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DETERMINATION OF MOMENTUM DISTRIBUTIONS FROM DEEP INELASTIC
NEUTRON SCATTERING EXPERIMENTS - A BAYESIAN STUDY

D. §S. Sivia, R. N. Silver

Theoretical Division and Los Alamos Neutron Scattering Center
MS B262, Los Alamos National Laboratory
L.os Alamos, New Mexico 87545

ABSTRACT

A Bayesian analysis shows that the determination of momentum distributions in quantum fluids
and solids by deep inelastic neutror scattering is an extremely ill-posed problem. The argument is
illustrated with the issue of the Bcse condensate fraction in superfluid “He.

INTRODUCTION

There is a long history of experiments [1} aimed at measuring the momentum distributions in
quantum solids and fluids by neutron scattering at high energy and momentum transfers, which is
termed “deep inelastic neutron scattering” (DINS). Undeniably experiment can distinguish between
various theoretical models for the neutron scattering law. However, the goal of the present paper is to
show that the inverse problem of extracting n(p) from rthe experiment is extremely ill-posed. For
example, analyses of such experiments on superfluid *He (2] have claimed to confirm the existence of
a Bose condensate fraction, n,, and w determine its value. We show that available data are also
consistent with n,=0, and that available determinations of n, should be regarded as model-depend-
ent,

BAYES' THEOREM

All data analysis methods for determining n(p) are, at least implicitly, based on Bayes' theo-
rem. This is expressed in terms of the probability density function (p.d.f.}, P[na(p)|D(Y)], which is

the conditional probability of the mcmentum distribution, n(p), given the data, D(Y). Bayes’ theorem
states that

Pla(p)lD(M)] « PID(M)|n(p)] x P[n(p)| . (1)

Here, P[n(p)] represents our state ol knowledge about n(p) (or the lack of it) before we have any
data - this is referced to as the Prjor p.d.[. The data modify our prior state of knowledge throuvh the
term P[D(Y)|n(p)] . which is the probability of obwaining the measured data for a given momentum
distribution - this is referred 1o a¢ the Likelihood function. In the limit of independent Gaussian
statistica, the Likelihood function reduces w the familiar form

2
DN |n(p)] = exp(- 55) . (2)

The product of the Likelihooo and the Prior p.d (. is proportional to P{n(M D] the Posterior

pd.f., or our state of knowledge al'er we have measured the data. Our best estimate of n(p) is given
by the ma amur of the Postenior p d. [, and the 1eliability (error estimate) is given by s widih,
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For example the convenuonal procedure to determine n; in *He [2] assumes a parucular mode: for
n(p) with a few parameters based on the physics of the problem, e.g. the terms in n(p) proportional 1o
n, mvolve a delta function plus associated //p? and //p singulanues. Another procedure s to arbi-
rrarily assume a funcuonal form for a(p). such as a sum of two Gaussians. In either case, the parame-
ters are esumated by maximizing the Posterior p.d [.. P[a(p)ID(Y)]. If the Prior pd.f., P[n¢ 1], 1s
assumed 10 be a uniform function of those parameters, this 1s equnalent to the familar procedure of

minimizing X (1.e maximum likelihood). Such data analysis procedures beg the question of whether
the choice of Prior p d f was correct. For example, how far out in p do the //p2? and I/ /p singulariues

extend [3], or is there physical jusuficauon for n(p) 1o be the sum of Gaussians” If the X* for either
method 18 acceptable, then the data shed no light on such questions. An alternauve data analysis
procedure 1s 10 deconvolve the data to cbtain n(p) which uses a different Prior p d.f For example. in
the maximum entropy method (4] the Prior p.d.f. 1s 1aken to be the exponenual of the entropy of
n(p) relauve 0 a Jderault model, which may for example be a numerical simulation of a(p).

