FACTOR, J=1,...,N.
THE SUBROUTINE STATEMENT IS
SUBPOUTINE INITPT(N,X,NPROB,FACTOR)
WHERE
¥ IS A PCSITIVE INTEGER VARIABLE.
X IS A LINEAR ARRAY QF LENGTH N. ON QNTPAOT Y CONTATNS THE
STANDARD STARTING PCINT FOR PROBLEM NPRUB WULTIPLIED BY
FACTOR.

NPRGB IS A POSITIVE INTEGPR VAKIABLE WHICH DEFINES THE
NUMBEPR OF THE PKOBLEM. NPROB MUST NOT ZXCEED 14.

FACTOR SPECIFIES THE MOUOLTIPLE OF THE STANDARD STARTING

POINT. IFf FACTOR IS UNITY, NO MULTIPLICATION IS PERFORMED.

YINPACK. VERSION OF SEPTEMBER 1977. )
BORTOW S. GARBOW, KENNETH E. HILLSTROM, JOEKGE J. MCKE

232 2 2+ £ 3 73

INTEGER IVAR,J

DOUBLEZ PRECISICN C1,H,HALF,ONE,THREE,TJ,ZERO

DOUBLEZ PRECISION DFLOAT

DATA ZERO,HALF,ONE,THREE,C1 /3.D0,5.D-1,1.D00,3.D0,1.2D0/
DFLOAT (LVAK) = IVAR

SELECTICON CF INITIAL POINT.

G0 TO (100,200,300,400,500,6C0,700,800,900,1000,
1100, 1200,13500,1400) ,¥PROB

~ ROSENBROCK FUNCTION.

100

200

CONTINUE

X(1) = =c1
£(2) = ONE
GO TO 1500

POWELL SINGULAR FUNCTION.

CONTINUE
£(1) = THREE

Go00o010
00000020
00000030
0c000040
00090050
00090060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
02000160
00000170
03000180
00000190
0300C200
6G000210
2000220
00000230
NNANza0
Q0000250
92000260
00000270
00000280
J0000290
03000300
03000310
02000320
00000330
03000340
00000350
02000360
00000370
00000330
02000390
06000400
00000410
02000420
00000430
03000440
02000450
02000460
0GC00470
o0000480
02000490
V0006500
souUus510
00000520
42000530
00000540
00000550
00000560
00000570
00000580
03090590



aaan

300

aaaO

nan

aano

aan

Nnan
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400

€00

510

700

710

800

810

900
1000

Basic Subroutines

-ONE

1(2) =

£(3) = ZERC

X (4) = ONE. .
GO TO 1500

PCWELL BADLY SCALED FUNCTION.

CONTINUE .
L{1) = ZERO
X(2) = ONE

G0 TO 1500

WCCD FUNCTION..

CONTINUE
£(1) = -THFEE
X(2) = -ONE
X(3) = -THEREF
X (4) = -ONE
GO TO 1500

HELICAL VALLEY FUNCTION.

CONTINUE
£(1). = -ONE
X (2) ZERO
£(3) ZERG
GO TO 1500

WATSCN FUNCTION.

CCNTINCE

po 610 J =1, N
X(J) = ZERO
CCNTIINUGE

50 TO 1590

CHEBYQUAD FUNCTION.

CONTINUE
H = ONE/DFLOAT (N+1)
po 7100J = 1, N
% (J) = DFLOAT (J) *H
CONTINUE
GO TO 1500

7
BROWN ALMOST-LINEAE FUNCTION.

CONTINUE

po 810 J =1, ¥
X (J) = HALF
CONTINUE

GC TO 1500

DISCRETE BOUNDARY VALUE AND INTEGRAL EQUATION PUNCTIONS.

CONTINUE
CONTINUE
H = ONE/DPLOAT (N+1)

00000600
00000610
00600620
00000630
00000640
00000650
0C000660
00000670
03000680
00000690

- 00000700

00000710
0000720
00000730
€C0000740
00000750
00000769
02000770
032000780
00000730
00000800
00000810
00000820
00000830
Co000840
00000850
00000860
00000870
00000880
00000890
00000300
000060910
00000920
G2000930
00000940
03000950
02000960

00000970
06000980

00090990
9001000
00001010
000031020
30001030

00001040

00001050
00001060

00001070

00001080
00001090
00001100
00001110
00001120
02001130
00001140
00001150
02001160
02001170
00001180

43
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1010

anaa

1100

1110

nanaoa

1200

1219

a0

13C0
1400

141C

[s e KR!

1500

1510

1520

1530
1540

0O

Basic Subroutines

po 1010 0 =1, ¥
TJ = DFLOAT (J) *H
X(J) = TJ*(TJ - ONE)
CONTINUE

GO TO 1500

TRIGONOMETRIC FUNCTION.

CONTINUE

H = ONE/DFLOAT (N)

DO 1110 J = 1, N
X(J) = H
CONTINUE

50 TO 1500

VARIABLY DINENSIGONED FUNCTION.

CONTINUE

4 = CNE/DFLOAT(N)

DO 1210J = 1, N
£(J) = CNE - DFLOAT (1) *R
CCNTIVUE

G0 TC 1500

BRCYDEN TRIDIAGONAL AND BANDéD FONCTIONS.

CONTINUE

CONTINUE

DO 1410 J = 1, ¥
X(J) = -ONE
CONTINUE

COMPUTE MULTIPLE OF LNITIAL POINT.

CONTINUE

IF (FACTGR .EQ. ONE) GO TO 1540

IF (NPROB .EQ. 6) GO TO 1520

po 181C J = 1, N
X{J) = FACTOR*X(J)
CONTINUE

30 TO 1540

CONTINUE

po 1%30 J = i, A
£(J) = FACTIOQR
CONTINUE

CONTINUE

RETUPN

LAST CARD OF SUBROUTINE INITPT.

END

00001190
00001200
00001210
02001220
00001230
00001240
02001250
00001260
00001270
00001280
00001290
00001300
00001310
00001320
02001330
00001340
G0001350
02001360
42001370
00601380
00031390
00001460
00001410
00001420
03001430
00021440
00001450
03001460
00601470
00001480
00001490
00001500
00001510
00001520
02001530
00001540
000601550
00001560
00001570
00001580
00001390
90001600
00001610
00001620
02001630
02001640
0C001650
00001660
30001670
30001680
U0C01650
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SUBROUTINE VECFCN(N,X,FVEC,NPROB)
INTEGER N,NPROE

DCUBLE PRECISION X(N),FVEC(N)
e e o o ok 2R K Rk '

SUBROUTINE VECEFCN

THIS SUBROUTINE DEFINES FOURTEEN TEST FOUNCTIONS. THE PIRST
FIVE TEST FUNCTICNS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY,
WHILE THE EEMAINING TEST FINCTIONS ARE OF VARIABLE DIMENSION

¥ FOR ANY ¥ GREATER THAN OR EQUAL TO 1 (PROBLENM 6 IS AN
ZXCEPTION TO THIS, SINCE IT DOES NOT ALLOW N = 1).

THE SUBROUTINE STATEMENT IS
SUBROUTINE VECFCN(N,X,FVEC,NPROB)
WHERE
¥ IS A PCSITIVE INTEGER VARIABL31
X IS 2 LINEAR ARRAY OF LEN3TH N.

FYEC IS A LINEAR ARRAY OF LENGTH N. ON QUTPUT FVEC
CONTAINS THE NPROB FGNCTION VECTOR EVALUATED AT X.

NPROB IS A POSITIVZ INTEGER VARIABLE WHICH JDEFINES THE
NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 14,

SUBPPOGRAMS  REQUIRED

FORTRAN-SOPPLIZD ... DATAN,DCOS,DEXP,DSIGN,DSIN,DSQRT,
MAX0,4INO

MINFACK. VERSION OF DECEMBER 1977.
3URTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MOKRE

SEEA AR

INTEGER I,TEV,IVAR,J,K,K1,K2,KP1,4L,40

DOUBLE PRECISION C1,C2,C3,C4,CS5,C6,C7,C8,C9,EIGHT,FPIVE,H,
1 CNE,PROD,SUM,SUMT,SUM2,TEMP,TEMP1,TENP2,TEN,THREE,
2 -11,7J,TX,TPI,TWC,ZERO

DOUBLE PRECISION DFLOAT

DATA ZERO,ONE,TWO,THREE,FIVE,EIGHT,TEN

1 ,/0.00,1.00,2.00,3.00,5.00,8.00,1.D01/
DATA C1,C2,C3,CH4, CS C6 C7 C8 c9
1 /1.D4,1. ooo1no 2. 02 2. 0291,1 98Dp1,1.8D02,2.5D0-1,5.D0-1, 3.901/

DFLOAT(IVAR) = IVAR
PROBLEM SELECTOR.

G0 TO (190,200,300,400,500,600,700,800,900, 1000,
1 1100, 1200, 1300 1“00),&?308

ROSENBROCK FUNCTION.

100 CONTINUE

PVEC (1) = ONE - X(1)
FVEC(2) = TEN*(X(2) - X(1)*=*2)

00000010
00030020
00000030
00000040
00000050
C0000060
00000070
00000080
00000090
00000100
00000110
00000120
93C00130
00000140
00000150
32000160
00000170
G00920180
00030190
00000200
000900210
00000220
00000230
30000240
0000250
00000260
00000270
00000280
00000290
02030300

. 00000310

03000320
00000330
02000340
02000350
00000360
G30Q0370
02000380
02900390
220900400
03000410
00Cco0u420
00000430
03000440
00000450
0o000u460
00000470
0d000u480
00000490
00000500
G00G0510
00000520
00000530
00000540
0300G550
00000560
00000570
03000580
Q0000590
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GO TO 1500 - 02000600

o] 00000610
o POWELL SINGULAR FONCTION. 00000620
o] ¢000C630
200 CONTINUE 00000640
PVEC(1) = X (1) ¢ TEN*X(2) 00006650
FVEC(2) = DSQRT(PIVE) *(X(3) - X(4)) C0000660
FVEC(3) = (X(2) - TWO%X(3))**2 07000670

FVEC (4) = DSQRT (TEN) * (X(1) - X (4)) **2 00000680

GO TO 1500 00000690

c : 00000700
c POWELL BADLY SCALED FUNCTION. 00000710
o 00G20720
300 CONTINGE 00000730
FVEC (1) = C1*X(1)*X(2) - ONE 00000740
FVEC(2) = DEXP(-X(1)) + DEXP(-X(2)) - 00000750

GO TO 1500 00000760

(o4 00000770
c W0OD PUNCTION. 03000789
C - 00000790
400 CONTINUE 04090800
TEMP1 = X(2) = X(1)**2 00000810

TEMP2 = X(4) = X(3)**2 00000820

PVEC (1) = =-C3%X (1) *TEMP1 - (ONE - X (1)) $uco0830
FYEC(2) = C3*TEMP1 + Cu*(X(2) - ONE) + CS5#*(X(4) - ONE) 30C00840
PYEC(3) = =-C6*X(3)*TEMP2 ~ (ONE - X(3)) 00000559
FPVEC(4) = CH*TEMPZ + CUu*(X(4) - ONE) + CS*(X(2) - ONE) 00060860

G0 TO 1500 0C000870

c $0000880
c HELICAL VALLEY FUNCTION. €0000850
c 02600909
500 CONTINUE 036009190
TPI = EIGHT*DATAN (ONE) 30090920

TEMP1 = DSIGN(C7,X(2)) 93000930

IF (X(1) .GT. ZERO) TEMP1 = DATAN(X(2)/X(1))/TPI 20000940

IP (X(1) .LT. ZERO) TEMP1 = DATAN(X (2) /X (1))/TPI + C8 03000950

TEMP2 = DSQRT (X (1) *%24+X(2) **2) 0000G960
FVEC(1) = TEN#*(X(3) =~ TEN*TEMP1) 03000970

FVEC (2) = TEN* (TEMP2 - ONE) : 02020980
FYEC(3) = X(3) 20003990

GO TO 1500 00601900

c 00001010
c WATSON FUNCTION. 00601020
c 00601030
600 CONTINUE 00001040
DO 610 K = 1, N 00001050
FVEC(K) = ZEKO 00001060

€10 CONTINUE 00001070
Do 650 I = 1, 29 02001080

TI = DFLOAT (I)/C9 00001090

SUM1 = ZERO 00001100

TEMP = ONE 0oC01110

DO 6203 = 2, N 0NG¢N1120

SUM1 = SUAT + DFLOAT (J-1) *TEMP*X (J) 00001130

TEMP = TI®TENP 00001140

620 CONTINUE 02001150
SUM2 = ZERO 00001160

TEMP = ONE 60001170

DO 630 J = 1, N 00001180

Basic Subroutines
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aan

naon

630

640
650

700

710

720
730

740

800

810

820

suM2

CONTINUE

Basic Subroutines

= SUN2 + TENP*X (J)
TEMP = TI*TENP

TEMP1 = sOH1 - SUHZ*‘Z - ONE
TEMP2 = TWO*TI*SUN2

TEMP = ONE/TI
DO 640 K = 1, N

PVEC(K) = FVEC(K) + TEMP*(DFLOAT (K-1)
TEMP = TI*TZH¥P

CONTINUE
CONTINUE

TEMP = X(2) ~ X(1)**2 - ONE
FVEC(1) = EVEC(1) ¢ X(1)*(ONE - TWO*TEMP)

FVEC (2) = FVEC(2) +
GO TO 1500

CHEBYQUAD FUNCTION.

CONTINUE

po 710 Kk = 1, N
FVEC(K) = ZERO

. CONTINUE

Do 730 3 = 1, N
TEMP1 = ONE
TEMP2 = TWO*X(J)

TEMP = TWNO*TENP2
po 7201 =1, N

TEMP

- ONE

FVEC(I) = FVEC(I) +
TI = TEMP*TEMP2 - TEMP1

TEMP1 = TEMP2
TENP2 = TI
CONTINUE
CONTINUE
TK = ONE/DFLOAT(N)
IEV = -1
DO 74C K = 1, N
FVEC(K) =
IF (IEV .GT. 0)
IEV = =IEV
CONTINUE
30 TO 1500

TR*FVEC (K)
FVEC(K) = FVEC(K) + ONE/(DFLOAT(K) **2 - GNE)

TEMP2

BROWN ALMOST-LINEAR FUNCTION.

CONTINOE ‘
SUM = -DFIOAT(N+1)
PROD = GONE

Do 810 J = 1, N
SUM = SUM + X(J)
PEOD = X (J) *PROD
CONTINUE

DO 820 K = 1, ¥
FVEC(K) = X(K) +
CONTINUE

FVEC(N) = PROD -~ ONE

GG TO 1500

soy

DISCEETE BOUNDARY VALUE FUNCTION.

- TEMP2) *TEMP1

00001190
00001200
00001210

00001220

00001230
00001240
03001250
03001260
¢J2001z270
00001280
2001290
30001300
€G001310
03001320
00001330
00001340
03031350
02001360
03001370
00001380
920001390
03G01400
00001410
02001420
03001430
03001440
032001450
03001462
00601470
03001480
03001490
92001500
02001510
00001520
20031530
V3001540
03C01550
02001560
22091570
00001580
220901590
00001600
20001610
00001620
v)001630
00001640
20001650
00001660
22001670
00001680
00001690
00001700
06001710
G2001720
23601730
02001740
020001750
00001760
00001770
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1000
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1020
1030

1040
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1100
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aaa

120C

1210

Basic Subroutines

CONTINOE
H = ONE/DFLOAT (N+1)
DO 910 K = 1, N :
TEMP = (X(K) + DFLOAT(K)*H + ONE) *=3
TEMP1 = ZERO
IF (K .NE. 1) TEMPY = X(X-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X (K+1)

PVEC(K) = TWO*X(K) - TEMP1 - TENP2 + TEMP*H*%*2/TW0O

CONTINUE.
GO TO 1500

DISCRETE INTEGRAL EQUATION FUNCTION.

