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Abstract

The ability to image complex geologies such as salt domes in the Gulf of Mexico
and thrusts in mountainous regions is essential for reducing the risk associated with
oil exploration. Imaging these structures, however, is computationally expensive as
datasets can be terabytes in size. Traditional ray-tracing migration methods cannot
handle complex velocity variations commonly found near such salt structures. Instead
we use the full 3D acoustic wave equation, discretized via a finite difference algorithm.
We reduce the cost of solving the paraxial wave equation by a number of numerical
techniques including the method of fractional steps and pipelining the tridiagonal solves.
The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and
spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data
and produces clear images of the subsurface even beneath complicated salt structures.

1 Introduction

To obtain information about the earth’s interior, oil and gas companies perform many
thousands of acoustic experiments — setting off “shots” and recording the portions of the
propagated waves which reflect off internal heterogeneities and return to the surface. One
common seismic processing technique takes this recorded wave data and converts it from
the time to the depth domain to produce an image of the subsurface. This procedure,
migration, can take weeks or even months of computer time if a large number of shots
(millions) must be processed.

Oil companies traditionally use ray-tracing (Kirchhoff) methods for seismic processing
of new prospects. These schemes are economical but cannot account for multiple travel
paths or strong velocity variations in regions of complex geology. Salt intrusions are
an example of a complex geologic formation commonly found above oil reservoirs in
the Gulf of Mexico. Clearly, some of the most interesting prospects for hydrocarbon
recovery are regions with complex geology. To overcome the limitations of ray tracing,
we have implemented a finite-difference algorithm for solving the acoustic wave equation e
in 3D. Because finite-difference methods are more expensive than ray-tracing, we have
implemented the migration in parallel. The wave equation is transformed via the paraxial
approximation and operator splitting. A subsequent corrective filter compensates for errors
introduced in the approximation. The algorithm uses both frequency and spatial parallelism
to produce good 3D images of the subsurface in reasonable time. In the remainder of this
paper we cover the basic equations governing the migration, the numerical approximations
we make, the parallel solution strategy, and some experimental results.
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2 Governing Equation
To model wave propagation within the earth’s interior, we begin with the scalar wave
equation,
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Here v(z,y,z) is the acoustic velocity of the medium, and P(z,y, zt) is the pressure
wavefield. Data collected at the surface, P(z,y,0,t), will be downward propagated to
illuminate reflector geometry within the subsurface. The scalar wave equation in 3D,
Eq. (1), is time consuming to solve. The solution time can be reduced by transforming the
hyperbolic equation (time domain) to a parabolic equation in depth through the paraxial
approximation [2](p.54).
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is the paraxial wave equation, and P is now a function of (z,y,z,w). The positive and
negative signs correspond to upcoming and downgoing wave fields respectively. Surface
pressure is used as an initial condition for solving the resulting parabolic equation down to
the next depth level. Solving Eq. (2) for every frequency to be included in the solution, we
will likely have hundreds of paraxial equations to solve.

The square-root operator of the paraxial wave equation, Eq. (2), is difficult to estimate
numerically. Therefore, this operator is approximated by an optimized series which has
its origin in a continued fraction expansion [2](p.84) [8](p.513). The continued fraction
expansion can be represented by ratios of polynomials [6], and the polynomial coefficients
can be optimized for propagation angle [4]. With these approximations, we write the
paraxial wave equation as
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and oy and B¢ are the expansion coefficients derived by Lee and Suh [4]. Commonly one
term of the series is retained (m = 1), and propagation angles of up to 65 degrees can be
accurately determined.

