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ABSTRACT

Tuo stebility concepts ere of interest for partisl diffcrence equa-
tions~--one arises in theory--the other in practice. The theoretirsl king,
referred to here as asymptotic stebility, is essertially just asymptetic {as
Aby A% . O) boundedness of the discrete soiution, The other kind, referrad
tc here as computetional stability, is stability for & fixed At and 4%--
computational instavility is indicated in practice by oscillatory behavior
of the discrete spproximation--in particular, cscillations ¢f pzricd 2Ax.
This veport is concerned with computational stability.

Only approximete stability anslyses of the von Neumenn-lichtmyer
scheme have been done for the case of the ideal gas law. Herein a more
rigorous computational stability analysis is sought. The analysis leads
to a recommendation for the improver 1t of the time step restriction in

WONDY for the case of the ideal gas law.
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1. ISTRODUCTION

From conversebions with R. D. Richtmyer [1], G. N. ¥hite (2], and
others, it appears thet only approximste stebility snelyses of the viN-R
{von Neumann-Richtmyer [3)) scheme have been done for the case of the
idesl ges law. At this time, some approximations still sppear to be
unavoidable., However, herein an atiempt is made to evoid as many of the
simplifying essumptions and approximaticns as possible in oré.r to arrive
at a "more rigorous" computational stability condition than has heretofore

been obtained.
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2. NOTATION

Except for minor veriations, the notaticn and nomenclature of vN-R

(von Neumann-Richtmyer [ 3 1) and/or R-¥ {Richtmyer-Morton [/ 1) is folleowed
here. They write the equations of hydrodynamics in a form eguivalent to
the following: /3t = -3(p + a)/o"&, &/t = /0", and
X/3t = -(p + q)N/At. Here (V,u,f) sre specific (volume, momentum,
internal energy) with (x,t) being the (space, time) variables. The stress
variables {p,q) are (pressure, viscosity). If the material law is the
ideal gas law, then p = I'€p where I'(= v - 1) is a positive constant and

= 1/V is the mass density with p0 being the initial velue of p. The
original vN-R artificisl viscosity had the form g = {:122(31_1/3x)2
sign(-W/3t) where £ = ¢,hx and ¢, is e dimensionless constent ~ 1.0.

Let x. = Jax and 7 = nit. The primary evaluation points for the
.
discrete approximations in the vN-R scheme are as follows: u at (x‘_j,tm‘/z),
+1/2 n R
q at (x, +1/2,12 ), and Vv, p, &, p at (xj*1/2,1: )+ The evaluations of

urnl/? n+1/2
J

the approximation functions ere denoted as follows: ~ u(xj »t s

n+l/2 1/2

arfe ™ sy jptt ) and £ 0 = £(x o
Differences and averages taken between primary evaluation points are
denoted by the delta-dot notstion: A un:ig = ug:i/z - un+l/2’

.0 n+lf2 n-l/2 n+lfz o onelf2 W12 .n_ o, n+l/2 n-1/2 .
bluy = g ST g o (“j+1 5 M2,y - (v +u )/

_ . +1/2 _ nvl
and for f = €,p,V: A, f“ £ 22 A fn+l/2 3*1/2 fg+l/2’

= f(x, %) for £ = e,p,V.

j+lje T 1/

(fn+1/2 £ l/2)/2 £ j,{lﬁ ‘3+1/2 3+1/2 )/2, etc. That is,
(A_,A ) indicates a (space, time) difference end (f, ,f") indicates &
(space, time) aversge--both taken between adjscent evaluations of the
primary approximestion functions.

Let r = At/(p°Ax), then the vN-R difference scheme is:



[a™ + rA_p]? = -rA,qg'l/2 s

n+1/2 o

[EV-rAy%+U2—

o+ ¥ a/ix) (/s 1305 = o

n+1/2
j+1/2

C o+ q)a'v]

—
>
¢
+
-
o

For the idesl gas law the vN-R equation is
n -
[p - FE/V]j+1/2 =0 .

Following vN-R the first varietion of f is denoted ®f. The equetions

of first variation of the difference eguetions are:

[A%6u + rA'5p]2 = -rA,éq?_l/z )

n+1/2

(atsv - rA.(:u]‘,M/2 =0,

[sq + £2]a.u/8x] (20, su/ax ~ (A.u/Ax)ﬁV'/V'),/V'];:ig -0,

P . . . . =172
fa'e€ + (ap" + 5g)8°V + (p° + q)a 5v}jil-/.2 =0

>

and

[5p - TS/ + rt:sv/vgjg‘ 0.

+1/2

Definition (Local Equations of First Variation)
Let ¢ be the coefficients of the cquations of first variation.

Evaluete ¢ et (xj,tn). The resulting eouations are called the local equa-

tions of first veriation at (xj,tr').



Definition (von Neumann Stebility or Steble in the Sense of von Neumann)
Suppose that the local equations of first variation at (xJ ,tn) are

stable under a time step restrietion of the form
n
(ele,th),a0,00) <1 (#)]

where f may depend on n, Jj, ¢ evaluated at (xa.,tn), At, and pAx. IF (*)g
is enforced for all n and j, then the difference scheme is said to be
stable in the sense of von Neumsnn or, for shert, ven Neumann cstable,

The definition of von Neumann stebility is not complete until we
agree on the definition of stable used there., There are two different
stability concepts which come to mind in this context., One kind, referred
to here as asympbotic stability, is well-defined and the definition may
be found on p. 45 of [10], It is essentially asymptotic boundedness
(i.e.,, boundedness as At, Ax — O) of the discrete approximstions. The
other kind, referred to here as computational stability, is not well-
defined but is of greater practical interest as it relates to stebility
for fixed 4t and ax. Computetional instability shows up ir practice as e
high-frequency oscillatory behavior of the discrete solution--in
particuler oscillstions of the highest possible frequency, i.e., those
with pericd 2ax.