CONTINUE
H = ONE/DFLOAT (N+1)
DO 1040 X = 1, N
TK = DFLOAT (K) *H
3SUM1 = ZERO
DO 1010 J = 1, K
TJ = DFLOQAT (J) *H
TEMP = (X(J) +* TJ + ONE) **3
SUN1 = SUY1 + TJI*TEMP
CONTIKUE
- SUM2 = ZERO
KP1 = K + 1
IF (F .LT. KP1) GO TO 103D
DO 1020 J = KpP1, N
TJ = DFLCAT(J) *H
TEMP = (X(J) + TJ + ONE) **3
SUM2 = SUM2 + (ONE - TJ)*TENP

CONTINUE
CONTINOE
FPVEC(K) = X (K) + H*((ONE - TK)*SUM1 + TK*SUMU2)/TWO
CONTINUE
30 T0 1500

TRIGONOMETRIC FUNCTIOW.

CONTINUE

SUM = ZERO

DO 1110 3 = 1, ¥
FVEC(J) = DCOS(X(J))
SUM = SUM + EVEC(J)
CONTINUE

DO 1120 K = 1, ¥

FVYEC(K) = DFLOAT (¥+K) - DSIN(X(K)) - suu - DFLOAT (K) *FVEC (K)

CONTINUE
GO TO 1500

TARIABLY DIMENSIGNED FONCTION.

CONTINUE

SOM = ZERO

Do 1210 J = 1, N .
SUM = SUB + DFLOAT (J)*(X(J) =~ ONE)
CONTINUE

TEMP = SUM* (ONE + TRO*SUN¥*2)

DO 1220 kR = 1, N

00001780
0C0017%0
00001800
00001810
30001820
52001850
03001840
00001850
J0001860
0coo01870
00001880
0001890
25001900
000091910
00091920
02001930
00001340
00001950
90001960
03001970
00001960
00801990
03002000
Jo0uv2vity
00092020
¢0002330
00002040
30002050
00602060
00002970
00002080
gco0n2090
03002100
00032110
gd002120
00001130
03002140
00002150
0002160
v2040217¢0
00002180
05032190
00002200
02002210
30002220
gLuo02230
000032240
20002250
00002260
60002270
000022890
V00092290
00002300
00002310
00002320
00602330
00002340
00002350
02002360
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PVEC(K) = X(K) - ONE + DPLOAT (K) *TENP
CONTINUE
GO TO. 1500

BROYDEN TRIDIAGONAL FUNCTION.

CONTINUE -

DO 1310 K = 1, N
TEMP = (THREE - TWO*X(K)) *X (K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1
TEMP2 = ZERO
IF (K .NE. N) TEMPZ = X (K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINOE :

G0 TO 1500

X (R~ 1)

BROYDEN BANDED FUNCTION.

CONTINUE
4L = 5
Mg = 1

DO 1420 K = 1, N
K1 = MAXO(1,K-ML)
K2 = MINO (K+MU,N)
TEMP = ZERO
DO 1410 J = K1, K2
IF (J .EQ. K) GO TO 1419
TEMP = TEMP + X (J)*(ONE + X(J))
CONTINOE
FVEC(K) = X (K)*(TWO + FIVEXX(K)*%*2) + ONE - TE¥P
CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE VECFCi.

END

90002370
00002380
60002390
03002400
8J00z410
00002420
02002430
03002440
$3002450
00002460
030902470

62002480

00002450
02002500
00002510
60002520
90002530
00002540
00002550
00002560
02002570
00002580
00002590
00002600
03002610
0000262C
00002630
0002640
00002650
00002660
00002670
00002680
00002630
00002700
00002710
00002720
¥0002730
00002740
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Basic Subroutines

SUBROUTINE COMFCN(N,K,X,PCNK, NPROB)
INTEGER N,K,NPEROB
DOUBLE PRECISION FCNK

DOUBLE PRECISION X(N)
*EERRRE B KK

SUBRCUTINE COMFCN

THIS SUBROUTINE DEFINES FOURTEEN TEST FUNCTIONS. THE FIRST
FIVE TEST FUNCTIONS ARE OF DIMENSIONS 2,4,2,4,3, RESPECTIVELY,
WHILE THE REMAINING TEST FUNCTIONS ARE OF VARIABLE DIMENSION

N FOR ANY N GREATER THAN ORf EQUAL TO 1 (PROBLE4 6 IS AN
EXCEPTION TO THIS, SINCE IT DOES NOT ALLOW N = 1).

THE SUBROUTINE STATEMENT IS

1

SUBRKOUTINE COMFCN (N,X,X,FCNK, NPEOB)
WHERE

N IS A POSITIVE INTRGRR VARIABLE.

K IS A PGSITIVE INTEGER VARIABLE NOT GREATER THAN V.

X IS A LINEAR ARRAY OF LENGTH N.

FCNK IS5 A REAL VARIABLE WHICH ON OUTPUT CONTAINS THE VALUE OF

THE K-TH COMPONENT OF THE NPROB FUNCTION EVALUATED AT X.

NPROB IS A POSITIVE INTESER VARIABLE WHICH DEFINES THE
NOUMBER OF THE PROBLEM. NPZOB 4UST NOT EXCEED 14.

SUBPRCGRAMS EEQUIRED

FORTRAN-SUPPLIED ... DATAN,DCOS,DEXP,DSIGN,DSIN,DSQRT,
MAX),MINO,40D

MINPACK. VERSION OP SEPTEMBER 1977.
BUKTON S. GARBOW,KENNETH E. HILLSTROM, JORGE J. HORE

e 3 e 3¢ 0K e A MR K

INTEGER I,IVAR,J,K1,K2,KP1,4L,4U

DCUBLE PRECISION C1,¢2,C3,C4,C5,C6,C7,C8,C9,EIGHT,FIVE,H,
ONE,EROD,SUM,SUN1,SUN2, TENP, TEAP1, TEMP2, TEN, THREE,

2 T1,7J,TK,TPI,TWO,ZERO

1

1

1

‘DOUBLE PRECISION DFLOAT

DATA ZERO,ONE,TIWO,THREE,FIVE,EIGHT,TEN
,0.00,1.00,2.00,3.D00,5.00,8.00,1.D1/

paTA C1,C€2,C3,C4,C5,C06,C7,C6,C9

/1.00,1.000100,2.D2,2.0201,1.98D1,1.802,2.5D-1,5.D-1,2.9D1/.

DFLOAT(IVAR) = IVAR
PROBLEM SELECTOR.

G0 TG (100,200,300,400,500,600,700,800,900,1000,
1100,1200,1300, 1400) ,NPROB

ROSENBROCK FUNCTION.

00000010
00000020
00000030
00000040
60000050
00000060
00006070
00000080
00000090
00000100
2000110
00000120
00000130
00000140
00000150
02000160 .
00000170
00000180
02000190
00000200
0oU00210
00000220
00000230
00000240
0000250
00000260
02000270
00000280
02000290
00000300
00000310
00000320
00000330
63000340
00006350
00000360
02000370
00000380
2000390
00030400
00000410
03000420
0J0.0C430
00000440
00000450
00000460
€0000470
00000480
00000490
03000500
00000510
00000520
03000530
00000540
00000550
00000560
02000570
00000580
00000590
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Basic Subroutines

CCNTINUE

IF (K .EQ. 1) FCNR = ONE - X (1)

IF (K .EQ. 2) PCNK = TEN*(X(2) - X(1)**2)
30 TO 1500 _

POWELL SINGULAR FUNCTION.

CONTINUE

= X(4))

IF (K .EQ. 1) FCNK = X (1) + TEN*X(2)

IF (X .EQ. 2) PFCNK = DSQRT (PIVE)* (X (3)

IF (X .EQ. 3) PCNK = (&£(2) - TWO*X(3))*%2

IF (K .EQ. 4) FCNK = DSQRT (TEN)* (X (1) = X (4))**2
GO TO 1500 :

PCWELL BADLY SCALED FUNCTION.

CONTINUE

IF (K .EQ. 1) FCNK = C1*X(1)*X(2) - ONE

IF (K .EQ. 2) FCNK = DEXP(-X (1)) + DEXP(-X(2)) =~ C2

GG TO 1500

¥OOD FUNCTION.

CONTINUE

TEMP1 = X(2) - X(1)**2

TEMPZ = X (4) - X(3)**2

IF (K .EQ. 1) FCNK = =-C3#*X (1) *TEMP1 - (ONE =~ X(1)) :

IF (K .EQ. 2) PCNK = C3*TEMP1 + CU*(X(2) = ONE) + C5#%(X(4)
IF (K .EQ. 3) FCNK = =-C6*X(3)*TEMP2 - (ONE - ¥X(3))

IF (K .EQ. 4) FCNK = C6%TEMP2 + Cu*(X(4) - ONE) + CS5#*(X(2)
GC TO 1560

HELICAL YALLEY PUNCTION.

CONTINUE

IF (X .NE. 1) GO TO 510

TPI = ZIGHT*=DATAN(ONE)

TEMP' = DSIGW(C7,X(2))

IF (X(1) .GT. ZERQO) TEMP1 = DATAN(X(2)/X(1))/TPI

IF {(X(7) .LT. ZERO) TEMP1 = DATAN(X(2)/X(1))/TPI + C8
FCNK = TEN*(X(3) - TEN*TENP?) '

CONTINUE -
IF (K .EQ. 2) FCNK = TEN*(DSQRT(X(1)**2+X(2)**2) =~ ONE)
IF (¥ .EQ. 3) FCNK = X (3)

GO TO 1500

WATSON FUNCTION,.

CONTINUE
FCNK = ZERC
DO 630 I = 1, 29 '
TI = DFLOAT(I)/C9
SuM1 = ZERO
TEMP = GNE
DO 610 J =
SoM1 =
TEMP = TI*TEMP
CONTINUE
SUM2 = ZERO

2, N

SUM1 + DPLOAT (J-1) *TENP*X (J)

- ONE)

- ONE)

00000600
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000690
00000700

00000671C

00090720

00000730 -

03000740
06000750
03000760
00000770
00000780
03000790
00000800
€c0J00810
00000820
00000830
00000840
00G06850
05000860
00000870
00000880
00000890
0300€900
00006310
00000920
00000930
03000940
6000C950
00500960
00000970
00000980
00000990
600021000
00001010
00001020
00001030
00001040
00001050
00001060
00001070
000921080
00001090
00001100
00001110
2001120
00001130
00001140
00001150

00001160

03001170
0Goo1180
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Basic Subroutines

TEMP = ONE

DC 620 J = 1, N
SUM2 = SOM2 + TEMP*X (J)
TEMP = TI*TENP

CONTINUE
TEMP1 = SUM1T - SOM2#%*%2 - ONE
TENP2 = TWO*TI*SON¥2

FCNK = FCNK + TI**%(K-Z)*(DFLOAT{K-1) - TEMP2)*TEMP1

CONTINUE
TEMP = X(2) - X(1)*%*2 - ONE
IF (X .EQ. 1) FCNK = FCNK + X (1) *(GNE -~ TWO*TEMP)
IF (K .EQ. 2) FCNK = FCNK + TEMP °
30 TO 1500

CHEBYQUAD FUNCTION.

CONTINUE
508 = ZERO
D0 7300 =1, N
TEMP1 = ONE
TEME2 = TWO*X(J) - ONE

- TIMP = TWO*TENP2
IF (K +4LT. 2) GO TO 720 .
e TI0 L = 2, K
TI = TEMP*TEMPZ2 - TENMP1
TEMP1 = TEMP2
TEMP2 = TI
CONTINDGE
CCNTINUE _
SUM = SUM + TEMP2
CCNTINUE
PCNK = SUM/DFLOAT(N)

IF¥ (MOD(K,2) .EQ. 0) FCNK = PCNK ¢+ ONE/(DFLOAT (K) **. - ONE)

GO TO 1S40
BROWN ALMOST-LINEAR FUNCTION.

CONTINUE

IF (¥ .2Q. N) GO TO 820

SUN = -DFLCAT (N+1)

PU 310 J = 1, N
CSOR @ SUM ¥ X{J)
CONTINUE

PCNK = X(K) + SUM

GO TO 840

CONTINUE

PPOD = ONE

00 830 J = 1, N
PRCD = X (J) #PROD
CONTINUE

FCNK = PROD - ONE

CONTINTR

GO TO 1500

DISCRETE BOUNDARY VALUE FUNCTION.

CONTINUE
H = ONE/DFLOAT (N+1)
TEMP = (X(K) + DFLOAT (K) *H + ONE)**3

00001190,
00001200
3001210
00001220
00001230
00001240
00091250
00001260

00601270

00001280
035001290
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00091410Q
00001420
00001430
6001440
63001450
30001460
00001470
00001430
00001490
63001500
00001510
00001520
06001530
03001540
00001550
00001560
00601570
00001580
41001590
00001600
00001610
0001620
00001630
00001640
00001650
0001660
00001670
02001680
00001690
00001700
03001710
00001720
00001730
00001740
00001750
03001760
00001770
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TEMP1

ZERO

X (K-1)
TEMP2 = ZERO - .
IF (K .NE. N) TEMP2 = X(K+1)

PCNK = TWO*X(K) - TEMP1 - TEMP2 + TEMP*H**2/TWO

GO TO 1500
DISCRETE INTEGRAL EQUATION FONCTION.

CONTINUE

H = ONE/DELOAT (N+1)

TK = DFLOAT (K) *H

SUM1 = ZERC -

DO 1010 J = 1, K
TJ = DPLOAT (J) *H
TEMP = (X(J) + TJ + ONE)*%3
SOM1 = SUM1 + TJ*TEMNP
CONTINUE

SUM2 = ZERO

KP1 = K + 1

1020
10130

(0o

11090

1119

OGO

1200

121G

ana

1300

IF (N .LT. KP1) GO TO 1050

DO 1020 J = KP1, ¥
TS = DFLOAT(J) *H
TEMP = (X(J) + TJ + ONE)*=3
SUM2 = SUM2 + (ONE - TJ)*TENP
. CONTINUE -

CONTINUE

FCNK = X(K) + H*((ONE =- TK)=*SUM1 + TK*SUMZ) /TWO .

G0 TO 1500
TRIGONOMETRIC FUNCTION.

CONTINUE

SOM = ZERO

DO 1112 J = 1,
SUM = SUM + DCOS (X (J))
CONTINUE

FCNX = DFLCAT(N+¢K) - DSIN(X(XK)) - SUM ~ DFLOAT (K)*DCOS (X(K))

GC TC 1500
VARIABLY DIMENSIGNED FUNCTION.

CONTINUE

SUM = ZERO

DO 1210 J = 1, N :
STM = SUM + DFLOAT(J)y*(X(J) - ONE)
CONTINUE . .

TEMP = SUM*(ONE + TWO*SUN**2)

FCNK = X(K) - ONE ¢ DFLOAT (K) *TEMP

GO TO 1500

BRCYDEN TKIDIAGONAL FUNCTION.
CONTINUE

TEMP = (THREBE - TWO=*X(K)) *x(K)
TEMP1 = ZERO ’

IP (F-.NE. 1) TEMP1 = X(K=1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)

00001780
00001790
90001800
00001810
00001820
00001830
00001840
00001850
20001860
00001870
00001880
00001890
00001900
00601910
00001920
00001930
00001940
V0001950
060001960
0001970
00001980

00021990

00002000
00002010
00022020
00002030
60002040
00022050
00002060
0002070
00002080
00002090
00002100
00002110
00002120
00002130
00032140
00002150
03002160
00032170
00002180
00002190

00002200
00002210

06002220
02002230
00002240
00002250
03002260
00002270
00002280
00002290
00002300
00002310
00002320
03002330
00002340
000023590
03002360
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Basic Subroutines

FCNK = TEMP - TEMP1 - TWO*TEMP2 + ONE
30 TO 1500

BROYDEN BAMDED FUNCTION.

CONTINUE
4L = S
1y = 1
K1 = MAZO0(1,K-ML)

K2 = MINO(K+HU,N)
TEMP = 22RO
D0 1410 J = K1, K2
IF (J .EQ. K) GO TO 1419
TEAP = TEMP + X(J) *(ONE + X (J))
CONTINUE
PCNK = X (K)*(TWO + PIVE®Y (K)**2) + ONE - TEMP
CONTINOFE
RETURN

LAST CARD CF SUBRQUTINE COMFCN.

