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We present the theory of nonlinear adaptive networks and discuss a few applications. In

particular, we review the theory of feedforward backpropagation networks. We then present
the theory of the Connectimtiat Normalised Linear Spline network in both its feedforward

●nd iterated modes. AlYo, we briefly discuss the theory of otochatic cellular automata.

We then discuss apphcations to chaotic time scrim, tidal prediction in Venice lagoon, finite
differencing, oonar transient detection, control of nonlinear processes, control of a negative

ion cource, balancing a double inverted pendulum and design advice for free electron laaers
and l~er fusion targets.

1. Theory

1.1 Feed/orward Backpropagattvn Network
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layrs of mwrow information flow is in a sillglr dir(”ctim, in this ~aw to thr right, Thcrr arr USUAII}

IW(I or more Ia}t’rs othrr lhFMI input or outI~Iq[ Iayt’rs TIIMI arc cal!cd hiddm Iayrrs. l’hr WI pul. y,,
of th~’ i’h n(’ur(m is givcu I)y

Ill = sig(s, It’,)yj + U,) 1.1-1

w}lt,r~~y, i> 1111{111111111of ttlt, j’h nrur[)l) in n layrr IIIIIIN~,lI;IIPly to thr lef~ of thr Iaycr ill whlrh Ih(’ i’h

ncur!~ll is Ioc; i(wi, Thr 6ign]~mi (II IICII(III, sig. is a roull~!~.(1 IIrilrisidl citcp function,

sig(z) = (1/2)[1 + furlh(r)]. 1.1-1

Thr forlll of IIIIS furlcli(ul is rh~mrn to mllllir, in n rnug~ srnsf, hi{dogiral ncurolls 7’1:1’wrights, 11”,,,

arid [Ilrrstmlds, 6’,, ar(’ drtrrnllt:rd hy ICMI nwwl squar~ iillllilnizal irjll lMIN’ II C(kt fllncll(m ,

~h~ro ~r ~1 M in~}~t Lrailllng v?clor, g(;j, ) IS thp t mining CJUlpUl for 1111’inpul, Fp, md d(~,t ) is Itw

nrtwrwk OIIIp UI for Ihr trminmg input, Fr Thr nulllillation ik ovrr all traini.lg poim+ \Vr dIJ nd rub’
out {hc pmsit, illl) thnt a lraining Imint cm t~r dMM’11to the nrl Itmr Ihall mm’. III fhrl , lhnl m thv

umal riilunli(m I’hrrrforr, ~f ifi thr nundlr’r of 111111’s thnt RIIy lrail]lng IIINnl i~ hhown .) th~ IIVI F:,r

cmlvenirntr, wr hnvr murIml n scalar oulpul ‘1Illrl IS II(J futldmnwhlnl rr.wtl~ thnt thrrv C(IIII(I nol Iw

mul(ll,]r outljutfi. The Irnrning mlgr~rilhlll ih sillll~ly LIIOr,ullwrlcnl (rrhiliqur for thr nlinillli~~tioll of 1’.’
~’OlllfllfJll nllfllnlizatlof) nW~ hodh, fOr Illkl IIIIC(’, arr gradl~’llt dW{’f!lll, conjugalr gradicl)l, and NcwloII’N
mrl. hori.2
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Back propagation networks have some prohlcms, however: (1) They require a great deal of training
data for reasonable accuracy; (2) Interpolation is poor without a great deal of training; (3) Backprop

agation nets are much slower, for comparable accuracy, than the best non-neural rnethods.6 In man)
practical problems large amoun!s of data arc not avai]ah]c. At minimum, a neural net must be able

to automatically interpolate and extrapolate from a small data set. Also, in many problcrm, learning
must occur in real time. Slow learning limits the application of neural nets.

1.P Connectwnimt Normalued Linear Spline (CNLS) Network: Feedjorward Operation

Learning apeed has been addressed by Moody and Darken .7 They replaced the backpropagation net
of aigmoidal nonlinear elements with a net of local radial basis functions. Much of Lhc reduction in

learning time is due to the fact that there is only or-m hiddeu layer in a radial basis net while there
are typically two or more in a backpropagaticm network Moody an.] Darken estimate the reduction in
learning rate on the Mackey-Glw equat ion for comparable accuracy to be a factor of 10?- 103. Casdagli’

h= shown how this net may bc used to obtaiu invaria.nts of a chaotic time rwries.