The utility of a von Neumenn stability analysis lies in what it ecan
reveel about computastional stability--it cen find constraints on the
growth rates of small perturbations. On the other hand, a von Nevami.1
stability analysis does not seem to be appropriste nor to have any utility
in establishing asympbotic stebility. The appropriate way to establish
asymptotic stability of nonlinear hyperbolic systems seems to be with

energy inequalities. The von Neumann stability analysis procedure assumes



the coefficients of the equations of first variation to be bounded. This
is often tantamount to assuming that the discrzte colution is bounded.

But to show boundedness of the discrete solution 1s the purpose of the
esymptotic stebility snelysis. Thus s von Neumann stebility analysis with
the purpose of esteblishing asymptotic stebility often leads into &
cireular argument.

Therefore, it seems that a von Neumann stability analysis should
concern itself solely with the importent problem of analyzing computational
stability. Unfortunately, we do not heve, et this time, a rigorous
definition of a concept which fits exactly the intuitive notion of computs-
tionel stability for partial difference equations. For ordinery difference
equations there do exist concepts cf computational stevility--for example,
“A-stable", However, that concept doesn't seem to fit the intuitive
notion of computational stability for hyperbalic partiel difference
equations. It is not clear, at this time, how computetional stability
should be defined., However, the following definition seems to approach

the intuitive notionm.

pefinition (Computational Stability)

Let g(k,At,Ax) be the amplification mebrix of the local eguations of
first variastion for a fixe -patial mesh. Thet is, for Ax a constant.
If there exists a positive number T such that for all At in (O,7),
0 < nat € tf, and for ell k E(k,At,Ax)n is uniformly bounded, then we
say thet the system of pertial difference equations associated with

g(k,At,Ax) is computationally stable for O < At < v and for nat s tf.



Definition {von Neumann's Necessary Condition for Computational Stability)
Let IA(k,At,Ax)im&x be the spectrel radius of G(k,At,8x) where px is

a constant. If |A(k,At,ax)| s 1 + O(At) for all k and for O < At < =

mex

anc npt < t,, then we say that the system of partial differentiel eguetions

f
associated with g(k,At,Ax) satisfies von Neumann's necessary condition for
computational stability for 0 < At < 7 and nat < tf.

Remarks: In the von Newmann stability wnalysis the growth of nrerturba-

tions of the form

50y = P 0" exp ke,

is studied. All practical hydrocode problems on the computer are mixed
initisl-boundary valve problems--the x interval »ust be finite--venote it
fxo,xr]. Without loss of generelity et x, = “. Then the values of x

of interest for a computetional stebility sr.lysis are k = 2nk’/xr for

k' = 0,1,2,...,J/2 where J = xr/Ax--for simplicity, essume J is an even
integer. The highest frequency of interest is with k* = J/2 {or 2ixk = 27)-=
that is, the frequency with period 2sx-~the notorious noise frequency. In
practice computational instabllity shows the symptem of oscillations with
frequency k' = k*. It seems that one of the weaknesses of the foregoing
definition of computational stability is thet it dces not take this into

account., Apparently, in order to compensate for this weskness, one should

try to enforce
,A(k',at,Ax)smax s 1+ atF(k’,ab,5x)

%
with F{k’,8t,Ax) as small as possible for k' = k .



3. IEMMAS

In lemmes 1A and 1B the roots of the quadratic m“ - 2B + C = O are

the objecus of interest. The proofs mey be found in [5].

Lemna 1A

let A, B, and C be real numbers witt & > 0, D = (B//‘-.)\2 - C Ay,

=B/ x o2

, and I)'tmax = max|A, |

Case (a): IfD = O and B2 > AE, then

1< |>\[m&x .
Case (b): If D 20 and B2 s Az, then
LIad s1irf 2Bl sa v
max

Case (¢): If D < O, then

Cjrl,, =1iffC sS4

Lemmna 1B

Under the sare assumpticns as Lemme 1A let £ =1 -8, F = 1 - T, anc

Case (B+): If T 2 0, 32 H AZ, and 5 > O, then

Cind 21 iffa + ¢ <2k
max
2

Case (B_): IfD 20,8 SA2, and B 3 0, then

L] <1iffa-2b+c sk .



Case (C): If D < O, then
[l».[max <1itf e scl.

The following is useful in reducing quedratic constraints to linear

constraints.

Lemme 2

Assume: A is a reel number; @ and B are positive, real numbers.

Let D = Ee +hoanda’ =a(8 + Dl/z). Consider the following inequalities:

(%) 40+ 2K 51
and
(*) as1.

Case (A): If D 2 0, then (¥*) iff (%),

Case (B): If D < 0, then {**) holds for all %.



k. BACKGROUND

First we review the approximate stability analysis presented by

VN-R in their 1950 [ 3 ] paper. They considered the following system of

equations:
/3t = -3lp + ¢)/{0%m) (1.2)
/ot = w/(0%m) (L.2)
2 2 . <
a = 38" (u/a)" -sign{-m /) (4.3)
and
3p/3t = -olwvp + T/t . {4.)

