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Abstract

The original intention for this work was to impart the technology that was developed
in the field of “computational aeronautics” to the field of computational physical oceanography.
This teéhnology transfer involved grid generation techniques and solution procedures to solve
the governing equations over the: grids thus generated. Specifically, boundary fitting non—ortho-
gonal grids would be generated over a sphere taking into account the topography of the ocean
floor and the topography of the continents. The solution methodology to be employed involved
the application of an upwind, finite volume discretization procedure that uses higher order nu-
merical fluxes at the cell faces to discretize the governing equations and an implicit Newton re-
laxation technique to solve the discretized equations. This report summarizes the efforts put

forth during the past three years to achieve these goals and indic.ate‘s the future direction of this

work as it is still an ongoing effort.
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Introduction

Two of the widely used methods for predicting ocean flows are the o—coordinate approach
and the z-coordinates approach. The basis for the exiéting technology is at least a decade old
in the case of the o—coordinates and more than three decades in the case of the z—coordinates.
With the then available computer resources in mind, various simplifying assumptions were
made based on physical judgements and/or intuitive reasonings and a simplified set of equa-
tions were solved to predict the ocean flows. Aptly, this appfoach is called the ocean modeling
approach. While advances have been made over the years in terms of improving the solution
methodology, using parallel computers for example, the basic physical premises have re-
mained unaltered. However, there are questions about the validity of these premises when they
are applied to situations other than those for which they were originally intended. For exam-
ple, the use of the hydrostatic equation for coordinates other than spherical or Cartesian is not
well justified. In other cases, equations which do not strictly confirm to the assumptions of
shallow water theory are routinely being used to compute flows under the name of shallow ’
water theory and they are used in situations for which shallow water theory does not apply.

In computational physical oceanography, the full Navier—Stokes equations are solved thus
avoiding the many pitfalls of trying to model ocean flows. Application of the Navier—Stokes
équations off_ér several advantages: (1) The equations can be written 1n conscwaﬁvc form and
in cases Wherc that is not pbssiblc such as when including the effects of buoyancy etc., the
number of source terms can be kept to a minimum, (2) since the Navier—Stokes equations are
tensor invariant, numerical methods can be generated in a general setting. These methods ap-
pear to be much more stable and robust compared to the methods developed for the approxi-
mate equations (example, viscous—inviscid interactions) and have a wider range of applicabili-
ty, (3) expressing the Navier—Stokes equations in general curvilinear coordinates allows one to

solve problems involving complicated geometries with accurate representation of geometries




as well as offers the flexibility of packing grid lines in regions of interest and sparsely distrib-
uting them in regions with smaller gradients, (4) specification of boundary conditions on cur-
vilinear coordinate surfaces is straight forward. The main disadvantages are that it might take
more computer memory and longer CPU time to solve the problem. With modern computers
these disadvantages are less stringent today compared to the past decade and it is anticipated
that the situation in the next decade will be much better, particularly with paralle} processing.
In addition, techniques such as the multigrid method have been developed that are useful in
accelerating the con{rergencc of a Navier-Stokes solver for both steady and unstcady flows.
From another point of view, even though flow in a compressor or turbine of a turbomachine
is entirely different from atmospheric and oceanic flows, it also falls in the cétcgory of flows
in a rotating frame and typically involves Reynolds numbers of the order of 10° to 10%. It is
becoming increasingly common to use Navier—Stokes equations to solve the flow field in a
turbomachine, even at the design stage, even though various models with various simplifying
assumptions were in widespread use about a decade earlier. If one were to follow this path and

- uses the viscosity of water as the reference value in computing the Reynolds number for plan-

etary scale ocean flows, the Reynolds number turns out to be of the order of 10'°. In order to
resolve the boundary layer properly at such a high Reynolds number one needs to have a few
grid points in the viscous sublayer and that implies a grid resolution of the order of millime-
ters. While such a flow is obviously difficult to cdmpute, it is not impossible. An example
calculation is presented later.

The present work is not concerned with ocean modeling per se. Rather, the objective is to
use concepts from the field of “computational aeronautics” where appropriate and apply them
td the field of ocean flow simulations/prcdictibns. An additional objective is to extend 'and
dcvciop new tools dealing with the appropriate equations as well as numerical methods need-

ed to solve the equations. Consequently, the present work is referred to herein as computation-
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al physical oceanography (CPO) as opposed to ocean modeling. In the next section the state of
the art in ocean modeling is reviewed which is followed by a discussion of the present ap-

proach, computational physical oceanography, in Section 3.




2. Review of Ocean Modeling

Historically, the first coordinate system that was used for computing ocean flows is the so
called z—coordinates. In this coordinate system, in basin level models, for example, an f-plane
or f—plane approximation is made for the Coriolis force and the equations are expressed in
local Cartesian coordinates, with the x~direction increasing positive along the East direction,
y—direction increasing positive along the North direction and the z—-direction increasing posi-
tive in the vertical direction (opposite to the local gravity vector). The important property of
this coordinate system is that it is orthogonal. To be more precise, it should be noted that the
vertical z is truly orthogonal to the horizontal directions x and y. For global level models the
spherical polar coordinates are used with the latitude O, longitude A and the vertical
z = r — a where, r is the radial distance of the point under consideration and ’a’ is the radius
of earth, as the coordinates. It can again be noted that the vertical coordinate is truly orthogo—
nal to the planes containing the horizontal coordinates which are spherical surfaces with
constant radii. It is well documented in the literature that the topography of the ocean floor,
which is highly irregular, plays a crucial role in determining the ocean currents. The difficulty
in using the z—coordinate system, for solving the ocean flow problem, is that the ocean floor
can not be represented by a single coordinate surface. This led to the so called stair case repre-
sentation of the ocean floor which introduces considerable error in reprcséhting the bottom
topography. In addition, the shape of the continents is not preserved propcrlgr because again a
stair case representation is used. The staircase representation results in a grid in which the
number of points along different grid lines of the same family is different. In addition, selec-
tively packing the grid lines near regions of interest is very difficult, if not impossible. Diffi-
culties in the speciﬁc;aﬁon of boundary conditions as well as in coding make this appfoach

unattractive. Thus, the simplicity of the equations are almost lost in the complexity of coding

them over such a grid.
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The best example of a z—coordinate model is the Bryan-Cox—Semtner model first
introduced by Bryan [1] and later coded by Cox [2]. A finite difference formulation suitable
for vector processors can be found in Semtner [3]. In this model, the free surface is approxi-
mated by the rigid lid assumption by which it is meant that the free surface is not allowed to
evolve in time. As satellite altimctry/ data is becoming increasingly available, the sea surface
height is becoming a reliable dataset that can be used to compare with models. So, many mod-
els now include some sort of approximations to predict the free surface evolution. Killworth et
al [4], for example, have incorporated the free surface capability in the Bryan—Cox model.

Sigma coordinates were introduced by Blumberg and Mellor [5] m order to alleviate the
stair-case problem in the vertical. Thus, in this system the region fron; the free surface to the
bottom, in other words the vertical coordinate z is mapped to the coordinate ¢ in the interval
[-1, O] with the bottom at —1 and the free surface at 0. In this coordinate system some authors
have preferred to vertically integrate the equations while others have retained the equations
after applying all the appropriate approximations. It neecis to be noted that even though the
equation system that is not vertically integratéd is called a three dimensional system, it is not
truly three dimensional in the sense that the vertical momentum equation has been replaced by
the hydrostatic equation. Thus, the number of equations that are actually solved to update the
flow variables is reduced by one. Since both the free surface and the bottom topography vary
in the 8 and A directions, where 6 and A represent latitudes and longitudes respectively, their
derivatives with respect to 0 and A appear in the 6—momentum and A-momentum equations.
There is sufficient evidence in the literature that the o—coordinates suffer the same difficulties
as the previous stair—case approach near steeply varying bottom topo graphy. In the o—coordi-
nate system “horizontal” surfaces are nonorthogonal to the vertical coordinate, especially in
regions having steep bottom and/or free surface gradients. Bryan [1], in his now classic paper,

states that the hydrostatic approximation may be shown to be highly accurate as long as the




aspect ratio of bo;tom topography is much less than unity. However, the aspect ratio of the
bottom topography is comparable to unity in regions having steep bottom and/or free surface
gradients. Haney (6] examines the accuracy of the “horizontal” pressure gradient over steep
bottom topography in the o—coordinate system with(;ut questioning the hydrostatic equation.
It must be emphasized that the hydrostatic equation is not a coordinate system independent
approximation and is strictly valid only for a spherical coordinate system or a Cartesian coor-
dinate system in which one of the coordinate lines is aligned in the direction (opposite to that)
of the gravity vector and the planes containing the other tv;/o coordinates are orthogonal to this
direction. A natural approach to see whether the hydrostatic equation is valid for the o—coor-
dinate system would be to write down the complete vertical momentum equation in the o—
coordinate system and then introduce the order of magnitude approximation along the lines of
Pedlosky [7]. When this approach is taken, it appears that the hydrostatic equation seems to be
invalid for the o—coordinate system in regions with steep bottom and/or free surface gradients.

This issue is further discussed in Section 4.6.

An interesting approach with the vertically integrated equations in the 0—coordinates was

taken by Borthwick and Kaar [8], in which they introduce curvilinear coordinates in the hori-
zontal after integrating the equations in the vertical. This approach allows one to conform to
the boundaries better and allows greater flexibility in spacing the grid lines as well as allows
one to use the same nuinber of grid points on all the grid lines representing_a:particular coordi-
nate. While the application of this approach is not straight forward in the case of the “three
dimensional” oO-coordinates, the important message of this work is the use of the curvilinear
coordinate system in the horizontal to represent the side boundaries. Simple test cases where
such accurate representation of the side boundaries are needed are presented by them. It must

be noted here that when one uses a nonorthogonal curvilinear grid in the “horizontal” with the
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c—coordinat_cs in the “vertical”, one is actually using a general nonorthogonal coordinate sys-
tem, similar to the one used in this Work

There is growing doubts within the ocean modeling community about the validity of the
apprqximations made in deriviﬁg the shallow water equations. Espcciaily, the approximation
under more scrutiny is the hydrostatic approximation. The vertical component of velocity,
however small it may be, is needed in order to transport mass ( both water and salt ) as well as
heat in the vertical direction. In the field of Aerospace Engineering, even though \“.he classical
boundary layer theory treated the component of velocity normal to a viscous surface as being
small, it still had to take that velocity component into account. Even in Ekman theory, in the
field of Ocean Engineering, the Ekman pumping is obtained by not neglecting the vertical
component of velocity. So the obvious inference is that the normal component of velocity
from a viscous surface in a complicated three dimensional flow has to be accounted for, how-
ever small it may be.

Experience with boundary laycrs‘ have again suggested that the best way to include the ef-
fects of the normal component of the velocity is to integrate the complete set of Navier—Stokes
equations with highly packed grid points near the viscous wall rather than trying to make
approximations to the governing equations and solving them as a viscous-inviscid interaction
problems. The advent of very powerful computers makes it possible to integrate the Navier—
Stokes equations over very complicated geometries involving a variety of length and time
scales. So, it is opined that such applicati(_)ns of the Navier-Stokes equations are possible for

the planetary scale ocean problems as well.




3. Computational Physical Oceanography — Present Approach

Grid generation and solution methodology over nonorthogonal curvilinear grids constitute
the two basic elements of the present approach. Grid generation is a fairly mature area and
standard packages are available for generating grids, and talented and experienced grid gener-
ators can produce good grids over complicated geometries. The earliest work in grid genera-
tion using elliptic equations was done by Winslow [9]. Algebraic grid generation techniques,
and elliptic grid generation techniques, further developed by Thompson et al [10], Thompéon
[11], and Warsi [12] among others, are the most common grid generation’:techniques used
today. Further details about these and related topics may be obtained from the book by
Thompson, Warsi and Mastin [13]. One of the more widely used grid generation packages is
the EAGLEView [14] which was developed in-house at the ERC. This package provides a
user friendly graphics interface to the original EAGLE code developed by Thdmpson and co—
workers [15]. '

Even though standard packages are available for the purpose of generating grids, consider-
able user interaction is needed for generating usable grids, mainly for the purpose of defining
the bounding surfaces, or in other words, for the purpose of geometric definition. For the pur-
pose of generating ocean grids, points were read from the ETOPOS dataset along the coastal
lines of the continents with prescribed resolution. Then cubic splines are<used to generate
smooth curves that represent the continents. Points along these cillrvcsarc'.vintcrconnccted by
cross lines and a surface grid is generated and projected onto the ETOPQOS “dataset. This sur-
face grid represents the ocean bottom surface. Once this surface grid is obtained it is projected
radially outwards onto a sphere of radius one to generate the ocean free surface. Once these
surfaces are generated all the intermediate surfaces are generated with a chosen point distribu-
tion in the radial direction. Thus, a volume grid is obtained by joining all the surface grids in

the radial direction. ®

Y



While the process of generating nonorthogonal curvilinear grids for the oceans was fairly
straight forward, the process of obtaining numerical solutions over those grids evoked a series
of fundamental questions: (1) What form of the governing equations is to be uséd, (2) What
level of approximations is to be introduced in those equations, (3) What amount of grid reso-
lution is appropriate for resolving the turbulent flows if one were to choose the viscosity of
water as the reference value, (4) What are the appropriate boundary conditions to be used, etc.
Thus, in addition to the task of the development of a numerical scheme as originally envi-
sioned, it was felt that some theoretical work also needed to be carried out to answer some of
these fundamental questions. In total, there are five new theoretical developments that have
taken place in the past three years during the course of this research effort. They are listed
below: |

(1) Since the time of Coriolis, the Coriolis force has always been expressed as a source
term. Recently, Beddhu, Taylor and Whitfield [16] have shown that using a simple tensor
identity the Coriolis force can be expressed as the divergence of a tensor, thus, providing a
fully conservative form of the momentum equation in a rotating frame. This opens up new

possibilities of building alternate numerical approaches to solving the governing equations in

a rotating frame. From a numerical point of view, one of the advantages of expressing the

Coriolis term in a conservative form, in other words, in a divergence form, is that it fits in a
natural manner in a finite volume scheme. Note that fluxes are evaluated at the cell faces in
such a scheme whereas source terms need to be evaluated at the cell centers. A more important
advantage is that in a higher order numerical approximation of the fluxes the Coriolis term
" npaturally enters the flux Jacobian matrix, as can be seen from Section 5.2; and a higher order
reprqscntatibn for the Coriolis term is thus possible. » |
(2) In order to account for free surface flows in a rotating frame the usual apﬁroach adopted

in the literature is to introducea time dependent coordinate transformation in the classical mo-
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mentum equation for the rotating frame. Beddhu [17] took the approach of transforming the
momentum equation directly from the inertial to the rotating and deforming frame, and, then
resolving the resulting vector momentum equation w1th respect to a set of basis vectors fixed
in the rotating frame. This approach also leads to the same momentum equation reported by
others. This aspect is further discussed in Section 4.2.

(3) The classical momentum equation as presented in the introductory chapters of books
dealing with flows in a rotating frame, Greenspan [18] and Pedlosky [7] , for example, assume
that the coefficient of viscosity is a constant. Thus, the contribution of rota’tgzion to the viscous
term in the momentum equation is not included in this formulation. Howevgr:,‘ when the coeffi-
cient of viscosity is a variable in space as in turbulent flows or even in laminar compressible
flows with thermal gradients, Beddhu [17] showed that an extra term appears in the momen-
tum equation that includes the contribution of rotation to the viscous term. This work is moti-
vated by the observation that Stokes used the absolute velocity vector in his classical formula-
tion of the Stokes tensor, which accounts for the pressure and viscous forces. |

(4) When including the effects of buoyancy in the momentum equation the usual approach
is to invoke Boussinesq’s approximation in which the density appearing in all the terms of the

momentum equation is treated as a constant except for the buoyancy term. Alternate formula-

-+ tion to Boussinesq’s hypothesis are beginning to be examined by ocean modelers for various

reasons. In this conncc;tion, Beddhu et al [19] have _introduced an alterniw formulatiqn in
which the momentum equation is first divided by density throughout. This results in an equa-
tion in_whi_ch the pressure term anc‘l‘ the viscous term arc_mulﬁplied by 1/p. 'Ifhen‘ 1/pis re-
placed by (1/pg)(1 + p’)~! where p’ = Ap/p,, Py is a reference density and Ap is the
change in density from the rcfcrcncc value. This approach leads to an approximation from

which Boussinesq’s approximation can be recovered as a lower order case. In oceanographic

applications, which are the’'main thrust area of this research, the maximum change in density is
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about 6 percent of the standard value, see Bryan and Cox [20]. Assuming that the maximum
change in density is about 10 percent and writing p as p = pg + Ap = py(1 + p’) itcan
be easily checked that the error involved in writing 1/p = (1 — p' )/p,, where higher order
powers in p' are neglected, is less than 1 percent.