Radial ba~is function nets do not, however. address the prohlcm of txcessivc training data or poor
int erpolat ion, To acllicve comparal]lc accuracy 10 the Laclipropagat ion bcnchrms:li of the hlaclwy-

Glass cquat ion, srvcral more neurons arc rrquirul. hlc)w significant, the number of trwining data

points required to train the net is grrater by a fartur of 27.

A natural evolution is to nmdify radial basis fullctim] nrts in a manner that improves itlt(’rpolatiol]
and reduces the amount of training nrccssar} for accur IIi’ 11’arning..‘-12 Notr the idclllily.

1,2-1

12-2

:{
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amounts of input data that would severely tax nlrnlory storage capacities if an off-line method were
used. hlost neural nets are trained, therefore, with on-line methods.

On-line methods themselves come in two extrwmls. The method can remember all the data that
it h= been shown up to the present or it can only IJc aware of the training set it is being shown at
the present. Conjugate gradient learning and muh idimensional Newton’s method fall inLo the former
category We will use a method that falls into the lat[cr category. Since we will UFOleas in forma~:on,
we will pay a price in accuracy, but this is compensated by speed and simplicity.

The most important weights to be trained in the CNLS net are the lirwar weights J, and ~ The
method is essentially an iterative Newton’s method and is described in detail in reference 10. The

recursion relations are

and

1.2-3

1.2-4

where the subscripts (superscripts) p indicntr the pth prmmlation of a trtining patlrrtl

Fo!lowing Lapcdrs and Farher3 and Moody and Darkt,ni we test the network on the evolution of thr

logistic map Hero. the nctworli must approxin~at,, thv fullc(ion

7“+] = 4r,, (l –Zn),

Thr input to the nrt is Zn and I}IC output is Zm+l. Tli! n’suits arc di+l~liiyrd in Fig 3. As in thr CMC of
Lapcdts and Farber al~cl Moody and Darlivn, wr USI fivr nvurcms (basis function%) in our hidden Iayvr
Thesr Authors uw’d, in addition, a linear conrl~”rlil,ll lIrIWCY’11[IIC input ncurcm and the output nrurotl

Thcrr art’ n total uf 10 wrights total to br trtiill~.d ill our III*[, Thih is to hc compared with ]7 weights

In the barkllrnpagatmn nrt of l.~prdvs arid Farlll*r aIIIl I:J for Moody and IJarkcn”~ net The previous

authors used 100(I” lnilu[-out~~ut pairs ICI train [hl’lr IIIIIS Initially, WC II* four, ‘l”hr locations of thr
four training Imints nr~ markvl with diam~-mds ail!] artlmvs in Fig 3 Thr om[crs of thr basis fllnclions

arr mark=rl with kmg clssh~’s 011 thr nlwissa of ttl[’ I(III 1111~1in Fig, 3. ~rmjugatc gradicn[ trainil)g ww

used in thr bark~~rol~agaliorl rmd radial h-is fullrti~lll 111’[s.whilr wc havr used thr nnc dinwnsiunal
Nt=wt(,n’s nlethi,rl of }Iqs. ]]-?] And 11-?2 ,\h iiII itii[ i;il RIII.SS for thr wcighis Wr chmr /, = g(ri, ) and

cJ = 0. Th( flllrllf~lltil form for It,c llk~is fullrt i,)li> wl’rr takrn t~I Iw (;aussian, fr~l(-fj(; – d, )2),
whrrr ;? =. 1/(1 ~J2 Th~l a~~llroxirllati(]ll Iwasl’(I 011 Illis illll I;II gliPss is f.lislllayd “1’h~’f[mr training I,uinl+
wcrr sh(,wrl tt~ III(, n-l rnlld,mlly anll ill 1111*tr;Lltlltlg rut] llIr II(’I saw a trAillillg ~~f)illl 4000 tlrtlts (]()()[1
[IIIIc*, 011 avrragr. pr tralllillg I);ur)

?1(:. s
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The net performs we]] even when presented with only four training points. It can be seen that a
smooth and reasonable interpolation obtains. The worst fit occurs in the lower left porlion of thr
parabola v here the net is forced to extrapolate. ‘The error here is 5 to 10 percent. Prediction of a novel

time series is displayed in the middle plot. It can bc seen from the absolute error curve on the training

points that moat of the learning occurred in the first 2(J training cycles. Slow improvement is acen after
that.