Eguation h,* referred to as the Ip/3t eguation, follows from eliminating
€ from the /3t equation by use of the ideal gas law. Note that

2 . s .
oclvp + Tq] = &% + Tpq where a = o0 is the acoustic impedance. The equa-

tions of first variation of equations 1-4% are:

3u/3t = -3(sp + 5a)/(0%) , (4.5)
3/t = 3w/ (0%%) , (4.6)
5q = -pzziau/ax[[zaau/ax - odu/ax &V, (5.7)

and
8V3p/3t + V3sp/dt = -[vép + Tsalavw/3t - [vp - rglasv/ac . (4.8)

Equations 5-8 ere equivalent to Equations 37-4o of wE-2 [3 1. Let

5U" = (5u,5V,6q,6p) then substitute 5U = 5 T 5hto (1,5-8) to get

H8y, =0

*
Within Section N a reference to equetion M refers to egumtion H.M,

13



vwhere E is given by Equation 9.

0 ik ik
-ik 20° 0 0O
H®) = (4.9)
H32 1 0
Bp TV Hy,
where
L2 O
H31 = 2ikLp° V| /v
0\2 (5 1 Arl
Hyp = ~{2°)T [V VN
Hhk = av + W
with
Vo= /3
and
P =3/ .
Tre zero positions in 2 reduce the determinantal equation for B to
det H = H, H_ H .H ~+ H H H _H -Kzl(HH - Hy Haq) (4,10)
~ 11722733 4k 14721733 b2 21732 22731 N
where
21
K7 = Mg - Brgtu -

Substituting the values of the Hij into Equation 10 yields

det 1 = (@) PV + W) + k2{41u°)21\7)[2h2 oV - (9R) . th} . (k1)



Remark: Equation (4,11) sbove is equivelent to Equetion (42) of vN-R
37, This becomes evident when all appearances of 2/(p%x) are replaced
oy V. Then their second and seventh terms combine and their Equation (42)
reduces to {4.11) above.

In analyzing the rcots of det g(a) = 0, VN-R restricted attention to
tt» higher powers of @ and k. In shock reglons (q large) their anelysis
yielded

a = -2:'}{1)2 \?‘/V . {h.12)
Ir nonshock regions {q negligible) they cot
2 0,2 \
a“x - (sk/p )" . (4,13)
Identifying the terms in the equations of first varietion leading to (4,1%)
and (4.13) led to: for shock regions
3u/3t = 0 su/ w0 (h.1k)
where g = 2&2(V|/V and for nonshock regions
2 o
Aau/att = (ad/c )%, (:,15)

To do thelr approximate stability analysis, <N-R simply analyzed the
stebility of the discrete analogs of (b.1h) mnd (L4,15). For nonshock

regions this leeds to the fawmous CFL condition, i.e.,

ar =1 . (%,16)

For shock regions their stebility ineguality is
bry s 1 (%a27)

where A is the coefficient of -j,u in the artificial viscosity. That is,

15
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g = -/Au . (L.18)

The original vN-R viscosity has

L= Cg claul %,19)

with ¢, & dimensionless constent = 1, The Rosenbluth (see R-M { 473, p.
313) modification of g sets p = O in expansion (A.m > 0O), Then Lendshoff

"6 medified g by setting

2
t=cm sy ola vl (4.20)

whore ey is a dimensionlecs constant = 0.1.

There ere two variants of the stability anelysis procedure introduces
by ven Neumann and Richtmyer. The first, called the a-method, is
exemplified in the analysis thet led to the H(a) matrix, Equstion (L.9).

The second, callec the i-method, involves the substitution of

g = s o
I ~
into the finite-difference equations given in Section 2, where £ = exp(ikax).

This leeds to an eguetion of the fom
B, at o e

LA
which in turn leads (letting G = 411 ga) to
att o g ot {4.22)

where G is the amplification matrix. The next step in the standard version

of the A-method is to find the roots of
det(g¢ - A1) =0 .

Another version of the i-method does not reguire the computation of

Hil and Eil H and is closely analogous to the a-method. Replace §yn+l



vy vy 0 = B to get
as” =0 (h.22)

where J(1) = AH, ~ H_. Note that det J(A) = O is eguivalent to

4 3 R FA
det(G - aI) = O provided ‘I;{‘;_l exists. Observe that Equation (22) is
analogeus tc g(:)fyo = 0 in a certain fashion.

let E(o.) result from en a-method enslysis of the differential {not
the difference) equations of some system of FDE's (e.g., H(a) for Equations

1-4 is given by Equation 2). ILet i( A) result from & A-method analysis of

the difference anslogs of the differentisi eguations (e.g., the ;I‘-\’,i,) for
the vN-R difference analogs of 1-4 is derived in Section ). The

PN ast
correspondence between a and A is A = ¢ .

It might zppeer that there
should be & simple correspondence between H(o) and J(A). For example,
consider Equations 1-B: corresponding to the operation

aelt/Bt = :).e“'t in the derivaticn cf E(a) therc is the operation

t

8 e“t/m; =& (% - 1)/at in the derivation of J(i). Similerly, the

operation 3 el}”‘/ax = ik e in the derivation of H{x) is analogous to

the following operation in the derivation of ’._I‘(:-\): A, eikx/ax = e 21
sin B)/Ax where § = kax/2. Thus if one replaced (a, k, 3/3t, 3/} in
Hiz} by ((n - 1)/at, 2 sin 8/ax, o°/4%, a./6x) to derive say "’{(7\)", then
one might conjecture that ":I‘" = J. This conjecture is true when the time
and space differencing possess a certain unifcrmity., However, the
uniformity is lecking in the vN-R scheme. The reader can see explicitly
whet is meant by considering the vN-R difference analogs cf the >u/3t
and /3t equations.