(5) Since the coordinate system employed in the present study is a nonorthogonal curvilin-
ear coordinate system, the viscous stress boundary condition at the ocean surface has to }be
applied with respect to such a coordinate system. However, the viscous free surface boundary
conditions are a complicatcd set of equations in a general curvilinear coordinate system. On
the other hand, in an orthonormal coordinate system, these equations take the simplest form.
This fact is taken advantage of by introducing a local orthonormal coordinate system at every
grid point on the free surface in Beddhu and Whitfield [21]. The unit tangent vector ( say, t)
to one of the coordinate lines lying on the free surface at the point of interest, the local unit
normal (say, n) to the free surface at the point of interest and the vector t x n constitute the
orthonormal system. Veloéity componenis and the derivaﬁves in this orthonormal system are
| expressed in terms of the velocity components and the derivatives in the curvilinear coordinate
system using transformation felaﬁons which results in a set of matrix equations that are solved
to update the free surface velocity éomponents as well as pressure.

As discussed in detail in Beddhu, Taylor and Whitfield [16], the momentum equation for

flows in a rotating ffémc can be fqmﬁlamd in various ways. It can either be formulated with '

respect to an obsm'v;t;,i~ who is stationary in an inertial frame or with respéct to an observer who
is stationé.ry with respect to the rotating frame. It can either be formulated with the absolute
Vclocity componenfs or the relative velocity components. Irrespective of which form one
chooses, the governing equations need to be written in terms of a general curvilinear coordi-
' naté; and finally expressed in the _sp'g.__:gll_cd ﬂqmg:ic_’;alv vector form in order to .ﬁe discretized.

For the implicit' ééheinc, one needs the flux Jacobians and the eigensystem of the ﬂu:g Jaco-
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bians. In Beddhu et al [19] the observer was positioned in the inertial frame and the governing
equations were written using the absolute velocity components. The eigensystem for the com-
plete system of six equations viz., the continuity equation, the three momentum equations, the
temperature equation and the salinity equation, was presented. However, one has to' subtract
the term £2 x ( 2 x 1), as discussed in [16], from the momchtum equation presented in [19] in
order to make it applicable to ocean flows. Since the term £ x (£ x 1) does not depend on
- any flow variable, it does not alter the eigensystem. In Beddhu, Taylor and Whitfield [16] two
formulations of the momentum equation weré presented with respect to an observer in the ro-
tating frame, one using the absolute velocity vector in the local time derivative term and the
other using the relative velocity vector in the local time derivative term where the local time
derivative itself is formulated with respect to the rotating frame. The eigensystem for the set
of four equations including the continuity equation and the three momentum equations was
presented for both the formulations.

As can be seen from the above discussion, considerable theoretical progress has been made

to answer some of the questions raised earlier. In terms of code development, three different

categories of codes are being developed for various applications. They are as follows: (1) A
set of codes for solving the continuity equation and the three momentum equations. This set is
the basic set and is called the 4x4 set corresponding to the dimension of the ﬂux Jacobians. (2)
'The second set includes the temperature equation in addition to the contmu1ty and momentum
equations and is called the 5x5 set. (3) The complete set of six equations is included in the
third set and is called the 6x6 set. In each set of codes various formulations are mcluded which
are determined by the position of the observer and the velocuy components used ie., relative
or absolute. Depending on the particular application in hand, a particular code can be chosen
that will result in minimal memory usage and CPU usage. This approach is needed since the

problems of interest to the. authors are very large scale problems. However, within each set,
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since the eigensystems are remarkably similar for the various formulations, minimal code
changes are required to go from one formulation to another. Most of the theoretical develop-
ments introduced earlier are already incorporated in the codes and the remaining are being
implemented. Among the features that are yet to be implemented is the free surface formula-
tion in the rotating frame as the theory is very recently developed. The generic name for the
codes developed in the CFD Lab of the ERC is UNCLE ( UNsteady Computation of fieLd
Equations ). The particular name for the codes developed for ocean applications is UNCLE.O-
MAS ( UNsteady Computation of fieL.d Equations — Old Man And the Sea ).

The original incompressible UNCLE code was developed by Taylor [22] as part of his doc-
toral degree requirement and belongs to the 4x4 category. In this work the observer is posi-
tioned in the inertial frame and he is observing the flow taking plabe in a general non—inertial
frame. This allows the governing equations to be expressed in the so called strong conserva-
tive form. The artificial compressibility formulation is used to recast the continuity equation
as a hyperbolic equation and the entire set of governing equations is expressed in terms of
general curvilinear coordinates fixed in the non—inertial frame. The so called partial trans-
formation is used to write the momentum equation in its component form in order to maintain
its strong conservative nature in the component form as well. The resulting governing equa-
tions are discretized using the Roe scheme [23] for the first order fluxes and the MUSCL
scheme of van Leer [24] for the higher order fluxes in a finite volume formulation. The discre-
tized equations are"then solved implicitly using Newton’s method coupled with symmetric
Gauss—Seidel passings in a time accurate manner where the flux Jacobians are calculated us-
ing numerical differentiation ( see Whitfield [25] ). Time accuracy is introduced by multiply-
ing the residual in the Newton’s method with a suitable pfcconditioning matrix as prescribed
by Pan and Chakravarthy [26]. The rééulting numerical algorithm is called the DNR ( Discre-
tized Newton Relaxation ) scheme. Further details of this scheme can be found in Whitfield
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and Taylor [27]. A detailed exposition of this scheme applicable to two dimensional flows can

be found in Whitfield and Taylor [28].

One of the common methods of reducing the problem size when_ dealing with 1arge scale
computational problems is the domain decompositioﬁ techhique in which a given large physi-
cal domain is decomposed into smaller sub—domains and the solution algorithm is applied in
each sub—domain as if it is thc only domain of interest. These sub—domains are also called
blocks. This approach creates artificial block to block boundaries and information needs to be
passed across these boundaries at each time step to corrcctiy solve the glolpa_.}é -_;P:roblcm. General
multiblock capability to the original UNCLE solver was added by Arabshq_lgi and is reported
in Arabshahi, Taylor and Whitfield [29]. In this approach, blocks of arbitrarj sizes can be ori-
ented in any arbitrary manner and an arbitrary number of boundary patches can be used on the
block boundaries for specifying various boundary conditions. Even though an arbitrary orien-
tation is allowed, grid lines across the block to block boundaries have to be continuous.

An important technique that has gained Wide_sprcad‘popularity for acc;eleraﬁng the conver-
gence of Navier—Stokes solvers is the multigrid. method. A nonlinear multigrid method has
been added to the original UNCLE solver by Sheng [30] and Sheng, Taylor and Whitfield [31] |
for stcady flows and by Sheng, Taylor and Whitfie}d [32] for unsteady flows. This approach
uses the Galerkin coarse grid approximation for-restricting the fine grid matnx operator to the
coarse grid and applies the implicit correction smoothing technique wh%n prolonging the
corrections from the coarse grid to the fine grid. Beddhu et al [33] have adéed the combined
capability of multiblock and unsteady multigrid approaches to the original UNCLE code de-
veloped by Taylor [22] with some modification to the coding of Arabshahi [29] and Sheng et
al [32]_. For various other applications Arabshahi [34] and Nichols [35] have independently
added the same capability to the original UNCLE code.
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The strong conservative form of the governing equations in a rotating frame under the 4x4
category has been formulated in two different manners with the absolute velocity components
and the relative vélocity components respectively, and both have been coded by Beddhu and
reported in Beddhu, Taylor and Whitfield [16]. The goveming equations of the 5x5 category
have been coded using a simple multiblock strategy by Siong [36] following the approach of
Beddhu et al [19]. These equations are cast with respect to an observer in the inertial frame
and uses the absolute velocity compdnents. Simple multiblock strategy means that.the blocks
need to be of the same size, arbitrary orientation of individual blocks is not allowed, and, the
boundary conditions are applied in a restricted manner. Starting from the original UNCLE
code of Taylor [22], Beddhu wrote the code for the governing equations of the 6x6 category
positioning _the observer in the inertial frame and utilizing the absolute velocity components
and this work has been reported in Beddhu et al [19]. This code uses the general muh:iblock -
| strategy. Efforts are underway to include the multigrid capability in this code. A rotating
frame formulation of this category has also been coded and is currently being used to compute
the flow in the Atlantic ocean.

As mentioned earlier the implementation of the free surface capability in a rotating frame is
underway using the equations proposed in [17]. However, Beddhu, Tayior and Whitfield [37]
have introduced the modified artificial compressibility method for solving the free surface
flows in an inertial frame using deforming grids. This method is capable of predicting ﬁn—
steady free surface flows as demonstrated in [37] and [38].

Various strands of the UNCLE code have been successfully tested against various cases
ranging from text book examples to real world engineering applications and are too numerous
to list here individually. The basic methodology has proved to be sound and the code is robust.
Interested readers can refer to the references cited above for applications. However, a set of

specific cases were designed to demonstrate the capability of the UNCLE solver towards the
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goal of applying a Navier—Stokes solver for computing oceanographic flows. These are dis-

cussed in the results section.

The rest of this report is organized as follows: In Section 4 the governing cquations are

presented. In Section 5, the numerical algorithm is presented. Section 6 deals with the grid
generation strategy employed for generating ocean grids. In Section 7, the results of chosen
test cases are presented which clearly demonstrate the capabilities of the UNCLE solver. Fi-
nally, in Section 8, conclusions are drawn and a possible course of future work is suggested as

this is an ongoing effort. e




4. Governing Equations

This section is further sub—divided into five subsections. In Section 4.1 strong coﬁservativc
formulation of the momentum equation for gcophysicai applications is presented which is fol-
lowed by a discussion on the formulation of the momentum equation for free surface flows in
the presence of rotation in Séction 4.2, In Section 4.3, the derivation of the contribution of
rotation to the viscous term in the momentum equation is presented. In Section 4.4, the com-
plete set of the governing equations for oceanographic applications is presented with the pro-
posed modified Boussinesq’s approximation. In Section 4.5, the formulation of the viscous

| stress boundary condition is presented for a general curvilinear coordinate system as outlined
earlier. The validity of the hydrostatic approximation in a general curvilinear coordinate sys-

tem is examined in Section 4.6.

4.1. Strong Conservative Formulation of the Momentum Equation in a Rotating

Frame.

The momentum equations governing the ( oceanic ) flows over earth, which is a self-rotat-

ing gravitational body, in non—dimensional tensor invariant form is given by ( see for exam-

ple, Gill [39])
%,y yy+pl-ola]42Qxy +b=0 “.L1)
at r+p Re, == = o

where v = y"/U,, is the non-dimensional velocity vector with respect to the rotating frame,
T = tU,/L, is the non-dimensional time, p = (p° — Po)/PoU¢ is the non-dimensional pres-
sure, £2, is the angular velocity of the rotating framé, G, is the Stokes tensor and b, is the Body
force. Re is the ‘Rcynoylds number, Rey = poU,L / 1o Where, py is a reference density, U,

2

is a reference velocity, L is a reference length, and, p, is a reference coefficient of viscosity. A
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tilde over a quantity denotes that it is a tensor and an underscore denotes that it is a vector, The

Stokes tensor is given by

_ T
=u(Vy+Viy) . (4.1.2)

where, p = p* /o, is the non—dimensional coefficient of viscosity. The superscript "T” in Eq.
(4.1.2) denotes the transpose operation. The only body force considered is that due to gravity

and is given by b = n/Fr?, where, Fr is the Froude number given by Fr = U,/ JaL, where, a
is the acceleration due to gravity and n is the local normal to the earth’s surface. In Eq. (4.1.1),

- denotes local time derivative with respect to the rotating frame. In other words if

Xl

im; m = 1, 2, 3 are the Cartesian base vectors in the rotating frame then, by definition,

3 (Vi dVm.

== (5';“‘) = 2B, (4.1.3)
It can be easily venﬁed that

Qxy=y-V@xr) (4.1.4)

where, ris the radius vector from the origin of the rotating frame. Using the following tensor

identity for any two vectors g and b, ( see, Morse and Feshbach [40] )
V@ =2a-(Vb)+b(V-2) ‘ (4.1.5)

and the fact that V - v = 0, which follows from the conservation of mass, it is seen that

Qxv=~-Y- (vw) (4.1.6)
where, w = — Q xr. Therefore, Eq. (4.1.1) can be written as
3y V(v —2%) + T — L5 -
=tV [2(¥ '2.2V_)+pI Roo] (4.1.7)

Note that the body force has been combined with the pressure by the use of the body force

potential in the manner presc;ibcd by Bgddhu‘ et al [37], that is, p’ = p + ¥/Fr?, where ¥ is




the body force potential due to gravity. Equation (4.1.7) is the strong conservative formulation
of the Navier—Stokes equation fof incompressible flows in a rotatihg frame. To the authors’
best knowledge this is the first time the Navier-Stokes equations have been presented in a
rotating frame without both soufce terms. Note that, such a formulation is not possible for
compressible flows since V < ¥ # 0. The continuity equation in\the modified artificial com-

pressibility method [37] is given by

ap LBV y =0 (4.1.8)

where B is the artificial compressibility parameter.

Even though Eqgs. (4.1.8) and (4.1.7) form a complete set of governing equations for solv-
ing the o<':ea1.1ic flow problems, further insight into the alternative formulations of the momen-
tum equation appropriate for solving geophysical flow problems, can be gaiilcd by looking at
an alternate derivation, starting from the governing equations w1th respect to an arbitrary non—
inertial frame. The momentum equation for viscous, incompressible flows in a non—inertial
frame of reference, in a gravitational field, in non—dimensional, vector invariant form is given

by (see, for example, Warsi [41])

Jg 9t

where /g is the Jacobian of the coordinate transformation, u = u*/U,, is the non-dimensional

la(\/—_)_*_v L +pl_rg]+b—0 (4.1.9)

velocity vector in the absolute frame, y =u + w is the non—dimensional velocity vector relative
to the moving frame, w is the non—dimensional grid speed vector, and other quantities are as

defined previously. The Stokes tensor is given by
6 =p(Vu+Viy)  @L10)

It must be noted here that Warsi [41] foﬂovys the linear transformation representation ( see,

Truesdell and Noll [42] ) for representing tensors whereas this work has adopted the dyadic
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product representation ( see, Morse and Feshbach [40] ) for representing tensors. Hence, the
equations found in Ref. [41] are suitably modified to fit the representation adopted in this
work.

Since a rotating frame is a particular case of non—‘-inertial frames for which Eq. (4.1.9) is
applicablc, it must be possible to derive the momentum equation in a rotating frame from Eq.
(4.1.9). However, the concept of grid speed is not valid with respect to an observer situated in
the rotating frame since the grid does not move with respect to him/her. Following Warsi [41],
instead of considering w as the grid speed, one poses the question of what-form of w in Eq.
(4.1.9) would result in the Navier—Stokes equations in a rotating frame. It is an exercise prob-
lem in Ref. [41] to show that substituting w = — £2 xr, where, Q is the angular velocity of
the rotating frame and 1 is the distance from the origin of the rotating frame in Eq. (4.1.9),
results in the classical rotating frame equation in a gravitational field, i.e., the éentrifugal force
term £ x (82 x r ) has to be added to the left hand side of Eq. (4.1.1). Hence, in order to arrive
at Eq. (4.1.1) this term has to be subtracted from Eq. (4.1.9) to obtain
L%ﬂ—uv- [y_g+pi—RL%a]+h—gx(gz_xg)=o (4.1.12)

Ve

It is emphasized that now Eq. (4.1.11) is applicable only to seH—graﬁmﬁng, rotating bodies
like the earth. The vector momentum equation, Eq. (4.1.11), can be resolved into components
with respect to a set of basis vectors which can either be fixed in the inertial frame or in the
non-inertial frame. This aspect is further discussed in Section 4.2. The basis-vectors are fixed
in thé rotating frame for the following discussion. Thus, for the case of a rotating frame with a
constant angular velocity L using the relations given in Section 3.10B of Ref. [41], it can be

proved easily that

10(zw _

4

du
g ot Fa

+Qxu | (4.1.12)
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where, %’ denotes local time derivative with respect to the rotating frame (See Eq. (4.1.3)).

Equation (4.1.11) can now be re-written, using Eq. (4.1.12), as follows:

A

=+V-vu+pi-glar+@xy=0 (4.1.13)
veo

where, vy =u + w = u — £ x ris the velocity with respect to the rotating frame. Note that the

body force has been combined with the prcssure by the use of the body force potential as be-

fore. Substitution of Eq. (4.1.6) in Eq. (4.1.13) results in,
ULV [v(u —ﬂ)+p'i—--ﬁl—5]=0 (4.1.14)
o .

Equation (4.1.14) is an alternate strong conservative form of the Navier—Stokes equations in a
rotating frame, applicable for a self-gravitating, rotating body like the earth. Note that Eq.
(4.1.7) can be recovered from Eq. (4.1.14) by substituting, u =y - w = v + Q x r. The main
difference between Eqs. (4.1.7) and (4.1.14) is that in a time marching approach, one would
solve for the relative velocity components using Eq. (4.1.7), whereas one would solve for the
absolute velocity components using Eq. (4.1.14). The continuity equation in the modified arti-

ficial compressibility method [37] is given by

%ll_' +Bdiva = 0 (4.1.15)
where f is the artificial compressibility parameter..

