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ABSTRACT

We present the theory of nonlinear adaptive networks and discuss a few applications. In
particular, we review the theory of feedforward backpropagation networks. We then present
the theory of the Connectionist Normalised Linear Spline network in hoth ita feedforward
and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata.
We then discuss applications to chaotic time scries, tidal prediction in Venice lagoon, finite
differencing, sonar transient detection, control of nonlinear processes, control of a negative
ion source, balancing a double inverted pendulum and design advice for free electron lasers
and laser fusion targets.

1. Theory

A young child can learn te operate a complex nonhnear process, walking or riding a bicvele for
mstance. with no knowledge of physics or differential equations A Juggler can balance an inverted
broom stick with only coarse knowledge of the state of the system A humian being seemis to be able to
act with reasoneble precision i a complex lighly interactive world with partial or partially incorrect
information. One wonders, then af the traditonal deductive approach of physicists and engineers to
prechction and control cannoi be augmented by a more inductive point of view. Does one, for example.
need to know the details of a plasma instability in order to predict and control it? Can the behavior
of a chaotic process be predrieted with no initial knowledge of the dynamies or dimensionality of the
systemn” Taking life as an existence proof, we are motivated to looh at some inductive and adaptive
systeris and their anteracion with complex nonlinear phenomena  In particular, we are interested i
how imductive systerus can be used to predict or control the hehavior of nonhinear phenomena In this
secion we will review the feedforward backpropagation network, describe a new adaptive local network
and describe the computationally more powerful stochastic cellular automaton In Sec 2 a number of
real world apphications will be discussed

1.1 Feedforward Backpropagation Network

The most common nonhnear adaptive network i the feedforward backpropagation network ' This
net sollustrated i Fig 1 The netas compesed of snput and output lavers, and one or more hidden
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layers of neurons. Information flow is in a single direction. in this case to the right. There are usually
two or more lavers other than input or output layers. These are called hidden layers. The output. y,.
of the i'® neuron is given vy

v =sig(E, Wy, +0,) 11-1

where y, is the output of the j** neuron in a layer immediately to the left of the layer in which the it
neuron is Jocated. The sigmoid function, stg. is a rounded Heaviside step function,

sig(x) = (1/2){1 4 tanhir)). 1.1-2

The form of this function is chosen to mimic, in a rough sense, biological neurons. The weights, W),
and thresholds. 6, are determined by least mean square  iainimization. Define a cost function,

E = (1/9uM [9(F,) - (7)) 11—

where F, is an input training vector. g(7,) 1s the training output for the input, £y, and ¢(f).) ix the
network output for the training input, .. The sutimation is over all trainiag points We do not rule
out the possibility that a training point can be shown to the net more than once. In fact, that s the
usual situation Therefore, M is the number of times that any training point is shown .o the net For
convenience, we have assurned a scalar output. ‘There is no fundamental reasan that there could not be
multiple outputs. The learning algorithny is sitnply the nunerical technigue for the minimization of £
Common minimization methods, for instanee, are gradient descent, conjugate gradient, and Newton's
method.?

Backpropagation networks have had some nupressive succeases. This claas of networks has been able
to beat most of the traditional methods 1n the accurary of time senies prediction 34

Another impressive example is that of control of n bazking truck (Fig. 2) * Two nets are used i ths
problem, one to learn how a truek works and the other to learn how 1o back a truck to a loading dock
given that the uet knows how a trock works The truck as only pernutted to back, not frive forward

Y
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Backpropagation networks have some problems, however: (1) They require a great deal of training
data for reasonable accuracy; (2) Interpolation is poor without a great deal of training; (3} Backprop-
agation nets are much slower, for comparable accuracy, than the best non-neural methods.® In many
practical problems large amour's of data are rot available. At min.mum, a neural net must be able
to automatically interpolate and extrapolate from a small data set. Also, in many problems, learning
must occur in real time. Slow learning limits the application of neural nets.

1.2 Connectionist Normahzed Linear Spline (CNLS) Network: Feedforward Operation

Learning speed has been addressed by Moody and Darken.” They replaced the backpropagation net
of sigmoidal nonlinear elemcnts with a net of local radial basis functions. Much of the reduction in
learning time is due to the fact that there is only one hidden layer in a radial basis net while there
are typically two or more in a backpropagation network Moody an.] Darken estimate the reduction in
learning rate on the Mackey-Glass equation for comparable accuracy to be a factor of 10°-103. Casdagli®
has shown how this net may be used to obtain invariants of a chaotic time series.