The failure of the above conjecture might lead to the weaker conjecture

that the stebility snalysis of "J" should produce stability inequalities

17
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similar to those required for the stability of J. If the last conjecture
were true, then it would provide a justification of so:ts for thce approxi-
mate stebility anelysis of vN-R [ 3]

In 1954 H. G. Kolsky reported (sue p. 13 of [71) G. N. Wnite's

stebility inequality:

far)? + bpr < 1 (k.23)

with & = c§ nla.mp. Hote thet White's inequality combines the vN-R
inequalities (16) and (17) in a certein way. White's approxzimate stability
annlysis was never published [2 ]. White’s ineguality was also reported
on p. 350 of T L J--unfortunately with a typogrephical error--the 2
exponent of ar 1s missing there.

About 1957 Richtmyer (see [8], pp. 218-222) returned to the stability
analysis to say: “It is found that two of the eigenvalues of E(At,k) ere
» =1 ané r = 0, iadependent of st mnd of k. The cther twc eigenvalues

satisfy the quedratic equation

oo 1)[)\ . ; 1y- l)z.ﬁt]

! -
+ <‘—A; sin® a){[z(x -~ 1)+ A ; L zAt]lzz[l + 1—2—1 zAt] + uAt} =0."
ox

This quadretic in A, csall it PR(A), appears to be incorrect--more ebcut

this later. In the above quadratic the notation used is

. _[i A—.v]n+l/2

VR /e

n+1/2
i SRR s I



It is elso convenient To introduce the notation { = zAt/2 for later use.

About 1966 R. . Thompscn (see Appenéix of [9]) did an approximate
stability enelysis of the vN-R scheme for the casse of a mechanicel eque-
tion of stete., Thompson's stability inequality is

(er)® s 26r 51 (4.24)

where # is & nonnegative constent. Reason for the 2-b4 diserepency in the
! coefficient in Thompson's .nd White's inequalities: White was considering
a viscosity quedratic in A u thet lesds to en extra factor of 2 in the
first veriation~-Thampson was considering a viscosity linear in & u.

About 1967 Richtmyer with Morton returned again %o the stability
analysis of the viN-R scheme {see [k !, pp. 320-224). They ncint out that

the quadratic Po(x) in Richtmyer [B] is in error and say thet it should

be
TR S 7 TR T SV !
PRH(U (O -)lx 1 5 (v L,Zﬁtr

J

»<"—‘5t- sin® %%[20 R ZAt]Ezz[l eyxz2 zm] !
I

Kcte thet the only difference between P, and Pon is that the pat term
changed to ipat. In their aspproximate analysis they take At/sz = constant
and let At, Ax - O toget ; = 1land A =1 - M (wheve M = 8(!/{_\){)22[3t) 28

the asymptotic roots of ?m,(},}. This leads to their conclus on that
b(ofax) ut < 1 {L.25)
is necessary for stability. They went on to say that they believe their

argument can provide only a routh guide to stability ccnditions.

PHM(A) is apparently incorrect--more gbout this later.

=
Vel
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In 1976 a study of the stability of WONDY (based on the vN-R scheme,
see "%]) for rate dependent material laws was vegun (see (107, 7117, 5l
and [12]). An example of a rate dependent law is Maxwell's materiel

law;:

%o/ + 828 /3 + R = 0

where ¢ is the stress, & is the instantaneous acoustic impedance, and R
is the relexation function. In Maxwell's material law, & and R are

aliowed to depend on ¢ and V. The WONDY difference equaticn for this is

n+1/2 .n+l/2

. n+l/2 n+l/2 n
+ 34172 + AtR(uj+1/2, v j+1/2

2, n . _
$onfe ¥ g Vigage Y=o

ATV

Remark: The reader might wonder why a2 and R are evaluated at
o§+1/2. The reason is basically one of computational convenience. The
32 and R may be nonlinear functions of ¢. In whiech case if the ¢
urguments were centered at n+1/2 some sort of iteration procedure would
be necessary to solve the implicit equations. TInstead what is done in
WONDY is a subcycling when gt is near + {& certain parameter called the
relaxation time cf the materisl)., For a further discussion of this ané
its effect on stebility see [11].

The first stability analysis for rate dependent materials was done

on & simple case of the Mexwell material lew called Malvern's materiel

law:

T/ot + acW/3t + (o - o M7 =0

where a, 9oq? and r are constant with ceq called the equilibrium stress
and T the relaxation time. The system of equations can in this cage be

reducedé to two:



m/at = -20/(0%%)
2/3t = -azau/'ao&c -~ (o - Ueu)/‘.' .

The WONDY difference scheme for these two eguations is

. -n-1/2
[a'a + pa.0 T = erla,q Y/
J p]
and
Ta'c + aZrA u-,n+1/2 = -nfs" -0 )
. LR IrLf2 T Ceq
where

ho= atf7 .

In T10] the stability analysis of the two preceding equations with

q==-c.a AU

1
led to the following result: A necessary ccnliltlen for siability is

(ar)g + h(% - clar) +qc,ar < 1. (4,26a)

Note that if h = 0, then (26) is just Thompson's inequality. Therefore,
as a corollary of (26) we have the result that. if the meterial law is
Hooxe's lew in one dimension (i.e., p = -aav - constant) and if q is
linear in A.a with a constant coefficient, then Thompson’s inequality is
necessary for stability. The stability resulbs in this peragraph are for
both asymptotic stability and computational sta'aility.

