

LBL--29143

DE90 015723

First In-Beam γ -Ray Study of ^{67}As

T.F. Lang, D.M. Moltz, J.E. Reiff, J.C. Batchelder, T.J. Ognibene, J. Cerny,
J.D. Robertson, C.W. Beausang, M.A. Deleplanque, R.M. Diamond and F.S. Stephens

Nuclear Science Division, Lawrence Berkeley Laboratory
1 Cyclotron Road, Berkeley, CA 94720

January 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098

MASTER

XP

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

First In-Beam γ -Ray Study of ^{67}As

T.F. Lang, D.M. Moltz, J.E. Reiff*, J.C. Batchelder, T.J. Ognibene and Joseph Cerny

Department of Chemistry and the Nuclear Science Division,

Lawrence Berkeley Laboratory**, University of California, Berkeley, CA. 97420

and

J.D. Robertson

Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506

and

C.W. Beausang, M.A. Deleplanque, R.M. Diamond and F.S. Stephens

Nuclear Science Division, Lawrence Berkeley Laboratory

ABSTRACT

Excited states of the neutron-deficient nucleus ^{67}As were populated using the $^{40}\text{Ca}(^{32}\text{S},\alpha p)^{67}\text{As}$ and the $^{40}\text{Ca}(^{33}\text{S},\alpha pn)^{67}\text{As}$ reactions at bombarding energies between 95 and 110 MeV. We present a tentative level scheme for ^{67}As , derived from γ - γ coincidence studies in conjunction with measurement of evaporated charged particles and neutrons.

INTRODUCTION

Nuclei with $N \sim Z$ and $70 < A < 80$ show a variety of interesting structural features, including strong ground state deformations and rapid variation of shape as a function of both spin and particle number. These properties arise from competition between gaps in the oblate Nilsson level sequence at nucleon numbers 34 and 36 and a prolate shell gap at nucleon number 38. Potential energy surface calculations, employing the Strutinsky shell correction method with both deformed Woods-Saxon¹ and folded-Yukawa² potentials, successfully describe the experimentally established properties of this region, including the shape coexistence observed in the light Se and Kr isotopes³⁻⁴ and the large prolate ground state deformations found in the light Sr isotopes ($B_2 \approx 0.3$).⁵ These calculations also predict oblate deformation for the $N \sim Z$ Se isotopes. This prediction was recently confirmed by Wiosna *et al* in an in-beam γ -ray study of ^{69}Se .⁶ The authors extracted the sign of the quadrupole moment of ^{69}Se by measuring the $E2/M1$ mixing ratios of the transitions feeding its $g_{9/2}$ (neutron) positive parity band.

In-beam γ -ray studies of nuclei in this A-region require novel experimental techniques, as they are produced with cross sections ranging from a few percent to

fractions of a percent of the total fusion cross section. One powerful method for studying the structure of such exotic nuclei involves use of large arrays of Compton-suppressed Ge detectors in conjunction with neutron and charged particle counters for enhancement of weakly populated channels. We employed this technique in an experiment which yielded the first evidence for observation of the structure of the neutron-deficient nucleus ^{67}As , a nuclide on the periphery of the highly deformed $70 < A < 80, N \sim Z$ region. An in-beam γ -ray measurement of ^{67}As should provide the opportunity to study whether the deformation observed in the $N \sim Z$ Se isotopes also extends to lighter $N \sim Z$ nuclei.

EXPERIMENTAL METHOD

These measurements employed $\sim 3\text{pnA}$ beams of ^{32}S and ^{33}S , accelerated to 95-110 MeV by the Lawrence Berkeley Laboratory 88-Inch Cyclotron facility. The targets consisted of 1mg/cm^2 natural Ca evaporated onto 50 mg/cm^2 Pb foils, which stopped recoils while permitting detection of evaporated charged particles in a $250\mu\text{m}$, 300mm^2 Si counter placed 5mm behind the target assembly. This single counter provided crude discrimination between protons and alpha particles on the basis of their different ranges in Si. Alpha particles tended to lose their full (15-25 MeV) laboratory energies in the detector, whereas the 10-12 MeV protons deposited only part of their energies, typically 3-5 MeV. The target assembly and Si counter were located inside the BGO central ball of the 21-fold HERA anti-Compton spectrometer. For these measurements, the 0° HERA Ge was replaced with an $80\text{ cm}^2 \times 10\text{ cm}$ liquid scintillation counter, which operated with a roughly 1.5% neutron detection efficiency in a pulse shape discrimination mode.