Radial basis function nets do not, however, address the problem of excessive training data or poor
interpolation. To achieve comparable accuracy to the backpropagation benchmark of the Mackey-
Glass equation, several more neurons are required. More significant, the number of training data
points required to train the net is greater by a factor of 27.

A natural evolution is to miodify radial basis function nets in a manner that improves interpolation

and reduces the amount of training necessary for accur ¢ learning.*='? Note the identity,
o Y ie(Fy (D)
9(f) = L ———. 1.2-1

}';JI'J('F)

Here. p,(F) is a localized function of & about some G,. Hence, (F) on the right of Eq. 1.2-1 can 1o
approximated by its Taylor expansion about d@,. We have then,

o(F =:3"=,[f,+(:‘—a,)-d',]‘-.£’£)7 12-2
X, (F)

for an approximation to g(F) This net differs from the radial basis function net of Moody and Darken”
i two ways, the use of normalization and also a linear termn, (F-4, )-d‘, The use of a normalization teem
was suggested hut not pursued by Moody and Darken The addition of these two tetns is responsibile
for the reduction in the amount of training data needed to obtain reasonable approximations. As in
the case with radial basis functions, the traimng of f, and d-, is hinear and henee very fast. The widths
of the basis functions can also be trained  This tramng 15 nonlinear. We will show, however, for
the learning algorithm we adopt that this training can also be very fast  In some applications the
components of the input training vector are of different types. For example, one nught want to include
both slope and curvature information in the input vector 7. A radial function of (F - &,)?, which
weights every component equally might not be appropriate  In these situations differential weighting of
the components ean be employed The basis funetion will then be wids r i some directions than others
Care must be used when training the widths differentially s mualti humped basis functions can result
The locations of the basis function centers can also be trained. We typically use a geanetic algorithm
for this training

Learning algorithms ean be either on-line or off-line Off hine algorithis attempt to calculate weights
without any reference to time ordening of the tramng data Thus, all the training data must he
collected before trmmng can start On hoe algonthias, on the other hand, attempt to modify: weights
as information in the form of training data flows i On lioe algonthms are able to handle varying
amounts of training data amd are able to modify the system e the presencee of drift an the conditions
This is very diflicult with an off line algonthm - Additionally. on hine Lgorthms are able to handle
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amounts of input data that would severely tax memory storage capacities if an off-line method were
used. Most neural nets are trained. therefore, with on-line methods.

On-line metkods themselves come in two extremes. The method can remember all the data that
it has been shown up to the present or it can only be aware of the training set it is being shown at
the present. Conjugate gradient learning and multidimensional Newton's method fall into the former
category. We will use a method that falls into the latter category. Since we will use less information,
we will pay a price in accuracy, but this is cornpensated by speed and simplicity.

The most important weights to be trained in the CNLS net are the linear weights f, and d-, The
method is essentially an iterative Newton'’s method and is described in detail in reference 10. The
recursion relations are

1, . L 2Py (Tp)Eapa(dy)
P+l _ P o - L ASd Find 1 AN B4 -
f, - ,J + 3[g(.'l'p) ¢(1P)] E‘pZ(il‘) 12 3
and
i} A1, L (Fp = )0y (F)SapnlFy)
r+l _ TP 2 _ F J PN T o —_
c.‘iJ —d, + 3[.0("r) o(#y)) Ek(f‘ak)zpi(;r) ' 12-4

where the subscripts (superscripts) p indicate the p'* presentation of a training pattern.

Following Lapedes and Farber? and Moody and Darken” we test the network on the evolution of the
logistic map. Here. the network must approximate the function

Tnsl =A2,(1 —z4).