In [12] it is shown that if

0<£h<l =and Oscl<(l-.h)l/2-ar

then

(ar)? + h(% - cjar) + 2ejar < 1 (4.26b)

21



is sufficient for stebility. Note the corcllary for Hooke's law which
follows from (26b) when h = 0, Heferring to

(ar)2 + 2c.8r <1

as Thompson's gtrict inequality the result is: If the materiel lew ls Hooke's

law in cre dimension esnd ¢ is linear in A,u with constant coefficient then
the constraints
0 s e <1l ~ar

ere sufficlent for stability of the vN-R scheme, and the sufficient con-
straints imply (ar)2 + Eclar + ci < 1 which is only slightly stronger than
Thompson's striet ineguality since e = .1 in practice. When ey = 0, then
Thompson's striet inequslity reduces to the CFL strict inequality which is
necessary and sufficient for stability of the vN-R scheme in the Hooke's
law case. This last result {for e, = 0) follows from p. 263 of (k). ‘The
stability results stated im this paragraph hold for both asymptotic stability
and computational stability.

In the course of a previous study of more complicated rate dependent
material lsws 757 it was noted thet a stress of the form of an idesl gas
lew pressure plus & viscous stress g may be cast in the rate dependent

form. Recall Equation 4
- 2 -
dpitt = -(a° ~ Tpglav/3 .

Now a2 + Tpqg may be interpreted as the instantaneous aecoustic impedance.
Let's call it (a+)2, ie.,

()% = 2% + g

Then for ¢ = p + g we heave:



/3t + (a")2/2t - dgf3t = 0
erd R becomes identified with -3g/at.
In [5] & stebility analysis is done for the case when a and Tp are
constant and with g = ~[cia + cgnolA.uljﬂ.u. Note that this is enother
way of doing an approximete stebility anelysis for the ideal gas law. The

result found in [5] is the follawing necessery condition for stability.

(aer)e * 2K s 1 (4.27)

where

o2 =of s signls,u){Tolksn 350 e ul) o + 2c§o°fc]

and
B 20
K = ac; v 2cp0 |2 .
The Ineguality in (27) is, of ctourse, for the WONDY rate-dependent
ditferencing which is slightly different from the original vN-E scheme.
In the case of the aforementioned stability anslyses [5,10,11,12)

certain lemmas were developed (see Section 2). It has been ncticed that
they can be apnlied to PRM(L). Rearranging PRM to & standard form
E0) =a% - 28 a v c
RM** 2 2 2

where

2
p =1 =T, 28, =2 - (227 (2 + ¢} + pat]

¢, = 501 - 8P (2 - )1, with

3 =hﬂtsin26/Ax2,and§e=l+Tg.

23
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and dividing by §, (letting Ay = Az/gz, B, = Ba/ga, €y = c,,,/gz) ve obtain:

hy =1 - 2TC/E,

n
B
4

2 - erg/e, - &luat/s, + 2802 + )]
c,=1- z22§1(2 -0,

The diviasion by '52 is done under the assumption that §2 >0, i.e.,

~¢ < 1/T. Apply Lemma 1B with A =1-8g;Bg=1-DgCy=1ncy:

3 3 3

Ler--a 1B requires A3 > 0. In order Yo insure this, let's assume that the

time step restriction
lel <a/r
is impsed. In case (B_) the requirement

s i

a, + 25 -~

37374

leads to

2 -
(P.Z + Dq)re/gz + zAtj(%) + %; =1, (4,28)

Recall thet White's inequality is
2
2 (22)
(ar)® + 24t =) =1

and the Richtmyer-Mortor. inequality is

2
it (i—f{) <1

and compare these with (4.28). This result (4.28) appears to be very
encouraging since it contains White's inequelity and the Rich“myer-Morten

inequality, Unfortunately, it eppears that PRM(A) is incorrect,



5. RESULTS

A disagreement was found with {4 ]on p. 321 on the equation for he
eigenvalues of the amplification matrix. Therefore, the steps in it
derivation are given in great detail here.

Tne yN-R difference equations are:

{4 + rA.p]? = -rfA.q]?'l/g s (5.1}
(v - ranlfiF =0, (5.2)
{q + cs A,ulA.u|/V']3ii§§ =0, and (5.3)
[a€ + (p* + q)A'V]g':]JfL; =0 . (5.4)
Faor the idesl gas lew

ra'€ = p*A’v - V'a'p . {5.5)

Elimineting & from (4) snd (5) yields
[V AP+ {yp' + rq)A'ngiiﬁ =G . (5.6)

Remerks: The reader may verify that Equations (1), (2), (3), and (6)

A

are equivalent to Equations (L8), (49), (50), and (51) of [ 27 Alsc
Equation (4) is equivalent to the E-difference equation im tne system of
Equations °2.45) on p. 318 of [ 4 ], The sther difference equations on
+hat page need to be compared with those in [ 3], i.e., those in [4 7 are
the same, except for notation, as those in [ 3 1.
To solve (6) for pn+1 reguires
¢ <fy (5.7)

vhere

a5
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n+l n +1
= - N
¢ (V§+1/a VJ+1/2)/(VJ+1/2 * V;u/z) : (5.8)
Henceforth, it is assumed that the time step restriction imposed by (7)

is enforced.

The equations of first variation of (1}-(3) mre:

Lavsu + x0T} = -rla a T2, (5.9)
[a" 8V - rA.éu]BHl/e =0, and (5.120)
[8q + cglA,uI(%,su - 6V'A,u/v')/V']?:i;: =0, (5.11)

Fallowing " 4] and [ 3] in deriving (1l), the perturbation Su is assumed
small enough such that sign{A,u) is not eltered--see [ 4], p. 321. The

first variation of (6) is:
[lvsp™ + T50)a"V + (vp* + Tq)a’sV + v'assp + sva T2 20 . (5.122)

Check Eguations (9)-(12) by comparing with Equations (37)-(%0) of [3 1.

