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Abstract

We consider the motion of a rotating, continuously stratified fluid governed by the
hydrostatic primitive equations (PE). An approximate Hamiltonian (I.1) model for small
Rossby number ¢ is derived for application to mesoscale oceanographic flow problems.
Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess
the accuracy of the L1 model compared to the PE and to other approximate models, such
as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results

of the numerical experiments for moderate Rossby number flow show that the L1 model

gives accurate solutions with errors substantially smaller than QG or GM.




1.- Introduction

We continue the study of intermediate models (McWilliams and Gent, 1980), de-
rived under the assumption that the Rossby number ¢ is small, for possible application to
mesoscale oceanographic flow fields. Previous work has involved approximate models for
flows of homogeneous fluids governed by the f-plane shallow water equations (SWE) (Allen
et al., 1990a,b; Barth et al., 1990; Allen and Holm, 1996) and for flows of continuously
stratified fluids governed by the hydrostatic primitive equations (PE) (Allen, 1991; Allen,
1993; Allen and Newberger, 1993; Holm, 1996).

We use a traditional modeling approach of making approximations in Hamilton’s
principle. (For example, the finite-element method is based on such an approach.) This
approach was developed for GFD and applied in Salmon (1983, 1985, 1996) to construct
balanced GFD equations, by substituting leading order balance relations and asymptotic
expansions into Hamilton’s principle before taking variations. See also Allen and Holm,
1996, and Holm, 1996. In the present paper, we again use this approach in accomplishing
our first objective — to derive an approximate model for mesoscale oceanographic flow.
For this, we work in the framework of the Euler—Poincaré theorem for ideal continua with
advected parameters (Holm, Marsden and Ratiu, 1997). Euler—Poincaré systems are the
Lagrangian analogue of Lie-Poisson Hamiltonian systems (Holm, Marsden, Ratiu, and We-
instein, 1985, and references therein). In this framework, the resulting Eulerian approx-
imate GFD equations possess a Kelvin-Noether circulation theorem, conserve potential

vorticity on fluid particles and conserve volume integrated energy. A further objective is

to assess the accuracy of the resulting model equations through numerical experiments.




Motivation for this study is provided by the seemingly great potential usefulness of
approximate models derived from Hamilton’s principle and the apparent soundness of this
approach. On the other hand, results of numerical experiments assessing the accuracy
of different intermediate models applied to the SWE (Allen et al., 1990a,b; Barth et al.,
1990) demonstrate clearly that, at moderate values of €, Salmon’s (1983) HP model and
the geostrophic momentum (GM) approximation (Hoskins, 1975) provide disappointingly
inaccurate solutions to the SWE, compared e.g., to those obtained from the balance equa-
tions (BE) (Gent and McWilliams, 1983). This is in spite of the fact that the HP and GM
models have Hamiltonian structure, whereas the BE for the SWE do not conserve energy.
Thus, possession of Hamiltonianv structure is not sufficient in itself to ensure an accurate
approximate model. The question arises of how more accurate approximate models can
be derived from Hamilton’s principle. Allen and Holm (1996) formulated an approximate
model by extending Salmon’s (1983) approach and utilizing higher order approximations
in Hamilton’s principle. Allen and Holm (1996) contended that this extended-geostrophic
model should give more accurate solutions than the HP or GM models.

Here we take an initial step toward applying the expansion procedure of Allen and
Holm (1996) to derive an extended-geostrophic model for continuously stratified flows
governed by the PE. The initial step involves derivation of an approximate model following
a strategy similar to that of Salmon (1983, 1985, 1996), but utilizing the methods of Holm,

Marsden, and Ratiu (1997) for deriving the Euler-Poincaré equations for fluids. We refer

to the resulting approximate equations as the L1 model.




The derivation is followed by numerical experiments to assess the L1 model accuracy
compared to the PE. The idealized, mesoscale oceanographic problems utilized in Allen and
Newberger (1993) to quantify the accuracy of different intermediate models are repeated.
Thus, we find information not only on the absolute accuracy of the L1 model compared to
PE solutions, but also on the relative accuracy compared to other intermediate models.

The outline of this paper is as follows. The Euler-Poincaré equations for fluids are
summarized briefly in section 2 and the derivation of the L1 model equations is given in
section 3. The solution procedure for the L1 model and the numerical experiments are

presented in sections 4 and 5, respectively, with details of the numerical methods explained

in the appendix. Brief summary comments are given in section 6.