The fully conservatifre formulation of the momentum equation is given in the cdmpact vec-
“tor and tensor notations, thus far. However, in order to solve the equations, numerically or
otherwise, one has to Wrifc the momentum equation in its component forms. When resolving.
the momentum equation into component forms one is presented with many choices. These
choices arise due to the fact that the vector and tensor quantities can be expressed with respect

to any set of coordinates independent of the coordinates one chooses to express the divergence
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operator itself. Traditionally, however, the set of coordinates chosen for resolving the vector
and tensor quantities is the same as the one chosen for expressing the divergence operator.
Thus, Cartesian velocity components are chosen when the divergence operator is expressed in
Cartesian coordinates, cylindrical components are chosen when the divergence operator is ex-
pressed with respect to cylindrical coordinates and so on. The problem, for example, with
choosing cylindrical components of the vector and tensor quantities when expressing the di-
vergence operator in cylindrical coordinates is that Christoffel symbols appear explicitly,
thereby preventing the conservative formulation in the component form. .Iherefore, if one
wants to come up with a conservative formulation in the component form. also then there is
only one choice. That, is to express the vector and tensor quantities in Cartesian components,
no matter what coordinates are chosen to express the divergence operator. Since, nonorthogo-
nal curvilinear coordinates are the most general coordinates, the divergence operator is ex-
pressed with respect to such a coordinate system in this report. The resulting equations are
given in Section 5.1 ( see also Section 4.6). The code UNCLE.OMAS ( UNsteady Computa-
tion of fieL.d Equations — Old Man And the Sea ) is written to solve Egs. (5.1.1). Thus, sup-
pose one is interested in the flow over a sphere. Then one can construct a grid based on spberi-
cal coordinates and the appropriate metrics will automatically be computed. However, the real
advantage of this approach is that one does not have to create a grid based on spherical coordi-
nates. As long as the body shape is nﬁaintaincd spherical, any set of coordinate lines can be
created, analytically or numerically, and the same code can be used to solve the flow field.
Even though Eq. (4.1.9) ( after expressing the body force in terms of the body force poten-
tial ) and Eq. (4.1.14) are in fully conservative form and a time marching scheme in both cases
would solve for the absolute velocity components, the important difference between them is
the position of the observer. While in the case of Eq. (4.1.9) the observer is. situated in the

inertial frame, he/she is sityated in the rotating frame in the case of Eq. (4.1.14). Thus, the grid
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remains stationary in the case of Eq. (4.1.14) whereas the grid has to be moved and all the
metrics need to be recomputed at each time step in the case of Eq. (4.1.9). Steady flows in the
rotating frame can be computed using time inaccurate schemes using Eq. (4.1.14) whereas
- they require time accurate computation of Eq. (4.1.9).

A time marching upwind scheme for the set of equations (4.1.14) and (4.1.15) would typi-
cally solve for the pressure and the Cartesian components of the absolute velocity vector. Ei-
ther one can solve the set of equations (4.1.14) and (4.1.15), or, the set (4.1.7) and (4.1.8), by
the numerical method pfescnted later in this report. For both sets remarkably similar sets of
eigensystems are derived. These eigensystems again differ from that derived by Taylor [22]
for Eq. (4.1.9) only slightly which results in minimum code modifications.

The solution procedure for the set of equations (4.1.14) and (4.1.15) iS called Absolute—Ve-
locity Procedure and that for the set of equations (4.1.7) and (4.1.8) is called Relative—Veloc-
ity Procedure. An important element in the present formulation is the construction of the in-
viscid fluxes at the cell interfaces. The theory behind the construction of the inviscid fluxes
has been well established by Roe [23], van Leer [24] and others. The tools needed for
constructing the inviscid fluxes are provided in Section 5.2.

The strong conservative form of the momentum equation in a rotating frame for non—geo-
physical applications, turbomachinery problems for example, is presented in Beddhu, Taylor

and Whitfield [16]. -

4.2. The momentum equation for incompressible free surface flows in the pres-

ence of rotation.

Actual ocean flows involve a dynamically evolving free surface. The effect of a free surface
has been neglected altogether in early studies of the ocean flows. However, in recent times

free surface computations are included at least for numerical reasons, if not for physical rea-
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sons. It should be emphasized that proper inclusion of a free surface in a rotating frame com-
plicates the governing equations further by bringing in the effects of deformation in addition
to rotation. Besides, one has to deal with the non-linearity of the free surface kinematic equa-
tion in addition to the non-linearity of the Navier—Stokes equations themselves. In this sec-
tion, a consistent formulation, of the governing equations is presented when a dynamically
evolving free surface is present in a rotating frame.

In order to compare the end result of this section with the classical form of the momentum
equation in a rotating frame, the approach taken in this section is to formulate the momentum
equation in a non—conservative form. First, the momentum equation applicable for a general
arbitrary non—inertial frame is derived starting from first principles. This equation is then re-
cast in terms of the relative velocity vector, and the grid velocity vector, and the local time
derivative is expressed in terms of the relative frame. The relative velocity vector that appears
in the resulting cquation is described with respect to the rotating and deforming frame and the

grid velocity vector includes both the rotational and deformation contributions. In order to

cast the governing equations in a familiar form, appropriate variables are introduced. At the

end of the section a strong conservative formulation of the momentum equation is presented.
The non—-dimensional, non—conservative form of the momentum equation with respect to
an inertial frame is given by

—ag . = - .i— PP : ..\i
gt T Ve = —VpHg V- G+b 2 4.2.1)

where the symbols are defined in the previous section. The deviatoric part of the Stokes ten-
sor, G, is given in Eq. (4.1.10).
Now, let x,,x, and x5 be a set of Cartesian coordinates attached to the inertial frame and

consider an arbitrary time dependent coordinate transformation,

iy




= xt(x,, x,, X, t), i =1,2,3
A 4.2.2)

T=t
where x! are a set of general curvilinear coordinates a&ached to the non—inertial frame. It is
assumed that the inverse of the transformation in Eq. (4.2.2) exists. In order to transform Eq.
(4.2.1) to the non—inertial frame, first the local time derivative in Eq. (4.2.1) which is obtained

by keeping x; , i=1,2,3, fixed, needs to be expressed in terms of the time derivative obtained

keeping x!, i=1,2,3, fixed. This results in,

du Ju Ju 9xi Ju
—_— _ = + —_ S = = + . V (4,2.3)
0t Ix, fixed OT lxified oxi Ot T |xi fixed = £

where, the vector w is given by, w = %Lt‘ a;, where, gg(t—lis the contravariant components of

the grid velocity vector, and, a, are the covariant base vectors of the curvilinear coordinate

system. Substituting Eq. (4.2.3) in Eq. (4.2.1), one gets

du . = — 1y, s
E-,-X Vu = Vp+RCOV G+b 4.2.4)

where the local time derivative is evaluated by keeping x! fixed, and, v, is the relative velocity

as observed from the non—inertial frame given by

Note th_ét thé sum in Eq. (4.2.5) is a vector sum and should not be misconstrued to mean that
the relative velocity is greater than absolute velocity. It is emphasized here that the trans-
formation implied in Eq. (4.2.2) has nbthing to do with choosiﬁg a set of base vectors to re-
solve Eq. (4.2.4) into components. Without specifying the frame (which will be done shortly)
let, 1171'= 1,2,3, be a set of base vectors. Then the local time derivative in Eq. (4.2.4) can be

written as:
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m
%% _3 (uazgm) _ agtm 2 + um%; | (4.2.6)

where, u™, m = 1, 2, 3, are the contravariant components of the absolute velocity vector with
respect to the base vectors ap,. The first term on the right hand side of Eq. (4.2.6) represents
the local time derivative with respect to the non—inertial frame and the second term on the
right accounts for the rate of cilangc of the base vectors with respect to time._ It can be easily
checked that if the base vectors are fixed in an inertial frame then day,/dt = 0. Similarly, for

the base vectors fixed in the rotating frame one has
=32y V(LQxr)=0xa, ) 4.2.7)

Finally, for the base vectors fixed in a rotating and deforming frame one has (See Warsi [41],

Eq. 3.134)

92 oW - (42.8)

Resolving Eq. (4.2.4) with respect to the base vectors fixed in the rotating frame means that

one should use Egs. (4.2.6) and (4.2.7) in Eq. (4.2.4) which results in

. - 1
+Qxu+yv-Vu VP+Re0V +b 4.2.9)

A hat is placed over the local time derivative in Eq. (4.2.9) to indicate that it is evaluated with
respect to the relative frame ( see Eq. (4.1.3) for thc definition ). Equation’ (4 2.9) is the mo-
mentum equation for a rotating and deforming frame expressed in terms of, the base vectors
fixed in a rotating frame alone. In other words, an observer situated in thc rotating frame
would use Eq. (4.2.9) to predict the flow in a dcformmg coordinate system. (Note that an ob-
- server situated in the rotating frame can only seé defofmation). In order to cast Eq. (4.29)ina
familiar form one proceeds as follows. Fof a romﬁné and deforming frame the vector w cén be
decomposed into a vector sum of tv§o components, one due to rotation and the other due to

deformation. Let, w = E“+ w', where, W = — (L x1), is the part due to rotation and w'
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is the part due to deformation which has to be obtained numerically or otherwise at each in-
stant in time. Then Eq. (4.2.5) becomes

y=ut+tw=u+W+w=V+w , (4.2.10)
where, by definition, V = u — (Q xr) is the relative velocity with respect to the rotating

frame. Substituting Eq. (4.2.10) in Eq. (4.2.9) and writing the resulting equation in terms of V

results in
v oQ
}—[--i-y_ VA +—&-X£+29.X.Y
+Qx(Qxr)+w - -VV = —VP‘*'—I—V' G+b (4.2.11D)
- == - _ ;RCO -

Equation (4.2.11) is the final form of the momentum equation governing a flow in a rotat-
ing and deforming frame cast with respect to an observer in the rotating frame and expressed
in terms of the relative velocity vector with respect to the rotating frame.

In the traditional approach to deriving the momentum equation in terms of the rotating and
deforming coordinates one first transforms to the rotating frame alone from the inertial frame.
Thus, the transformation implied in Eq. (4.2.2) is from the ineftial to the rotating frame alone

and Eq. (4.2.4) becomes

oy . = — 1 v.s
+Qxu+V-Vu ,Vp+R60V G+b (4.2.12)

The difference between Eqgs. (4.2.12) and (4.2.9) is in the third term on the left hand side. In
Eq. (4.2.9) the relative velocity is with respect to the rotating and deforming frame whereas in
Eq. (4.2.12) the relative velocity is with respect to the rotating frame alone. Now, let
X;,X, and x5 be a set of Ca_rtcsigm qurdi_nates attached to the rotating frame and consider an
arbitrary time dependent coordinate transfonnaﬁon of the type given in Eq. (4.2.2) to account
for deformation. Thc time derivative in Eq. (4.2.12) has to be replaced using Eq. (4.2.3) which

=]

results in
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+_s_2_xg+(y+g')-vg=-—Vp+§£-v-a+g (4.2.13) .
0 .

x|

where, w' is the deformation velocity vector. It can be seen that Eq. (4.2.13) and Eq. (4.2.9)

are the same. Thus the traditional approach and the present formulation yield the same mo-

mentum equation.

Using the continuity equation and the geometric conservation law [45] in Eq. (4.2.11) yet

another form of the momentum equation can be obtained as follows:

- _ 1y.s *
+Qx(Qxr) = -VpH+gsV-o+b (42.14) .
cht, for the sake ‘of completeness, the momentum equation with rcspect to an observer
situated in the rotating and deforming frame is derived. Substituting Eqgs. (4.2.6) and (4.2.8) in
Eq. (4.2.4), one obtains ¢
du _ . = — 1y, s
i Vw+v-Vu = VP+RCOV G+b | (4.2.15)
: . . . e
Replacing u in terms of vy and w, using Eq. (4.2.5), results in
-A-X+V'VV —:g—Zv-Vw+w~Vw=—V +=LV-&5+b" (4.2.16)
ot — = at - == = P Re, — -
e €
~ Equation (4.2.16) is the final form of the momentum equation governing an incompressible
flow in an arbitrary non—inertial frame, expressed in terms of the relative velocity, and is valid
for an observer situated in the arbitrary non—inertial frame.
4

Substituting Eq. (4.2.10) in Eq. (4.2.16), and splitting w as mentioned above, one obtains




%+X'VX_+%X£+2QXX+gx(gX£)+ﬂ' -VV

-V -Vw —(@xr1) Vwl|=~Vp +§—1é-v-6+g (4.2.17)
0

Notice that two additional terms appear on the left had side of Eq. (4.2.17) when compared
with the left hand side of Eq. (4.2.11).

In Egs. (4.2.11) and (4.2.17) the centrifugal force term, £ x (£ x 1), appears explicitly.
Thus, these equations are valid for flows in a rotating frame in an external gravity field, turbo-
machinery flows for example. For the case of bodies such as the earth which are self—rotating
and self—gravitating, the centrifugal force is implicitly accounted for in the definition of accel-
eration due to gravity. Hence, for geophysical applications the centrifugal force needs to be

deleted from Eqgs. (4.2.11) and (4.2.17) which leads to the following two equations respective-

ly

N, y.VV 4205V +w VY = —Vp+=lV-a+b

etV VY +2QxV +w VY P+ Rey b (4.2.18)

%‘*‘X‘V_Y.'*'ZQX_Y'*'E"VX
—Xk°Vy’—(§2_x;)-V_w_'=—Vp+-ﬁi—V- G+b  (42.19)

Note that in Egs. (4.2.18) and (4.2.19) Q is assumed to be independent of time as well.
Following the procedure outlined in the Section 4.1, it is possible to cast the momentum

equétion for flows in a rotating and deforming frame in a strong conservative formulation.

However, this formulation needs to be in terms of thc absolute velocity vector appearing in the

local time derivative. Thus, for an observer situated in the rotating frame one can obtain from

Eq. (429 T
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(4.2.20)

and for an observer situated in the rotating and deforming frame one can obtain from Eq.

(4.2.15)
6]1=0 (4.2.21)

where, /g is the Jacobian of the coordinate transformation from the inertial frame to the non—
inertial frame introduced in Eq. (4.2.2). The difference between Egs. (4'.'2."2‘(:)) and (4.2.21) is

in the second term within the divergence term.

4.3. Effect of rotation on flows with a spatially varying viscosity field.

The discussion in this section is valid for both geophysical and non—geophysical flows. For
non—geophysical flows one needs to add the centrifugal force term explicitly to the left hand
side of Eq. (4.1.1). From a historical perspective, the classical momentum equation, Eq.
(4.1.1), in a rotating frame was first written to be applicable for laminar flows. Thus, the coef-
ficient of viscosity was treated as a constant and the viscous stress tensor was assumed to be
given by Eq. (4.1.2). On the other hgnd, according to Stokes hypothesis, whether the frame is
inertial or non—inertial (rotating frzime, for example) the viscous stress tensg_lj is given only by
Eq. (4.1.10). However, when the coefficient of viscosity is a constant, thc %c‘iivergence of the
viscous stress tensor as given by Eq. (4.1.2) turns out to be the same as given by Eq. (4.1.10).
Since, only the divergence of the stress tensor appears in the momentum equation and the di-
vergencé of Egs. (4.1.2) énd (4.1.10) is the same, text books have been written stating that the
viscous stress tensor in a rotating frame is given by Eq. (4.1.2). However, itsis stressed here
that even for a laminar flow in a rotating frame the viscous stress tensor is still given by Eq.

(4.1.10). This understandiglg is essential for properly accounting for turbulence in a rotating




frame. Since only the divergence of Eq. (4.1.10) enters the momentum equation one can, how-
ever, compuéc the stress tensor using Eq. (4.1.2) for laminar flows.

When the understanding that many practical flows are turbulent in haturc developed, at-
tempts were made to cast the momentum equation in a rotating frame valid for turbulent
ﬂows. In all these attempts the standard Reynolds averaging procedure was introduced in Eq.
(4.1.1). This led to a turbulent stress tensor which is modeled using Eq. (4.1.2) albeit with a
spatially varying viscosity field. However, the correct approach is to use Eq. (4.1.10) for mod-
eling the Reynolds stress tensor. Alternately, one can first introduce the Reynolds averaging
procedure in the momentum equation for an inertial frame in which there is no ambiguity
about modeling the Reynolds stress tensor and then transform the resulting equation to a rotat-
ing frame ( or a rotating and deforming frame ) as outlined in this report. Thus, one would
again have the Reynolds stress tensor modeled by Eq. (4:1.10). When this approach is
adopted, it is shown in the following that rotation has an effect on the viscous term as well.
The velocity vector with respect to the absolute frame, u, can be written as, using Eq. (4.2.5)

u=y-w=V+w -W-w=V-W \ (4.3.1)
Hence, the Stokes tensor, &, given by Eq. (4.1.10) becomes
6 =p[V(Y-W)+VI(¥Y-W)] 43.2)
For the purpose of the following discussion, & is decomposed into two parts, & and G”, as
follows: | |

o =pu[VV+VTY]

(4.3.3)
§ = -p[VW +VTW]
Thus, the viscous term in Eq. (4.2.17) is given by
V-g=V-§+ V-0 | (4.3.4)
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It can easily be shown that when the ( non—dimensional ) cocfﬁcicnt of viscosify W iS constant,
then V - &'’ = 0. Thus, in the introductory chapters of [7] or [18], for example, the viscous
term V - G in the classical momentum equation for a rotating frame, Eq. (4.2.14) with
- w' = 0,is replaced by V - G’, assuming the coefficient of viscosity u to be a constant. How-
ever, when W is not a constant it is inappropriate to replace V - §by V - &' in Eq. (4.2.14) or
in Eq. (4.2.17),since V - 6’ # 0. In fact,
V:d"'"=28xVu , 4.3.5)

Thus, when one is dealing with fluid flows in a rotating frame which result in a spatially vary-
ing viscosity field, such as turbulent flows, one can not neglect the term givén by Eq. (4.3.5)
without justification. Note that this term arises due to rotation and is not influenced by de-
formation. Since the formulation in Eq. (4.1.10) is valid for compressible flows, so is Eq.
(4.3.5). Laminar compressible flows in a rotating franie, with or without free surfaces, with
strong thermal gradients are other applications for which the viscous term formulation is ap-

propriate.