Following [ 41, p. 321, the notation

n+1/2

z = ~[AV/ (Ve Ty Y, (5.13)
is introduced. Note thet [ = zaAt/2. Using (13) in (11) leads to
n+l/2
50 + 422zl {aov* + 2n.ew/%s0)]" " =0, (5.14)
J+1/2
where & = c,4x. Again following [4 ], p. 321, the notation
0,2 . . N+1/2
b= 0PI+ TN B (5.15)

is used. Note that



n+l/2
3+1/2

u= (°P0(e*)? + ro¥a]
where o* = 1/V° and (e.*)2 = yp'p*. From (6), (13),
a'p = 2u0v7{0%)7

Then using (13), (15), (16), in (12) yields

[u(p®)?(a"sv + 2¢8V") - 2r¢sq + A'ép - 2vCop°]

Using the C-definition in (11) yields

s n+1/2
[Atbq +2lz] (22 (gav” + rA,suﬂ =

5+1/2

(15) follows

(5.16)
‘;Iiﬁ =0, {5.a7)
0. (5.18)

Now consider the system of equetions (9), (10), (18), and (17). Let

£ = exp(ikax) and for vy = n,n+l let

v-1/2 ved v1/2 v i+L/e v
buy = BUE , 8ag,), = 6078 s Wy

v _ovge1/2
89y,1/0 7 P8 .

Also let B = kax/2 and b = 2r sin 8. Then let §U° =

and replace wn*.—l by A@\‘Un to get

It =0

where :.T,()‘) is given by:

- EV.\)g,jﬁl/e , and

(50,67, 50", 60" 7T

27
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-1 n bi bi
~bi) A= 0 0
705) =
AR 7 AT {
~ Iy I3 > A o}
0 ‘Iha -2ThE Jhu
where
042
I3 = 2pinfz|(£0”)< ,
0,2
Iy = Clzl{n + 1)(&0 )" ,
0\2
Jh2=u(o Y=L+ ¢+ M1+ )7,
and

Jhk=—-l-w‘+7\(l—yg) .
Observe that

2
{ = At (y -
det J\).) AL J 0N l)

(5.19)

TRV NI (7, * 2RIy + 2l2]0r - 1Nl (5.20)

tet
P (1) = det J(2)/(htt)
and
M, = (00%)%/at
to get

P = (0= DPI-L - v+ AL - v0)] + Mpfualed + ¢+ 21+ O))

¢ B2a|l-2 + g+ a2+ -1 - ve+ A(L+ gr - 1D

(5.21)



My = 6(4/5x)° stn B sien(¢)
and

%, = 15."(1//9()2 stn® 8 sign(r)

to get

p0) = (1 - 3Pral s v (L - we)] ¢ X[Muéz v (e

R R CRUS I C I

Then expand PQ(A) into the stanaard form

2
+ ML+ Aek

3
1 + A3K

P (2} = A

where for 1 = 0,1,2,3

)21+ g s A2+ )]
r-1)7. (5.22)

3

=V

= W, - eni

= 3
Ay mhyor Ohyy * Chgp + CAy
with
Aco=-l,Aol=2M3-v,A02=M3(2v-l),AO
2 ¥, 2
Ay = 3 - (&*)° , A11 =y - hMa + (a'B)" A12
AL =M -2, , A ~-3+(*""3 A =V+2M+(a*'b)2
13 M 32 A0 T Bty s By 3 ’
= T - = -
Ay M,++M3(2. 1),A23 Mh+M3(1‘ 1),
Ay =1 3Ry ==V, Ay =0, and gy =0 .

29
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Iet the roots of pc()) be denoted Ll{f), 72(;), and >3",. First,

we determine the value of the roots at £ =0, If { = O, then

P lH)| L T e ST B GOy PR, I I
=0

one root is uniuvy so let -1(0) = 1. The other twc rcots satisfy the
quadratic equstion
1otz - %)% +F 20

1T 2*r 5 1 {the CFL inequality} then the roots (@) and »,(0) are complex
3

3,
2
conjugates with magnitude unity, Henceforth, it is sssumes that a*r = 1,

Therefore 1rt

= ¢’ where 2 cos ¢ = 2 - (a"b)2 .

2
w i) = + -
Ai\,) 8., 8% o)
- i3 . . . .
wiere Big = 1 and 80 = a30 = e”’, See Section 6 for & discussion of the

existence of these expansions,

Congider

Pr) = {1 - v (3 - 20 - a) (k- xa)

3 R 2 L ,
(1 - vo)[n° - O +oay x3)x + (1213 + Ayhg * Aot - xlA2A3]
and note that

2
A hp t Ay =g s Ay 4 oagg v Llayy +ay +oag) +0(C)



e - .
Rphy * Ayhy * Ayhy = Gpan + &8sy > 8)aeng * Clayy (syg + agy)
+ 8, (8. +8a. ) +a.la+a,.)]+ 0(52)
210210 * 2307 * 231(850 * 250/
and
A + 8 .6, 8. ) + o(gz)

b = {
‘hats T Byoog®a0 * Sl811%0830 * 210%21%30 T B10%a0P51

Matching AZ coefficlents ylelds:

' n f - + 4
=1+ ¥EMayg + mpg v 8y + Glay) ey + ag)]
A OO ()
and this leeds to

8. + a, =K

117 %21t B T e

where

2
- - .
K = 2(vy - M3) (1 + y)(a*)<
Matching Al coefficients ylelds:
(1 -y, + o ! -
1 ":){520”30 * BioP3e * 100 * SlB{eyg T agg) * sy (e - ag,)
+ ag. (R, + 8 )T} =3 - (a*b)z + gy - b + (a*h)ej + O(EE)
31'%10 * %20/’ 3 ’
end this leads to
apyfagg * ag0) + ey (ayp v agp) + g (e + 8g) = K

where

Ky = By - 1) + (L= V(&) .