Regardless of the cioice of Pror, 1t 1s the Likelhood function which incorporates the informa-
tion contained In the data and it is the Likel:hood function wh:ch can be evaluated exactly in terms of
the experimental parameters. If the Likelthood function 18 a sharply peaked funcuon of n{p). then 1t
will dominate the Posterior. i.e no matter what cur prior suate of knowledge. the data force us to-
wards the same choice of n(p). If the Likelihood funct.on 18 a broad functicn of n(p), then the data
have little eifect on our state of knowledge and hence, the Postenor will depend crucially on the Prior
Fig. 1 shows a secuon through a schemauc Likelihood funcuon. The data constrain the distribution
well in some directions (e.g n(p2)) but pourly in others (e.g n(p,)). The good direcuons are associ-

ated with large eigenvalues of the Log-Likelihood matrix (szz). and the bad cirections with small

eigenvalues. In order to see how much informauo'. DINS dau contain, we consider the sharpness. or
otherwise, of the DINS Likelihood function.

ANALYSIS OF DINS EXPERIMENTS ON “He

In deep inelasuc neutron scattering (D ~'3) experiments, the momentum distribution a(p) 1s
related to the experimental datwa, D(Y", by

D(Y) = Fia() @ Rexpil ) ® REsgWY) + B(Y) + N(Y, 3

Here “ @ “denates convoluuon,
| ;
. _—
Fia() = n m+4 i, !’pn(}’) dp (4)
171

i the impulse approximation (IA) [rediction for the neutron scattering law (the Compton profile),

Y= —=-Qn (5)

v the scaling variable. Rexp(Y) 8 the spectrometer broadening function, Resg() 18 the broadening

due to corrections to the impulse approximation such as final state effects (FSF) which may alo
depend on . H(Y) s background. and N(Y) i nose. The problem s 10 infer n(p) given D(Y)

Uung &qs (3-) one may calculate the Likelihood function Fig 2 shows the specirum of
eigenvalues for the D'NS Likelthood function for *He under the conditions of the recent experiments
of Sosnick, ot al [*]. which epitomize :he current state- oi-the-a.t in DINS measurements Ihe

Re st (Y) was taker: from the recent theory by Silver [{6] The continuous a(p) was digiized into Y2

pixels for 0 € p o V4 AT hence 92 egenvalues  We see that most of the eigenvalues are very
small. inGicating chat the I ikelthood function i flat 1in many direcuons 1 hus, the prohlem s ex-
tremely Il posec. in that many distributons will iz the data Tois 8 parucularly true at small p. which
i primarily dut to the orm of the Compton protile, Fq (4), rather than due to instrumental or hinal
ate broadering  Indeed, we already expect this to be true liom the ohservation [ S| that the Greens
Function A-nte Carlo (GEMC) agp) [7] which does not have the correct singular hehavior at smuail r.
and the Hypernetted “"hain n¢p) [R] which doe- have the cortedt singular behavior 4t small o pin
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FIGURE 1 - A section through a schematic Like-
lihood function. The data constrain the distribu-
tion n(p) well in some directions but poorly in
others. The good directions are associated with
large eigenvalues of the Log-Likelihood function
and the bad directions with small ones.
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FIGURE 3(a) - Simulated DINS data using the
GFMC n(p) (Whitlock & Pancft, 1988) shown as
the dotted line in Figs. 3(b) & (c)., having a Bose
condensate of 9.2%, with 100 times better statls-
tics than that achieved in the state-of-the-art ex-
periments of Sosnick, et al.
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FIGURE 2 - The spectrum of eigenvalues for
the Deep Inelastic Neutron Scattering (DINS)
Likelihood function. Most of the eigenvalues
are very small, indicating that the Likelihood
function is flat in many directions.
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FIGURE 3)(b) - Solid line is an n(p) which fits
the simulated data in Fig. 3(a) with a 9.8%
Bose condensate. Dashed line is the GFMC
prediction, which was used to create the simu-
lated data.
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FIGURE 3(c) - Solid line is an n(p) which [is
the simulated data in 7Zig. }(a) with a 0% Bose
Dashed 'icce 18 GFMC.
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FIGURE 4 - The classical decrease of the
Bose condensate (raction as *He 1y warmed
through the A-transition temperawure. [he
DINS data were obtained by Sosnick, et al.
(1988) and analyzed using an entropic prior
with GFMC na(p) at Ta0) K as default model.
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duce almost identica! predictions for J(Y) = Fi4(Y) ® Rexp(Y) & Rrse(Y).