4.4. Governing equations of the ocean flows with the modified Boussinesq’s

approximation.

In this section the complete set of governing equations for thermohaline ocean flows are
given with respect to an observer at rest in an inertial frame. However, the observer is observ-
ing the flow taking place in a rotating frame. The momentum equation is cast using the abso-
lute velocity vector and the local time derivative is expressed with respect to the absolute
frame. Note that by appropriate choice of the vector w one can either consider a rotating frame
alone ( w = W) or a rotating and‘déforming frame (w=W+w) Tht?_se symbols are
defined in Scctioﬁ 4.1. To obtain the modified Boussinesq’s approximaﬁon, the momentum

equation is first divided b)" density throughout. This results in an equation in which the pres-

[
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sure term and the.viscous term are multiplied by 1/p. Then 1/p is replaced by
1/pe)1 + p") ~1 where p’ = Ap/pg, pois a reference density and Ap is the change in den-
sity from the reference value. In oceanographic applications, which are the main thrust area of
this research, the maximum change in density is about 6 percent of the standard ‘value, see
Bryan and Cox [20]. Assuming that the maximum change in density is about 10 percent and
writing pas p = py + Ap = po(1 + p’) itcan be easily checked that the error involved in
writing 1/p = (1 — p’)/p,, where higher order powers in p’ are neglected, is less than 1
percent. The fesulting governing equations are

Continuity

Vou=0 4.4.1)

Jg 97 Re
p'[ —V- ( I)+V (p'I)——V 0] (4.4.2)

Temperature

16(/’1*) LW =V - (K 4.4,

SRR A
Salinity

19GES) v. 444

‘/_ - +V. LS) V-(ogVS) (4.4.4)

where T=T /To' is the non—dimensional temperature and S = S*/S, is the non—dimen-
sional salinity. ' T and Sy are the reference values of temperature and salinity respectively.
The new non—dimensional parametcrs are’ Prandtl number, Pr = Wcp/%p'; Peclet number,

Pe = ReyPr and the Schmidt number ag = Kg/UgL where x7 is the coefficient of thermal
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conductivity and x is the coefficient of saline diffusivity. All other symbols are defined in the
previous sections. The last two terms on the right hand side of Eq. (4.4.2) are the proposed
modification to the Boussinesq’s approximation. Note that computation of these terms do not
involve any extra overhead since all the terms need to be computed anyway for the left hand
side. Terms involving p’ are not included in the temperature and salinity equations since these
terms are assumed to be of the same order of magnitude as the other terms that have been
neglected from these equations. An important difference between the present set of equations
and the set obtained using Boussinesq’s approximation [43] is in the treatment of the momen-
tum equations. Boussinesq’s approximation proceeds by assuming the densify to be constant
in every term in the original momentum equation except the body force term, whereas no such

assumption is made in obtaining Eq (4.4.2).

4.5. Viscous free surface boundary conditions in general curvilinear coordi-

nates.

The dynamic boundary condition at an interface is that the stress vector be continuous
across the interface neglecting the effects of surface tension. These conditions were first
introduced by Hirt and Shannon [44]. These conditions are important when a wind shear is
imposed on the free surface. As mentioned earlier, the coordinate system used in this work is
a general curvilinear coordinate system in which one of the coordinate surfaces always coin-
cides with the evolving free surface. The viscous free surface boundary conditions become
quite complicated under these circumstances and it is not quite obvious how to solve them. It
is the objective of this section to present a useful form of the viscous free surface boundary
conditions in such a general setting and to deduce systematically from them a set of diagoha]ly

dominant matrix equations that are easy to solve.

The dimensional viscous boundary condition at the free surface is given by

it

)



*

1.T =1 @.5.1)
+where, T = —p 1+ p*(Vu’ + VTu") is the dimensional Stokes tensor, 1 is the local

normal to the free surface and 1_75 is the dimensional applied wind (shear) stress vector. Non—

dimensionalizing the other variables an in Section 4.1 and 1_:5 as Ty = ﬁ , Eq. (4.5.1) be-
oY o

comes

U)]"'

n.[ - 4.52)

Now, introduce a Cartesian coordinate system X;,X, and X; locally, with unit vectors
(;, 1,, 15) and velocity components (U;, U,, T3). Since Eq. (4.5.2) is a vector equation, resolv-

ing it into three components in the above coordinate system, taking i, = n, yields

au, | ouy | _
”[E + a—Tz] =7, (4.5.3)
2000, _ Ty
“P YR, 0%, R(éo + Po - 4.5.4)
o, om, (4.5.5)
“[5%; + a—z] T3 |

The continuity equéﬁon in this system becomes

oW, ou, ou
1+ 2+3

%, T, T &, =0 (4.5.6)

Note that such a local Cartesian coordinate can be introduced in the following manner. Let

IN

L=

) , v o

- a - - T . .

I i, —-—27 and i; = 1; X 15, where, a, is the covariant base vector % and ais the
a‘l :

contravariant base vector grad 1 for the given curvilinear coordinate system. Here it is assumed

I5?
'_

that the free surface is represented by a v} = constant surface. It is quite easy to expréss the
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various partial deriyatives and the velocity components in Egs. (4.5.3) — (4.5.6) in terms of the
quantities in the given (or global) Cartesian and curvilinear systems. Using the relationships be-

tween the derivatives in the Cartesian and curvilinear coordinates Eq. (4.5.3) becomes
(Mx Py +MyByp + "12513)1111 + (MxByy + My Byy + Nz Pp3) vy +
T
(Nx B3y + My B3z + N2B33) Wy = ‘ﬁl' - Ry 4.5.7)

where R, contains the terms involving ug, g, Vg, Ve, Weand we, By = &gy 0 + 0y 0y

and o ; = I, .1i;. Similarly, Egs. (4.5.4) and (4.5.6) are written as

oy, T3 . v
k= (4.5.8)
aul

S ew =0 4.59)

where Yy, = 0y Qg + O3y O and € = Oy Ggy + Cgp Oy + O3y O3y Equations (4.5.8) and
(4.5.9) can also be cast in the same form as Eq. (4.5.7) and can be obtained from Eq. (4.5.7) by
replacing P by v and € respectively. Equation (4.5.7) along with the two equations obtained from
Eqgs. (4.5.8) and (4.5.9) are solved simultaneously for uy, vy, and wy. The velocity components
at the free surface are obtained from these derivatifres and their values in the cell just below the

free surface. Then, pressure is updated using Eq. (4.5.4).

4.6. Validity of the hydrostatic equation in g‘enéral curvilinear coordinates.

It was noted in Section 2 that when one uses either a Cartesian or a spherical coordinate
system, the vertical direction is orthogonal to the horizontal directions. Thus, among the con-
_ travariant components of the metric tensor g that involve the z—direction (the vertical direc-
tion), only thc g% component is non—zero and the other two components involving the z—di-
rection, viz. g** aﬁd g% (or g% and g ), are zero. The same holds true for the covariant

components also. For these coordinate systems, using the assumptions that (1) the yertical
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length scale is very much smaller than the horizontal length scales, and (2) the vertical veloc-
ity component is very much smaller than the horizontal velocity components, in the complete
vertical momentum equation leads to the hydrostatic equation in a straightforward manner (
see Pedlosky [7], for example ). It was also mentioned in Section 2 that when one uses a non-
orthogonal curvilinear grid in the “horizontal” and the o—coordinates in the “vertical”, one is
actually using a general nonorthogonal coordinate system, similar to the one used in this work.
For such a coordinate system, all the cross metric terms are, in general, non—zero. Hence, the
question whether one can use the hydrostatic equation in such a coordinate system naturally
arises. The approach taken in the literature is to transform the hydrostatic equation from the
Cartesian or spherical coordinate system to the general curvilinear coordinate system. Ob-
viously, this approach does not answer the question raised above. The correct approach one
should take is that one should start with the complete vertical momentum equation and
introduce all the assumptions used to obtain the hydrostatic equation in the Cartesian or spher-
ical coordinate system, and see whether one recovers the hydrostatic equation in the nonortho-
gonal coordinate system also. It is the purpose of this section to show that when the cross met-
ric terms involving the vertical direction are non—zero one can not recover the hydrostatic
equation, in general. In order to cast the governing equations in a form that is available in the
literature, for the purpose of comparison, it is sufficient to consider only the inviscid part of
the momentum equation. Equation (4.2.14), with the viscous term neglected reduces to:
—1-(-5‘-(—@+V? [VV+w V+pI]l+2Q2xV =0 4.6.1)
g T T
Note that Eq. (4.6.1) is not in a strong conservative form. However, it is in a form appropriate
for the current discussion. S
Using the so called partial transformation ( see th_e_ appendix ) in which the velocity vector

V is resolved with respect to the underlying Cartesian éoofdinates, whereas the divergence
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operator itself is expressed with respect to the general curvilinear coordinates ( &, ¢ and ¢in
the following ), the three components of the momentum equation (4.6.1) are as follows: For
want of better symbols, the symbols (u, v, w) — without the underscore — are used to denote the

Cartesian components of V.
20zw) + 2] Ve (u(ubi+ vE + WE + E) + ' Ex] ]

g
+ [ {uuax+ vy +wos+ 00 +p 0]
+:9%[‘/£{u(u0’x+V0'y+Woz+0't)+p,0x}]—\/gfv=O (4.6.2)

MV—)+—6-[‘/E{V(UEX+V§y+WEZ+§t)+p,EY]]
+.i{/g{v(u¢x+v¢y+w¢z+¢t)+P’¢Y]]

+‘a"[v/§{v(uox+vcy+woz+ot)+p'oy}]+/§fu=0 (4.6.3)

TLE) L o (v (uE+ v+ wh+ B + B

+i[\/§{w(u¢x+v¢y+w¢z+¢t)+p'¢z}]

+a—ag'[\/§{w(u0x+v0y+woz+ct)+proz}]=() 4.6.4)

where, f = 2| |, and it is assumed that the vector _S} is aligned in the k direction for conve-
nience, and subscripts denote partial differentiation. The quantities &;, ¢, and o, denote the
contravariant components of the vector w'. Note that w’ is the deformation velocity vector

defined in Section 4.2.

Now, in order to be specific, the well known g—coordinates are introduced as follows:

. - |
§E=x; <i>-—fyamd0=H+1;'l (4.6.5)

&

£n



where, 1 = n(x,y,t) denotes the free surface and H = H(x,y) denotes the bottom topogra-

'phy. Using Eq. (4.6.5), the various metric quantities that appear in Eqs (4.6.2) - (4.6.4) are

obtained as follows:
X =1;%=0;x=0 4.6.6)

Vg = Xe (Yo 2o — YoZp) + e (Zg Xo — Zo Xy ) + zg (Xg Yo — )fan;) =Zs (4.6.8)

§x=(y¢zg—ygz¢)/@=l ]
&y = (29X ~ 26%4)/ /8 =0 T (469)

g = (X¢YU_X§51¢)/J§= 0

¢x = (Yczg - Ygzo_)/\/g =0
by = (zoXg — 2z Xg)/ /g = 1 | (4.6.10)

¢z = (X Vg~ X ¥o)/ /e =0

Ox = (ygz¢ — Y¢Zg)/\/§ = - zg/zo
Oy = (ZgXy ~ Zp Xg ) Vg = - 2¢/zo -\ _ (4.6.11)

O = (XgY.p —x¢y§)//§= 1/z4

Ox = — (nx + oDx)/D
oy = — (ny + oDy)/D
o, =1/D a

(4.6.12)
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where, D = H + . Note that Eq. (4.6.11) is obtained from the general relations between

contravariant and covariant base vectors whereas Eq. (4.6.12) is obtained from the explicit

relationship for o given in Eq. (4.6.5). From Egs. (4.6.8), (4.6.11) and (4.6.12) one obtains
Je =25=1/0,=D (4.6.13)

Again, from the definition of the o0—coordinate system, it follows that

& =0
¢ =0 (4.6.14)
or = — (n.+ oDy)/D
Now, from the Geometric Conservation Law (GCL) [45], one obtains
19/g
2= —V.w=-V-w (4.6.15)
o
since V - W = 0. Using Eq. (4.6.14) in Eq. (4.6.15), it can be verified that
/g _ _a(Jg&) _a(Jz o) _d(Jzoy)
gt 0E P a0
— 9 _ dD
= “‘é‘g[“D(ﬂt"‘th)/D] = ot
Therefore,
aVg _om (4.6.16)
at at

The contravariant components of the metric tensor involving the vertical direction are

gEO = (VE) - (Vo) = Exox + Ey0y + E; 0, = 0x

g% = (V) - (VO) = §px 0x + $y 0y + ¢, 0, = Oy (4.6.17)

g% = (Vo) - (Vo) = 02 + o% + o7

Substituting the va;n'ous quantities in Egs. (4.6.2) — (4.6.4), one obtains

[ ]




¥ *
\
} -~

i(—a%ll+5;[Du ]+%[D“V]+i(_gaolu)—)"])fv
+:_X[Dp']_§6[p'(nx+cDx)]=0 (4.6.18).

a(gv) -—[D ul+ y[DvZ]‘+§iDT(‘,'—3)-+Dfu
[Dp]_ [p (ny+0oDy)]|=0 . (4.6.19)
3(Dw) d(Dwaw) . 3 _ (4.6.20)

2 X
T +ax[Dwu]+ay[Dwv]+ 3 +ao

where, ® is given by

W =u0x +VOy + WO, + 0y

=%[w-—u(nx+oDx) ~v(ny +0Dy) —(nt+th)] - (4.6.21)

Note that, all the corresponding terms that appear in Egs. (4.6.18) — (4.6.20) agree with the
derivation of Blumberg and Mellor [5]. Equation (4.6.20) is the complete inviscid vertical mo-

mentum equation.

z _ o = constant surface

Ve/IVol

=
Il

Fig. 1. Schematic Diagram of a o—surface with Steep Gradient
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In order to show that one can not recover the hydrostatic equation in a general curvilinear
coordinate system ( through the example of the o—coordinate system ) it is enough to show
that in Eq. (4.6.20) there is at least one more term in gddition to the pressure term that can not
be neglected. For this purpose, it is necessary to consider the dimensional fofm of the equa-
tions whereas Egs. (4.6.18) — (4.6.20) are in non—dimensional form. The dimensional form
can be shown to be the same equations except that the pressure term is multiplied by 1/p.
Note that, in Eq. (4.6.21), 0, 0y and 0, are components of Vo. For a ¢ = constant surface,
Va/I Vo | denotes the normal to the surface. In regions of steep ( bottom or free surface ) gra-
dients 0y and Oy are of the same order or even greater than that of o, debending upon the
steepness ( see Fig. 1 ). Hence, the contravariant velocity component Dw can be of the same
order of magnitude as the horizontal velocities u and v. Looking at Eq. (4.6.17), it can be
readily inferred that this is due to the fact that the cross metrics involving the “vertical” direc-
tion are non—zero. Under these circumstances the order of magnitude analysis similar to the

one that can be found in Pedlosky [7] ( page 60 ), for Eq. (4.6.20) yields:

d(Dw) , & P d(Dww) , 19p’ _ |
St [Dwul+ LDwy 1+ ==+ 55 = 0 (4.6.22)
bW D WU D wU P
T L L WU P
Or
w wu ‘WU wu 2
T L L D pD

An analysis of the horizontal momentum equations, Egs. (4.6.18) and (4.6.19), still yields the

same order of magnitude for the pressure as in Pedlosky [7]. That is,

P= pU[L U, fL] (4.6.23)

T
Tfe max
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From Eq. (4.6.22), the ratio of convective terms to the pressure gradient term is given by

s [ 3 Ud H]
convective terms  _ T"L*L] : @62
pressure gradient term [ 1U; } . .6.
T L'

The ratio in Eq. (4.6.24) is of the order of 8 where 8 = D/L, D is the vertical scale length and
L is the horizontal scale length. Terms of the order of & can not be neglected from the govern-
ing equations since otherwise one would end up with a strictly two dimensional (in x and y)

equations. Hence, the term ?—-(—26%—(”)- can not be dropped from Eq. (4.6.20). Thus, Eq.