31
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Matehing 17 coefficlenta ylelda:

+ 8 8.8

. . 7
(-1 = 02 gepgag * (81980080 * B10Ba)8ag * B10%a083) )

=1 gy - )+ o)
which leads to

81(8p0830) * 8ny(810830) + a3.{8ygis,) = Ky

K3 =2{v - M3) .

There are thrcz equatians for 8195 Bays 8oy and the determinant of that

system of equations is seen to pe

2

a n(8 -Az)*a’ae 2y
20°*10 7 "30 30'°20

- a *a(ae-s)
107 30 :

IREM

10

-
]

Therefore if the roots coalesce, then the determinant goes to zero. This
can happen when (a*b)2 « 0. This ia discussed further in the appendix.
For now let's proceed under the assumption that (&*b)2 > 0. Solving for

819 ylelds 81y = -2. Therefore

A o=l-2gs o(ge) .
Therefore in compression (¢ > 0)
|x1| s1+ o(ga)
pre-ided ¢ < 1. However, in expansion ({ < 0)

lx =1+ 2|¢]+ o(gz)

and this suggests thet a time step restriction of the form

el =6 (5.23)



with % fairly small should be imposed. Thet is, © < min (.25, 1/v) or

so. Next note that
(x -a,. -8,.C)(n -~ 8,, ~ & ’)=)2[ +a, . + (e, + 8, )
N7 80 T Bpplih T Byg T Baphs = A LBpg T Bag Tonifpy T 83y

+ (8yg + 8y C)agy + 85 0o

o * B30 * Q(a21 - 531) =2 (a*‘h)2

+ple ey -2, - (14 W),

layg * 5211;)(&30 + a31§) =1+ ¢l2+2y- 2M37 + 0(52) .

Note that matching coefficients with Al)\z - aBlk + Cl leeds to

2B = 2 - (*0)® - ¢[-2 - 2y + 2+ (14 WEw)?
and

Gy =1l-g2-aveam) o(c?) .

Applying lemma 1B with Al =1 = a5 Bl =1 - bl, Cl =1 - ¢y yields:

In Case (B+) the condition al + cl B Ebl leads to
2 2
o) s ¢{1 + V) (a*) + (%) .

Now, b = 2r sin 3, and sin B = 1 for the highest frequency, so this leads
us to the constraint

o(c®) < ¢(1 + Vu(arn)? + Ha¥r)®

which leads to

33
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o) - g1+ st
This least inecuality is always satisfled (modulo (Cz)) in compression
(r > 0), but in expansion (f < O) it imposes the conatraint
ol®y « el s 1/ + V) . (5.24)

Ir Cage (=) ixzéz = (x3

¢ = e O{cz) sa requiring that [ine end lkslz <2
leads to

¢y - o) s1
and this is eguivalent to

t@ + 2v) + o) = {g18/mx)F s1n® b .

Again since we are mainly interested in constraining the growth factors
for the highest frequency component (cin 8 = 1), we set sin B = 1 t~ get

the constraint

te + 2v) + o(c®) = |glBCe/m)®
which leads to

sign(¢)(2 + 2v) + 0(¢) = Bcj .

For expansion (§ < O) this is always satisfied (mocdulo O(L)). Hecwever,

for compression ({ > 0) we have

2+ 2y + 0(¢) Bcg

and thus & constraint on cg arises

o) + Lt s el . (5.25)



Note that for cg = 1 the previous inequallty holds (modulo 0(¢)) for

v = 3. InCase (B_) the condition

]
ey * 2bl + ¢y <4

leads to

()1 + ¢+ 1+ Bl s 1 e g1 W) (5.26)

Compare this with White's ineguality which is

(ar)? + Be(e/mx)? <1 .

Remark: Note that if e¥ = a and ar < 1, then White's inequality

implies (#F}, In the ideal ges lew case the difference betweer a* and a

n+1/2

at ¢ is as follows

WL e )

(vn+l . vn)

/2 V(p"ﬂ . _pg)
! Vn+l Vl’l

Therefcre, if 7 is close to Pn+1 end V" is close to vn+1’ then &% and a

are close.
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6. APFENDIX TO SECTION 5:
ON THE EXISTENCE OF THE EXPANSIONS OF THE EIGENVALUES

This appendix presents proof of the existence of expansions of the

eigenvalues in the form
(0 =+ a0+ o) . (6.1)

10

The proof iz divided into two cases:
Case (1) has a*b = O; Case (2) has a*b £ 0.

Case (2) is divided intc three subcases: Case (2a) has { = 0j

Case (2b) has { > 0; Case (2¢) has € < O.

Consider Case {1).

P, (1) = (- 01 e A - v0)
2*b=0

The roots are 4 = 1 (twice) and
A=l v/ - ) .
If -1/v s s0 (£ <0 is expansion) then
irf 1.
If 0< £ <1/y {C >0 is compression) then
2
[Af =1+ av[g] +o(c) .

This suggests that for computational stability a time step restriction
¢} & 5 should be enforced with § small and eertainly 5 < 1/y,

Consider subcase (2a).



(0] = -1+ a3 - (20714 2703 (@)P] w00
¢=0
One root is unity so let )\1(0) = 1. The other two routs ()\2(0), )\3(0))

satisfy the quadratic equation

Aoz (e +aZ-0.