The ambiguity in inferring n(p) from DINS data is illustrated graphically in Fig. 3 by a simu!a-
tion. The mock data shown in Fig. 3(a) were created for the experimental conditions of Sosnick, et
al. [5] with 100 times the number of neutrons achieved experimentally (ten times the statistical accu-
racy) using the GFMC n(p) [7,9] as input. Figs. 3(b) and 3(c) show two very different n(») (continu-
ous lines), both of which fit the data in Fig. 3(a). These were obtained by maximum entropy decon-
volution [4] using as default models a best-fit Gaussian plus delta function for Fig. 3(b) and 2 best-fit
Gaussian for Fig. 3(c) (which allows no Bose condensate). The GFMC had an n, of 9.2%, to e
compared with 9.8% for Fig. 3(b) and 0% for Fig. 3(c). Thus, data with statistical accuracy t2n times
better than currently achieved can not unambiguously establish the existence of a Bose condensate.

However, not all distributions allowed by the data make physical sense. Thus, we have extra
prior knowledge, in the form of Physics, which constrains the allowed n(p) much more tightly than the
data alone. Fig. 4 shows such a determination of n,, where the temperature dependent DINS data
obtained by Sosrick, et al. [£] was deconvolved using an entropic Prior with the GFMC n(p) (T=0 K)
as the default model. The fact that n, is found to be slightly greater than zero even above the
A-transition (although consistent with zero within errors) can be understood as a consequence of the
bias of the default model toward the existence of a condensate.

CONCLUSIONS

The experimental DINS data [5] on “‘He show an obvious sharpening at small Y as the tempera-
ture is decreased below the h-transition. Nevertheless, our counterexample shows thai, despite prior
claims to the contrary [1-2], the present generation of DINS experiments have not, and cannot be
expected to, unambiguously establish the existence of a Bose condensate in “He. Prior knowledge in
the form of a physical model is required to adequately constrain the inversion tc determine n,, and
the available models [1-2] involve uncertainties [3] which would show up as systemnatic rather than
statistical errors. The strongest evidence we have for the existence of a Bose condensate in He is that
ab initio calculations of J(Y), including final state effects {6] and simulations of n(p) [7-8.10], are in
excellent agreement with DINS experiments [5] with no adjustable parameters, und these calculations
predict the existence of A Bose condensate in “He at temperatures below the \-transition.

More generally, the inversion of Comptn profile data to extract n(p) in any system is an
extremely ill-posed problem, particularly at small p as can be seen from Eq. (4). Exceptional statis-
tics, minimal final state broadening, and accurate instrumental resolution functions are required. For
DINS on helium systems, it appears that significant final state broadening is unavoidable [6].

ACKNOWLEDGEMENT

Research supported by the Office of Basic Energy Sciences of the U.S. Dept. of Energy. We
thank T. R. Sosnick, W. M. Snow, and P. E. Sokc! for permission to use their data prior to publica-
tion.

REFERENCES

[1] See, eg. H. R. Glyde, E. C. Svensson in Methods of Experimental Physics, V. 23, Part B., D.
L. Price and K. Skold, eds. (Academic Press, 1987), p. 303,
] V. F. Sears, E. C. Svensson, P. Martel, A. D. B. Woods, Phys. Rev. Leu. 49, 279 (19R2).
] A. Griffin, Phys. Rev. B32, 3289 (1985).
] S. F. Guil, J. Skilling, IEE Proc., 131F, 646 (1984).
| T.R. Sosnick, W. M. Snow, P. E. Sokol, R. N. Silver, LA-UR-88-505; P. E. Sokol, this
volume,
[6] R. N. Silver, Phys. Rev. B37 (Rapid Communications), 3794 (1988);, R. N. Silver, Phys. Rev.
B8, 2283 (1988); R. N. Silver, this volume.
(71 P. Whaitlock, R. M. Panoff, Can. J. Phys. 65, 1409 (1987).
(81 E. Manousukis, V. R. Pandharipande, Phys. Rev. B31, 7029 (1985); E. Manousakis, V. R,
Pandhanpande, Q. N Usmani, Phys. Rev. B31, 7022 (1989).

|
|
|

o

[9] The n(p) shown in Fig. } are normalized I:!‘p nip)/(2m' = . where @ s the density.

[10] D M. Ceperley, F. L. Pollock, Can. J. ol Physics 68, 1416 (1987)