(4.6.20) simplifies to

d(Dww) + ap’
00 00

=0 (4.6.25)
Note that one can not simplify Eq. (4.6.25) further since Eq. (4.6.24) contains the *'max’ oper-
ator. Thus, using the same assumptions that are used to obtain the hydrostatic equation in a
Cartesian ( or spherical ) coordinate system one can not obtain the hydrostatic équaﬁon ina
general curvilinear coordinate system. On the other hand, suppose ¢ = z in Eq. (4.6.5). Then,

D =1,g%=0,g" = 0and » = w, and Eq. (4.6.25) becomes

d(ww) , dp" _
2 + Frae 0 (4.6.26)

It can be easily shown that the first term on the left hand side of Eq. (4.6.26) is of the order of
82 which can be dropped. Thus, one obtains the hydrostatic equation in a Cartesian coordinate
system. So far, the discussion has not included the viscous terms. Including the viscous terms

and using the same assumptions that led to Eq. (4.6.25) leads one to

d(Dww) , 9 o _ :
. 9o s ﬁ("xfxz + Oy Ty) = 0 ) (4.6.27)

where Tx; and Ty, are the shear stresses. Again, it can be seen that one can not obtain the hy-

3

drostatic equation in a general coordinate system. It should be mentioned here that the discus-
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sion in this Section does not invoke the effects of variable density which are addressed by

Haney [6].
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5. Numerical Procedure

The governing equations that are presented in tensor invariant form in Section 4 need to be
expressed in component form in order to be solved numcricé]ly or otherwise. As mentioned in
Section 4.1, in order to maintain the strong conservative nature of the governing equations in
component form also, one effects the so called partial transformaﬁbn. An example of this pro-
cedure was presented in Section 4.6 in which the iensor invariant form presented in Eq. (4.6.1)
is presented in component form in Eqs. (4.6.2) — (4.6.4) where the divergence operator is writ-
ten with respect to a general curvilinear coordinate system (see also the appendix). In this sec-
tion the numerical procedure used to solve the governing equations is described in detail. The
set of governing equations chosen are those corresponding to the absolute and relative velocity
procedures discussed in Section 4.1 and the set of equations belonging to Section 4.4 with Eq.
(4.4.1) replaced by Eq. (4.1.15). The continuity equation in the original artificial compress-
ibility method proposed by Chorin [46] contained the time derivative of the static pressure
only. Recently, Beddhu, Taylor and Whitfield [37] have proposed the modified artificial com-
pressibility method in which the body force potential is also added to the pressure in the conti-
nuity equation. This is the approach adopted in this work as well. Thus, the governing equa-
tions are hyperbolic and a time marching approach is adopted to solve them.

In Section 5.1, the governing equations are first cast in the so called numerical vector form.
Then the equations in the numerical vector form are discretized in an implicit manner and then
linearized which result in the flux Jacobians. In Section 5.2, the eigensystem of the flux Jaco-
bians are pl;cséntcd. In Section 5.3, an approximate, one dimensional Riemann problem is
solvcd‘ at each cell face following the approach of Roe [23] to obtain first order accurate fluxes
and then the MUSCL scheme of van Leer [24] is used to obtain higher order fluxes (up to third

| order). The Newton-relaxation prbcedurc [25] is introduced in Section 5.4 and the numerical

implementation of the boundary conditions is discussed in Section 5.5.
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5.1. Numerical vector form.

All the governing equations of Section 4 can be expressed in the following manner after the

introduction of the partial transformation

#n

' 9Q L 9F L oG  oH  9F¥ , 8GY . 9HY ¢ _ 5.1.1
ar+a§+6'n+a§+a§+an+a§+M 0 (.11

In Eq. (5.1.1) &, n and ¢ denote the curvilinear coordinates, F, G and H denote the inviscid

fluxesona § = constant face, 1 = constant face and ¢ = constant face respectively. Sim- H

ilarly, FY, G¥ and H" denote the viscous fluxes. M is the source term which is non—zero only

for the 6x6 set. The various quantities in Eq. (5.1.1) for the different sets of governing equa-
tions are presented below. §
Absolute velocity procedure (4x4 set)

This set consists of Eqs (4.1.14) and (4.1.15) and the various quantities in Eq. (5.1.1) are:

q
'] [ Bul ] [ 0 7
u | 11'(111 + &) + p'Ex OxxBx + nyEy + OxsEz
Q=g F=g F'=/g
v vl + By + p'Ey OxyEx + OpyEy + Oy, | 0-1.2) €
Ad w@! +E) + p'E, OxsEx + OyEy + 0'zzgz-j
ul = uEr+ vEy + Wk,
£
where, u, v and w are the compoﬁents of the absolute velocity vector with respect to a Carte-
sian coordinate system and u’, v’ and w’ are the Cartesian components of the vector u — w,
| Oxx, €tC., are the Cartesian components of the Stokes tensor, &, Ey and &, are the Cartesian L

components of the contravariant base vector grad §. Expressions for G and H are 31m11ar toF
and can be obtained from F by replacing E by 1 and T respectively. Similarly G¥ and H" can

be obtained from FV.‘




Relative velocity procedure (4x4 set)

Equations (4.1.7) and (4.1.8) are the governing equations for this set.

'] [ Bul 7 r 0 -
u u'ul + p'E OxxEx + OxyEy + OxE;

Q= A F=le v ul +p'Ey = /E OxyEx + OypyEy + Oy, (5.1.3)
W] _W' ul + p'EZ_ _ongx + OgyEy + c7zz§z_

ul = ug, +vEy +wE,

where, u, v and w are the components of the relative velocity vector with respect to a Cartesian
coordinate system and u’, v/ and w’ are the Cartesian components of the vector v — 2 w. Other

quantities are as in absolute velocity procedure.

Governing equations of a thermohaline ocean with respect to an observer in the

absolute frame (6x6 set)

The governing equations for this set are Egs. (4.4.1) — (4.4.4).

pul
p' u(! + &) + p'E
u
v v@ul + &) + p'Ey
Q= el /e w(! + &) + p'E,
: T@! + &)
- S@! + &) ]
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F. ’ O . _ O -
OxxEx + OxySy + OxEz M,
OxyEx + 0‘yy%y + Oy.E: M,
F'=/g ' M=p’ :
OxzEx + O'yzgy + 0E; M, - (5.14)
K(TxEx + TyEy + ngz)/ Pe 0
as(SxEx + SyEy + S.E) B 0 J

u! = ug, + vEy + w§,
Note that, the tensor W W appearing in Eq. (4.4.2) can also be written as (Q2R2/2)I where R
is the normal distance from the axis of rotation to the point under consideration, and can be

added to the definition of p’. Thus, it does not explicitly appear in Eq. (5.1.4). The expressions

for M;, M3 and M3 are involved and are written in compact tensor notation as follows::

— ~ gxk oxk dxk .
M.— —_[/_(pax gaXJ )] Fr28xkl:‘/—x ] . 1 = 1, 2, 3

In the expression for M;, the summation convention is used over repeated indices.

Discretization

In the finite volume approach, the physical domain of interest is divided into a finite num-
ber of cells and the variables are defined at the centers of these cells. Note that these cells can
be created in a curvilinear coordinate system in a natural manner using stan;gard grid genera-
tion packages. A simple one dimensional case is schematically shown in Fig. 2. Cell centers
designated from 2 through NI are the field points and the cell centers 1 and NI+1 of the ficti-
tious cells (not shown) are the so called phantom points used for prescribing the boundary
conditions. The governing equations are solved only at the field points. In what follows, the &,

nand ¢ coordinatés are indicated by the symbols i, j and k respectively in the discrete sense.

Thus, i and i+1 represent two consecutive points in the increasing direction of & and so on.




1 2 3 i—l*i*iﬂ ... NI NI+l
i-1/2  i+12

Fig. 2. Schematic Showing the Cell Volumes and the Variable Loca-
tions for a One Dimensional Case :

Denoting the discrete time by the symbol n ( thus, T, = n At ), Eq. (5.1.1) is discretized

about the cell center ( i, J, k) as follows (refer to Fig. 2):

3 Qn+1 — 4Qn + Qn—l
+ F9+1 _ F.n+1 + Gp+1 Gn+1 + n+1 +
2 A i+l i—L Hk+1 -4

Fv;l:l Fvn+1 + Gvn+1 Gv;lj-%l + HVEI; — Hv;t!; + Mn+1 = ( (515)

i-i
~Note that, in Eq. (5.1.5), AE, An and Ac are all taken to be unity and the time derivative is
approximated using the second order accurate backward Euler formula. Note that the fluxes

have only one subscript instead of three. This is just a notational simplification and it is under-

stood that F2*! | in fact, denotes F**!, _ and so on.
1+ +§, 3k

Equation (5.1.5) is in the implicit form in which the unknown solution is at time level n+1.
Direct solution of Eq. (5.1.5) is difficult since the inviscid fluxes are non-linear. One method
of solving Eq. (5;1.5) is to consider it as a system of non-linear algebraic-equations in the
unknowns Q™+ and use Newton’s method to find the root of this system. Note that this is an
iterative procedure. Strictly speaking, the fluxes are functions of the Q variables. However,

since the metrics are known at time n+1, no linearization needs to be done with respect to

them. Hence, the fluxes are considered only as functions of the q—variables where q = Q/ /g.
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The process of solving Eq. (5.1.5) using Newton’s method requires the evaluation of inviscid

%

dF 9G and SH

flux Jacobians, <= which is discussed next.
aq aq aq

Lk

5.2. Flux Jacobians and their eigensystems.

Absolute velocity procedure (4x4 set)

4

9E . p = 9G . c =23 and denoting the generic

Defining the flux Jacobians as A = aq el aq

flux Jacobian by K, one obtains

v kx ek + u'kx u’ky u,kz

K = 5.2.1)
/g ky vk 0O,+vVky vk, (

‘,,
k;, wkyx wky 0+ wk,
where 0, = ki + uky + vky + wk; and k; = w. ak where aX is the contravariant base
<
vector on the k = constant face. Whenk = §, K=A; k=1, K=Bandk =¢,K=C.In
order to find the eigenvalues of K, the following matrix M and its inverse M ~! are used to
form the matrix x = MKM ™1, . : 3 {
1 0 0 0] [ 1 0 0 0]
v A T
B 1 0 0 B
- ' €
M=y Ml=f_¥ o 1 o
B 0 1 0 B
. W, _ wl "
- 0 0 1 — 0 0 1
B . 4 | B ]




The matrix K is given by

6, — 2k,
o 20

Pkx  Pky
6, O
0 6,
0 0

Pk,

O

ol

(5.2.2)

The eigenvalues of K and « are the same since they are similar matrices. However, it is much

easier to find the eigenvalues of « rather than that of K, and are found to be

Mo =0

')\.3=6k_kt+c

)»4=6k—kt—c

where,

-

J

c = J(0 —k)? + B (kZ + K + k2)

(5.2.3)

Following Taylor [22], in order to obtain the left and right eigenvectors of K, first the left and

right eigenvectors of x are obtained. They are the columns and rows of the following matrices

respectively

1
¢2
. 3
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5 = x2¢3 — 2241 P6 = x2¢2 — y2¢1

= y2¢3 — z22¢2

07 = yl¢3 —zlg2  $8 = x1¢3 — z1¢1 $9 = x1¢2 — ylol

Xl = &L p= YL 71 = —Zl
glVkl JelVkl glVkl

2 = 22 R LI 72 = 22
J/gVKI gIVkl gIVki

v = i+ ad o= (B+8(8 ~2k))

(x1, y1, z1) and (x2, y2, z2) are the diagonal vectors on the k = constant fécc [22]. In this
section, a tilde over a quantity denotes that the metrics used in computing that quantity are

normalized with the area of the cell face. The left and right eigenvectors of the flux Jacobians
K are obtained as follows: T, = MP, and T, } = P! M~! where the left eigenvectors are
given by the rows of T 1. and the right eigenvectors are given by the columns of T, respec-

tively. The matrices Ty and T, ! are the following:




[0 o & —&t ]
Ixs IX4
x1 x2 1";,+5B—k EX+P-F=‘5
Tk_ I~3 '~4
R L =
'XS IX4
1 2 1"<z+wﬁk Ez+wﬁk
p—;— (— u'dd + V95 — W6 ) Rpd  — 2605 2606 |
%(u'¢7—v'¢8 ~ W' $9) — %47 2Whs  — 26¢9
11
Tkl = = .
~4 - -~ -~ ~
* 2p+ic@,-28)) %R, %tE,  26*E,
~3 - - . —_ —— -
—%(ﬁ+kk(9k—-2kt)) —2"ky -28Tky, -2k

The quantity TA ~T ~18q which is required in the Roe flux formulation [23] is given by
MryuRy

-

TATT %8q = .
MRy — M (134 Ry + 133 R — 8v)
M raRy = by (tyy Ry + 145 Ry = 8w))
where
R3 = 131 6p + 132511 + 1335V + 1346W, R4 = 141 6p + ].42811 + 41436V + ].445W,

(131, s 134 ) and (lyy, ..., 1y, ) are the 3rd and 4th left eigenvectors ( that is, 3rd and 4th

rowsof T 1), and, (143, ..., 143 )Tand (1y4, ..., Ty )T are the 3rd and 4th right eigenvec-
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tors ( that is, 3rd and 4th columns of Ty ) . The quantity dq is given‘by dq = qg — qp where
qg and q; are defined using a MUSCL type approach ([24], [28] ).

A requirement of the theory behind this numerical scheme is that the first order fluxes satis-
fy the property U defined by Roe [23]. It can be easily verified, by direct substitution, that the
Roe averages, defined by ¢ =k (; + §;.1)/2 where ¢ is any flow variable, and the compo-
- nents of w at cell centers 1 and i+1 taken to be the same as that at the cell face i+1/2, satisfy the

relation F,  ; — F, = A(9) [Q;,; — Q;] where F is the flux and A is the flux Jacobian.

Relative velocity procedure (4x4 set)

The analysis of the absolute velocity procedure carries through and the flux Jacobians as
well as eigenvectors retain the same form as given by the matrices K, «, Ty, and Ty ! respec-

tively. The eigenvalues of this system are given by

~

7\1,2 = 0y

A =0 —ki+c [ (5.24)

X4=6k“‘kt_c

where,

O = uky +vky + Wk, and o= /(8 — k)2 + B (K + Kk} +K2)

Note that the definition of, 0,, is different from that of the absolute veloc-it';'r procedure. k; is

the same as before.

Governing equations of a thermohaline ocean with respect to an observer in the

_ absolute frame (6x6 set)

The software Mathematica has been used extensively to obtain the eigensystem for this

case. The generic flux J acobian is given by
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0 Pk Bky Bk, 0 O
ke O +uky uwk,  uk, 0 0
ky vk O, +vky vk, 0 0
k, wkx wky O, +wk, 0 O

Tkx Tky Tk, 6, 0
0 Sk Sky Sk, 0 6,

where 6, = k; + ukyx + vky + wk,. The eigenvalues of K are found to be
A’f(:: \/gek;l = ]., ...,4
M=Vg® —c) (5.2.5)
M = Vg® ~c*)

where,
¢ =ky/2—c; ¢t =k/2+ cand

c = ‘/(ek —k/2)% + (3(1;,% +k2+ k).