" 2. The Euler—Poincaré equations for fluids
The Euler—Poincaré equations for fluids with advected parameters are derived in Holm,

Marsden and Ratiu (1997 ) In abstract form, these equations are

8 5l sl 6l sl 6l B
o8 gl o O O i, 2.1
gisn - gy T 00T hugy a0 a=—Lua (2:1a)

where [ is the Lagrangian in the variational principle in Eulerian coordinates

t2
6 [(u,a) dt=0, (2.1b)

t1

which holds on variables (u,a) € X(D) x V*, using constrained variations of the form

ow ow
du = 5t [u, w] = o adyw, da = —Lya, (2.2)

in which [u, w] = —ad,w is the Lie bracket between vector fields u,w € X(D) defined on
the domain D, and w vanishes at the endpoints in time.

In equation (2.1a), £,, denotes Lie-derivative with respect to the vector field u (the
Eulerian fluid velocity), the variational derivative §l/6u € X(D)* is a one form density,
and the tensor field a € V* is advected by u. The operation ¢ between elements of V' and
its dual space V* producing an element of A'(D)* is defined in terms of the Lie derivative

(voa,w) = -—/ velya , | (2.3)
D

where veLy, a denotes the contraction between elements of V and elements of V*. On a

general manifold, tensors of a given type have natural duals. (For example, k—forms are

naturally dual to (n—k)—forms, the pairing being given by taking the integral of their wedge




" product.) The ¢ operation needs to be determined on a case by case basis, depending on
the nature of the tensor field a.

Among other cases, Holm, Marsden and Ratiu, 1997, compute explicit formulas for
the variations da when the set of tensor fields a consists of scalar functions and densities

in a Buclidean basis on R2, namely,
a € {p, Dd®z}. (2.4)

Invariance of the advected quantities in the set a in the Lagrangian picture under the
dynamics of u implies in the Eulerian picture that (& + Lu)a = 0, where L, denotes
Lie derivative with respect to the velocity vector field u. Hence, for a fluid dynamical
action L = [ dt I(u; p, D), the advected variables {p, D} satisfy the following Lie-derivative

relations,

0 _ op
(5-5 —I-Eu) p=0, or 5 = U Vo, (2.5a)

0 3 oD
(52 +£u) Dd’z = 0, or —a—t- =—-V- (Du) . (25b)

In oceanographic applications, the advected Eulerian variables p and D represent
the buoyancy p and volume element D, respectively. According to equation (2.1c), the
variations of the tensor functions a at fixed x and t are also given by Lie derivatives,

namely da = — L a, or

bp=—Lwp=—-wW-Vp,

6D d3z = —L (Dd%z) = =V - (Dw) d®z. (2.6)




" Hence, Hamilton’s principle (2.1b) with this dependence yields

0:5/dt I(u; p, D)

6l él
/dt [-—— du +'§—-6 +'5—Df(5Dj|

= [ (g (G ~aie) =5 w50 35 (7 0w)]
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0 6l 6l ol
=~/dtw-{(5g+£u)ﬁ+-6—’5v ~DV55] (2.7)

where we have consistently dropped boundary terms arising from integrations by parts, by
invoking natural boundary conditions. Specifically, we impose fi - u = 0 on the boundary,
where 1 is the boundary’s outward unit normal vector.

The Euler-Poincaré equations for continua (2.1a) may now be summarized for ad-
vected Eulerian variables @ in the set (2.4). We adopt the notational convention that a
one form density can be made into a one form (no longer a density) by dividing it by
the volume element D and using the Lie-derivative relation for the continuity equation
(8/8t + L4)Dd3x = 0. Then, the Euclidean components of the Euler-Poincaré equations
for continua in equation (2.1) are expressed in the following Kelvin theorem form with a

slight abuse of notation as

0 1 61 1 61 6l
(5 +22) (55 ) + 55—‘7 dx = (5p5) dx = (2:8)
where the variational derivatives of the Lagrangian [ are to be computed according to

the usual physical conventions, i.e., as Frechét derivatives. Formula (2.8) is the Kelvin-

Noether form of the equation of motion for ideal continua. Hence, we have the explicit




* Kelvin theorem expression,

1 61 1 6l
% Lol . d 2.9
>, Dou dx Dapv” x (2.9)

where the curve v, moves with the fluid velocity u. Then, by Stokes’ theorem, the Euler

(1 RIR

equations generate circulation of whenever Vp and V(3 ‘") are not collinear.