By placing gates on the alpha region of the charged particle spectrum described above and on the neutron peak in the scintillation counter TAC spectrum, it was possible to enhance alpha and neutron-coincident lines by a factor of $\sim 5\text{-}8$ over γ rays from the dominant 3p and 4p evaporation channels. Comparing figures 1(a) and 1(b), for example, shows the enhancement of the 734-keV line from ^{67}Ge , the α 2p evaporation product from the ^{33}S bombardment, over the 321-keV γ -ray from ^{70}As , the 3p channel. A comparison of figures 1(a) and 1(c), on the other hand, shows the roughly 8-fold enhancement of the 945-keV line from the 2pn channel, ^{70}Se , over the same ^{70}As γ -ray.

A group of previously unidentified γ -rays were enhanced in the α - γ - γ sum spectrum in the ^{32}S bombardment and in both the α - γ - γ and n - γ - γ sum spectra in the ^{33}S bombardment. In each case, these peaks showed excitation functions consistent with two

or three particle evaporation channels. An analysis of the spectrum of charged particles coincident with these γ -rays showed that they corresponded to evaporation of one alpha particle and one proton. Since the $\alpha\mu$ channels from ^{32}S on the ^{24}Mg , ^{16}O and ^{12}C contaminants in the ^{40}Ca target are known, and showed no coincidence with the new peaks, we were able to rule them out. We hence assigned the new γ rays to ^{67}As , produced as the $\alpha\mu$ channel from $^{32}\text{S} + ^{40}\text{Ca}$ and the $\alpha\mu\mu$ channel from $^{33}\text{S} + ^{40}\text{Ca}$.

The ^{67}As level scheme shown in figure 2 was established on the basis of $\gamma-\gamma$, $\alpha-\gamma-\gamma$ and $n-\gamma-\gamma$ coincidences, intensity balance and energy summing relationships. A spectrum of γ -rays in coincidence with the low-lying 697 keV transition, taken from the ^{33}S bombardment, is shown in figure 3. Comparing the coincidence analyses from each bombardment provided a rigorous cross-check on the assignment to ^{67}As of several peaks which were either too weak to be clearly observed in the $\gamma-\gamma$ sum spectra or which formed doublets with intense lines from contaminants.

DISCUSSION

The properties of the odd- A , proton-rich Ge, As and Se isotopes are determined by the $g_{9/2}$ single particle orbital and by the closely spaced $p_{1/2}$, $p_{3/2}$ and $f_{5/2}$ orbitals which dominate the low-lying neutron or proton structure of these nuclei. The first positive-parity (neutron or proton) states in this region tend to be $9/2^+$, and these states decay via isomeric stretched M2 transitions to low-lying $5/2^-$ states. These $9/2^+$ states typically form the bandhead for a sequence of positive-parity levels connected by stretched E2 transitions. Such band structures are usually interpreted as either the coupling of a $g_{9/2}$ nucleon to a vibrating even-even core or as decoupled bands built on the rotation of a deformed even-even core.

Murphy *et al* ⁷ have tentatively assigned a ground state J^π of $5/2^-$ to ^{67}As based both on a β -decay study which yielded $\log(f\tau)$ values to known states in ^{67}Ge and on systematic arguments about the strength of the proton pairing force as a function of neutron number in the odd- A As isotopes. The 697 keV transition feeding the ground state has an angular distribution sharply peaked at 90° relative to the beam direction, indicating a strong dipole character. If the $5/2^-$ ground state J^π assignment is correct, this permits a tentative assignment of $J = 7/2$ to the 697-keV state.

The 1423-keV level may be considered as a candidate for the $9/2^+$ state. This level is fed by two parallel decay cascades, the strongest of which, the $1358 \rightarrow 1228 \rightarrow 943$ sequence, has level spacings similar to the $g_{9/2}$ band structures seen in neighboring nuclei (see figure 4). If the 1423-keV state has $J^\pi = 9/2^+$, then its decay to the $5/2^-$ ground state should have an angular distribution characteristic of a stretched quadrupole transition, as should the 943, 1228 and 1358-keV lines. The 1423 and 1358-keV γ rays appear cleanly in the raw γ - γ total spectrum, permitting extraction of their angular distributions, while the 943 and 1228-keV lines form doublets with contaminant transitions. Angular distributions of the 1423 and 1358-keV transitions show sharp minima at 90° , consistent with a strongly quadrupole character. Multipolarities for the 943 and 1228 were deduced from directional correlation (DCO) ratios using a simple procedure described by Stephens⁸. Gating on known stretched E2 transitions in ^{66}Ge and projecting out coincident stretched E2 and E1 lines, this procedure yields DCO values of roughly 1.1 and 0.5 for stretched quadrupoles and dipoles, respectively. Gating on each line in the $1358 \rightarrow 1228 \rightarrow 943$ sequence and projecting out the other two transitions in the cascade yields DCO ratios within experimental error of 1.1, while ratios for coincident transitions not in this sequence show large variations. This analysis suggests that the states at 1423, 2365, 3593 and 4951-keV form the $g_{9/2}$ positive-parity band, with spins of $9/2^+$, $13/2^+$, $17/2^+$ and $21/2^+$ respectively. A more detailed angular correlation procedure is now underway to establish spins for the weaker parallel band (the technique employed above to find stretched quadrupole γ rays is ineffective for studying the mostly mixed E2/M1 transitions connecting members of the negative-parity bands in nuclei in this region).