END

00002370
00002580
00002390
00002400
00002410
00002420
00002430
00002440
00002450
00002460
00002470
0d00z480
00002490
00€02500
00002510
03002520
00002530
06002540
00092550
03002560
00002576G
90003580
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SUBROUTINE INITPT (N, X,NPROB,FPACTOR) 00000010
INTEGER N,NPFROB 00000020
DOUBLE PRECISION PACTOR 00000030
DOUBLE PRECISION X(N) 00000040
2x 2 o ok 2 2 0 K kK 00090050
00000060

SUBROUTINE INITPT 03000070
00030080

THIS SUBROUTINE SPECIFIES THE STANDARD STARTING EOINTS FOR THE 00000090
FUNCTIONS DEFINED BY SUBROUTINE SSQFCN. THE SUBROUTINE RETURNS cJ2000100
IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINTI. FOR 00000110
THE 11TH FGNCTION THE STANDARD STARTING POINT IS ZERO, SO IN 00000120
THIS CASE, IF FACTOR IS NOT UNITY, THEN THE SUBROUTINE RETURNS 02000130
THE VECTOR X(J)'= FACTOR, J=1,...,N. ‘ ) 00000140
: 00000150

THE SUBROUTINE STATEMENT IS 00000160
63000170

SUBFOQUTINE INITPT(N,X,NPROB,FACTOR) 00000180
00000190

WHERE 00000200
002000210

N IS 4 POSITIVE INTEGER VARIABLE. 00000220
00000230

X IS A LINEAF ARRAY OF LENGTH N. ON OUTPUT X CONTAINS THE Go00C240
STANDARD STAETING POINT FOR PROBLEN NPROB MULTIPLIED BY 00000250
FACTOR. . ' 00000260
00000270

NPROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE 02000280
NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 138. 00000290
00000300

FACTOR SPECIFIES THE MULTIPLE 0P THE STANDARD STARTING 00006310
PCINT. IF FACTOR IS UNITY, NO MULTIPLICATION IS FERFORMED. 60000320
03000330

MINPACK. VERSION QF OCTOBER 1977. 00000340
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. M4OEE 02000350
: 00000360

% % g xp kW 03000370
IUTEGER 1IVAR,Jd 00000380
DOUBLE PRECISION ¢C1,C2,C3,C4,C5,C6,C7,C8,C9,C10, 00000390
1 ct1,c12,c13,¢c14,c15,¢16,C17,FIVE,H,HALF, 00000400
2 ONE,SEVEN,TEN,THREE,THENTY,THNTF,TWO,ZERO 02000410
OOUBLE PRECISION DFLOAT 00000420
DATA ZERO,HALF,ONE,TWO,THREE,PIVE,SEVEN,TEN, TWENTY,TWNTP 00000430
1 /0.5¢,5.0-1,1.00,2.00,3.D00,5.00,7.D00,1.D01,2.D1,2.5D1/ 03600440
DATA C1,C2,C3,C4,C5,C6,C7,C8,¢9,Cc10,C11,Cc12,C13,Cc14,C15,C16,C17 coG0Qu50
1 /1.2D0,2.5D-1,3.9D~-1,4.15D-1,2.D-2,4.D3,2.5D02,3.D~1,4.D-1, 00000u60
2 1.5p0,1.0~-2,1.300,6.5D0-1,7.0~1,6.D-1,4.5D0,5.5D0/ Gdo00470
DFLOAT(IVAR)‘= IVAR 00000480
: 03000490
SELECTION OF INITIAL POINT. 00090500
03000510

G¢C TO (100,200,300,400,500,600,700,800,900,1000,1100, 00000520
1 1200,1300,1400,1500,1600,1700,1800) ,NPROB 00000530
00000540

LINEAR FOUNCTION ~ FULL RANK OB RAMAK 1. 00000550
00600560

100 CCNTINOE 02000570
200 CONTINUE 00000580
300 CONTINUE 00000590
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Basic Subroutines

Do 310 J =1, N
X(J) = ONE
CONTINUE

GO TO 1900

ROSENBROCK FUNCTION.

CONTINUE

X(H = -C1
£(2) = ONE
GC TO0 1900

HELICAL VALLEY FUNCTION.

CONTINUE
X(1) = -ONE
X(2) = ZERO
ZERO
GC TO 1900

POWELL SINGULAR FUNCTION.

CUNTINUE
(N = THREE
X(2) = -ONE
X(3) = ZERG
L(4) = ONE
G0 TO 1900

FREUDENSTEIN AND ROTH FUNCTION.

CONTINUE
X(1) = HALF
X(2) = -T¥WO
GO TO 1930

BARD FUNCTION.

CONTINUE

(1) ONE
1{2) ONE
£(3) CNE
30 TG 1900

Wi

" KOWALIK AND OSBORNE FUNCTION.

900

1000

CCNTINUE
T(NH = c2
X(2) = ¢€3
X(3) = cu4
X(4) = c3
GO TO 1900

MEYER FUNCTION.

CONTINUE
(1} = C5
X(2) = C6

X(3) c?

00000660
00000610
00000620
00000630
60000640
00030650
00000660
00000670
00000680
00000690
02000700
00000710
00000720
03000730
00000740
00000750
00000760
00000770
00000780
00000790
03000800
00000810
QUHIVELY

L DEETY
00000840
00000850
00000860
00000870
00000880
00000890
02000900
00000910
00000920
00000930
00000540
03000950
G000C960
00000970
00000980
03000990
00001000
06001010
00001220
60001030
00001040
000901050
00001060
90001070
00001080
00001090
63001100
00001110
00031120
00001130
00001140
00001150
00001160
00001170
00001180
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Basic Subroutines

GC TO 1900
WNATSON FUNCTION.

CONTINUE
Do 1110 J = 1, ¥
X(J) = ZERO

CONTINUE
30 TO 1900

BOX 3-DIMENSIONAL FUNCTION.

CONTINUE.

£(1) = ZERC
X(2). = TEN
X(3) = TWENTY
GO TO 1900

JENNRKICH AND SAMPSON PUNCTION.

CONTINOUE

£(1) = C8
£(2) = c?
GO TO 1900

BROWN AND DENNIS FUNCTICN.

CONTINUE
X(1) = THNTF
X(2) = FIVE
£(3) = -FIVE
X(4) = -ONE
GO TO 1900

CHEBYQUAD FUNCTION.

CONTINUE
H = ONE/DFLOAT (N+1)
DO 1516 J = 1, ¥
X(J) = DFLOAT(J) *H
CONTINUE
GO TO 1900

SBROWN ALMCST-LINEAR PUNCTION.

CONTINUE

DO 1610 3 = 1, N
X(J) = HALF
CONTINUE

GO TO 1900

OSBOBENE 1 FUNCTION.

CONTINOE
X(1) = HALF
X(2) = c10
X(3) = -ONE
X(4) = C11

X(5) (oF]

100001190

00001200
00001210
00001220
00001230
00001240
40001250
02001260
00091270
00001280
93001290
00001300
00001310
00001320
02001330
00001340
00001350
00001360
00001370
02001380
00001390
00001400
00001410
00001420
00001430
00001440
00001450
00001460
00001470
00001480
00001490
02001500
00001510
00001520
00001530
00001540

. 00061550

00001560
00091570
06001580
00001590
20001600
00001610
00001620
00001630

20001640,

00001650
00001660
03001670
V0001680
00001690
030901700
00301710
00201720
03001730
00001740
02001750
00001760
03001770
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GO TO 1900

OSBORNE 2 PUNCTION.

CONTINUE
£(1) = c12

X(2) = C13

£(3) = c13

X(4) = C16

£(5) = C15

X(6) = THREE

€({7) = FIVE

X(8) = SEVEN

X(9) = TWC .
£(10) = C16

X(11) = c17

COMPUTE MULTIPLE 6? INITIAL POINT.

CCNTINHE
IF (ZACTOR .EQ. ONE) GO TO 150
IF (NPROB .EQ. 11) GO TO 1920
DC 1910 J = 1, ¥

X(J) = FACTOR*X(J)

CONTINUE
GO TO 1940
CONTINUZ
DO 1930 J = 1, N

£(J) = FACTOR

CONTINUE '
CONTINUE
RETURN

LAST CARD OP SUBROUTINE INITPT.

END

00001780

00001790

02001800
00031810
00001820
02001830
02001840
€J001850
0C001860
00001870
00001880
00601890
00001900
000091910
00001920
00001930
00031940
00001950
00601960
00001570

‘00001989

Cd0001990
2000240040
00002010
00092020
Jd0002930
00002040
00002050
00002060
30002070
50002080
00002090
60002100
00002110
00002120
00002130
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Basic Subroutines

SUBROUTINE SSQFCN(M,N,X,FVEC,NPROB)
INTEGEE 4,N,NPROB

DOUBLE PRECISION ZX(N),FVEC (¥)
ERREE AR ERR

SUBROUTINE SSQFCN

THIS SUBROUTINE DEFPINES THE FUNCTIONS OF EIGHTEEN NONLINEAR
LEAST SQUARES PRCBLEMS. THE ALLOWABLE VALUES OF (M,N) FOR
TUNCTIONS 1,2 AND 3 ARE VARIABLE BUT WITH M .GE. N.

FOR FUNCTICNS 4,5,6,7,8,9 AND 10 THEZ VALUES OF (M,N) AERE

(2,2) +(3,3), (4,4),(2,2),(15,3),(11,4) AND (16,3), RESPECTIVELY.
PONCTION 11 (WATSON) HAS 4 = 31 WIIH ¥ USOALLY 6 OR 9.
HOWEVER, ANY N, N = 2,...,31, IS PERMITTED.

FUNCTIONS 12,13 AND 14 HAVE N = 3,2 AND 4, RESPECTIVELY, BUT
ALLOW ANY M .GE. N, WITH THE USUAL CHOICES BEING 10,10 AND 20.
FUNCTION 15 (CHEBYQUAD) ALLOWS M AND N VARIABLE WITH 4% .GE. N.
FUNCTION 16 (BROWN) ALLOWS N VARIABLE WITH ¥ = N. R
POR FUNCTIGONS 17 AND 18, THE VALUES OF (34,N) ARE

(33,5) AND (65,11), RESPECTIVELTY.

THE SUBROUTINE STATEMENT IS
SUBROUTINE SSQFCN(Y¥,N,X,FVEC,NPROB)

AHERE .
M AND ¥ ARE POSITIVE INTEGER VARIABLES. N 40ST NOT EXCEED A.
X IS A LINEAR ARRAY OF LENGTH N.

FVEC IS A LINEAR ARRAY OF LENGTH 4. ON OUTPAOT FVEC
CONTAINS THE NPROB FUNCTION EVALUATED AT X.

NPROE_IS A POSITIVE INTEGER VARIABLE WHICH DEPINES THE
NUMBER OF THE PROBLEM. NPROEB MUST NOT EXCEED 18.

SUBPROGRAMS REQUIKRED
FORTRAN-SUPPLIED ... DATAN,DCOS,DEXP,DSIN,DSQRT,DSIGN

4INPACK. VERSION OF OCTOBER 1977.
BORTON S. GARBOW, KENNETH E. HILLSTROd, JORGE J. MORE

LR 2L 2 28 27

INTEGER I,IEV,IVAR,J,NM1

DCUBLE ?RBCISION C13,C14,C29,C45,DIV,DY, EIGHT,FPIVE,ONE,

1 PROD,SUM,S1,52,TENP,TEN,TI, THNP1,TuP2,TNP3, TMEY,
2 TPI,TWO,ZERO,2P2S,ZP5S
DOUBLE PRECISION V(11),T1(15),¥Y2(11),¥3(16),Y4(33),Y5(65)
DOUBLE PRECISICN DFLOAT
DATA 2BERO,2P25,ZPS5,0NE,TWO,FIVE,EIGHT,TEN,C13,C14,C29,C45

/0.D°,2.50"’1,5. D-1'1.D°'20D0'5.D0'8QD0'1.01'
1.3D1,1.4D1,2.9D1,4.5D1/

DATA V(1) ,V(2) ,7(3),V(#),V(S),V(6),V(T),V(8),V(9),V(10),V(11)
1 /4.000,2.0D0,1.000,5.D-1,2.5D-1,1.67D~-1,1,.25D-1,1.D-1,
2 8.33D-2,7.14D-2,6.25D-2/

DATA Y1(1),Y1(2),Y1(3),11(4),¥1(5) ,Y1(6),T1(7),Y1(8),

1 T1(9) ,XT1(10) , Y1 (11 ,¥1(12),Y1(13),¥1(14) ,Y1(15)

N —

00000010
00000020
00000030
00000040
00000050
00000060
00000070
60000080
0000090
03000100
00000110
03000120
02000130
00000140

- 02000150

30000160

00000170

03000180
00000190
00000200
00000210

- 03000220

00000230
00000240
00030250
0000260
00000270
20000289
00000290
00000300
00000310
03000320
00000330
0J000340
00000350
00000360
00000370
60006380
03000390
00000400
03000410
00000420
02000430
00000440
00000450
000004560
000G0u7¢
00Goous0
00000490
00C00500
@d000510
00000520
00000530
00000540
30000550
00000560
03000570
00000580
33000590

59
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Basic Subroutines

/1.40-1,1.8D-1,2.20-1,2.5D-1,2.9D0-1,3.2D-1,3.5D-1,3.9D-1,

3.70-1,5.80-1,7.3D-1,9.6D-1,1.34D0,2.10D0,4. 3900/
Y2(1 ,12(2) ,¥2(3) ,¥2(4) ,¥2(5) , Y2 (6),
Y2(7) ,12(8) ,¥2(9) ,¥2 (10) ,¥2 (11)
/1.957D-1,1.947D=1,1.7350-1,1.600D-1,8.44D-2,6. 27D-2,
4.56D-2,3.42D-2,3.23D-2,2.35D-2,2.46D-2/
¥3(1) ,¥3(2),¥3(3),¥3(4),Y3(3),¥3(6),13(7),¥3(8) ,¥3(9),
¥3(10) ,¥3(11),¥3(12),¥3(13) ,¥3(14) ,¥3(15),¢3(16)

/3.478D4,2.861D4,2.365D4,1.963D4,1.637D4,1.372D4,1.154D4,

9.744D3,8.261D3,7.03D3,6
3.307D3,2.872D3/

T4 (1) X4 (2) ,Y8(3) , T4 (4),Y8(5),YU(6),YU(T7),Y4(8) ,T4(9),
Y4(10) , YU (1) ,¥4(12) ,X4(13) ,YU(14) ,T4(15) ,¥4(16),T4(1T),
Y4 (18) , T4 (19),Y0(29) ,Y4(21),Y6(22),¥4(23),14 (26),74(25),
YU (26) , Y4 (27) ,Y4(28) ,¥4(29) , X4 (30) ,YU4(31) ,T4(32) ,74(33)

.005D03,5.147D3,4.427D3,3.82D3,

/8.44D-1,9,08D-1,9.32D0-1,9.360~-1,9.250-1,5.08D-1,8.81D=-1, .
6§.500-1,8.18D-1,7.84D-1,7.51D-1,7.18D~1,6.85D-1,6.58D-1,

6.28D-1,6.03D-1,5.80D~-1,5.58D-1,5.38D-1,5.220=1

5.06D~1,4.90D~1,4.78D~1,4.67D=1,4.57D=1,4.48D=1,4.38D-1,

4.310-1,4.24D=1,4.20D=1,4,14D-1,4.11D-1,4.06D~-1/ .