If the net is trained on 100 points, the prediction accuracy improves Once again the learning occur~
on a fast and E slow time scale.

~aining on the widths, 13j. improves accuracy even more. The total prediction error drops to leas
than a percent and becomes comparable to the error of approximately 0.5 percent using backpropagation
or radial basis functions with corljugate gradient learning (Moody and L)arken 1S89), With training
on widlhs, the total number of adjustable weights in the net increases to 15 which is comparable to
the hackpropagation and radial basis function tests. Thr total number of training points, here, is 100

compared with 1000 used by the other nets ‘llaining took a fcw rninutcs of SUN 3/75 ti)ne as compared
with an hour of SUN 3/50 time for the other twc nets.

1.S CNLS Network: &current Operation

The CS LS net works rc-nahly WCII for srnoot II fullct ion approximation. Thcrr arv many Ins[ancm,
however, when one eriroun[ers dlsccmtinuilics and sillgulari[ie~ and a smooth a~~proxlmation is inadr-
quatc A discontinuity very familiar to physicists IS (IIC snuck wavr. A sinlplt, dc~crilltion of a shock
wa~c is given by’3

at 81

Tf+%=() 1.3-1

where I is the fluid vrlocity and t and z arc tcn]~mrid and slmtial coordinates. rcslwctivcly. I?q. 1.3-1

has th~ rmurr(’tlt solution

t’ = I’(r– t’1), 1.3-2

Ihl’1 I I A)lh’ (11 11,1 II A)I14

1 I I

x1

1-
/

$i
.

I
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III the fun~ticil evaluation phsuw, the network is iterated many times (5-20) for each input vector.
The functions converge to fixed points if the net has heen properly trained, The initial guess for the
iteration is obtained from the neura! net in feedforward mode.

If t L= choeeri too high, the network will rely too heav’i]y upon the feedback neuronE, resulting in poor
performance independent of the input vector. If t is too low, however, performance will approach the

srnoot h approximation of the feedforward net.

The fixed points are determined by training in a ftwdforward mode. The deired outputs am used

aa inputs to the feedback neurons as well as for error correction at the output of: he net. The network
tends to generate surfaces through the tixcd poims with shallow derivatives ensuring stability of the
fixed points.

The ability of the net to identify and approximate disrontinuitim is displayed in Fig. 5.

FIG. 6 The upper plot illuntratee the ●pproximation of a step function by the feed[omard CNLS

network. The dark line ie the ●pproximation. Note the “Gibbs’ ● phmomena uound thediscontinuity,
la the lower plot the CNLS net in recurrent operation waa used to approximate the step function,

1.4 Adaptive Stahattic Ceilalor Automab

An adnptiv~ tmwork in rccurrrnt rqwrnticm is mn eXaIIIIIlrI of n finitr statr marhinrlfi Finitr ntatr

machinm ar~ able to rrcognim rrgular grart)tnarn In acl U:II farl, hrnvrvrr, adapt ivr rwtworkx have only
drmmnntratmi regular grali~nmtiral infrrcnrr of “toy”’ prolllvllls. Morv aophislicatrd infrrrnce can INI
pcrforllrrrl if mrrnory in adrivd to firlilr nlhlr machinrs \VII can Add nlrrrmry to adaptivw’ nrtwol~~

hy linking trrgethm rrcurrrnt nrtwork~ WI [IIR[ (hr out ~~ut IIIIprIII[lh not mly WI tlw curr~n( outp\\t

and inl)ut of lhr nrtw(~rk hut aiwl m Ihr mllllut of nrlx’ll,(wlng nrltvorkm A nctw(:rk of Iiuitr RIAIIS

machinrs Ilnkrd ir~ this nmrwr ip rmll~mda crllutmr autmllatn ‘7 II IIM lweII ronjrrt ur( (1thnt rvrtl oinll)h.

crilulnr hutf)flln!a nrl~ nhlp 10 prrftwltl unlvf, rwil rtmIIIlllIIl irm Im 111f~llr r~,lllllAr aul{mlntn tlw frnitf. ~t~l~’

6
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machines are adaptive. The space of weights can he of very high dimension. In order to more ef%cicntly
explore such a large space we use genetic t.’chniques. The inpui-output mappings arc thus st.ochastic.lg

The inputs, outputs, and weights arc usually simply encoded into binary fnrm.