In vector notation, equation (2.8) is

d16 16 1 61 51
L9 L 2 gy 2%y, v _
D5 T D5 VY D6 Vo-Ve5 =0, (2.10)

or, in three dimensions,

S(mh) - wren(bh) + oo - B)+ Svmo an

In writing the last equation, we have used the fundamental vector identity of fluid dynam-
ics,

(b-V)a+a;Vtl = -bx (Vxa)+ V(a-b), (2.12)

for any three dimensional vectors a and b with, in this case, a = (5 2%).
Using advection of buoyancy p, one finds conservation of potential vorticity ¢ on fluid

parcels:

oQ

S +u-VQ=0, where Q=2v,. curl(l &) (2.13)

D D éu

A partial Legendre transformation (in the variable u only) is defined by writing

ol

H= su’ h(p,a) = (g, u) — 1 (u,a), (2.14)

where (i, u) denotes the contraction between elements of X(D)* and elements of X (D).

(This is the natural integral pairing between one form densities and vector fields.) Holm,

8




Marsden and Ratiu (1997) show that Ay, a) is the Hamiltonian for the Lie-Poisson Hamil-
tonian formulation of ideal fluid dynamics.
The Euclidean component formulae (2.10) and (2.11) are especially convenient for

direct calculations of motion equations in geophysical fluid dynamics, to which we turn

our attention next.




* 3. Derivation of the L1 model equations

We consider the motion of a rotating, continuously stratified fluid governed by the

hydrostatic, Boussinesq, adiabatic, primitive equations and derive an approximate model

for small Rossby number through the use of Hamilton’s principle. One important objective

is to assess the accuracy of the resulting model equations by obtaining numerical solutions

to the same idealized, mesoscale oceanographickproblems utilized in Allen and Newberger

(1993) to assess the accuracy of several different intermediate models. Consequently, for

simplicity we restrict the derivation here to the idealized conditions utilized for the prob-

lems in that study, i.e., to an f-plane with a rigid lid and flat bottom and with the domain

periodic in the horizontal (z,y) directions.

The primitive equations (PE) in dimensionless variables are
v3 -uUg = O)

u .
e— +2z xu=—Vp,

Dt
Oz_pz_p7
Dp
Dt Y
where
x = (2,9,2),
us = (u,v, ew), u = (u,v,0),

o0 0 0 o 0
VS—'('a_ga'a—y’gg): v—(£3@)0)7
D 0
5 = (5 % V3).
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(3.1a)

(3.10)
(3.1c)

(3.1d)

(3.2a)

(3.2b,¢)
(3.2d,¢€)

(3.21)




and Z is the unit vector in the vertical z direction.
Dimensionless variables are formed using the characteristic values (L, H, Uy, fo) for,
respectively, a horizontal length scale, vertical depth scale, horizontal velocity, and Coriolis

parameter. The Rossby number

e =Us/foL. (3.3)

With dimensional variables denoted by primes, we have

(z,y) = («,y")/L, z=2|H, (3.4a,b)
(u,v) = (W', v") /Ty, ew=w'L/(UgH), (3.4c,d)
t=tUy/L, f=f/fo=1, (3.4e, f)

so that (u, v, ew) are the dimensionless velocity components in the (z,y, z) directions, and
t is time.

The total dimensional density is given by

pr=po+7(2) —0'(x', 1), (3.5)

where pg is a constant reference density, 7'(z’) the basic undisturbed z’-dependent field,

and & the negative of the density fluctuation. We define

p(z) =7 (") /pc , 0=80/pc, (3.6a,b)

and

p=p(z)-90, (3.7)

11




where pc = pc/(Hg), pc = poUofL, and g is the acceleration of gravity. In addition, we

write

p.=-S(2)fe,  S(z)=N*()H?/(f{L?), (3.84,b)

where

N*(z) = —gp.+/po. (3.8¢)

is the square of the basic Brunt-Viisald frequency. Subscripts (z,y, z,f) denote partial
differentiation. Pressure variables p,p and p are defined by nondimensionalizing with pc
such that

p= ﬁ(z) +p, (3'9)

where

P,=-p, Vp=Vjp. (3.10a, b)

We are interested in the limit of small Rossby number,
ek 1, (3.11)

with § = O(1).
Theorem (Holm, 1996). The PE are Euler-Poincaré equations, with action L = [ dtl

given in dimensionless variables by
€12
L= [ dtdedydz {D [u -(R+ew) - fuf? ~ pz] —p(D - 1)} , (3.12)
where R = R(z,y),R-Z =0, and

curls R =2z. (3.13)

12




" Proof. By direct substitution into equation (2.11).