The input to the net is r, and the output is 2441, The results are displayed in Fig 3. As in the case of
Lapedes and Farber and Moody and Darken, we use five neurons (basis functions) in our hidden layer.
These authors used, in addition, a linear connection hetween the input neuron and the output neuron.
There are & total of 10 weights total to be trained in our net. This is to be compared with 17 weights
in the backpropagation net of Lapedes and Farber and 15 for Moody and Darken’s net The previous
authors used 1000 input-output pairs to train their nets  Initially, we use four. The locations of the
four training points are marked with diamonds and arrows in Fig 3. The centers of the basis functions
are marked with long dashes on the abscissa of the top plot in Fig. 3. Conjugate gradient training was
used in the barkpropagation and radial basis function nets, while we have used the one dimensional
Newton's method of Egs. 11-21 and 11-22. As an initial guess for the weights we chose f; = g(a,) and
d-J = 0. The funztional form for the basis functions were taken to be Gaussian, exrp(-3(7 - d,)?).
where 3 = 1/0 5% The approximation bas«d on this imtial guess is displayed  The four training points
were shown to the net randomly and in thas traiming run the net saw a training point 4000 mes (1000
tinies, ol average. per traiming pair)

Trained
avan ...
-—a . Iy "
\ /c, / s G ol ! V |{
/; lnviial guess . . ’
’ . . .
L A N ' .
0 cycle 4000
PIG. 8
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The net performs well even when presented with only four training points. It can be scen that a
smooth and reasonable interpolation obtains. The worst fit occurs in the lower left portion of the
parabola v here the net is forced to extrapolate. The error here is 5 to 10 percent. Prediction of a novel
time series is displayed in the middle plot. It can be seen from the absolute error curve on the training
points that most of the learning occurred in the first 20 training cycles. Slow improvement is seen after
that.

If the net 1s traincd on 100 points, the prediction accuracy improves Once again the learning occurs
on a fast and & slow time scale.

Training on the widths, 3,. improves accuracy even more. The total prediction error drops to less
than a percent and becomes comparable to the error of approximately 0.5 percent using backpropagaticn
or radial basis functions with conjugate gradient learning (Moody and Darken 1289). With training
on widths, the total number of adjustable weights in the net increases to 15 which is comparable to
the backpropagation and radial basis function tests. The total number of training points, here, is 100
compared with 1000 used by the other nets. Training took a few minutes of SUN 3/75 tiine as cornpared
with an hour of SUN 3/50 time for the other twc nets.

1.8 CNLS Network: Recurrent Operation

The CNLS net works reasonably well for smooth function approximation. There are many instances,
however, when one encounters discontinuities and singularities and a smooth approximation is inade-
quate. A discontinuity very familiar to physicists 1s the shock wave. A simple description of a shock
wave is given by'3

_+.-(—:=0 14-1

where t is the fluid velocity and t and r are temporal and spatial coordinates, respectively. Fq. 1.3-1
has the recurrent solution

r=v(r-1tl). 13 -2

Faster moving fluid elements can overtake slower moving elements with the net result that an initial
shallow velocity profile is steepened. Eq. 1.3-2 can be solved by iterating on an initial solution from
t = 0 to some final time. (. This is reminiscent of the generation of fractals by iterated function
systems. !4

Motivated by the shock wave and fractal examples we examine the possibility of treating disconti-
nuities by itcrated adaptive networks '* To incorporate this recurrency into the CNLS net one extra
mput neuron is added for each output neuron (Fig 4). These additional ‘feedback neurons’ are used
to feed the previous state of the network to itsell The variable ¢ is s scalar which rescales the input.
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In the functicn evaluation phase, the network is iterated many times (5-20) for each input vector.
The functions converge to fixed points if the net has been properly trained. The initial guess for the
iteration is obtained from the neura! net in feedforward mode.

If t is chosern too high, the network will rely too heavily upon the feedback neurons, resulting in poor
performance independent of the input vector. If t is too low, however, performancc will approach the
smooth approximation of the feedforward net,

The fixed points are determined by training in a feedforward mode. The desired outputs arc used
as inputs to the feedback neurons as well as for error correction at the output of the net. The network
tends to generate surfaces through the fixed points with shallow derivatives ensuring stability of the
fixed points.

The ability of the net to identify and approximate discontinuities is displayed in Fig. 5.

FIG. 6 The upper plot illustrates the approximation of a step function by the feedlorward CNLS
network. The dark line is the approximation. Note the “Gibbs' ® phenomena around the discontinuity.
In the lower plot the CNLS net in recurrent operation was used to approximate the step function.