A YS(T),Y5(2),95(3),¥5(4),¥5(5) ,15(6),¥5(7),¥5(8) ,15(9),
Y5(10) ,¥5(11) ,¥5(12) ,¥5(13),¥5(14) ,¥Y5(15),¥5(16) ,¥S(17),
15(18) ,¥5(19) ,¥5(20) ,¥S(21),¥5(22) ,¥5(23) ,¥5(2%) ,15(25),
YS (26) ,¥5(27) ,¥5(28) ,¢5(29) ,T5(30) ,¥8(31),¥Y%(32),¥5(33),
YS (34) ,Y5(35),Y5(36) ,¥5(37),L5(38) ,¥5(39),Y5(u0) ,¥5(41),
¥YS5(42) ,Y5(43),¥5(44) ,¥S(45) ,¥5(5) ,Y5(47),15(48),¥5(u9),
¥5(50) ,¥5(51) ,¥5(52) ,¥5(53) ,¥5(54) ,¥5(55) ,¥5(56) ,¥5(57),
YS(58) ,¥5(59),¥5(60) ,¥5(61),¥5(62) ,15(63),Y5(64) ,¥5(65)
/1.366D00,1.191D0,1.112Dp0,1.013D0,9.91D-1,8.85D-1

8.310~1,8.47D-1,7.36D-1,7.25D-1,7.46D~-1,6.79D-1,6.08D-1,

6.550-1,6.160-1,6.06D-1,6.02D-1,6.260-1,6.51D~1,7.24D-1,
6.49D-1,6.49D-1,6.94D-1,6.44D-1,5.240-1,6.61D-1,6.12D~1,
5.58D-1,5.33D-1,4.95D-1,5.00D~-1,4.23D-1,3,95D-1,3.75D-1,

3.72p-1,3.91D-1,3.96D~1,4.05D=1,4.28D=1

,“.290-1'5.230-1'

5.62p-1,6.07D-1,6.53D-1,6.720-1,7.08D~-1,6.33D~1,6.68D~-1,
6.45D-1,6.32D-1,5.91D-1,5.590-1,5.97D~-1,6.25D~1,7.39D~1,
7.100-1,7.290-1,7.20D-1,6.360-1,5.81D-1,4.28D~1,2.92D-1,

TOMBOOW» OO IOV E W=

OFL

1.62D-1,9.80~2,
OAT(IVAR) = IVAR

S5.40=-2/

FUNCTION KOUTINE SELECTOR.

GO
1

LIN
CON

suM
DO

TEM
Do

GO

TO0 (100,200,300,400,500,600,700,800,900,1C00,1100,
1200, 1360,1409,1500,1600, 1700, 1800) ,¥PROB

EAR FONCTIION - FULL RANK.

TINUE
= ZERC
1M0J3=1, 8
SUM = SOM + X(J)
CONTINUE
P = TWO*SUM/DFLOAT(Y¥) + ONE
1201 =1, 18
FVEC(I) = -TENP
IF (I .LE. N) FVEC(I) =
CONTINUE
TC 1900

FVEC(I) + X(I)

00000600
02000610
00000620
00000630
00000640 .
00000650
00000660
00000670
00000680
00000690
00006730
00000710
00000720
0000730
00000740
00000750
00000760
20000770
00000780
00620790
00000800
06000810
00600820
00000830
00000840
00000850

. 00000860

000008790
00000880
00000830
02000900
03020910
03000920
0000930
00000940
00G00950
03000960
00000979
00000980
00C0C990
00001000
00601010
00001020
00001030
00001040
00001G50
0C001060
00001070
00001080
00001090
00001100
00001110
00091130
00001130
00001140
030931150
00001160
00001170
09001180
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Basic Subroutines

LINEAR FUNCTION - RANK 1.

CONTINUE

SgM = ZERO

DO 210 J = 1, W
SUM = SUM + DFLOAT (J) *X (J)
CONTINUE

DO 220 I = 1, H
FVEC(I) = DFLOAT (I)*SUY - ONE
CONTINUE

GO TO 1900

LINEAR PUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS.

CONTINOE

saM = ZERO

NH1 = N - 1

IP (N1 .LT. 2) GO TO 320

DO 310 J = 2, NM1
SUM = SUM + DFLGAT (J) *X (J)
CONTINUE

CONTINUZ

DO 330 I = 1, .
FVEC(I) = DFLOAT(I-1)*SUOM - ONE
CONTINUE

PYEC(M) = =-ONE

GO TO 1900

ROSENBROCK FUNCTION.

CONTINDZ : )

FVYEC(1) = TEN*(X(2) - X(1)*%2)
FVEC(2) = ONE - X(1)

GO TO 19300

HELICAL VALLEY FUNCTION.

CONTINUE
TFI = EIGHT*DATAN (ONE)
TMP1 = DSIGN(ZE25,X(2))

IP (X(1) .GT. ZERO) TMP1 = DATAN(X(2)/X(1))/TPIL
DATAN(X(2) /X (1)) /TPI + ZPS

IF (X(1) .LT. ZERO) THMP?
TME2 = DSQRT (X (1) **2+X (2) **2)

FVEC (1) = TEN*(X(3) ~- TEN*TNPT)
FVEC(2) = TEN* (TNP2 - ONE)
FVEC(3) = X (3)

GO TO 1900

EOWELL SINGULAR FUNCTION.

CONTINUE

FYEC(1) = X(1) + TEN*X(2)

PVEC(2) = DSQRT(FIVE)*(X(3) ~ X(¥))
FYEC(3) = (X(2) = TWO*X(3))*=*2
FYEC(4) = DSQRT (TEN) *(X (1) = X (4)) **2
GG TO 1900

FREUDENSTEIN AND ROTH FUNCTION.

00001190
00001200
00001210
00001220
00001230
00001240
00001250
00001260
00001270
00001280
00001290
00001300
00001310
00001320
00001330
03001340
00001350
00001360
00C01370
00001380
02001390
00001400
30001410

00001420°

00001430
45001440
00001450
00001460
00001470
20001480
00001490
00001500
00001510
00001520
00001530
00001540
00001550
00001550
00001570
00001580
00001590
0001600
00001610
00001620
00001630
00001640
00001650
00001660
02001670
60001680
60601690
00001700
00001710
00001720
00001730
00001740
00001750
00001760
00001770
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Basic Subroutines

CONTINUE

FVEC(1) = =C13 + X(1) + ((PIVE - X(2))*X(2) - TWO)*X(2)
FVEC(2) = =C29 + X(1) + ((ONE + X(2))*X(2) =~ C14)*%(2)
GO TO 1900 ,

BARD FUNCTION.

CONTINTJE

DO 810 I = 1, 15
TMP1 = DPLOAT(I)
TMP2 = DFLOAT (16-1)
THP3 = THP?Y

IF (I .GT. 8) THMP3 = THP2
FVEC(I) = Y1(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TNP3))
CCNTINUE

GC TO 1900

KOWALIK AND OSEOFNE PUNCTION.

CONTINUE

20 310 1 =1, 11
THPT = V(I)*(V(I) + X(2)) -
TUE2 = V(I) = (V(I) + X(3)) + X(¥)
TYLC(I) = ZI2(I) - X(1)+T4P1/THPZ
CONTINUE

GC TO 1900.

AEZYER FUNCTION.

CONTINCUE
Do 910
TEMP

=1, 18

FIVE*DPLUAT (I) + C45 + X(3)
THP1 = X(2) /TEMP
TMP2 = DEXP(TMP1)
FVEC(I) = X{(1)*TMP2 - Y3(I)
CONTINUE

GO TO 1900

wn uH

SATSON FUNCTION.

CONTINUE
DU 1130 I = 1, 29
DIV = DFLOAT(I)/C29

S1 = ZEEO
DX = ONE
DO 11109 = 2, ¥
S1 = S1 + DFLOAT (J-1) *DX*X (J)

DX = DIV#*DX

CONTINUE
52 = ZERC
DX = ONE

DO 1120 J = 1, N
S2 = S2 + DX*X(J)
. DX = DIV#*DX.
CONTINTE
FVEC(I) = S1 - S2%*2 - ONE
CONTINUE
FYEC (30)
FYEC (31)

X(1) )
X(2) = X(1)**2 - ONE

[}

03001780
60001790
00001800
00001810
00001820
00001830
00001840
00001850
000018620
00001870
000018890
00001890

.00001900

00001910
00001920
30001930
50001940
00691950
00001960
00001970

+ 006001980

00001990
30002000
ou00201U
00002020
00002030
06002040
00002050
00002060
00092070
00002080
00002099
00002100
00002110
60002120
00002130
02002140
02002150
00002160
00002170
00Q02184
00002190
00002200
00002210
60002220
00002230
02002240
230002250
05002260
20G02270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
02002350
00002360
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T0 1900

3-DIMENSIONAL FUNCTION.

1200 CONTINUE

1210

1300 -

1310

1400

1410

1500

1510

1520
1530

1540

DO

GO

JEN

COoN
Do

GO

3RO

CON
DO

GO

CHE

1210 I = 1, Ao

TEMP = DPLOAT(I)

TME1 = TEMP/TEN

FVEC(I) = DEXP(-T¥P1*X (1)) - DEXP(-THP1*X(2))
+ (DEXP (-TEMP) - DEXP(-TMP1))*X(3)

CONTINUE .

TO 1500

NRICH AND SAMPSON FUNCTION.

TINUE
1310 T = 1, 4

TEMP = DFLOAT(I)

PVEC(I) = TRO + TWO*TEAP - DEXP (TEMP*X (1))
CONTINOUE

TO 1900

- DEXP(TEMP*X(2))

AN ANC DENNIS FUNCTION.
TINUE
1410
TEMP
MR
aP2
FVEC(I) =
CCNTINUE
TO 1900

=1, 1
DFLOAT(I) /FIVE -
X(1) + TEMP*X(2)
X (3) + DSIN(TEMP)*X (4)
THP1%%2 + TUP2#*2

- DEXP(T2MP)
- DCOS(TEMP)

(U T o |

BYQUAD FUNCTION.

CONTINUE

DO

DO

DX
IEV
DO

GO

18190 T = 1, 94
FVEC(I) = ZERO
CONTINUE
1530 J = 1, N
TME1 = ONE
TMR2 = TWO*X (J)
TEMP = TWO®TMP2
DO 1520 I = 1, X
FVEC(I) = FVEC(I) + THP2
TI = TEMP*TMP2 - TNP1
TMP1 = THP2
T¥P2 = TI
CONTINUE
CONTINUE
= ONE/DFLOAT (N)
= -1
1560 T = 1, N
FVEC(I) = DX*FVEC (I)
IF (IEV .GT. 0) FVEC(I) =
IEV = -IEV
CONTINUE
TO 1900

- ONE

houn

PVEC(I) + ONE/(DPLOAT(I)**2 - ONE)

00002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440
00002450
00002460
00002470
00002480
00002490
02002500
00002510
00002520
00002530
00002540
00602550
00002560
00002570
00002580
00002590
00002600
00002510
00002620
20002630
00002640
00002650
00002660
00002670
00002680
00002690
02002700
00002710
00002720
00002730
00002740
20002750
00002760
00602770
00032780
00002790
00002800
00002810
20002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
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BEOWN ALMOST-LINEAR FUNCTION.
1600 CONTINUE
SUM = -DPLOAT (N+1)
PROD = ONE
Do 1610 J = 1, ¥
SOM = SOM + X(J)
PROD = X(J) *PROD
1610 CCNTINUDE
DO 1620 I = 1, N
FVEC({I) = X(I) + sSUHA

1620 CONTINUE
FVEC(N) = PROD - ONE
GO TO 1900
OSBCENE 1 FUNCTIOW.
1700 CONTINUE
Do 1710 1 = 1, 33
TEMP = TEN*DPLOAT (I-1)
TMP1 = DEXP (=X (4) *TENP)
TMP2 = DEXP (-X(5) *TENP)

FYEC(I) = Y4(I) = (X(1) + X(2)*TUP1 + X(J)*TYHPI)
1710 CONTINGE :

50 TC 1900
CSBORNE 2 FUNCTION.
1800 CONTINUE
00 1810 I = 1, 65 .
TEME = DFLOAT(I-1) /TEN
TME1 = DEXP (=X (5) *TENP)
TMPZ = DEXP (~X(6) *(TEMP = X(9)) *%2)
TME3 = DEXP (-X(7) *(TE4P = X (10)) *%2)
TME4 = DEXP (-X(8) * (TEMP ~ X (11)) %%2)
FYEC(I) = YS5(I) - (X(1)*TMP1 + X (2)*TuP2
1 + X (3) *THP3 + X (4) *TMP4)
1210 CONTINUE
1900 CONTINUE
RETURN

LAST CARD CF SUBROUTINE SSQPFCN.

END

000232960
V0002970
33002980
00002990
v0003000
¢C003010
v00039020
60023030
30003040
00003050
000903060
00003070
00003080
00003090
02€923100
03003110
03003120
03003130
00003140
02003150
C8003160
00003170
22003180
0€003190
03003200
03003210
000903220
00023230
00603240
22003250
20005260
00003270
03C03280
00003230
02003300
23003310
00003320
32003330
90003340
U0003350
2200231360
02003370

00003380

00003390
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Basic Subroutines

SUERCUTINE SSQJAC(M,N,X,FfJAC,LDFJAC, NPROB)
INTEGER M,N,LDFJAC,NPROB

DOUBLE PRECISION X(N) ,FJAC(LDFJAC,N)
LRt 22T ]

SUBROUTINE SSQJaC
THIS SUBROUTINE DEFINES THE JACOBIAN MATRICES OF EIGHTEEN
NONLINEAR LEZAST SQUARES PROBLEMS. THE BROBLEM DIMENSIONS ARE
AS DESCRIBED IN THE PROLOGUE COMMENTS OF SSQFCN.
THE SUBROUTINE STATEMENT IS
SUBROUTINE SSQJAC(M,N,X,FJAC,LDFJAC, NEROB)
WHERE
4 AND N ARE POSITIVE INTEGER VARIABLES. N MUST NOT EXCEED 4.
X IS A LINEAR ARRAY OF LENGTH N.

FJAC IS AN M BY N ARRAY. ON CUTPUT FJAC CONTAINS THE
JACCBIAN MATRIX OF THE NPROB FUNCTIUN EVALJATED AT X.

LDFJAC IS A POSITIVE INTEGER VARIABLE NOT LESS THAN X
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

NPROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE
NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 18.

SUBPROGRAMS REQUIRED
FORTRAN-SUPPLIED ... DATAN,DCOS,DEXP,DSIN,DSQRT

MINPACK., VERSION OF OCTOBER 1977. )
BURTON S. GARBOW, KENNETH E. HILLSIROM, JORGE J. MCRE

xRk xR

INTEGER I,IVAR,J,K,4M1,N&1

DOUBLE PRECISION C14,C20,C29,C45,C100,DIV,DX,2IGHT,FIVE,FOUR,
ONE,PROD,S2,TEYP,TEN,THREE,TI, TME1,TMP2,TUP3 ,THPY,
TPI,TWO,ZERO ;

DOUBLE EBRECISION V(11)

DOGBLE ERECISION DFLOAT

DATA ZERO,ONE,IWO,THREE,FOUR,FIVE,EIGHT,TEN,C14,C20,C29,C45,C100

1 ,/0.n0,1.00,2.00,3.D00,4.00,5.D0,8.D0,1.D1,
2 1.4D1,2.D01,2.901,4.5D1, 1.02/

DATA V(1) ,V(2) ,V(3),V(4),7(5),V(6),V(7),V(8),V(9),V(10),V(11)
1 /4.0D0,2.000,1.0D0,5.D~1,2.5D-1,1.67D=1,1.25D-1,1.0=1,
2 8.33D-2,7.14D~2,6.25D-2/

DFLOAT(IVAE) = IVAR
JACOBIAN RQUTINE SELECTOR.

50 TO (100,200,300,400,500,600,700,800,900,1000,1100,
1 1200,1300,1400,1500,1620,1700,1800) , NPROB

LINEAE FPUNCTION - FOULL RANK.

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00090090
02000100
00000110
032000120
60000130
02000140
00000150
00000160
03000170
00000180
00000150
00000200
03000210
00000220
00000230
00000240
00000250
00000260

. 00000270

20000280
00000290
00000300
00600310

03030320

03000330
00000340
02090350
00000360
00000370
03C00380
0200C390
000004060
GJ2000410
22000420
00000430
05000440
03000450

20000460

00000470
v0000u80
00000490
00000500
30000510
00000520
030C00S30
00000540
02000550
03000560

-00000570

00000580
00000590
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Basic Subroutines

CONTINUE

TEMP = TWO/DFLOAT (M)
Do 1203 =1, N

: bpo 110 I =1, N

FJac(1r,J)y = -TEHNP
. CONTINUE '
PJAC(J,J) = FJAC(J,J) + ONE
CONTINDUE
50 TO 1900

LINEAR FUNCTION - RANK 1.