3 Method of Solution
To solve Eq. (3) by a finite-difference technique requires solving a banded matrix. The size
of this matrix is on the order of N2 x N? where N is the number of grid points in either
the z or y directions. Clearly, a direct solution of such a large matrix is prohibitive. To
reduce the computational cost, each term in Eq. (3) is solved separately by the method of
fractional steps [3]. For instance, the first equation
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has the exact solution Py(z,y,z + dz,w) = Po(z,y, z,w) exp[*(iw/v)Az]. The second
equation is given by
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Solving Eq. (5) is computationally intensive. To reduce this expense, another operator
separation is applied in the z and y directions [1] so that efficient tridiagonal solves can
be performed via the Thomas Algorithm [3]. To convert the operator, S, to a linear
combination of S; and S, we write
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or, dropping cross-terms,
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The operators in Eq. (7) are once again split by the method of fractional steps, and solved
in sequence
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Operator splitting is very similar to approximate factorization (AF) or ADI schemes
where the z- and y-directions are separated to produce tridiagonal systems of equations.
The method of fractional steps (MOFS) can be shown to be equivalent to the ADI scheme if
the operators in Eqgs. (8) commute and we can neglect a term of order Az2. However, MOFS
only requires one evaluation of the right-hand-side terms where ADI schemes require two
evaluations of the right-hand-side. Also, the MOFS scheme for the paraxial wave equation
only requires one level of storage (n; X ny) for the pressure wavefield rather than two as for
AF and ADI schemes. Thus to maintain low memory requirements, MOFS is the method
of choice. After operator splitting and approximations, the paraxial wave equation reduces
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Neglecting the two cross-terms in Eq. (6) introduces a phase error which is maximum
along the lines y = +z. Li [5] compares Egs. (2) and (9) and attempts to compensate for
all the errors between them by using the phase error,
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Applying the error operator to the wavefield, P,
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we can partially correct for the errors induced by approximation. In the expression above,
v,(2z) is the average acoustic velocity in any depth plane. The solution to this equation
is P(z+ Az) = P(z) exp[EAz(iw/v,)] and is applied as an additional step in the method
of fractional steps. We note that if the acoustic velocity is only a function of depth (i.e.,
a layered medium), the Li filter exactly corrects for all the phase errors, including the
approximation errors resulting from the difference between Egs. (2) and (9).




4 Parallelization

There are two types of parallelism in the seismic imaging algorithm described above:
frequency parallelism and spatial parallelism. In frequency parallelism, each processor
migrates a subset of the frequencies, and there is relatively little communication required
for this. The velocity model is distributed to all processors at the beginning of a migration
step, and the image is constructed by summing pressure fields across the processors. The
limitations of frequency parallelism are that the number of processors must be smaller
than the number of frequencies being processed and that each processor must store the
full velocity model. These problems are mitigated by spatial parallelism in which the (z,y)
domain is also distributed among processors. A new problem arises — the tridiagonal solves
in the z and y directions must be parallelized.

It is difficult to parallelize the solution of a single tridiagonal system, but this difficulty
is offset because there are many such systems. In our algorithm, Salvo, we set up a pipeline.
In the first stage of the pipeline, processor one starts on several tridiagonal solves. In the
second stage of the pipeline, processor two continues the first set of tridiagonal solves,
while processor one starts a second set of tridiagonal solves. This process continues until
all processors are busy. The optimal number of tridiagonal solves in a set is determined by
minimizing the overhead time associated with communication and idle time (see [7]).

5 Results and Conclusions

We tested Salvo with several synthetic datasets, as well as on real data. As an example of
a Salvo migration, we show the 3D SEG/EAGE salt model. Figure 1(a) shows a corner—
cut view of the velocity model. The grayscale colormap indicates the speed of sound in
a region; the lighter a region, the higher the speed. The white region is the salt dome.
Figure 1(b) shows the same corner—cut view of the image produced by Salvo. The image
is 600 x 600 x 210. It is a stack of 45 shots, each processed on a 200 x 200 x 210 grid with
a surface grid fully populated with receivers. A total of 511 frequencies were migrated.

To test the computational performance of Salvo, the sample impulse problem was run on
the Intel Paragon. Spatial parallelism was tested by setting p, = 1 and varying the number
of processors in the 2 and y directions, p, X p, and the number of grid points, n, X n,
(scaled-problem size). For frequency parallelism, we varied the number of processors in the
w direction, p,,, while keeping p; X p, = 1 and the number of frequencies, n,, constant.

Timings for the sample impulse run are shown in Table 1. The spatial parallelism is
efficient when the pipeline is fully utilized (3 x 3 nodes), remaining nearly constant at 66%.
Frequency parallelism is very efficient, remaining close to 90% for most problems. The drop
off in efficiency for the 64-node run is due to too little work for each processor.
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Figc. 1. A corner—cut view of the SEG/EAGE 3D salt model and the same corner cut view of
the Salvo itmage produced by processing 45 shots.
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