<

S PNL-SA-7604
CONK -aBY ST -~ &

MkS‘E% A MICROPROCESSOR PROGRAM DEVELOPMENT SYSTEM*

Thomas J. Mathieu

Pacific Northwest Laboratory
Richland, Washington

DISCI AIMFR

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express of .rruhed or asumes any legal liability or responsibility for the accuracy.

of any i tus, product, or process disclosed, or
represents ha] its use would not 'r\gewm\ﬁvwmmhammiwwﬁ
commercial product, process, otyervnoebylrade name, L, or , does
not necessarily constitute or imply its endorsement, rewnmsmmn or'am-rgbvﬁeum-i
States Government of any agency thereof, The views and opinions of authors expressed herein do not
necessarily state or reflect those of the Uniterd States Government or any agency thareof.

*Prepared for United States Department of Energy
Under Contract EY-76-C-06-1830

seTiyTioN OF THIS DOCTT '€ HHLIMITED
MGWJ

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

s
't _
PRI |

lMicroprocessor Program Development . ' PAGE 2

1.0 Introduction

Microporocessors -.ancé¢ microcomputers are rapidly becoming more
and more prevalent today. Applications for tnem are coming from
the areas of instrumentetion, control, .cominunications, and enter=-
tainment systems. While the power and complexity of such devices
nas greatly increased, the cost has greatly decreased. As Q@ re-

¥ sult, '@ new, inexpensive, flexible approach to system desian has
arisen.’ ' ')

Unfortunately, program development systewms for microprocessor
applications have not kept pace with the technological advance-
ments. The process of creating programs and getting them running
on & microprocessor is often cumbersopme and time=-consuming, The
facilities of @ file system, text editor, assempbler, - compiler,
linker, and loader which are normally available on larger .computer
systems .are often deficient or non-existant on a microcomputer
system.

Une solution to this problem has been accoumplished by imple-
menting tne microprocessor development system in a nhigh level
language and running it on a minicomputer. This enables the mwi=
croprocessor cdevelopment systein UO Take advantage of the system
tacilities provided by ‘the minicomputer. The implementation con-
sists of & cross-assembler and linker written in Pascal for the
IlWTEL 8086 microprocessor and runs on a DEC PLP-11/707

The paper describes microprocessor development systems and
their capabilites 1In general, theé INTEL 8086 and its development
system, 'in particular, and the penefits reaped from using & pro-
gramming language such as Pascal tor the implementation.)

e
v e

filcroprocessor pProgram Development . . PRGE 3

2.0 Microprocessor vevelopmentl Systems

rrogram development for microprocessors does not, in reality,
differ from program developrent for any computer. A programmer
would like to be able to create his programs on & suitably flexi-
ble medium, to modify them witn realtive ease, to translate them
from symbolic form to object form, To link various modules togeth=-
* er. into an executable image, to 1load that image 1into the
processor’s-memory, and to verify that it executes correctly.
Hormally, however, & microprocessor system does not run an operat=
ing systew that would fac111tate such processes or have access “to
I1/0 devices to support them. Fortunately, larger computer systems
do have such facilites, and, assuming one is available, certain
phases ‘of the proqram development can be accowpllsned on one,

A minimum system would operate as follows. +Program text cre=-
ation and moditication are accomplished through the nost
computer’s file system and text editing utility. Program modules
are ossembled by & macro cress-assembler that generates object
code for the target microprocessor. bepcrately assembled modules
are linked togetner by 8 linker which creates an executable image
for the microprocessor. This imaoce can then be down=-line loaded
into the target microprocessor for testing. Such a minimal system
is flex1ble and easy to use and prov1des tne development capaolll-
ties necessary.

A maximal system would include the cross-assembler and linker
from the minimal system. it a&also should provide a high level
language compiler, such as Pascal, which generates code for tne
target ‘microprocessor. Such a compiler would facilitate program-
ming effort and provide greater portapility of programs, The max-
imal system should also provide an online symbolic debugaing fa-
cility. This would consist of a debugainyg emulator for the target
microprocessor and enable the programmer to “run’ his programs on
the host camputer and detect &nd correct many errors bvefore ne
down=line loads tne program.)

L final important criterion for microprocessor development
systems .is flexibility. bue to the variety of microprocessors
available and their features, utilization of . one wicroprocessor
for all applications would pe very inetficient: certain micropro-

. cessors are pbetter suited to celrlain applications tnan others.

Therefore, to utilize several microprocessors, several development
systenmns should be avajllable, Ane the aulility Lo modify one devel-
opment-- system to accComodate a new microprocessor should be inher=-
ent in the design of each module. 1t is for tnis reason tnat the
programming langusge Pascal was cnosen to implement the system for
the lnltb'oubb. '

-t R
.