A set of normalized right eigenvectors are given by the columns of the following matrix T

[0 0 00 —c —ct ]
X1 2 0 0 ke+ubd/p’ ke + uhS/p’
. vyl y2 0 0 ky+vig/B’ ky+ vAS/B'|
T=wa
21 2 0 0 k+wAS/B k,+ wAS/p’
0 0 10 —-T¢l/c'~ —T2/c'*
0 .0 01 —Sol/c'~ —Sp2/c'*
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where IVkl = [k + k2 + k, o1 = /g (& + k} + k&) + MO, — ko/B,

$2 = eF+ K + kD) + MO —k)/B, B’ = /8B, ¢ =/gcT, ¢'* = /gct.
Following Taylor [22], (x1, yl, z1) and (x2, y2, z2) are the diagonal vectors on the

k = constant cell face; x1 = x1 /IVkl and so on. The corresponding set of left eigenvectors are

the row vectors of the inverse of T and after considerable algebra are obtained to be

nll 112 113 114 0 0
by 1y Ly L, 0 0
lyy lsp L33 1y VKD 0 |
VKID|ly; 1y L 1y O VKD

sy sy sz 14 O 0

L161 lgg lgs g O 0
where

1, =2 x2 (kv - kyw) +372(kxw—kzu) + zﬁ(kyu—kxv)]

1,5 =% ﬁ(kziz—kyz"znek(wfz—-vz"z)]

s —_-%Q'mkxz‘z-kzxm + ek(uz"z-wx"z)}

s = 2[B (kg2 = key2) + 0 (V2 — us2)|

p
L, = ——%cix-l(kzv—kyw)+3;1(kxw—-kzu) +zi(kyu—kxv)]
1, = —%:[3(]&2};1 —kyZ1) + 0, (wyl —vz“1)]
L, = — %‘Erﬁ (sl - 1;1;51 ):+ ek(ﬁz“l'-— wxl )]
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lyy = -Zﬁﬁ[s(kyx"l — keyl) + 0, (vl —uy“l)]

1M 92
R

1, —2Tkx[ "ol _ °—f2]
C
lyy = 2Ty | S0 — °;3’2
by = 2T, [ 78 c;i)Z
1N 924
p—
1, —ZSkx[ “9L _ C;fz]

I, = 25k, [ c*¢l cf¢2]

ct

o1 c=92]
144-sz2[ 2 -
15y =%[6+K§(Bk—kt)]
ls, = 2kgct
153 = 2kyc™
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lg = Z2[B+1 O~ k)]

162 = _kac_

and

D=%c-[ﬁ+6k(6k—-kt)]

In the Roe {23] flux formulation used here to compute the flux at the cell face, one needs the
~ quantity TA =T~ 1Aq at the cell face, where A~ is the diagonal matrix containing only the
negative eigenvalues of K. After considerable algebra and using the fact that TT ™! = I, it

can be shown that TA ~T ~!Aq can be written only in terms of the 5th and 6th left and right

eigenvectors as follows:

M 116 Rg
M 126Rg — M. (136 Rg + 1p5 Rs — Au)
A t36Rg — Mg (T3 Rg + r3s Rs — AV)
A r4qRe — M (g Rg + 145 Rs — Aw)
Af rsgRg — Mg (Tsg R + 55 Rs — AT)

TA"T !Aq =

5.3. Numerical flux formulation.

From Eq. (5.1.5) and Fig. 2, it can be seen that the fluxes are evaluated at the cell faces
whereas the dependent variables are stored at cell centers. In order to evaluate the fluxes at the
cell faces one can use some kind of interpolation technique to obtain the dependent variables

at the cell faces. Roe [23],&()n the other hand, treated the problem of obtaining the inviscid flux
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at a cell face as an approximate Riemann problem. Thus, suppose one is interested in obtain-
ing the inviscid flux F, at the cell face i+1/2. Roe assumed that the solution at the interface is
discontinuous and the solution just to the left of the cell- face i+1/2 is given by q; and the solu-
tion just to the right of the cell face is given by g, , thus setting up a Riemann problem. In
this approach, at any instant only one cell face is assumed to exist and the effect of the adja-
cent cell faces are ignored. Then, Roe showed that the following equation holds for the flux
difference across the cell face »

Fipr = F; = AQ@ (941~ &) (5.3.1)
provided the flux Jacobian A is evaluated with the Roe average variable q where Q is a func-
tion of g; and q; . Pan and Chakravarthy [26] have shown that for the form of the incom-
pressible flow equations used in this study the Roe average turns out to be just the simple
arithmetic average. Equation (5.3.1) can be used to find the flux at cell center i+1 in terms of
the flux at i. However, one is actually interested in the flux at cell face i+1/2. Roe’s approach

can still be used to find the flux at the cell face i+1/2 and yields the following expression.

. _
A _ - -) o)

Fiiip = [F(qi)]i+1/2 + Z % i+1/2 )\'i+(]1/2 ri(]+1/2 (5.3.2)
1 N N

J=

where, .

sie1)2 = 1?1 e * (Ge1 G ). A=9 is the j—th negative eigenvalue of the Roe

matrix A(q), r? is the corresponding right eigenvector of the Roe matrix and, 19 is the corre-
sponding left eigenvector of the Roe matrix. Note that o is the corresponding jump in the

characteristic variable. The subscript i+1/2 on the right hand side of Eq. (5.3.2) denotes that

the metrics used in evaluating the various quantities are evaluated at the cell face i+1/2. In Eq.
(5.3.2) ﬁ‘ denotes the numerical flux at the cell face i+1/2 and [F(qi)]i +1/2 denotes the actual

flux given by Eq. (5.1.2), (5.1.3) or (5.1.4) as the case may be, evaluated using q; and the

metrics at i+1/2. The formulation in Eq. (5.3.2) is not unique and other equivalent formula-
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tions can be found in Whitfield, Janus and Simpson [47]. Note that the formulation in Eq.
(5.3.2) requires the hyperbolicity of the governing equations. Equation (5.3.2) can also be

written as
Fi; 12 = [F(qi)]i+1/2 + Ti+1/:>.Ai_*!- 1/2Ti‘+11/2Aq ' (5.3.3)

where Tand T~ ! and A~ are ;ieﬁned in the previous section. Note that a clever way of evalu-
ating the second term on the right hand side of Eq. (5.3.3) is also given in the previous section.
It can be shown that the formulation in Egs. (5.3.2) or (5.3.3) is first order accurate in space.
The reason for this is that the formulation in Eq. (5.3.2) assumes that the solution variables q’s
are constant in each cell. Higher order flux formulas are given in Taylor [22] and Taylor and
Whitfield {48] that closely follows the formulation of higher order flux formulas for com-
pressible flows. In a departure from this approach, Whitfield and Taylor [28] observe that the
flux formulation of the governing equations of incompressible flows do not require limiters
and adopt the MUSCL scheme of van Leer [24] for higher order flux formulation. Note that in
deriving Eq. (5.3.2) Roe used q; as the dependent variable to the left of the cell face and g;, |

as the the dependent variable to the right of the cell face. Instead of this approach, Anderson,

Thomas and van Leer [49] uses the following formulas for left (denoted by qfﬂ /2) and right

(denoted by qﬁ 1 /2) dependent variables.

qiL+1/2 =G '*'%)'[(1 —%)(g—g-g)+ (1 + %) (Gia1 =) |

534)

q§+1/2 = Qi "%[(1 = %) (Qipz = Ge1 ) + (1 + %) (g — ) |

The higher order flux is obtained from Eq. (5.3.2) or from Eq. (5.3.3) by replacing g; by
qk,, J2 @0d G344 by L j2- Thus, when ¢ = 0 in Eq. (5.34) one recovers the first order for-

mulation. So, for higher orders ¢ needs to be taken as unity. With k = — lone obtains a sec-




ond order accurate scheme in which only values to the left of the cell face (i.e. g;and q;_; )

are used to evaluate qiL+1 /2 and only values to the right of the cell face (i.e. q;,, and q;,,)

are u‘sed to evaluate qﬁl /2 With ¥ = 1/3 one obtains a third order upwind biased scheme

[49] which uses two points to the left and one point to the right of the cell face to obtain

qh 1/2 and two points to shc right and one point to the left of the cell face to obtain qﬁ 1/2°

5.4. Discretized Newton—relaxation scheme.

It was mentioned in Section 5.1 that the implicit discrete equation (5.1.5) needs to be solved
in an iterative manner in order to obtain the solution at time level n+1. Equation (5.1.5) is
considered as a set of non-linear algebraic equations and Newton’s method is employed to
find the root of this system. In operator form Eq. (5.1.5) can be writteén as

N@®*th =0 (5.4.1)
where

30n+l — 4Qn 4 Qn-1 an+l an+1
s

- an+1 an+1 an+1 an+1
+Gjay = Gyg + Fis) — Hid

N(qn+ 1) —

vi+l  —yn+l va+l  ~yn+l
+Fi+-;- Fi_%'!'Gj_!_% G';

vn+1 - vn+1 n+1

In Eq. (5.4.2) the numerical fluxes introduced in Section 5.3 are used for the inviscid fluxes.
Note that the function N includes the time derivative. Thus, time accuracy is inherently built
into the scheme. This fact is further explained in Whitfield [25]. Newton’s method [50] ap-

plied to Eq. (5.4.1) results in
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(agﬂl) . . (qn+1,m+1 - qn+1,m) = — N( qn+1,m) ‘ (5.4.3)

qn+l.m

where m = 1,2,3, ... . The iteration is started by taking q®*1'1 = q° The generated sequence

q** 1™ converges to q®*1, in principle. Thus, Eq. (5.4.1) is satisfied as m — ,
/

From Eq. (5.4.3) it can be seen that the Jacobian matrix ( asﬂl) , hereafter denoted
qn+l.m

as N'(q*+1Lm) is needed in Newton’s method. In order to obtain N’( g®+1-™ ) one needs to

differentiate each term on the right hand side of Eq. (5.4.2) with respect to Ehe solution vector
q®*! and add all the terms together. In order to differentiate the right hand side of Eq. (5.4.2)

one needs to know the functional dependence of the various terms on q"*1, Strictly speaking
the higher order fluxes at the cell faces depend on two points on either side of the cell face.

However, in order to contain the band width of the resulting matrix the approach taken by

Whitfield [25] was to evaluate the Jacobian matrix N’( q®* ™ ) assuming that the fluxes in

Eq. (5.4.2) are given by first order formulae and to obtain the residual on the ﬁght hand side in

Eq. (5.4.3) using higher order fluxes. However, it can be seen from Eq. (5.3.3) that, for the
MUSCL scheme, the same equation is used to obtain either the first order fluxes or the higher

order fluxes depending upon what is substituted for the dependent variables (q’s). Referring to
Eq. (5.3.4), Whitfield [25] used ¢ = 0 to evaluate the Jacobian maln’_x Nf( q**1' ™) on the
left hand side of Eq. (5;4.3) and ¢ = 1 to evaluate the residual N( q** '™ ) on the right hand

all+ 1
side. Thus, Whitfield [25] considered the flux F;. 1/, at the cell face i+1/2 to be functions of

q"*1 and q}! alone which results in
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An+1 . An+1

9Fi+1/2 . ( n+l,m+1 _ n+l,m) M . (q'.n+1,m+1 - n+1,m,)
aqn+1 q q ) - aq?"'l 1 9
qn+l.m ' q;‘“'m
a1,;;11+1
i+1/2 +1,m+1 +1
3quF 1 (g™t = qiftm)
i
vq?:ll'm

— PE 1, - ,
= DFi+1/2,iAq?+ il DFi+1/2,i+1 Aq?:f " (544

Note that the left hand side of the first equality in Eq. (5.4.4) does not contain any spatial
location. Thus, it is in functional form. In Eq. (5.4.4),

af;n-*-l
A _ i+1/2
DFiv1/2: = |5t (5.4.5)
i
and q;H-l.m
.Aq;l,-l-l,m — qin+1,m+1 - q?+1,m

In a similar manner the other flux terms in Eq. (5.4.2) can be differentiated. The evaluation of
the flux Jacobian, defined in Eq. (5.4.5), is discussed later. The first subscript on the left hand
side of Eq. (5.4.5) indicates the location where the metrics are evaluated and the second sub-
script indicates the location of the solution vector.

Whitfield and Taylor [28], on the other hand, consider the numerical flux to be dependent

on qf,, j, and qﬁ y, thereby using ¢ = 1 (see Eq. (5.3.4)) for the evaluation of the Jaco-

bian matrix N'( q®*+1™ ). Using this approach one obtains

an+1

0Fi+1/2 ( n+1,me1 _ n+1,m)

aqn+1 ! q

. cl qn+l.m

=D, AQ@*Lm 4 DR, L AQFEm  (546)
1+1/2,/L q; i+1/2,R 841

2
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The difference between Eqgs. (5.4.4) and (5.4.6) can be seen in the subscripts of the flux Jaco-

bians. After substituting the various quantities, Eq. (5.4.3) becomes

- DFI— 1/2' L Aqf_ - DG 1/2 L Aqn+ DHk

/2L Aqn-l-l m

31 A
+(2 + DF1+1/2L +DG +1/2,L+DHk+1/2,L

DF1 1/2,R DG -1/2,R DHk l/zR)Aanm

+ DF1+1/2 r Ag}) +1 = 4 DG i+1/2, RAq o+ DHk+1/2 RAqk+

40" 4+ Qn-1 . Al All All Al
Q"+ Q L+ Fiut —Fit + 6 :

3 Qn+1,m —_
- 2 At

1_._

all all A
+ Hyyy — He-y + F' — FLL + GV — G

+H - HY 1+ Mn] (547

The matrix I, = diag(0, 1, 1, 1) multiplying the time derivative on the right hand side of Eq.
547 is a conditioning matrix used to introduce time accuracy into the scheme [26]. Note
that only the inviscid flux Jacobians are shown in Eg. (5.4.7). In an analogous manner th_c
viscous flux Jacobians can be obtained using the thin layer approximation and added to the left
hand side of (5.4.7). When this is done it can be seen that for every inviscid term on the left
hand side of Eq. (5.4.7) there is a corresponding viscous term. The Jacobian of the source term
can be obtained using the Boussinesq’s approximation and when added to the left hand side of

Eq.‘ 5.47)it results in the strengthening of the block diagonal matrix since the source term is

Bl

only a function of q; ; -

“



Analytical derivation of the flux Jacobian matrices, viz. Df‘i +1/2,1 &tC- is not straight for-
ward. Hence, they are obtained numerically in this work. In order to obtain the derivative of
the m~th element of the vector f’i +1/2 With respect to the n-th element of the vector qilj'_1 /2
one proceeds as follows:

3 Fm(qiL_'_ 12t hen) - Fm(qiL+ 1/2)

5 (5.4.8)

(DFi+ 1 /2,L>
where e, is the n—th unit vector and

h = Jmachine e (54.9)

It should be mentioned that the metrics used to evaluate the right hand side of Eq. (5.4.8) are

m,n

evaluated at the cell face i+1/2. In a similar manner all other flux Jacobians appearing in Eq.
(5.4.7) are obtained including the viscous Jacobians which are not shown. Equation (5.4.7)
with the Jacobians obtained as in Eq. (5.4.8) is called the discrete Newton’s method ( see Orte-
ga and Rbeinboldt [50] ).

The method used in this work to solve Eq. (5.4.7), for a fixed value of m, is the relaxation
technique which is described by Whitfield and Taylor [28]. It follows the method proposed by
Chakravarthy [51] and uses the symmetric block Gauss—Seidel iterative method found in
Hageman and Young [52]. .

In a global sense,Eq,:(5.4.7) can be written-as -

(L+B+U)x = b | (5.4.10)
where L is a lower block triangular matrix with zeros on the diagonal which is éomposed of

the first three terms on the left hand side of Eq. (5.4.7), B is a block diagonal matrix which is
composed of the terms multiplying Aq;“' L.m on the left hand side of Eq. (5.4.7), U is an upper

block triangular matrix with zeros on the diagonal which is composed of the last three terms
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on the left hand side of Eq. (5.4.7), x is the global solution increment vector (Aq's) and, b is
the global residual vector containing the right hand side of Eq. (5.4.7).

In the symmetric block Gauss—Seidel iterative method, for each iteration one employs a
global forward sweep which is followed by a global backward sweep ( hence the name sym-
metric ). Thus, in p iterations there are a total of 2p sweeps. The forward and backward

sweeps can be described as follows:

Forward sweep: . )
BxP~1D = p—-yU x@-2 —x@-D o (5.4.11)

Backward sweep:

Bx@) = p —Lx@®"D_ux® (5.4.12)

- where p =1, 2, 3 ... . The iterative process is started with the forward sweep with p = 1 and

x© = 0. Suppose one is at a point whose indices are i, j, k during the forward sweep. Since
one is in the forward sweep, the solution at level (2p—1) has already been computed at all
points whose vertices are either less than i or less than j or less than k. In other words the

solution at level (2p—1) is known at all points corresponding to the lower block triangular ma-

trix L. This is the reason the vector L x®~1) is moved to the right hand side of Eq. (5.4.11).
Thus, in order to find the solution at level (2p-1) at the point (i,j,k) all one needs to do is to
multiply the right hand side of Eq. (5.4.11) by the inverse of B. Here it is understood that the
right hand side of Eq. (5.4.11) and the matrix B should correspond to the point (i,j,k). Note
that B is either a 4x4 matrix or a 6x6 matrix depending upon the equation set one is solving.
The solution of Eq.,,(_5.4.11) is obtained by Dolittle’s method. For the backward sweep the
solution is known at pbints corresponding to the upper block triangular matrix U and Dolittle’s
method is again used for solving (5.4.12). Note that Dolittle’s method is a d1rcct method énd is
a compact schcmc‘for Gaussian elimination [53]. For fur;hcr details, see Whitfield and Taylor

[28]. Thus, for each value of m+1 the corrésponding solution vector q®*1-®*1 of Eq..(5.4.7)
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is obtained through an iterative process. The resulting numerical scheme is called Discretized

Newton-relaxation (DNR) scheme ( see [25], [27] and [28] ).

5.5. Boundary conditions.

The description of a numerical scheme is incomplete without a discussion of the implé-
mentation of the boundary conditions. For oceanographic problems one needs to specify in-
flow, outflow, viscous wall and free surface boundary condi_tions. For cases involving temper-
ature and salinity, in addition to velocity conditions (no slip or free surface), one needs to
| specify either adiabatic or source conditions for temperature and salinity. Since the present
method employs boundary conforming coordinates, the boundary conditions are specified on
_ k = constant surfaces where k could be either E, 1} or . For the specification of inflow and
outﬂow conditions, characteristic variables are employcd as descrlbed by Whitfield and Janus
[54] and are dcnved from the Euler equatxons as fo]lows

Neglecting every term other than the terms involving the time derivative and the derivative

with respect to k, the inviscid portion of Eq. (5.1.1) can be written in quasi-linear form as

follows:
0Q | g3Q _ ’ 55.1
5 t K5 = 0‘ | (-')-
,whcre‘K—Qifk g K_-@%lfk-nand K Qlfk—’g Note that
=g§—g—g—%—@Xandsoon.lnot_herwords,K=fg_KNotethat,/gistheJaco-

bian of the coordinate transformation and is a scalar. It can be shown following the description
in Section 5.2 that the eigenvalues of K are given by A = /g A where A is the diagonal ma-

trix containing the eigenvalues of K and A is the diagonal matrix containing the eigenvalues
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of K. Thus, one can choose the left and right eigenvectors of K to be the same as that of K.