The proposed structure of ^{67}As displayed in figure 4 appears consistent with the systematics in this region. The energy of the $9/2^+ \rightarrow 5/2^-$ transition fits in nicely with the smooth trends seen in the odd- A As isotopes and the odd- Z , $N=34$ isotones. Unlike ^{69}Se , the next $T_z = 1/2$ nucleus, the proposed $g_{9/2}$ band in ^{67}As shows no clear sign of deformation. In fact, the energies of the ^{67}As positive-parity states correspond rather nicely to those in ^{67}Ge and to the vibrational ground state band in ^{66}Ge , the closest known even-even core (see figure 5). This would suggest that the odd proton in ^{67}As forms the positive-parity band by coupling to the core vibrations of the adjacent ^{66}Ge . Thus, it seems that the region of deformation seen to extend down to the lightest Se isotopes disappears in the odd $N-Z$ As isotopes.

In conclusion, we have observed the decays of excited states of the neutron-deficient nucleus ^{67}As , produced with 2% and 3% of the total reaction cross sections in the

^{32}S and ^{33}S bombardments of ^{40}Ca respectively. Using angular distributions and a simple angular correlation procedure we have tentatively identified the $g_{9/2}$ positive-parity band in ^{67}As and found it to be consistent with the couplings of the odd $g_{9/2}$ proton to vibrations of the lighter even-even ^{66}Ge core.

* Sloan-Kettering Memorial Institute, New York, N.Y.

** This work was supported by the U.S. Department of Energy under Contract No.
1DE-AC03-76SF00098

FOOTNOTES

1. W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson and I. Ragnarsson, Nucl. Phys. A. 435(1985)397
2. R. Bengtsson, P. Moller, J.R. Nix and J. Zhang, Phys. Scr. 29(1984)402
3. R.B. Piercy *et al*, Phys. Rev. Lett. 47(1981)1514
4. L. Luhmann *et al*, Phys. Rev. C31(1985)828
5. C.J. Lister *et al*, Phys. Rev. Lett. 49(1982)308
6. M. Wiosna *et al*, Phys. Lett. B200(1988)255
7. M.J. Murphy, C.N. Davids and E.B. Norman, Phys. Rev. C22(1983)2204
8. F.S. Stephens, Niels Bohr Centennial Conference 1985 in:
Nuclear Structure 1985 eds. R. Broglia, G.B. Hagemann and
B. Herskind,eds. (1985) 363.