CONTINUE
DO 220 J = 1, ¥
DO 216 I = 1, 4
FJAC(L,J) = DFLOAT (I)*DPLOAT (J)
CCNTINUE
CONTINUE
GO TO 1900

e~

LINEAR FUNCTION - RANK 1 WITH ZERO COLUMNS AND ROWS.

CONTINUE
DO 320 J = 1, N
20 310 I =1, #
FJIAC(L,J) = ZERO
CONTINUE
CONTINUE
NM1 = N - 1
M1 = ¥4 -1
TF (NM1 .LT. 2) 30 TO 350
DO 340 J = 2, NM1
* D0 330 I = 2, uu1
PJAC(I,J) = DFLOAT (I-1)*DPLOAT (J)
CONTINUE
CONTINUE
CONTINUE
GO TO 1900

BROSENBROCK FUNCILUN.

CONTINUE

FJAC(1,1) = =-C20%X (1)
FJAC(1,2) = TEN
PJAC(2,1) = =0ONE
FJAC(2,2) = ZERO

GO TO 1900

HELICAL VALLEY PUNCTION.

CONTINUE
TPI = ZIGHT*DATAN (ONE)

TEMD = L(1)%%*2 + X(2)®*2
TMP1 = TPI*TEAMP
TMP2 = DSQRT(TENP)

FJAC (1,1) = C100%*X(2)/TNP1 .
FIAC(1,2) = -C100*x (1) /THP1

PJAC(1,3) = TEN

FJAC(2,1) = TEN*X (1) /TMP2

00000600
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00000620
00000630
00000640
00000650
00000660
00000670
00006680
00000690
00000700
00000710
00000720
00006730
00000740
00000750
00000760
00200770
02000780
00C00790
00C20800
00000810
00600820
00000830
62000840
00000850
30000860
00000870
00000880
00000890
02000909
00000910
00000920
03000930
00000940
00000950
00020960
00000970
02000980
00000990
00001000
00001016
00001€20
00001030
02001040
00001050
00001060
00001070
00001080
60031090
03001100
00001110
03001120
00001130
00001140
00001150
00001160
00001170
00001180
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610C
620

FJAC (2,2)
FJAC (2, 3)
PJAC(3,1)
PJAC(3,2)
PJAC (3,3)

GO TO 1900

Basic Subroutines

TEN*X (2) /TH¥P2
ZERO'

ZERO

ZERO

ONE

POWELL SINGGLAR FUNCTION.

CONTINUE
DO 620 J
DO 610

1, o
I =1, 4

FJac(Ir,Jd) = ZERO
CCNTINUE
CONTINUE

FJaAC (1, 1)
FJAC(1,2)
FJAC(2,3)

ONE
TEN
CSQRT (FIVE)

-FJAC(2,3)

THO® (X (2) - TWO*X(3))
~THO*FJAC (3,2)
THO*DSQRT (TEN) * (X (1) = X{4))
-FJAC(4, 1) '

FJAC (2, 4)
FJAC(3,2)
FJAC(3,3)
FJIAC (4,1)
FJAC (4, 4)

. GO TO 1900

700

800

510

900

FREUDENSTEIN AND ROTH FUNCTION.

CONTINUE
PJAC (1, 1)
FJAC(1,2)
FJAC(2, 1)
FJAC (2,2)
50 TO 1900

CNE ‘
X (2) *(TEN - THREE*X(2)) - TWO
ONE

X(2) *(TRO + THREE*X (2)) - C14

3ARD FUNCTION.

CONTINUE
D0 810 T = 1, 15
TMP1 = DFIOAT (I)
TMP2 = DFLOAT(16-1I)
TME3 = THP1 .
IF (I .GT. 8) THMP3 = TMP2
TMP4 = (X(2)*TH¥P2 + X(3)*THP3) *=*2
FJAC(I, 1) ~ONE
FJAC(I,2) =. TMP1*TMP2/TMP4
FJAC(I,3) TMP1*TMP3/THPY
- CONTINOE - '
GO TO 1900

KOWALIK AND OSBORNE FUNCTION.

CCNTINUE
po g0 I =1, 1M
TMP1 = T (I)*(V(I) + X(2))
THP2 = V(I)*(V(I) + X(3)) + X (4)

FJAC(I,1) = -TMP1/THP2
FJIAC (T,2) = =V (I)*X(1)/THP2
FJAC(I,3) = FJAC(I, 1) *PJAC(I,2)

PJAC(I,4) = PJAC(L,3)/V(I)

00001190
00001200
00001210
00001220
€C2001230
00001240
00001250
02001260
00001270
00001280
00001290
00001300
00001310
00001320
03001330
032001340
00001350
00001360
60001370
00001380

0001390

03001430
00001410
00001420
00001430
00001440
00001450
02001460
00001470
30001480
00001490
03001500
000901510
00001520
93001530
00001540
00001550
00001560
23001570
00001580
00001590
03001600
00001610
20001620
00001630
00001640
00001650
00001660
00601670
00001680
00001690
02001700
20001710
00001720
02001730
03001740
00001750
03001760
00001770
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Basic Subroutines

CONTINODE
GO TO 1900

MEYER FUNCTIQN.

CONTINUR

DO 1010 I = 1, 16
TEMP = FIVE*DFLOAT(I) + CuU5 + X (3)
TMP1 = X (2)/TENP
TMPZ = DEXP (TMP1)
FJAC(I,1) = TMP2
FJAC(I,2) = X (1) *TMP2/TEMP
PJAC(Z,3) = -THMP1*FJAC(I,2)
CONTINGCE

G0 TO 1900

WATSON FUNCTION.

CONTINOUE
po 11301 = 1, 29 .
DIV = DFLOAT(I)/C29
S2 ZERO
DX ONE
nog 1110 J = 1, N
SZ = S2 + DX*X(J)
DX = DIV*DX
CONTINUE
TEMP = TWO*DIV*S2
DX = ONE/DIV
DO 1120 J = 1, N
- FJAC(I,J) = DX*(DFLOQAI(J~-1) -~ TEMP)
DX = DIV=*DX '

CONTINUE
CONTINUE
DO 1150 J = 1, N
DO 1140 T = 30, N
FJAC(I,J) = ZERO
CONTINUE
CONTINDE
FJAC(30,1) = ONE
FJAC(31,1) = =~THO*X(1)
PJAL (31,2) = ONE

GO TO 1900
BOX 3-DIMENSIONAL FUNCTION.

CONTINUE

Do 1210 I = 1, 4
TEYMP = DFLOAT(I)
TMP1 = TEMP/TEN

FJAC(I,1) = ~TMP1%#DEX2 (~TMP1*X (1))
FJAC(I,2) = TMP1%DEXP (=TMP1*X (2))
FJAC(I.3) = DEXP (-TEMP) - DEXKP(~THMP1)
" CONTINGE
GO TO 1900

JENNRICH AND SAMPSON FUNCTION.

CONTINOE

22001780
00001790
00001800
20001810
00001820
00001830
00001840
00001850
00001860
00001870
00001880
00001890
32001900
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00001960
00001970
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00602000
00002010
00092020
00002030
00002040
(0002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00002130
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00002160
00002170
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93002200
00002210
00002229
00002230
00032240
03002250
62002260
00002270
00002280
00002290
aa0a0z300
00002310
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00002330
00002340
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Basic Subroutines

DO 1310 I = 1,
TEMP = DFLOAT(I)

PJAC(I,1) = -TEMP*DEXP (TEMP*X (1))
FPJAC(I,2) = -TEMP*DEXP (TEMP*X(2))
CONTINUE

GO TO 1900

_BROWN AND DENNIS FUNCTION.

CONTINUE
DC 1410 I =1, 4
TEMP = DFLOAT(I)/FIVE
TI = DSIN(TEHP)
TMP1 = X (1) + TEMP*X(2) - DEXP(TEMP)
TMP2 = X(3) + TI*X(4) - DCOS(TEAP)

PJAC(I,1) = TwO*THNP1
FJAC(I,2) = TEMP*FJAC(I,?)
FJAC (I,3) = IWO*TMP2
FJAC(I,4) = TI*FJAC(I,3)
CONTINOE

G0 TO 1900

CHEBYQUAD FUNCTION.

CONTINUE

DX = ONE/DFLCAT(N)

DO 1520 J = 1, ¥
TMF1 = ONE ’
TMPZ = Twa0*X(J) - ONE
TEMP = TWO*THMP2
TMF3 = ZERO
TMP4 = TWO

Do 1510 1 = 1, #
FJAC(I,J) = DX*THP4
TI = FOUR*TMP2 + TENP*THPY - THP3
TY4P3 = TMPUY
TMP4 = TI .
TI = TEMP*TNP2 - TMP1.
TYP1 = THP2

THP2 = TI
CONTINUE
CONTINUE
GO TO 1900

BROWN ALMOST-LINEAR FUNCTION.

CONTINUB
PROD = ONE
DO 1620 J = 1, N
PRCD = X (J) *PROD
DO 1610 I = 1, N
PJAC(I,J) = ONE
CONTINUE
FJAC(J,J) = TWO
CONTINDE
DO 1650 J = 1, N
TENP = X (J)
IF (TEMP .NE. ZERO) GO TO 1640
TEMP = ONE

620602370
00002380
00002390
20002400
690002410
00002420
00002430
00002440
00002450

00002460 .

20002470
000024890
000922490
03002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00C 02590
030002600
00002610
00002620
00002630
30002640
00002650
00002660
23002670
90002680
00002690
00002700
00002710
000062720
00002730
00002740
02002750
00002760
00002770
00002780
00002790
00002800
00002810

00002820 .

00002830

'00002840

00002850
20002860
000028740
0002880
00002890
0000290¢C
00002910
00992920
90002930
23002940
00002950
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PROD = ONE
DO 1630 K =

Basic Subroutines

1, N

IF (K .NE. J) PROD = X(K) *PROD

CONTINUE
CONTINUE
FJAC (N,J) =
CONTINUE

GO TC 1900

FROD/TENP

OSBOFME 1 FUNCTION.

CONTINUE

DO 1710
TEMP
™M1
THE2
FJAC (I, 1)
FJAC(I,2)
FJAC(I,3)
FJAC(I. W)
FJAC (I,5)
CONTINUE

GO TO 1900

=1’

(LI N )

33

TEN*DPFLOAT (I-1)
DEXP (=X (4) *TEMP)
DEXP (~X (S5) *TEMP)

~QNE

-THP1 .

-THp?
TEHE*X(Z)*THP1
TEMP*X (3) *THP2

OSBORNE 2 PUNCTION.

CONTINUE
DO 1813
TEMP
. TMP1
TMP2
TME3
TMPY
FJAC(I 1)
FJAC(I,?2)
?JAC(I,3)
FJAC(I,Y)
FJAC (I,5)
FJAC(I,6)
FJAC (I,7)
FJAC (I,8)
FJAC(I,9)"
FJAC(L,10)
FJAC(I,11)
CONTINUE
CONTINUE
RETURN

e ne=

[T L I T I T T I Y )

=1, 65

DFLOAT (I-1) /TEN
.DEXP (=X (5) *TEMP)

DEXP (=X (6) = (TEMP - X (9)) **2)
DEXP (=X (7) *(IENP =~ X (10)) *%2)
= DEXP(~X(8) * (TEMP =~ X (11)) **2)

-TMP1

-THP2

-THMP3

-THPG

TEMP*X (1) *THP1

X (2) ®* (TEMP - X(9))*%2%THpP2

X(3) *(TEMP - X (10)) **2%TMpP3
X{4) = (TEMP - X (11))**2%=THPU
~TRO*X (2) *X (6) = (TEMP - X (9)) *TuP2
~THO*X (3) *X (7) *(TEMP - X(10))*THP3
~TWO*Y (4) *X (8) * (TEMP - X(11)) *TMPd

LAST CARD OF SUBROUTINE SSQJAC.

END
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Basic Subroutines

SUBROUTINE INITPT(N,ZL,NPROB,FTACTIOR)
INTEGER ¥,NFROE
DOUBLE PRECISION PACTOR

DOUBLE PRECISION X (N)
FRBEBKRRRE

SOBROUTINE INITPT

THIS SUBROUTINE SPECIFIES THE STANDARD STARTING POINTS FOR THE
FPUNCTIONS DEFINEC BY SUBROUTINE OBJPFCN. THE SUBROUTINE RETURNS
IN X A MULTIPLE (FACTOR) OF THE STANDARD STARTING POINT. FOR

THE SEVENTH FUNCTIION THE STANDARD STARTING POINT IS ZERO, SO IN

THIS CASE, IF FACIOE IS NOT UNITY, THEN THE SUBROUTINE RETURNS
THE VEZCTOR K(J) = FACTOR, J=1,...,N.

THE SUBKOUTINE STATEMENT IS
. SUBROUTINE INITPT(N,X,NPROB,FACTOR)
WHERE

¥ IS A POSITIVE INTEGER VARIABLE.

X IS A LINEAR ARRAZ OF LENGTH N. ON OUTPUT X CONTAINS THE
STANDAED STARTING POINT FOR FROBLEM NPROB M4ULTIPLIED BY
FACTOR. .

NPRCB IS A POSITIVE INTEGER VARIABLE WHICH DEPINES THE
NUMBER OF THE PROBLEM. NPKOB MUST NOT EXCEED 18.

FACTOR SPECIFIES THE MULTIPLE CF THE STANDARD STARTING
POINT. IF FACTCR IS UNITY, NO MULTIPLICATION IS PERFORMED.

SINPACK. VERSION OF JANUARY 1978.
BORTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

ok ke AR
INTEGEA IVAR,J

DOUBLE FRECISIGN C1,C2,C3,C4,PIVE,d,HALF,

1 ONE,TEN,THEEE, TWENIY,TWNTF,TWO, ZERC

DAUBLE PRECISION DFLOAT

DATA ZERO,HALF,CNE,TWO,THREE,FIVE,TEN,TWENTY,TWNTF

1 /0.00,9.5D00,1.00,2.00,3.00,5.D00,1.D1,2.01,2.5D1/
DATA C1,C2,C3,C4 s4.D=1,2.500,1.5D~1,1.2D0/

DFLOAT (IVAE) = IVAK

SELECTICN OF INITIAL PCINT.

Gg TC (100,200,300,400,500,600,7G0,300,900,1000,1100,
1 1200,1300,1400,1500,1600,17003,1800) ,NPROB

HELICAL VALLEY PUNCTION.

CCNTINUE
X(1) = ~-ONE
£(2) = ZERO
X (3) ZERO
3C TO 1900

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00090080
00006090
00000100
00000110
00600120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
60000200
00000210
00000220
00000230
03000240
00000250
00000260
60000270
00006260
00000290
00000300
00000310
00000320
00000330
03000340
0000350
00000360
60000370
00600380
00000390
00000400
02000410
03020420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
2000500
63000510
60000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
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Basic Subroutines

BIGGS EXP6 FUNCTION.

CONTINUE

X(1) = ONE
£(2) = TWO
£(3) = CNE
Z(4) = ONE
£(5) = CNE
£(6) = ONE
3¢ [0 1300

GAUSSIAN FUNCTION.

CONTINUE
(1 c1
£(2) ONE .
X (3) ZERG

G0 TO 1930

POWELL BADLY SCALED FUNCTION.

CONTINUE
£(1) = ZBKU
2(2) = ONE
GG TO 1900

8CX 3-DIMENSIONAL FUNCIION.

CONTINUE

X (1) ZERO
£(2) = TEN

£ (3) THENTY
30 TO 1900

VARIABLY DIMENSICNED FUNCTION.

CONTINUE

H = ONE/DFLOAT (N)

DO 610 J = 1, B
X(J) = ONE - DFLOAT (J) *H
CONTINUE

30 TC 1800

WATSCN FUNCTION.

CUNTINOE
pc 7710 J =1, N
- X£(J) = ZERO
CONTINUE
GG TO 1900

- PENALTY FUNCTION I.