Therefore,

K=TAT! : | (5.5.2)

and

K=/gK=/g T AT ' =T, (Vg K\)T,! = TL AT !
Substituting Eq. (5.5.2) in Eq. (5.5.1) and re-arranging assuming the matrices T and T, ! are
constant matrices, one gets

oW, oW, |
_ 5.5.3
— + A = 0 , ( )

where Wy = T ! Q. The subscript *0’ in Ty ! denotes that it is a constant matrix. Elements
of the vector Wy, are called the characteristic variables. Depending upon the sign of the corre-
sponding eigenvalue, the characteristic variables are either prescribcd or extrapolated from the
~ solution domain in a consistent manner. This procedure is described for the various types of

boundary conditions below.

Inflow boundary:

An inflow boundary, k = constant, is called a codirectional inflow boundary if the flow en-

tering the boundary does so in the direction of increasing k. Otherwise, if the flow enters in the

direction of decreasing k, it is called a contradirectional inflow boundary. The terminology of

codirectional and contradirectional boundaries was first used by Janus [55]. In the case of co-
directional inflow boundary, referring to Section 5.2 ( Egs. (5.2.3), (5.2.4) and (5.2.5) ), it can
be seen that only one eigenvalue is negative and the rest are positive. The charactcristic_ lines
corresponding to the positive eigenvalues run from outside the computational domain towards
the boundary and'the corresponding charactéristic variables are constant along these lines.

Similarly, the charactcristib line corresponding to the negative eigenvalue runs from inside the
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computational domain towards the boundary and the corresponding characteristic variable is
constant along this line. Thus, the characteristic variables corresponding to the positive eigen-
values need to be prescribed and the one corresponding to the negative eigenvalue needs to be

extrapolated from the solution domain. Thus, for the absolute velocity procedure one has

-

(1), = (),

(Wh 2, = (% Z)a

o

; (5.5.4)
(th a

- (v
= (%)

In Eq. (5.5.4) the first three equations correspond to the positive eigenvalues and the last one -

(wk» 3) b
(¥, 4)b

J

vcorresponds to the négativa eigenvalue ( see Eq. (5.2.3) ). The subscript ’b’ represents the
boimdary, ’a’ represents the approaching direction ( outside the computational domain ) and

’I’ represents the leaving direction ( inside the computational domain ). These are marked in

k k

L——) : -
flow = @ ¢ o . flow = @ e o
a b 1 a b 1
codirectional contradirectional

Fig. 3. Schematic for Inflow / Outflow Boundary Condition

Fig. 3. In Eq. (5.5.4) the four solution variables at the boundary ( py, u,, v, and w;, ) are the
only unknowns which can be obtained by simultaneously solving the set of algebraic equa-
tions. For contradirectional inflow boundaries one has three negative eigenvalues and one pos-

itive eigenvalue. Thus, one has
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(Wk 1)b = (Wk, l)a
(Wh 2)b = (Wk, 2)a

4 (5.5.5)
Y3l = \WKk3)y

J

In Eq. (5.5.5) note that the subscripts on the right hand side of the last two equations differ
from that of Eq. (5.5.4). ‘

Outflow boundary:

The development of the outflow boundary conditions is very similar to the inflow boundary
conditions. In this case also one has codirectional and contradirectional boundaries. For an
outflow boundary, the approaching direction is from within the computational domain and the
leaving direction is towards the exterior of the computatiohal domain (see Fig. 3). For co-
directional outflow one has three positive eigenvalues and one negative eigenvalue. The char-
acteristic variables corresponding to the positive eigenvalues are extrapolated from inside the
computational domain and instead of specifying the characteristic variable corresponding to
the negative eigenvalue one usually specifies the pressure. The remaining three equations are

solved for the velocity components. Thus, for a codirectional outflow bound;ry one has

-

(W 1), = (1),

(Wk, 2),, = (Wk, z)a .
~ ¢ (5.5.6)
(Wk 3)b f (Wh S)a

Pb =P




and for a contradirectional boundary one has
(i = (o),
(%2)y = (x.2),

[ (5.5.7)

P = P1

(Wk. 4)b = (Wh 4)a

Viscous wall:

The no slip condition at a viscous wall ( ocean floor for example ) implies that the fluid is at
rest in the rotating frame. Thus, if the governing equations are solved using relative velocity
components ( relative velocity procedure ) then they are set equal to zero at a viscous wall. On
the other hand, if the governing equations are solved using the absolute velocity components
then from Eq. (4.2.5)oneobtains u =y — w = — w = Qxr,since v = 0. Thus, the com-
ponents of the absolute velocity are set equal to the Cartesian components of the vector 2 x r.
The condition for pressure is vanishing normal gradient at thé wall. For a § = constant wall
this condition is approximately implemented as py = 0 where the suffix denotes partial dif-

ferentiation. Rigorously, vanishing normal gradient condition at a § = constant wall is imple-

mented as follows:

op _
.
=n-Vp=0
- a2. 2 x_g
2" - xd
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where n is the normal direction, a¥, k=1, 2, 3; are the contravariant base vectors,
g'%, g%? and g2 are components of the contravariant metric tensor. The adiabatic condition

for temperature and zero normal gradient condition for salinity are imposed analogously.

Free surface boundary:

The velocity and pressure conditions have already been discussed in Section 4.3 and their
implementation is straightforward. For prescribed heat and salt flux one can follow the ap-

proach described above for the viscous wall case and obtain

T _ _ 1 (Q 129T | 230T
ﬁﬁ"@(“g TE )

where Q is the prescribed heat flux and 1« is the thermal conductivity. A similar expression can

be obtained for the n—derivative of salinity that involves the salt flux.
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6. Grid Generation

In this work the governing equations of the ocean flows are solved in a curvilinear coordi-
nate system generated around the earth. The results -of ocean flows presented in this report
uses the rigid lid condition though this is not an inherent restriction of the solution methodolo-
gy as well as the grid generation methodology. Example calculations of free surface flows for
other geometries have been included using the same solution and grid generation methodolo-
gies. The calculation of ocean flows with free surfaces is currently underway.

Basic ideas about generating general curvilinear grids over complicated geometries are
dealt with in detail in the book by Thompson, Warsi and Mastin [13]. Based on the work of
Thompson and his coworkers the original EAGLE code was written. Later a graphical user
interface was added to EAGLE and the resulting software is called EAGLEView [14]. Jiang
[56] used EAGLEView to generate the grids used in this work.

For generating the ocean grids Jiang used the ETOPOS dataset. Note that the format used to
write ETOPOS dataset traverses the earth in latitudinal circles from the north pole to the south
pole with an increment of 02 degrees. Along each latitudinal circle the depth is written for -
each longitude in 0.2 degrees increment. Depths are recorded as positive values. If a point is in
the land mass then the height of that point above sea level is recorded as a negative value. Both
the depth and height are given in feet. The original code supplied for reading this dataset was
modified to wxfite the output in terms of x, y and z values with respect to a Cartesian coordi-
nate system with its origin at the center of the earth. One prescribes a range for longitude and
latitude corresponding to the region of one’s interest as inputs to this code. This code works as
follows. Within the prescribed range, once a land point is encountered its height is reassigned
to a constant value. Small islands are manipulated in the following way. Suppose one isata
point (i, j) where i corresponds to the longitudinal direction and j corresponds to the latitudinal

direction. If this point is a fand point and its neighbors (i+1, j), (i-1, j), (i, j+1) and (i, j—1) are




ocean points then one is dealing with a one point island. If the island is kept then one has to

construct coordinate lines around it, and so it gets sunk to the average depth of its four neigh- <.
bors. Similarly, along the coasts if three of the four neighboring points of a land point is water
then that point is sunk and the average depth of its néighbors is assigned to it. In addition, if
£
¢
€
T
Fig. 4. Depth Enhanced View of the Gulf of Mexico
4

points (i, j) and (i+1, j) are land points and (i1, j), (, j+1), (+1, j+1) and (i+2, j) are water

points then the land points are sunk and replaced with the average depth of the above men-

tioned neighbors. In other’'words peninsulas with two point width (0.2 degrees) are sunk. Also
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sunk are peninsulas with three point width (0.4 degrees). Similarly one point lakes, two point
bays and three poiht bays are filled with land. Once this process is done, two output files are

written out. One file has the constant land heights and the actual ocean floor data in terms of x,

Fig. 5. Actual Bottom Surface Grid of the Gulf of Mexico

y and z values and the other file has the constant land height values and the ocean depth at
every point increased by a constant value ( say 5000 feet). The land points are assigned a
constant value so that one cah easily recognize the land area when the data is read into EA-
GLEView. The file with enhanced ocean depth is used to view the ocean floor and the coastal
area clearly. As an example, the Gulf of Mexico with a part of the Atlantic ocean is shown in

Fig. 4 in which the land ¢especially the islands ) and coastal areas and the ocean floor are all
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clearly and distinctly visible. The other file is used to actually build the grid. It can be seen
from Fig. 4 that the coastal lines are still not smooth. In order to smooth the coastal lines with-
out destroying the shape of the geometry too much, points are manually picked along the
coastlines using the depth enhanced file. When this EAGLEView script file is written out and
reread with the actual surface file the points along the actual coastlines would have been
picked up automatically. These points are connected using cubic splines and thus a smooth
coastal line is created. Creation of smooth coastlines is the major task in the present method.
Once this is done the next task is to decide how to block the region so that it does not result in
highly skewed grid lines. Experience plays a major role in this decision making process. Once
the block boundaries are identified, points are distributed along them and are interconnected to
create a grid surface. Since only the points along the boundaries are used this surface will not
lie on the ETOPOS dataset. Hence, this grid is projected onto the ETOPOS dataset radially
thus generating the bottom surface. In the next step this bottom surface is projected radially
outwards onto a sphere of radius one. All the intermediate surfaces are then generated using
interpolation. The surface grid on the actual ocean floor for the region shown in Fig. 4 is

shown in Fig 5.
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7. Results

Two sets of results are presented here with different objectives. In Section 7.1 the test cases
used to validate the code are dealt with. These include laminar flat plate results, laminar back-
ward step solutions, driven cavity with buoyancy results and Ekman layer solutions. In addi-
tion, example calculations of free surface flows in an inertial frame around ship hulls are also
included in this section. In section 7.2 results for ocean computations are presented. These
include turbulent Ekman layer calculations, flow field in the Atlantic ocean and flow field in
the entire world ocean. These results include only the hydrodynamic phenomena. The calcula-

tions with the thermodynamic variables are in progress.

7.1 Validation comparisons.

Classical boundary layer theory says that for the flow over a flat plate with a Prandt]l num-
ber of unity-and with adiabatic wall conditions, the tcmperaturé- profile for the thermal bound-

ary layer would be the same as the velocity profile for the velocity boundary layer. Since the

equations for temperature and salinity are similar, except for the parameters, setting -Se—c = %

and using ihc condition %fsi = ( at the wall, should result in a salinity profile which is also the

same as the ﬁelo‘city profile. For laminar flows the velocity profile over the flat plate is known
as the Blasius profile. The above observations can be seen to be correct from Fig. 6 in which
the computed velocity, temperature and salinity profiles are plotted against the Blasius profile.
Another interesting point to note from Fig. 6 is that there are only a few points in the viscous
reg‘ion' and this is sufficient to resolve the Blasius profile. This is a consequence of the method
used to obtain the numerical flux at cell faces. °

" ‘Fl.ow over a backward facing step has been an interesting problem that has received consid-

erable attention for more than a decade now. The flow exhibits complex behaviors such as
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Fig. 6. Flow over a Flat Plate. Re = 10000, Pr =1.0

separation and reattachment and the geometry is simple. Armaly et al. [57] have done exten-
sive experimental work for both laminar and turbulent flows over backward facing step. Usu-
ally the laminar results are used for code validation purposes and the turbulent results are used
for validating turbulence models. However, the experimental work Qf Armaly et al. did not
include any thermal effects. Rhodes and Acharya [58] have computed the laminar flow over a

backward facing step with forced convection. They prescribed a parabolic profile for velocity

and set the non—dimensional temperature to be zero as the inlet conditions. These conditions

were prescribed at the mouth of the step. The temperature at the bottom wall was set to be
unity and the adiabatic wall condition was used at the top wall. The temperature at the vertical
wall section below the mouth of the step was set at zero. The flow Rcynolds_ﬁumbcr was taken
as 389 and the Prandtl number was taken as (.71 which corresponds to aJr Based on step
height and maximum inlet velocity the Rcynolds numbcr was taken as 275 in the present

study. This corresponds to the case of Re = 389 by Armaly et al. [57] based on their non—di-

mensionalization. A grid of 201x101 points in the axial and normal directions respectively

has been chosen for the geometry described in Rhodes and Acharya. With a CFL number of 50

the residual drops to 10-*° in 1500 iterations. The converged velocity and temperature profiles

are shown in Figs. 7 and 8. Using a different eigensystem compared to that prescribed in
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Beddhu et al [16], :I‘aylor [59] has developed a two—dimensional flow code that includes tem-
perature. The agrcément between Téylor and Armaly et al., for the velocity profiles is excel-
lent, whereas there is very good agreement between the present scheme and that of Taylor [59]
for ihe temperature. Both schemes differ from that of Rhodes and Acharya [58]. Taylor made
his computations on a 101x51, uniform grid. The present computations have used a grid with
stretching from the mouth of the step and from both the upper and lower walls. thdcs and
Acharya used an adaptive grid strategy with a very coarse grid (47x38) and that could be the
reason for the discrepancies seen in the temperature proﬁies. '

Natural convection in a square cavity is another important test case that has been used ex-
tensively for validating codes for which bench marking results are available. Based on the
mcthddology presented in Beddhu et al. [19], Siong [36] has developed an algorithm for solv-
ing the five governing equations without the salinity equation. Computation .of this test case
using the algorithm developed by Siong for various Raleigh numbers has resulted in excellent
agreement with the benchmarking results [60]. Figure 9 indicates the results for a Raleigh
number of 10°. Further details can be dbtained from Siong [36].

So far, all the test cases mentioned are computed with no rotation. As can be seen they have
been selected to specifically test various aspects of the scheme. In the following, test results
are included that includes rotation but excludes temperéture and salinity at the present time.

Ekman boundary layer profiles, for the governing equations of the geophysical flows, are
the classical counterpart of Blasius boundary layer profiles for the Navier—Stokes equations in
an absolute frame. Under suitable simplifying assumptions, closed form analytical expres-
sions, the Ekman boundary layer prbﬁlcs, can be obtained for a geostrophic flow over a flat
viscous surface §vhere the viscous surface can either be a solid wall or a free surface. A de-
- tailed discussion of the governing equations and their solutions is available in Pedlosky [7]. A

schematic diagram of the physical domain is given in Fig. 10. A Cartesian coordinate system
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Xyz 1s introduced in a rotating frame such that the y—axis coincides with the axis of rotation.

The Reynolds number was chosen to be 10000. The point distribution is 51, 101 and 2 in the
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Fig. 10. Physical Domain ( not to Scale )

i, j and k direction respectively. At all side boundaries extrapolation conditions were used and
at the bottom boundary a geostrophic flow is imposed in the z ( or k ) direction, with the fol-

: d
lowing values for the non-dimensional quantities: u=0,v=0, w=1 an 5§—~'4= — 2. The top

wall is treated either as a viscous wall or as a free surface with a applied wind stress in the x (
or i) direction. Starting from an initial condition of a géostrophic flow everywhere, converged
solutions are obtained in 2000 cyCles. The time step used is 0.05. Excellent agreement is seen
between the computed and analytical results in Fig. 11 for the case of no—slip wall, and, Fig.
12 for the case of applied shear stress at the free surface. As stated in Beddhu, Taylof and

Whitfield [16] these test cases were used to confirm the new formulation for the Coriolis

force. Further details can be obtained from Beddhu, Taylor and Whitfield [16].
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Fig. 11. Ekman Boundary Layer with a No Slip Wall
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Fig. 12. Ekman Boundary Layer with Applied Shear Stress at the Free Surface
Re = 10000; Rotation about y — axis
Free surface flows are important in many other areas of applications in addition to oceano-
graphic applications. The US Navy is interested in the free surface flows in the vicinity of ship

hulls. These are treated as inertial flows. Both steady and unsteady flows around various ship

hulls have been computed ﬁm the UNCLE solver (see [33], [37] and [38]) . In Fig. 13(a) the
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Fig. 13(a). Comparison of the Computed and Experimental Wave Profiles
along the Wigley Hull. Fr = 0.289 ; Re = 1,000,000.

Fig. 13(b). Comparison of the Computed and Experimental Wave.Contours
for the Wigley Hull. Fr = 0.289 ; Re = 1,000,000.

computed wave profile along the Wigley hull is compared with the experimental wave profile.
Figure 13(b) shows the comparison between computed and experimental wave contours. In
both these figures the ship is stationary and a uniform flow is flowing past it. Figures 14(a)
and 14(b) show the unsteady wave response due to a heaving Wigley hull placed in a uniform

flow. The heaving is prodliccd by oscillatiﬁg the hull in a sinusoidal fashion in the xy—plane

Yy




Fig. 14(a). Perspective View of the Unsteady Wave Pattern due to the Heaving
Wigley Hull at time 5.25T. Fr=0.289. .