COUNTS/CHANNEL $\times 10^4$

33S + 40Ca

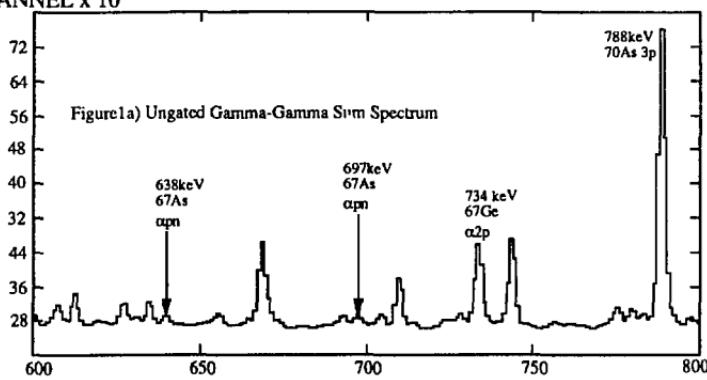


Figure 1a) Ungated Gamma-Gamma Sum Spectrum

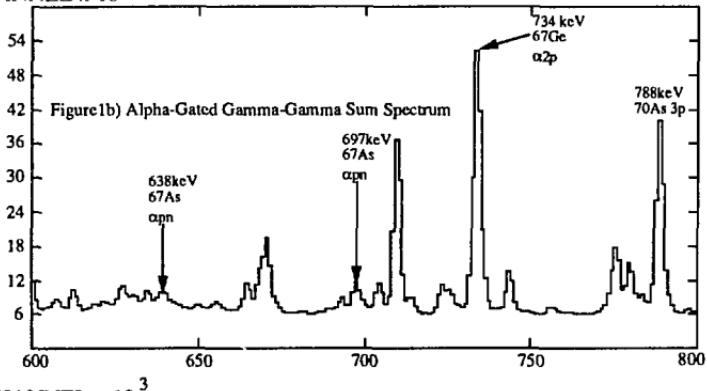

COUNTS/CHANNEL $\times 10^3$

Figure 1b) Alpha-Gated Gamma-Gamma Sum Spectrum

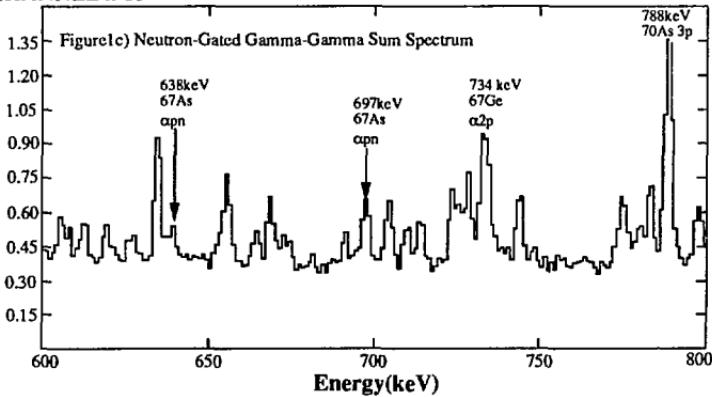
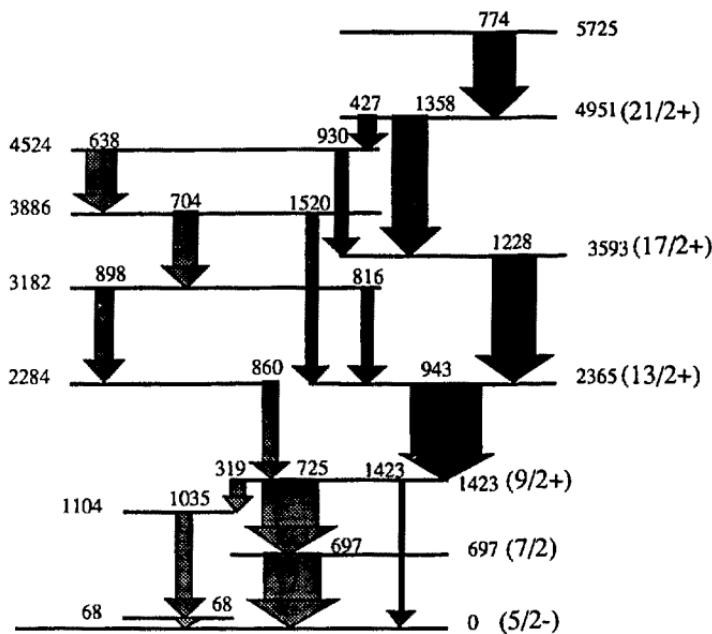


COUNTS/CHANNEL $\times 10^3$

Figure 1) Example of channel enhancement using charged particle and neutron counters in 33S bombardment. 638 and 697 keV peaks belong to 67As, the apn evaporation channel.