Recall that b = 2r sin 3. If &*r < 1, then the roots are complex
conjugates with magnitude unity, Henceforth, essume that a¥r < 1.

Therefore let

rp(0) = e = 75(0)

where

2cos‘3=2-(a”“b)2.

Thus T =1, 80 = eia, and a30 =e .
Remark: The reason for dividing into Cases (2b) end (2¢) is that

the coefficients of P, depend on |¢|--the two-sided derivatives w.r.t.

G at ¢ = O are nonexistent. But if restricted to the case { > O (or

¢ < 0), then the coefficients are just polynomisls in €. The case [ <O

can be treated in a menner parallel to the treatment of [ > 0 so only the

details of the C > O case are presented here.

Consider subcase (2b), First verify that if ay) = 1, ay, = &18,
-i0 _ . :
Byg =€ "y Byy = -2, and if 8512 331 satisfy
521+a31=1(l+2
~i8 i9 _
&216 +S.3le —K3+2

where Ky = 2(v - M) end K = Ky - (1 ¥)(2*)? then
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(0= ey - 8,0 + 0(c)

e

Pc(x)= (1 - ¢)

i=1

it

It follows that

Poleyg v a0 = o)

The next thing to show is that there exists A)\i such that

+ ailC + N‘i) =0Oand My = c(ge). Use Newton's method. Let
o _ PR 35 N TN SNt P
Mo=ey telandk =X hReN )/Pc(l ). The basic idea of the

proof is en induction on m as follews: If ?c'().m) # 0, Pc'(}\m) = o(r%),

Pc(aio

® 4 0(¢?) is true for m then it is true for

p,(A%) = 0(¢?), ana " =2
m+l, One can see lhat this can be proven provided { i: small enough,
Pcl('l.c) # 0, Pc'(ho) = O(QO), and provided the Newton's iterstion converges.
To prove the convergence of the Newbton iteration one may use the
following Theorem N (see p. 168 of [13]). Let £(x*) = O and let £’ be
continuous and invertible in a neighborhosd of x°. Suppose
1£7(x°)] > 1/n ana |£{x%)| < |x* - x°|/(2n).  Then Newton's method started
at x° converges to & number x*¥ such that £(x**) = 0 ana
P R e
Pc().o) cen be made sufficiently small by choosing { small enough
because Pc(ho) = of 1;2). To use Theorem N it must be established that
Pé(k) is invertible at A = Ao. To do this one may use the Inverse Function
Theorem (see [14], p. 14b) which seys thet if g in ¢l ana g'(x°) # 0 then
there ir & neighborhood of x° such that g_l exists and is cl.

Thus what is required is that
PI0°) 40 £ 7% ena PIO°) = 0(c%) .

Note that



3
2
Pea) = (1 - ¥0) Z (=g - e Q0 - ey o= 835,18 00D

Therefore

Polagg * 8308) = (a5, = oy g )legg -~ 8ypp o) + OLE)

and since e* # O it folleows that

Pé()\o) £0 and Pc’(x") =0(c®) .
Also note that

3
A0 = 2(1 - v;)Z (h - 8y, - 8,0 + o)
<

Therefors

+ ailg) = 2[2&10 - 1+ 0(¢)

"
Pc(aio

Bitl,0 " %ie2,0
and it follows that

P;(x") #0 and P;(A") = 0(¢%)
since a*b # 0. This completes the sketch of the proof that the eigenvalues

possess expansions of the form (1) provided [ is smell enough.
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7.

SUMMARY

The eigenvalues of the amplificaetion me*-ix of the local equations

of first variation of the vN-R scheme for the case of the ideal gas law

are of the form (for i = 1,2,3,4)

where

¢= ("?d/z - ";ﬁ/e)/ (V?u/z * "’;;ll/z)

In order that the volume remain positive, the time step restriction (< 1

is required--for the vN-R scheme to be solvable { < 1/y is required--for

the suppression of noise oscillations of period 24x the inequality

-1/(1 + v} < ¢ should be enforced (note that this last inequality is a

constraint only in expansion where ( < 0).

In general, the computational

stability mnalysis in Sections 5 and 6 suggests that

should be enforced with £ small.

fel=s

(7.1)

How small may be determined by numericel

experimentetion--experience suggests 6 = min(1/4, 1/(1 + v)).

The computational stability analysis in Section 5 also leads to the

following constraint

(a*)P01 + c(1 + W) + Blg|&/)® s 1+ cl1+ v

where

n+l/2
[a*]j+l§2

Lo

(7.2)

- TR
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1,
is & certain approximation to the acoustic impedance at tm end xjd/.?
and where r = At/(p®ax). It was also found that
@+ s (o) (7.3)

should be enforced to suppress nolse oscillations of periocd 24Ax when in

compression (when £ > 0).
The artificisl viscosity in WONDY is of the form
q = ~A4u

where

A=ac) +chlaml A (7.4)

with ey and S5 dimensionless constants-—cl ~ 0.1, e, = 1.0. The £ and c,

are related by £ = N The stability inequality in WONDY &t this time
is

ar s ar s < (7.5)
where § % 0.9. Equation (7.4) may be written A = ac)T + ecgig{ therefore
{7.5) may be written

(ar)® + 2ac;r + beljc] s o . (7.6)

Consideretion of (7.2) and the stebility studies mentioned in Section &
suggest that WONDY should be enforcing

(a*r)%(1 + ¢(1 + )T + 2a%e r + Be2le) s 6L+ L+ ¥)]  (7.7)
along with (7.1) and (7.3) instead of (7.6) for the case of the ideal gas
law with artificial viscosity of the form

2 .
A= a¥e, + c2|£),u'/v .

b1
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