We derive approximate equations for € < 1 using the Euler—Poincaré framework, by
following a procedure similar to that applied by Salmon (1983, 1985, 1996). Thus, we
define

w =2xVe, (3.14a)

with
0

é(x,t) = s(z,9,1) + / dz'p, ¢ =—p, (3.14b, c)

z

where ¢g(z,y,t) is a function to be determined, and utilize the following order O(e) ap-

proximation for the action L,
, .
L= [ dtdxdydz {D [u- (R+euy) — §|u1| — pz] —p(D — 1)} . (3.15)
The action L; has variational derivatives given by

8Ly = /dtda: dy dz{D(R—i— ew;) - 6u+ [u- (R + euy) — §|u1|2 — pz —p] §D

+eD(u—uy)-Suy — Dzbp— (D — 1)5p} : (3.16)
Using the relations
0 0
a-du; = —(6¢g +/ d7' 6p)z - curl a+ div [a x 2(6¢s —I—/ dz' ép)], (3.17)

and

_/Odza(z) (/0 dz’ b(z')) = /Odzb(z) (/z dz'a(z')) , (3.18)
~1 z 1 -1

13




in (3.16) we obtain

6L, = /dtda:dydz{D(R+ eup) - fu+ [u- (R+euy) — %Iuﬂz — pz —p] 6D

— (D~ 1)6p— ép[Dz + /dz’i - curl eD(u — ul)]}
|

0
+/dtda;dy 5¢S/dz2-curl eD(u—u;)

-1

0
+/dtdz}{ds (6¢5 + /6pdz’) eD(u—u,)-8§, (3.19)

where § = 2 X 1 is the unit tangent vector on the boundary and n is the unit outward
normal vector. For the periodic domain in (z,y) assumed here, the boundary integral in
(3.19) vanishes.

The 6p and 8¢ variations in (3.19) yield, respectively,
D=1, (3.20)

and

0
/dzi ~curl (u—u;)=0. (3.21)
-1

In this nondimensional notation, the Euler—Poincaré equation for the fluid motion

generated by L; is, cf. (2.11),

ot \ D bu 3% WS\ Da

5L1 1 6L1 1 5-[/1 . -

14




The resulting equation, from (3.19) and (3.22), is

6?(;171 —us X curly (R +euy) + V(p+ %lullz)
+ pz — [e/dz’i-cml(u—ul)]v3p:0. (3.23)
-1 ‘

The full set of approximate equations are given by (3.23), the constraint (3.21), the
equation of continuity,

V3 ug =0, (3.24)

obtained from the equation (2.5b) for D and preservation of the constraint (3.20), and the
equation for the density,
Dp 0Op

Dt—aﬁ‘Us'Vgp:O. (3.25)

We will refer to (3.23), (3.24), (3.25) and (3.21) as the L1 model equations.
By equation (2.9) for Euler—Poincaré systems the L1 model possesses the following

Kelvin-Noether circulation theorem,

d
2 Rtew)-deg=- jf (z+ EN)dp, (3.26)
¥e(us) Yt (us)
where
z
I=¢1 /dz’ﬁ ~curl D(u —uy), (3.27)
21

and 7:(u3) moves with the fluid velocity us. Then, by Stokes’ theorem, the L1 equations
generate circulation of (R + eu;) whenever Vp and V(z + €2I) are not collinear. For a
loop 7 on an isopycnal surface, the right hand side of (3.26) vanishes and Stokes’ theorem

implies the quantity @, = V, x (R+e€u; (x, 2(x, p))) is conserved along fluid parcels, where

15




V, is the horizontal gradient at constant buoyancy, p. This is the basis for an isopycnal
L1 model.
Returning to z coordinates, the curl of equation (3.23) gives conservation of the fol-

lowing potential vorticity @; on fluid particles, cf. (2.13),

DQy
o =0, (3.28)
where
Q1= curlz(R +euq) - Vap, (3.29q)
= (2 + e curls u;) - Vsp. (3.290)