1.4 Adaptive Stochastic Cellular Automata

An adaptive newwork iu recurrent operation is an example of a finite state machine.!® Finite state
machines are able to recognize regular grammars. In actual fact, however, adaptive networks have only
demonatrated regular grammatical inference of “toy” problemis. More sophisticated inference can be
performed if memory in added to finite state machines  We ean add memory to adaptive networks
by linking together recurrent networks so that the output depends not only on the current output
and input of the network but also on the output of neigihoring networks. A netwerk of finite state
machines linked in this manner is called a cellular automata ' It has been conjectured that even simple
ceilular sutomata are able to perform universal computation ' Iy our cellular automata the finite state

¢
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machines are adaptive. The space of weights can be of very high dimension. In order to more efficiently
explore such a large space we use genetic tochniques. The input-output mappings arc thus stochastic.®
The inputs, outputs, and weights are usually simply encoded into binary form.

2. Applications

In this section we briefly describe a few of the applications of the CNLS net in both feedforward and
recurrent operation and of the Adaptive Stochastic Cellular Automaton.

The city of Venice, Italy has sunk approximately 25 emn in the last 100 years. Fi.nding has become
a serious problem. Because of pollution in Venice Lagoon, attempts to control the flooding with gates
must perniit unimpeded flow whenever high water is not expected. It is therefore important to be able
to predict when flooding will occur with some accuracy. There is a regular astronomical component to
the tid=s in Venice Lagoon &s well a possibly chaotic component due to meteorological phenomena. We
have used the CNLS net in feedforward mode to predict tidal behavior. The results are illustrated in
Fig. 6.

FIG. 6 Ten days are displayed. Prediction was three hours into the future based on the tidal data
for twelve hours into the past. Twelve basis functions were used. Training was on 1984 data. Prediction
is on 1985 data. The two horisontal lines correspond to the 100 em an? “10 crn marks. A siren is
sounded when a local committee in Venice predicts the tide will exceed 11 m.

\We can use the adaptive stochastic cellulat automata to balance an inverted double pendulum.?®
The double pendulum system that we want to coutrol with the stochastic CA is a cart-pole system.?!
The system is controlled by applying a force io a cart on which the two poles are to be balanced. In
addition to one pole hinged on the cart, we h:nge another pole on the tep of the first pole. Balancing a
single pole is a problem with one unstable degree of freedom (angle 6 ). Balancing an inverted double
pendulum is a problem with two unstable degrees of freedomn (angle 8, and ;). If the double pole
systemn i6 to be coutrolled by a force f, on the cart the two poles must oscillate on sufficiently different
time scales. To make the system easy to control. the first pole is chosen to be 10 times longer than the
second pole. The characteristic timne scale is about three to one,

The parameters used in simulation are: cart weight is 1 kg. The first pole weighs 0.1 kg and is 10
meters long, and the second pole weighs 0.1 kg and is one meter long. In this exaniple, we only control
0| ~nd 07.

The initial condition is chosen randomly with ~-3° < 8, < 3°, <5° < 63 < 5°, and some small
angular velocitica. The time step in reinforcemeint learning is 0.015 sec. The input variables are coded
into 64-bit strings.

The stochastic CA s rewarded or penalized according to an adaptive eritic. and when either 8, or
| I ' 1

A, reaches £10°, a fraction of the previous actions are punished  After about two thousand failures,

2 ]
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the adaptive controller is able to balance the inverted double pendulum system for two hours simulated
real time, which is the time limit in the simulation.

Other applications which we have considered'? but which we do not address here are application of
pattern recognition techniques and a simplified CNLS net to detection of transients in sonar signals,
using adaptive networks to speed up finite differencing, control of beam quality in a negative ion
sc *~ce,'! and design advisors for Free Electron Lasers and laser fusion targets.

3. Concluding Remarks

Nonlinear adaptive networks are still in their infancy. As with any new £eld there is optimism to the
point that often the capabilities of the networks are oversold. On the other hand, the field has advanced
to the point that it is clear that there will be a comptational niche that can be filled by adaptive
computing. It is likely that networks of the futurc will look little like the feedforward backpropagation
networks in common use today. Already we see how to reduce the data requirements and increase the
learning speed by a few orders of magnitude through a more careful approach to architectures and
learning algorithms. It is also becoming clear how to increase the computational ability of the networks
through the use of networks of nctworks.
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