2. Applications

In this section we briefly describe a few of the applications of the Cl$LS net in both feedfurward and
recurrent operation and of the Adaptive Stochutic Cellular Automaton.

The city of Venice, Italy has sunk approximately 25 cm in the last 100 years, Fi!.oding has become

a wrious probkm. Because of pollution in Venice Lagoon, attempts to control the flcmding with gates

must p~mit unimpeded flow whenever high waler is not expected. It is therefore important to be able
to ywjict when flooding will occur with some accuracy. There is a regular twtrcmomical component co
the t;d=s in Venice Lagoon M well a pcasibly chaotic component due to mctemrological phenomena. \f’c

have used the CN LS net in feed forward mode to predict tidal behavior. The results are illust rated in
Fig. 6.

PIG. 6 Ten days are displayed. Prediction was three hours into the future bated on the tidal data
for twelve hours into the paat. Twelve bwis function- were used. ~ailing w= on 1984 data. Prediction

is on 1985 data. The two horizontal lines comespond to the 100 cm am-r “ 10 cm niarks. A siren is
mounded when ● local committti in Venice predicts the tide will exceed 1i m.

\Vr can uw the adaptive stochastic cellular autcmlata to balance an inverted double pendulum,20

The douhlc pendulum system that wc want to control wilh the stochastic CA is a cart-pole system. z’
TIw system is controlled by api)lying a forcr to a cart OH which the two poles arc to bc baIanccd. In
addition to one pole hinged on the cart, wc h:llgr almtll{’r po]c on the tcp of the first pole. Balancing a

singlu polc is a problem with orw unslaljlr dcgrw of frrvdrml (anglv t? ). Balancing an inverted doublr
pendulum IS a problem with two unstahlc dcgrrcs of fr~edom (angle 01 and t?2). If the doub]c pcdr

system is to be controlled by a forw j, on th~ CWI tlw two polm must oacillatc on sufllciently diflcrt’nt

timr scalm. To make the nystrn] rMy to control, t!lc first pok is chcnwn to bc 10 tinms longrr than the

second pole. The characteristic tilnc scalr is al,mut three to one,

The parameters r.md in emulation arr: cart weight is 1 kg. The first pole weighs 0.1 kg and is I(J

mcterb long, and th~ second POIC weigh~ 0.1 kg and is onc meter long. In this exanlplr, we only control
01 -.nd t9z,

Th~ initial condition is chosen randomly with -3” < 01 < 3°, -5° < 8? e 5°, and som~ small
nngulnr vrlocitim. Th~ tinw step in rrltlformvlwill lrarnin~ in 0.015 sm. Thr input variables IUr codrfl
11110 64-bit strings

Thr st~)chas[ir CA is rrwmiod or pmalmwl armrdlllg I(I M adnlltivr critic, and whrll either r?, (Jr
f12 rrac}lm * 1o”, m frm-li[m of 1111,l}r~tltms nrll(llls iirl’ ]Illlllhhf”ll Af[or RINNI( tw~} th(mri,w~d fmlurm,

7
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the adaptive controller is able to balance the inwvted double pendulum system for two hours simulated
real time, which is the time limit in the simulation.

Other applications which we have consideredi2 hut which we do not address here arc application of
pattern recognition techniques and a simplified CIf LS rmt to detection of transients in aoriar signals,
using adaptive networks to speed up finite difhcrencing, control of beam quality in a negative ion

sc ‘-ce,l ] and dmign advisors for Free Electron L=ers and l-r fusion targets.

s. Coneludlag Remarks

Nonlinear adaptive networks are still in their infancy. As with any new field there is optimism to the
point that often the capabilities of the networks are oversold. on the other hand, the field has advanced

to the point that it is clear that there will be a comp”ltational niche that can be filled by adaptive

computing. It is likely that networks of the future will look little like the feedforward backpropagation
networks in common use today. Already we ace how to reduce the data requirements and incre~e the
learning speed by a few orders of magnitude through a nlore careful approach to architectures and
learning algorithms. It is also becoming clear how to incrmsc the computational ability of the networks
through the use of networks of networks.
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