The L1 model equations also conserve the volume integrated energy E;, given in the general

theory by (2.14), i.e.,

dE;
- = 0, (3.30)
1
E; :/d:cdyda: [§|u1|2 +pz] . (3.31)

16




" 4. Solution Procedure

We write the L1 model equations (3.23), (3.24) and (3.25) in the form:

V3 - U3 :O, (4.1a)

e?gut—l —u; x (1+€1)z+ ezwulz +V(p+ % |uy |2) + 621V¢z — -61/V4u1 , (4.10)
Pr — ¢- — e(u—u1) - ur, +el(S + e¢,) =0, (4.1¢)

d
519 T Va - (Usgz) + Sw=0, (4.1d)

with constraint (3.21), imposed by ¢g,
0
/dz Zz-curl (u—wy) =(z-curl (u—wy)) =0, (4.1e)
21

where

u=12zxVy+eVy, (4.2a)
and where the density and pressure fields have been decomposed as in (3.7) and (3.9),
p=p(z)—8, p=D(2)+5, (4.2b, )

so that

S(z) = —€p, . (4.2d)

With (4.2b), u; may be written

u =zxVg, (4.3a)
where
0
¢ = ¢s(z,y,t) — / 2’6, ¢.=89, (4.3b,c)
z

17




and

(1=2%-Vxu =V3i. (4.3d)
The constraint (4.1e) implies
V() = VE(y). (4.4)
Tt will turn out to be convenient to define
b= ¢+ ey, (4.50)

where, for the satisfaction of (4.4) we require

~

(W) =0. (4.5b)
We also note that
z ¥4
I= e_l/dz’i ceurl (u—wy) = /dz' V2. (4.6)
~1 -1

We include biharmonic momentum diffusion in the horizontal momentum equations (4.1b)
so that it may be used in the numerical finite-difference solutions to provide dissipation at
high wave numbers in otherwise nearly inviscid flows.

The horizontal momentum equations (4.1b) are replaced by vorticity and divergence

equations formed, respectively, by the operations z -V x (4.1b) and V - (4.1b):

% +J(4, 1) + Vi + €V - [wVe, + GVx] +eJ(I,¢,) + Vi =0, (4.7)

V2 = V2p — €2J(¢s, By)

& [ + T 6) +V - (GVH - V-1V . (@8

18




We rewrite (4.1d) as

04
ot

+ J (¥, $2) + Sw +e€ V- (6:Vx) + (we2).] =0, (4.9)

and (4.1a) as

V2x +w, =0. (4.10)

The L1 model equations now consist of (4.7), (4.8), (4.1c), (4.9), (4.10) and (4.5). The
variables are 1, x, w, p, ¢ and '¢Z Note that if we set € = 0 in these equations, they reduce to
the quasigeostrophic (QG) approximation (Pedlosky, 1987). To obtain numerical solutions,
we follow a procedure similar to that developed and applied in Allen and Newberger (1993)
for other intermediate models. The procedure is based on the assumption that € < 1 and
essentially uses the solution of the QG approximation as the starting point for an iteration
scheme. Accordingly, we form an equation for a linear approximation to the potential
vorticity by eliminating w, = —V?x between (4.7) and (4.9):

0

a[vz¢ + (S_1¢z)z] =—J(%,01) — V- [wVY, + (1 VX]

—eJ(1,4,) = vV = {ST I (W, 8.) + €[V - (6:VX) + (wea)il |} - (41D)

We also write (4.7) as

LAV

2.,
Vix= ot

—J(@, ) — €V - [wVe, + (Vx| — eJ(I, ¢,) — V9. (4.12)

We eliminate p by taking the z derivative of (4.8) and substituting for p, from (4.1c).
The resulting equation is

V3G = =20, (¢as by) — €{T2(C1y X) + T2 (w, ¢2)

+V - (OQVD), — V- (IV,), — V[V -V, + J(bsX) — 221]}, (4.13a)

19




where

G =1, +SI. (4.13b)

If, for € < 1, G is obtained from the solution of (4.13a), then 1& may be found from the

solution to

VZ"L + [S—l'&z]z = [S—IG]:” (4'136)

where (4.5b) implies

Y, =G at z=0,-1. (4.13d)

In a domain periodic in (z,y,), (4.13a) determines G' up to an arbitrary function of z.
That function has no effect on the horizontal derivatives of 1) (or ¥) needed in the other

equations. Thus, to obtain a unique solution for G we require
/dx dyG =0. (4.13¢)

The L1 model equations we solve are finally (4.10), (4.11), (4.12), (4.13) and (4.5).
The variables are 9, x, w, ¢, and 1/3 The numerical finite difference method used to solve

this equation set is described in the appendix. The boundary conditions are
w(z=0)=w(z=-1) =0, (4.14)

with periodicity of all variables over the domain in  and y.