PER

Microprocessor vrProgram Development - . FAGE 4

3.0 Tnhe IKTEL BCY6

The INTEL 8086 is a8 new microprocessor tnat has the capabili=-
ty to perforis 16-bit operations. The pasic motivation behind tnis
is to enhance system performance by overcomiing the limits of 8=-pit
instructions. The 8U8&6 architecture consists of four gyeneral pur-
pose 1b6=-bit registers that can also be addressed as eight &8-bit

+ registérs, two 16-bit memory hase pointers, two 1lé6=-bit index re-
gisters, and four ie-bit segment registers which enable programs
to address up to l=-megabyte of memory.)

The instruction set provides the capabiltiy to éqdress oper=
ands 1in several ways: directly via an 8-bit or & 16=-bit offset,
or indirectly with pase and/or index registers added to an option-
al 8-bit or 16=-bit displacement. In addition memory references
and operations ¢an pbe done to B8-bit or 1o-pit values. There are
zero, oné, and two address instructions and an automatic stack fa-
ciltiy. This wide variety of operand formats and operational
modes makes the 8086 a very powerful, tlexivle processor. ’

v
wt
PR

#icroprocessor Program Developnment . PAGE 5

4.0 The bBudb Development System

- D . G . G e . R e e AP R G E En W S W Wy e e W

1The current implementation of the 8Ugb program development
system 'is a minimal system consisting of two prodgrams: a
cross-assempler ana a linker. Hoth are written in Pascal and run
on a LEC PDP-11/70. ° '))

= . Ihe cross—assemoler is a two pass macro relocating asembler
gllowing full ekpressions'in’operahas, macros witn pasic parameter
substitution, clobal references and deldratlons, tne pasic set of
pseudo operations to enable <control of the instruction address
counter, constant declaration, and listing format, and the full
set of 8066 machine instructions. The instruction and operand
formats supported are those used by 1lWTEL. 1ln fact, the most sig-
niticant complexity in the assempler is due to the complexity and
wide variety of options in the operand specifications allowed.
bortunately, this complextity is easily and clearly dgealt with in
Pascal.

The maln data structures iIn the assembler consist of a8 state-
ments file which nolds the statenent'imaqes and intermediate data
petween tne two passes, a dynamic linked list sympbol table con-
taining the symbol name, type, ahd value, ana an array of opera-
tion coces containlng the operdtlon name, type, and numeric op-

codes.,

The structure of the program c¢onsists of several utility pro-
cedures, an initialization procedure, and tne pass one and pass
two procedures. The utility procedures provide tnhe capabllltles
of . constant conversion, expression evaluation, operanad analy51s,
symool table mdnlpulatlon, and basic statement scannlng. The in-
tiializtion sets up the various tables and leues and enters de-
favlt sympols into the symbol table. Pass one reads the input
source file and is concerned witn macro definition and expansion,
statement parsing and classification, sympol definition, and sto-
rage allOCdthn. Pass two produces tne program listing and the
object code file. There is also an interuendiaté pass which, be-
cause position dependent displacements ca&n cause inefficient code
generation, scans the statements file, detects any statements
which can be shortened, and adjusts tne address of each symbol and
statement accordingly. ' -) '

The 1linker 1is also structurea s A two pass program. 1t
reads a command file which indicates which object files to link.
Tne. first pass scans each object rfile, builds & sSymbol table, anhd
‘assigns storage to each module. The second pass builds the final
program image, patches the globsl references into the text code,
and produces a load map.

The tinal module in tne kiuo program c¢evedopuent system 1s
"the down=line Jloader. It loads the tinsl progran image into tne
5086 via an 1/0 utility whicn uses a SDeLlcl gevice handler to

load n1croprocessors as output aevices,

.
“

.
0

[

€.
-

'

X

-

Microprocessor Program Development < PAGE 6

~

-

5.0 Summary

The utilization of this microprocessor development system nas
greatly increased the programmer proouctivity of microprocessor
system engineers., ' The BUBb6b assembler and linker nave been very
easy to use, reliable, and efficient. lMoreover, the ease of ad-
ding new features has proven to be a valuable asset of the system,

A few words must be said about tne value of the approach
taken to this project. The structure of both progams was effi-
ciently and clearly implemented with the constructs provided by
Pascal. Errors were easy to detect and correct and improvements
in the original design were easily accomplished. Finally, it
should pbe noted that the original BUd6 assembler has neen modified
to assemble code for two other microprocessors. The modifications
necessary were straight-forward &nd involved primarily tne opcode
table, ‘operand evaluation, and the code generation for machine in-
structions, These procedures were well isolated and documented.
And tne actual modifications for poth microprocessors took less
than a week and were accomplisied by & programmer who nad no pre=-
vious experience witnh Pascal. This is a very positive testimony
to the value of modular programming and Pascal’s ease ot use.