Figure(2) Proposed Preliminary Level Scheme for ^{67}As

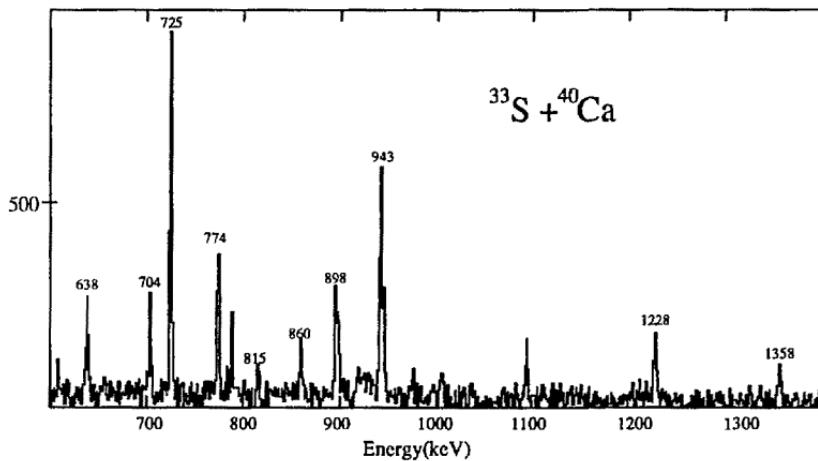
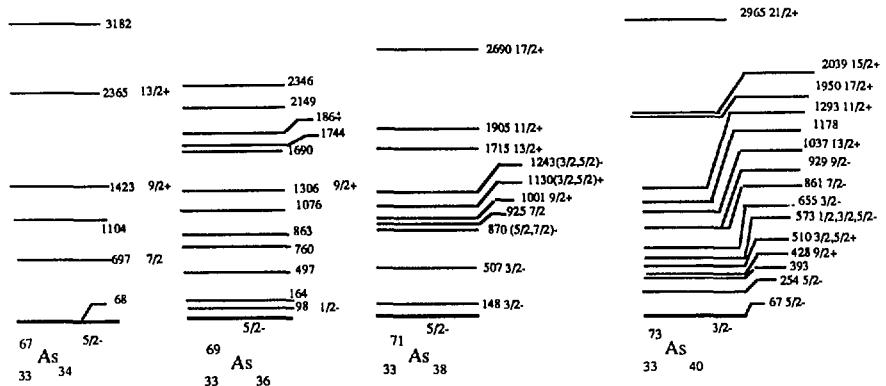



Figure (3) Spectrum of gamma rays in coincidence with 697- keV transition. The unlabeled peaks are contaminants from ^{70}As and ^{69}As .

Odd - A As Isotopes

N=34, Odd-Z Systematics

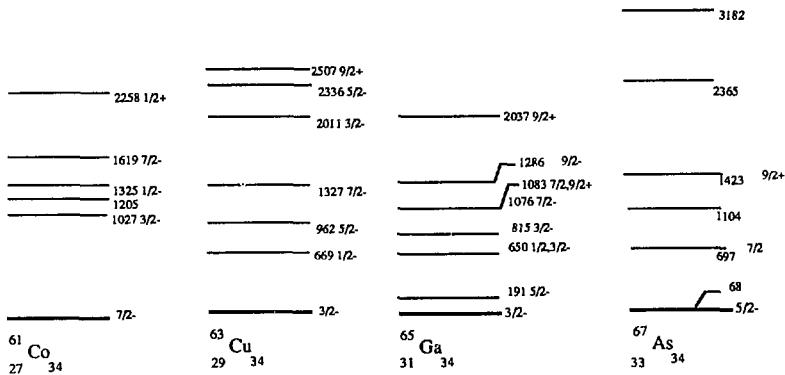


Figure 4. Systematic trends in odd-A As isotopes and odd-Z N=34 isotones; The energy of the 9/2+ state increases smoothly as a function of decreasing neutron number in the odd-A isotopes, and decreases as a function of increasing Z in the odd-Z isotones.

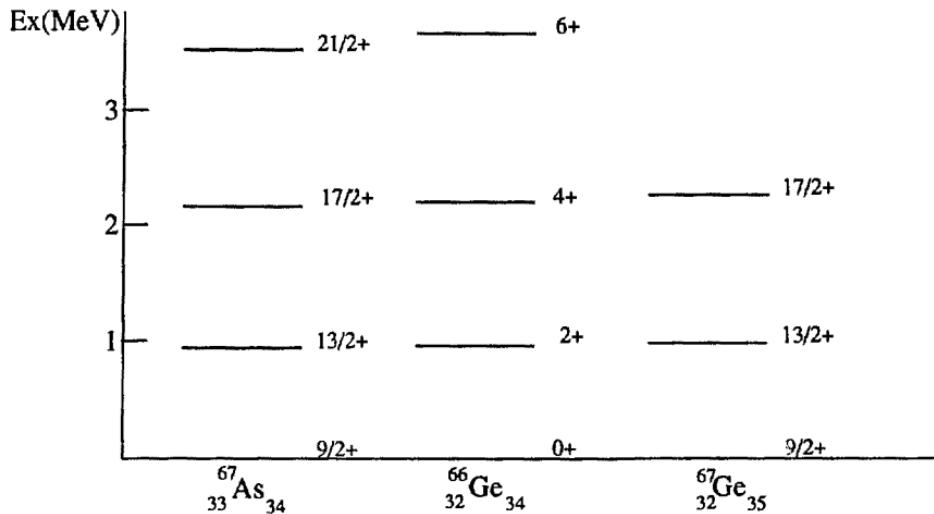


Figure 5 Comparison of energies of members of positive parity bands in ^{67}As and ^{67}Ge to ground state band of ^{66}Ge . Energies of $9/2+$ states in ^{67}As and ^{67}Ge are shifted downwards so as to make them equal to the ^{66}Ge ground state