20




5. Numerical Experiments

Numerical solutions to finite-difference approximations to the L1 model are obtained
for the problems utilized to investigate accuracy of different intermediate models in Allen
and Newberger (1993). The numerical experiments involve initial-value problems for the
time-dependent development of an unstable baroclinic jet on an f-plane. Initial conditions
involve a uniform, vertically-sheared jet with small perturbations. The jet is unstable
and develops finite amplitude meanders that grow in time and eventually pinch off to
form detached eddies. The weak jet and basic case numerical experiments from Allen
and Newberger (1993) are repeated here for the L1 model. The accuracy is assessed by
comparison with solutions of the primitive equations (PE).

The domain is periodic in the horizontal directions (z,y) and is of constant depth in
the vertical direction (z). The finite difference methods are discussed in the appendix and
in Allen and Newberger (1993). All models use the same variables on the same grid.

Dimensional variables are used for the numerical experiments. The Coriolis parameter
f =19.20 x 1075 s71. The total depth Hy = 3172 m. The number of vertical grid cells is

6. The horizontal domain is
0<z<L®, 0<y<IL®, (5.1a,b)

where the initial jet flow is parallel to the x axis. For the weak jet experiment,

L®) = 250 km, L) = 640 km. For the basic case experiment, L(®* = 250 km,
L® = 810 m. The horizontal grid spacing is Az = Ay = 5 km. The horizontal bi-
harmonic diffusion coefficient v = 8 x 108 m* s~ is chosen to be small so that dissipative

processes play a nearly negligible role in the time-dependent dynamics.

21




The initial stratification and jet structure are based on observed oceanographic values
from the Coastal Transition Zone (CTZ) off Northern California (Kosro et al., 1991; Pierce
et al., 1991; Walstad et al., 1991). The Rossby radius for the first baroclinic vertical mode
calculated from the initial stratification is 6g; = 24.6 km. The initial jet has a half-width
of Ly = 30 km, comparable in magnitude to ég;. The experiments are characterized by
different velocity magnitudes in the initial basic jet profiles. For the weak jet and basic case

!, respectively.

experiments, the maximum initial jet velocities are 0.52 m s~ and 0.90 m s~
The vertical shear is such that the corresponding maximum initial jet velocities at 500 m
depth are 0.23 m s~ ! and 0.36 m s™1.

The function |{(z,y, z,t)|/f, where {( = vy — u,, indicates the magnitude of the
local, flow-determined Rossby number. For the weak jet and basic case experiments, the
maximum initial values of |{|/f are 0.174 and 0.287, respectively. The maximum values
reached during the experiment are larger, 0.264 and 0.555, respectively. Thus, the two
experiments cover a range of flow regimes characterized by maximum local Rossby numbers
|¢|/f that might be described as moderately small (weak jet) and moderate (basic case).

Quantitative measures of the errors of the L1 model solutions, compared to PE, are
found as a function of time by calculating normalized rms differences between the corre-
sponding variables from the L1 model and from the PE solutions as described in Allen and
Newberger (1993). Prior to comparison with L1 model results and calculation of errors, the
PE solutions are averaged over an inertial period to eliminate high frequency variability.

The time-dependent development of the unstable jet flow field in the basic case ex-

periment is illustrated in Fig. 1 by contour plots of the near-surface streamfunction fields
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¥(z,y,z1,t) = ¥1(z,y,t) where z; corresponds to the center of the top grid cell at 50 m
depth. Fields from the solutions of the primitive equations PE and the L1 model are shown
every 20 days from day 10 to day 90. The corresponding vorticity fields (;/f from PE and
L1 are shown in Fig. 2. The close agreement of the 1); and ¢;/f fields from the L1 model
with the corresponding fields from the PE is apparent.