800

. 810

CONTINUE
Do 810 J =1, N
- £(J) = DFLOAT(J)
CONTINUE

-GG TO 1500

000006600

03000610
00000620
30000630
00000640
00000650
00000660
00000670
00000680
92000690
22093700
00000710
€0000720
00000730
00000740
¢20000750
00000760
00000770
00000780
00000750
00000800
GANNQR1TND
naGnnazn
90000830
00090840
00000850
006000860
€0000870
00000880
00000890
90000900
00000910
v0000920
00000930
C0000940
00000950
60000960
00000970
00000980
00030990
w0001090
009010190
00001020
900019030
00001040
00001050
00001060
00001070
0ouD1080
00001090
00021100
00001110
0uu01120
00001130
00001140
00001150
000901160
00091170
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Basic Subroutines

PENALTY FUNCTION II.

CONTINUE

DO 910 J = 1, N
X(3) = HALT
CONTINUE

GO TO 1500

BECWN BADLY SCALED FUNCTION.

CONTINUE

X(1) = CNE
£(2) = CME
GO TO 1900

BROWN AND DENNIS FUNCTION.

CONTINUE
(N TANTF
£(2) FIVE
X(3) = -FIVE
L£(4) = -ONE
GC TOC 1900

Huowan

SULF RESEARCH AND DEVELOPMENT FUNCTION.

CCNTINUE
(1) = FIVE
X(2) c2

X (3) c3
GO TG 1900

TRIGONOMETRIC FUNCTION.

CONTINUE

H = ONE/DFLOAT (N)

DC 1310 J = 1, N.
X(J) = H
CONTINCE

GU TO 1300

EXTENDED ROSENEROCK FUNCTIOW.

CCNTINUE

DO 1410 J = 1, N, 2
X(J) = =C4
X(J+1) = ONE
CONTINUE

GC TO 13900

EXTENDED POWELL SINGULAR PUNCTION.

CONTINUE
pa 1510 J = 1, N, 4
X (J) = THREE

£(J+1) = =-ONE
Y (J+2) = ZERO
£(J+3) = GNE
CONTINUE

00001190
00001200
00001210
000901220
00001230
00001240
00001250
00001260
00001270
00001280
00001290
00001300
00001310
00001320
60001330
00001340
00001350
00601360
00001370
00001380
62001390
00001400
00001410
00001420
00001430
00001440
03001450
00001460
90001470
00001480
00C01490
00001500

" 06001510
00001520

00001530
00001540

" C0001550

00001560
00001570
00001580
Q0001590

00001600

00601610
00001620
00001630
Q0001640
00001650
02001660
y0001670
00001680
00001690
00001700
00001710
00001720
00001730
00021740
00901750
00001760
00001770
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GG TO 1900
BEALE FUNCTION.
CONTINUE

X(1) = GONE

X(2) = ONE

GO TC 1900

WCOD FUNCTION.

CCNTINUE
X(1) = =THREE’
£(2) = -ONE
X(3) = ~THEEE
£(4) = =CNE

GO TO 1900
CHEBYQUAD PUNCTION.

CONTINUE
d = ONE/DFLOAT (N+1)
DCc 1810 J = 1, N
X(J) = DFLOAT(J) *H
CONTINUE

COMPUTE MULTIPLE CF INITIAL POINT.

CONTINUE
IF (FACTOR .EQ. ONE) GO TO 1940
IF (NBROB .EQ. 7) GO TO 1920
DC 1810 J = 1, ¥
X (J) = FACTOR*X (J)
CONTINUE ’

GO TC 1940

CONTINOE

DO 1930 4 = 1, N
£(J) = FACIOR
CONTINUE

CONTINUE

BETURN

LAST CAFED OF SUBROUTINE INITPT.

END

00001780
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go001800
20001810
00001820
00001830
200601840
000921850
00001860
00001870
00C01880
0001890
00001900
60001910
00001920
GJ2001930
60001940
00001950
00001960
00001970
00031980
00001999
20002000
000402010
00002020
20002030
00002040
00002050
00002060
90002070
00002080
00002090
00002100
00002110
00002120
00002130
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00002150
0000216¢C
000092170
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Basic Subroutines

SUBRCUTINE OBJFCN(N,X,F,NPROB)
INTEGER N,NPROB
DOUBLE PRECISION F

DOUBLE PRECISICN X (N)
L2 2 T T2

SUBROUTINE OBJECN

THIS SUBROUTINE DEFINES THE OBJECTIVE FUNCTIONS OF ZIGHTEEN
NONLINEAE UNCONSTRAINED MINIMIZATION PROBLEMS. THE VALUES

OF N FOR'FUNCTIONS 1,2,3,4,5,10,1%,12,16 AND 17 ARE
3,6,3,2,3,3,4,3,2 AND 4, RESPECTIVELY.

FOR FUNCTION 7, N MAY BE 2 OR GREATEEK BUT IS USUOALLY 6 OR 9.
POR FUNCTIONS 6,8,9,13,14,15 AND 13 N MAY BE VARIABLE,
HONEVER IT MUST BE EVEN FOR FUNCTION 14, A MULTIPLE OF 4 FOR
PUNCTION 15, AND NOT GREATER THAN S0 FOK FPUNCTION 18.

THE SUBBOUTINE STATEMENT IS
SUBROUTINE OBJFCN(N,X,F,NPROB)
WHERE
N IS A POSITIVE INTEGER VARIABLE.
X IS A LINEAR AREAY QF LENGTH N.

P IS A REAL VARIABLE WHICH ON OUTPUT CONTAINS THE VALUE OF
THE NPRGB OBJECTIVE FUNCTION EVALUATED AT X.

NPROB IS A POSITIVE INTEGER VARIASBLE WHICH DEFINES THE
NUMBER OF THE PROBLEM. NPROB MUST NOT EXCEED 13.

SUBPBOGRAMS REQUIRED

FORTRAN-SUPPLIED ... DABS,DATAN,DCOS,DEXP,DLOG,DSIGN,DSIN,
DSQRT

MINPACK. VERSION OF JANUAEY 1978.
BOURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

3 2 3% e Kk K MK

INTEGER I,1IEV,IVAR,J

DOUBLE PRECISION AP,ARG,5P,C2PDM6,CP0O0O1,CP1,CP2,CP25,CPS5,

1 c1p5,C2825,C02P625,C3P5,C25,C29,C90,C100,C10000,C1PD6,
2 b1,02,EIGHT,FPIFTY,FIVE,POUR,ONE,R,S1,52,53,

3 7,71,72,73,TEN,TH,THREE,TPI,TWO,2ERO

DOUBLE PRECISIUN FVEC(50),7(15)

DOUBLE PRECISION DFLOAT

DATA Z2ERQ,ONE,TWO,THREE,FOUR,FIVE,EIGHTI,TEN,FIPFTY

1 ,0.00,1.00,2.00,3.00,4.D00,5.00,8.00,1.D1,5.D1/
DATA C2PDM6,CP0001,CP1,CP2,CP25,CP5,C1P5,C2P25,

1 Cc2P625,C3P5,C25,€29,C90,C100,C10000,C1PD6

2 /2+D~6,1.0-4,1.D-1,2.D-1,2.5D=1,5.D=-1,1.5D0,2.250D0,

3 Z.62500,3.500,2.5D1,2.901,9.D1,1.D2,1.D4,1.D6/

DATA AP,BP /1.D-5,1.D0/

DATA Y (1),¥(2),Y(3),T(4,Y(S),1(6),X(T),

1 Y(8) ,¥(9),7(10) ,¥(11),Y(12),Y(13),Y(14),7(15)

2 /9.D-4,4.4D~3,1.75D-2,5.4D-2,1.295D0-1,2.42D-1,3.521D~1,

00000010
00000020
60000030
G0000040
00000050
00000060

0000G070 -

00000080
00600090
00000100
03GG0110
00000120
56000130
03000140
00000150
00000160
92000170
60000180
06000190
02000260
00095210

00000226

00C06230
02000249
0000250
62000260
03000270
00000280
00000290
003900300
0000G310
009cC0320
00000330
03000340
03000350
02000360
00000370
0J0C0380
GC000390
00000400
00CJ0410
0000420
030230430
20000440
Co000u450
0306006460
01000470
03090480
00000490
42000500
00000510
00000520
00000530
00000540
00000550
90000560
00000570
00000580
00000590
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3.989D0-1,3.521D-1,2.42D~1,1.295D-1,5.4D=2,1.75D-2,
4.4D~3,9.D-4/
DFLOAT (IVAK) = IVAR

FONCTION RCUTINE SELECTOR.

G6 TO (100,200,3060,400,500,600,700,800,900,1000,1100,
1200,1300,140¢,1500,1600,1700,1800) ,NPROB

HELICAL VALLEY FUNCTION.

CONTINUE
TPI = EIGHT®DATAN (ONE)
TH = DSIGN (CP25,X(2))

IF (X(1) .GT. ZEKO) TH
IF (X(1) .LT. ZERG) TH
ARG = X (1) *%2 + X(2)**2

DATAN (X (2) /%£(1)) /TPI
DATAN (X (2) /X (1)) /TPI + CPS

E = DSUHRT (ARG)

T = X(3) = TEN4TH

F = C10C*(T*%2 + (R - ONE) *=2) + X (3)*=*2
GC TO 1900

BIGGS EXP6 FUNCTION.

CCNTINUE
F = ZERC .
po 210 1 =1, 13

D1 = DFLOAT(I)/TEN
D2 = DEXP(-D1) - FIVE*DEXP(-TEN#*D1) + THRTZE®*DEXP (~FOUR*D1)
S1 = DEXP (=D1%*X (1)) :
Sz = DEXP (-D1*X(2))
S3 = DEXP (~D1%*X(5))
T = X(3)*S1 - L(4)*S2 + X(6)*S3 = D2
F = F + T#%
CONTINUE
GC TO 1900

GAUSSIAN FUNCTION.

CONTINUE

F = ZELO

DO 31C I =1, 15

D1 = CPS*DFLOAT(I-1)

D2 C3PS - DY = X{(3)
ARG = ~CPS*YX (Z)*Dcs*y
8 = DEXP (ARG)
T = X(1)*R - Y(I)
E = F + T*x2 =
CONTINDE

GO 10 1900

PCWELL BADLY SCALED PUNCTION.

"CONTINOE

C10000*% (1) *xX(2) - ONE

T1

. S1 = DEXP(=X(1})
S2 = DEXP(=X(2))
T2 = St + S2 - ONE - CP00O1

F = T1%%2 + T2%%2

00000600
00000610
00000620
00006630
00000640
00000650
00000660
0000670
00000680
60C00690
03000700
00000710
00600720
00000730
02000740
00000750
00000760
20000770
90000780
00000790
00000860
vC000810
90000820

00000830

60000840
00000850
00000860
60000870
00000880
06000890
00000900
00000910
00000920
00600930
00000940
00000950
000009690
000040870
03000940
00000990
00001000
00001010
40001020
00001030
00001040
00001050
00001060
€0C01070
00001080
J0001090
00031100
02021110
¢0001120
20001130
00001140
00001150
00001160
00001170
00001180
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Basic Subroutines

GO TO 1900

BOX 3~DIMENSIONAL FUNCTION.

CONTINUE

P = ZERO

DO 510 I = 1, 10
D1 = DFLOAT (I)
D2 = D1/TEN
S1 = DEXP (-D2%*X (1))
S2 = DEXP(~-D2*X(2))
S3 = DEXP(~D2) - DEXP(=D1)
T = S1 - §2 = 53%X(3)
F = F + T#x2
CONTINUE

GO TC 1900

VARIABLY DIMENSIONED FUNCTION.

CONTINOE

T1 = ZERO

T2 = ZERO

DO 610 J = 1, N
T1 = T1 + DFLOAT(J) *(X (J) - ONE)
T2 = T2 + (X(J) - ONE)**2
CONTINUE

F = T2 + T1%%2% (ONE + T1%%2)

GO TO 1900 :

WATSCN FPUNCTION.

‘CCNTINUE

F = ZE&C

po 73¢ 1 =1, 29
D1 = DPFLOAT(I)/C29
S1 = ZERO
D2 =

pc 7170 9 = 2, N
S1 = S1 + DFLOAT (J-1)*D2*X (J)
D2 = D1%*D2
CONTINUE

$2 = ZERO

D2 = ONE

Do 720 J = 1, N

S2 = S2 ¢ D2*X (J)

D2 = D1*D2

CONTINUE

S1 - S2%*2 - ONE
P + T*%x2

TINUE )

T1 (2) - X(1) **2 - ONE

F = F ¢ X(1)*%2 ¢+ T1%=%2

GG TO 1900

o]

w3
<=

PENALTY FUNCTION I,

CONTINUE
T1 = -CP25
T2 = ZERO

G3001190
- 00001200

00001210
00001220
03001230
00001240
00001250
00001260
G3001270
00C01280
00001290
00001300
00001310
00001320
00001330
323001340
€0001350
030001360

00001370

0C001380
00001390
C2001400
00001410
00001420
00001430
00001440
00001450
03001460
60091470
00001480
00001499
00001500
00001510
00001520
00001530
00001540
00001550
00001560
00001570
0C0J1580

~ 00001590

00001600
03031610
00001620
N00Q1R3N
00001640
00001650

1000016690

00001670
090001680
00001690
00001700
00001710
00001720
00001730
60001740
00001750
00001760

- 00601770
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DO 810 J = 1, N :
T1 = T1 + X(J) **2

T2 = 12 + (X(J) = ONE) **2
CONTINUE

F = AE®T2 + BP#T1%%2

GO TO 1900

PENALTY FUNCTION II.

CONTINUE

T1 = =-ONE

T2 = ZERO

T3 = ZERO

D1 = DEXP(CP1)

G2 = CNE

DO 920 J =1, N
T1.= T1 + DFLOAT(N=J¢1) *X (J) **2
S1 = DEXP (X (J)/TEN)
IF (J .EQ. 1) GO TO 910

53 = S1 + S2 - 22%(D1 + ONE)
T2 T2 + S3%=2

T3 I3 + (ST = ONE/D1) *%2
CONTINUE

sz = s1 .
D2z = D1*D2
CONTINUE

F = AE®(T2 + T3) + BP*(T1%%2 + (X(1)
GO TO 1900

BRCWN BADLY SCALED FUNCTION.

CONTINUE

T1 = X(1) - C1PD6

T2 X(2) = C2PD36

T3 = X(1)*X(2) - T¥O

F = T1%%2 ¢ T2%%2 + T3%%2
GU TO 1900

BROWN AND DENNIS FUNCTION.

CONTINUER
F = ZERO
DG 1110 I = 1, 20

D1 = DFLOAT (I)/FIVE
D2 = DSIN(D1)
T1 = X(1) + D1%X(2) = DEXP(D1)
TZ = X(3) + D2*X(4) - DCOS(D1)
T = T1%%2 + To#%2
F = F & T**2
CONTINUE .

GO TO 1900

= CP2) *%x2)

GULF RESEABCH AND DEVELOPMENT FUNCTIQN.

CONTINUE
F = ZERC
D1 = TWO/THREE
DO 1210 I = 1, 99
ARG = DFLOAT(I)/C100

00001780
00001790
00001800
00001810
00001820
00601830
¢0001840
00001850
06001860
co0001870
00001880
£0C01890
00001900
00001910
00001620
¢C001930
vd001940
000911950
00001960
02901970
06001980
20001990
00902000
60002010
00002020
000020390
00002040
00002050
G0002060
¢3002070
00002080
0u002999
03092100
00002110

00002120

0000213V
030902140
00022150
03002169
00002170
00002180
J00602190
05002200
00002210
00092220
00002230
G0002240
3002250
620v2260
32002270
00002280
00002290
00002300
09002310
00002320
06002330
00002340
33002350
00032360
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R = JDABS((~FIFTY*DLOG(ARG)) **D1 + C25 - X (2))
T1 = R**X(3)/X(1)
T2 = DEXP(~-T1)
T = T2 - ARG
F = F + T**2
CGNTINUE
GO TO 1900

TRIGONOMETRIC FUNCTION.

CCNTINUE

St = ZEEG

po 1310 J = 1, N
S1 = 81 + DCOS(X(J))
CONTINUE

F = ZERC

DC 13200 = 1, N

T = DFLCAT(N+J) - DSIN(X(J)) = 51 - DFLOAT(J)=*DCOS(X(J))

F = F + T**2
CONTINUE
3G TO 1900

SXTENDED ROSENBROCK FUNCTION.