Fig. 14(b). Perspective Vlev;; of the Unsteady Wave Pattern due to the Heaving
Wigley Hull at time 6.0T. Fr = 0.289.

with a reduced frequency of 9.81 based on length. The wave patterns are shown at 5.25T and
6.0T. Further results are presented in Ref. [38]. In Fig. 15, the comparison is shown between
the computed and experimental wave profiles along the DTMB Model 5415 hull placed in a

uniform flow. Computed and experimental wavecuts off the body are compared in Fig. 16.

7.2 Ocean results.

Eddy viscosity . : ' .

The viscous boundary copditions at the free suiface used in the present study are derived in

" Section 4.5 ( see Beddhu and Whitfield [21] for details ). From Section 4.5, the non-dimen-
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Fig. 15. Comparison of Computed and Experimental Hull Profiles for Model

DTMB 5415. Fr = 0.2756; Re = 12021000.

*

. . .. Lz . . T .
sional viscous stress is givenby T = m T where T'is the dimensional viscous stress obtained
0%~ 0

from the ECMWF-data, Trenberth et al. [61]. For the planetary scale ocean flow problem the
reference length was chosen as the radius of the earth, and the réfcrence velocity was chosen
as, U, = | QIL where | 21 = 2 x/86400 rad/s. The density of water wgfs taken as 1035
kg/m>. The only quantity over which uncertainty prev_ails in thé ocean ;po@qling community
is the reference viscosity, [, whose unit is kg/m-—s. If the reference viscosity is chosen as the
molecular viscosity for water ( 0.001 kg/m-s ) then the Reynolds number for such a flow is
3.05 x 105, Also the non—dimensional value of the applied wind stress becomes very large.

Choosing a higher value of the reference viscosity is equivalent to introducing a constant eddy

viscosity. This will result in a lower value of the Reynolds number as well as lower the applied

non—dimensional shear stress. The predominant trend in the ocean modeling community is to
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Fig. 16. Comparison of Computed and Experimental Stereophotographic Wave Cuts
Model 5415; z/L = 0.0965; Fr = 0.2756; Re = 12021000.
choose a constant eddy viscosity. In fact, different values of the constant are used depending
upon the direction of the coordinate lines. Typically, the values chosen for the horizontal are |
much larger than the values chosen for the vertical.
| In the oceans, large scale currents (or transports) occur in the horizontal whereas large scale
gradients occur in the vé;;'tical (near the freé surfacc and the bottom). This case is analogous to
a high speed flow over an airfoil. To fix ideas, assume that the flow is from left to right along
the x—axis, in the xy—plane, and the airfoil is at the origin. The y-axis is normal to the flow
direction. In this case, even though large scale transport occurs in the x—direction, large scale
gradients occur in the y—direction. In the field of Aerospace Engineering, m order to compute
such a flow, one would normally ignore the viscous effects in the xédirection--( the predomi-

nant flow direction ) and retain the viscous effects only in the y—direction. This is the basic

idea behind the thin layer Navier-Stokes equations approach proposed by Baldwin and Lomax




{62]. In contrast to this philosophy, in ocean modeling, large values of eddy viscosities are
used in the horizontal, which is predominantly a transport direction, whereas smaller values
of the eddy viscosity are used in the vertical direction, which is dominated by large gradients
in the flow variables. It is not clear whether there is a ﬁhysical basis for this apparently contra-
dictory approach used widely in the ocean modeling community, or, whether the numerics in-
volved in solving the various approximate equations necessitate such usage.

In calculating atmospheric flows it is frequently assumed that the planetary boundary pro-
file is logarithmic in nature in the inner region from the s;aa—lcvcl upwards.-In fact, the equa-
tions used in the ECMWF—dataset [61] to calculate the wind stresses from: the wind speeds
makes use of this assumption. These equations, for the speed range over 3 m/s, are first pre-
sented by Large and Pond [63]. Measurements made by Chriss and Caldwell [64] at the ocean
floor indicates that the universal log-law is obeyed by' the velocity profiles. Hence, it seems
plausible to make the assumption that the log-law is valid in the inner layer of the ocean

boundary layer from the sea—level downwards also.

Corresponding to a wind speed of 10 m/s, one obtains a wind stress ( Tg ) of roughly 0.17

N/m?. This implies that the friction velocity is uy = /7;/p = 0.0128 m/s. That is the friction

velocity is of the order of one cm/s. The non—dimensional length y¥is given by

y* = yug/vy, where vy = po/p,. Substituting the appropriate values and taking p, = 0.001

kg/m—s ( molecular viscosity of water ), one obtains y* = 13265y, whe}e y is in meters.
Thus, when yt* = 5, which is typically in the sub-layer, the corresponding value of y is 0.38
mm. (0.00038 meters). In order to resolve the sub—layer near the ocean free surface one has to
have a grid whose first grid point from the free surface has be less than 0.37 mm away.
Compared to the radius of the earth this number is indeed very, very small. . |
Baldwin-Lomax model [62] has been widely used in Computational Fluid Dynamics area

for predicting the mean flow quantities in a turbulent ﬂow. Originally proposed for wall
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bounded thin shear layers, this model has found successful applications in other areas as well.
This model falls under the category of algebraic closure of the turbulent closure models. It
attempts to provide the right turbulent viscosity from the mean flow itself. It also has a wake
correction formulation to take into account the effects of wakes. For the ocean flows this wake
correction is not needed. If the’} grid has sufficient resolution, this model resolves the flow
structure including the sub-layer and reproduces the log-law quite well.

Since the reference viscosity used in the non-dimensionalization should have no beanng on
the solution and since the only obvious choice that is physically meaningful is the molecular
viscosity of water, it was decided to use the molecular viscosity of water as the reference vis-
cosity, to obtain the turbulent Ekman boundary layer solution using the Baldwin—Lomax mod-
el, with an applied wind shear at the free surface. The Ekman layer is another example where
even though the flow is predominantly in the horizontal, the viscous effects are important only
in the vertical which is the direction of dominant flow gradients. The issue of horizontal vis-
cosity coefficients does not arise in this test case. |

* A rectangular grid, as shown in Fig. 10, was constructed with 101, 201 and 2 points in the x,
y and z ( in other words 1, j and k ) directions respectively. The angular velocity vector is
aligned along the y—direction ( vertical ) as before. A wind shear of 0.17 N/m? is applied
along the x—direction. It was decided to focus only near the free surface region. So in order to
simulate a deep ocean condition the bottom was kept at 12750 m depth. In non—dimensional
lengths the bottom boundary is placed at 0.998 and the top boundary is placed at 1 (L = radius
of earth = 6365000 m ). Along the x—diréction the boundarics are placed at x=0 and x=1. Only
two grid points are used in the z-direction at 0 and 0.1 respectively. The grid in the x—direc-
tion is uniform and in the y—direction it is stretched from the free surface (y=1) with the first
point from the free surface placed at 101, This corresponds to a physical distance of 0.06

mm. So this point is well v;ithin the sub—la);er. At the x=0 boundary inflow boundary condi-
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tions are spe‘,ciﬁed‘and at the x=1 boundary outflow boundary conditions are specified, both
using characteristic variables. At both the boundaries in the z—direction extrapolation bound-
ary conditions are used. At the bottom boundary the boundary condition depends upon wheth-
er the flow is coming into the boundary or leaving 1t This is determined by taking the dot

product of the local velocity vector with the normal to the surface. The Reynolds number in

this case becomes 3.05 x 10'5, The main interest is to find out whether the log—law is repro-
duced, and, what kind of dimensional values of the velocity components are obtained at the
the free surface. From observations it is known that a sur%acc wind of 10 m/s would produce
an ocean current in the order of 10 cm/s. The initial condition is rest everywhere and the shear
stress is applied at the free surface. With a time step of 0.05 it take about 250 cycles for the
solutions to converge. However, the run was continued up to 3000 cycles and the solutions
presented are at the 3000th cycle. |

Normally, the universal velocity profile is plotted such that the velocity is zero at the vis-

cous surface and reaches its maximum in the interior. However, in the present case the maxi-

mum velocity occurs at the free surface. So in order to compare with the traditional log—law

what is plotted in Fig. 17 is the quantity Ug — u + €, where Us is the surface velocity and e is
the small correction applied so that ut = 1 at y* = 1 (i.e. logy* = 0). The value of €
turns out to be 0.7752. The logarithmic portion is given by ut = 1/xIn (y *) + C where ¥
is the von Karman constant and is taken to be 0.41 and C = 4.9. 1t is clearly seen from Fig. 17
that the u—component of velocity obeys the universal velocity profile. The 'v;—component of
velocity is plotted in Fig. 18. Since the applied stress is in the x—direction only the derivative
of w with respect to y should be zero at the free surface and it is indeed the case as can be seen
from Fig. 18. The eddy viscosity is plotted in Fig. 19 as a function of y*. The dimensional
values of the velocity components at the free surface are 44.01 cm/s for u—component and

6.25 cm/s for the w—compenent. These values are not only reasonable but also show that the
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Fig. 17. Turbulent Ekman Layer due to Applied Shear Stress at the Free Surface
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Fig. 18. Turbulent Ekman Layer due to Applied Shear Stress at the Free Sur-
Re = 3.05x 105 = 0.169 N/m?

so called Ekman drift is present in the results. Further study is linderway to plot the Ekman
drift as a function of Reynolds number in the hodographic plane.
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Atlantic ocean

This test case was chosen to demonstrate the capability of a Navier—Stokes code and the
results must be considered as preliminary. Figure 20 shows a satellite view of the entire grid

and Fig. 21 shows the view of the grid in the polar region (Arctic ocean).
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Fig. 20. Satellite View of the Atlantic Grid

The origin is at the center of the earth, the y—axis passes through the North pole, the x axis

passes through the intersection of the Greenwich line with the equator. A set of points were
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Fig. 22. Velocity Vectors at Mid Depth

chosen along the continents and théy were smoothed using cubic splines. Thus, the two outer
mostvS—shaped curves were generated. Realistic bottom topdgraﬁhy is used to generate the
surface grid on the ocean floor. From coast to coast, 51 grid points were distributed with pack-
ing near the coasts. This corresponds to the § ( or k ) direction. The n ( or j ) direction corre-
sponds to the radial direction along which 41 points were distributed with packing near the
bottom as well as near the free surface. However, this packing was not sufﬁcien_t to resolve the
 viscous sub-layer as was do’jic in the turbulept Ekman layer case. The & direction increases in

the meridional direction from latitude 70 S up to the Asian continent in the north to include the
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Fig. 23. Velocity Vectors at the Free Surface
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Fig. 24. Velocity Vectors in the Polar Region (Mid Depth)

Arctic Ocean. 131 points were distributed along this direction with packing near 70 S and near
the Asian continent. Note that the inclusion of the poles does not need special treatment in the
present approach. For viscous calculatidhs a relative spacing of 0.001 was chosen.

The boundaries i=1, i=imax, j=1, k=1 and k=kmax were treated as viscous walls, j=jmax
was treated as a rigid lid (using the impermeable wall boundary condition). Part of the k=1
boundary corresponding to the Drake pass was treated as an inflow boundary with a uniform
inlet velocity of 1 m/s and part of the k=kmax boundary corresponding to tﬂc Agulhas pass

was treated as an outflow boundary. The Reynolds number based on Earth’s radius and the
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Fig. 25. Velocity Vectors in the Polar Region (Free Surface)

équatorial rotational speed turns out to be of the order of 10%. A very highly refined grid
would be needed .to resolve such a flow. Hence, a Reynolds number of 10¢ was chosen for the
viscous calculations. It is to be noted that neither wind stresses nor temperature and salinity
were included in the calculations. Thus, the results are purely governed by the dynamics of the
flow. Starting from the initial condition of rest in the relative frame, the Earth was rotated with
one revolution per day through the use of the grid speed vector w. For each complete rotation
628 time steps were used. Figure 22 shows the velocity vectors at mid depth and Fig. 23 shows
the same at the free surface for the entire Atlantic ocean. The corresponding cases for the Arc-
tic region are shown in Figureé 24 and 25. These figures mainly show the effects of the curva-

ture of the Earth, bottom topography and the shape of the continents.

World ocean

Since the motivation of this work has been to compute the planetary scale ocean flows, the
final set of results are given on a model ocean which has true bottom topography but the side
boundaries are approximated. Thus, the Gulf of Mexico is ignored and Australia and Asia are

joined with each other, among other simplifications. There are 26 blocks each with varying




sizes with a total of approximately 3.53 million points. In each block the number of points in
the vertical is kept.the same at 41 points. Since it is not yet practical to use such a fine spacing
near the free surface and the bottom boundary as is done in the turbulent Ekman layer, for the
computations of the world ocean the first point from the free surface is adjusted according to
the depth. Depending upon the depth the first point could be either a few cms away or as much
as meter away from the free surface. As a rough estimate, from discussions above the value of

y* at one meter depth can be as large as 13000 which means that major portions of the inner
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shaded by velocity magnitude
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Measured wind velocity vectors
shaded by velocity magnitude
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Fig. 26. Comparison of Computed World Ocean Surface Velocity Vectors with
Wind Velocity Vectors Obtained from ECMWF Dataset

region will not be resolved. Also the gradients computed at the free surface will be incorrect.

So, it was decided to use’a constant eddy viscosity for this computation. From Fig. 19, it is
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seen that the non—dimensional eddy visco>sity reaches a maximum of 25000. In dimensional

units this corresponds to 25 kg/m-s. So a value of 100 kg/m—s has been chosen as the eddy

viscosity. T‘hcrefofe, the kinematic eddy viscosity becomes 0.0966 m?/s. The choice of this

particular value is completely arbitrary. This value of p,, effectively reduces the Reynolds

number to 3.05 x 10'°. The non—dimensional eddy viscosity is one and is kept the same in all
directions. |

Figure 26 shows the velocity vectors of the computed ocean currents at the free surface.
These results are obtained starting from the initial condition of rest with applied wind stress at
the free surface. The results presented are after a four day spin up. Figure 26 also shows the
wind vectors as obtained from the ECMWF dataset. In both figures the vectors are colored
according to the velocity magnitude. It can be seen that the computed surface currents exhibit
all the major features of the wind data. There is correspondence in the magnitude of the veloc-
ity vectors as well, i.e., where the wind velocities are high ( indicated by red ) the ocean sur-
face current velocities are also high and where the wind velocities are low ( indicated by blue
) the ocean surface current velocities are also low. There eire discrepancies in the south east
Pacific ocean where the directions of the wind and ocean currents seem to deviate from each

other the most. This result is presented here only as a preliminary result and further investiga-

tions are underway.
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Conclusions

This report presents an approach for solving ocean flows which is a total departure from the
approaches currently being used. However, it should be noted that the propdsed approach is
routinely being used in other areas involving fluid flows. The approach of computational
physical oceanography involves solving the complete set of (Reynolds Averaged) Navier-
Stokes equations on nonorthogonal curvilinear grids. During the course of this investigation, a
detailed analysis of the governing equations has been undertaken and many new theoretical 7
results have been obtained. From a theoretical point of view, the new governing equations pro-
posed in Section 4.2 and the new viscous term proposed in Section 4.3 are important, The
extent to which these results will alter the flow field of the oceans remains to be seen. It is P
shown in Secﬁon 4.6 that the hydrostatic approximation is a coordinate system dependent
approximation. The new formulation of the Coriolis force could be the basis for alternate nu-
merical schemes one of which is the present scheme. The results of the turbulent Ekman layer ¢
shows that the modeling of the turbulent viscosity is still an unsettled problem. It also shows
the grid resolution that is needed (in the “vertical” ) to solve the ocean flow field in a consis-
tent manner. The results for the Atlantic ocean and the world ocean show cnéouraging trends <
and further investigation is needed. Computation of the ocean flows with an evolving free sur-
face also needs to be carried out. Time dependent surface forcing fields arezanother area that

needs to be investigated. The present method is formulated to handle such problems. The

9

CPU-time per grid point per time step on an SGI R8000 architecture for the world grid is

0.000462 seconds.
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Appendix

" A. Coordinate form of the momentum equations in unsteady Eulerian Coordi-
nates
In order to express the tensor invariant form in terms of a a particular coordinate system all

one needs is the following identity:

V-F= i_c‘i.[‘/gg_k - F] ‘ (A1)

where, F could be a vector or tensor; Ek, k=1,2,3 are the curvilinear coordinates; and a¥,

k=1,2,3 are the contravariant base vectors. Note that, a* = V’ék. Summation over repeated
indices is implied in Eq. (A.1). Note that, one can express the quantity F in either Cartesian or
curvilinear coordinates. In the so called partial transformation, F is expressed in terms of Car-
tesian coordinates. Upon expressing F ( assuming F to be a tensor ) and a in Cartesian coordi-

nates, Eq. (A.1) becomes

po L | (e : |
V-F= ,/ga’g'k[‘/'_gi ( 7 Fom ):llm (A2)
.Equation (A.2) can be expanded form = 1, 2 and 3 to obtain the three components. Note that,

since F is assumed to be a tensor V - F is a vector. Equations (4.6.2) ~(4.6.4) can now easily

be obtained using (A.2). -
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