The normalized errors for the streamfunction field ¥(z,y, 2,t) from the L1 model rel-
ative to PE for the weak jet and basic case experiments are shown in Fig. 3. Similar
error characteristics are found for the other variables. For comparison, the errors from
other intermediate model solutions as reported in Allen and Newberger (1993) are in-
cluded. The other models are the quasigeostrophic (QG) approximation (Pedlosky, 1987),
the geostrophic momentum (GM) approximation (Hoskins, 1975), the linear BEM model
(Allen and Newberger, 1993), the IG2 iterated geostrophic model (Allen, 1993), and the
balance equations based on momentum equations BEM model (Allen, 1991; Holm, 1996).

The errors are plotted with two different scales. An expanded scale plot is included
at the bottom to show clearly the relative errors of the more accurate models. In both
experiments, the errors from the L1 model are substantially lower than those from QG,
GM or LBEM. That fact is further illustrated by a comparison of the streamfunction fields
¥1(z,y,t) at day 70 of the basic case experiment from PE, L1, GM, and QG (Fig. 4). The
BEM model gives the most accurate approximate solutions. The balance equations BE
(Gent and McWilliams, 1983) (errors not plotted) also give accurate solutions comparable
to those of BEM. The errors from the new L1 model, however, are generally relatively

small and remain so during the experiment. In the basic case experiment, the errors
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" from L1 and IG2 are comparable for ¢ < 50 days with IG2 slightly lower. After day 50,
the errors for IG2 become considerably larger than those from L1. Similar qualitative
behavior is found in the weak jet experiment. The inviscid IG2 model does not have exact
analogues of potential vorticity conservation on fluid i)articles or of conservation of volume
integrals of energy (Allen, 1993). The L1 model, of course, does have analogues of these
conservation equations, given in (3.29) and (3.31). It seems possible that the tendency
of the IG2 model errors to increase at large time, while the L1 errors remain relatively
constant, may be related to the differences in the models with regard to possession of
analogue conservation equations for potential vorticity and energy.

The L1 model has the smallest errors of any of the approximate models in Allen and
Newberger (1993) that advect a vorticity of the form {; = V2¢ (4.12). Those models
include QG, LBEM, and the linear balance equations (LBE). All of the more accurate
models advect a higher O(e) approximation to the vorticity similar to that of IG2, where

the advected vorticity (4 is

Ca= V2¢ - 62J(¢x7 ¢y) . (5'2)

From a comparison of the model errors in Allen and Newberger (1993), it appeared that
advection of vorticity with O(e) accuracy was a necessary property for an accurate model.
The relatively small errors found with the L1 model do not seem to fit with that idea. In

the L1 model, the vorticity of the advecting velocities

( =V = V3¢ —2J(¢z, ¢y) + O(¢?) (5-3)
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is accurate to O(e) and that feature may contribute to the relatively small errors found
with L1. Additionally, the requirement in L1 that {V2) = (V2¢) may provide additional

accuracy.
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6. Summary Comments

The L1 model produces generally accurate approximate solutions for the idealized,
moderate Rossby number, mesoscale oceanographic flow problems examined in Allen and
Newberger (1993). These solutions are not quite as accurate as those from the BEM or
BE models, but are substantially more accurate than those from GM or QG. Overall,
the results are encouraging and provide motivation for further work extending the L1
derivation to variable bottom topography and to variable Coriolis parameter f = f(z,y).
In addition, motivation is also provided for the derivation of a presumably more accurate
extended-geostrophic model that systematically includes O(e) terms in the approximation
for u in (3.14) following Allen and Holm (1996).

In summary, we note that the L1 model appears to realize some of the potential
anticipated for approximate equations derived from Hamilton’s principle. The accuracy
of the L1 model solutions seems better than expected based on the asymptotics involved
in its derivation. In addition, the errors remain small as time increases, which may be
the desired consequence of retaining analogue energy and potential vorticity conservation

laws.
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APPENDIX
Numerical Methods

The numerical finite-difference approximations for the model equations in section 4 are

discussed in this appendix. For consistency, the difference approximations are presented:

here in terms of the dimensionless variables of sections 3 and 4, although the numerical
solutions are obtained in corresponding dimensional variables. The finite differénce grid for
the variables (v, x, w, ¢) and fhe corresponding spatial difference operators are identical
to those described in appendix A of Allen and Newberger (1993). Thus, those definitions
are not repeated here.