CONTINUE

F = ZEROC

DO 1410 J = 1, N, 2
T1 = ONE - X (J)
T2 = TEN*(X(J+1) - X(J)**2)
F = F + T1%%2 + T2%#%2
CONTINUE

GG TO 1900 .

SXTENDED PUWELL FUNCTICN.

1500

1510

1600

CONTINUZ
F = ZERQ
pc 1510 J = 1, ¥, 4
T = X(J) + TEN®X (J+1)

T1 = £(J+2) - X(J+3)
51 = FIVE*T1 v
T2 = X(J+1) - TWO*X (J+2)
S2 = T2#%%3
T3 = X(J) - X(J+3)
S3 = TEN*T3*#3
F = F + T#%2 + S1%T1 + S2%T2 + S3»T3
CONTINUE
30 IC 1900

SEALE PUNCTION.

CONTINUE

51 = ONE - X(2)

T1 = C1P5 = X(1)*s1
S2 = ONE - £(2)**2
T2 = C2825 - X (1)*S2
S3 = QNE - X (2)**3

T3 = C2P625 - X (1)*S3

P = T1¥%2 + T2%*2 + T3*%x2

00002370
0002380
00002390
00002400
00002410
00002420
00002430
00002440
00002450
0U002460
20002470
00002480
00002490
00002500
00002510
60002520
60002530
00002540
00002550
00002560
00002570
02002530
03002590
60002600
02602610
00002620
00002630
00002640
53002650

30002660

00002670
00002680
00302690
00002700

00092710
100002720

00002730
00002740

00002750 -

20002760
00002770
00002780
00002790
60002800
00002810
00002820
00002830
00002840
60002859
00002860
00092870
00002880
00002890
00002900

60002910

00002920

00092930

00002940
00002950
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GQ TO 1900

WO0OD FUNCTION.

CONTINUE

S1 = X(Z) = X(1) **2
S2 = ONE - X (1)

$3 = X(2) - ONE

T1 = X(4) - £(3)**2
T2 = ONE - X (3)

T3 = X(4) - ONE

F = C100*S51%**2 + S2%%x2 + CO90*T1*%2 + T2%**2 +

Basic Subroutines

TEN®(S3 + T3)*%2 + (S3 - T3)**2/TEN

GG TO 1900
CHEBYQUAD FUNCTIIGN.

CONTINUE

DO 1810 I = 1, N
FVEC(I) = ZERO
CONTINUE

D0 1830 J = 1, N
T1 = ONE
12 =

T = TWO¥T2

DC 1820 I = 1, N

FPVEC(I) = FVEC(I)

TH = I*T2 - T1
TY = T2
‘T2 = 70
CONTINUE
CONTINUE
F- = ZERO
D1 = ONE/DFLOAT (N)
IEV = -1
DO 1840 I = 1, N
T = DV*FVEC(I)
IF (IEZV .GT. 0) T
T = F + T**2
IEV = -1EV
CONTINUE
CONTINUE

RETIRN

TWURX (J) — ONE

+ T2

T + ONE/(DPLOAT(I)**2 = ONE)

LAST CAED OF SUBROUTINE OBJFCN.

END

02002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003080
00003090
00003100
00003110
0000310
00003130
00003140
00003150
02003160
00003170
W0003180
06003190
00003200

¢G003210

00003220
00003230
00003240
00003250
00003260
00003270
00003280
00003290
00003300
0005310
30003320
03003330
00003340
00003350
00003360
2003370
00003380
00003390
02003400
00003410
00003420
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Basic Subroutines

SUBROUTINE GRDECN(N,X,G,NPROB)
INTEGER ¥,NPROB

DOUBLE PRECISION X (N),G(N)
kR kR Rk

SUBROUTINE GRDFCN
THIS SUBROUTINE DEFINES THE GRADIENT VECTORS OF EIGHTEEN
NONLINEAR UNCONSTRAINED MINIMIZATION PROBLEMS. THE PROBLEN
DIMENSIGONS ARE AS DESCRIBED IN THE PROLOGUE COJYMENTS OF OBJECN.
THE SUBROUTINE STATEMENT IS

SUBROUTINE GRDECN(N,X,G,NPRGB)
WHERE

N IS A POSITIVE INTEGER VARIABLE.

X IS A LINEAF ARRAY OF LENGTH N. °
IS 4 LINEAR ARRAY OF LENGTH N WHICH ON OUTPUT CONTAINS

THE COMPONENTS OF THE SRADIENT VECTIOR OF THE NPROB
OBJECTIVE FUNCTION EVALUATED AT X.

G

NEROB IS A POSITIVE INTEGER VARIABLE WHICH DEFINES THE
NUYBER OF THE PROBLEM. NPROB HUST NOT EXCEED 18.

SUBPROGRAMS REQUIRED

FORTRAN~-SUPPLIED ... DABS,DATAN,DCOS,DEXP,DLOCG,DSIGN,DSIN,
‘ DSQART

MINPACK; VERSICN OF JANUARY 1978.
BURTON S. GARBOW, XENNETH E. HILLSTROM, JORGZ J. MOKE

LR B2 2L 3 2]

INTEGER I,IEV,IVAR,Jd
DOUBLE PRECISION AP,ARG,BP,C2PDM6,C20001,CP1,CP2,CE25,CP5,C1P5,

1 Cc2p25,C2P625,C3P5,C19P8,C20P2,C25,C29,C100,C180,C200,
c1000¢,C1PL6,D1,D2,E1IGHT, ?IFTY,PIVE,FOUR,ONE,R,S1,52,53,
3 t,71,12,13,TEN, TH, THREE,TPI, TWENTY, TWO,ZERC

DOUBLE PRECISION FVEC(50) ,Y(15)

DOUBLE £RECISION DFLOAT

DATA ZERO,CNE,TWO,THREE,POUR,FIVE,EIGHT,TEN,TWENTY, FIFTY

1 /9.00,1.00,2.00,3.00,4.00,5.D0,8.D00,1.D01,2.01,5.D1/

DATA C2PDM6,CPO0OO1,CP1,CP2,CP25,CPS5,C1P5,C2P25,C2P625,
c3e5,c19p8,c20pP2,C25,c29,Cc100,Cc180,€200,C10000,C1PD6

1
2 /2.0-6,1.D-4,1.0-1,2.D-1,2.50~1,5.D0~-1,1.5D0,2.25D0,2.625D0,
3 3.500,1.98D1,2.02D1,2.501,2.9D%,1.D02,1.802,2.D2,1.D4,1.D8/

DATA AP,BP /1.D=-5,1.D0/
DATA ¥ (1),Y¥(2),Y(3),T(H),T(3),I(6),X(T}),
1 T(8) ,Y(9) .Y (10),¥(11),7(12),T(13),Y(14),Y(15)
2 /9.D=4,4.4n-3,1.75D-2,5.40~2,1.295D0-1,2.42D~1,3.521D~1,
3 3.9890-1,3.521D~1,2.42D-1,1.2950-1,5.4D-2,1.75D-2,
4 4.4D=-3,9.D=4y/
DFLOAT (IVAR) = IVAR

GRADIENT kOUTINE SELECTOR. A

00000010
00000020
00000030
00000040
00000050
00000060
¢0000070
00000080
00000090
00000100
00000110
63000120
C0000130
00000149
00000150
000006160
00000170
030600180
00000190
00000200
00000210
00000220
03000230
02000240
G2000250
93000263
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
0300cC350
00000360
03600370

00600380

00000390
00000400
00000410
00000420
00000430
00000440
00000450
03000460
00000470
00000480
00000490
G0G0o0500
00000510
00000520
00000530
00000540
00000550
00900560
02000570
00000580
00000590
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G0 TO (100,200,300,400,500,600,700,800,900,1000,1100,
1 1200,1300,1400, 1500,1600,1700, 1800) ,8PROB

HELICAL VALLEY FUNCTION.

CONTINUE .
TPI = EIGHT*DATAN (ONE)
TH = DSIGN(CP25,X(2))
IF (X(1) .GT. ZERO) TH
IF (X(1) .LT. ZERD) TH
ARG = X (1) *%2 + X (2) **2
B = DSQST(ARG)

T = X(3) - TEN*TH

S1 = TEN*T/(TPI*ARG)

DATAN(X (2) /X (1)) /TPI
DATAN (X(2) /X (1)) /TPI + CP5

"G(1) = Cz00*({X(1) - X(1)/R + X (2)*sS1)
G(2) = C00%(X(2) - X(2)/R - £(1)%*s1)
G(3) = THO*(C100*T + X(3))
3C TC 1900

8IGGS EXP6 FUNCTION.

CONTINUE

DO 210 J = 1, W
3(J) = ZERO
CONTINUE

DO 220 I = 1, 13

D1 = DFLOAT (L)/TEN
D2 = DEXP(~D1) - FIVE*DEXP (-TEN*D1) + THREE*DEXP (-FOUR*D1)
S1 = DEXP(=D1%X(1))
S2 = DEXP(~D1#*X(2))
. 8§83 = DEXP (~D1*X(5))
T = X(3)%S1 - X(4)*S2 + X£(6)%*S3 - Dz
TH = D1*T
G(1) = G(1) - S1*TH
G(2) = G(2) + S2*TH
G(3) = G(3) + S1=*T
G(4) = G(U4) =~ S2=*T
G(S) = G(S) - S3*TH
S(€) = G(6) + 3S3I*T
CONTINUE
G (1) = IwO*X(3)*G(1)
G(2) = TWO*X (4)*G(2)
G(3) = TWO*G(3)
3(4) = THO*G (4)
G(5) = TWO*X (6) *G(5)
‘G(6) = THO*G(6)
30 TO 1960

GAUSSIAN FUNCTION.

CONTINUE
G(1) = ZERO
G(2) = ZERO
G(3) = ZERO

pc 310 1 = 1, 15

D1 = C2S*DFLOAT (I-1)
D2 = C3P5 - D1 - X(3)
ARG = =CPS*X(2)*D2**2

00000600
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00000620
00000630
00000640
0000C650
00000660
20000670
00000680
00000630
00000700
00000710
00000720
00000730
00000740
02000750
03000760
00000770
00000780
00000790
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00090830
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0000880
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03000910
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00001020
00001030
00001040
00001050
00001060
00001070
00001080
00001090
00001100
00001110
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00001130
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00001150
00001160
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kK = DEXP (ARG) .
T = X(1)*F - Y(I)
S1 = R*T

S2 = D2*S1

G(1) = G(1) + s1

G(2) = G(2) - D2*S2
G(3) = G(3) + S2
CCNTINUE

G(1) = TWO*G (1)

G(2) = X(1)*G(2)
5(3) = TWO*X (1) *X(2)*G(3)
G0 TO 1900

PCWELL B3aDLY SCALED FPUNCTION.

CONTINUE :
= C10000*X(1)*X(2) =~ ONE

]
-
[

S1 = DEXP(-X(1))
S2 = DEXP(-X(2))
T2 = S1 + 52 - ONE - CP00O1

G(1) = TWO*(C10000*X(2)*T1 - S51*T2)
G(2) = TWO*(C10000*£(1)*T1 - S2%T2)
30 I0 1900

BOX 3-DIMENSIONAL FUNCTION.

CONTINUE

5(1) = ZERO

G(2) = ZEKO

G(3) = ZERC

pC 516 T = 1, 10

D1 = DFLOAT(I)

D2 = DIATEN

S1 = DEXF(-Dz*X (1))

S2 = DEXP(-D2*X(2))

53 = DEXP(-D2) - DEXP(-D1)

T = 51 = S2 ~ 33%X(3)
TH = D2*T
G(1) = 6(1) - S1*TH
G(2) = G(2) + S2*TH
G(3) = G(3) - S3*T
CONTINOE

G(") THO®G (1)

G(2) THC*G (2)

G(3) THO*G (3)

GG TO 1500

VABIABLY DIMENSIOJONED FUNCTION.

CCONTINUE

T1 = ZERO

DO 610 J =1, N )
T1 = T1 + DPLOAT (J) *(X(J) =~ ONE)
CONTINUE :

T = T1% (ONE + TWO*T1%%2)

DO 620 J = 1, ¥
G(J) = TWO®(X(J) - ONE + DPLOAT (J) *T)
CONTINUE

GO TO 1900
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00001220
00001230
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00001290
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00001340
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00001370
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00001410
00001420
00001430
00001440
00001450
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00001470
00001480
00001490
00601500
00001510
00001520
00001530
00001540
00001550
00001560
00001570
00001580
00001590
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00001610
00001620
00001630
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00001660
00001670
02001680
00001690
00001700
00001710
02001720
00001730
00001740
00001750
00001760
00001770

83



84

Nnaaa

ananan

WATSON FUNCTION.

700 CONTINUE

710

720

730

740
750

3G0

310

820G

300

919

DO 710 J = 1, ¥
G(J) = ZERO
CONTINUE

DO 75C I = 1, 29
D1 =

S1 = ZERO

D2 = ONE

Lo 720 J = 2, ¥

DFLOAT (I) /C23

Basic Subroutines

31 = 51 ¢+ DFLOAT (J=1)*D2*X(J)

D2 = D1*D2
CCNTINUE

S2 = ZERO

D2 = ONE

DO 730 J = 1, N

S2 = S2 + D2*X(J)

D2 = N1=N2
CCNTINUE

3 = rwusyixse
S = 'LWU/U
C 749 J = 1, N

G(J) = G(J) + D2*(DFLOAT (J-1)

De = D1*L2
CONTINUE
CONTINUE

= 51 - Sz2**2 - ONE

T1 = X(2) - X(1)**2 - ONE
§(1) = G(1) + X(1)*(TWO - FOUOR*TY)

G(2) = G(2) + THO=T1

GC TO 1900
9ENALTY FUNMCTION I.
CONTINUJUE

T1 = -CE25
0C 810 J = 1, W

T1 = T1 # X () *%2

CONTINUE

21 =TWo=aAP

TE = FOUR*BP*T1

Dc 820 J = 1, N
G(J) = DI*(X(J3)
CCNTINUE

G0 TO 1900

PENALTY PUNCTION II.

CONTINUE
T1 = =-ONE
DO §12 0 = 1, ¥

- ONE) + X (J)*TH

T1 = T1 4 DFLOAT(N=J+1) *X(J)**2

CONTINUE
D1 = DEXP(CP1)
D2 = ONE
TB = FOUR*BP*T1
PG 930 J = 1, N

- S3)*T

00001780
00001790
00001800
90001810
00001820
00001830
00001840
00001850
00001860
00001870
0Cc001880
v0001890
03001900
00001910
00001920
00001930
00001540
00001950
V0001960
00001970
00001980
00001999
$0002000
00002010
00002020
6G002030
00002040
00002050
06002060
20002070
00002080
00002GCS0
03002100
00002110
30002120
00002130
00002140
000092150
yuuoz189
00002170
a202180
60002190
03002200
00002210
00002220
00004230
00002240
00092250
00003260
00002270
£0002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360
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Basic Subroutines

G(J) = DFLOAT (N-J+1)*X (J) *TH
S1 = DEXP (X (J) /TEN)

IF (J .EQ. 1) GO TO 920

'S3 = S1 ¢ S2 = D2%(D1 + ONE)

G(J) = G(J) + AP*S1*(S3 +# S1 - ONE/D1) /FIVE

G(J=1) = G(J=1) + AP*32%S3/FIVE
920 CONIINUE :
32 = $1
D2 = D1%*D2
930 CONTINUE ,
G(1) = G(1) + TWO*BP*(X(1) - CP2)
GC TO 1900 v

BROWN BADLY SCALED FUNCTION.

/
1000 CONTINUE
T1 = X(1) - C1PD6
T2 = X(2) - C22Dya6
. T3 = X(1)*X(2) - TwC
) =

G(1 TRO*(T1 + X(2)*T3)
G (2) THO* (T2 + X(1)*T3)
GG TO 1900

BROWN AND DENNIS FUNCTION.

1100 CONTINUE

(1) = ZERQ’
G(2) = ZERC
6(3) = ZEERO
3(4) = ZERO
20 1110 I = 1, 20
D1 = DPLCAT(I)/PIVE
D2 = DSIN(DT)
T1 = X (1) + D1%X(2) - DEXP(D1)
T2 = X(3) + D2*X(4) - DCOS(D1)
T = T1%%2 + T2%%2
S1 = T1%T
§2 = T2*T
G(1) = G(1) + S1
G(2) = G(2) + D1%31
G(3) = G(3) + S2
G(4) = G(4) + D2%S2
1110 CONTINUE
G (1) = FOUR*G (1)
G(2) = FOUR*G(2)
G(3) = FPOUR*G(3)
G(4) = FOUR*G(4)
GO TO 1900

GOLP RESEARCH ANC DEVELGPMENT PUNCTION.

1200 CONTINUE

3(1) = ZERO
G(2). = ZERO
G(3) = 2ERO

D1 = THC/THREE
DO 1210 I = 1, 99
ARG = DFLOAT(I)/C100

R = DABS((~PIFTY*DLOG(ARG)) **D1 ¢ C25 - X (2))

00002370
00002380
02002350
00002400
G0002410
032002420
00002430
00002440
00002450
23002460

00002470

00002480
00002490
02002500
00002510
¢0902520
00002530
000025490
00002550
00002560
00002570
00002580
00002590
032002600

00002610

00002620
00002630
00002640
00002650
00002660
00002670
000026890
00002690
00002700

. 00002710

60002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
06002820
03002830
00002840
0002850
00002860
60002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950
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(s NeNR]

aoa

NN

121C

1300

1310

1320

1330

1400

1410

1500

1510

Basic Subroutines

k**X (3) /X (1)
DEXP (-T1)

T = T2 - ARG

S1 = T1#T2%T

G(1) = G(1) + S1

=3
[ S]
([}

G(2) = G(2) + Si/R
G(3) = G(3) = S1*DLOG(R)
CONTINUE

G(1) = TAO*G (1) /X (1)

G(2) = TWO®X (3)*G(2)

G(3) = TWO*G(3)

GO TO 1900

TRIGONCMETRIC FUNCTION.

CONTINUE

$1 = ZERO

DO 1310 J = 1,
G(J) = Dd0S
31 = S1 + G
CONTINUE

N
X(J))
J :

(
(J)

"52 = ZERO

DO 1320 J =1, ¥
TH = DSIN(X(J))

T = DFLCAT(N+#J) - TH - S1 - DFLOAT (J)*G(J)

S2 = S2 ¢« T
G(J) = (DFLOATI(J)*TH - G(J))*T
CONTINOE

DO 1330 g = 1, N
G(J) = TWO*(G(J) + DSIN(X(J))*s2)
CONTINUE

GO TO 1200

"EXTENDED ROSENBRCCK PUNCTION.

CONTINUE
DO 1410 J = 1, N, 2
‘T1 = ONE = X(J)
G(J+1) = C00%(X(J+1) = X(J)**x2)
GI) = =TUNE(X(J)*G(J+1) + T1)
CONTINUE
GQ TG 1900

EXTENDED POWELL FUNCTION.
CONTINUE

Do 151C J = 1, N, 4
T .= X(J) + TEN*X(J+1)

T1 = X(J+2) - X(J+3)

S1 = PIVE*T1

T2 = X(J+1) - THO*X (J+2)
§2 = PQUR*T2*+3

T3 = £(J) = X(J+3)

'S3 = TWENTY®T3#%*3

G(J) = TWO®(T + S3)

G(J+1) = TWENTY®*T + S2
G(J+2) = TWO=*(S1 - S2)
G(J+3) = -THO® (31 + $3)
CONTINUE

00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
20003050
00003060

00003070

00003080
00003090
00003100
00003110
02003120
00003130
00004140
00003150
Q0003160
00003170
G0003180
000023190
00093200
00003210
03003220
00003230
00003240
00003250
60003260
00003270
00003280
00003290
00003300
00003310
00003320
00003330
00003340
00003350
00003360
00003370
00003380
02043390
00003400
00003410
00003420
00003430
00003440
90003450
00C03460
000034790

. 00003480

00003490
00003500
00003510
00003520
00003530

00003540
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1600

1700

1800

1810

1020
1830

1840

Basic Subroutines

GO TC 15900

BEALE FUNCTION.

CONTINOE
S1 = ONE - X(2)

T1 = C1PS = X (1) *S1
S2 = ONE - X (2)**2

T2 = CzP25 - X(1)*S2
S3 = ONE - X(2)**3

T3 = C2P625 - X(1)*S3

(1) = -TWG*(S1*T1 ¢ S2%T2 +
G(2) = TWO*X (1) *(T1 + X(2)*(
GO TO 1900

#OOD FUNCTION.

CONTINUE

S1 = X(2) = X(1)*%2

S2 = ONE =~ X (1)

S3 = X(2) - ONE

T1 = X(4) = X(3)*%2

T2 = ONE - X(3)

T3 = X(4) - ONE

G(1) = ~IWO*(C200%X (1) *S1 +
G(2) = C200%S1 + C20P2*S3 +
G(3) = ~TWO*(C180%X(3)*T1 +
G(4) = C180%T1 + C20P2*T3 +
GG TO 1900

CHEBYQUAD FUNCTION.

CONTINUE
DC 1810 I = 1, ¥

FVEC(I) = ZERO

CONTINUE
DO 1830 J = 1,

T1 = ONE

I2 = TWO*X(J) ~ ONE

T = TWG*T2 :

DO 1820 I = 1, N.

~ EVEC(I) = FVEC(I) + T2

TH = T*T2 - T1
I1 = T2
T2 = TH
CONTINUE
CONTINUE
D1 = ONE/DFLCAT(N)
IEV = -1

DO 1840 I = 1, ¥
PVEC (I) = D1*EVEC(I)
IF (IEV .GT. 0) FVEC(I) =
IEV = =-IEV
CONTINUE
DO 1860 J = 1, N
G(J) = ZERO
1 = ONE
T2 = THO*X(J) ~ ONE
T = TVO*T2

5$3*T3)
TWO*T2 + THREE#*X(2) *T3))

s2)
C19pP8*T3
T2)
C19P8*s3

PVEC(I) + ONE/(DFLOAT(I)**2 - QNE)

00003550
00003560
00003570
00603580
03003590
00003600
00003610
03003620
03003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700
02003710
00003720
00003730
000903740
00003750
00003760
00003770
00003780
00003790
00003800
00003810
00003820
00003830
03003840
00003850
00003860
00003870
00003880
00003890
00003900
00003910
20003920
00003930
00003940

© 00003950

60003960
00003970
00003980
00003990
00004000
00004010
00004020
00004030
00004040
00004050
60004060
00004070
00004080
00004090
00004100
00004110
00004120
00004130
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1850
186C

1870
1900

Basic Subroutines

S1 = ZERO
S2 = TWC
DO 1850 I = 1, N

G(J) = G(J) + FVEC(I)*S2

TH = POUR*T2 + T*SZ - S1
S1 = s2

52 = TH

TH = T*T2 - T1

T1 = T2

T2 = TH

CCNTINUE

CONTINUE

Dz = T#0*D1

po 18790 3 = 1, N
G(J) = D2*G (J)
CONTINUE

CONTINOE

RETURN

LAST CABD OF SUBROUTINE GRODFCN.

OND

00004140
00004150
00004160
00004170
00004180
00004190
G0004200
03004210
00004220
00C04230
00004240
00004250
00004260
v0004270
00004280
00004290
00004300
00004310
00004320
00004330
00004340

- 00004350



APPENDIX 2

‘Sample Driver and Interface Function
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Driver

BERERERRRK

‘THIS PROGRAN TESTS CODES FOB THE LEAST-SQUARES SOLUTION OF

4 NONLINEAR BEQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER
AND AN INTERFACE SUBROUTINE PCN. THE DRIVER READS IN DATA,
CALLS THE NONLINFAR LEAST~-SQUARES SOLVER, AND FINALLY PRINIS
OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS

ONLY A SAMPLE CRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE
INTERFACE SUBROUTINE PCN IS NECESSARY TO TAKE INTO ACCOUNT THE
PORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN
SUERCUTINES IN THE VAKIOUS NONLINEAR LEAST-SQUARES SOLVERS.

SUBPKGGEAMS REQUIRED
USER-SUPPLIED e.c... FCN
MINPACK~-SUPPLIED ... ENOARM,INITPT,SOLVER,SSQFCN

MINPACK. VERSION OF OCTOBER 1977. )
BORTON S. GARBUW, XENNETH E. HILLSTROM, JOBGE J. MORE

SABE UG NRE :

INTEGEER I,IC,INFO,K,LDFJAC,LNA M, N NFEV,NJEV,
NFEGE,NREAD,NTEIES,NWBITE

INTEGEF IWA (40),3A(60) ,NA (60),NF (60) ,NI(60) ,HP(6]) ,NX(60)

DOUBLE PRECISICN FACTOER,FNOEMY,FNGRM2,0NE,TEN,TOL

DOUBLE PRECISION FJAC (65,40),FPNM(60),FVEC(65) ,7A(265) ,X (40)

DGUBLE PRECISION ENORM

EXTERNAL FCN

COMMON /REFNUM/ NPROB,NFEV,NJEV

LCGICAL INPOT UNIT IS ASSUMED TO BE NUMBER 5.
LOGICAL OQUTEUT UNIT IS ASSUMED TO -BE NOUMBER 6.

DATA NREAD,NWRITE /5,6/

DATA ONE,TEN,TOL /1.D0,1.D1,1.D-10/
LCFJAC = 65
LWA = 265
IC = 0
CCNTINUE
READ (NREAD,1000) NPROB,N,4,NTXIES
IF (NERCB .LE. 0) GO T0 30
FACTOR = OKNE
DG 20 K = 1, NTRIES
1c=1IC+ 1
CALL INITPT (N,X,NPROB,FACIOR)
- CALL SSQFCN(4,N,X,EVEC,NPROB) -
PNORM1 = ENORM (M, FPVEC)

WRITE (MWRITE,2000) NPEOB,N,H
NFEV = 0
NJEV = 0

CALL SOZVEE(?Ch,!,ﬂ,x,FVBC,PJAC,LDPJAC,TOL,INPO,IFA,VA,LHA)
CALL SSQFCN(M,N,X,FVEC,NPROB)

FPNORM2 = BNORM (M,FVEC)
NP (IC) = NPROB

NA(IC) = N

MA(IC) = M

NF (IC) = NPEV

G0000010
00000020
00006030
00000040
00000050
00000060
06000070
00600080
00000090
02600100
00000110
00000120
00000130
0000C140
00000150
00000160
00000170
00000180
00099190
00000200
000606210
0060C220
0y006230
00000240
G30900250
00000260
00600270
0000280
00000290
00000300
00000310
00000320
G0000330
00000340
00000350
00C00360
v0000370
00000380
Aa00c390n
G0000Q400Q
00600410
00000420
00060430
00000440
00000450
00000460
00000470
oooaou8ao
00000490
00000500
00600510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
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Driver

NJ (IC) = NJEV
NX(IC) = INFO
FNM(IC) = PNORM2 ‘
4RITE (NWRITE,3000) FPNORM1,FNOR42, NPEV,NJEV,INFO, (X(I),I=1,Y)
FACTOR = TEN*FACTOR - :
20 CGNTINUE
GO TO 10
30 CONTINUE :
WRITE (NWRITE,4000) IC
WEITE (NWRITE,S000)
DC 40 I = 1, IC 4
WEITE (NWAITE,6000) NP (I),NA(I),MA(I),NF(I),NJ(I),NX(I),FNH(I)
40 CONTINUE
sToP
1000 FORMAT (4IS)
2000 FORMAT ( //// SX,8H PROBLEM,I5,5X,11H DIMENSIONS,2I5,5X // )
3000 FORMAT (5X,33H INITIAL L2 NORM OF THE RESIDUALS,D15.7 //

1 5X,33H FINAL L2 NORM OF THZ RESIDUALS ,D15.7 //
2 5X,33H NUMBER OF FUNCTION EVALUATIONS ,I10 //
3 5X,33H NUMBER CF JACOBIAN EVALUATIONS ,I10 //
4 5X,15H BXIT PARAMETER ,18X,I10 //
S 5X,274 FPINAL APPROXIMATE SOLUTION ,// (5X,5D15.7))
4000 PORMAT (12H1SUMMARY OF ,I3,16H CALLS TO SOLVER/)
SG00 FORMAT (49H NPROB N h| NFEV NJEV INFO FINAL L2 NORM/)
6000 FORMAT (3I15,3I6,2X,D15.7) ’
C
C LAST CAKD QF DRIVEEK.
C

END

00000600
00000610
00000620
00000630
00000640
00000650
00000660
00000670
00000680
00000690

00000700 -

00000710
00000720
00000730
03000740
00000750
00000760
00000770
00000780
00000790
00000800
00000810
00000820
00000830
00000840
00000850
000003860
00000870
00000880
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Interface Function

SUBROUTINE FCN(4,N,¥X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER 4,N,LDFJAC,IFLAG

DOUBLE PRECISION X(N) ,FVEC (M) ,FJAC(LDFJAC,N)
LRI I T R L L

THE CALLING SEQUFNCE FOR PCN SHOULD BE IDENTICAL WITH THE
CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NCNLINEAK
LEAST~SQUAEES SOLVER. FCN SHOULD ONLY CALL THE TESTING
FONCTION AND JACOBIAN SUBROUTINES SSQPCYN AND SSQJAC WITH

THE APFROPRIATE VALUE OF PROBLEM NUMBER (NPROB).

SUBPKOGRAMS REQUIRED
MINPACK-SUPPLIED ... SSQFCN,SSQJAC

MINPACK. VERSION OF OCTOBER 1977.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

% 3 o e X X ok

INTEGER NPROB,NFEV,NJEV

COMMON /REFNOM/ NPROB,NFEV,NJEV

IFP (IPLAG .EQ. 1) CALL SSQPCN(M,N,X,EVEC,NPROB)

iF (LELAG .zZU. Z) CALL SSUJAL(@,N,X,FJAL,LDFJAL , NPRUB)
IF (IFLAG .EQ. 1) NFEV NFEV + 1

IF (IFLAG .5Q. 2) NJEV NJEVY + 1

RETURN

ihou

LAST CARD OF INTERFACE SUBRGITINE FCN.

END

3000890
00000900
00000910
02000920
00000930
00000940
00000950
00000960

00000970

00000980
G2000990
00001000
00001010
00001020
00001030
00001040
00001050
000931060
00001070
00001080
00001090
¥0001100
63001110
60001120
03001130
00001140
00001150
J001160
00001170
00001180

.
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Sample Data
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3
g

— b b ’
LSO OCVTEUNLLIINANC VI EWN =

N NTRIES
2 3
4 3
2 2
4 3
3 3
6 P
9 2
12 2
S 3
€ 3
7 3
8 1
9 1
10 3
30 1
10 3
1 3
10 3
10 3
10 3
10 3
10 3
) 0

Sample Data for Nonlinear Equations

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110

03000120

00000130
030600140
00000150
00000160
00006G170
00000130
00000190
00000200
00000210
030000220
93000230

2]



NPROB

B B J JP S S N S R S e =
OO VTUNUTNE WN 2 @ a0WVWONANEWWNN a2

o

WO aFNVNWNOVOOTWEWLWNhDhEsEWNDOOLLVILULILOWWO

=

O b dadWamsmwWaawWWWLWWLWWWWWa awaaa

Sample Data for Nonlinear Least Squares

00000010
00000020
00000030
00000040
00000050
00000060
00CQJ0070
00000080
00060C090
00C00100
00005110
00000120
03000130
00000140
€J000150

00000160

€2090170
d000180
00000190

00000200

v0G00z210
00000220
00000230
00000240
90000250
600430260
620930270
00000280
03C00z290
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NPROB

- b .
= OV VWO NN NEWN -

b b b ed —d h b ad = b
SCodMomodounmeswNn

N NTRIES

-2

-—
COWODAENEFNVNOWENOE2ONMNVOWLWNWLOW

-

-

—

DM L WLWLWLWLNWLW WWW WWW o -

3

Sample Data for Unconstrained Minimization

00000010
00000020
00000030
00000040
00000050
0000u060
0006070
00000080
00000090
00C0G100
03090110
00000120
00000130
00000140
03000150
00020160
03000170
00000180
032000190
00000200
00000210
LJuooL2u
00006C230
2000240
00000250