The governing equations in difference form, corresponding to (4.10), (4.11), (4.12) and

(4.13) are

s,w—+Vix =0, (A1)
V3¢, +6,(S716:4:) = RQ, (A2)
Vix = —V%¢: + R, (A3)
V3G = RG, (Ada)
V2 + 6,(S716:9) = 6,(S1@), (Adb)

where (4.5) holds and where
RQ=R(+RDZ0, (A5a)

R¢C=~J(4,¢1) —e [v [wVezd +GVx] + T (I, 52¢)] — V8¢, (A5b)
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RDZ0= 6,57 [ b0 + IV (:6TX) + s:@m ]| |, (450

RG = —26:J(6,8°,6,8°) — e{aﬁJ(gl, X) + 67" (w, 656)
o

+68;V - (G1VY) — 8;V - (IV6;:6

CVEVE Vs + J(6:6,%) — 6:(1639)" + 62762(;5]} . (A5d)

The function

16) = Henapm) = [ &2'V24, (46)
-1

where the z integration is calculated as described for w in (A11) of Allen and Newberger
(1993).

We advance in time by using the implicit time difference scheme described for the
balance equations (BE) in Allen and Newberger (1993). The equations (A2) and (A3) are

time differenced as

Vit 16,5 1es00 ) = RQ™E, ATa
t t
1
VXt = v g L ROVR, (ATb)

Equations (A4a,b) are assumed to hold at each time level t = nAt.

It follows from (A7a,b) that

V2ot 4+ 6,(S71650™1) = RIQ, (A8a)
V2"t = RI¢, (A8b)

where
RIQ = V24" + 6,(S~6:¢") + At RQ™H? (A9a)
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RIC = -V +2[ - V26t . RETE), (A9b)

In solving (A8a) for ¢"** and (A4b) for )™+, an expansion for these variables in terms
of vertical linear normal modes is utilized as described in equations (A22) and (A23) in
Allen and Newberger (1993).

With all variables known at ¢ = nAt and at previous time levels, we solve (A8a,b)
and (Ada,b) by iteration. Estimate all variables at ¢ = (n + 1)At by extrapolation, e.g.,
¢t = 2¢™ — ¢"~1. Use these estimates in the rhs of (A8a) and (A8b). Solve (A8a) for
¢"+1. Substitute the new value of ¢”*? in the time derivative term (—V?2§, +%q§) on the
rhs of (A8b) and solve (A8b) for x"*!. Calculate w™*! from (A1). Substitute ¢"+1, wm*?
in the rhs of (Ada) and solve (Ada) for G®™1. Substitute G®*! in the rhs of (A4b) and
solve (Adb) for "1, Return to the step where (A8a) is solved for ¢"+! and substitute
the latest values for the variables at ¢ = (n + 1)At in the rhs. Repeat the cycle until
convergence is obtained for ¢"t1, xy"+1 w1 and ¢mtl.

At t =0, ¢° is specified. Initial-values for 9°, x°, and w° are found by an iterative
procedure. Estimate 9/° = x° = w® = 0. Calculate ¢° from (A4a,b), ¢? from (A2), x° from
(A3), and w® from (A1). Repeat the calculations until convergence for ¢°,x°, w®, and ¢?
is obtained. For the first time step, estimate ¢! = ¢ + Atg?, P! = 40, x! = x°, w! = w°

and proceed with the general implicit time difference scheme.
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Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS
1. Contour plots of the 1); fields from PE and L1 as a function of (z,y) every 20 days
from ¢ = 10 to t = 90 days for the basic case experiment. The distance between tick
marks on the axes is 50 km. Positive (negative) values are contoured by solid (dashed)
lines with the zero contour a heavy solid line. The contour interval is 3000 m? s—1.
2. Contour plots of the {1/ fo fields from PE and L1 every 20 days from ¢ = 10 to
t = 90 days for the basic case experiment. The contour interval is 0.1 and the zero
contour line is omitted. Scaling of axes as in Fig. 1.
3. The normalized rms errors E for 9 as a function of time from the QG, GM, LBEM,
IG2, L1, and BEM models compared to PE for the weak jet experiment (left) and
for the basic case experiment (right). Note the different scales for the errors in the
top and bottom panels. The type of line representing the errors from each model is
consistent for both experiments.

4. Contour plots of the 1, fields at day 70 of the basic case experiment from PE, L1,

GM and QG. Contour interval and scaling of axes as in Fig. 1.

33




